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SUMMARY 

For wireless ultrasonic power delivery to implantable medical devices, a capacitive 

parametric ultrasound transducer system is analyzed and improved upon. While 1D 

modeling had sufficed for proof of concept and power transfer with low efficiency has been 

demonstrated, a more detailed model gives insight to behavior that were previously 

overlooked. Simulations of large capacitive membrane arrays show higher power transfer 

efficiencies in some cases when the array is operating at a higher order mode. Analysis 

also shows that in tissue, fluid damping dominates the mechanics of the membrane array, 

allowing the array frequency to be tuned by adjusting the membrane thickness through 

analytical or finite element methods. To complete the power delivery chain, a modified 

power rectification circuit is simulated, demonstrated experimentally, and compared to a 

traditional rectification circuit highlighting improvements in power transfer efficiency. 

Finally, a capacitive membrane design optimized for 1MHz operation in fluid is fabricated 

in a cleanroom environment and used to demonstrate viable passive ultrasonic wireless 

power transfer, from hydrophone to load application.  
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 INTRODUCTION 

1.1 Wireless Power Transfer 

The concept of wireless power transfer is not new. Nowadays, near field wireless 

power transfer is most commonly achieved through inductively coupled coils, perhaps 

most ubiquitously found as a convenient way to recharge smartphones. While wireless 

charging may seem like a luxury in the world of smartphones, they are more essential for 

applications such as medical implant devices where reducing the number of invasive 

surgery operations is desirable. In particular, wireless power transfer through ultrasonic 

means have certain advantages over inductive coupling including better penetration depths, 

more total power due to higher safety limits in tissue, and smaller form factors than 

induction coils [1].  

This thesis investigates an ultrasonic wireless power transfer device called capacitive 

parametric ultrasound transducer, or CPUT. Here, capacitive refers to the array of 

micromachined capacitive membranes used to receive acoustic waves, parametric refers to 

the way in which energy is pumped into the circuit by varying a parameter (capacitance), 

and ultrasound transducer refers to the means by which energy is transferred. While 

analysis and experimental demonstration of power transfer with CPUTs have been shown, 

a more thorough investigation of each stage of the power recovery chain is necessary to 

improve the overall power transfer efficiency; these investigations form the content of this 

work. On the mechanical side, membrane array geometries are optimized through finite 

element analysis and numerical simulations that account for acoustic radiation forces. The 

optimized membranes are fabricated with the sacrificial release process, while common 
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pitfalls and possible solutions are documented. Finally, on the electrical side, a modified 

power rectification circuit is implemented for parametric circuits to minimize losses while 

still sustaining parametric resonance. The result of our analysis is a self-contained CPUT 

system with demonstratable power transfer that can deliver sufficient power to implanted 

medical devices. 

1.2 Capacitive Parametric Ultrasonic Transducer 

A CPUT consists of a capacitive micromachined ultrasound transducer (CMUT) 

membrane array that acts as a variable capacitor in a series resonant circuit, converting 

acoustical energy from the surrounding medium into electrical energy across a load 

impedance [2] [3]. When an ultrasonic signal above a required threshold drives the 

membranes at twice the circuit’s resonance frequency, energy is passively introduced into 

the circuit and can be harnessed across an electrical load. Figure 1.1 shows a simplified 

diagram of the CPUT; it can be most easily thought of as a coupled CMUT and parametric 

circuit.  

 

Figure 1.1 – Diagram of CPUT acoustical to electrical power transfer circuit with 
multidimensional CMUT array as variable capacitor. 



 3 

1.2.1 Capacitive Micromachined Ultrasound Transducer 

Although a newer technology than the piezoelectric transducer, CMUT operation 

has been studied extensively since its inception. A simplified diagram of a single CMUT 

membrane is shown in Figure 1.2. It consists of two parallel electrodes situated on a 

dielectric membrane and separated by a vacuum gap, forming a variable parallel plate 

capacitor.  

 

Figure 1.2 – Diagram of single CMUT membrane with one fixed electrode and one 
electrode positioned on a flexible, suspended membrane 

Application of a voltage differential across the plates pulls the plates together due 

to coulombs law, allowing for transmission of acoustic waves. In receive mode, the 

changing membrane deflection can be measured as a change in capacitance. However, 

because the electrostatic force between the capacitor plates is dependent on the square of 

the applied voltage as in11 Equation 1, a significantly larger dc bias, 𝑉𝑉 = 𝑉𝑉𝑑𝑑𝑑𝑑 + 𝑉𝑉𝑎𝑎𝑑𝑑, is 

needed for linear operation in transmit and receive applications so that in Equation 13, 

the 2𝑉𝑉𝑑𝑑𝑑𝑑𝑉𝑉𝑎𝑎𝑑𝑑 term dominates. In Equations 1 and 13 , 𝜀𝜀0 is the vacuum permittivity, 𝑔𝑔0 is 

the nominal capacitor gap, 𝐴𝐴 is the parallel plate area, and 𝑥𝑥 is the parallel plate 
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displacement. A dc bias is not required for power transfer applications, allowing CPUTs 

to be a completely passive device. 

 
𝐹𝐹𝑒𝑒 =

𝜀𝜀0𝐴𝐴𝑉𝑉2

2(𝑔𝑔0 − 𝑥𝑥)2 (1) 

 𝐹𝐹𝑒𝑒 =
𝜀𝜀0𝐴𝐴

2(𝑔𝑔0 − 𝑥𝑥)2
(𝑉𝑉𝑑𝑑𝑑𝑑2 + 2𝑉𝑉𝑑𝑑𝑑𝑑𝑉𝑉𝑎𝑎𝑑𝑑 + 𝑉𝑉𝑎𝑎𝑑𝑑2 ) (2) 

The electrostatic force directly relates to another important parameter of CMUT; 

its collapse voltage. The collapse voltage is the voltage at which the electrostatic force 

pulling the plates together overcomes the mechanical spring force of the membrane, thus 

collapsing the membrane. It is found by equating the mechanical restoring force 𝐹𝐹𝑚𝑚 =

𝑘𝑘𝑥𝑥 to the electrostatic force and solving for voltage, giving the collapse voltage (Equation 

3) and maximum displacement before collapse (Equation 4). 

 
𝑉𝑉𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = � 8𝑘𝑘𝑔𝑔03

27𝜀𝜀0𝐴𝐴
  (3) 

 𝑥𝑥𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑔𝑔0
3

 (4) 

A more thorough derivation of the collapse voltage as well as detailed analysis of additional 

principles of operation such as equivalent circuit modeling, electromechanical coupling 

coefficients and frequency bandwidths can be found in [4]. For even more accuracy, 

analytical displacements of circular membrane cells as discussed in [5] can be used to 

calculate effective membrane stiffnesses. 
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1.2.2 Parametric Circuit 

The method in which energy is pumped into a circuit is by performing mechanical 

work on a time varying capacitor in a specific manner. It is established that the electrostatic 

force between two capacitor plates is always attractive and dependent on the charge across 

the plates. 

 
𝐹𝐹𝑒𝑒 =

𝑞𝑞2

2𝜀𝜀0𝐴𝐴
 (5) 

In Equation 5, which is a reformatting of Equation 1 written in terms of capacitor charge 

instead of voltage, 𝑞𝑞 is the charge on one plate of the capacitor. If mechanical work is 

applied on the capacitor against the electrostatic force instantaneously, i.e. pulling the 

plates apart, then the charge stays constant and it can be shown that the mechanical work 

(Equation 6) exactly equals the increase in energy stored in the capacitor (Equation 7) [6]. 

 
𝑊𝑊𝑚𝑚𝑒𝑒𝑑𝑑ℎ = � 𝐹𝐹𝑒𝑒

𝑥𝑥1

𝑥𝑥0
𝑑𝑑𝑥𝑥 = �

𝑞𝑞2

2𝜀𝜀0𝐴𝐴

𝑥𝑥1

𝑥𝑥0
 𝑑𝑑𝑥𝑥 =

𝑞𝑞2

2𝜀𝜀0𝐴𝐴
(𝑥𝑥1 − 𝑥𝑥0) (6) 

 
𝛥𝛥𝛥𝛥𝑑𝑑𝑎𝑎𝑐𝑐 =

𝑞𝑞2

2𝐶𝐶1
−
𝑞𝑞2

2𝐶𝐶0
=

𝑞𝑞2

2𝜀𝜀0𝐴𝐴
(𝑥𝑥1 − 𝑥𝑥0) (7) 

Since the charge across the capacitor in a LC circuit is sinusoidal with frequency 𝜔𝜔 =

1/√𝐿𝐿𝐶𝐶, then the charge will be zero two times every cycle. Hence, the capacitor plates can 

be brought together during that time and no energy will be pumped out of the system.  

In a CPUT, the capacitive membrane obviously cannot move instantaneously. 

Nevertheless, even under sinusoidal motion, the energy pumped into the circuit when the 
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charge is at a maximum is greater than the energy pumped out when the charge is zero. 

This revelation makes it clear why power transfer is sensitive to frequency changes and 

why the ultrasonic signal must be twice the circuit frequency. Since there are two points in 

each resonant cycle in which the charge crosses zero, the capacitor plates must be brought 

together two times per cycle. Deviations from the center frequency also means that 

capacitor plates are brought together while there is still charge across it, leading to losses 

in energy. 

1.3 Literature Review 

Passive energy harvesting from mechanical vibrations were shown in 2017 by 

modulating the inductance in a parametric circuit [7]. In their work, mechanical vibrations 

cause a spring-loaded mass to oscillate within the air gap of an inductor core, varying the 

inductance; they demonstrated 18 mW of power per 1 g of acceleration. Power transfer 

with CPUTs were also first analyzed and demonstrated in the same year [2]. In this case, 

acoustic excitation of a CMUT array causes a change in the capacitance in an RLC circuit. 

Regardless of the parameter varied, maximum power transfer was found in both cases to 

occur with an optimal load and when the forcing frequency is exactly twice the circuit 

frequency. CPUTs were analyzed in more detail in [3] by modeling the CMUT as a 1D 

mass-spring-damper system in which the mass is defined by the membrane mass plus fluid 

loading, the spring by the effective stiffness of the membranes, and the damper by the 

radiation impedance of a circular baffled piston. Consideration of the acoustical radiation 

forces in this work revealed that in addition to optimal electrical parameters for maximum 

power transfer efficiency, CMUT membrane design also played a major role in 
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performance, as impedance matching had to be considered. Under matched conditions, 

power transfers over 90% were achieved in simulation. 

1.4 Contents of Thesis 

The work in this thesis aims to improve CPUT operation by designing more optimal 

CMUT membrane geometries. In Chapter 2, methods of approximating multi-membrane 

CMUT arrays frequencies and more comprehensive modeling are explained. Chapter 3 

details the fabrication process for optimal CMUTs with larger vacuum gaps than are 

typically used for imaging applications. Chapter 4 covers validation of CPUT simulation 

results with experimental power transfer using the fabricated devices. Finally, Chapter 5 

concludes with a summary the contributions made towards CPUT design and possible areas 

for future work. 
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 METHODS 

2.1 CPUT Models 

Although a CPUT can be modeled with a 1D lumped element approach, it is most 

practically designed using an array of capacitive membranes. Arrays have smaller gaps to 

achieve larger capacitances and are easier to design for frequencies in the MHz range. 

However, this also makes it more complicated and expensive to simulate, as each 

individual membrane is mechanically and acoustically coupled. The 1D lumped model 

previously mentioned was developed to simplify computation time by lumping an array of 

membranes into an equivalent mass-spring-damper system. In that model, the effective 

stiffness k of the array is calculated using finite element analysis in COMSOL Multiphysics 

(COMSOL Inc., Burlington, MA, USA) by applying a force over a single membrane, 

dividing it by the mean membrane displacement, and multiplying by the total number of 

membranes. The effective mass m is calculated using k and the natural frequency of the 

membrane 𝜔𝜔0 according to the natural frequency relationship for a mass-spring system. 

Finally, the effective damping b is approximated as the real part of the radiation impedance 

for a circular baffled piston of equivalent area to the array. 

The 1D model, however, is not ideal for accurate simulation of large membrane 

arrays because it has been shown that these acoustic metasurfaces can exhibit multiple 

mode shapes not only in individual membranes, but across the array surface as well [8]. To 

capture these higher order array mode shapes, a more detailed model should be used. A 

large signal model [9] utilizes the boundary element method (BEM) to calculate the forces 

and displacements between each individual membrane in an array. Each membrane can 



 9 

furthermore be subdivided into two or more lumped patches depending on the membrane 

mode shapes. This model considers the nonlinear electrostatic forcing of each membrane 

as well as acoustical crosstalk between membranes in the array. Although this BEM model 

is more computationally intensive than the 1D model, it is still comparably faster than a 

transient 3-D finite element analysis of the array in a fluid domain. Transmitted pressure 

from a 16x16 array using the BEM model has been experimentally verified to within 2 dB 

up to 40 MHz operation as conducted in [9]. 

Simulink is used to replace the existing 1D spring mass model of the CMUT with 

the more appropriate large signal model. Figure 2.1 and Figure 2.2 show a block diagram 

representation of the 1D piston CMUT model and a high-level overview of the multi-

dimensional BEM CMUT model. 

 

Figure 2.1 – CPUT model with 1D lumped mass spring damper CMUT model [3] 
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Figure 2.2 – Block diagram of multi-dimensional CMUT model relating membrane 
voltages to membrane displacements [9]. 

The combined large scale CPUT model shown in Figure 2.3 is used throughout the rest of 

thesis for CPUT simulations. An equivalent simscape model of the CPUT is also shown in 

Figure 2.4 in which the BEM CMUT model is incorporated into the circuit through a 

variable capacitor block. This model becomes more convenient for modeling more 

complex electrical systems with non-linear diodes, such as with a power rectification 

circuit. 

 

Figure 2.3 – Simulink implementation of RLC circuit with BEM CMUT model. 
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Figure 2.4 – Simscape implementation of RLC circuit with BEM CMUT model. 

2.2 Model Validation  

The CPUT models presented are validated through a power transfer experiment 

conducted using a 36 x 10 array of 70 x 70 μm membranes to obtain efficiency vs. load 

resistance data at a forcing frequency of 2.4 MHz (corresponding to an electrical frequency 

of 1.2 MHz). This CMUT was originally designed for imaging applications in past work. 

The experimental setup consisted of a piezoelectric ultrasound transmitter in a water tank, 

powered by an amplified signal from a function tor (Figure 2.5).  
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Figure 2.5 – Experimental schematic of CPUT power transfer [2]. 

The CMUT array is located at an arbitrary distance 𝑑𝑑 away from the transmitter in series 

with an inductor and potentiometer, and immersed in Flourinert FC-70, shown in Figure 

2.6. FC-70 is an electrically inert fluid with an acoustic impedance (1.36 MRayl) similar 

to that of water (1.46 MRayl), fat (1.34 MRayl) or blood (1.65 MRayl) [10]. Power across 

the potentiometer was measured using an oscilloscope for various loads. A hydrophone 

was used to determine the forcing intensity at same distance 𝑑𝑑 to be roughly 300 kPa. This 

value was used to calculate experimental efficiencies and applied as the forcing term in the 

BEM simulation. Figure 2.7 reveals that despite low power transfer efficiencies due to sub 

optimal array design and forcing conditions, the experimental data shows good agreement 

with BEM simulations in terms of absolute value of efficiency and the cut-off value of the 

load resistance for parametric resonance. 



 13 

 

Figure 2.6 – Experimental setup with CMUT in FC70.  

 

Figure 2.7 – Experimental vs BEM model simulation of CPUT power transfer 
efficiencies with a 36 x 10 CMUT array. 
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2.3 CMUT Design 

Design of optimized CMUT typically involve a highly iterative process. Due to the 

time and computational resources required for large simulations, approximations can be 

used to determine a starting point for select parameters. For high frequency imaging CMUT 

arrays, frequency limits can be determined to be between the single membrane frequency 

and the Bragg’s resonance frequency [11]. These values can be chosen to be far apart to 

obtain a good fractional bandwidth. For power transfer in medical applications, a lower 

frequency of operation is desired due to lower attenuation losses and US Food and Drug 

Administration limits on diagnostic ultrasound intensities.   

2.3.1 Radiation Impedance 

Since tissue contributes a significant damping effect on a CMUT array, the array 

frequency is heavily dependent on total array size. To avoid long computations for large 

arrays through BEM impulse simulations, the array can be approximated as a circular 

baffled piston and viscous damping approximated as the radiation impedance of a baffled 

piston. 

 
𝑍𝑍𝑟𝑟 = 𝜌𝜌0𝑐𝑐0 �1 −

2𝐽𝐽1(2𝑘𝑘𝑘𝑘)
2𝑘𝑘𝑘𝑘

+ 𝑗𝑗
2𝐾𝐾1(2𝑘𝑘𝑘𝑘)

2𝑘𝑘𝑘𝑘 � (8) 

In Equation 8, 𝐽𝐽1 and 𝐾𝐾1 are first order Bessel and Struve functions and 𝑘𝑘 is the radius of 

the piston [12]. The imaginary component of 𝑍𝑍𝑟𝑟 represents the equivalent mass loading of 

the fluid on the CMUT, and is shown for a 10x10 CMUT array of with total area 0.4 mm2 

in Figure 2.8. 
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Figure 2.8 – Radiation impedance on the surface of a circular baffled piston 
radiating in half space. 

2.3.2 Array Frequency in Fluid 

Approximation of the array impedance allows for a straightforward estimation of 

the natural frequency in fluid starting with the single membrane characteristics. For a 

certain membrane geometry consisting of a rectangular silicon nitride plate and rectangular 

aluminum electrode, the effective mass 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 is equivalent to the physical mass of the 

system. Finite element analysis (FEA) with COMSOL Multiphysics is used to determine 

the fundamental mode frequency of the membrane 𝐹𝐹0, with an example depicted in Figure 

2.9. 
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Figure 2.9 – FEA determination of first eigenfrequency of a single silicon nitride 
membrane with aluminum electrode in air. 

The effective stiffness is calculated then as  

 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒(𝐹𝐹0 ∗ 2𝜋𝜋) 2 (9) 

Assuming there is no mechanical coupling between membranes in an array, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 

can be directly scaled to 𝑛𝑛 number of membranes by multiplying by 𝑛𝑛. Since the imaginary 

component of radiation impedance manifests as an additional mass, it can be lumped 

together with the 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒, and the frequency of CMUT array with 𝑛𝑛 membranes can be 

expressed as 

 
𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑦𝑦 = �

𝑛𝑛 ∗ 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛 ∗ 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑖𝑖𝑚𝑚𝑘𝑘𝑔𝑔(𝑍𝑍𝑟𝑟(𝑘𝑘𝑘𝑘)) (10) 

Equation 10 is an implicit expression of the array frequency because the radiation 

impedance is itself a function of the wavenumber 𝑘𝑘 (frequency) and area 𝑘𝑘 (number of 

membranes). For resonant behavior, the array frequency should match the acoustic 
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frequency for which the radiation impedance is calculated at. Solving Equation 10 can be 

achieved iteratively for increasing 𝑛𝑛. At each array size, the radiation impedance is 

calculated as a function of acoustic frequency for a baffled piston with fixed radius equal 

to the half the side length. This results in 𝐹𝐹𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑦𝑦 as a function of acoustic frequency, as 

shown in Figure 2.10 for a single membrane array and a 20x20 array with the same single 

membrane geometries. 

 

Figure 2.10 – Calculated array frequencies vs. acoustic wave frequencies for single 
cell membrane (left) and 20 x 20 array (right) in fluid. 

In larger arrays, the calculated array frequency matches the acoustic conditions at various 

frequencies, and the lowest fundamental frequency is taken as the frequency of operation. 

The natural frequency analysis using this approach starts to deviate for larger arrays, as the 

individual membranes may no longer move in uniform motion and the baffled piston 

radiation impedance condition no longer applies. A plot of the predicted array frequencies 

vs. array size is shown in Figure 2.11. Array frequencies for arrays of size 1x1, 4x4, 10x10, 

and 20x20 were determined by calculating the full BEM model and taking the Fourier 
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transform of an impulse simulation. A comparison between the two methods suggests that 

for design of large CMUT arrays in immersion, the frequency for optimal operation can be 

tuned without computationally expensive iteration of full-scale models. 

 

Figure 2.11 – Estimation of array frequencies in fluid vs total array size and 
validation with large signal BEM simulation frequencies. 

Also of note, the contribution of added fluid mass at the natural frequency significantly 

dominates the mass of the membrane as the array size increases; for arrays with area larger 

than 1mm2, the fluid mass contributes to less than 2% of the total effective mass term. 

Therefore, it is possible to tune the desired frequency by adjusting the membrane thickness 

since the effective stiffness, based on thin plate theory, is proportional to the thickness 

cubed [13]. Then, from Equation 10, increasing the thickness by a factor of 𝑥𝑥 should 

approximately increase the resonant frequency by a factor of 𝑥𝑥3/2 , since the total effective 

mass does not change appreciably in the denominator. 
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2.4 Efficiency Definition 

For characterizing power transfer efficiency, care is taken in computing the total 

available acoustic power on the surface of the CMUT. An ultrasound forcing signal is 

applied to each patch in the BEM array model as a pressure level input. In the model, the 

pressure input is converted to a force, summed with the electrostatic force, and applied on 

each array patch. The available acoustic power input defined by Equation 11. 

 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 =

𝑃𝑃𝑎𝑎𝑚𝑚𝑐𝑐
2

2𝑍𝑍𝑟𝑟
∗ 𝐴𝐴 (11) 

Here, 𝑃𝑃𝑎𝑎𝑚𝑚𝑐𝑐 is the pressure amplitude, 𝐴𝐴 is the area of the CMUT, and 𝑍𝑍𝑟𝑟 is the radiation 

impedance of a baffled piston of equal half length, as discussed in Chapter 2.3.1. Because 

the pressure force is applied directly on the face of the CMUT array, 𝑍𝑍𝑟𝑟 is not simply the 

acoustic impedance for a plane wave through a medium 𝑍𝑍𝑟𝑟 = 𝜌𝜌𝑐𝑐. If the input forcing signal 

is instead given as an intensity level some distance away from the array rather than a 

pressure on the face of the CMUT, then the available power can be defined as 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐 =

𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎
2

2𝜌𝜌𝑑𝑑
∗ 𝐴𝐴. However, in this case, the physical force imparted on the membranes by the 

acoustic wave needs to be corrected by the circular baffle radiation impedance. If care is 

not taken in calculating the available input power, then the calculated efficiencies can show 

erroneous power transfer above 100%. A similar phenomenon is described in [14] in which 

receiver efficiency on a piezoelectric transducer exceeded 100% for dimensions smaller 

than the acoustic wavelength due to the receiver having an effective aperture larger than 

the physical aperture. 
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The output power is determined as the average power across the resistive load after 

transient simulations have reached steady state. In simulations, the average power is 

determined numerically. Since the voltage and current across the load is nearly sinusoidal, 

the output power can be formally defined as 

 𝑃𝑃𝑐𝑐𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑃𝑃𝑚𝑚𝑎𝑎𝑥𝑥

2
 (12) 

where 𝑃𝑃𝑚𝑚𝑎𝑎𝑥𝑥 is the peak power across the load. The power transfer efficiency is a 

straightforward calculation, 𝜂𝜂 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

.   

2.5 Power Rectification 

To complete the power recovery chain, it is desirable to convert the ac voltage into 

dc to power circuits and electronic devices. However, rectification of parametric energy 

harvesting circuits cannot be easily achieved with a general diode bridge for a few reasons. 

First, the voltage across the load is typically on the scale of a few hundred mV, rarely 

exceeding 1 V peak to peak. This is seen both in simulation and in experimental validation 

of the BEM model. These values are generally not enough to overcome the 0.7Vf forward 

voltage of silicon diodes. Schottky diodes with lower forward voltages in the 0.2Vf range 

are therefore used, but even so, a minimum voltage of 0.4Vf is necessary for full bridge 

rectification, placing an additional restriction on CPUT operating conditions. Secondly, 

because CPUTs require the load impedance to be within a specific range (above a minimum 

load but lower than the critical load), power transfer into a bridge rectifier will not initiate 

from an idle state, since the impedance of the diodes when under the forward bias is 

typically larger than the critical load. 
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 To remedy this, a single pole double throw (SPDT) switch is implemented to route 

the load across a resistive load when the voltage is below the diode forward voltage as in 

Figure 2.12. In this state, the CPUT operates in its normal behavior. After steady state is 

reach, there is sufficient energy in the system and the peak voltage is above the diode 

forward voltage; the output switches to the full bridge rectifier. During this stage of 

operation, the full bridge rectifier alone may provide a suitable impedance to sustain 

parametric resonance without needing to switch to load R0, even when the voltage 

transitions between the positive and negative cycle. In the case that parametric resonance 

cannot be sustained, then it is possible to use a comparator to switch to load R0 every cycle 

when the absolute voltage drops below the diode threshold. Additionally, if the load voltage 

is above a single Schottky diode Vf but below 2Vf, then a half bridge rectifier can function. 

Because the CPUT sees a large impedance for the entire negative voltage cycle, switching 

between R0 and the rectified RL for half wave rectification must be implemented. A 

Simulink model show in Figure 2.13 is used for simulations in determining optimal R0 and 

RL values for power transfer. 

 

Figure 2.12 – CPUT circuit with load termination switching between resistor and 
full bridge rectifier. 
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Figure 2.13 – Simulink/Simscape model of switch and rectifier circuit. 
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 CMUT FABRICATION 

Microfabrication of CMUT arrays in a cleanroom generally falls under two main 

processes; the sacrificial release process and the wafer bonding process [15]. In the 

sacrificial release process, the vacuum cavity is formed through wet etching of a sacrificial 

material. The vias used to reach the sacrificial layer are subsequently sealed through a 

deposition step in vacuum, sealing the cavity. In the wafer bonding process, the vacuum 

cavity is instead formed through bonding of two wafers in vacuum. On one wafer, the 

cavity and all the features below it are first processed. A second silicon on insulator (SOI) 

wafer, a wafer with a thin oxide layer buried within the silicon, is fusion bonded onto the 

membrane cavity wafer in vacuum. Wet etch removal of the thin oxide layer then removes 

the bulk of the silicon wafer, leaving only the thin silicon membrane bonded to the CMUT 

cavity wafer. A comparison of the sacrificial release and wafer bonding process for the 

vacuum cavity formation step is shown in Figure 3.1.  

 

Figure 3.1 – Sacrificial release process (left) and wafer bonding process (right) for 
creating the CMUT vacuum cavity. 
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Although the wafer bonding process requires fewer masks than the sacrificial release 

process, fabrication of CMUT arrays for the purposes of this thesis were done using the 

sacrificial release process for a few reasons. First, a maskless aligner is used for all 

photolithography steps, allowing for quick redesign and negating the expensive and time-

consuming process of ordering physical masks. Secondly, the sacrificial process avoids the 

need for expensive SOI wafers. Removal of the base silicon after the bonding step through 

wet etching without damaging the silicon on the cavity device can also be challenging. The 

rest of this chapter details each step in the CMUT fabrication process including the tools 

used, issues that arise, and potential solutions to those issues. 

3.1 Sacrificial Layer Pattern 

Device fabrication begins with a doped silicon wafer with a thin layer of thermally 

grown oxide, typically 3 um. Plasma-enhanced chemical vapor deposition (PECVD) can 

also be used for depositing oxide, and is required for direct fabrication of CMUT on CMOS 

chips due to the lower process temperature below 250 °C. CMUTs have been successfully 

fabricated using low all temperature processes on silicon and quartz wafers [16], as well as 

on CMOS circuits for intravascular imaging applications [17]; these CMUT on CMOS 

devices reduces parasitic capacitances in the interconnections significantly compared to 

wire bonding methods.  

The bottom electrode is produced through wet etching of thin film chromium. 

Chromium is chosen for the bottom electrode due to its anti-corrosive nature and because 

it will not be etched by copper etchant during removal of the sacrificial layer later. 

Deposition of chromium is achieved through sputtering in an argon enriched low vacuum 
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environment. Sputtering is preferred over evaporation for its better deposition uniformity 

and lower impurity levels. After application of photoresist, UV photolithography is 

achieved with a mask or maskless aligner. The Heidelberg MLA150 maskless aligner is 

used for each of the five photolithography steps in these devices. The chromium bottom 

electrode is patterned through wet etching in chromium etchant 1020AC. This process 

takes roughly 20 minutes to completely etch 350 Å, although visual inspection is a much 

better indication of complete etching. The slow etch rate combined with low aspect ratio 

feature sizes means over etching is not an issue in this step. Images of the bottom electrode 

after wet etching is show in Figure 3.2. A few devices were also fabricated with small 

regions of the bottom electrode between membranes removed in order to further reduce 

parasitic capacitances. A close up of the dimensions post etch is show in Figure 3.3. Since 

the aspect ratio of these features are much higher, the photoresist geometry must account 

for the undercut distance during over etching. If the bottom electrode dimensions are 

smaller than the vacuum cavity dimensions, problems will arise during the subsequent 

sacrificial layer step.  

 

Figure 3.2 – Metal bottom electrode pattern for 10x10 array with full bottom 
electrode (left) and reduced bottom electrode (right) 
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Figure 3.3 – Close up of feature sizes of reduced bottom electrode area. 

For more electrical passivation between the top and bottom electrodes, a conformal 

layer of PECVD oxide is deposited next, equaling the thickness of the sacrificial layer. 

Depending on the recipe used, the deposition rate of PECVD oxide can be fairly uniform; 

in this recipe, a deposition rate of 60 nm/min was achieved. The exact oxide film thickness 

can be measured using spectroscopic reflectometry of oxide on silicon, a process that 

determines thin film thickness by shining an incident light on the wafer surface and 

measuring the intensity of the reflected light which varies based on film thickness due to 

constructive and destructive interference.  

 The next step involves patterning the sacrificial layer for deposition of the 

sacrificial material through lift off. Negative resist is used for this step to facilitate the lift 

off process. Before deposition of the sacrificial material, the oxide is first removed through 

reactive-ion etching (RIE); the chromium bottom electrode acts as an etch stop during this 

dry etch step. Sacrificial copper is then deposited through electron beam evaporation, 
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defining the vacuum gap thickness. Since the same photoresist pattern is used to etch the 

oxide and deposit the Cu in its place, there is no misalignment between the oxide 

passivation layer and the sacrificial layer. Cu is used for the sacrificial layer due to its ease 

in removal by wet etch; however, a variety of sacrificial material can be used such as 

polysilicon [15] as long as the etching liquid does not damage other components of the 

CMUT. Evaporation is also used to deposit the sacrificial layer because the directional 

deposition assists with the lift off process. Although a negative resist profile assists with 

lift off, the dry etching of the oxide passivation layer may reduce the angle of the negative 

profile. Therefore, evaporation is still desirable to maintain good device yield. Figure 3.4 

shows a group of four sacrificial membrane layers including the interconnects between 

membranes where holes will be etched to reach the sacrificial layer. Subdivision of the 

sacrificial layer into groups of four is done to isolates each section from the rest and 

improve overall yield. Cracks or improper sealing in subsequent membrane deposition 

limits failure to just four membranes, rather than failure of the whole CMUT array. In the 

early fabrication stages, an attempt was made to isolate each membrane with their own etch 

holes, thus improving yield even more. However, this was not achieved due to the limited 

5 um space between membranes and feature size limitations on the maskless aligner.  
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Figure 3.4 – Subsection of four membrane sacrificial pattern, defining the vacuum 
gap geometry. 

3.1.1 Liftoff Ear Formation 

A challenge faced during the fabrication of CMUTs with large 400 nm gaps was 

the formation of copper ears during the sacrificial layer deposition stage. These ears form 

as a result of metal depositing on the sidewalls of the photoresist during the evaporation 

process due to slight variations om the orthogonal angle. A profile of the height across the 

Cu sacrificial layer (conducted on a Tencor P15 Profilometer) is shown in Figure 3.5, 

showing the formation of ears on a test section in the boundary between the copper and 

oxide passivation layer. Although the height of these ears varies based on the location and 

amount of wafer misalignment in the evaporator chamber, they were measured up to 400 

nm across multiple devices and can cause significant problems in CMUT yield. Due to 

their high aspect ratios, they can cause stress concentrations in the membrane after the 

sacrificial release, leading to cracks and loss of vacuum. Large ears also require a thicker 

deposition to seal the etch holes after the sacrificial release, needing to deposit a minimum 
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of the gap height + ear height to successfully seal the etch holes. This can be an issue if the 

desired membrane thickness is lower than gap + ear height, since an extra processing step 

would be needed to thin down the membrane without re-opening the etch holes. 

 

Figure 3.5 – Profile of high aspect ratio ears between sacrificial and passivation 
layer after lift-off. 

A solution to reduce the effect of ears is to dip the wafer in a dilute etchant solution 

for the sacrificial layer. Since the aspect ratio and exposed surface area of the ears is much 

higher compared to the flat membrane region, the ears should etch at a much faster rate. 

The wafer with the devices shown in Figure 3.5 was dipped in a dilute solution of 20:1 

APS100 copper etchant in 10s intervals. Figure 3.6 shows a timeline of the ear profile 

before and after 20s of ear removal etch. After 10s of etching, the ear height was reduced 

significantly with the highest aspect ratio ears reduced the most, while the sacrificial layer 

was reduced about 45 nm. After 20s of etching, most of the ears were reduced to below 

100nm in height while the sacrificial layer was reduced a total of 65 nm. 
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Figure 3.6 – Profile of ear geometries after a short etchant dip. Initial measurement 
(top), after 10 seconds (middle), and after 20 seconds (bottom). 
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Therefore, a diluted etchant bath proved to be a suitable method for reducing the 

formation of ears if its formation is unavoidable due to limitations in evaporator tooling. 

The reduction in sacrificial layer thickness can be accounted for in the initial evaporation 

thickness, allowing the ear removal etch to bring the thickness down to the desired value. 

A similar approach to minimize lift off ears was demonstrated by Dimaki et al. [18] to 

prevent metal ears after lift off from oxide. Instead of using an etchant to remove ears after 

their formation, they introduced an isotropic HF dip before the metal deposition to create 

a groove in the underlying oxide, showing reduction in ear height from 900 nm to below 

50nm. This could be adapted for CMUT fabrication, as HF or buffered oxide etch (BOE) 

does not etch the underlying chromium. However, undercutting the oxide passivation layer 

undermines its purpose to some degree, especially when the passivation region is small to 

begin with. In this case, it may be more straightforward to skip the passivation layer 

entirely. 

An alternative process to avoid ear formation is to deposit the sacrificial layer thin 

film first, pattern the vacuum gap through wet or dry etching, and deposit the oxide 

passivation through lift off if desired. However, it is difficult to control tight feature sizes 

with isotropic wet etching compared to the relatively anisotropic dry etch. Figure 3.7 shows 

the result of a sacrificial pattern with severe undercutting due to over-etching, with 

membrane geometries measuring 63 um compared to the 70 um photoresist pattern. As the 

copper on the 4” wafer completed etching at different rates, the amount of undercut varied 

on devices across the wafer. Etch rate uniformity can possibly be improved by choosing a 

different sacrificial material or modifying the etchant concentration for faster or slower 
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etch rates. Wet etching of sacrificial layers with lower thicknesses may have better 

uniformity, highlighting another challenge in fabrication of CMUTs with larger gaps. 

 

Figure 3.7 – Over etching of copper sacrificial layer by wet etch. 

3.2 Sacrificial Release and Sealing 

After lift-off of the sacrificial layer and removal of ears present, PECVD silicon 

nitride is deposited to form the membrane structure. Silicon nitride is used for its high 

dielectric constant (κ = 6-8) compared to silicon oxide (κ = 4) or silicon oxynitride [19]. 

High-κ dielectric materials such as hafnium oxide (κ = 16) through atomic layer deposition 

can also be used in designs with low vacuum gaps to increase the breakdown voltage [20], 

although these are design considerations more for CMUT applications in imaging rather 

than power transfer. Because a later nitride deposition will be required to seal the etch 

holes, the initial nitride is deposited to a thickness below the final membrane thickness, in 

this case 500 nm of the total 1500 nm. A low stress PECVD nitride recipe is used with a 
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deposition rate of 8.5 nm/min at 250 °C. A drawback of the sacrificial release process is 

the presence of thermal stress in the membranes which can become significant in large 

membrane designs. Thus, the wafer bonding fabrication method is more suitable for 

designs with either large membrane widths or small gaps in which membrane stress can 

cause contact with the bottom electrode. Figure 3.8 shows a profile across the nitride 

membranes after the first deposition stage; on the left, a profile of membranes with 200 nm 

ears, and on the right, a profile of membranes with minimal ears. 

 

Figure 3.8 – Profile of membrane after first deposition with (left) and without (right) 
ears. 

Nitride deposition thickness can be measured using reflectometry of nitride on oxide on 

silicon. However, for accurate measurement, the oxide thickness must be known and set in 

the reflectometer settings. Alternatively, measurement can be made on a dummy Si wafer 

placed next to the actual device in the PECVD chamber, as measurement of nitride on 

silicon results in less errors than nitride on oxide on silicon. 

 To begin the sacrificial release process, 3 um diameter etch holes are drilled down 

to the sacrificial layer using RIE, the third mask in the process. In this step, the copper acts 
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as the etch stop. Figure 3.9shows the location and pattern of the etch holes. The wet etching 

of the sacrificial layer is conducted in 10:1 APS100 copper etchant solution. As the etchant 

does not attack the chromium bottom electrode, the wafer can safely be left in etchant 

overnight. After 5 minutes of initial etching, the region around the etch holes should show 

a visible etch pattern as in Figure 3.10 (left). The completely etched vacuum gap is shown 

in Figure 3.10 (right). 

 

Figure 3.9 – Etch hole locations and pattern. 
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Figure 3.10 – Pattern after 5 minutes etching (left) and fully etched membranes 
(right). 

To remove the etchant from the vacuum gap, the wafer is moved from the etchant 

into deionized water, and finally into isopropyl alcohol (IPA) and left overnight. The lower 

surface tension of IPA facilitates the complete removal of IPA in a 90 °C oven afterwards. 

For devices with relatively small gaps (<50nm), high stiction forces impede the ability for 

IPA to evaporate out of the vacuum gaps. In that case, supercritical drying can be used to 

insure proper fluid removal. 

Sealing of the vacuum gap is achieved with a second low stress PECVD nitride 

deposition, bringing the membrane to the final thickness at the same time. Similarly, a 

dummy wafer should be used to measure the exact thickness of the additional nitride 

thickness. Successful sealing can be verified through immersion of the wafer in DI 

water/solvent and checking for leaks as well as profiling across the membrane. A deflection 

should be measured due to atmospheric pressure on the membrane as shown in Figure 3.11;  

for a 70 x 70 x 1.5 um nitride membrane, the expected atmospheric deflection calculated 

through FEA is roughly 80 nm. 
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Figure 3.11 – Microscope image and profile of fully sealed membranes showing 
deflection due to atmospheric pressure. 

3.3 Top Electrode and Device Packaging 

The final top electrode patterning consists of sputtering a layer of metal, in this case 500 

nm aluminum, and wet etching the excess aluminum in aluminum etchant type A solution. 

The top electrode can also be sandwiched between the membrane as in [21] in which case 

the capacitance of the CMUT is increased, leading to improved performance and 

sensitivity. An image of the top electrode pattern is shown in Figure 3.12 with ~84% 

electrode coverage over the membrane area.  
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Figure 3.12 – Pattern and dimensions of aluminum top electrode on completed 
CMUT devices. 

The final processing step is to dry etch bond pad channels to the bottom electrode 

for electrical connections. Thicker photoresist on the order of 7 um is used for this step 

since nearly 2 um of silicon nitride and oxide need to be dry etched. As the top electrode 

is the final layer in this design, wire bonds can be made anywhere aluminum is exposed. 

Images of the final diced CMUT arrays are show in Figure 3.13 along with measured device 

geometries in comparison to intended values in Table 3.1.  
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Figure 3.13 – Fabricated 10x10 (top), 20x20 (middle), and 30x30 (bottom) CMUT 
arrays with wire bond pads for bottom and top electrodes. 

Table 3.1 – Measured Membrane Geometries vs Design  

 Designed Values Fabricated Values 

Gap Thickness 400 nm 430 nm 

Membrane Size 70 x 70 um 71 x 71 um 

Membrane Thickness 1.5 um 1.478 um 

Top Electrode Size 65 x 65 um 65 x 65 um 

Top Electrode Thickness 500 nm 600 nm 
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 RESULTS AND EXPERIMENTAL VALIDATION 

Simulations of various CMUT membrane designs using the large signal BEM model 

revealed insights that are overlooked in the lumped element 1D model. Most importantly, 

the BEM CPUT model reveals the effects of non-uniform motion and higher order mode 

shapes across the array, accounting for phase differences between individual membranes. 

This is a major limitation in the 1D lumped model, as acoustic crosstalk interaction between 

membranes are not accounted for. Differences in the operating frequency of CMUTs for 

imaging and power transfer applications are also explored by comparing frequencies of 

maximum pressure output vs. frequencies of maximum membrane displacement. 

The 1D model also suggests that the quality factor plays an important role in the 

maximum power transfer efficiency, with higher quality factors leading to higher 

maximum efficiencies due to less energy loss. In terms of membrane design, increasing 

quality factor can be achieved by loading the membranes with a material of high density to 

stiffness ratio such as gold or tungsten. Doing so increases the mass of the membranes 

without increasing stiffness, leading to an increase in the quality factor 𝑄𝑄 = 𝜔𝜔0𝑚𝑚
𝑏𝑏

.  

Lastly, a power rectification circuit is designed with modifications needed to function 

in a parametric circuit. To prevent large losses in power during rectification, it was 

determined that a switching circuit should be implemented. With fabricated CMUT arrays 

of various sizes, the analysis performed through simulations are validated. After 

characterizing the devices to determine their impedances and operational frequencies, the 

BEM CPUT model is updated with the physical parameters of the devices. Simulations of 
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power transfer with the updated model are compared to experimental data. Separately, the 

power rectification circuit is built and demonstrated, both validating modeling and showing 

the effects of the switching circuit on power rectification efficiency. Analysis and 

discussion of each of the investigated topics are detailed in the following subchapters. 

4.1 Frequency of Operation 

The frequency response of a CMUT array is obtained by taking the Fourier transform 

of the far field pressure as a response to an impulse force. The far field pressure is 

calculated using Rayleigh’s integral by summing the pressure contribution of each node in 

the array as if it were a baffled point source radiating into half space. However, unlike for 

imaging applications which prefer wide frequency bandwidths, the power transfer 

mechanism in CPUTs depends mostly on the change in capacitance and therefore, change 

in the mean displacements. Therefore, the Fourier transform of the mean membrane 

displacement can also be taken to find the frequency response of the CMUT. Figure 4.1 

shows the mean displacement and pressure signal at a distance 10 cm away for a 10x10 

membrane array in response to a impulse force at t = 2e-5s. The Fourier transform of the 

pressure signal shows membrane crosstalk peaks in the 1MHz range, but shows a 

broadband response at higher frequencies above 10 MHz. The Fourier transform of the 

mean displacement, however, shows maximum response in the crosstalk region.  
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Figure 4.1 – Frequency response of far field pressure (left) and mean displacement 
(right). 

A transient frequency sweep simulation in the crosstalk region from 0 to 2 MHz is 

conducted with a fixed forcing pressure of 100 kPa and resistive load of 100 Ω. The mean 

array displacement and the maximum membrane displacement in the array is plotted 

against frequency in Figure 4.2. The multiple peaks that appear within this frequency range 

correspond to the multiple array vibration modes; Figure 4.3 depicts the mode shapes for 

the first four major array modes and their frequencies for this specific membrane geometry. 

An interesting phenomenon occurs in which the higher order modes have larger maximum 

displacements but lower average displacements due to phase cancellation between patches 

of membranes. In the first mode, the array moves in phase, but the maximum displacement 

is only on the order of 60 nm. This is the frequency predicted by the baffled piston analysis 

as the uniform array motion most resembles a single baffled plate. In the second through 
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fourth mode, the maximum displacements reach values on the order of 200 nm. Despite 

high maximum displacements, the mean displacement, and therefore average change in 

capacitance, suffers. Additionally, the maximum displacement plot vs. frequency more 

closely resembles the pressure frequency response of the CMUT. This can be attributed to 

fact that the pressure is closely related to the individual membrane velocities (the piston 

velocity appears in Rayleigh’s integral for pressure calculation). 

 

Figure 4.2 – Maximum and average array displacement from transient RLC 
simulation 
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Figure 4.3 – Array mode shapes at the first four frequency response peaks 

4.2 Power Transfer Simulations 

Two CPUT arrays were designed to achieve operational frequencies in the 300 kHz-

1.5 MHz range. The dimensions of both CMUT arrays are summarized in Figure 4.1. The 

first design is a 10 x 10 array of 70 x 70 µm membranes with a single membrane frequency 

of 1.01 MHz. Each membrane consists of a 500 nm silicon nitride membrane and 400 nm 

silver electrode, along with a gold mass load to increase the mechanical quality factor and 

force the membranes to operate in its first mode. 
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Table 4.1 – Two Mass Loaded CMUT Membrane Designs 

 CPUT Array Design 

Low Frequency 10 x 10 High Frequency 16 x 16 

Si3N4 membrane 70 x 70 x 0.5 um 40 x 40 x 0.5 um 

Ag electrode  70 x 70 x 0.4 um 40 x 40 x 0.4 um 

Au mass load 23 x 23 x 1 um 13 x 13 x 1 um 

Total array size 750 x 750 um 720 x 720 um 

The first design is a 10 x 10 array of 70 x 70 µm membranes with a single membrane 

frequency of 1.01 MHz. Each membrane consists of a 500 nm silicon nitride membrane 

and 400 nm silver electrode, along with a 23 x 23 x 1 µm gold mass load to increase the 

mechanical quality factor and force the membranes to operate in its first mode. Silver was 

chosen as the electrode material due to its lower elastic modulus compared to aluminum, a 

secondary mean to increase quality factor. Membrane and electrode geometries were 

chosen to achieve a 1 MHz membrane frequency. The second design is a 16 x 16 array of 

40 x 40 µm membranes with an array (as opposed to single membrane) mode frequency 

around 1 MHz. To do so, it was determined that the single membrane frequency needed to 

be near 3 MHz; hence the membrane dimension was decreased to 40 µm. The array size 

was increased such that the overall area remained approximately equal to the 10 x 10 array; 

this keeps the overall radiation impedance roughly the same between the two designs. The 

smaller membranes are mass loaded with a 13 x 13 µm gold block, while all thicknesses 

remained the same. Since the smaller 10 x 10 design has an array frequency near 300 kHz, 

we refer to the two designs as a low frequency device (10 x 10) and high frequency device 

(16 x 16). 
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Using the large signal BEM model, CPUT power transfer efficiencies for mass 

loaded membrane arrays can be determined. Figure 4.4 displays efficiency maps over a 

range of frequencies and forcing intensities at a fixed load. At low frequencies and high 

driving intensities, CPUT operation is limited by the capacitive membrane gap; there is a 

diminishing return to the relative capacitance change as forcing is increased. At higher 

frequencies and low forcing intensities, efficiencies also drop to zero as the forcing is below 

the threshold required for parametric resonance. For the low frequency device, power 

transfer efficiency does not vary between the first few array modes, averaging around 4%. 

For the high frequency device, power transfer efficiency reached up to 24% in the arrays 

second mode, with larger variations between array modes. However, the contour maps 

show efficiencies at fixed load values, while optimal power transfer efficiency is known to 

depend on forcing intensity and frequency. 

 

Figure 4.4 – Efficiency contour maps over frequency and forcing intensity for 10x10 
(left) and 16x16 (right) CMUT arrays 

Efficiency maps are therefore plotted at each of the array eigenfrequencies over a 

range of load values, thereby showing the optimal load impedances for each case. These 

maps, along with the corresponding array mode shapes are shown in Figure 4.5. Between 
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the low and high frequency design, power transfer efficiency is shown to reach up to 25%, 

although the highest efficiency does not occur at a common mode shape. The low 

frequency device for example, shows better efficiencies in the first array mode, while the 

higher frequency design shows better efficiencies in the second array mode. Observing the 

low frequency CPUT, with a 75 W/m2 input intensity, 66.6 µW and 0.45 V DC is harnessed 

across a 3000 Ω load with 21.3% efficiency at 300 kHz. Under the same input conditions, 

operation at 475 kHz only provides 8.2 µW (0.07 V DC) across a 600 Ω load with 6.1% 

efficiency. Additionally, the input intensity can be increased beyond 160 W/m2 in the 300 

kHz mode without significant decrease in efficiency, whereas in the 475 kHz mode, 

efficiency begins to drop once the input intensity increases beyond 70 W/m2. 

 

Figure 4.5 – Efficiency maps for first and second mode of low frequency CPUT at 
(a) 300 kHz, (b) 475 kHz and high frequency CPUT at (c) 900 kHz, (d) 1.55 MHz. 
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In contrast, the second array mode of the high frequency CPUT array provides 

better power transfer operation. At 1.55 MHz, 92.5 µW can be harnessed across a 140 Ω 

load (0.11 V DC) with 22.4% efficiency, while the first array mode only provides 22.0 µW 

across a 160 Ω load (0.06 V DC) with 11.3% efficiency. Also, unlike the low frequency 

CPUT, the second array mode of the high frequency device can be driven at higher input 

intensities without significant changes in efficiency.  

These simulations show that complex modeling or experimentation is needed to 

determine the best array operating mode and condition, and using proper array modes, 

CPUTs can provide reasonable efficiencies over a large range of load conditions and 

ultrasound intensity variations. Note that, the simulations so far have been conducted with 

uniform ultrasound forcing on the array. This assumption is validated based on the fact that 

both arrays are sub wavelength in size; thus, an incoming ultrasound signal can be 

approximated as a plane wave, even with small variations in incidence angle. Larger 

forcing intensities can also be applied, although design changes such as a larger gap will 

need to be implemented to accommodate for such. The US Food and Drug Administration 

limits diagnostic ultrasound in tissue to 7,200 W/m2 [22], while our high frequency device 

starts to reach its geometric limit around 800 W/m2, meaning devices could be optimized 

to output power levels nearly 10x of that shown. 

The presence of higher order array modes even with mass loaded membranes 

suggests that while mass loading can suppress higher order modes in individual 

membranes, fluid mass loading effects dominate on the array scale. As discussed 

previously, for array areas larger than 1 mm2, fluid mass generally constitutes over 90% of 

the total effective mass. As a study, a theoretical CMUT array with a quality factor 50x the 
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low frequency devices is simulated. This is done by arbitrarily multiplying the stiffness 

and mass matrix [K] and [M] by 50 when solving the BEM CMUT model. The membrane 

resonant frequency doesn’t change, but the quality factor is increased fifty-fold. The 

frequency response of the 10x10 array in fluid is maximum at 1 MHz, matching the single 

membrane frequency in air, rather than 300 kHz for the lower quality factor design (Figure 

4.6). However, despite the large increase in membrane mass, the fluid mass still remains 

significant. The mode shape of the dominating frequency (Figure 4.7) contains regions that 

are out of phase with each other, meaning acoustical crosstalk forces are still in effect. 

Regardless, mechanical design of such a membrane with 50x quality factor is infeasible, 

meaning CPUTs need to be designed with these higher order array modes in mind.  

 

Figure 4.6 – Frequency response of high quality factor CMUT array 
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Figure 4.7 – Mode shape of high quality factor CMUT at 1 MHz 

4.3 Power Transfer Validation with Fabricated CMUTs 

The fabricated CMUTs of size 10x10, 20x20, and 30x30 are characterized on a 

network analyzer while applying a range of DC bias to determine center frequencies and 

device impedances. Figure 4.8 and Figure 4.9 are the real and imaginary components of 

the fabricated 10x10 device, from which the center frequency, resistance and parasitic 

capacitances can be deduced. The measure values for all the devices are tabulated in Table 

4.2. The measured center frequency of the membranes is about 4 MHz, a 2% deviation 

from the 3.92 MHz calculated with FEA. Spring softening with application of DC biases 

up to 100 V is also clearly visible in the impedance measurements, a phenomenon in which 

increasing electrostatic forces decreases the stiffness matrix and in turn the resonant 

frequency [23]. 
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Figure 4.8 – Real component of 10x10 CMUT impedance 

 

Figure 4.9 – Imaginary component of 10x10 CMUT impedance 
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Table 4.2 – Measured Device Capacitances and Parasitics 

Device Theoretical C0 (pF) Measured C0 (pF) Parasitic C (pF) 

10x10 5.7 12.9 7.2 

20x20 22.9 33 10.1 

30x30 51.4 76 24.6 

To determine the pressure frequency response of the CMUT in immersion, a 

hydrophone is used to measure the far field pressure of the CMUT in FC-70. A voltage 

impulse and DC bias is applied across the terminals of the CMUT, and the pressure 

response at a distance approximately 5 cm away is measured with a hydrophone. The 

frequency response for various DC bias values are plotted in Figure 4.10, showing a peak 

response in the 1.5-2 MHz range.  

 

Figure 4.10 – Acoustical Frequency response of 20x20 CMUT array 
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Since the far field pressure according to Rayleigh’s integral is a function of individual 

membrane velocities, obtaining the displacement response can be estimated by dividing 

the frequency response by 𝜔𝜔 in the frequency domain. The displacement response is show 

in Figure 4.11. In contrast to the pressure response, the maximum displacement response 

occurs closer to 1.25 MHz compared to 1.5 MHz. The cross talk region between 0.75 and 

1.25 MHz shows multiple peaks and dips corresponding to various higher order array 

modes.    

 

Figure 4.11 – Approximate mean displacement response of 20x20 CMUT array 
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peak response at modes in the 1 MHz range.  This can be due to the fact that the pressure 

response is not derived from the mean velocity. The pressure at far field from Rayleigh’s 

integral depends not only on membrane velocity but phase as well; thus, the pressure 

response does not directly correlate to mean velocity. Subsequently, derivation of mean 

displacement from the pressure response does not correlate well in terms of absolute 

magnitudes.  

 

Figure 4.12 – Simulated displacement response vs. hydrophone measurement 
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radiate any pressure along the center axis; however, radiation can occur at locations off 

center due to phase differences and measured, as is the case when the hydrophone is not 

exactly centered away from the CMUT. To investigate the parameters that impact power 

transfer the most, experiments are conducted at various frequencies at which the pressure 

or mean displacement magnitudes are maximum. 

For experimental testing of power transfer, the CMUT devices are attached and wire 

bonded to a circuit board. A container is epoxied around the CMUT for immersion testing 

in FC-70. In Figure 4.13, a 20x20 CPUT is shown in the testing setup with a 1.4 mH 

inductance and variable resistor, corresponding to an electrical resonance of 737 kHz.  

 

Figure 4.13 – Experimental setup of RLC CPUT in FC-70 
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The exact circuit resonance including additional parasitic capacitances from the 

measurement probes is measured by applying a voltage impulse across the resistor and 

measuring the response of the voltage across the capacitor array (Figure 4.14). The 

measured circuit resonance is in reality closer to 620 kHz, a significant deviation from the 

theoretical 737 kHz. Thus, the additional parasitic capacitance and inductances introduces 

a correction factor of approximately 1.4 to the product 𝐿𝐿𝐶𝐶 as in equation 13. 

 

Figure 4.14 – Circuit response to impulse voltage and corresponding circuit resonance 
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1
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variable resistor is measured to determine the electrical power output while the resistance 

is swept from 0 to the critical load. The output power for three frequency peaks in the 

pressure response (Figure 4.11) is plotted in Figure 4.15. The peak to peak voltage applied 

to the ultrasound transducer is also noted, as this value and the distance from the CPUT is 

required to measure the pressure at the same distance for later efficiency calculations.  

 

Figure 4.15 – Electrical power output vs. load resistance for various frequencies and 
forcing pressures. 
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simulations, the critical load has a direct linear correlation with input forcing pressure as 

long as the membranes are not collapsing, i.e. all displacements are less than the gap. 

Increasing the applied pressure force by a factor of n also increases the critical load by the 

same factor n. However, the added resistances from the capacitive array, inductor, and 

other components essentially creates a voltage divider between the load resistance and the 

added parasitic resistances. Since the parasitic resistance does not change, it is desirable to 

operate with larger forcing pressures such that the optimal load resistances are larger with 

respect to the parasitic resistance. In the experimental results at 1.25 MHz operation, two 

forcing levels are recorded with transducer driving voltages of 63 and 95 V peak to peak, 

corresponding to a pressure increase of 1.5x. The critical load, however, increases from 

roughly 36 Ω to 95 Ω, an increase of 2.6x. In order to bring the critical load ratio to 1.5, an 

additional resistance of 82 Ω should be included such that (95 + 82) Ω / (36 + 82) Ω = 1.5. 

This 82 Ω is consistent with the measured 20x20 CPUT resistance of 88 Ω using a network 

analyzer as shown previously in Figure 4.8. It is therefore beneficial to reduce CPUT 

parasitic resistances as much as possible through judicious design and fabrication, for 

example by designing shorter interconnects, thicker electrodes, and choosing materials 

with lower resistivity. However, care must also be taken to keep parasitic capacitances at 

a minimum as well, highlighting some of the intricacies that go into CPUT design. 

4.4 Power Rectification Simulation and Experiments 

To determine the effectiveness of the switching circuit and power rectification 

efficiencies introduced in Chapter 2.5, simulations are run with a smaller 4x4 CMUT model 

to save computational resources and time. Both cases in which the rectification circuit is in 

parallel with the load R0 (no switching logic involved) and cases in which the output is 
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actively switched between R0 and RL are run. Concurrently, the power rectification circuit 

with switching logic is built and shown in Figure 4.16, comprised of 1N5817 Schottky 

diodes and a Texas Instruments SN74LVC1G3157 SPDT analog switch. The two yellow 

wires correspond to the input and output of the rectifier, and the two orange lines depict 

the switch between the unrectified load R0 and a half bridge rectified load RL with a single 

Schottky diode. The blue line is the signal that controls the switching when the voltage 

exceeds the diode forward voltage.  

 

Figure 4.16 – Power rectifier and switching logic circuit 

The CPUT is formed using three elements of a commercially available Philips CM12 

CMUT. The device area totals 1.8 mm2 with a capacitance of 60 pF and a mechanical center 

frequency of ~1 MHz in FC-70 fluid. The particular CPUT only produced sufficient 

voltages for a half bridge rectifier, so simulations were modified for half wave rectification 

as well. Across a range of RL values, voltage levels were measured across R0 and RL and 

used to calculated power across the loads, with rectifier efficiency being calculated as 
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 𝜂𝜂𝑟𝑟𝑒𝑒𝑑𝑑𝑜𝑜 =
𝑃𝑃𝐿𝐿

𝑃𝑃𝐿𝐿 + 𝑃𝑃0
 (14) 

Figure 4.17 compares rectifier efficiencies between simulation and experiment, with and 

without active switching with a half bridge configuration. Additionally, full bridge power 

rectification efficiencies from simulations with and without switching logic is shown in 

Figure 4.18. Since simulations and experiment were done with CPUTs with different array 

geometries, the load resistance is normalized to the critical load for valid comparison. 

 

Figure 4.17 – Simulation vs. Experimental half bridge rectifier efficiencies 
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Figure 4.18 – Simulation of CPUT with full bridge rectification 

Rectification efficiencies without the switching logic implemented show a 

maximum of 4% with excellent agreement between simulation and experiment. The low 

efficiency is due to RL and R0 essentially functioning as resistors in parallel. A significant 

amount of power is lost across R0 without the switching circuit. As previously mentioned, 

the necessity of R0 is a limitation on energy harvesting in parametric circuits. When the 

switching circuit is implemented, rectification efficiencies improve to 20-24%, a five-fold 

improvement from previously. However, this value is still only half of the theoretical 40% 

maximum efficiency for half bridge rectifiers because the diode voltage drop constitutes a 

significant loss compared to the relatively low input voltages. With a full wave rectifier, 

the switching circuit improves rectifier efficiency from 15% to 65% when RL is optimized. 

Nonetheless, inclusion of a switching circuit is proven to be an essential component of 

power rectification in CPUTs by preventing energy losses while maintaining optimal 

conditions for maximum power transfer.  
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 CONCLUSION 

Through the efforts of this research, a more comprehensive analysis on CPUTs as a 

means of wireless power transfer is shown. Using a multiple degree of freedom model, 

validated through experimental power transfer with a CMUT designed for imaging, an 

improved CMUT was designed for the purposed of maximum power transfer. It is shown 

that the operating conditions for optimal power transfer occur under different conditions 

than for optimal imaging applications. For imaging, large bandwidths, large pressures, and 

smaller vacuum gaps are preferred, while for power transfer, the array mode shape and 

frequencies impact total power transfer efficiency the most. Larger gaps are also necessary 

due to the larger displacements encountered, and therefore, typical microfabrication 

processes should be adapted for the fabrication of large gap CMUTs, especially with the 

formation of metal ears during the lift off process. Under ideal operating conditions, 

CPUTs are shown to be able to transfer power in the mW range over a 2.25 mm2 device, 

making it a comparable alternative to piezoelectric counterparts. Finally, due to the 

limitations of parametric circuits, passive power rectification is achieved by implementing 

a switching circuit to control a diode bridge. The switching circuit is shown in simulation 

and through experimental demonstration to improve rectification efficiencies significantly, 

showing the practicality of a full end to end ultrasound based power delivery system.  

5.1 Further Work 

The flexibility of CMUT array design allows for optimization at multiple stages of 

design. This work has shown methods to design individual membrane widths and 
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thicknesses for a desired frequency, but has explored only arrays with uniform membrane 

geometry. A list of possible design considerations for future exploration include: 

1. Non uniform array geometries: It is shown that power transfer efficiency can be higher 

in array modes with out of phase regions. Since theses regions contribute negatively to 

performance, membrane geometries in these areas can be modified to suppress their 

effects. The electrodes can also be removed from those regions, in which case the 

acoustic response is not impacted significantly, but power transfer can be improved. 

2. Self-contained powering of rectification circuit components: The power rectification 

components such as the SPDT integrated circuit and comparator op-amps are powered 

with laboratory power supplies in experiments. However, due to their low power draw, 

they can potentially be powered by the CPUT itself for a truly passive system. A portion 

of the CMUT array with a separate top electrode can be dedicated for powering theses 

devices, and a voltage multiplier circuit can be used to increase the low AC voltage 

output into a steady DC value to power the ICs.  

3. Effects of varying incidence angle: The effect of varying the ultrasound forcing 

intensity was studied in simulation by changing the forcing level on each membrane 

uniformly. However, this does not account for phase variation across the array, which 

can be inaccurate for larger array sizes or higher frequencies. A more detailed study on 

incidence angle should be conducted by applying accurate forces with phase delays 

across the array. 
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