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SUMMARY 

Joint acoustic emissions (JAEs) measured from the knee present promise as a 

method of noninvasive knee health quantification. This work adapts the methods developed 

for knee JAE measurements to the wrist – another joint commonly afflicted with injuries 

and degenerative disease. First, JAEs are measured using contact microphones at eight 

locations around the wrist during prescribed exercises (wrist flexion-extension and 

rotation) to find reliable and consistent wrist JAE measurement methods. The benchtop 

measurement setup established for knee JAE measurements is directly incorporated in this 

study. JAE signal strength is assessed using the signal-to-noise ratio (SNR). Then, nine 

features that have shown importance in JAE analysis are extracted, and the intraclass 

correlation coefficient (ICC) (model 3,k), coefficients of variability (CVs), and Jensen-

Shannon (JS) divergence are used to assess the interrater and intrarater repeatability, 

revealing both exercises produce JAEs and three locations demonstrated high JAE signal 

strength and repeatability. Second, a wrist wearable system is developed for high quality 

JAE sensing. Low-profile wide-band analog accelerometers to measure and analyze JAEs 

from two reliable locations on the wrist are sampled and saved on a microSD using a 

custom-designed printed circuit board. Using custom-developed casings, one 

accelerometer is clipped to the loop of a watchband for placement on the radius and the 

other is contained in a custom-developed grip for placement against the palm. Proper grip 

strength is reinforced in real time using a force sensitive resistor and light emitting diodes. 

A flex sensor is secured along the volar side of the wrist for synchronously tracking wrist 

motion for improved cycle-by-cycle JAE analysis. This wrist wearable JAE sensing system 



 xii 

is validated using SNR, ICC, CV, and JS divergence and compared to the benchtop setup. 

The developed wearable system is critical in moving toward monitoring wrist JAEs for at-

home wrist joint health assessment. 
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CHAPTER 1. INTRODUCTION 

Musculoskeletal injuries and degenerative disease are a huge burden on society 

today, where as many as 1 in 4 people across age groups and cultures report chronic 

musculoskeletal pain [1]. These conditions are a leading cause of missed workdays, reduce 

quality of life, and are a major financial burden on health systems [2]. Standard noninvasive 

examination methods include subjective measures and expensive imaging. Treatment 

tracking quickly compounds the cost of these conditions, as repeated imaging may be 

prohibitively expensive and repeated visits to the clinic increase missed days of school or 

work. Additionally, a shortage of pediatric rheumatologists means only 1 in 4 children 

diagnosed with Juvenile Idiopathic Arthritis (JIA) is able to regularly see a pediatric 

rheumatologist [3], [4]. These factors, as well as the increased reliance on telemedicine 

during the ongoing pandemic, necessitate the presence of a noninvasive joint health 

measurement technique which can facilitate physical examination of joint health in a 

remote setting. 

Recent work has demonstrated that the vibration at the surface of the skin caused by 

dynamic interactions within a joint during articulation [5], commonly referred to as “joint 

sounds” or “joint acoustic emissions” (JAEs), can be used as a quantitative measure which 

can be employed to inform joint health. These works have been able to discriminate 

between healthy and injured [6]–[9], healthy and arthritic [4], [10]–[17], and loaded and 

unloaded knees [17], [18]. Using characteristics of JAEs as a potential digital biomarker of 

joint health shows great promise as an avenue for introducing joint health monitoring to an 

at-home environment. However, most of the research in JAE monitoring has focused on 
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the knee because it is the largest joint in the human body and has a huge impact on the 

population, with 18 million annual clinical visits attributed specifically to knee pain [19]. 

The wrist joint is also commonly afflicted with injuries and degenerative disease. It is 

therefore necessary to assess whether techniques for JAE measurement can be developed 

for the wrist, but to the best available knowledge, no work had previously been done in 

capturing JAEs from the wrist.  

The aim of this work is to expand the field of research on JAEs to the wrist joint. 

First, it is important to determine whether JAEs can be reliably extracted from the wrist. 

Many studies investigating JAEs of the knee utilize contact microphone (mic) placement 

locations 2 cm medial and lateral to the patellar tendon as reliable locations for extracting 

JAEs from the knee [20]. Therefore, a mic placement location or set of locations which can 

reliably extract wrist JAEs must be identified. Previous studies on knee JAEs have also 

explored the effect of different exercises on producing meaningful passive JAEs [17], [18], 

[21]. A study of wrist JAEs should also identify the exercises which can repeatably produce 

JAEs. This is investigated by using a benchtop system that has been validated to reliably 

extract meaningful JAEs from the knee [4], [9], [17], [22] to record JAEs from healthy 

volunteers’ wrists [23] performing two separate exercises at eight anatomically and 

experimentally determined locations around the wrist [24]. Signal strength and 

repeatability measures [7], [21] of nine spectral and temporal features important to JAE 

analysis are evaluated to assess wrist JAE recording quality and reliability. 

Once repeatable wrist JAE extraction techniques are established, a novel wearable 

device for improved wrist JAE extraction is developed. The wearable device employs a 

miniaturized version of a circuit designed specifically for untethered capturing of knee 
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JAEs [25], two contact microphones, a sensor for tracking the motion of the wrist, a sensor 

for validating that proper mic contact force against the skin is maintained [22], [26], and 

the mechanical hardware necessary to secure all sensors in the desired locations on the 

wrist for the high quality wrist JAE measurement. To reinforce proper user input for 

optimal JAE production and recording, microphone contact force feedback is given real 

time using red and green light emitting diodes (LEDs) and motion guidance animations 

alongside real time motion tracking feedback were implemented. The performance of the 

wearable device is assessed by comparing JAE signal quality and repeatability to the same 

measures from the previously validated benchtop system. These measures are then 

analyzed to confirm the viability of the wearable JAE sensing device for use in clinical 

joint health monitoring studies. Findings of this research will lay a foundation for 

convenient and reliable non-invasive wrist joint health assessment in uncontrolled settings 

using JAE analysis within a wrist wearable form factor. 
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CHAPTER 2. BACKGROUND 

2.1 Overview 

The wrist is a complex joint which allows for multiple axes of motion and is often 

subject to damage via injury or degenerative disease. Common clinical assessment 

techniques are invasive, subjective, or expensive, and repeated clinic visits for diagnosis 

and treatment tracking may not be feasible for many patient populations. The analysis of 

JAEs has shown promise as a quantitative measure for diagnostic and treatment tracking 

aid, and it is possible to capture JAEs in a wearable form factor, offering the opportunity 

to improve access to care from an at-home setting. The wrist offers an exciting possibility 

in the development of wearable JAE monitoring technology with an unobtrusive form 

factor which could expand the benefits offered by JAE monitoring technology to a larger 

population. 

2.2 Wrist Joint Pathology and Assessment Techniques 

The wrist endures heavy use during athletic activities and is therefore often subject 

to injuries from overuse or trauma, including within juvenile populations. Approximately 

1.3% of all adolescents who participate in athletics are afflicted with wrist injuries caused 

either by trauma in contact sports or overuse in golf, gymnastics, and racquet sports [27]. 

Overall, the hand and wrist combine as the third most commonly injured body part in the 

United States [28]. Wrist joint involvement is also common in those affected with 

degenerative joint diseases. As many as one in seven people in the US has some form of 

arthritis of the wrist [29]. Wrist arthritis also affects juvenile populations, as 34% of 
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children with JIA report wrist impairment, and 15-23% of that population shows active 

arthritis of the wrist [30]. Injuries and diseases of the wrist joint reduce quality of life, add 

to healthcare costs, and account for a huge impact on missed workdays [28]. The total 

economic impact of these injuries places them as the most expensive injury group at a 

population level [31]. Standard practice in the noninvasive diagnosis and treatment 

tracking of such conditions involves a combination of subjective measures such as patient 

reported symptoms, mobility assessments, physical examinations, and expensive imaging 

procedures such as x-rays, computed tomography (CT), and magnetic resonance imaging 

(MRI) [32]. More invasive procedures like arthroscopy of the wrist are also used for 

improved diagnostic power and treatment of some wrist ailments [33]. Because these 

procedures are costly, repeated clinic visits to track the progress of one’s treatment can 

become prohibitively expensive, leaving subjective pain assessments as a primary tracking 

tool for remote care. Therefore, there is a need for improved at-home wrist joint health 

monitoring using quantitative, rather than qualitative, measurement techniques. 

2.3 Wearable Health Monitoring 

Numerous physiological phenomena from the body emit signals which can be 

detected by sensors. Such signals have been a subject of research for centuries. In recent 

years, the miniaturization of sensors and electronics has allowed for some of these signals, 

such as cardiac rhythm [34], activity [34], [35], and blood oxygen saturation [36], to be 

monitored passively with noninvasive wearable technology. These may take various form 

factors, including patches that attach to the skin [37], sensors embedded in clothing [38], 

wrist watches [39], smartphone applications [40], and more. These wearable devices allow 

for passive health monitoring more frequently than would be possible in a clinical setting, 
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improving the likelihood of catching diseases which may not present during a clinic visit 

[37]. Additionally, the rise in patient-accessible electronic medical records (EMRs) allows 

for the data from these wearable sensors to be sent to healthcare providers so providers 

may monitor their patients in a telehealth setting [41], expanding access to care, 

empowering patients with their own health, and reducing the burden on healthcare 

providers.  

2.4 Joint Acoustic Emission Sensing 

2.4.1 JAE Sensing Techniques 

JAEs were first described by Blodgett in 1902. Using an off-the-shelf stethoscope 

pressed against the knee in motion, he noted the sounds produced by dynamic interactions 

within the joint and estimated that clinically relevant information is contained within those 

sounds [5]. Although in-air microphones may sense JAEs when placed near an articulating 

joint, the impedance mismatch between the skin and air makes the use of contact 

microphones (mics) and stethoscopes more practical for high quality JAE sensing [8]. 

Therefore, though JAEs have been known to science for over a century, JAE sensing 

methods within a wearable form factor did not become feasible until the creation of 

accelerometers and piezoelectric devices which could be fixed to the skin unobtrusively. 

The recent emergence of low-profile high-bandwidth contact microphones has increased 

motivation for further research into JAEs. Now, the analysis of audio measurements from 

JAE recordings shows promise as a biomarker for joint health, as recent studies on JAEs 

from the knee have demonstrated the ability to differentiate between healthy and injured 

[6]–[9], healthy and arthritic [4], [10]–[17], and loaded and unloaded knees [17], [18].  
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These studies have applied a wide range of signal processing techniques to JAE 

recordings to distinguish between healthy and ailing, or unloaded and loaded knees, but 

there are also many commonalities within the methods of acquiring JAE signals to allow 

for optimal analysis. First, the structures within the knee must create dynamic interactions 

to produce JAEs. To do this, past studies have often employed unloaded knee flexion-

extension (FE), but have also explored using exercises which introduce a higher load on 

the knee, including sit-to-stand, squat, stair climb, and vertical leg press [4], [16]–[18]. The 

interactions produced by these exercises creates JAEs which then need to be recorded. High 

bandwidth and low-profile contact microphones are commonly used for the detection of 

the low frequency grinding [26] and high frequency clicking [11] sounds characteristic of 

JAEs. These mics need to be secured to the skin on the desired location of the joint in a 

manner that will minimize any motion artifacts from rubbing against skin [26]. Adding a 

consistent light backing force is also desired to improve the sensing performance of the 

mic [22] and reduce the inter-trial and inter-user variability of JAE recordings [26]. 

Recording the applied backing force also allows for identification of any occurrences 

where the mic breaks contact with the skin [26] and allows for analysis of time-segments 

where low frequency signal is filtered out because too much contact force is applied or 

high frequency signal is filtered out from too little backing force [22]. Synchronous 

tracking of the joint angle allows for back-end analysis to be performed on a cycle-by-

cycle basis, which has proven helpful [4] due to the cyclical nature of JAE production 

during motion cycles [8]. 

Researchers have proposed some different approaches in JAE recording signal 

processing. However, a general pattern in the processing of JAE recordings is as follows. 
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JAE recordings are filtered to exclude as much thermal noise and motion artifact as 

possible without sacrificing much of the frequency band of JAEs [9], [10], [22], [26]. 

Audio recordings are then broken into motion cycles based on synchronous joint angle 

recordings [4], [8], [10], [17], [18], [25]. Cycles with strong definitive motion artifacts can 

then be discarded. Each remaining cycle is then broken up into windows of specified length 

and overlap. Then, distinct spectral features [4], [10], [17], temporal features [4], [10], b-

value [9], [42], and other features, are extracted from each window. These features are then 

often fed into a supervised [4], [10], [17] or unsupervised [7], [18] machine learning model 

to derive clinically relevant regression or classification. 

2.4.2 The Wrist as a Target Joint for JAE Sensing 

The combination of the rate of pathology that affects the wrist and the platform 

which the wrist provides for wearable systems dictates that the wrist is a logical choice to 

expand JAE research to new joints. However, to the best available knowledge, JAEs have 

minimally been studied around the wrist. This necessitates a study to indicate whether wrist 

JAEs can be reliably extracted from a wrist in motion similar to knee JAEs [21].  

The wrist is an ellipsoid joint capable of motion in more than two planes [43]. The 

dynamic interactions which produce JAEs may be created within the intercarpal joints via 

a combination of FE, radial-ulnar deviation, and circumduction (rotation). Adding weights 

would increase the load on the joint to further increase the interactions within the joint that 

create JAEs [18]. Due to smaller range of motion compared to knee, such exercises can be 

performed in two second cycles to create a repeatable procedure for JAE production as 

opposed to four second cycles commonly prescribed for knee JAE excitation. The 
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structural complexity of the wrist joint means that there may be many potential skin surface 

locations to monitor JAEs, either via a soft tissue pathway from the intercarpal joints to the 

skin surface or via sound conduction along a bone. The wrist joint may be described as a 

curved line between the styloid processes of the radius and ulna, curving proximally 1 cm 

[44]. Three potential proximal mic locations (P1–P3) are 3 cm proximal to the wrist joint 

with the first centered between the radius and ulna on the dorsal side, the second centered 

between the radius and ulna on the volar (palmar) side, and the third on the skin covering 

the radius. The first and second locations were selected because the soft tissue in the region 

allows for a relatively unobstructed path for vibration to propagate from the wrist, whereas 

the third location allows for sound conduction along the radius [45]. These locations are 

also optimal locations for a wristwatch-style wearable design and have minimal skin 

motion relative to the underlying skeletal structure [46], [47], which should minimize 

motion artifact production. Two potential distal locations for mic placement are each 3 cm 

distal to the wrist joint, where one (D1) is centered between the second and third metacarpal 

bones on the dorsal side, and another (D2) is centered between the first and second 

metacarpal bones on the palmar side. These were selected for proximity to the distal end 

of the carpal bones, the soft tissue pathway for JAEs to travel unobstructed [45], and the 

small amount of skin motion relative to the underlying bone structure [46], [47]. D2 also 

provides the ability to listen to wrist JAEs through a custom-designed grip, a potential 

design for an at-home joint health monitoring system. Three potential middle mic locations 

(M1–M3) are all on the wrist joint, where M1 is 1 cm distal to the dorsal tubercle, M2 is 

distal and adjacent to the radial styloid process, and M3 distal and adjacent to the ulnar 

styloid process. These locations were selected for their location on the wrist joint with a 
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soft tissue pathway for JAE propagation [45]. Skin motion is high in these locations relative 

to the underlying skeletal structure [46], [47]. Thus, motion artifacts within the signals, 

characterized as high signal power without the grinding or clicking sounds characteristic 

of JAEs, are expected. Other mic placement locations are possible but are not described, 

either to prevent redundancy or because of poor performance during preliminary 

experimentation. Assessing the signal strength and repeatability of wrist JAE monitoring 

from the locations and exercises detailed above will confirm whether it will be feasible to 

study wrist JAEs and develop wearable technology to monitor them to expand availability 

of quantitative wrist joint health monitoring to clinical and at-home settings. 

2.4.3 Design Requirements of JAE Sensing Systems 

Systems for monitoring JAEs have been under constant development in recent 

years. One of the earlier systems developed specifically for JAE monitoring was 

implemented by Töreyin et al. This system used airborne microphones for acoustic 

monitoring of knee JAEs and accelerometers for tracking joint angle [48]. Since then, 

acoustic measurement techniques have evolved to use contact microphones [20], employ 

various joint angle measurement techniques including more advanced inertial 

measurements extracted from multiple IMUs, and have even moved to untethered systems 

[25]. However, there is a consistent set of requirements for JAE monitoring systems. First, 

the system must employ sensors for acoustic measurement. Most recently, this has meant 

placing high sensitivity contact microphones on the skin at specific anatomical locations 

around the joint known for reliable JAE extraction [22], [26] using placement methods 

which minimize the introduction of motion artifacts, maximize the measured JAE signal 

strength and repeatability, and don’t filter out frequency ranges important to JAE analysis 
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[22], [26]. These sensors must then be sampled by electronics at a high enough frequency 

such that the upper end of the frequency spectrum of JAEs is much less than the Nyquist 

frequency. Second, JAE measurement techniques must also track the motion of the joint to 

validate JAEs are cyclical with the motion of the joint [20] and improve data segmentation 

capabilities [4], [8], [10], [17], [18], [25]. Lastly, the acoustic measurements and joint angle 

tracking data must be saved for later analysis. 

There are additional requirements when developing a wearable system for JAE 

monitoring. Such systems require additional electronic considerations such as power-

consumption, sample rate, battery life, data storage capacity, a data transfer method (to a 

computer), and printed circuit board (PCB) design [25], [49]. They must also be small 

enough to be secured near the joint unobtrusively, fit people of various sizes, and have 

mechanisms of securing the system to the joint without negatively impacting the 

performance of the electronic systems [50]. For wide adoption, they should also be 

inexpensive and simple to use [49]. Systems which are wrist wearable may also have added 

requirements knee-wearable systems do not have. The knee is restricted to a single axis of 

motion, but the wrist may move in two [43]. A wrist wearable JAE sensing system must 

not restrict either axis of motion. Additionally, joints in close proximity to the wrist, such 

as those which allow finger motion, may create artifacts unrelated to wrist motion within 

the acoustic signal, and should therefore be immobilized. Wearables developed for 

pediatric settings also introduce their own design constraints. Children are small, so the 

wearable design must be less obtrusive than a wearable device designed for adults. The 

design of a wearable in pediatric settings must also be highly decorative, and user input 

must be simple and appealing.  
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CHAPTER 3. ASSESSING THE REPEATABILITY OF JAE 

MONITORING AROUND THE WRIST 

Research around JAEs has almost entirely focused on analyzing JAEs of the knee. 

This work aims to utilize similar techniques to those which have been established around 

knee JAE extraction techniques to establish a framework for wrist JAE measurement and 

analysis. Once this is established, technology for wearable wrist JAE monitoring in clinic 

or at-home can be developed and deeper research into the clinical relevance of wrist JAEs 

can commence. 

3.1 Methods 

3.1.1 Study Design and Ethics 

This study follows the Guidelines for Reporting Reliability and Agreement Studies 

(GRRAS) [51]. All human subjects research was conducted under approval by the Georgia 

Institute of Technology Institutional Review Board (#H15398). Volunteers provided 

written informed consent prior to participation in the study. 

3.1.2 Participants 

Seven healthy college-aged volunteers (three male/four female, 24.9 ± 3.5 years, 

65.3 ± 8.4 kg, and 168.0 ± 10.1 cm) were recruited. Inclusion criteria for participation in 

this study dictated volunteers must have no history of major wrist injury or degenerative 

joint disease. Additionally, if volunteers had changes to wrist joint health between 

recording sessions, they would be excluded from the study. No volunteers met this 
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exclusion criteria, so no such exclusions were made. Other factors which may affect wrist 

JAEs such as volunteers’ daily medication usage, day-to-day wrist activity levels, and 

history of previous minor wrist injuries were not controlled. An additional volunteer who 

had juvenile idiopathic arthritis (JIA) as a child (female, 41 years, 75 kg, 175 cm) was 

included to facilitate proof-of-concept qualitative comparisons to the healthy volunteers 

and to allow the development of hypotheses for future studies to investigate.  

A previously recorded dataset (seven male/three female, 25.1 ± 2.9 years, 72.4 ± 

13.4 kg, and 170.1 ± 13.4 cm, no history of major knee joint injury or degenerative disease, 

5-10 motion cycles each) of JAE recordings from knee squat exercises recorded at sites 2 

cm medial and lateral to the patellar tendon on both legs of college-aged individuals was 

used to compare the signal strength measurements of wrist JAE recordings against the two 

locations on the knee known to provide salient knee health assessment. The same data 

acquisition system [52], pre-processing steps, and signal strength assessment methods were 

used in this dataset as were used in the wrist recordings to ensure consistency in methods 

to provide a valid comparison. 

3.1.3 Experimental Protocol 

On each day of study participation, volunteers moved their wrists around at random 

for 20-30 s to precondition their wrists and remove artifacts caused by crepitus. Volunteers 

then practiced the prescribed 2 s period wrist FE and rotation exercises alongside 

animations designed to provide guidance in these exercises. Here, radial-ulnar deviation is 

excluded from the set of prescribed exercises due to poor ability to elicit JAEs in 

preliminary experiments, and weighted conditions are excluded because unweighted 
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exercises sufficiently produced desired JAEs. Mics were secured to four of the eight 

locations around the wrist described in 2.4.2 and shown in Figure 1 using double-sided 

craft tape (Elizabeth Craft Designs, Evergreen, CO, USA). JAEs were then recorded while 

the volunteers performed 10 exercise cycles, again following the provided animations, 

three times for each combination of unweighted FE and rotation exercises at two sets of 

microphone location for both wrists. Volunteers performed this protocol on each of two 

separate days, separated by less than a week. 

 

Figure 1: Testing setup for recording joint acoustic emissions (JAEs) from the wrist. 

During a recording, the wrist has accelerometers (either P1–P3 and D1 or M1–M3) 

attached to the skin with double sided tape. The volunteer holds the grip which contains 

the inertial measurement unit (IMU) and an accelerometer to press against the skin at 

location D2. The data from the four accelerometers were synchronously recorded via a 

National Instruments data acquisition unit, which was controlled by a computer running 

MATLAB. 

 



 15 

3.1.4 Signal Extraction, Signal Processing, and Signal Strength Assessment 

The JAE sensing system employed in this study consists of four miniature uniaxial 

accelerometers (Series 3225f7, Dytran Instruments, Inc., Chatsworth, CA, USA) with wide 

bandwidth (2 Hz–60 kHz), and high sensitivity (100 mV/g). These accelerometers, used as 

contact microphones, were fixed to the skin using double-sided tape. The other end of the 

accelerometers was connected to a computer via input channels a data acquisition unit 

(DAQ) (USB-4432, National Instruments, Austin, TX, USA) [52], which were sampled at 

a rate of 50 kHz, and saved for subsequent processing using scripts in MATLAB 

(MathWorks, Natick, MA, USA). 

An inertial measurement unit (IMU) (BNO055, Adafruit Industries, New York, 

NY, USA) was connected to a microcontroller (UNO, Arduino, Somerville, MA, USA) to 

monitor the motion of the wrist joint relative to the forearm while volunteers performed 

the wrist exercises necessary to excite JAEs. To best track wrist motion, the forearm was 

held stationary by strapping it to the arm of the volunteer’s chair and the IMU had to be 

held in the hand of the wrist in motion. A custom grip (shown in Figure 1) made of silicone 

gel (Ecoflex GEL, Smooth-On, Easton, PA, USA) was developed with slots designed to fit 

the accelerometers and a custom-developed IMU case, allowing volunteers to hold the 

IMU, press the accelerometer onto the skin of the palm, and prevent extraneous finger 

motion. The combination of the broad bandwidth mics to pick up JAEs and an IMU to 

track kinematics creates a framework for monitoring JAEs from the wrist in motion. 

The first step in processing the raw audio signal is applying a Kaiser window 

bandpass filter (150 Hz–20 kHz). At this point, qualitative analysis is performed by visually 



 16 

comparing the filtered waveforms and listening to the sounds recorded by the microphones 

of all healthy volunteers who had no history of major wrist injury or illness to the 

recordings from the volunteer who has a history of JIA from childhood and audible wrist 

JAEs. An example of such qualitative comparisons can be demonstrated with the signals 

shown in Figure 2.  

 

Figure 2: (a,c,e) Volunteer who was afflicted with juvenile idiopathic arthritis (JIA) as a 

child and continued to have audible JAEs from the wrist during articulation. (b,d,f) 

Volunteer with no history of wrist pathology. (a,b) Time domain of acoustic signal from 

the wrist. (c,d) Spectrogram of the acoustic signal displayed above it. (e,f) Motion data 

from the IMU recorded synchronously with the acoustic signal. 

Once the presence of JAEs was confirmed within the dataset of healthy volunteers, 

the microphone signal is segmented into the 10 movement cycles of prescribed motion 

using the IMU signal. Each cycle is windowed into 400 ms long frames with 50% overlap 

[4], [17], and nine spectral and temporal features (zero-crossing rate, acoustic energy, 

spectral centroid, spectral spread, spectral flux, harmonic ratio, spectral crest, spectral 

decrease, and spectral slope) are extracted for the statistical analysis. These raters were 
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selected in a review of previous studies able to separate healthy joints and joints afflicted 

with degenerative disease [4], [10], [17], [21] based on their relative importance within the 

respective machine learning models. The measurements and raters in this experiment are 

not calculated independently. 

To assess the effects of the unwanted noise and motion artifacts at each location, 

the signal-to-noise ratio (SNR) was calculated as follows. First, the Teager energy operator 

finds the characteristic JAE clicks in the signal, chosen as the peaks greater than 20% of 

the range of the signal value, as has been proven to be successful in JAE analysis by Semiz 

et al. [11]. Click windows were categorized as the time ± 50 ms of each detected click. The 

remaining signal recordings are classified as the windows of noise and motion artifacts. 

The power of each window is calculated, and the ratio of power of the click windows taken 

against the power of the motion artifact windows yields a SNR measurement for each 

recording. These are summarized by location to assess the signal strength relative to the 

motion artifacts at each microphone placement location and for each exercise. 

3.1.5 Statistical Analysis 

All statistical analysis is performed using scripts in MATLAB. The mean, median, 

and standard deviation of the features of all windows are calculated and stored as a vector 

of features for each cycle, where there are 60 such feature vectors for each combination of 

volunteer, wrist, exercise, and location (six sessions of 10 cycles each). The average of 

each feature over those 60 vectors is calculated to give a single averaged feature vector for 

each combination of volunteer, wrist, exercise, and location. 
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The intraclass correlation coefficient (ICC) is a widely used metric of measurement 

reliability across different raters [4] and has been used successfully in previous JAE 

repeatability tests [20], [21], [26]. Using ICC to describe intersession reliability, each 

feature vector acts as a measurement where every feature is a rater. The two-way mixed 

effects, consistency, multiple raters/measurements model of ICC (model 3,k) is used to 

calculate interrater ICC values with a 95% confidence interval (CI) [53]. All measurements 

at each location were used to calculate the ICC for each location. Likewise, all 

measurements for each exercise are used to calculate the ICC for the two exercises. 

Intrasession reliability is calculated using the same ICC calculation methods as for 

intersession reliability, where the two separate days of recordings for each volunteer 

represented different measurements; thus, there are twice as many feature vector 

measurements for ICC calculations. ICC values were assessed according to Fleiss [54], 

where values less than 0.40 are “poor”, values between 0.40 and 0.75 are “fair to good”, 

and values greater than 0.75 are “excellent”. These values are presented at a high level 

among all volunteers. To assess the variability between volunteers, ICC is also calculated 

on a volunteer-by-volunteer basis and the standard deviation of the ICC calculation 

between volunteers at each location is reported. 

JS divergence is a symmetrical variant of the Kullback–Leibler (KL) divergence, 

which measures the entropy between two probability distributions that are meant to 

represent the same dataset to confirm the measurement consistency [55], [56]. To find the 

JS divergence, distributions of each feature are needed: the nine features calculated for 

each bin are kept such that they could be summarized as a histogram of the feature 

distribution for each recording of 10 cycles. Then, the average distribution of similar 
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recordings on a recording date (all recordings from the same session date, volunteer, wrist, 

exercise, and location) is taken. The KL divergence of each of those similar recordings is 

calculated using the averaged distribution as the “ground truth recording” [55], [56]. 

Averaging these KL divergence values gave the intrasession JS divergence of each feature 

for that combination of session date, volunteer, wrist, exercise, and location. JS divergence 

is then summarized by location and exercise [56]. 

The standard error of measurement (SEm) is found for both JS divergence and SNR 

calculations. The SEm is then multiplied by 1.96 to give a confidence bound, which is 

added to the top and bottom of the measurement (JS Divergence or SNR) to give a 95% 

CI. The coefficient of variation (CV) is also calculated for each feature at each location 

and exercise to assess intrarater variability, where low levels of variation are defined as CV 

values less than 12% [21]. 

3.2 Results 

3.2.1 Reliability Measurements 

The calculated intrasession ICC values with 95% CIs for FE and rotation exercises over all 

tested locations are displayed in Table 1. Intersession ICCs with 95% CIs for FE and 

rotation exercises over all tested locations are displayed in Table 2. Standard deviation of 

intrasession ICC between volunteers is 0.082 for both exercises, and standard deviation of 

intersession ICC between volunteers is 0.091 for both exercises. Intrarater repeatability 

analysis using intrasession JS divergence (values closer to 0 indicate high levels of 

similarity) on the nine identified features extracted from the filtered acoustic signal gives 

median JS divergence of 0.190 (95% CI of 0.186–0.193) for FE and 0.187 (95% CI of 
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0.184–0.190) for rotation. Assessing the variation of feature values for each exercise yields 

mean CV values displayed in Table 1 and Table 2. 

Table 1. Intrasession intraclass correlation coefficients (ICC) values with 95% confidence 

intervals and coefficient of variation (CV) evaluated for all tested exercises and at all tested 

locations around the wrist. 

  Intrasession Reliability 

  95% CI  

 ICC Lower Bound Upper Bound CV 

Flexion-

Extension 0.632 0.478 0.758 0.161 

Rotation 0.820 0.745 0.881 0.107 

Location P1 0.631 0.477 0.757 0.156 

Location P2 0.752 0.649 0.836 0.152 

Location P3 0.847 0.784 0.899 0.153 

Location D1 0.811 0.734 0.875 0.157 

Location D2 0.837 0.770 0.892 0.143 

Location M1 0.849 0.787 0.900 0.099 

Location M2 0.857 0.798 0.905 0.101 

Location M3 0.872 0.819 0.915 0.109 

 

Table 2. Intersession ICC values with 95% confidence intervals and CV evaluated for all 

tested exercises and at all tested locations around the wrist. 

  Intersession Reliability 

   95% CI  

 ICC Lower Bound Upper Bound CV 

Flexion-

Extension 0.631 0.525 0.723 0.236 

Rotation 0.789 0.729 0.841 0.183 

Location P1 0.629 0.399 0.801 0.225 

Location P2 0.760 0.614 0.871 0.241 

Location P3 0.847 0.754 0.917 0.233 

Location D1 0.817 0.706 0.902 0.231 

Location D2 0.840 0.743 0.914 0.232 

Location M1 0.855 0.768 0.922 0.169 

Location M2 0.870 0.791 0.930 0.170 

Location M3 0.886 0.817 0.938 0.176 
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Intrasession ICC with 95% CIs for all locations are shown in Table 1. The 

intersession ICC with 95% CIs for all locations are shown in Table 2. The standard 

deviation of intrasession ICC across volunteers is 0.078 at location P1, 0.040 at location 

P2, and between 0.001 and 0.009 for locations P3, D1, D2, and M1–M3, and the standard 

deviation of intersession ICC across volunteers is 0.116 at location P1, 0.025 at location 

P2, and between 0.002 and 0.005 for locations P3, D1, D2, and M1–M3. Performing similar 

repeatability analysis using intrasession JS divergence on these locations gives median 

values between 0.18 and 0.20 (with 95% CIs in the same range). Assessing the variation 

of feature values for each location yields mean CV values shown in Table 1 and Table 2. 

3.2.2 Signal Strength 

Assessing the signal strength relative to noise level after filtering, the median SNR 

is 6.0 dB (95% CI of 5.8–6.2 dB) for FE and 6.1 dB (95% CI of 5.7–6.5 dB) for rotation 

with standard deviation between volunteers of 1.9 dB for FE and 1.0 dB for rotation.  

SNR values for summarized by location yields Figure 3. Here, it can be 

demonstrated that over all volunteers, locations P1–P3 have higher median SNRs (9.8 with 

95% CI of 8.6–10.9, 7.4 with 95% CI of 6.7–8.0, and 7.4 with 95% CI of 6.8–8.0 dB, 

respectively) than other locations (p < 0.001, using two-sample t-test with Bonferroni 

correction). Locations D1, D2, and M1–M3, where median SNRs are 4.5 (95% CI of 3.6–

5.3), 5.6 (95% CI of 4.9–6.3), 4.1 (95% CI of 3.6–4.7), 4.2 (95% CI of 3.5–4.9), and 6.3 

(95% CI of 5.7–6.9) dB, respectively. Additionally, the standard deviation of SNRs 

between volunteers ranges from 1.6 to 2.5 dB. The dataset of recordings from knee squats 

of healthy volunteers shows a median SNR of 5.5 (95% CI of 4.8–6.3) dB at 2 cm medial 



 22 

to the patellar tendon and a median SNR of 7.2 (95% CI of 6.6–7.9) dB 2 cm lateral to the 

patellar tendon. 

 

Figure 3: (a) Box-and-whisker plot of signal-to-noise ratio (SNR) measurements at each 

microphone placement location after filtering with a Kaiser-window bandpass filter using 

a passband of 150 Hz–20 kHz. (b) SNR is displayed as circles centered at the microphone 

location that SNR was measured at. SNR (dB) is represented as the radius of the circle and 

median SNR values are displayed beside the circles. 

3.3 Discussion 

3.3.1 Evaluating the Ability of Prescribed Exercises to Excite Joint Sounds 

Recordings taken from the wrist joint during the prescribed motions must capture 

wrist JAEs. Some of the JAE signals most definitively related to joint pathology gathered 

in previous work come from Whittingslow et al.’s study on JAEs within a cadaver knee. In 

Whittingslow et al.’s study, observed JAEs did not exist in a knee before meniscus tear and 

meniscectomy. Thus, they could be directly attributed to changes within the articulating 

surfaces within the knee [9]. This work qualitatively assesses JAEs recorded from an 

additional volunteer who was afflicted with JIA as a child and has wrist acoustic emissions 
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which can be detected audibly. These recordings, as well as those from healthy volunteers, 

shown in Figure 2, closely resemble the grinding and clicking characteristic of JAEs from 

Whittingslow et al.’s study as well as the JAEs described in earlier studies [4], [9]–[11], 

[26] suggesting that this protocol successfully records JAEs from the wrist during both FE 

and rotation which are similar to those which have been able to provide salient joint health 

assessment in previous studies on the knee. JAEs from healthy volunteers are less frequent 

than JAEs from the volunteer with a history of JIA but are often periodic with the same 

period as the prescribed wrist motions (2 s), as is expected in JAE recordings from healthy 

volunteers [20], [57]. This shows that both exercises tested in this protocol are able to excite 

and record wrist JAEs. 

JS divergence and intersession and intrasession ICC and CV are employed to assess 

the repeatability of the tested exercises to excite wrist JAEs [10,19]. The results indicate 

fair levels of intrasession and intersession repeatability in exciting JAEs with unweighted 

FE, and high levels of intrasession and intersession repeatability in recording JAEs from a 

wrist in rotation, with low variation between volunteers. The difference in repeatability in 

these exercises has moderate significance (p < 0.05 for intersession ICC and p < 0.1 for 

intrasession ICC, using two-sample t-test with Bonferroni correction), indicating rotation 

exercises more reliably create the dynamic interactions within the wrist joint which excite 

JAEs. Similar repeatability analysis using intrasession JS divergence (values closer to 0 

indicate high levels of similarity) on the nine identified features extracted from the filtered 

acoustic signal confirms the high levels of repeatability also demonstrated by the ICCs. 

Both exercises show acceptable levels of signal strength with some variation between the 

healthy volunteers, but there is not a significantly better exercise for minimizing motion 
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artifacts (p = 0.30, using paired sample t-test with Bonferroni correction). However, SNR 

may be more dependent on microphone location due to motion artifacts. Thus, eliminating 

noisier locations would improve the overall performance of each exercise. In summary, 

both unweighted FE and rotation exercises can repeatably excite and record wrist JAEs 

with moderate signal strength, and the features of sounds which have performed well in 

knee joint health classification studies show high repeatability. Therefore, both unweighted 

wrist FE and rotation exercises are suitable for use in future clinical studies. 

3.3.2 Evaluating Microphone Placement Locations Around the Wrist 

It has been demonstrated that both wrist FE and rotation exercises consistently 

excite wrist JAEs which can be recorded by contact microphones placed on the surface of 

the skin around the wrist. However, some microphone placement locations have higher 

levels of noise due to motion artifacts. Quantifying this as an SNR value for each recording 

and summarizing by location yields the results displayed in Figure 3. Locations P1–P3 give 

the highest SNR values (p < 0.001, using two-sample t-test with Bonferroni correction), 

and locations D2 and M3 show moderately higher signal strength than the rest of the 

locations (p < 0.001, using two-sample t-test with Bonferroni correction). The standard 

deviation of SNRs among volunteers indicates some variability in noise levels at different 

locations among volunteers. Though this may alter which location produces the best signal 

quality for individual volunteers, the overall separation between proximal locations and all 

other locations indicates that the decreased skin motion relative to the underlying skeletal 

structure at these locations [46], [47] often minimizes motion artifacts within JAE 

recordings. Performing the same analysis to estimate SNR from a dataset of recordings 

from knee squats of healthy volunteers yields values similar to the SNR values gathered 
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around the wrist, indicating that recordings from the wrist have similar signal quality to 

those which have been correlated to joint health around the knee.  

In the selected feature set, both within and between single-day recording sessions, 

intrasession and intersession ICC values demonstrate excellent repeatability in picking up 

JAEs at all locations except P1 and P2, which themselves have fair-to-good repeatability 

levels. Additionally, the standard deviation of ICC values across volunteers indicated low 

levels of variability between volunteers. Furthermore, the feature set shows moderate-to-

low intrasession variability and moderate intersession variability. These repeatability 

findings compare favorably against a similar study from Kalo et al. on knee JAE 

repeatability which found intrasession ICCs of the median power frequency ranging from 

0.85 to 0.95 at the tibia and 0.73 to 0.87 at the patella and intersession ICCs of the median 

power frequency ranging from 0.24 to 0.33 at the tibia and 0 to 0.82 at the patella [21]. 

This indicates the wrist recordings sense JAEs with similar or better repeatability levels 

than similar knee recordings in healthy volunteers at most locations. There is only enough 

separation to conclude location-specific reliability based on intrasession ICC with any 

statistical significance between the lowest performing location (P1) and the group of 

highest performing locations (D2 and M1–M3) (p < 0.05 for intrasession ICC, using two-

sample t-test with Bonferroni correction), and separation decreases such that good 

separation (p < 0.05, using two-sample t-test with Bonferroni correction) is only present 

between the lowest (P1) and highest (M3) performing locations for intersession ICC. 

Additionally, the locations with highest repeatability levels also show the highest level of 

noise and motion artifact interference, which has been observed to inflate consistency 

measurements, further reducing the true separation between these measures across 
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locations. However, the degree of repeatability shown by the ICC (using measures which 

have been effective in knee JAE health classification [4], [9], [10], [17]) demonstrates any 

of these locations will record high quality JAEs [7] with similar consistency to recordings 

of knee JAEs from the top of the tibia and patella [21]. 

The combination of fair-to-high interrater repeatability demonstrated by ICC, 

intrarater repeatability demonstrated by JS divergence at all locations around the wrist, and 

the acceptable signal strength demonstrated with the SNR at locations P1–P3, D2, and M3 

indicates that locations P1–P3, D2, and M3 are suitable for high quality repeatable wrist 

JAE recordings. The strong SNR values at locations P1–P3 have high separation over all 

other locations (p < 0.001, using two-sample t-test with Bonferroni correction), which had 

relatively weaker SNR scores. Additionally, the strongest signal strength demonstrated at 

location P1 shows high levels of separation from all other locations (p < 0.001, using two-

sample t-test with Bonferroni correction). This reveals the best locations for minimizing 

artifact interference while still having fair repeatability are proximal to the wrist joint, and 

that location P1, which is 3 cm proximal to the wrist joint and centered between the radius 

and ulna on the dorsal side, is best for minimizing noise and motion artifact levels. On the 

other hand, locations P1 and P2 have the lowest levels of intersession and intrasession 

repeatability, which can be attributed to reduced proximity to the wrist joint and the fact 

that the soft tissue these locations rest upon will not transmit vibrations as well as the harder 

tissues of other locations [58], such as locations P3, D1, D2, and M1–M3, which are all 

clustered with high repeatability levels. The best balance of moderate-to-high signal 

strength and excellent repeatability of JAE recordings in healthy volunteers can be shown 

at locations P3, D2, and M3. 



 27 

3.3.3 Limitations and Future Work 

The volunteer sample size (n = 7) and the low-to-medium levels of variability 

between volunteers within these measurements means the sample of healthy volunteers 

may not be representative of a larger population with varied wrist joint pathologies. Future 

studies researching the effectiveness of quantifying wrist joint health using the locations 

described in this study must first perform qualitative assessments by looking at and 

listening to the audio signal to identify grinding and clicking sounds characteristic of JAEs 

to confirm the quality of wrist JAE recordings.  

Locations P1–P3, D2, and M3 around the wrist have JAE recording quality and 

reliability levels during unweighted FE and rotation which compare well against similar 

measures around the knee during sit-to-stand and squats. These wrist locations and 

exercises can be employed as a framework for future studies aiming to show whether wrist 

JAEs demonstrate similar levels of diagnostic and treatment-tracking power for wrist 

injuries and degenerative diseases as previous studies centered around the knee presented 

[4], [7], [59], [9]–[13], [15]–[17]. This framework may also be used to create techniques 

for clinical use of wrist JAE recordings to facilitate quicker diagnosis of wrist joint injuries 

and chronic joint conditions and improved treatment progression monitoring. It may also 

allow for the development of wearable systems for at-home wrist joint health monitoring, 

which would provide clinicians with quantitative measurements to help assess patients’ 

wrist joint health more frequently without the need for additional clinic visits, improving 

access to care, and therefore patient outcomes, while reducing the burden on the medical 

systems that treat such injuries and chronic joint conditions [59].  
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CHAPTER 4. DESIGN AND VALIDATION OF A WRIST 

WEARABLE SYSTEM FOR JAE MONITORING 

The study detailed in CHAPTER 3 concludes that JAEs of the wrist can be produced 

repeatably during wrist FE and rotation exercises and mics may be placed on the skin at 

multiple specific locations around the wrist to reliably extract those JAE signals. These 

findings allow for the development of a wrist wearable system to monitor JAEs produced 

by the wrist in a clinical setting. Then, clinical research on the relevance of wrist JAEs to 

the wrist joint pathology will motivate development of a wrist wearable device for use in 

an at-home setting for remote joint health monitoring. Pediatric rheumatology practices 

could greatly benefit from such technology, as there is a shortage of physicians in this 

specialty. Patients who visit these specialists, such as those with JIA, often travels long 

distances for visits, accumulating large financial cost from missed school and work days, 

which is compounded by the need for multiple visits to follow up on treatment progression 

[3], [4]. Technological developments presented in this research facilitate telemedicine 

practices, which may improve the efficacy of pediatric rheumatology practices by 

expanding patients’ access to care. This work aims to develop and validate a wrist wearable 

system for clinical monitoring of wrist JAEs in a pediatric patient population. 

4.1 Wrist Wearable JAE Monitoring System Design 

4.1.1 Electrical Design 

The primary design constraint on a system for JAE extraction is that the electronics 

must sample microphones placed at multiple locations around the joint at a very high 
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frequency. Contact mics used in a wearable system should be highly sensitive, low profile, 

low noise, and have a wide band of frequencies where linear response is observed. 

Relatively inexpensive ($46 each) analog accelerometers with 10 mV/g sensitivity, 

7.87x5.54x2.24 mm profile, and linear response up to 6 kHz (BU-23842-000, Knowles 

Electronics LLC., Itasca, IL USA) were selected to be used as contact mics in the wearable 

system. Custom PCB design and firmware were developed by Teague et al. to successfully 

accomplish high sample rate in four similar mics [25]. Therefore, much of the PCB design 

in this work utilizes the electrical hardware and firmware of the audio board developed by 

Teague et al. However, the current work has some distinct needs that Teague et al. did not 

have, so modifications were made to the PCB design and firmware. While the 

implementation of these modifications on the embedded system was performed by Göktuğ 

Cihan Ӧzmen, a PhD student in the Inan Research Lab, conceptualization and overall 

design of the system was done in a collaborative manner.  

The most prominent need in customizing the PCB designed by Teague et al. is 

miniaturization. The wrist is a smaller joint than the knee, and juvenile wrists further reduce 

the maximum size constraint of the PCB. The most important dimension of the PCB design 

and casing to limit is the radial-ulnar direction. The minimum expected age for children 

with JIA using at-home JAE monitoring is six years old, and the wrist circumference of a 

5th percentile six year old female is 10.70 cm [60]. Therefore, the maximum size of the 

wearable in the radial-ulnar direction should be 3 cm. The relative length of the forearm 

and lack of a set height constraint suggest dimensional constraints in the proximal-distal 

and dorsal-volar dimensions are less important. First, to minimize the size of the electronics 

in this design, three main adaptations are made. Electrical components are added to both 
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sides of the PCB rather than just one. Second, since board height is less important than 

width, the audio board is split into two smaller boards such that they can be connected by 

a robust, low-noise, and low cross talk capacitance board-to-board connector (Razor Beam, 

Samtec, New Albany, IN, USA). Third, the 500mAh Li-ion battery is replaced with a 

smaller 150mAh Li-ion battery. 

An additional constraint in the customization of a PCB for a wrist wearable JAE 

monitoring device is it must synchronously record joint angle to analyze JAE signals on a 

cycle-by-cycle basis, as this has proven fruitful in joint health classification models using 

JAEs [4], [17]. Teague et al. use digital IMUs for joint angle measurement. Because mics 

are sampled at a very high frequency, ~46 kHz, a microcontroller was dedicated just for 

reading this high throughput data and writing it to a SD card as soon as possible without 

any data loss. Therefore, incorporating their IMU required additional hardware for 

microcontroller-to-sensors communication and sampling separate from the audio board 

[25]. Although this provides high quality orientation estimates with low noise, the primary 

drawback to incorporating the same sensors within a wrist wearable design is it would 

conflict with the goal of miniaturization. A flex-sensitive resistor, hereafter referred to as 

a flex sensor (FS2-L-055-103-ST, Spectra Symbol, Salt Lake City, UT, USA), is explored 

as an alternative. Flex sensors simply change resistance between two leads as they flex, 

reducing dedicated space allocation on the PCB, power consumption, and computational 

requirements. The trade-off to selecting this sensor is that unlike an IMU, polling the 

resistance of a flex sensor does not allow for extraction of precise joint angles. However, 

the benefits of the flex sensor outweigh this limitation because cycle extraction appears to 

be more important for subsequent JAE processing than exact joint angle, and the flex sensor 
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output should consistently allow for accurate cycle extraction. Additionally, exact joint 

angle extraction may still be obtained via calibration procedures which match resistance 

values with joint angles. The wearable device is designed using a resistor connected in 

series to a flex sensor, generating a simple voltage divider. The voltage drop on the flex 

sensor is sampled using an internal 12-bit ADC of the microcontroller. Since the goal is to 

obtain motion information (relatively low frequency), this voltage was sampled at 300 Hz 

and a moving average filter of 16 sample length is implemented on firmware. The data is 

then saved on a miniaturized secure digital card (microSD). 

Another design requirement which requires special attention in the electronic 

design is the need for mic placement methods which minimize the introduction of motion 

artifacts and maximize the measured JAE signal strength and repeatability [22], [26]. One 

of the mic placement locations in this work is on the palm, so the mic may be held within 

a custom designed silicone grip, where the interface of the silicone of the grip and the user’s 

skin minimizes slipping [61] and the user’s grip strength provides a consistent backing 

force. To ensure consistent grip strength, the user must be provided feedback on the 

backing force of the mic in real time. A force sensitive resistor (FSR) (FSR® 402 Short, 

Interlink Electronics, Camarillo, CA, USA) is an inexpensive, flat, low-profile sensor 

which changes resistance across two leads as increasing force is applied to it. Using an 

FSR as a force sensor in this application minimizes the required space on the PCB, reduces 

power consumption, and eases mechanical design due to its low-profile. One primary 

drawback to FSRs is they do not provide high accuracy in force readings, so a simple 

resistance threshold was decided upon by comparing average output resistance against 

higher accuracy capacitive force sensors (CS8-10N, SingleTact, Los Angeles, CA, USA) 
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(capacitive force sensors are not used in the wearable design due to their vulnerability to 

damage via delamination) and configured into the firmware. FSR resistance is polled with 

the same methodology as the flex sensor. If the FSR reading indicates a good level of force 

is provided by the user, a green LED contained within a custom developed grip is 

illuminated to inform the user they are squeezing the grip with a proper level of force. 

Conversely, if the FSR indicates a poor amount of backing force is provided, a red LED 

within the grip is illuminated. The polled FSR data is also stored alongside the polled flex 

sensor data to help analyze motion artifacts created by insufficient grip strength and 

exclude cycles highly impacted by those artifacts from further analysis. 

Once the primary sensing systems were selected, the adapted PCB layout was 

designed. The final PCB design has two boards, a mother and a daughter board, both 41 x 

24mm, connected using board-to-board connectors. The daughter board sits closer to the 

wrist and mainly holds two aux ports to plug in mics (for modular system design), a custom 

designed analog front end with 21 dB gain and 32 Hz – 21.88 kHz bandwidth, an analog-

to-digital converter (ADC) (ADAU1979, Analog Devices, Norwood, MA, USA), and 

solder pads to connect the FSR and flex sensor leads. The mother board sits atop the 

daughter board and has a battery connector, a microSD for data storage, a USB connector 

for data transfer and battery charging, a red switch to toggle system power, a white switch 

to toggle recording, and LEDs to indicate system power and recording status. 

4.1.2 Mechanical Design and Fabrication 

After the dimensions of the PCB layout were determined, the mechanical design 

was finalized as shown in Figure 4  (bill of materials in APPENDIX A. Bill of Materials.  
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Figure 4: (a) Wrist wearable system as worn on the left wrist. Here, the force-feedback 

LEDs sit within the grip, which is grasped by the hand such that the distal mic, sitting 

within the mic case assembly and plugged into ch1 via wiring through the fabric sleeve to 

a straight audio jack, is pressed against the palm. The proximal mic is connected to ch4 via 

wiring to a right-angle audio jack, sits within a mic case underneath the adjustable watch 

strap, and is pressed against the radius by the tension of the watch strap. The PCB case, 

resembling a corgi dog, sits on the volar side of the forearm. The flex sensor protrudes 

distally from the PCB case and is taped flush against the forearm. (b) Demonstration of the 

red LED shining within the grip if the user’s grip strength, sampled from the FSR, is 

insufficient and the green LED shining when the user’s grip strength is sufficient. (c) 

Exploded view of the PCB case assembly. (d) Exploded view of the distal mic case 

assembly. The proximal mic case assembly is nearly identical, but lacks the FSR, and the 

backing lacks the rectangular platform beyond the cylinder and has a clip to attach to a 

watch strap loop. 

The PCB is contained within a custom-designed 3D-printed Polylactic Acid (PLA) 

case. The assembly of the case, shown in Figure 4c, involves the PCB assembly placed 

between the top two layers of the case such that the switches extend through holes in the 

top layer for ease of access. A bottom layer holds the battery, flex sensor, and wiring from 

the PCB to the flex sensor, FSR, and external LEDs. The three case layers and the PCB are 

held together using three 0-80 machine screws screwed into heat-set inserts set within the 
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bottom layer of the PCB case. The full case assembly measures 44 mm in the proximal-

distal dimension, 27 mm in the radial-ulnar direction, and 21.75 mm in the dorsal-volar 

(vertical) direction. Once assembled, only the power switch, recording switch, aux ports, 

and USB port are accessible by the user. The PCB case has “feet” on the bottom layer with 

small holes in the side to interface to the quick-release pins of commercial off-the-shelf 18 

mm adjustable watch straps (18 mm Silicone Watch Band Strap with Quick Release Pins, 

GadgetWraps, Royal Oak, MI, USA).  

In this work, two mics were placed at locations selected based on the signal strength 

and repeatability results demonstrated in 3.3.2 and the two different methods which a 

wearable system could use to affix the mics to the skin, one proximal location on the radius 

and one distal location centered between the first and second metacarpal bones on the palm 

(referred to as P3 and D2, respectively, in CHAPTER 3). Thus, if one mounting method 

performs well and the other does not, another high-performing location from CHAPTER 3 

can be selected using the high performing mounting method for future design iterations. A 

mic casing (Figure 4d), inspired by the mic casings designed by Nevius [62] for 

applications in lung sound monitoring, was designed for improved JAE sensing without 

negatively impacting the transfer function of the mic within its region of performance 

(verified via experimentation in APPENDIX B. Mic Casing Characterization It uses a 

combination of a molded silicone case (Mold Max 40, Smooth-On, Easton, PA, USA) and 

a rigid 3D printed backing. Here, the proximal mic case has a clip on the back of the rigid 

backing to attach to the watch strap loops such that the case sits beneath the watch strap 

and the location of the mic case can be adjusted for any size wrist and either the left or right 

wrist. The high friction coefficient between the user’s skin and the silicone watchband and 
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mic case minimizes slipping [61], and the tension of the watchband across the mic case 

maintains a consistent backing force. The proximal mic utilizes a right-angle audio jack for 

improved wire management. The distal mic case is placed within a custom designed grip 

(Ecoflex 00-20, Smooth-On, Easton, PA, USA), where the high friction coefficient 

between the silicone grip and mic case and the user’s skin minimizes slipping [61]. The 

FSR is placed between the silicone mic casing and the rigid backing so force applied to the 

mic is transmitted through the case, compressing the FSR. This provides a sensing modality 

for mic backing force to be used for grip strength feedback. The case backing is designed 

with an extended base so heat shrink tubing may fortify the FSR solder connections. LEDs 

are then placed within the grip as a visual medium for grip strength feedback (shown in 

Figure 4b). All wiring to the grip is contained within a sewn fabric sleeve for improved 

aesthetics. Lastly, the flex sensor extends from the lower level of the PCB case distally and 

is taped (Micropore Surgical Tape, 3M, Saint Paul, MN, USA) flush against the palmar 

side of the forearm such that wrist flexion bends the flex sensor. 

4.1.3 Interaction with External Systems 

The wrist wearable system design described in 4.1.1 and 0 can be used for untethered 

JAE audio signal extraction, motion tracking, and real time grip strength reinforcement. 

However, a computer is required to extract data from the wearable system’s microSD for 

analysis. The data extraction program developed by Teague et al. [25] is used for this 

purpose. 

Because a computer is required for data extraction, it may also be used for an 

additional purpose. The wearable system reads grip strength with an FSR and provides real 
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time feedback with LEDs to ensure the mic placed within the grip has sufficient backing 

force and records the FSR data. It also has a flex sensor to record joint motion. However, 

unlike the user input of grip strength, joint motion is not reinforced by the wearable. Two 

solutions have been developed to improve this user input. First, animations were developed 

so users could point their wrist at an animated character and follow the character’s motion 

to prescribe a perfect 2 s periodic motion cycle. This system is meant for use with children, 

so multiple animated characters were developed to make the JAE recording more amusing. 

These animations, however, do not provide real time feedback to the user. In previous 

studies, motion feedback is provided by a trained researcher [4], [17], but this is not 

adequate within an at-home setting. Real time motion-reinforcement was developed 

utilizing color-tracking functionality in a MATLAB script, shown in Figure 5. By running 

this script alongside the guidance animations during the JAE recording sessions, the 

primary user input of wrist motion is reinforced near real time. 

 

Figure 5: Real-time motion feedback system. The user wears a custom designed 3D 

printed PLA ring with a brightly colored green or yellow sticker on the hand which is 
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wearing the wearable device. A webcam is pointed at the user’s hand, and the MATLAB 

script tracks the sticker’s distinct color, highlights it with a red box, identifies the peak 

height of the red box in each motion cycle, takes the period between peaks, and creates a 

pop-up on the computer screen informing the user whether the previous wrist motion cycle 

was too fast or slow. 

4.2 Design Validation Methods 

4.2.1 Study Design and Ethics 

The following study follows the Guidelines for Reporting Reliability and 

Agreement Studies (GRRAS) [51]. All human subjects research was conducted under 

approval by the Georgia Institute of Technology Institutional Review Board (#H20329). 

Volunteers provided written informed consent prior to participation in the study. 

4.2.2 Participants 

Six healthy college-aged volunteers (two male/four female, age 27.2 ± 1.5 years, 

mass 59.1 ± 9.6 kg, height 167.0 ± 12.7 cm, and wrist circumference 15.0 ± 0.9 cm) were 

recruited. Inclusion criteria for participation in this study dictated volunteers must have no 

history of major wrist injury or degenerative joint disease. Additionally, if volunteers had 

changes to wrist joint health between recording sessions, they would be excluded from the 

study. No volunteers met this exclusion criteria, so no such exclusions were made. Other 

factors which may affect wrist JAEs such as volunteers’ daily medication usage, day-to-

day wrist activity levels, and history of previous minor wrist injuries were not controlled. 

4.2.3 Sensor Validation 

The designed wrist wearable JAE monitoring device makes use of contact 

accelerometers for audio recording, a flex sensor for joint angle extraction, and an FSR for 
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grip strength reinforcement, all of which must be validated for their intended use. First, the 

flex sensor is validated by simultaneously recording the wrist performing FE, counter-

clockwise (CCW) rotation, and clockwise (CW) rotation (10 cycles each, period 2 s) with 

the flex sensor of the wrist wearable and an IMU (BNO055, Adafruit Industries, New York, 

NY, USA) simultaneously. The same time segments of the raw recording output from both 

sensors are then plotted for qualitative comparisons, and the mean and standard deviation 

of peak-to-peak period is extracted for quantitative analysis.  

Contact mic performance in recording JAEs must first be done qualitatively. An 

auditory inspection is performed by listening to the recording and comparing the sound of 

the JAEs to the JAEs recorded from the volunteer who had JIA as a child (see 3.1.2). Then, 

the audio signal is plotted in the time and frequency domain and visually compared to time 

and frequency domain plots from the volunteer who had JIA as a child as well as a benchtop 

recording from the same volunteer, wrist, placement location, and day as the wearable 

system recording.  

The FSR is validated by plotting the data recorded from the polled FSR alongside 

the concurrent audio recording from the mic sitting atop the FSR on the distal mic location. 

Visual inspection should reveal high quality recordings when the FSR reads good backing 

force and increased prevalence of motion artifacts when poor backing force is applied. 

4.2.4 Repeatability and Signal Strength Experiment Protocol 

To assess the JAE recording repeatability and signal strength of the developed wrist 

wearable device and compare against the repeatability and signal strength of benchtop 

recordings, volunteers performed the following protocol on each of two days of study 
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participation, separated by less than a week. First, volunteers moved their wrists around for 

20-30 s to remove artifacts from crepitus. Volunteers were then instructed to practice the 

prescribed FE, CCW rotation, and CW rotation exercises following the custom-developed 

character animations on a computer monitor. Two mics from the benchtop system 

described in 3.1.4 were then secured to the wrist at locations P3 and D2 shown in Figure 

1. Wrist JAEs were recorded while the volunteers performed 10 exercise cycles, again 

following the provided animations, three times each for FE, CCW rotation, and CW 

rotation. This was repeated for the volunteer’s other wrist. Then, the benchtop system was 

removed, and volunteers put on the wrist wearable JAE monitoring system as shown in 

Figure 4a. Wrist JAEs were recorded with the wearable system following the same 

procedure as described for the benchtop system. 

4.2.5 Signal Extraction, Signal Processing, and Signal Strength Assessment 

Benchtop signal extraction is performed exactly as described in 3.1.4 except with 

only the mic locations P3 (proximal) and D2 (distal), and the proximal mic was mounted 

on the skin with Kinesio tape instead of craft tape. Wearable system signal extraction is 

done by flipping the white switch proximally once the wearable system is worn as shown 

in Figure 4a to begin recording and flipping the white switch distally to end the recording. 

Signal pre-processing is performed nearly exactly as described in 3.1.4 for both the 

wearable and benchtop systems. A smaller pass band (150 Hz–5.5 kHz) is used in the 

Kaiser-window bandpass filter because of the nonlinear behavior observed in the mics used 

by the wearable at frequencies higher than 6 kHz and their resonance around 10 kHz. The 

benchtop system continues to use an IMU for audio data segmentation, but the wearable 
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system uses flex sensor data. The first and last cycles of each JAE recording are discarded 

due to the relatively high prevalence of motion artifacts within those cycles, leaving 8 

cycles per JAE recording for repeatability analysis. Signal strength analysis is performed 

exactly as described in 3.1.4 for both the wearable and benchtop systems. 

4.2.6 Statistical Analysis 

Statistical analysis is performed exactly as described in 3.1.5, except instead of using 

10 cycles per recording, only 8 cycles per recording remain after the first and last cycles 

are discarded.  

4.3 Validation Results 

4.3.1 Sensor Validation Results 

Concurrent raw flex sensor and IMU recordings of a wrist in motion used to validate 

flex sensor performance are shown in  Figure 6. The mean and standard deviation of the 

peak-to-peak period of the IMU and flex sensor during 10 cycle recordings of FE, CCW 

rotation, and CW rotation are shown in Table 3. Audio recordings from the wrist wearable 

JAE recording device are visually compared to the benchtop system from the same 

volunteer, exercise, wrist, and placement location on the same day in Figure 7. A plot of 

wrist JAE recordings alongside recorded FSR data demonstrating the positive effect of 

proper grip strength on reducing artifact generation is shown in Figure 8. 
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Figure 6: (Top) IMU recording of a wrist doing periodic (2 s) cycles of clockwise wrist 

rotation. (Bottom) Synchronous flex sensor recording. 

Table 3. Peak-to-peak cycle period mean and standard deviation calculations from 10 

exercise cycles of FE, CCW rotation and CW rotation, recorded synchronously with the 

flex sensor from the wrist wearable device and an IMU. 

Exercise Sensor Cycle Period 

  Mean Standard Deviation 

Flexion-Extension IMU 1.911 0.107 

Flexion-Extension Flex Sensor 1.890 0.224 

CCW Rotation IMU 1.852 0.653 

CCW Rotation Flex Sensor 1.862 0.148 

CW Rotation IMU 1.925 0.164 

CW Rotation Flex Sensor 1.943 0.358 
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Figure 7: (a,c,e) Benchtop recording of JAEs from a volunteer performing wrist FE. (b,d,f) 

Wearable system recording of JAEs from wrist FE recorded from the same volunteer, wrist, 

mic location, and day. (a,b) Time domain of acoustic signal from the wrist. (c,d) 

Spectrogram of the acoustic signal displayed above it. (e,f) Motion data from the IMU and 

flex sensor recorded synchronously with the acoustic signal.  

 

Figure 8: (Top) Distal mic audio JAE recording from a volunteer performing CCW wrist 

rotation. (bottom) Concurrent FSR recordings. The red region suggests poor grip strength, 

and FSR readings in this region cause a red LED to illuminate within the grip as shown in 

Figure 4. The green region represents proper grip strength, and FSR readings in this region 

cause a green LED to illuminate as shown in Figure 4. 
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4.3.2 Signal Strength 

SNR distributions for both locations using each JAE measurement technique are 

displayed in Figure 9. At the proximal mic location, median SNR of the audio signal 

recorded by the benchtop JAE measurement system is 18.0 dB (95% CI of 16.8–19.2 dB) 

and has a standard deviation of 2.5 dB between subjects. The audio signal recorded by the 

wearable JAE measurement system at this location has a higher median SNR (p < 0.001, 

using two-sample t-test with Bonferroni correction) of 25.2 dB (95% CI of 24–26.3 dB) 

with a standard deviation of 3.1 between subjects. At the distal mic location, the median 

SNR of the JAE measurements recorded by the benchtop system is 16.6 dB (95% CI of 

15.7–17.5 dB) with a standard deviation of 2.2 dB between subjects. The wearable JAE 

measurement system also has a higher SNR at this location (p < 0.01, using two-sample t-

test with Bonferroni correction), as the median SNR is 18.1 dB (95% CI of 17.3–18.8 dB) 

with a standard deviation of 2.7 dB between subjects. 

 

Figure 9: Box-and-whisker plot of SNR measurements of both the benchtop and wearable 

JAE measurement techniques at both mic placement locations after audio signals are 

filtered using a Kaiser-window bandpass filter with a passband of 150 Hz–5.5 kHz. 
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4.3.3 Reliability Measurements 

Calculated measurements of interrater repeatability both within and between sessions 

using ICC (model 3,k) with a 95% confidence interval and inter-subject ICC standard 

deviation are displayed in Table 4. Table 4 also shows CV calculations. At the distal mic 

location, rater variability analysis using intrasession JS divergence of the nine selected 

features extracted from the filtered benchtop JAE acoustic signal gives a median JS 

divergence of 0.234 (95% CI of 0.228–0.241), whereas JAE recordings from the same 

location using the wearable system give a median JS divergence of 0.217 (95% CI of 

0.210–0.223). At the proximal mic location, the median JS divergence of the benchtop JAE 

measurements is 0.225 (95% CI of 0.219–0.232), while the same location measured by the 

wearable system has a median JS divergence of 0.209 (95% CI of 0.202–0.215). 

Table 4. Intersession and Intrasession repeatability values, including ICC with 95% CI 

upper and lower bounds, inter-subject ICC standard deviation, and CV. 

    Benchtop Wearable 

  Proximal Distal Proximal Distal 

In
tr

as
es

si
o

n
 

re
lia

b
ili

ty
 ICC 0.648 0.592 0.550 0.661 

Lower Bound 0.521 0.443 0.390 0.540 

Upper Bound 0.755 0.716 0.687 0.763 

Inter-subject ICC Std 0.013 0.108 0.124 0.030 

CV 0.136 0.164 0.132 0.122 

In
te

rs
es

si
o

n
 

re
lia

b
ili

ty
 ICC 0.669 0.593 0.554 0.707 

Lower Bound 0.495 0.374 0.319 0.554 

Upper Bound 0.806 0.762 0.738 0.828 

Inter-subject ICC Std 0.007 0.123 0.123 0.023 

CV 0.229 0.221 0.225 0.195 
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4.4 Discussion 

4.4.1 Validation of Wrist Wearable JAE Monitoring System 

Figure 6 shows the raw extracted signal of the flex sensor has a higher amount of 

noise than the IMU and is unable to extract precise joint angles. However, an IMU 

combines information from both an accelerometer and a gyroscope which is then processed 

using on-board signal processing techniques to refine its joint angle measurements. Signal 

processing techniques such as averaging and filtering can also be employed on the flex 

sensor signal to improve signal quality. Precise joint angles may never be extracted from 

the flex sensor signal because it simply outputs resistance changes during bending. 

However, cycle extraction is more important than specific joint angle extraction, and Table 

3 shows that the flex sensor consistently allows for cycle extraction. Further, future work 

may develop calibration methods to extract precise joint angle from flex sensor 

measurements. Therefore, the flex sensor is suitable for wearable joint kinematic 

measurements.  

The frequency band of JAE audio signals has been documented in low frequency 

ranges as a grinding sounds [26] up to high frequency (20kHz) components within the 

distinctive clicks [11]. The piezoelectric accelerometers employed as contact mics in the 

wearable system provide a linear response up to 6 kHz. This limits some of the information 

which can be extracted from JAE audio recordings, but the majority of JAE information is 

contained in frequencies lower than 5 kHz [22]. Therefore, a 5 kHz low pass filter can be 

employed to remove nonlinear behavior and retain most of the JAE information within JAE 

audio recordings. Qualitative auditory comparisons to wrist JAE recordings of a volunteer 
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who had JIA as a child and has audible joint sounds (shown in Figure 2) indicate the 

benchtop and wearable JAE monitoring systems can capture the grinding and clicking 

characteristic of JAEs. Figure 7 visually compares the wearable system to the validated 

benchtop system in both the time and frequency domains for the same volunteer, wrist, and 

location on the same day. Here, both systems demonstrate characteristic wide-band and 

short duration JAE events (clicks) which are periodic with the motion of the wrist, a 

characteristic trait of JAE recordings from healthy volunteers [20], [57]. The spectrogram 

shows similar frequency components in both systems. Unlike the wearable system, the 

benchtop system shows a resonance at both 2 kHz and 4 kHz. The source of this resonance 

has been traced to the mics used by the benchtop system, which require recalibration to 

remove the resonance behavior. This resonance is pervasive through all benchtop JAE 

recordings in this study. To ensure the resonances did not substantially affect the results of 

this study, signal strength and repeatability figures were reassessed with these frequencies 

filtered out. This change did not significantly change reported signal strength and 

repeatability results. Thus, the signal strength and repeatability figures of the wearable 

system may still accurately be compared to the same figures calculated from benchtop 

recordings. The combination of visual and auditory qualitative inspection reveals the wrist 

wearable system effectively captures JAEs from the selected distal and proximal locations. 

Additionally, spectrogram analysis shows the frequency content of the JAE recordings is 

not significantly altered by the presence of any resonances within the selected sensors or 

from the mechanical design. This shows the electronics and sensors of the developed 

wearable system have similar ability to capture JAEs as the established benchtop system.  

The noise floor of the system is also low enough not to cause issues in signal quality.  
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JAE recording quality is greatly impacted by artifact interference, and mic backing 

force is highly correlated to artifact production [26]. The implemented FSR within the 

distal mic case provides real time feedback to the user to reinforce proper grip strength. 

This has shown success, as users told to increase grip strength until they see the grip 

illuminate green have shown consistency in maintaining proper grip strength throughout 

JAE recordings. As a result, few recordings were identified which demonstrate how 

improper grip strength increased prevalence of motion artifacts. One recording which 

successfully demonstrates this effect shown in Figure 8. In this figure, time segments of 

improper grip strength are identified, and the corresponding distal mic JAE recording 

shows higher levels of artifact interference than the time segments with proper grip 

strength. This indicates the benefits to the FSR are twofold: real time feedback improves 

the quality of user-input, reducing prevalence of artifacts, and time segments which are 

more likely to contain artifacts can more easily be detected in later analysis. 

JAE signals are low amplitude and are often inaudible to the human ear. Therefore, 

JAE measurement techniques must demonstrate the ability to capture JAE events and 

minimize the effects of noise and motion artifacts. The benchtop system this study uses as 

a baseline JAE capturing system has established its ability to capture JAEs with clinical 

relevance [4], [17], [52], [63]. A developed wearable JAE monitoring system must achieve 

similar signal strength within JAE recordings as the benchtop system to be considered for 

clinical use. Figure 9 shows the SNR of JAE measurements from the designed wearable 

system and the established benchtop system. The wearable system has demonstrably higher 

SNR at both locations (p < 0.01) with similar levels of subject-to-subject variability. 

Multiple factors may cause this difference. First, the benchtop system has long wires which 
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run from the DAQ to each mic. During motion cycles, these wires often brush against 

clothing, the floor, or even other wires, causing motion artifacts [64]. The wearable system 

does not employ these long wires, and employs techniques to improve backing force 

consistency, resulting in a reduction in mic slippage [26]. At the proximal location, this is 

accomplished by securing the mic between the watchband and the wrist, where the tension 

across the watchband applies a consistent moderate backing force when tightened so the 

watch is secure without cutting off circulation. The silicone of the mic case and watchband 

also have a high friction coefficient against skin, further preventing slippage [61]. At the 

distal location, the reduced artifact production may be attributed to two factors: the addition 

of a mic case, reducing mic movement within the grip, and the implementation of a real 

time grip strength feedback system, which noticeably reduces poor grip strength, thereby 

minimizing artifact creation, as is seen in Figure 8. These improvements improve JAE 

recording signal quality and improve system usability over the benchtop system, reducing 

the amount of training required by researchers, clinicians, and even study volunteers 

themselves, to record high quality JAEs. 

The developed wrist wearable JAE monitoring device has shown to have the ability 

to record high quality JAEs. To be a viable product for use in a clinical setting, it must be 

able to capture JAEs with a high level of reliability. The interrater variability of JAE 

recordings in a healthy subject set is assessed both on a recording-to-recording 

(intrasession) and a day-to-day (intersession) basis with ICC (model 3,k), shown in Table 

4. Both the benchtop and wearable systems show fair-to-good interrater reliability within 

a 95% CI at both locations, with no significant separation between the two systems (p > 

0.5, using two-sample t-test with Bonferroni correction), indicating that when measured 
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with the selected raters, the benchtop system and wearable system will capture JAEs with 

similar levels of interrater reliability. The deviation in ICC calculations between volunteers 

shows the repeatability in recordings for both systems are similarly consistent across the 

sampled population. The variability within the calculated values of the selected raters 

within JAE recordings is assessed with JS divergence and CV. These measurements 

indicate that both the benchtop and wearable systems have moderate-to-low levels of 

variability within the calculated raters in JAE recordings. Although each CV and JS 

divergence calculation value is lower for the wearable system than the benchtop system 

(demonstrating lower intrarater variability), only JS divergence at the proximal location 

shows a moderate level of separation between the wearable and benchtop systems (p < 0.1, 

using two-sample t-test with Bonferroni correction). These results lead to the conclusion 

that JAE measurements from the designed wrist wearable system have similar levels of 

repeatability as the established benchtop system, where both systems have fair-to-good 

interrater reliability and moderate-to-low intrarater variability. When combined with the 

conclusions from qualitative assessment and SNR measurements, one may conclude the 

developed wrist wearable JAE monitoring system is able to capture JAEs from the wrist 

during FE, CCW rotation, and CW rotation exercises at locations around the wrist both 

proximal and distal to the wrist joint. Additionally, the JAE recordings from the wrist 

wearable JAE monitoring system demonstrate high signal strength relative to the 

established benchtop system with similarly acceptable levels of repeatability. Further, the 

wearable has been developed to have this high level of performance with improved 

usability and aesthetics. The combination of usability, aesthetics, and high performance 

make the developed wearable system suitable for use within a pediatric clinical setting. 
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4.4.2 Limitations and Future Work 

The volunteer sample size (n = 6) and low-to-medium levels of variability between 

volunteers within the presented measurements means one cannot know if the sample of 

healthy volunteers in this study is representative of a larger population with varied wrist 

joint pathologies. Future studies researching the efficacy of quantifying wrist joint health 

using the developed wrist wearable JAE monitoring device must first perform qualitative 

assessments by looking at and listening to the audio signal to identify grinding and clicking 

sounds characteristic of JAEs to confirm the quality of wrist JAE recordings.  

The results of this study demonstrate that the developed wrist wearable JAE 

monitoring system is suitable for use capturing JAEs within clinical studies investigating 

development of methods for quantifying wrist joint health. The wrist wearable device 

improves usability and aesthetics over the benchtop system, reduces the burden on clinical 

researchers for thorough training, and increases the appeal of study participation to 

potential subjects. The small form-factor and convenient design of this wearable system 

could also enable JAE measurements from other joints, such as the knee. For example, 

Whittingslow et al. recently demonstrated that JAEs measured from the knee using a 

benchtop system with two mics and a DAQ connected to a computer could be used to assess 

knee health of patients with JIA [4]. This wrist wearable system could be adapted to replace 

the benchtop system used in that study and enable knee health monitoring at home. The 

current design of the wrist wearable JAE monitoring system is simple enough to use that 

“super-users” could be trained to use the system without any assistance from a clinician, 

making it suitable for at-home joint health monitoring if the device is returned to the clinic 

for the clinician to download the JAE recordings onto a computer to be processed later. 
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 If future studies indicate JAEs from the wrist may reliably track treatment 

progression, a wearable JAE monitoring device could be converted into a product for at-

home wrist joint health monitoring.  However, the current system is not yet suitable for 

widespread at-home use, especially in a juvenile population. First, the aesthetics of the 

device would require refinement. Specifically, wires outside of the confines of a custom-

developed grip and the wrist-worn PCB case should be limited. This can be accomplished 

in future iterations with a two-device design and Bluetooth communication between 

devices, where the master PCB is worn on the wrist, and the slave PCB is contained within 

the grip. Additionally, the flex sensor taped to the forearm can be eliminated if a mic distal 

to the wrist joint could be low pass filtered with a cutoff frequency marginally higher than 

the prescribed frequency of wrist motion. Currently, the analog front-end (AFE) designed 

by Teague et al. for the analog accelerometers has an inherent high pass filter (fc = 32 Hz), 

limiting this ability. As recent studies show most of the information in JAEs is below 5 

kHz, a move to lower bandwidth digital accelerometers in future iterations would allow for 

this change while also eliminating the space on the PCB required for the AFE, improving 

miniaturization. Employing digital accelerometers would also reduce the processing load 

on the microcontroller so the microcontroller would be able to handle communication to 

IMUs for high accuracy joint angle measurement, if desired. Another key weakness in the 

move to at-home monitoring is that the device requires a computer running the program 

developed by Teague et al. [25] to download data off of the device. Future iterations should 

allow Bluetooth communication to a computer while the device is not in use so data can be 

remotely sent to a physician via a secure pathway (such as a patient portal within an EMR). 

A computer with MATLAB installed is also required within the current iteration for real 
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time motion reinforcement, reducing broad usability. Because Bluetooth communication 

with the computer is the preferred method of data transfer from the wearable to the 

computer in future iterations, motion capture data could be sent real time via Bluetooth to 

be processed by a custom-developed application for real time motion reinforcement. 

Additionally, because digital accelerometers reduce processing load on the micro-

controller, digital load cells could be included in the system to replace FSRs. This data may 

also be sent via Bluetooth so both motion reinforcement and grip strength reinforcement 

can be done real time from a computer application. This application may also be designed 

specifically for use by children to improve usability within a pediatric population.  
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CHAPTER 5. CONCLUSION 

This dissertation has presented research with two primary aims. First, methods of knee 

JAE extraction were studied. Based on established methods of producing, recording, and 

analyzing meaningful JAEs from the knee, a framework to produce and record wrist JAEs 

was developed and validated to expand research in JAEs to the wrist joint. Second, using 

the developed framework for producing and recording JAEs from the wrist, a wrist 

wearable JAE monitoring system was designed, fabricated, and validated for use in 

pediatric clinical studies. 

In the pursuit of these aims, multiple conclusions were made. First, to the best available 

knowledge, it was found passive JAEs can be produced from a wrist performing cyclical 

FE and rotation exercises, and these JAEs can be reliably recorded using a framework 

which employs highly sensitive wide-band uniaxial accelerometers secured on the surface 

of the skin. Once the wrist JAE audio is recorded alongside simultaneous wrist joint angle 

measurement recordings, these recordings could be used in research for wrist joint health 

quantification. Second, to the best available knowledge, the first ever wrist wearable JAE 

measurement system was developed to facilitate wrist JAE extraction in clinical and at-

home settings. In validation, it was found that this system successfully captures wrist JAE 

audio and simultaneous wrist joint motion. When compared to a previously validated 

benchtop system, the wearable system records JAEs with higher signal strength relative to 

the noise and artifacts produced during recordings and demonstrates fair-to-good levels of 

repeatability and reliability, the same level of repeatability and reliability found in 

recordings using the established benchtop system. 
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There is a clear path for future work to build upon the work described in this thesis. 

First, clinical research should utilize the developed framework for wrist JAE recording to 

conduct studies investigating whether wrist JAEs may be used as a quantitative measure to 

aid in wrist joint health assessment, as has been done in studies focused on JAEs of the 

knee. Such studies may either employ a JAE capturing system based on the framework 

created within the first aim of this work, or they may employ the wrist wearable system 

developed and validated in this work’s second aim. If the clinical research concludes that 

wrist JAEs can be used for wrist joint health quantification, the developed wearable system 

may be revised to be better suited for at-home use as a tool for clinicians to quantitatively 

assess wrist joint health remotely, reducing pressure on health systems and greatly 

benefitting a patient population which currently relies on invasive, qualitative, or expensive 

health assessment methods in repeated clinic visits.  
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APPENDIX A. BILL OF MATERIALS 

Table 5. Bill of materials required for assembly of the designed wrist wearable JAE 

monitoring device. The total price per assembly is $808.57 when materials are purchased 

for full assembly of eight wearable devices. 

Function Component 
 Price per 
assembly  

Electronics Audio board - mother board  $      315.13  

Electronics Audio board - daughter board  $      321.32  

Power supply Lithium Battery 3.7V 150mAh  $          5.95  

Data Storage Samsung 32 GB EVO UHS-I microSDHC  $          7.49  

Motion tracking Spectra Symbol FLEX SENSOR 10K OHM  $        21.00  

Mic contact force sensor Interlink Electronics FSR® 402  $          9.90  

Contact microphone qty 2 Knowles BU-23842-000-ND  $      104.46  

Grip Custom molded EcoFlex 00-30 grip  $          2.00  

PCB housing PLA 3D print  $          0.05  

Fastening qty 1 0-80 9/32" screw   $          0.06  

Fastening qty 2 0-80 5/8" screw   $          0.22  

Fastening qty 3 0-80 heat set insert   $          0.37  

Mic Case Printed backing and molded EcoFlex 00-30 case  $          0.06  

Strap to wrist Watch Strap  $        13.95  

Adjust Mic Placement Watch Strap loop  $          0.87  

Audio Jack Audio Jack straight  $          1.68  

Audio Jack Audio Jack right angle  $          2.02  

Flex sensor and wire 
encasement Fabric Sleeve  $          2.04  

Decoration Paints - tan, white, and black  $          1.86  
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APPENDIX B. MIC CASING CHARACTERIZATION 

 Mic casings are designed to improve JAE sensing, protect the contact mics, and 

improve the method of attachment to the skin surface, reducing the likelihood of artifact 

introduction [26] and improving the sensitivity of mics to frequency ranges important to 

JAE analysis [22]. The mic cases designed in this work are based on a design by Nevius 

for lung sound monitoring [62], but differing requirements in this work have necessitated 

modifications which have led to two different mic casings (described in 4.1.2): one distal 

and one proximal. These casings are designed to improve JAE sensing, so it is necessary 

to ensure they do not negatively affect the sensitivity of the mic within the frequency range 

used in the analysis of JAEs recorded by the developed wrist wearable JAE monitoring 

device (150 Hz – 5.5 kHz). To quantify the impact of these casings on the sensitivity, they 

were subjected to shaker vibration testing using the setup shown in Figure 10. 

 

Figure 10: Testing setup for the mic case shaker tests. 

In this test, a custom MATLAB script generates a sine wave excitation sweep signal 

from 100 Hz – 10 kHz over the course of 50 seconds. This signal is sent to the output 

channel of a DAQ (USB-4431, National Instruments, Austin, TX, USA), then through a 
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power amplifier (B&K Type 2718 Power Amplifier, Brüel & Kjær, Nærum,  Denmark) to 

a shaker (B&K Type 4810 Mini Shaker, Brüel & Kjær, Nærum, Denmark) for excitation 

of the mic cases. An in-line reference impedance head (B&K Type 8001 Impedance Head, 

Brüel & Kjær, Nærum, Denmark) is powered and amplified by a charge amplifier (Type 

5011, Kistler, Winterthur, Switzerland) to measure the input acceleration via an input 

channel of the DAQ at a sampling rate of 50 kHz. The mic casing is mounted on top of the 

impedance head, and a load frame applies a consistent 1N force to the mic case as measured 

by a load cell (DYLY-103, CALT, Shanghai, China) connected via an in-line amplifier 

(UV Series Inline Amplifier, Honeywell, Charlotte, NC, USA) to an input channel of the 

DAQ. A low-friction tape (Ultra-Low-Friction Tape, McMaster-Carr, Elmhurst, IL, USA) 

in tension is pressed across the back of the mic case for uniform backing force. The output 

is measured by the mic contained within the mic case and connected to an input channel 

on the DAQ. 

Input-output coherence of these measurements is very high (>0.99) in the tested 

band of frequencies (100 Hz – 10 kHz), suggesting vibration measurements are reliable. 

The transfer functions of the mic with no casing (baseline), mic with proximal mic casing, 

and mic with distal mic casing are shown in Figure 11. Results show the developed mic 

cases introduce no resonance behavior to the system not already present in the mic, and 

there is minimal difference in transfer functions with or without the mic case before the 

response begins to be nonlinear (~ 6 kHz). Additionally, higher frequencies are filtered out 

in JAE analysis because of known nonlinear mic sensitivity. Therefore, the designed mic 

casings do not negatively alter the transfer function of the mic within the frequency band 

used in the analysis of JAEs recorded by the developed wrist wearable and may therefore 
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be used for high quality JAE measurement within the developed wrist wearable JAE 

measurement system. 

 

Figure 11: Transfer function measurement results of mic with no casing (baseline), mic 

with proximal mic casing, and mic with distal mic casing. 
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