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SUMMARY

The objective of this thesis is to present a variety of fast algorithms for working with

samples of multiband signals. Our algorithms revolve around the Slepian basis vectors,

which are a set of timelimited signals that are each maximally concentrated in a given

frequency band subject to being orthonormal. Due to these time-frequency localization

properties, the Slepian basis vectors are useful in a wide variety of applications in signal

processing. However, prior to our work, there were no efficient algorithms for perform-

ing computations with Slepian basis vectors. As such, practitioners often overlooked the

Slepian basis vectors for more computationally efficient tools, such as the fast Fourier trans-

form, even in problems for which the Slepian basis vectors are a more appropriate tool.

The computational complexity and memory requirements for all of the algorithms in

this thesis scale roughly linearly with the number of samples to be processed. The key

to these fast algorithms is exploiting the mathematical properties of the Slepian basis vec-

tors as well as the related discrete prolate spheroidal sequences (DPSSs) and the prolate

spheroidal wave functions (PSWFs). The DPSSs and PSWFs are the eigensequences and

eigenfunctions respectively of a bandlimit, then timelimit, then bandlimit procedure. The

eigenvalues associated with both the DPSSs and the PSWFs are all strictly between 0 and 1,

and most cluster very closely around either 0 or 1. We rigorously quantify the fact that only

logarithmically many of these eigenvalues are not close to either 0 or 1, and then exploit

this clustering behavior to devise our fast algorithms.

The main contributions of this thesis are:

• novel non-asymptotic bounds on the eigenvalues of the discrete prolate spheroidal

sequences and prolate spheroidal wave functions,

• fast algorithms for projecting a vector onto the span of the leading Slepian basis

vectors, for performing dimensionality reduction with Slepian basis vectors, and for

solving systems of equations involving the prolate matrix

xiv



• novel non-asymptotic bounds on the statistical properties of Thomson’s multitaper

spectral estimate,

• a fast algorithm for evaluating Thomson’s multitaper spectral estimate on an uni-

formly spaced grid of frequencies,

• a fast algorithm for reconstructing a multiband signal from nonuniform samples, pro-

vided we know the active frequency bands a priori,

• a fast algorithm for recovering a multiband signal from compressed measurements

which does not require knowing the active frequency bands a priori.
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CHAPTER 1

INTRODUCTION

Over the past several years, computational power has grown tremendously. This has led

to two trends in signal processing. First, problems in signal processing are now being

posed and solved using tools from linear algebra, instead of more traditional methods such

as filtering and Fourier transforms. Second, problems are dealing with increasingly large

amounts of data. Many modern applications involve signals with millions of samples.

Algorithms involving low-order filters or fast Fourier transforms typically requireO(N)

or O(N logN) operations for a signal with N samples. In contrast, general linear algebra

tasks, such as a multiplying an N × N matrix by an N × 1 vector, solving an N × N

linear system of equations, and computing the eigendecomposition of an N × N matrix,

require between O(N2) and O(N3) operations, which is typically unfeasible for signals

withN & 105 samples. Applying tools from linear algebra to large scale problems requires

the problem to have some type of low-dimensional structure which can be exploited in

order to perform the computations efficiently, i.e. in roughly linear time with respect to the

number of samples N .

One common type of low-dimensional structure is a multiband signal model, i.e. the

Fourier transform of the signal is supported only on a finite union of finite intervals. This

type of structure arises naturally in signal processing problems where many transmitters

are each broadcasting a signal confined to a single frequency band and a receiver observes

the sum of delayed versions of the transmitted signals. Since the Fourier transform of a

multiband signal is sparsely supported, a multiband signal has far fewer degrees of freedom

than a signal that is bandlimited to the same maximum frequency. Transferring this low-

dimensional structure from the continuous-time signal to the discrete-time samples requires

care.

1



Naı̈ve approaches to exploiting the low-dimensional structure of a multiband signal

involve simply using the discrete Fourier transform (DFT), which has the advantage of

being computationally efficient due to the fast Fourier transform (FFT), which requires

O(N logN) operations to compute for a signal of lengthN . Unfortunately, a finite window

of samples from a multiband signal rarely has a sparse DFT. Instead the DFT of a window

of samples from a multiband signal typically has slowly decaying sidelobes for each active

frequency band, which contain a nontrivial amount of energy. As such, the discrete Fourier

transform often fails to capture the low-dimensional structure of a multiband signal.

A more suitable method to capture this low-dimensional structure involves using Slepian

basis vectors, which are defined as the eigenvectors of the so-called prolate matrix. By con-

struction, the Slepian basis vectors are timelimited signals which are each maximally con-

centrated in a given frequency band subject to being orthonormal. This construction allows

one to capture the low-dimensional structure of a multiband signal with a dimensionality

that is only slightly greater than the time-bandwidth product of the signal. However, prior

to this research, no fast algorithms for working with the Slepian basis had been developed.

Hence, the Slepian basis has been often overlooked in favor of the DFT, even in problems

where the Slepian basis is a more appropriate choice.

In this thesis, we first study the mathematical properties of the Slepian basis, as well

as the closely related discrete prolate spheroidal sequences (DPSSs) and prolate spheroidal

wave functions (PSWFs). We then use these mathematical properties to develop fast algo-

rithms for working with samples of multiband signals. The rest of this thesis is organized

as follows. In Chapter 2, we present background material on some of the topics related

to this thesis. In Chapter 3, we establish novel non-asymptotic bounds on the eigenvalues

of the DPSSs and the PSWFs. In Chapter 4, we present our fast algorithms for projecting

a vector onto the span of the leading Slepian basis vectors, for performing dimensionality

reduction with Slepian basis vectors, and for solving systems of equations involving the

prolate matrix. In Chapter 5, we derive non-asymptotic bounds on the statistical proper-

2



ties of Thomson’s multitaper spectral estimate, and we present a fast algorithm for eval-

uating Thomson’s multitaper spectral estimate at a uniformly spaced grid of frequencies.

In Chapter 6, we demonstrate a fast method for reconstructing a multiband signal from

nonuniformly spaced samples, provided we know the active frequency bands a priori. In

Chapter 7, we demonstrate a fast method for recovering a multiband signal from com-

pressed measurements without knowing the active frequency bands a priori. We conclude

this thesis in Chapter 8 with a discussion of possible future directions of research. To

improve the readability of this thesis, the proofs of each of the results in this thesis are

contained in the Appendices.
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CHAPTER 2

BACKGROUND

The background for this thesis draws from the areas of signal processing, spectral estima-

tion, structured linear algebra, and compressed sensing. The goal of this research is to apply

techniques from linear algebra to develop fast algorithms for working with samples of ban-

dlimited and/or multiband signals. This survey is by no means exhaustive, but presents a

broad sample of the literature which inspired the research.

2.1 Mathematical Notation

We start by reviewing some of the mathematical notation used in this thesis which may

not be universally used. We use bold lowercase letters to denote finite-dimensional column

vectors, bold uppercase letters to denote finite-dimensional matrices. This distinguishes

them from infinite-dimensional objects, such as sequences, functions, and operators on

sequence or function spaces. Unless otherwise noted, all vectors and matrices are indexed

beginning at 0. For a finite-dimensional vector x, we use x[n] to denote the n-th element

of x, xT to denote the transpose of x, and x∗ to denote the conjugate transpose of x. For

a finite-dimensional matrix A, we use A[m,n] to denote the (m,n)-th entry of A, AT to

denote the transpose of A, and A∗ to denote the conjugate transpose of A. Note that if x

orA have real entries, thenAT = A∗ or xT = x∗ respectively. For any positive integer N ,

we use [N ] to denote the set {0, 1, . . . , N −1}. For a linear operator between vector spaces

A, we use A∗ to denote the adjoint of A. For a Hermitian matrix A ∈ CN×N or a self-

adjoint operatorA, we will use λ1(A) ≥ λ2(A) ≥ · · · ≥ λN(A) or λ1(A) ≥ λ2(A) ≥ · · ·

to denote the eigenvalues of A or A sorted in decreasing order. Note that in order to be

consistent with standard notation, the eigenvalues associated with the Slepian basis vectors,

the discrete prolate spheroidal sequences, and the prolate spheroidal wave functions (which
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are introduced in the next section) will be indexed starting from 0 instead of 1.

2.2 DPSSs, Slepian basis vectors, and PSWFs

A fundamental fact of Fourier analysis is that no non-zero signal can be simultaneously

bandlimited and timelimited. Thus, a compactly supported non-zero function cannot have

a compactly supported Fourier transform, and a non-zero function whose Fourier trans-

form is compactly supported cannot itself be compactly supported. Between 1960 and

1978, Landau, Pollak, and Slepian published a series of seminal papers [1–5] exploring to

what extent a bandlimited signal can be timelimited and to what extent a timelimited signal

can be bandlimited. They formulate both of these questions as eigenproblems involving

bandlimiting and timelimiting operators. In the continuous-time case, the eigenfunctions

which are bandlimited to the frequency band [−Ω,Ω] and are maximally concentrated in

the time interval [−T
2
, T

2
] are known as the prolate spheroidal wave functions (PSWFs). In

the discrete-time case, the eigensequences which are bandlimited to frequencies [−W,W ]

and are maximally concentrated in the time indices1 [N ] are known as the discrete prolate

spheroidal sequences (DPSSs). By truncating the DPSSs, one can form the Slepian basis

vectors, which are an efficient basis for representing a window of samples from bandlim-

ited signals [6–8]. As such, Slepian basis vectors can be used in a variety of applications.

Some classic applications include prediction of bandlimited signals based on past samples

[5] and Thomson’s multitaper method for spectral analysis [9]. More recent applications

include time-variant channel estimation [10, 11], wideband compressive radio receivers

[12], compressed sensing of analog signals [6], target detection [13, 14], and a fast method

[15] for computing Fourier extension series coefficients [16, 17]. In the rest of this subsec-

tion, we will define DPSSs, Slepian basis vectors, and PSWFs, as well as discuss some of

their basic properties.

1For any positive integer N , we use the notation [N ] = {0, 1, . . . , N − 1}.
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Discrete-time case

For a discrete time signal x ∈ `2(Z), we define its discrete-time Fourier transform (DTFT)

x̂ ∈ L2([−1
2
, 1

2
]) by

x̂(f) =
∞∑

n=−∞

x[n]e−j2πfn for f ∈ [−1
2
, 1

2
],

and for any x̂ ∈ L2([−1
2
, 1

2
]), we define its inverse DTFT by

x[n] =

∫ 1/2

−1/2

x̂(f)ej2πfn df for n ∈ Z.

With these definitions, any discrete-time signals x, x′ ∈ `2(Z) satisfy the Parseval-Plancherel

identity 〈x, x′〉`2(Z) = 〈x̂, x̂′〉L2([−1/2,1/2]). For any N ∈ N, we say that x ∈ `2(Z) is time-

limited to [N ] if x[n] = 0 for n ∈ Z \ [N ]. Also, for any W ∈ (0, 1
2
), we say that x ∈ `2(Z)

is bandlimited to [−W,W ] if x̂(f) = 0 for W < |f | ≤ 1
2
.

We can now ask the question “what discrete-time signal bandlimited to [−W,W ] has a

maximum concentration of energy over the time indices [N ]?”, i.e.,

maximize
x∈`2(Z)

N−1∑
n=0

|x[n]|2 subject to ‖x‖2
`2(Z) = 1 and x̂(f) = 0 for W < |f | ≤ 1

2
.

To help answer this question, we define two self-adjoint operators. For a given N ∈ N

we define a timelimiting operator TN : `2(Z)→ `2(Z) by

(TNx)[n] =


x[n] if n ∈ [N ]

0 if n ∈ Z \ [N ]

,

and for a given bandwidth parameter W ∈ (0, 1
2
), we define a bandlimiting operator BW :
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`2(Z)→ `2(Z) by

(BWx)[n] =
∞∑

m=−∞

sin[2πW (m− n)]

π(m− n)
x[m] for n ∈ Z.

Note that for any x ∈ `2(Z), we have B̂Wx(f) = x̂(f) for |f | ≤ W and B̂Wx(f) = 0 for

W < |f | ≤ 1
2
.

For discrete-time signals x ∈ `2(Z) which are bandlimited to [−W,W ], we can write

N−1∑
n=0

|x[n]|2 = 〈x, TNx〉`2(Z) = 〈BWx, TNBWx〉`2(Z) = 〈x,BWTNBWx〉`2(Z) .

Subject to the constraint ‖x‖2
`2(Z) = 1, this is maximized by the eigensequence ofBWTNBW

corresponding to the largest eigenvalue. Slepian defined the discrete prolate spheroidal se-

quences (DPSSs) s0, . . . , sN−1 ∈ `2(Z) as theN orthonormal eigensequences of BWTNBW

corresponding to non-zero eigenvalues. The corresponding eigenvalues 1 > λ0 > λ1 >

· · · > λN−1 > 0 are referred to as the DPSS eigenvalues and are sorted in descending order.

Slepian [5] showed that these eigenvalues are all distinct and strictly between 0 and 1. Note

that the notation sk and λk hides the dependence on N and W . When it is necessary to

make this dependence explicit, we will use the expanded notation sk(N,W ) and λk(N,W )

respectively.

In addition to s0 being the discrete-time signal bandlimited to [−W,W ] with a maxi-

mum concentration of energy in [N ], it is also true that for each k = 1, . . . , N − 1, sk is

the discrete-time signal bandlimited to [−W,W ] with a maximum concentration of energy

in [N ] subject to the additional constraint of being orthogonal to s0, . . . , sk−1. Furthermore

λk is equal to the amount of energy sk has in the time interval [N ].

We can also ask the question “what discrete-time signal timelimited to [N ] has a maxi-

7



mum concentration of energy in the frequency band [−W,W ]?”, i.e.

maximize
x∈`2(Z)

∫ W

−W
|x̂(f)|2 df subject to ‖x‖2

`2(Z) = 1 and x[n] = 0 for n ∈ Z \ [N ].

For discrete-time signals x ∈ `2(Z) which are timelimited to [N ], we can write

∫ W

−W
|x̂(f)|2 df =

〈
x̂, B̂Wx

〉
L2([−1/2,1/2])

= 〈x,BWx〉`2(Z)

= 〈TNx,BWTNx〉`2(Z) = 〈x, TNBWTNx〉`2(Z) .

Subject to the constraint ‖x‖2
`2(Z) = 1, this is maximized by the eigensequence of TNBWTN

corresponding to the largest eigenvalue. Clearly, the range of TNBWTN and the orthogonal

complement of the kernel of TNBWTN is the N -dimesional space of discrete-time signals

which are timelimited to [N ]. Hence, we can reduce this eigenproblem on `2(Z) to an

eigenproblem on CN . With respect to the Euclidean basis for the space discrete-time signals

which are timelimited to [N ], the matrix representation of TNBWTN is given by

B[m,n] =
sin[2πW (m− n)]

π(m− n)
for m,n ∈ [N ]. (2.1)

This Toeplitz matrix B ∈ RN×N is known in the literature as the prolate matrix [18, 19].

The Slepian basis vectors s0, . . . , sN−1 ∈ RN are the orthonormal eigenvectors of B,

where again the eigenvalues 1 > λ0 > λ1 > · · · > λN−1 > 0 are sorted in descending

order. Note that the eigenvalues of B are the same as the eigenvalues of TNBWTN , which

are the same as the eigenvalues of BWTNBW . Hence, we can reuse the notation λk for

k ∈ [N ] to denote the eigenvalues of B. The eigensequences s′0, . . . , s
′
N−1 ∈ `2(Z) of

TNBWTN are then given by s′k = TNsk for k ∈ [N ], or more explicitly, s′k[n] = sk[n] for

n ∈ [N ] and s′k[n] = 0 for n ∈ Z \ [N ]. Note that in addition to s′0 being the discrete-time

signal that is timelimited to [N ] whose DTFT has a maximum concentration of energy in

[−W,W ], it is also true that for each k = 1, . . . , N − 1, s′k is the discrete-time signal that
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is timelimited to [N ] whose DTFT has a maximum concentration of energy in [−W,W ]

subject to the additional constraint of being orthogonal to s′0, . . . , s
′
k−1. Furthermore, the

eigenvalue λk is equal to the amount of energy that the DTFT of s′k has in the frequency

band [−W,W ].

Continuous-time case

These concentration problems for discrete-time signals have analogous formulations for

continuous-time signals. For a continuous-time signal y ∈ L2(R), we define its continuous-

time Fourier transform ŷ ∈ L2(R) by

ŷ(f) =

∫ ∞
−∞

y(t)e−j2πft dt for f ∈ R.

For any ŷ ∈ L2(R), its inverse continuous-time Fourier transform is given by

y(t) =

∫ ∞
−∞

ŷ(f)ej2πft df for t ∈ R.

With these definitions, any continuous-time signals y, y′ ∈ L2(R) satisfy the Parseval-

Plancherel identity 〈y, y′〉L2(R) = 〈ŷ, ŷ′〉L2(R). For any T > 0, we say that y ∈ L2(R) is

timelimited to [−T
2
, T

2
] if y(t) = 0 for |t| > T

2
. Also, for anyW > 0, we say that y ∈ L2(R)

is bandlimited to [−W,W ] if ŷ(f) = 0 for |f | > W .

For a given bandlimit W > 0 and duration T > 0, we can ask “what continuous-time

signal bandlimited to [−W,W ] has a maximum concentration of energy in the time interval

[−T
2
, T

2
]?”, i.e.

maximize
y∈L2(R)

∫ T/2

−T/2
|y(t)|2 dt subject to ‖y‖2

L2(R) = 1 and ŷ(f) = 0 for |f | > W.

Just as was done with the discrete-time case, we can define a self-adjoint timelimiting
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operator T c
T : L2(R)→ L2(R) by

(T c
T y)(t) =


y(t) if |t| ≤ T

2

0 if |t| > T
2

,

and a self-adjoint bandlimiting operator Bc
W : L2(R)→ L2(R) by

(Bc
Wy)(t) =

∫ ∞
−∞

sin[2πW (t− t′)]
π(t− t′)

y(t′) dt′ for t ∈ R.

For continuous-time signals y ∈ L2(R) which are bandlimited to [−W,W ], we can

write

∫ T/2

−T/2
|y(t)|2 dt = 〈y, T c

T y〉L2(R) = 〈Bc
Wy, T c

TBc
Wy〉L2(R) = 〈y,Bc

WT c
TBc

Wy〉L2(R) .

Subject to the constraint ‖y‖2
L2(R) = 1, this is maximized by the eigenfunction of the

operator Bc
WT c

TBc
W corresponding to the largest eigenvalue. The orthonormal eigenfunc-

tions ψ0, ψ1, . . . ∈ L2(R) of the self-adjoint operator Bc
WT c

TBc
W are known as the prolate

spheroidal wave functions (PSWFs), and the corresponding eigenvalues 1 > λ̃0 > λ̃1 >

· · · > 0 are known as the PSWF eigenvalues, and are sorted in decreasing order. Just like

the DPSS eigenvalues, the PSWF eigenvalues are all distinct and strictly between 0 and 1.

In addition to ψ0 being the continuous-time signal bandlimited to [−W,W ] which has a

maximum concentration of energy in [−T
2
, T

2
], it is also true that for each positive integer

k, ψk is the continuous-time signal bandlimited to [−W,W ] which has a maximum con-

centration of energy in [−T
2
, T

2
] subject to the additional constraint of being orthogonal to

ψ0, . . . , ψk−1. Furthermore λ̃k is equal to the amount of energy ψk has in the time interval

[−T
2
, T

2
].

Again, we can also ask “what continuous-time signal timelimited to [−T
2
, T

2
] has a max-
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imum concentration of energy in the frequency band [−W,W ]?”, i.e.

maximize
y∈L2(R)

∫ W

−W
|ŷ(f)|2 df subject to ‖y‖2

L2(R) = 1 and ŷ(f) = 0 for |f | > W.

For continuous-time signals y ∈ L2(R) which are timelimited to t ∈ [−T
2
, T

2
], we can

write

∫ W

−W
|ŷ(f)|2 df =

〈
ŷ, B̂c

Wy
〉
L2(R)

= 〈y,Bc
Wy〉L2(R)

= 〈T c
T y,Bc

WT c
T y〉L2(R) = 〈y, T c

TBc
WT c

T y〉L2(R) .

Subject to the constraint ‖y‖2
L2(R) = 1, this is maximized by the eigenfunction of

T c
TBc

WT c
T corresponding to the largest eigenvalue. It is easy to check that the eigenfunctions

of the operator T c
TBc

ΩT c
T are the timelimited PSWFs T c

Tψ0, T c
Tψ1, . . ., and that these have

the same corresponding eigenvalues λ̃k. The action of the operator T c
TBc

WT c
T on a signal

y ∈ L2(R) is given by

(T c
TBc

WT c
T y)(t) =


∫ T/2

−T/2

sin[2πW (t− t′)]
π(t− t′)

y(t′) dt′ if |t| ≤ T
2

0 if |t| > T
2

.

With a simple change of variable, it can be shown that the eigenvalues of the above kernel

integral operator only depend on the product WT . When it is necessary to denote this

dependence, we use the notation λ̃k(c) to denote λ̃k for values of W,T > 0 which satisfy

πWT = c.

In addition to T c
Tψ0 being the continuous-time signal timelimited to [−T

2
, T

2
] whose

energy is maximally concentrated in the time interval [−W,W ], it is also true that for each

integer k ≥ 1, T c
Tψk is the continuous-time signal timelimited to [−T

2
, T

2
] whose energy is

maximally concentrated in the time interval [−W,W ] subject to the additional constraint

of being orthogonal to T c
Tψ0, . . . , T c

Tψk−1. Furthermore, the eigenvalue λ̃k is the equal to
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the energy of T c
Tψk in the frequency band [−W,W ].

2.3 Clustering Behavior of the DPSS Eigenvalues and the PSWF Eigenvalues

Showing that the DPSS eigenvalues are strictly between 0 and 1 is a trivial consequence

of the facts that λk =
(∫W
−W |ŝ

′
k(f)|2 df

)
/
(∫ 1/2

−1/2
|ŝ′k(f)|2 df

)
and that ŝ′k(f) is a non-

zero analytic function. It is also easy to check that the sum of all the DPSS eigenvalues

is
∑N−1

k=0 λk = trace(B) = 2NW . What is perhaps more interesting is that the DPSS

eigenvalues obey a particular clustering behavior. For any ε ∈ (0, 1
2
), slightly fewer than

2NW eigenvalues lie in [1− ε, 1), slightly fewer than N − 2NW eigenvalues lie in (0, ε],

and very few eigenvalues lie in the transition region (ε, 1− ε). In Figure 1, we demonstrate

this phenomenon by plotting the DPSS eigenvalues for N = 1000 and W = 1
8

(so 2NW =

250). The first 244 eigenvalues lie in [0.999, 1) and the last 744 eigenvalues lie in (0, 0.001].

Only 12 eigenvalues lie between 0.001 and 0.999. Experimentally, we can see that the width

of this transition region behaves like #{k : ε < λk < 1− ε} = O(log(NW ) log 1
ε
). This is

demonstrated in Figures 3.1 and 3.2 in Section 3.4.

Since the eigenvalue λk represents the amount of energy s′k, or equivalently sk, has

in the frequency band [−W,W ], the eigenvalue clustering behavior tells us that the first

slightly fewer than 2NW Slepian basis vectors have a very high concentration of energy

in the frequency band [−W,W ], and the last slightly fewer than N − 2NW Slepian basis

vectors have a very low concentration of energy in the frequency band [−W,W ].

The PSWF eigenvalues λ̃k have a similar behavior as the DPSS eigenvalues. The PSWF

eigenvalues are also all strictly between 0 and 1, and they have a sum of
∑∞

k=0 λ̃k = 2c
π

,

which is the analogous time-bandwidth product in the continuous case. Furthermore, for

any ε ∈ (0, 1
2
), slightly fewer than 2c

π
eigenvalues lie in [1 − ε, 1), very few eigenvalues

lie in (ε, 1 − ε), and the rest lie in (0, ε]. Experimentally, we can see that the width of

this transition region behaves like #{k : ε < λ̃k < 1 − ε} = O(log(c) log 1
ε
). This is

demonstrated in Figure 3.3 in Section 3.4.
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Figure 2.1: A plot of the DPSS Eigenvalues {λk}N−1
k=0 for N = 1000 and W = 1

8
. These

eigenvalues satisfy λ243 ≈ 0.9997 and λ256 ≈ 0.0003. Only 12 of the 1000 DPSS eigenval-
ues lie in (0.001, 0.999).

2.4 Signal Representation with Slepian Basis Vectors

The Slepian basis provides an excellent low-dimensional representation for samples of a

signal which is bandlimited to f ∈ [−W,W ]. Unlike the DFT basis, the Slepian ba-

sis does not suffer from the problem of spectral leakage. As an illustrative example, in

Figure 2.4, we plot the magnitudes of the DFT coefficients and the magnitudes of the

Slepian basis coefficients (with N = 100 and W = 0.1) of the discrete signal x1[n] =

x1[n] = 3 cos(2π·2
100

n) − 2 cos(2π·5
100

n) + 4 cos(2π·9
100

n) for n = 0, 1, . . . , 99. In Figure 2.4,

we plot the magnitudes of the DFT coefficients and the magnitudes of the Slepian ba-

sis coefficients (with N = 100 and W = 0.1) of the discrete signal x2[n] = x1[n] =

3 cos(2π·1.6
100

n)− 2 cos(2π·5.1
100

n) + 4 cos(2π·8.5
100

n) for n = 0, 1, . . . , 99.

Since x1 is a sum of three real sinusoids at grid frequencies, only 6 DFT coefficients are

non-zero. However, x2 is a sum of three real sinusoids at off-grid frequencies. As a result,

all 100 DFT coefficients are non-zero. Furthermore, the largest 23 and 67 DFT coefficients

capture 94.11% and 99.02% of the energy in x2 respectively. In contrast, the first 23 and 26

Slepian basis coefficients capture 99.996% and 99.99993% of the energy in x1 respectively.

Also, the first 23 and 26 Slepian basis coefficients capture 99.993% and 99.99997% of the
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x1[n] = 3 cos(2π·2
100

n)− 2 cos(2π·5
100

n) + 4 cos(2π·9
100

n), n = 0, 1, . . . , 99

Figure 2.2: A plot of the magnitudes of the DFT coefficients (left) and the Slepian basis
coefficients with N = 100 and W = 1

10
(right) for the signal x1[n], which is a sum of three

sinusoids at grid frequencies.

x2[n] = 3 cos(2π·1.6
100

n)− 2 cos(2π·5.1
100

n) + 4 cos(2π·8.5
100

n), n = 0, 1, . . . , 99

Figure 2.3: A plot of the magnitudes of the DFT coefficients (left) and the Slepian basis
coefficients with N = 100 and W = 1

10
(right) for the signal x2[n], which is a sum of three

sinusoids at off-grid frequencies.

energy in x2 respectively. The Slepian basis does a significantly better job than the DFT

basis at representing a discrete signal bandlimited to f ∈ [−W,W ].

2.5 Thomson’s Multitaper Method

Perhaps one of the most fundamental problems in digital signal processing is spectral

estimation, i.e., estimating the power spectrum of a signal from a window of N evenly

spaced samples. The simplest solution is the periodogram, which simply takes the squared-

magnitude of the discrete time Fourier transform (DTFT) of the samples. Obtaining only

a finite number of samples is equivalent to multiplying the signal by a rectangular func-

tion before sampling. As a result, the DTFT of the samples is the DTFT of the signal
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convolved with the DTFT of the rectangular function, which is a slowly-decaying sinc

function. Hence, narrow frequency components in the true signal appear more spread out

in the periodogram. This phenomenon is known as “spectral leakage”.

The most common approach to mitigating the spectral leakage phenomenon is to multi-

ply the samples by a taper before computing the periodogram. Since multiplying the signal

by the taper is equivalent to convolving the DTFT of the signal with the DTFT of the ta-

per, using a taper whose DTFT is highly concentrated around f = 0 will help mitigate the

spectral leakage phenomenon. Numerous kinds of tapers have been proposed [20] which

all have DTFTs which are highly concentrated around f = 0. As mentioned in Section 2.2,

the Slepian basis vectors, are designed such that their DTFTs have a maximal concentra-

tion of energy in the frequency band [−W,W ] subject to being orthonormal [5]. The first

≈ 2NW of these Slepian basis vectors have DTFTs which are highly concentrated in the

frequency band [−W,W ]. Thus, any of the first ≈ 2NW Slepian basis vectors provides a

good choice to use as a taper.

In 1982, David Thomson [9] proposed a multitaper method which computes a tapered

periodogram for each of the first K ≈ 2NW Slepian basis vectors, and then averages these

periodograms. Due to the spectral concentration properties of the Slepian basis vectors,

Thomson’s multitaper method also does an excellent job mitigating spectral leakage. Fur-

thermore, by averaging K tapered periodograms, Thomson’s multitaper method is more

robust than a single tapered periodogram. As such, Thomson’s multitaper method has been

used in a wide variety of applications, such as cognitive radio [21–25], digital audio coding

[26, 27], as well as to analyze EEG [28, 29] and other neurological signals [30–34], cli-

mate data [35–41], breeding calls of Adélie penguins [42] and songs of other birds [43–46],

topography of terrestrial planets [47], solar waves[48], and gravitational waves [49].

15



Traditional view

Let x(n), n ∈ Z be a stationary, ergodic, zero-mean, Gaussian process. The autocorrelation

and power spectral density of x(n) are defined by

Rn = E
[
x(m)x(m+ n)

]
for m,n ∈ Z,

and

S(f) =
∞∑

n=−∞

Rne
−j2πfn for f ∈ R

respectively. The goal of spectral estimation is to estimate S(f) from the vector x ∈ CN

of equispaced samples x[n] = x(n) for n ∈ [N ].

One of the earliest, and perhaps the simplest estimator of S(f) is the periodogram [50,

51]

Ŝ(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πfn

∣∣∣∣∣
2

.

This estimator can be efficiently evaluated at a grid of evenly spaced frequencies via the

FFT. However, the periodogram has high variance and suffers from the spectral leakage

phenomenon [52].

A modification to the periodogram is to pick a data taperw ∈ RN with ‖w‖2 = 1, and

then weight the samples by the taper as follows

Ŝw(f) =

∣∣∣∣∣
N−1∑
n=0

w[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Ifw[n] is small near n = 0 and n = N −1, then this “smoothes” the “edges” of the sample

window. Note that the expectation of the tapered periodogram is given by a convolution of

the true spectrum and the spectral window of the taper,

E[Ŝw(f)] = S(f) ~ |w̃(f)|2
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where

w̃(f) =
N−1∑
n=0

w[n]e−j2πfn.

Hence, a good taper will have its spectral window |w̃(f)|2 concentrated around f = 0 so

that E
[
Ŝw(f)

]
= S(f) ~ |w̃(f)|2 ≈ S(f), i.e., the tapered periodogram will be approxi-

mately unbiased.

As mentioned in the previous section, the first slightly less than 2NW Slepian basis

vectors are highly concentrated in the frequency band [−W,W ]. Hence, any of these will

be a good choice of taper. Thomson [9] proposed a multitaper spectral estimate by using

each of the first K ≈ 2NW Slepian basis vectors as tapers, and taking an average of the

resulting tapered periodograms, i.e.,

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f) where Ŝk(f) =

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

The expectation of the multitaper spectral estimate satisfies

E
[
Ŝmt
K (f)

]
= S(f) ~ ψ(f)

where

ψ(f) =
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]e−j2πfn

∣∣∣∣∣
2

is known as the spectral window of the multitaper spectral estimate. It can be shown that

when K ≈ 2NW , the spectral window ψ(f) approximates 1
2W

1[−W,W ](f) on f ∈ [−1
2
, 1

2
].

Thus, the multitaper spectral estimate behaves in expectation like a smoothed version of

the true spectrum S(f).

It can be shown that if the spectrum S(f) is slowly varying around a frequency f , then

the tapered spectral estimates Ŝk(f) are approximately uncorrelated, and Var[Ŝk(f)] ≈

S(f)2. Hence, Var[Ŝmt
K (f)] ≈ 1

K
S(f)2. Thus, Thomson’s multitaper method produces a

spectral estimate whose variance is a factor of K ≈ 2NW smaller than the variance of a
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single tapered periodogram.

As we increase W , the width of the spectral window ψ(f) increases, which causes the

expectation of the multitaper spectral estimate to be further smoothed. However, increasing

W also allows us to increase the number of tapers K ≈ 2NW , which reduces the variance

of the multitaper spectral estimate. Intuitively, Thomson’s multitaper method introduces a

tradeoff between resolution and robustness.

Linear Algebra View

Here we provide an alternate perspective on Thomson’s multitaper method which is based

on linear algebra and subspace projections. Suppose that for each frequency f ∈ R, we

choose a low-dimensional subspace Sf ⊂ CN , and form a spectral estimate by computing

‖projSf (x)‖2
2, i.e., the energy in the projection of x onto the subspace Sf . One simple

choice is the one-dimensional subspace Sf = span{ef} where

ef =

[
1 ej2πf ·1 ej2πf ·2 · · · ej2πf ·(N−1)

]T

is a vector of equispaced samples from a complex sinusoid with frequency f . For this

choice of Sf , we have

∥∥∥projSf (x)
∥∥∥2

2
=
|〈ef ,x〉|2

‖ef‖2
2

=
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πfn

∣∣∣∣∣
2

,

which is exactly the classic periodogram.

We can also choose a low-dimensional subspace Sf which minimizes the average rep-

resentation error of sinusoids ef ′ with frequency f ′ ∈ [f − W, f + W ] for some small

W > 0, i.e.,

minimize
Sf⊂CN

dim(Sf )=K

∫ f+W

f−W

∥∥∥ef ′ − projSf (ef ′)
∥∥∥2

2
df ′,

where the dimension of the subspace K is fixed. Using ideas from the Karhunen-Loeve

18



(KL) transform [53], it can be shown that the optimal K-dimensional subspace is the span

of the top K eigenvectors of the covariance matrix

Cf :=
1

2W

∫ f+W

f−W
ef ′e

∗
f ′ df

′.

The entries of this covariance matrix are

Cf [m,n] =
1

2W

∫ f+W

f−W
ef ′ [m]ef ′ [n] df ′

=
1

2W

∫ f+W

f−W
ej2πf

′(m−n) df ′

=
sin[2πW (m− n)]

2πW (m− n)
ej2πf(m−n)

=
1

2W
ef [m]B[m,n]ef [n],

where againB is the N ×N prolate matrix. Hence, we can write

Cf =
1

2W
EfBE

∗
f ,

where Ef = diag(ef ) ∈ CN×N is a unitary matrix which modulates vectors by pointwise

multiplying them by the sinusoid ef . Therefore, the eigenvectors of Cf are the modulated

Slepian basis vectorsEfsk for k ∈ [N ], and the corresponding eigenvalues are λk
2W

. Hence,

we can choose Sf = span{Efs0, . . . ,EfsK−1}, i.e., the span of the first K Slepian basis

vectors modulated to the frequency f . Since s0, . . . , sK−1 are orthonormal vectors, and

Ef is a unitary matrix, Efs0, . . . ,EfsK−1 are orthonormal vectors. Hence, projSf (x) =
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EfSKS
∗
KE

∗
fx where SK =

[
s0 . . . sK−1

]
, and thus,

∥∥∥projSf (x)
∥∥∥2

2
=
∥∥EfSKS

∗
KE

∗
fx
∥∥2

2

=
∥∥S∗KE∗fx∥∥2

2

=
K−1∑
k=0

∣∣(S∗KE∗fx)[k]
∣∣2

=
K−1∑
k=0

|s∗kEfx|2

=
K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Up to a constant scale factor, this is precisely the multitaper spectral estimate. Hence, we

can view the the multitaper spectral estimate Ŝmt
K (f) = 1

K
‖S∗KE∗fx‖2

2 as the energy in x

after it is projected onto the K-dimensional subspace which best represents the collection

of sinusoids {ef ′ : f ′ ∈ [f −W, f +W ]}.

2.6 Structured Linear Algebra

For a generic matrix A ∈ CN×N , it takes O(N2) operations to compute a matrix-vector

product Ax and O(N2.3728639) operations to solve the system of equations Ay = x [54].

For large-scale applications, this may be unfeasible. However, in many signal processing

applications, the linear operations or systems of equations will be highly structured, i.e.

the matrices will depend on far fewer parameters than the number of entries. Some basic

examples of structured matrices are circulant matrices and Topelitz matrices. Both circulant

matrices and Toeplitz matrices can be applied to a vector in O(N logN) operations via the

FFT. Circulant systems can also be solved in O(N logN) operations via the FFT. In recent

years, many superfast Toeplitz solvers have been developed, which have runtimes ranging

from O(N log3N) to O(N logN) [55–57]

We present four more sophisticated types of structured matrices. A matrix C ∈ RM×N
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is called a Cauchy matrix if its entries are of the form

C[m,n] =
1

σ′m − σn
for m ∈ [M ] and n ∈ [N ]

where σ′0, . . . , σ
′
M−1 ∈ R and σ0, . . . , σN−1 ∈ R are such that σ′m 6= σn for all indices

m ∈ [M ] and n ∈ [N ]. Using the fast multipole method [58–61], it is possible to apply an

M × N Cauchy matrix to an N × 1 vector in O((M + N) log 1
α

) operations, where α is

the desired level of precision. See [60] for details on using the fast multipole method for

Cauchy matrices.

A matrixK ∈ CN×N is called a Cauchy-like matrix if its entries are of the form

K[n, n′] =


1

σn − σn′
if n 6= n′

0 if n = n′

where σ0, . . . , σN−1 ∈ R are such that σn 6= σn′ if n 6= n′. Again, we can use the fast

multipole method to apply an N ×N Cauchy-like matrix to an N ×1 vector in O(N log 1
α

)

operations, where α is the desired level of precision.

A matrix C̃ ∈ CM×N is called a generalized Cauchy matrix if its entries are of the form

C̃[m,n] =
r−1∑
`=0

p`[m]q`[n]

σ′m − σn
for m ∈ [M ] and n ∈ [N ]

where p0, . . . ,pr−1 ∈ CM , q0, . . . , qr−1 ∈ CN , and σ′0, . . . , σ
′
M−1 ∈ R and σ0, . . . , σN−1 ∈

R are such that σ′m 6= σn for all indices m ∈ [M ] and n ∈ [N ]. Note that we can write2

C̃ =
r−1∑
`=0

Dp`CD
∗
q`

where C is a Cauchy matrix. Applying each term Dp`CD
∗
q`

to an N × 1 vector takes

2For a vector v, we use Dv to denote a diagonal matrix whose diagonal entries match the entries of the
vector v, i.e. Dv[n, n] = v[n].
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O((M + N) log 1
α

) operations via two diagonal matrix multiplies and a Cauchy matrix

multiply. Hence, applying the sum of r matrices of that form takes O(r(M + N) log 1
α

)

operations.

A matrix K̃ ∈ CN×N is called a symmetric generalized Cauchy-like matrix if its entries

are of the form

K̃[n, n′] =


r−1∑
`=0

p`[n]q`[n
′]− q`[n]p`[n

′]

σn − σn′
if n 6= n′

dn if n = n′

where p0, . . . ,pr−1 ∈ CN , q0, . . . , qr−1 ∈ CN , and σ0, . . . , σN−1 ∈ R are such that σn 6=

σn′ if n 6= n′. Note that we can write

K̃ = Dd +
r−1∑
`=0

Dp`KD
∗
q`
−Dq`KD

∗
p`

where K is a Cauchy-like matrix. Applying each term Dp`KDq` or Dq`KD
∗
p`

to an

N×1 vector takes O(N log 1
α

) operations via two diagonal matrix multiplies and a Cauchy

matrix multiply. Applying Dd to a vector takes O(N) operations via a diagonal matrix

multiply. Hence, applying the above sum to an N ×1 vector takes O(rN log 1
α

) operations.

Solving an N × N symmetric generalized Cauchy-like system of equations can be

done in O(rN logN log 1
α

) operations via a Schur recursion method [61, 62]. However,

this requires the matrix to be well-conditioned. In Chapter 6, we will study the problem of

reconstructing a multiband signal from nonuniform samples. This problem requires solving

a symmetric generalized Cauchy-like system of equations which is ill-conditioned. Hence,

the Schur recursion method is unsuitable for that problem.
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2.7 Compressed Sensing

Compressed sensing is a framework for recovering signals which are sparse or approxi-

mately sparse in some dictionary from relatively few linear measurements [63, 64]. In the

standard setting, we have a signal x ∈ CN which we wish to recover from M � N lin-

ear measurements y ∈ CM of the form y = Ax + η, where A ∈ CM×N represents the

linear measurement operator, and η ∈ CM represents noise. With no assumptions on x

and A, this task is impossible, as A has a nullspace of dimension at least N − M , and

thus, there is at least an N −M dimensional affine space of signals x which yield the same

measurements y. However, if the signal is assumed to come from a low dimensional model

and the sensing matrixA is chosen appropriately, recovery is a possibility. The most basic

assumptions are that

• x is sparse, i.e. ‖x‖0 = #{n : x[n] 6= 0} ≤ S where S � N is known a priori,

• A satisfies the restricted isometry property (RIP), i.e. there exists δ ∈ (0, 1) such

that (1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all x ∈ CN with ‖x‖0 ≤ 2S.

Conceptually, the sparsity assumption means that x has significantly less than N de-

grees of freedom, and thus, suggests the potential to be recovered with fewer than N

linear measurements. Furthermore, the RIP guarantees that for S-sparse vectors x1,x2,

‖Ax1 − Ax2‖2 is small iff ‖x1 − x2‖2 is small. In other words, the only way for two

sparse signals to yield similar measurements is if the two signals themselves are close.

This ensures that any S-sparse signal x̂ for which ‖y −Ax̂‖2 is small will be a good ap-

proximation to the true signal x. It should be noted that while verifying that a specified

matrix A satisfies the RIP condition is NP-hard [65], there are random constructions of

matrices A with M = O(δ−2S log·N) rows which satisfy the RIP with high probability

[66, 67].

With the two assumptions above, there are several methods for recovering the signal x.

One class of methods involves solving an optimization problem using the convex `1-norm
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to promote sparsity instead of the `0 pseudonorm which is nonconvex. Examples include

Basis Pursuit Denoising (BPDN) [68, 69], Least Absolute Shrinkage Selection Operator

(LASSO) [70], and the Dantzig Selector [71]. Another class of methods involve so-called

“greedy” approaches, which generally involve alternating between identifying the support

of x and solving a least squares problem conditioned on the identified support. Examples

include Orthogonal Matching Pursuit (OMP) [72, 73], Compressive Sampling Matching

Pursuit (CoSaMP) [67], and Iterative Hard Thresholding (IHT) [74].

These methods have been generalized to handle situations where the signal x has a

sparse representation in some known dictionary [75], or has a block-sparse representation

in a known dictionary [76–78]. There are also theoretical recovery guarantees if the signal

x is compressible, i.e. approximately sparse [79]. In the above methods, the signal of in-

terest is discrete and finite-dimensional. Recent works have studied acquiring continuous

time signals which fit some low dimensional model. Many works deal with a multitone

signal model [80–85], i.e. the signal of interest is a sum of a small number of pure si-

nusoids. However, this model is unrealistic in many radar scenarios where each source is

transmitting a signal with bandwidth as opposed to a pure sinusoid. Some recent works

have considered a multiband signal model. Mishali and Eldar [86] proposed a method

called Xampling to recover a multiband signal with a small number of low rate analog-to-

digital converters. Davenport and Wakin [6] proposed acquiring multiband signals from

compressed measurements using block-based CoSaMP along with a dictionary consisting

of Slepian basis vectors modulated to different frequency intervals.
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CHAPTER 3

ON THE EIGENVALUES OF DISCRETE PROLATE SPHEROIDAL

SEQUENCES AND PROLATE SPHEROIDAL WAVE FUNCTIONS

As mentioned in Section 2.3, both the DPSS eigenvalues and the PSWF eigenvalues are

all strictly between 0 and 1, and all but a few of these eigenvalues are very close to 0 or

1. In this chapter, we establish novel non-asymptotic bounds on the DPSS eigenvalues and

the PSWF eigenvalues. The results in this chapter may seem esoteric to most practitioners.

However, these non-asymptotic bounds are of significant interest to harmonic analysts and

will play a critical role in many of the other results in this thesis. Hence, an entire chapter

is devoted to these results. The material in this chapter has appeared in [87].

3.1 Prior results on DPSS eigenvalues

We start by reviewing some of the prior results on the clustering behavior of the DPSS

eigenvalues. We begin with the original results from Slepian [5]. For any fixed W ∈ (0, 1
2
)

and b ∈ R,

λb2NW+(b/π) logNc ∼
1

1 + ebπ
as N →∞.

From this result, it is easy to show that for any fixed W ∈ (0, 1
2
) and ε ∈ (0, 1

2
),

#{k : ε < λk < 1− ε} ∼ 2

π2
logN log

(
1

ε
− 1

)
as N →∞.

This asymptotic bound on the width of the transition region correctly captures the logarith-

mic dependence on both N and ε, but not the dependence on W . Slepian also stated that if
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0.2 < λk < 0.8, then

λk ≈
[
1 + exp

(
−

π2(2NW − k − 1
2
)

log[8N sin(2πW )] + γ

)]−1

is a good approximation to λk where γ ≈ 0.5772 is the Euler-Mascheroni constant. This

would suggest that

#{k : ε < λk < 1− ε} ≈ 2

π2
log [8eγN sin(2πW )] log

(
1

ε
− 1

)

for ε ∈ (0.2, 0.5). This correctly captures the logarithmic dependence on N , W , and ε, but

only holds for large values of ε.

Very few papers provide non-asymptotic bounds regarding the width of the transition

region #{k : ε < λk < 1− ε}. Zhu and Wakin [14] showed that

#{k : ε ≤ λk ≤ 1− ε} ≤
2
π2 log(N − 1) + 2

π2
2N−1
N−1

ε(1− ε)
(3.1)

for all integers N ≥ 2, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
). This non-asymptotic bound correctly

highlights the logarithmic dependence on N , but fails to capture the dependence on W .

Also, the dependence on ε is O(1
ε
) as opposed to O(log 1

ε
). When ε is small, this bound is

considerably worse than a O(log 1
ε
) bound. For example, when N = 1000, W = 1

8
, and

ε = 10−3, this result becomes #{k : ε < λk < 1 − ε} ≤ 1806. More generally, when

ε < 2 log(N−1)
π2N

, this bound is worse than the trivial bound of #{k : ε < λk < 1− ε} ≤ N .

Recently, Boulsane, Bourguiba, and Karoui [88] improved this bound to

#{k : ε ≤ λk ≤ 1− ε} ≤
1
π2 log(2NW ) + 0.45− 2

3
W 2 + sin2(2πNW )

6π2N2

ε(1− ε)
(3.2)

for all integers N ≥ 1, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
). For a fixed W ∈ (0, 1

2
) and large

N , this bound is roughly half of (3.1). Also, this bound correctly captures the logarithmic
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dependence on 2NW as opposed to just N . However, this bound still has a dependence

on ε that is O(1
ε
). Again, when N = 1000, W = 1

8
, and ε = 10−3, this result becomes

#{k : ε < λk < 1 − ε} ≤ 1000. More generally, when ε < log(2NW )
π2N

, this bound is worse

than the trivial bound of #{k : ε < λk < 1 − ε} ≤ N . Boulsane et. al. also used a

result on PSWF eigenvalues by Bonami, Jamming, and Karoui [89] to prove that the DPSS

eigenvalues satisfy

λk ≤ 2 exp

[
−η k − 2NW

log(πNW ) + 5

]
for 2NW + log(πNW ) + 6 ≤ k ≤ πNW, (3.3)

where η = 0.069, and

λk ≤ 2 exp

[
−(2k + 1) log

(
2k + 2

eπNW

)]
for 2 ≤ eπ

2
NW ≤ k ≤ N − 1. (3.4)

However, with no similar lower bounds on the DPSS eigenvalues λk for k < 2NW , they

were unable to obtain a bound on #{k : ε < λk < 1 − ε} which has a logarithmic

dependence on ε.

In [8], we proved that

#{k : ε < λk < 1− ε} ≤
(

8

π2
log(8N) + 12

)
log

(
15

ε

)
(3.5)

for all N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
). This bound correctly captures the logarithmic

dependence on both N and ε, but not the dependence on W . Also, the leading constant 8
π2

is four times larger than that of the asymptotic results by Slepian. For comparison with the

previous two non-asymptotic bounds, when N = 1000, W = 1
8
, and ε = 10−3, then this

result becomes #{k : ε < λk < 1 − ε} ≤ 185, which is still much larger than the actual

value of #{k : ε < λk < 1− ε} = 12.
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3.2 Prior results on PSWF eigenvalues

We now review similar results regarding the PSWF eigenvalues. Landau and Widom [90]

showed that for any fixed ε ∈ (0, 1
2
),

#
{
k : ε < λ̃k < 1− ε

}
=

2

π2
log(c) log

(
1

ε
− 1

)
+ o(log(c)) as c→∞.

This asymptotic result is similar in form to Slepian’s result from [5], except the first log-

arithm contains the time-bandwidth product instead of the time duration. Also, this result

specifies that the error term scales like o(log(c)).

Osipov [91] showed that for any numbers c > 22 and 3 < δ < πc
16

, the PSWF eigenval-

ues satisfy

λ̃k <
70562c3

2π
exp

[
−2δ

(
1− δ

2πc

)]
for all k ≥ 2c

π
+

2

π2
δ log

(
4πec

δ

)
.

With an appropriate choice of δ, this result implies that

#
{
k : λ̃k > ε

}
≤ 2c

π
+

32

31π2
log

(
70562c3

2πε

)
log

 31πec

4 log
(

70562c3

2πε

)


for
70562c3

2π
exp

(
−31πc

256

)
< ε <

1

2
.

Since Landau [92] showed that λ̃b2c/πc−1 ≥ 1
2
, the above result by Osipov shows that

#
{
k : ε < λ̃k ≤ 1

2

}
≤ O(log2(c) + log(c) log(1

ε
)). This only bounds roughly half of the

transition region. Also, the bound has a suboptimal dependence on c, and the constants are

rather large.
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Israel [93] showed that for any α ∈ (0, 1
2
], there exists a constant Cα ≥ 1 such that

#
{
k : ε < λ̃k < 1− ε

}
≤ Cα log1+α

(
log
(

2c
π

)
ε

)
log

(
2c

πε

)

for all c ≥ π and ε ∈ (0, 1
2
). When compared to the bound by Osipov, this bound has

an improved dependence on c, but a worse dependence on ε. Also, the constant Cα is not

explicitly given.

Bonami, Jamming, and Karoui [89] established the following bounds on PSWF eigen-

values

λ̃k ≥ 1− 7√
c

(2c)k

k!
e−c for c > 0 and 0 ≤ k <

2c

2.7

λ̃k ≤
1

2
exp

[
−η

k − 2c
π

log(c) + 5

]
for c ≥ 22 and

2c

π
+ log(c) + 6 ≤ k ≤ c

λ̃k ≤ exp

[
−(2k + 1) log

(
2k + 2

ec

)]
for c > 0 and k ≥ max

(ec
2
, 2
)
,

where η = 0.069. The first bound shows that λ̃k approaches 1 as k decreases at a faster than

exponential rate. The second bound shows that λ̃k decreases exponentially over a bounded

range of values of k that are slightly greater than the time-bandwidth product 2c
π

. The third

bound shows that λ̃k approaches 0 a faster than exponential rate once k > max( ec
2
, 2).

Unfortunately, one can check that for any c > 0 and any integer 0.43c ≤ k < 2c
2.7

, the first

bound is negative, and thus, uninformative. Thus, these bounds give no information about

λ̃k for k ∈ [0.43c, 2c
π

+ log(c) + 6) ∪ (c, ec
2

), which is a total of O(c) values of k.
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3.3 New results on DPSS eigenvalues and PSWF eigenvalues

In Section A.1, we prove the following two non-asymptotic bounds on the number of DPSS

eigenvalues in the transition region (ε, 1− ε).

Theorem 1. For any N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
),

#{k : ε < λk < 1− ε} ≤ 2

⌈
1

π2
log(4N) log

(
4

ε(1− ε)

)⌉
.

Theorem 2. For any N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
),

#{k : ε < λk < 1− ε} ≤ 2

π2
log(100NW + 25) log

(
5

ε(1− ε)

)
+ 7.

Both Theorem 1 and Theorem 2 capture the logarithmic dependence of the width of the

transition region on N and ε. Also, both bounds have a leading constant of 2
π2 , which is

consistent with the asymptotic result by Slepian. Furthermore, Theorem 2 also captures the

logarithmic dependence on W . We choose to include Theorem 1 since the proof is much

simpler and since the bound in Theorem 1 is better than the bound in Theorem 2 when

W ≥ 1
25

. Again for comparison with the existing non-asymptotic bounds, whenN = 1000,

W = 1
8
, and ε = 10−3, the bound in Theorem 1 becomes #{k : ε < λk < 1 − ε} ≤ 14

and the bound in Theorem 2 becomes #{k : ε < λk < 1− ε} ≤ 23. Both of these bounds

are much closer to the actual value #{k : ε < λk < 1 − ε} = 12 than any of the existing

non-asymptotic bounds.

With the non-asymptotic bounds in Theorem 1 and Theorem 2, the following bounds

on the eigenvalues themselves are almost immediate.

Corollary 1. For any N ∈ N, W ∈ (0, 1
2
), we have

λk ≥ 1−min

{
8 exp

[
−b2NW c − k − 2

2
π2 log(4N)

]
, 10 exp

[
− b2NW c − k − 7

2
π2 log(100NW + 25)

]}
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for 0 ≤ k ≤ b2NW c − 1, and

λk ≤ min

{
8 exp

[
−k − d2NW e − 1

2
π2 log(4N)

]
, 10 exp

[
− k − d2NW e − 6

2
π2 log(100NW + 25)

]}

for d2NW e ≤ k ≤ N − 1.

The first bound in Corollary 1 represents the first non-asymptotic lower bound on the

DPSS eigenvalues λk for k ≤ b2NW c − 1.

The second bound in Corollary 1 is similar in form to (3.3), except this result has an

exponential decay rate of π2

2 log(100NW+25)
instead of 0.069

log(πNW )+5
. It is not hard to check that

when NW ≥ 0.07, the exponential decay rate from the second bound is at least 71 times

larger than the exponential decay rate in (3.3).

The second bound in Corollary 1 does not capture the faster than exponential decay rate

of λk for k ≥ eπ
2
NW that is demonstrated by (3.4). However, we note that for NW ≥ 15,

the second bound in Corollary 1 will yield an upper bound for λdeπNW/2e that is less than

the single precision machine epsilon of 2−23 ≈ 1.2 × 10−7. Also, for NW ≥ 31, the

second bound in Corollary 1 will yield an upper bound for λdeπNW/2e that is below the

double precision machine epsilon of 2−52 ≈ 2.2× 10−16. So these bounds are still useful.

From the eigenvalue bounds in Corollary 1, we can obtain the following bounds on the

sums of the leading and trailing DPSS eigenvalues.

Corollary 2. For any N ∈ N, W ∈ (0, 1
2
), we have

K−1∑
k=0

(1− λk) ≤min

{
16

π2
log(4N) exp

[
−b2NW c −K − 2

2
π2 log(4N)

]
,

20

π2
log(100NW + 25) exp

[
− b2NW c −K − 7

2
π2 log(100NW + 25)

]}

for 1 ≤ K ≤ b2NW c, and

31



N−1∑
k=K

λk ≤min

{
16

π2
log(4N) exp

[
−K − d2NW e − 2

2
π2 log(4N)

]
,

20

π2
log(100NW + 25) exp

[
− K − d2NW e − 7

2
π2 log(100NW + 25)

]}

for d2NW e ≤ K ≤ N − 1.

Note that all of the above bounds which depend on W can be easily refined if W is

close to 1
2
. Let B′ ∈ RN×N be the prolate matrix with bandwidth parameter 1

2
−W , i.e.

B′[m,n] = sin[2π(1/2−W )(m−n)]
π(m−n)

. One can check thatB = D(I−B′)D∗ whereD ∈ RN×N

is a unitary diagonal matrix with entries D[n, n] = (−1)n. Hence, the eigenvalues of B

andB′ are related by λk(N,W ) = 1−λN−1−k(N,
1
2
−W ) for k = 0, . . . , N − 1. So when

W is close to 1
2
, we can obtain stronger bounds on λk(N,W ) by applying the bounds in

Corollary 1 for λN−1−k(N,
1
2
−W ). Also, due to that relation, we have ε < λk(N,W ) <

1 − ε if and only if ε < λN−1−k(N,
1
2
−W ) < 1 − ε, and thus, #{k : ε < λk(N,W ) <

1 − ε} = #{k : ε < λk(N,
1
2
−W ) < 1 − ε}, i.e., the widths of the transition regions for

the bandwidth parameters W and 1
2
−W are the same. So for W close to 1

2
, we can obtain

a stronger bound on #{k : ε < λk(N,W ) < 1 − ε} by applying the bound in Theorem 2

for #{k : ε < λk(N,
1
2
−W ) < 1− ε}.

Finally, we note that a result by Boulsane, Bourguiba, and Karoui [88] shows that the

DPSS eigenvalues and the PSWF eigenvalues satisfy λk(N,W ) → λ̃k(πNW ) as N →

∞ and W → 0+ with NW held constant. Intuitively, this means that the continuous

energy concentration problem is the limit of the discrete energy concentration problem as

the discritization gets arbitrarily fine. With this result, the above non-asymptotic results on

the DPSS eigenvalues which depend on NW (and not just N ) can be used to obtain the

following non-asymptotic results on the PSWF eigenvalues.
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Theorem 3. For any c > 0 and ε ∈ (0, 1
2
),

#
{
k : ε < λ̃k < 1− ε

}
≤ 2

π2
log

(
100c

π
+ 25

)
log

(
5

ε(1− ε)

)
+ 7.

Corollary 3. For any c > 0 and ε ∈ (0, 1
2
),

λ̃k ≥ 1− 10 exp

[
−

⌊
2c
π

⌋
− k − 7

2
π2 log

(
100c
π

+ 25
)] for 0 ≤ k ≤

⌊
2c

π

⌋
− 1,

and

λ̃k ≤ 10 exp

[
−

k −
⌈

2c
π

⌉
− 6

2
π2 log

(
100c
π

+ 25
)] for k ≥

⌈
2c

π

⌉
.

Corollary 4. For any c > 0, we have

K−1∑
k=0

(
1− λ̃k

)
≤ 20

π2
log

(
100c

π
+ 25

)
exp

[
−
⌊

2c
π

⌋
−K − 7

2
π2 log(100c

π
+ 25)

]
for 1 ≤ K ≤

⌊
2c

π

⌋
,

and

∞∑
k=K

λ̃k ≤
20

π2
log

(
100c

π
+ 25

)
exp

[
−

K −
⌈

2c
π

⌉
− 7

2
π2 log(100c

π
+ 25)

]
for K ≥

⌈
2c

π

⌉
.

We note that the non-asymptotic bound in Theorem 3 is similar in form to the asymp-

totic bound by Landau and Widom [90] in that it scales like O(log(c) log(1
ε
)) and has the

correct leading constant 2
π2 . Furthermore, the constants in this bound are all specified and

are mild. As such, this is a substantial improvement over the existing non-asymptotic

bounds.

The bounds in Corollary 3 show that the PSWF eigenvalues λ̃k approach 1 and 0 ex-

ponentially as k moves away from the time-bandwidth product 2c
π

. Also, these bounds are

useful (i.e. something stronger than 0 < λ̃k < 1) for all but O(log(c)) values of k.
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3.4 Numerical Results

We demonstrate the quality of our bounds in Theorems 1, 2, and 3 with some numerical

computations.

First, we fix W = 1
4

(a large value of W ), and for each integer 24 ≤ N ≤ 216 we

use the method described in [94] to compute the DPSS eigenvalues, λk, for a range kmin ≤

k ≤ kmax such that λkmin > 1 − 10−13 and λkmax < 10−13. From this, we can determine

#{k : ε < λk < 1− ε} for ε = 10−3, 10−8, 10−13. We plot #{k : ε < λk < 1− ε} as well

as the upper bound on #{k : ε < λk < 1− ε} from Theorem 1 in Figure 3.1. We note that

over this range of parameters, the difference between the bound in Theorem 1 and the true

width of the transition region #{k : ε < λk < 1− ε} is between 1 and 14.
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Figure 3.1: Plots of the width of the transition region of DPSS eigenvalues #{k : ε < λk <
1− ε} vs. N where W = 1

4
and ε = 10−3(blue), ε = 10−8(green), and 10−13(red) are fixed.

The dashed lines indicate the upper bound from Theorem 1.

Next, we fix N = 216 and for 10001 logarithmically spaced values of W between 2−14

and 2−2, we use the method described in [94] to compute the DPSS eigenvalues, λk, for a
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Figure 3.2: Plots of the width of the transition region of DPSS eigenvalues #{k : ε < λk <
1 − ε} vs. W where N = 216 and ε = 10−3(blue), ε = 10−8(green), and 10−13(red) are
fixed. The dashed lines indicate the upper bound from Theorem 2.

range kmin ≤ k ≤ kmax such that λkmin > 1 − 10−13 and λkmax < 10−13. From this, we can

determine #{k : ε < λk < 1−ε} for ε = 10−3, 10−8, 10−13. We plot #{k : ε < λk < 1−ε}

as well as the upper bound on #{k : ε < λk < 1 − ε} from Theorem 2 in Figure 3.2. We

note that over this range of parameters, the difference between the bound in Theorem 2 and

the true width of the transition region #{k : ε < λk < 1− ε} is between≈ 9.8 and≈ 30.7.

In Figure 3.1, we see that the plots of both 2
⌈

1
π2 log(4N) log( 4

ε(1−ε))
⌉

(the bound in The-

orem 1) and the actual width of the transition region increase roughly linearly with logN

and at roughly the same rate. However, the difference between the bound in Theorem 1

and the actual width of the transition region is noticeably larger for smaller values of ε than

for larger values of ε. This provides numerical evidence that for a large bandwidth W , the

bound’s dependence on N is close to correct, but the dependence on ε has some room for

improvement.

In Figure 3.2, we see that the plots of both 2
π2 log(100NW + 25) log

(
5

ε(1−ε)

)
+ 7 and

the actual width of the transition region increase roughly linearly with log(NW ) and at
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roughly the same rate. However, the difference between the bound in Theorem 2 and the

actual width of the transition region is quite noticeable. This provides numerical evidence

that the leading constant of 2
π2 is indeed correct, but that the other constants leave significant

room for improvement.

We note that for the range of parameters in both plots, the non-asymptotic bounds on

the width of the transition region given by (3.1), (3.2), and (3.5) (in Section 3.1) would all

be well above the range of the plots in Figures 3.1 and 3.2. The bounds in (3.1) and (3.2)

are proportional to 1
ε(1−ε) . Thus, they are only useful when ε is not too small. Also, the

bound in (3.5) is rather large since the leading constant 8
π2 being 4 times larger than that

in Theorems 1 and 2, and the trailing constant 12 dominates 8
π2 log(8N) when N isn’t too

large. In particular, for ε = 10−3 and any N ∈ N, if we impose the mild constraint that

NW ≥ 1
2
, then the bound in (3.1) is at least 4/π2

ε(1−ε) ≈ 405, the bound in (3.2) is at least

0.45−1/6
ε(1−ε) ≈ 283, and the bound in (3.5) is at least ( 8

π2 log(8) + 12) log(15
ε

) ≈ 131.

Finally, for 10001 logarithmically spaced values of c between 10 and 104, we use the

method described in [95] to compute the PSWF eigenvalues, λ̃k, for a range kmin ≤ k ≤

kmax such that λ̃kmin > 1 − 10−13 and λ̃kmax < 10−13. From this, we can determine #{k :

ε < λ̃k < 1 − ε} for ε = 10−3, 10−8, 10−13. We plot #{k : ε < λ̃k < 1 − ε} as well as

the upper bound on #{k : ε < λ̃k < 1 − ε} from Theorem 3 in Figure 3.3. We note that

over this range of parameters, the difference between the bound in Theorem 3 and the true

width of the transition region #{k : ε < λ̃k < 1− ε} is between ≈ 9.9 and ≈ 29.6.

In Figure 3.3, we see that the plots of both 2
π2 log

(
100c
π

+ 25
)

log
(

5
ε(1−ε)

)
+ 7 and the

actual width of the transition region increase roughly linearly with log(c) and at roughly

the same rate. However, the difference between the bound in Theorem 3 and the actual

width of the transition region is quite noticeable. This provides numerical evidence that the

leading constant of 2
π2 is indeed correct, but that the other constants leave significant room

for improvement.
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Figure 3.3: Plots of the width of the transition region of PSWF eigenvalues #{k : ε <

λ̃k < 1 − ε} vs. c where ε = 10−3(blue), ε = 10−8(green), and 10−13(red) are fixed. The
dashed lines indicate the upper bound from Theorem 3.
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CHAPTER 4

FAST COMPUTATIONS WITH SLEPIAN BASIS VECTORS

In this chapter, we present fast algorithms for projecting a vector onto the span of the

leading Slepian basis vectors, for performing dimensionality reduction with Slepian basis

vectors, and for solving systems of equations involving the prolate matrix. First, we state

theorems which show that certain matrices involving either the Slepian basis vectors or the

prolate matrix can be well-approximated by the sum of a Toeplitz matrix and a factored

low-rank matrix. Since Toeplitz matrices and factored low-rank matrices can both be ap-

plied to a vector efficiently, these theorems give us fast algorithms to approximate certain

operations involving the Slepian basis vectors or the prolate matrix. The key to these the-

orems is exploiting the fact that very few of the DPSS eigenvalues are not near 0 or 1, as

demonstrated by Theorems 1 and 2 in Section 3.3. Material in this section has appeared in

[8, 96].

4.1 Toeplitz Plus Low Rank Approximations

We start by presenting a theorem showing that the orthogonal projection matrix onto the

span of the first K ≈ 2NW Slepian basis vectors, the rank-K ≈ 2NW truncated pseu-

doinverse of the prolate matrix B, and the Tikhonov regularization matrix (B2 + αI)−1B

can each be well-approximated by the prolate matrix plus a rank-O(log(NW ) log 1
ε
) cor-

rection.

Theorem 4. Let N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
) be given. Let B ∈ RN×N be the

prolate matrix, whose entries are

B[m,n] =
sin[2πW (m− n)]

π(m− n)
for m,n ∈ [N ].
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Define the Slepian basis vectors s0, . . . , sN−1 ∈ RN to be the orthonormal eigenvectors

of B where the corresponding eigenvalues 1 > λ0 > · · · > λN−1 > 0 are sorted in

descending order. Let r = #{k : ε < λk < 1− ε}, and define Sε ∈ RN×r to be the matrix

whose r columns are the Slepian basis vectors sk for k such that ε < λk < 1− ε.

a. SupposeK ∈ [N ] is such that λK−1 > ε and λK < 1−ε. LetSK =

[
s0 s1 · · · sK−1

]
∈

RN×K . Then, there exists a diagonal matrixD1 ∈ Rr×r such that

‖SKS∗K − (B + SεD1S
∗
ε)‖ ≤ ε.

b. SupposeK ∈ [N ] is such that λK−1 > ε and λK < 1−ε. LetSK =

[
s0 s1 · · · sK−1

]
∈

RN×K and ΛK = diag(λ0, λ1, . . . , λK−1) ∈ RK×K . Then, there exists a diagonal ma-

trixD2 ∈ Rr×r such that

∥∥SKΛ−1
K S

∗
K − (B + SεD2S

∗
ε)
∥∥ ≤ 3ε.

c. Suppose α ∈ (0, 1). Then, there exists a diagonal matrixD3 ∈ Rr×r such that

∥∥∥∥(B2 + αI)−1B −
(

1

1 + α
B + SεD3S

∗
ε

)∥∥∥∥ ≤ ε

α
.

We note that the conditions λK−1 > ε and λK < 1 − ε only require that K ≈ 2NW .

Before moving on, we provide an intuitive explanation of Theorem 4. Note that the Slepian

basis vectors are the eigenvectors of each of the matrices B, SKS∗K , SKΛ−1
K S

∗
K , 1

1+α
B,

and (B2 + αI)−1B. For indices k such that λk ∈ [1− ε, 1), the eigenvalues ofB, SKS∗K ,

and SKΛ−1
K S

∗
K corresponding to sk are very close to 1, and the eigenvalues of 1

1+α
B and

(B2+αI)−1B corresponding to sk are very close to 1
1+α

. Also, for indices k such that λk ∈

(0, ε], the eigenvalues ofB, SKS∗K , SKΛ−1
K S

∗
K , 1

1+α
B, and (B2 +αI)−1B corresponding

to sk are very close to 0. This comparison is shown in more detail in Table 4.1 below. From
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Table 4.1: Comparison of the eigenvalues of B, SKS∗K , SKΛ−1
K S

∗
K , 1

1+α
B, and (B2 +

αI)−1B corresponding to the eigenvectors sk for which λk 6∈ (ε, 1− ε).

Matrix B SKS
∗
K SKΛ−1

K S
∗
K

1

1 + α
B (B2 + αI)−1B

Eigenvalue
corresponding to
sk if λk ≥ 1− ε λk ≈ 1 1

1

λk
≈ 1

λk
1 + α

≈ 1

1 + α

λk
λ2
k + α

≈ 1

1 + α
Eigenvalue
corresponding to
sk if λk ≤ ε λk ≈ 0 0 0

λk
1 + α

≈ 0
λk

λ2
k + α

≈ 0

this, it is easy to see that bothSKS∗K andSKΛ−1
K S

∗
K can be well-approximated by adding a

low-rank correction to B which adjusts the eigenvalues corresponding to the eigenvectors

sk for which λk ∈ (ε, 1 − ε). Similarly, (B2 + αI)−1B can be well-approximated by

adding a low-rank correction to 1
1+α
B which adjusts the eigenvalues corresponding to the

eigenvectors sk for which λk ∈ (ε, 1− ε).

Next, we present a theorem which shows that the prolate matrixB can be well-approximated

by the orthogonal projection matrix onto the 2 bNW c+1 lowest frequency discrete Fourier

transform (DFT) vectors plus a rank-O(logN log 1
ε
) correction.

Theorem 5. Let N ∈ N, W ∈ (0, 1
2
), and ε ∈ (0, 1

2
) be given. Let B ∈ RN×N be the

prolate matrix, whose entries are

B[m,n] =
sin[2πW (m− n)]

π(m− n)
for m,n ∈ [N ],

and let FW ∈ CN×(2bNW c+1) be a matrix whose columns are the 2 bNW c + 1 lowest

frequency DFT vectors, i.e.

FW [n, `] =
1√
N

exp

(
j2πn

`− bNW c
N

)
for n ∈ [N ] and ` ∈ [2 bNW c+ 1].
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Then, there exist matrices L1,L2 ∈ CN×r′ such that

‖B − (FWF
∗
W +L1L

∗
2)‖ ≤ ε,

where

r′ ≤
(

4

π2
log(8N) + 6

)
log

(
15

ε

)
.

The intuition behind this theorem is that the prolate matrixB is a Toeplitz matrix whose

entries B[m,n] = sin[2πW (m−n)]
π(m−n)

are samples of a sinc function, and the orthogonal projec-

tion matrix FWF
∗
W is a circulant matrix whose entries

(FWF
∗
W )[m,n] =

2bNW c∑
`=0

FW [m, `]FW [n, `]

=

2bNW c∑
`=0

1

N
exp

(
j2π(m− n)

`− bNW c
N

)

=
sin
(

2bNW c+1
N

π(m− n)
)

N sin
(
πm−n

N

)
are samples of a digital sinc or Dirichlet function. The differenceB − FWF

∗
W has entries

which are a smooth function of m,n. Hence, it is reasonable to expect thatB−FWF
∗
W is

approximately low-rank.

In [8], we use Theorem 5 to prove that the number of Slepian basis eigenvalues in

(ε, 1− ε) satisfies #{k : ε < λk < 1− ε} ≤ 2r′ ≤
(

8
π2 log(8N) + 12

)
log
(

15
ε

)
. However,

compared to the results in Section 3.3, this result is strictly weaker than Theorem 1 and

does not capture the dependence on W that Theorem 2 captures.

Finally, we note that the proof of Theorem 4 provides explicit constructions of the

matricesD1,D2,D3. Precomputing the matricesD1,D2,D3, andSε requires computing

O(log(NW ) log 1
ε
) Slepian basis eigenvectors and corresponding eigenvalues, which can

be done inO(N logN log(NW ) log 1
ε
) operations using the method in [94]. Also, the proof

of Theorem 5 provides explicit constructions of the matrices L1 and L2 which require
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O(N logN log 1
ε
) operations to precompute. The fact that these matrices can be efficiently

precomputed is essential for using our fast algorithms in practice.

4.2 Fast Computations

In this section, we use the approximations from the previous section to demonstrate fast

algorithms for certain operations with the Slepian basis vectors or the prolate matrix.

A fast factorization of SKS∗K

Suppose we wish to compress a vector x ∈ CN of N uniformly spaced samples of a signal

down to a vector of K ≈ 2NW elements in such a way that best preserves the DTFT of the

signal over [−W,W ]. We can do this by storingS∗Kx, which is a vector ofK ≈ 2NW < N

elements, and then later recovering SKS∗Kx, which contains nearly all of the energy of the

signal in the frequency band [−W,W ]. However, naı̈ve multiplication of SK or S∗K takes

O(NK) = O(2WN2) operations. For certain applications, this may be intractable.

If we define

T 1 =

[
FW L1 SεD1

]
and T 2 =

[
FW L2 Sε

]

where FW , L1, L2 are as defined in Theorem 5 and D1 is as defined in Theorem 4a, then

we have

‖SKS∗K − T 1T
∗
2‖ = ‖SKS∗K − (FWF

∗
W +L1L

∗
2 + SεD1S

∗
ε)‖

= ‖SKS∗K −B − SεD1S
∗
ε +B − FWF

∗
W −L1L

∗
2‖

≤ ‖SKS∗K − (B + SεD1S
∗
ε)‖+ ‖B − (FWF

∗
W +L1L

∗
2)‖

≤ ε+ ε

= 2ε.
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Both T 1 and T 2 are N ×K ′ matrices where K ′ = 2 bNW c + 1 + r + r′ = 2NW +

O(logN log 1
ε
). So we can compress x by computing T ∗2x, which is a vector of K ′ ≈

2NW elements, and then later recover T 1T
∗
2x. Since ‖SKS∗K − T 1T

∗
2‖ ≤ 2ε, we have

that ‖SKS∗Kx − T 1T
∗
2x‖2 ≤ 2ε‖x‖2 for any vector x ∈ CN . Both FW and F ∗W can be

applied to a vector in O(N logN) operations via the FFT. Since L1, L2, SεD1, and Sε are

N × O(logN log 1
ε
) matrices, L1, L∗2, SεD1, and S∗ε can each be applied to a vector in

O(N logN log 1
ε
) operations. Therefore, computing T ∗2x and later recovering T 1T

∗
2x (as

an approximation for SKS∗Kx) takes O(N logN log 1
ε
) operations.

Fast projections onto the range of SK

Alternatively, if we only require computing the projected vector SKS∗Kx, and compression

is not required, then there is a simpler solution. Theorem 4a tells us that ‖SKS∗K − (B +

SεD1S
∗
ε)‖ ≤ ε, and thus, ‖SKS∗Kx− (Bx + SεD1S

∗
εx)‖2 ≤ ε‖x‖2 for any vector x ∈

CN . Since B is a Toeplitz matrix, computing Bx can be done in O(N logN) operations

via the FFT. Since Sε is a N × O(log(NW ) log 1
ε
) matrix, computing SεD1S

∗
εx can be

done in O(N log(NW ) log 1
ε
) operations. Therefore, we can computeBx+SεD1S

∗
εx as

an approximation to SKS∗Kx using only O(N logN +N log(NW ) log 1
ε
) operations.

Fast rank-K truncated pseudoinverse ofB

A closely related problem to working with the matrix SKS∗K concerns the task of solving

a linear system of the form y = Bx. Since the prolate matrix has several eigenvalues that

are close to 0, the system is often solved by using the rank-K truncated pseudoinverse ofB

whereK ≈ 2NW . Even if the pseudoinverse is precomputed and factored ahead of time, it

still takes O(NK) = O(2WN2) operations to apply to a vector y ∈ CN . Theorem 4b tells

us that ‖B†K − (B+SεD2S
∗
ε)‖ ≤ 3ε, and thus, ‖B†Ky− (By+SεD2S

∗
εy)‖2 ≤ 3ε‖y‖2

for any vector y ∈ CN . Again, computing By can be done in O(N logN) operations

using the FFT, and computing SεD2S
∗
εy can be done in O(N log(NW ) log 1

ε
) operations.
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Therefore, we can compute By + SεD2S
∗
εy as an approximation to B†Ky using only

O(N logN +N log(NW ) log 1
ε
) operations.

Fast Tikhonov regularization involvingB

Another approach to solving the ill-conditioned system y = Bx is to use Tikhonov regular-

ization, i.e., minimize ‖y−Bx‖2
2 +α‖x‖2

2 where α ∈ (0, 1) is a regularization parameter.

The solution to this minimization problem is x = (B2 + αI)−1By. Even if the matrix

(B2 + αI)−1B is precomputed ahead of time, it still takes O(N2) operations to apply to a

vector y ∈ CN . Theorem 4c (with αε instead of ε) tells us that ‖(B2 + αI)−1B − (B +

SαεD3S
∗
αε)‖ ≤ ε, and thus, ‖(B2 + αI)−1By − (By + SαεD3S

∗
αεy)‖2 ≤ ε‖y‖2 for

any vector y ∈ CN . Again, computing By can be done in O(N logN) operations via the

FFT. Since Sαε is a N ×O(log(NW ) log 1
αε

) matrix, computing SαεD3S
∗
αεy can be done

in O(N log(NW ) log 1
αε

) operations. Therefore, we can compute By + SαεD3S
∗
αεy as

an approximation to (B2 + αI)−1By using only O
(
N logN +N log(NW ) log 1

αε

)
oper-

ations.

4.3 Applications

Owing to the concentration in the time and frequency domains, the Slepian basis vectors

have proved to be useful in numerous signal processing problems [5, 6, 10, 12, 97]. Linear

systems of equations involving the prolate matrixB also arise in several problems, such as

band-limited extrapolation [5]. In this section, we describe some specific applications that

stand to benefit from the fast algorithms described in the previous section.

Representation and compression of sampled bandlimited and multiband signals.

Consider a length-N vector x obtained by uniformly sampling a baseband analog signal

x(t) over the time interval [0, NTs) with sampling period Ts ≤ 1
Bband

chosen to satisfy

the Nyquist sampling rate. Here, x(t) is assumed to be bandlimited with frequency range
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[−Bband/2, Bband/2]. Under this assumption, the sample vector x can be expressed as

x[n] =

∫ W

−W
X(f)ej2πfn df, n = 0, 1, . . . , N − 1, (4.1)

or equivalently,

x =

∫ W

−W
X(f)ef df (4.2)

where W = TsBband/2 ≤ 1
2

and X(f) is the DTFT of the infinite sample sequence

x[n] = x(nTs), n ∈ Z. Such finite-length vectors of samples from bandlimited signals arise

in problems such as time-variant channel estimation [10] and mitigation of narrowband in-

terference [98]. Solutions to these and many other problems benefit from representations

that efficiently capture the structure inherent in vectors x of the form (4.2).

In [6], the authors showed that such a vector x has a low-dimensional structure by

building a dictionary in which x can be approximated with a small number of atoms. The

N × N DFT basis is insufficient to capture the low dimensional structure in x due to the

“DFT leakage” phenomenon. In particular, the DFT basis is comprised of vectors ef with

f sampled uniformly between −1/2 and 1/2. From (4.2), one can interpret x as being

comprised of a linear combination of vectors ef with f ranging continuously between−W

and W . It is natural to ask whether x could be efficiently represented using only the DFT

vectors ef with f between −W and W ; in particular, these are the columns of the matrix

FW defined in Theorem 5. Unfortunately, this is not the case—while a majority of the

energy of x can be captured using the columns of FW , a nontrivial amount will be missed

and this is contained in the familiar sidelobes in the DFT outside the band of interest.

An efficient alternative to the partial DFT FW is given by the partial Slepian ba-

sis SK when K ≈ 2NW . In [6], for example, it is established that when x is gen-

erated by sampling a bandlimited analog random process with flat power spectrum over

[−Bband/2, Bband/2], and when one chooses K = 2NW (1 + ρ), then on average SKS∗Kx

will capture all but an exponentially small amount of the energy from x. Zemen and Meck-
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lenbräuke [10] showed that expressing the time-varying subcarrier coefficients in a Slepian

basis yields better performance than that obtained with a DFT basis, which suffers from

frequency leakage.

By modulating the (baseband) Slepian basis vectors to different frequency bands and

then merging these dictionaries, one can also obtain a new dictionary that offers an efficient

representation of sampled multiband signals. Zemen et al. [11] proposed one such dictio-

nary for estimating a time-variant flat-fading channel whose spectral support is a union of

several intervals. In the context of compressive sensing, Davenport and Wakin [6] inves-

tigated multiband modulated DPSS dictionaries for sparse recovery of sampled multiband

signals, and Sejdić et al. [99] applied such dictionaries for recovery of physiological sig-

nals from compressive measurements. Zhu and Wakin [14] employed such dictionaries for

detecting targets behind the wall in through-the-wall radar imaging, and modulated DPSS’s

can also be useful for mitigating wall clutter [97].

In summary, many of the above mentioned problems are facilitated by projecting a

length-N vector onto the subspace spanned by the first K ≈ 2NW Slepian basis vectors

(i.e., computing SKS∗Kx). One version of the Block-Based CoSaMP algorithm in [6]

involves computing the projection of a vector onto the column space of a modulated DPSS

dictionary. The channel estimates proposed in [100] are based on the projection of the

subcarrier coefficients onto the column space of the modulated multiband DPSS dictionary.

Of course, one can also compress x by keeping the K ≈ 2NW Slepian basis coefficients

S∗Kx instead of the N entries of x. Computationally, all of these problems benefit from

having a fast Slepian transform: whereas direct matrix-vector multiplication would require

O(NK) = O(2WN2) operations, the fast Slepian constructions allow these computations

to be approximated in only O
(
N logN log 1

ε

)
operations.
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Prolate matrix linear systems.

Linear equations of the formBN,Wy = b arise naturally in signal processing. For example,

suppose we obtain the length-N sampled bandlimited vector x as defined in (4.1) and

we are interested in estimating the infinite-length sequence x[n] = x(nTs) for n ∈ Z.

The discrete-time signal x[n] is assumed to be bandlimited to [−W,W ] for W < 1
2
. Let

IN : `2(Z)→ CN denote the index-limiting operator that restricts a sequence to its entries

on [N ] (and produces a vector of length N ); that is IN(y)[m] := y[m] for m ∈ [N ]. Also,

recall that BW : `2(Z) → `2(Z) denotes the band-limiting operator that bandlimits the

DTFT of a discrete-time signal to the frequency range [−W,W ]. Given x, the least-squares

estimate x̂[n] ∈ `2(Z) for the infinite-length bandlimited sequence takes the form

x̂[n] = [(INBW )†x][n] =
N−1∑
m=0

v[m]
sin[2πW (n−m)]

π(n−m)
,

where v = B†Kx.

Another problem involves linear prediction of bandlimited signals based on past sam-

ples. Suppose x(t) is a continuous, zero-mean, wide sense stationary random process with

power spectrum

Px(F ) =


1

Bband
, −Bband

2
≤ F ≤ Bband

2
,

0, otherwise.

Let x[n] = x(nTs) denote the samples acquired from x(t) with a sampling interval of Ts ≤
1

Bband
. A linear prediction of x[N ] based on the previous N samples x[0], x[1], . . . , x[N − 1]

takes the form [5]

x̂[N ] =
N−1∑
n=0

anx[n].

Choosing an such that x̂[N ] has the minimum mean-squared error is equivalent to solving

min
an

% := E

(N−1∑
n=0

anx[n]− x[N ]

)2
 .
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Let W = Ts
2Bband

. Taking the derivative of % and setting it to zero yields

Ba = b

with a = [a0 a1 · · · aN−1]T and b =
[

sin(2πWN)
πN

sin(2πW (N−1))
π(N−1)

· · · sin(2πW1)
π1

]T
. Thus the

optimal â is simply given by â = B†Kb.

We present one more example: the Fourier extension [16]. The partial Fourier series

sum

yN ′(t) =
1√
2

∑
|n|≤N ′

ŷne
jnπt, ŷn =

1√
2

∫ 1

−1

y(t)e−jnπtdt

of a non-periodic function y ∈ L2([−1, 1]) (such as y(t) = t) suffers from the Gibbs

phenomenon. One approach to overcome the Gibbs phenomenon is to extend the function

y to a function g that is periodic on a larger interval [−T, T ] with T > 1 and compute the

partial Fourier series of g [16]. Let GN ′′ be the space of bandlimited 2T -periodic functions

GN ′′ :=

{
g : g(t) =

N ′′∑
n=−N ′′

ĝne
jnπt
T , ĝn ∈ C

}
.

The Fourier extension problem involves finding

gN ′′ := arg min
g∈GN′′

‖y − g‖L2([−1,1]). (4.3)

The solution gN ′′ is called the Fourier extension of y to the interval [−T, T ]. Let ĝ =

[ĝ−N ′′ · · · ĝ0 · · · ĝN ′′ ]T and define FN ′′ : L2([−1, 1])→ C2N ′′+1 as

(FN ′′(u))[n] =
1√
2T

∫ 1

−1

u(t)e−
jnπt
T dt, |n| ≤ N ′′.

For convenience, here we index all vectors and matrices beginning at−N ′′. Any minimizer
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ĝ of the least-squares problem (4.3) must satisfy the normal equations

FN ′′F∗N ′′ ĝ = FN ′′y, (4.4)

where FN ′′y can be efficiently approximately computed via the FFT. One can show that

FN ′′F∗N ′′ = B, for N = 2N ′′ + 1 and W = 1
2T
≤ 1

2
.

Each of the above least-squares problems could be solved by computing a rank-K trun-

cated pseudo-inverse of B with K ≈ 2NW . Direct multiplication of this matrix with a

vector, however, would require O(NK) = O(2WN2) operations. The fast methods we

have developed allow a fast approximation to the truncated pseudo-inverse to be applied in

only O
(
N logN +N log(NW ) log 1

ε

)
operations.

4.4 Numerical Experiments

In this section, we perform numerical experiments to demonstrate the usefulness and com-

putational efficiency of our fast Slepian methods.

Fast projection onto the span of SK

To test our fast factorization of SKS∗K and our fast projection method, we fix the half-

bandwidth W = 1
4

and vary the signal length N over several values between 28 and 220.

For each value of N we randomly generate several length-N vectors and project each one

onto the span of the first K = round(2NW ) elements of the Slepian basis using the fast

factorization T 1T
∗
2 and the fast projection matrixB+SεD1S

∗
ε for tolerances of ε = 10−3,

10−6, 10−9, and 10−12. The prolate matrix,B, is applied to the lengthN vectors via an FFT

whose length is the smallest power of 2 that is at least 2N . For values of N ≤ 12288, we

also projected each vector onto the span of the first K elements of the Slepian basis using

the exact projection matrix SKS∗K . The exact projection could not be tested for values of

N > 12288 due to computational limitations. A plot of the average time needed to project
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a vector onto the span of the first K = round(2NW ) elements of the Slepian basis using

the exact projection matrix SKS∗K and the fast factorization T 1T
∗
2 is shown in the top left

in Figure 4.1. A similar plot comparing the exact projection SKS∗K and the fast projection

B+SεD1S
∗
ε is shown in the top right in Figure 4.1. As can be seen in the figures the time

required by the exact projection grows quadratically withN , while the time required by the

fast factorization as well as the fast projection grows roughly linearly in N .

For the exact projection, all of the firstK = round(2NW ) elements of the Slepian basis

must be precomputed. For the fast factorization, the low rank matrices L1,L2 (from Theo-

rem 5) and the Slepian basis elements sk for k such that ε < λk < 1− ε are precomputed.

For the fast projection, the FFT of the sinc kernel, as well as the Slepian basis elements sk

for k such that ε < λk < 1 − ε are precomputed. A plot of the average precomputation

time needed for both the exact projection SKS∗K as well as the fast factorization T 1T
∗
2 is

shown in the top left in Figure 4.2. A similar plot comparing the exact projection SKS∗K

and the fast projection B + SεD1S
∗
ε is shown in the top right in Figure 4.2. As can be

seen in the figures the precomputation time required by the exact projection grows roughly

quadratically with N , while the precomputation time required by the fast factorization as

well as the fast projection grows just faster than linearly in N .

This experiment was repeated with W = 1
16

and W = 1
64

(instead of W = 1
4
).

The results for W = 1
16

and W = 1
64

are shown in the middle and bottom, respec-

tively, of Figures 4.1 and 4.2. The exact projection onto the first K ≈ 2NW elements

of the Slepian basis takes O(NK) = O(2WN2) operations, whereas our fast factoriza-

tion algorithm takes O(N logN log 1
ε
) operations and our fast projection algorithm takes

O(N logN +N log(NW ) log 1
ε
) operations. The smaller W gets, the larger N needs to be

for our fast methods to be faster than the exact projection via matrix multiplication. Our

fast factorization and our fast projection lose their advantage over the exact factoriation

and exact projection when W . 1
N

logN log 1
ε

and W . 1
N

logN + 1
N

log(NW ) log 1
ε

respectively. However, in this case the exact projection is fast enough to not require a fast
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approximate algorithm.

Solving least-squares systems involvingB

We demonstrate the effectiveness of our fast prolate pseudoinverse method and our fast

prolate Tikhonov regularization method on an instance of the Fourier extension problem,

as described in Section 4.3.

To choose an appropriate function f , we note that if f is continuous and f(−1) = f(1),

then the Fourier sum approximations will not suffer from Gibbs phenomenon, and so, there

is no need to compute a Fourier extension sum approximation for f . Also, if f is smooth

on [−1, 1] but f(−1) 6= f(1), then the Fourier sum approximations will suffer from Gibbs

phenomenon, but the Fourier extension series coefficients will decay exponentially fast.

Hence, relatively few Fourier extension series coefficients will be needed to accurately

approximate f , which makes the least squares problem of solving for these coefficients

small enough for our fast methods to not be useful. However, in the case where f is

continuous but not smooth on [−1, 1] and f(−1) 6= f(1), the Fourier series will suffer

from Gibbs phenomenon, and the Fourier extension series coefficients will decay faster

than the Fourier series coefficients, but not exponentially fast. So in this case, the number

of Fourier extension series coefficients required to accurately approximate f is not trivially

small, but still less than the number of Fourier series coefficients required to accurately

approximate f . Hence, computing a Fourier extension sum approximation to f is useful

and requires our fast methods.

We construct such a function f : [−1, 1]→ R in the form

f(t) = a0t+
L∑
`=1

a` exp

(
−|t− µ`|

σ`

)

where a0 = 5, L = 500, and a`, µ`, and σ` are chosen in a random manner. A plot of f(t)

over t ∈ [−1, 1] is shown on the left in Figure 4.3. Also on the right in Figure 4.3, we show
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Figure 4.1: (Left) Plots of the average time needed to project a vector onto the first round(2NW )
Slepian basis elements using the exact projection SKS∗K and using the fast factorization T 1T

∗
2.

(Right) Plots of the average time needed to project a vector onto the first round(2NW ) Slepian
basis elements using the exact projection SKS∗K and using the fast projectionB + SεD1S

∗
ε .
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Figure 4.2: (Left) Plots of the average precomputation time for the exact projection SKS∗K and the
fast factorization T 1T

∗
2. (Right) Plots of the average precomputation time for the exact projection

SKS
∗
K and the fast projectionB + SεD1S

∗
ε .
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Figure 4.3: (Left) A plot of the function used in the experiments described in Section 4.4. (Right)
Plots of the function, the Fourier sum approximation to f(t) using 401 terms, and the Fourier
extension approximation to f(t) using 401 terms. Note that the Fourier sum approximation suffers
from Gibbs phenomenon oscillations while the Fourier extension sum does not.

an example of a Fourier sum approximation and a Fourier extension approximation, both

with 401 terms. Notice that the Fourier sum approximation suffers from Gibbs phenomenon

near the endpoints of the interval [−1, 1], while the Fourier extension approximation does

not exhibit such oscillations near the endpoints of [−1, 1].

For several positive integers M between 1 and 2560, we compute three approximations

to f(t):

1. The 2M + 1 term truncated Fourier series of f(t), i.e.,

fM(t) =
1√
2

M∑
m=−M

f̂me
jπmt,

where

f̂m =
1√
2

∫ 1

−1

f(t)ejπmt dt.

2. The 2M + 1 term Fourier extension of f(t) to the interval [−T, T ], i.e.,

gM(t) =
1√
2T

M∑
m=−M

ĝme
jπmt/T
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where

ŷm =
1√
2T

∫ 1

−1

f(t)ejπmt/T dt,

and

ĝ = B†K ŷ.

Here, we set T = 1.5, and we let B be the prolate matrix with N = 2M + 1

and W = 1
2T

, and we let B†K be the truncated pseudoinverse of B which zeros out

eigenvalues λk smaller than 10−4.

3. The 2M + 1 term Fourier extension of f(t) to the interval [−T, T ] (as described

above), except we use the fast prolate pseudoinverse method (Theorem 4b) with tol-

erance ε = 10−5 instead of the exact truncated pseudoinverse.

The integrals used in computing the coefficients are approximated using an FFT of

length 213+q where q = blog2Mc. By increasing the FFT length with M , we ensure that

the coefficients are sufficiently approximated, while also ensuring that the time needed to

compute the FFT does not dominate the time needed to solve the systemBĝ = ŷ. Given an

approximation f̂(t) to f(t), we quantify the performance via the relative root-mean-square

(RMS) error:

‖f − f̂‖L2([−1,1])

‖f‖L2([−1,1])

A plot of the relative RMS error versus M for each of the three approximations to

f(t) is shown on the left in Figure 4.4. For values of M at least 448, the Fourier exten-

sion gM(t) (computed with either the exact or the fast pseudoinverse) yielded a relative

RMS error at least 10 times lower than that for the truncated Fourier series fM(t). Us-

ing the exact pseudoinverse instead of the fast pseudoinverse does not yield a noticable

improvement in the approximation error. A plot of the average time needed to compute

the approximation coefficients versus M is shown on the right in Figure 4.4. For large
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Figure 4.4: A comparison of the relative RMS error (left) and the computation time required (right)
for the 2M + 1 term truncated Fourier series as well as the 2M + 1 term Fourier extension using
both the exact and fast pseudoinverse methods. Note that the exact and fast methods are virtually
indistinguishable in terms of relative RMS error.

M , computing the Fourier extension coefficients using the fast prolate pseudoinverse is

significantly faster than computing the Fourier extension coefficients using the fast prolate

pseudoinverse. Also, computing the Fourier extension coefficients using the fast prolate

pseudoinverse takes only around twice the time required for computing the Fourier series

coefficients.

We repeated this experiment, except using Tikhonov regularization to solve the system

Bĝ = ŷ instead of the truncated pseudoinverse. We tested both the exact Tikhonov reg-

ularization procedure ĝ = (B2 + αI)−1Bŷ (for α = 10−8) as well as the fast Tikhonov

regularization method (Theorem 4c) with a tolerance of ε = 10−5. The results, which are

similar to those for the pseudoinverse case, are shown in Figure 4.5.
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Figure 4.5: A comparison of the relative RMS error (left) and the computation time required (right)
for the 2M + 1 term truncated Fourier series as well as the 2M + 1 term Fourier extension using
both the exact and fast Tikhonov regularization methods. Note that the exact and fast methods are
virtually indistinguishable in terms of relative RMS error.
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CHAPTER 5

THOMSON’S MULTITAPER METHOD FOR SPECTRAL ESTIMATION

In this chapter, we present non-asymptotic results regarding some of the statistical prop-

erties of Thomson’s multitaper spectral estimator. In particular, we show that by using

K = 2NW −O(log(NW )) tapers instead of the traditional choice of K = 2NW −O(1)

tapers can significantly reduce the effects of spectral leakage, which is especially impor-

tant when the underlying power spectrum has a high dynamic range. We also present a

fast algorithm to approximate Thomson’s multitaper method on a grid of evenly spaced

frequencies which requires only O(log(NW ) log 1
ε
) FFTs instead of K ≈ 2NW FFTs.

This is useful in problems where many samples are taken, and thus, using many tapers is

desirable. Material in this section has appeared in [101, 102]

5.1 Statistical Properties and Spectral Leakage

For a given vector of signal samples x ∈ CN , using Thomson’s multitaper method for

spectral estimation requires selecting two parameters: the half-bandwidthW of the Slepian

basis tapers and the number of tapers K which are used in the multitaper spectral estimate.

The selection of these parameters can greatly impact the accuracy of the multitaper spectral

estimate.

In some applications, a relatively small number of samples N are taken, and the de-

sired frequency resolution for the spectral estimate is O( 1
N

), i.e., a small multiple of the

fundamental Rayleigh resolution limit. In such cases, many practitioners [30, 33, 35, 36,

38, 41, 44, 45] choose the half-bandwidth parameter W such that 2NW is between 3 and

10, and then choose the number of Slepian basis tapers to be between K = b2NW c and

K = b2NW c− 2. However, in applications where a large number of samples N are taken,

and some loss of resolution is acceptable, choosing a larger half-bandwidth parameter W
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can result in a more accurate spectral estimate. Furthermore, if the power spectral den-

sity S(f) has a high dynamic range (that is maxf S(f) � minf S(f)), we aim to show

that choosing K = 2NW − O(log(NW ) log 1
δ
) tapers for some small δ > 0 (instead

of K = 2NW − O(1) tapers) can provide significantly better protection against spectral

leakage.

For all the theorems in this section, we assume that x ∈ CN is a vector of samples from

a complex Gaussian process whose power spectral density S(f) is bounded and integrable.

Note that the analogous results for a real Gaussian process would be similar, but slightly

more complicated to state. To state our results, define

M = max
f∈R

S(f),

i.e., the global maximum of the power spectral density, and for each frequency f ∈ R we

define:

mf = min
f ′∈[f−W,f+W ]

S(f ′),

Mf = max
f ′∈[f−W,f+W ]

S(f ′),

Af =
1

2W

∫ f+W

f−W
S(f ′) df ′,

Rf =

√
1

2W

∫ f+W

f−W
S(f ′)2 df ′,

i.e. the minimum, maximum, average, and root-mean-squared values of the power spectral

density over the interval [f −W, f +W ]. We also define the quantities

Σ
(1)
K =

1

K

K−1∑
k=0

(1− λk)

Σ
(2)
K =

√√√√ 1

K

K−1∑
k=0

(1− λk)2.
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Before we proceed to our results, we make note of the fact that mf , Mf , Af , and Rf

are all “local” properties of the power spectral density, i.e., they depend only on values of

S(f ′) for f ′ ∈ [f −W, f + W ], whereas M is a “global” property. Note that if the power

spectral density is “slowly varying” over the interval [f −W, f + W ], then mf ≈ Mf ≈

Af ≈ Rf ≈ S(f). However, M could be several orders of magnitude larger than mf , Mf ,

Af , and Rf if the power spectral density has a high dynamic range.

By using the bound on the Slepian basis eigenvalues in Corollary 1, we can obtain

λK−1 ≥ 1 − δ for some suitably small δ > 0 by choosing the number of tapers to be

K = 2NW − O(log(NW ) log 1
δ
). This choice of K guarantees that 0 ≤ Σ

(1)
K ≤ Σ

(2)
K ≤

1 − λK−1 ≤ δ, i.e., Σ
(1)
K , Σ

(2)
K , and 1 − λK−1 are all small, and thus, the global property

M = maxf S(f) of the power spectral density will have a minimal impact on the non-

asymptotic results below. In other words, using K = 2NW − O(log(NW ) log 1
δ
) tapers

mitigates the ability for values of the power spectral density S(f ′) at frequencies f ′ 6∈

[f − W, f + W ] to impact the estimate Ŝmt
K (f). However, if K = 2NW − O(1) tapers

are used, then the quantities Σ
(1)
K , Σ

(2)
K , and 1− λK−1 could be large enough for the global

property M = maxf S(f) of the power spectral density to significantly weaken the non-

asymptotic results below. In other words, energy in the power spectral density S(f ′) at

frequencies f ′ 6∈ [f −W, f +W ] can “leak” into the estimate Ŝmt
K (f).

We begin with a bound on the bias of the multitaper spectral estimate under the addi-

tional assumption that the power spectral density is twice differentiable. Note this assump-

tion is only used in Theorem 6.

Theorem 6. For any frequency f ∈ R, if S(f ′) is twice continuously differentiable in

[f −W, f +W ], then the bias of the multitaper spectral estimate is bounded by

Bias
[
Ŝmt
K (f)

]
=
∣∣∣EŜmt

K (f)− S(f)
∣∣∣ ≤ M ′′

fNW
3

3K
+ (M +Mf )Σ

(1)
K ,
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where

M ′′
f = max

f ′∈[f−W,f+W ]
|S ′′(f ′)|.

If K = 2NW − O(log(NW ) log 1
δ
) tapers are used for some small δ > 0, then this

upper bound is slightly larger than 1
6
M ′′

fW
2, which is similar to the asymptotic results in [9,

103–106] which state that the bias is roughly 1
6
S ′′(f)W 2. However, if K = 2NW − O(1)

tapers are used, the term (M + Mf )Σ
(1)
K could dominate this bound, and the bias could be

much larger than the asymptotic result.

If the power spectral density is not twice-differentiable, we can still obtain the following

bound on the bias of the multitaper spectral estimate.

Theorem 7. For any frequency f ∈ R, the bias of the multitaper spectral estimate is

bounded by

Bias
[
Ŝmt
K (f)

]
=
∣∣∣EŜmt

K (f)− S(f)
∣∣∣ ≤ (Mf −mf )(1− Σ

(1)
K ) +MΣ

(1)
K .

If K = 2NW − O(log(NW ) log 1
δ
) tapers are used for some small δ > 0, then this

upper bound is slightly larger than Mf − mf . This guarantees the bias is small when

the power spectral density is “slowly varying” over [f − W, f + W ]. However, if K =

2NW − O(1) tapers are used, the term MΣ
(1)
K could dominate this bound, and the bias

could be much larger than the asymptotic result.

Next, we state our bound on the variance of the multitaper spectral estimate.

Theorem 8. For any frequency f ∈ R, the variance of the multitaper spectral estimate is

bounded by

Var
[
Ŝmt
K (f)

]
≤ 1

K

(
Rf

√
2NW

K
+MΣ

(2)
K

)2

.

If K = 2NW − O(log(NW ) log 1
δ
) tapers are used for some small δ > 0, then this

upper bound is slightly larger than 1
K
R2
f , which is similar to the asymptotic results in [9,

103–106] which state that the variance is roughly 1
K
S(f)2. However, if K = 2NW −O(1)
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tapers are used, the termMΣ
(2)
K could dominate this bound, and the variance could be much

larger than the asymptotic result.

We also note that if the frequencies f1, f2 are more than 2W apart, then the multitaper

spectral estimates at those frequencies have a very low covariance.

Theorem 9. For any frequencies f1, f2 ∈ R such that 2W < |f1 − f2| < 1 − 2W , the

covariance of the multitaper spectral estimates at those frequencies is bounded by

0 ≤ Cov
[
Ŝmt
K (f1), Ŝmt

K (f2)
]
≤

(
(Rf1 +Rf2)

√
2NW

K
Σ

(1)
K +MΣ

(1)
K

)2

.

If K = 2NW − O(log(NW ) log 1
δ
) tapers are used for some small δ > 0, then the

covariance is guaranteed to be small. However, if K = 2NW − O(1) tapers are used, the

upper bound is no longer guaranteed to be small, and the covariance could be large.

Finally, we also provide a concentration result for the multitaper spectral estimate.

Theorem 10. For any frequency f ∈ R, the multitaper spectral estimate satisfies the con-

centration inequalities

P
{
Ŝmt
K (f) ≥ βEŜmt

K (f)
}
≤ β−1e−κf (β−1−lnβ) for β > 1,

and

P
{
Ŝmt
K (f) ≤ βEŜmt

K (f)
}
≤ e−κf (β−1−lnβ) for 0 < β < 1,

where the frequency dependent constant κf satisfies

κf ≥
K
(

1− Σ
(1)
K

)
Mf − 2NW (Mf − Af )

Mf + (M −Mf )(1− λK−1)
.

We note that these are identical to the concentration bounds for a chi-squared random

variable with 2κf degrees of freedom. If K = 2NW −O(log(NW ) log 1
δ
) tapers are used

for some small δ > 0 and the power spectral density is “slowly varying” over [f −W, f +
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W ], then this lower bound on κf is slightly less than K. Hence, Ŝmt
K (f) has a concentration

behavior that is similar to a chi-squared random variable with 2K degrees of freedom, as

the asymptotic results in [9, 107] suggest. However, if K = 2NW − O(1) tapers are

used, then κf could be much smaller, and thus, the multitaper spectral estimate would have

significantly worse concentration about its mean.

The proofs of Theorems 6-10 are given in Appendix C.1. In Section 5.3, we perform

simulations demonstrating that using K = 2NW − O(1) tapers results in a multitaper

spectral estimate that is vulnerable to spectral leakage, whereas using K = 2NW −

O(log(NW ) log 1
δ
) tapers for a suitably small δ > 0 significantly reduces the impact of

spectral leakage on the multitaper spectral estimate.

5.2 Fast Algorithms

Given a vector of N samples x ∈ CN , evaluating the multitaper spectral estimate Ŝmt
K (f)

at a grid of L evenly spaced frequencies f ∈ [L]/L (where we assume L ≥ N ) can be

done in O(KL logL) operations and using O(KL) memory via K length-L fast Fourier

transforms (FFTs). In applications where the number of samples N is small, the number

of tapers K used is usually a small constant, and so, the computational requirements are a

small constant factor more than that of an FFT. However in many applications, using a large

number of tapers is desirable, but the computational requirements make this impractical.

As mentioned in Section 2.5, if the power spectrum S(f) is twice-differentiable, then the

MSE of the multitaper spectral estimate is minimized when the bandwidth parameter is

W = O(N−1/5) and K = O(N4/5) tapers are used [105]. For medium to large scale

problems, precomputing and storingO(N4/5) tapers and/or performingO(N4/5) FFTs may

be impractical.

In this section, we present an ε-approximation S̃mt
K (f) to the multitaper spectral estimate

Ŝmt
K (f) which requiresO(L logL log(NW ) log 1

ε
) operations andO(L log(NW ) log 1

ε
) mem-

ory. This is faster than the exact multitaper spectral estimation provided the number of
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tapers satisfies K & log(NW ) log 1
ε
.

To construct this approximation, we first fix a tolerance parameter ε ∈ (0, 1
2
), and

suppose that the number of tapers, K, is chosen such that λK−1 ≥ 1
2

and λK ≤ 1− ε. Note

that this is a very mild assumption as it only forces K to be slightly less than 2NW . Next,

we partition the indices [N ] into four sets:

I1 = {k ∈ [K] : λk ≥ 1− ε}

I2 = {k ∈ [K] : ε < λk < 1− ε}

I3 = {k ∈ [N ] \ [K] : ε < λk < 1− ε}

I4 = {k ∈ [N ] \ [K] : λk ≤ ε}

and define the approximate estimator

S̃mt
K (f) :=

1

K
Ψ(f) +

1

K

∑
k∈I2

(1− λk)Ŝk(f)− 1

K

∑
k∈I3

λkŜk(f),

where

Ψ(f) :=
N−1∑
k=0

λkŜk(f).

Both Ŝmt
K (f) and S̃mt

K (f) are weighted sums of the single taper estimates Ŝk(f) for

k ∈ [N ]. Additionally, it can be shown that the weights are similar, i.e., the first K weights

are exactly or approximately 1
K

, and the last N −K weights are exactly or approximately

0. Hence, it is reasonable to expect that S̃mt
K (f) ≈ Ŝmt

K (f). The following theorem shows

that is indeed the case.

Theorem 11. The approximate multitaper spectral estimate S̃mt
K (f) defined above satisfies

∣∣∣S̃mt
K (f)− Ŝmt

K (f)
∣∣∣ ≤ ε

K
‖x‖2

2 for all f ∈ R.

Furthermore, we show in Lemma 13 that Ψ(f) = x∗EfBE
∗
fx. This formula doesn’t
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involve any of the Slepian tapers. By exploiting the fact that the prolate matrix B is

Toeplitz, we also show in Lemma 13 that if L ≥ 2N , then

[
Ψ( 0

L
) Ψ( 1

L
) · · · Ψ(L−2

L
) Ψ(L−1

L
)

]T
= F−1

(
b ◦ F |FZx|2

)
,

where Z ∈ RL×N is a matrix which zero-pads length-N vectors to length-L, F ∈ CL×L

is a length-L FFT matrix, b ∈ RL is the first column of the matrix formed by extending

the prolate matrix B to an L × L circulant matrix, | · |2 denotes the pointwise magnitude-

squared, and ◦ denotes a pointwise multiplication. Hence, Ψ(f) can be evaluated at a grid

of L evenly spaced frequencies f ∈ [L]/L in O(L logL) operations via three length-L

FFTs/inverse FFTs. Evaluating the other #(I2 ∪ I3) = O(log(NW ) log 1
ε
) terms in the

expression for S̃mt
K (f) at the L grid frequencies can be done in O(L logL log(NW ) log 1

ε
)

operations via #(I2 ∪ I3) length-L FFTs. Using these results, we establish the following

theorem which states how quickly S̃mt
K (f) can be evaluated at the grid frequencies.

Theorem 12. For any vector of samples x ∈ CN and any number of grid frequencies L ≥

N , the approximate multitaper spectral estimate S̃mt
K (f) can be evaluated at the L grid fre-

quencies f ∈ [L]/L inO(L logL log(NW ) log 1
ε
) operations and usingO(L log(NW ) log 1

ε
)

memory.

Note if N ≤ L < 2N , we can apply the method briefly described above to evaluate

Ψ(f) at f ∈ [2L]/2L, and then downsample the result. The proofs of Theorems 11 and

12 are given in Appendix C.2. In Section 5.3, we perform simulations comparing the time

needed to evaluate Ŝmt
K (f) and S̃mt

K (f) at a grid of frequencies.

5.3 Numerical Experiments

In this section, we show simulations to demonstrate three observations. (1) Using K =

2NW − O(log(NW )) tapers instead of the traditional choice of K = b2NW c − 1 tapers

significantly reduce the effects of spectral leakage. (2) Using a larger bandwidth W , and

65



thus, more tapers can produce a more robust spectral estimate. (3) As the number of sam-

plesN and the number of tapersK grows, our approximation S̃mt
K (f) becomes significantly

faster to use than the exact multitaper spectral estimate Ŝmt
K (f).

First, we demonstrate that choosing K = 2NW − O(log(NW )) tapers instead of the

traditional choice of K = b2NW c − 1 tapers significantly reduces the effects of spectral

leakage. We fix a signal length of N = 2000, a bandwidth parameter of W = 1
100

(so

2NW = 40) and consider four choices for the number of tapers: K = 39, 36, 32, and

29. Note that K = 39 = b2NW c − 1 is the traditional choice as to how many tapers to

use, while 36, 32, and 29 are the largest values of K such that λK−1 is at least 1 − 10−3,

1− 10−6, and 1− 10−9 respectively.

In Figure 5.1, we show three plots of the spectral window

ψ(f) =
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]e−j2πfn

∣∣∣∣∣
2

of the multitaper spectral estimate for each of those values of K. At the top of Figure 5.1,

we plot ψ(f) over the entire range [−1
2
, 1

2
] using a logarithmic scale. The lines outside

appear thick due to the highly oscillatory behavior of ψ(f). This can be better seen in the

middle of Figure 5.1, where we plot ψ(f) over [−2W, 2W ] using a logarithmic scale. The

behavior of ψ(f) inside [−W,W ] can be better seen at the bottom of Figure 5.1, where we

plot ψ(f) over [−2W, 2W ] using a linear scale.

All four spectral windows have similar behavior in that ψ(f) is small outside [−W,W ]

and large near 0. However, outside of [−W,W ] the spectral windows usingK = b2NW c−

O(log(NW )) tapers are multiple orders of magnitude smaller than the spectral window

using K = b2NW c − 1 tapers. Hence, the amount of spectral leakage can be reduced by

multiple orders of magnitude by trimming the number of tapers used fromK = b2NW c−1

to K = 2NW −O(log(NW )).

We further demonstrate the importance of using K = 2NW − O(log(NW )) tapers
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Figure 5.1: Plots of the spectral windows ψ(f) for N = 2000, W = 1
100

, and K = 39, 36,
32, and 29 tapers. (Top) A logarithmic scale plot over f ∈ [−1

2
, 1

2
]. (Middle) A logarithmic

scale plot over f ∈ [−2W, 2W ]. (Bottom) A linear scale plot over f ∈ [−2W, 2W ].
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to reduce spectral leakage by showing a signal detection example. We generate a vector

x ∈ CN of N = 2000 samples of a Gaussian random process with a power spectral density

function of

S(f) =



103 if f ∈ [0.18, 0.22]

109 if f ∈ [0.28, 0.32]

102 if f ∈ [0.38, 0.42]

101 if f ∈ [0.78, 0.82]

100 else

.

This simulates an antenna receiving signals from four narrowband sources with some back-

ground noise. Note that one source is significantly stronger than the other three sources. In

Figure 5.2, we plot:

• the periodogram of x,

• the multitaper spectral estimate of x with W = 1
100

and K = b2NW c − 1 = 39

tapers,

• the multitaper spectral estimate of x with W = 1
100

and K = 29 tapers (chosen so

λK−1 ≥ 1− 10−9).

We note that all three spectral estimates yield large values in the frequency band [0.28, 0.32].

However, in the periodogram and the multitaper spectral estimate with K = 39 tapers, the

energy in the frequency band [0.28, 0.32] “leaks” into the frequency bands occupied by the

smaller three sources. As a result, the smaller three sources are hard to detect using the

periodogram or the multitaper spectral estimate with K = 39 tapers. However, all four

sources are clearly visible when looking at the multitaper spectral estimate with K = 29

tapers. For frequencies f not within W of the edges of the frequency band, the multitaper

spectral estimate is within a small constant factor of the true power spectral density.

Next, we demonstrate a few key points about selecting the bandwidth parameter W and
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Figure 5.2: Plots of the true power spectral density, the periodogram, the multitaper spectral
estimate with W = 1

100
and K = b2NW c − 1 = 39, and the multitaper spectral estimate

with W = 1
100

and K = 29 tapers (chosen so λK−1 ≥ 1− 10−9).

the number of tapers K used in the multitaper spectral estimate. We compare the following

eight methods to estimate the power spectrum of a Gaussian random process from a vector

x ∈ CN of N = 218 = 262144 samples:

1. The classic periodogram

2. A tapered periodogram using a single DPSS taper s0 with 2NW = 8 (chosen such

that λ0 ≥ 1− 10−9)

3. The exact multitaper spectral estimate Ŝmt
K (f) with a small bandwidth parameter of

W = 1.25× 10−4 and K = b2NW c − 1 = 64 tapers

4. The exact multitaper spectral estimate Ŝmt
K (f) with a small bandwidth parameter of

W = 1.25× 10−4 and K = 53 tapers (chosen such that λK−1 ≥ 1− 10−9 > λK)

5. The approximate multitaper spectral estimate S̃mt
K (f) with a larger bandwidth param-

eter of W = 2.0× 10−3, K = b2NW c− 1 = 1047 tapers, and a tolerance parameter

of ε = 10−9

6. The approximate multitaper spectral estimate S̃mt
K (f) with a larger bandwidth param-

eter ofW = 2.0×10−3,K = 1031 tapers (chosen such that λK−1 ≥ 1−10−9 > λK),
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and a tolerance parameter of ε = 10−9

7. The exact multitaper spectral estimate with the adaptive weighting scheme suggested

by Thomson[9] with a small bandwidth parameter of W = 1.25 × 10−4 and K =

b2NW c − 1 = 64 tapers

8. The exact multitaper spectral estimate with the adaptive weighting scheme suggested

by Thomson[9] with a larger bandwidth parameter of W = 2.0 × 10−3 and K =

b2NW c − 1 = 1047 tapers

The adaptive weighting scheme computes the single taper periodograms Ŝk(f) for k ∈

[K], and then forms a weighted estimate

Ŝad
K (f) =

∑K−1
k=0 αk(f)Ŝk(f)∑K−1

k=0 αk(f)

where the frequency dependent weights αk(f) satisfy

αk(f) =
λkŜ

ad
K (f)2(

λkŜ
ad
K (f) + (1− λk)σ2

)2

where σ2 = 1
N
‖x‖2

2. Of course, solving for the weights directly is difficult, so this method

requires initializing the weights and alternating between updating the estimate Ŝad
K (f) and

updating the weights αk(f). This weighting procedure is designed to keep all the weights

large at frequencies where S(f) is large and reduce the weights of the last few tapers at

frequencies where S(f) is small. Effectively, this allows the spectrum to be estimated

with more tapers at frequencies where S(f) is large while simultaneously reducing the

spectral leakage from the last few tapers at frequencies where S(f) is small. The cost

is the increased computation time due to setting the weights iteratively. For more details

regarding this adaptive scheme, see [24].

In Figure 5.3, we plot the power spectrum and the eight estimates for a single realization

x ∈ CN of the Gaussian random process. Additionally, for 1000 realizations xi ∈ CN ,
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i = 1, . . . , 1000 of the Gaussian random process, we compute a spectral estimate using

each of the above eight methods. In Figure 5.4, we plot the empirical mean logarithmic

deviation in dB, i.e.,
1

1000

1000∑
i=1

∣∣∣∣∣10 log10

Ŝ[xi](f)

S(f)

∣∣∣∣∣
for each of the eight methods. In Table 5.1, we list the average time needed to precompute

the DPSS tapers, the average time to compute the spectral estimate after the tapers are

computed, and the average of the empirical mean logarithmic deviation in dB across the

frequency spectrum.

We make the following observations:

• The periodogram and the single taper periodogram (methods 1 and 2) are too noisy

to be useful spectral estimates.

• Methods 3, 4, and 7 yield a noticeably noisier spectral estimate than methods 5,

6, and 8. This is due to the fact that methods 5, 6, and 8 use a larger bandwidth

parameter and more tapers.

• The spectral estimates obtained with methods 1, 3 and 5 suffer from spectral leak-

age, i.e., the error is large at frequencies f where S(f) is small, as can be seen in

Figure 5.4. This is due to the fact that they use K = b2NW c − 1 tapers, and thus,

include tapered periodograms Ŝk(f) for which λk is not very close to 1.

• Methods 4 and 6 avoid using tapered periodograms Ŝk(f) for which λk < 1 − 10−9

and methods 7 and 8 use these tapered periodograms but assign a low weight to them

at frequencies where S(f) is small. Hence, methods 4, 6, 7, and 8 are able to mitigate

the spectral leakage phenomenon.

• Methods 5 and 6 are slightly faster than methods 3 and 4 due to the fact that our

approximate multitaper spectral estimate only needs to compute #{k : ε < λk <

1− ε} = 36 tapers and 36 tapered periodograms.
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Table 5.1: Table of mean logarithmic deviations (averaged across entire frequency spec-
trum), precomputation times, and computation times for each of the eight spectral estima-
tion methods.

Method Avg MLD (dB) Avg Precomputation Time (sec) Avg Run Time (sec)
1 5.83030 N/A 0.0111
2 4.41177 0.1144 0.0111
3 1.48562 4.3893 0.3771
4 0.47836 3.6274 0.3093
5 1.56164 3.3303 0.2561
6 0.12534 3.3594 0.2533
7 0.45080 4.3721 1.4566
8 0.12532 78.9168 17.2709

• Method 7 takes noticeably longer than methods 3 and 4, and method 8 takes consider-

ably longer than methods 5 and 6. This is because the iterative method for computing

the adaptive weights requires many iterations to converge when the underlying power

spectral density has a high dynamic range.

• Methods 6 and 8 exhibit very similar performance. This is to be expected, as using

a weighted average of 1047 tapered periodograms is similar to using the unweighted

average of the first 1031 tapered periodograms. The empirical mean logarithmic devi-

ation is larger at frequencies where S(f) is rapidly varying and smaller at frequencies

where S(f) is slowly varying. This is to be expected as the local bias (caused due to

the smoothing effect of the tapers) dominates the variance at these frequencies.

From this, we can draw several conclusions. First, by slightly trimming the number of

tapers from K = b2NW c − 1 to 2NW − O(log(NW )), one can significantly mitigate

the amount of spectral leakage in the spectral estimate. Second, using a larger bandwidth

parameter and averaging over more tapered periodograms will result in a less noisy spectral

estimate. Third, our fast approximate multitaper spectral estimate can yield a more accurate

estimate in the same amount of time as an exact multitaper spectral estimate because our

fast approximation needs to compute significantly fewer tapers and tapered periodograms.

72



Figure 5.3: Plots of the true spectrum (blue) and the spectral estimates (red) using each of
the eight methods.
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Figure 5.4: Plots of the empirical mean logarithmic deviation using each of the eight meth-
ods.
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Fourth, a multitaper spectral estimate with b2NW c − 1 tapers and adaptive weights can

yield a slightly lower error than a multitaper spectral estimate with 2NW − O(log(NW ))

tapers and fixed weights, but as 2NW increases, this effect becomes minimal and not worth

the increased computational cost.

Finally, we demonstrate that the runtime for computing the approximate multitaper

spectral estimate S̃mt
K (f) scales roughly linearly with the number of samples. We vary the

signal length N over several values between 210 and 220. For each value of N , we set the

bandwidth parameter to be W = 0.08 · N−1/5 as this is similar to what is asymptotically

optimal for a twice differentiable spectrum [105]. We then choose a number of tapers K

such that λK−1 ≥ 1 − 10−3 > λK , and then compute the approximate multitaper spectral

estimate S̃mt
K (f) at f ∈ [N ]/N for each of the tolerances ε = 10−4, 10−8, and 10−12. If

N ≤ 217, we also compute the exact multitaper spectral estimate Ŝmt
K (f) at f ∈ [N ]/N . For

N > 217, we did not evaluate the exact multitaper spectral estimate due to the excessive

computational requirements.

We split the work needed to produce the spectral estimate into a precomputation stage

and a computation stage. The precomputation stage involves computing the Slepian tapers

which are required for the spectral estimate. In applications where a multitaper spectral

estimate needs to be computed for several signals (using the same parameters N,W,K),

computing the tapers only needs to be done once. The exact multitaper spectral estimate

Ŝmt
K (f) requires computing sk for k ∈ [K], while the approximate multitaper spectral es-

timate S̃mt
K (f) requires computing sk for k ∈ I2 ∪ I3 = {k : ε < λk < 1 − ε}. The

computation stage involves evaluating Ŝmt
K (f) or S̃mt

K (f) at f ∈ [N ]/N with the required

tapers sk already computed.

In Figures 5.5 and 5.6, we plot the precomputation and computation time respectively

versus the signal length N for the exact multitaper spectral estimate Ŝmt
K (f) as well as the

approximate multitaper spectral estimate S̃mt
K (f) for ε = 10−4, 10−8, and 10−12. The times

were averaged over 100 trials of the procedure described above. The plots are on a log-
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Figure 5.5: Plot of the average precomputation time vs. signal length N for the exact
multitaper spectral estimate and our fast approximation for ε = 10−4, 10−8, and 10−12.

log scale. We note that the precomputation and computation times for the approximate

multitaper spectral estimate grow roughly linearly with N while the precomputation and

computation times for the exact multitaper spectral estimate grow significantly faster. Also,

the precomputation and computation times for the approximate multitaper spectral estimate

with the very small tolerance ε = 10−12 are only two to three times more than those for the

larger tolerance ε = 10−4.
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Figure 5.6: Plot of the average computation time vs. signal length N for the exact multita-
per spectral estimate and our fast approximation for ε = 10−4, 10−8, and 10−12.
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CHAPTER 6

NONUNIFORM SAMPLING OF MULTIBAND SIGNALS

In this chapter, we demonstrate a fast method to reconstruct a multiband signal from

nonuniform samples, provided we know the active frequency bands (i.e. the support of the

signal’s Fourier transform) a priori. We first formulate the signal reconstruction as a lin-

ear inverse problem involving and show that the solution is a linear combination of shifted

sinc functions. We then observe that the resulting system of equations has a generalized

Cauchy-like structure, which allows the corresponding matrix to be applied to a vector in

linear time with respect to the number of samples. Fast solvers for generalized Cauchy-

like matrices exist, but unfortunately, our particular matrix is ill-conditioned, which makes

these fast solvers unstable. However, we show that the method of conjugate gradient de-

scent can be used to solve the system, and only a polylogarithmic number of iterations are

required for convergence. This along with the fast generalized Cauchy-like matrix multiply

gives us a fast algorithm for reconstructing a multiband signal from nonuniform samples.

Material in this section has appeared in [108].

6.1 Problem Formulation

Let

Ω =
L−1⋃
`=0

[f` −W`, f` +W`] ⊂ R

be a union of L non-overlapping frequency bands, and define the Paley–Wiener space

PWΩ(R) =

{
x ∈ L2(R) : x̂(f) =

∫ ∞
−∞

x(t)e−j2πft dt = 0 ∀f ∈ R \ Ω

}
,

i.e. the subspace of signals in L2(R) whose Fourier transform is supported only on the L

frequency bands in Ω. Our goal is to reconstruct a multiband signal x ∈ PWΩ(R) from a
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vector y ∈ CN containingN (possibly noisy) samples of x at times t0, . . . , tN−1 ∈ [−T
2
, T

2
],

i.e.

y[n] = x(tn) + η[n] for n ∈ [N ],

where η ∈ CN is a noise vector.

We can treat recovering x as a linear inverse problem. To formulate this problem, we

start by defining a kernel function φ ∈ PWΩ(R) by

φ(t) =

∫
Ω

ej2πft df =
L−1∑
`=0

∫ f`+W`

f`−W`

ej2πft df =
L−1∑
`=0

sin(2πW`t)

πt
ej2πf`t for t ∈ R,

and for any time-shift τ ∈ R, we define a shifted kernel function aτ ∈ PWΩ(R) by

aτ (t) = φ(t− τ) for t ∈ R.

Since the Fourier transform of the kernel function is φ̂(f) = 1Ω(f), the Fourier transform

of the shifted kernel function is âτ (f) = 1Ω(f)e−j2πfτ . Therefore, any multiband signal

x ∈ PWΩ(R) satisfies

x(τ) =

∫
Ω

x̂(f)ej2πfτ df =

∫
Ω

x̂(f)âτ (f) df = 〈âτ , x̂〉L2(Ω) = 〈aτ , x〉PWΩ(R) ,

where the last equality holds by the Parseval-Plancherel identity. Hence, if we define a

sampling operator A : PWΩ(R)→ CN by

(Ax)[n] = 〈atn , x〉PWΩ(R) for n ∈ [N ],

then our vector of samples can be written as

y = Ax+ η.
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We can then attempt to reconstruct x by solving a Tikhonov regularization problem

x̃ = arg min
x∈PWΩ(R)

‖y −Ax‖2
2 + δ‖x‖2

PWΩ(R).

The solution to this Tikhonov regularization problem can be written as

x̃ = A∗(AA∗ + δI)−1y = A∗[(G+ δI)−1y],

where the adjoint A∗ : CN → PWΩ(R) is given by

A∗z =
N−1∑
n=0

z[n]atn for z ∈ CN ,

and the Gram matrixG ∈ CN×N has entries

G[n, n′] =
〈
atn , atn′

〉
= φ(tn − tn′) for n, n′ ∈ [N ].

In other words, the reconstruction of the multiband signal x is given by

x̃(t) =
N−1∑
n=0

z[n]φ(t− tn) for t ∈ R,

i.e. a linear combination of kernel functions shifted by the sample times. The coefficients

z[n] are found by solving the system of equations (G+ δI)z = y.

After solving the system (G + δI)z = y, we can evaluate x̃(t) at M sample times

t′0, t
′
1, . . . , t

′
M−1 ∈ R via a matrix-vector multiply

[
x̃(t′0) x̃(t′1) · · · x̃c(t

′
M−1)

]T
= Hz
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where the matrixH ∈ RM×N has entries

H [m,n] = φ(t′m − tn).

For large N , explicitly formingG+ δI and solving (G+ δI)z = y takes O(N2.3728596)

operations [54] via an improvement over the Coppersmith–Winograd algorithm [109]1.

Also, for large M and N , explicitly forming H and computing Hz takes O(MN) opera-

tions.

6.2 Structured Matrices

The matrix H defined in the previous section is a generalized Cauchy matrix (defined in

Section 2.6). To see this, note that the entries ofH can be written as

H [m,n] = φ(t′m − tn)

=
L−1∑
`=0

sin[2πW`(t
′
m − tn)]

π(t′m − tn)
ej2πf`(t

′
m−tn)

=
L−1∑
`=0

sin(2πW`t
′
m) cos(2πW`tn)− cos(2πW`t

′
m) sin(2πW`tn)

π(t′m − tn)
ej2πf`(t

′
m−tn)

=
L−1∑
`=0

[
ej2πf`t

′
m sin(2πW`t

′
m)e−j2πf`tn cos(2πW`tn)

π(t′m − tn)

−e
j2πf`t

′
m cos(2πW`t

′
m)e−j2πf`tn sin(2πW`tn)

π(t′m − tn)

]
.

1It should be noted that Strassen’s algorithm, which has a runtime of O(N2.807) is often used in practice
over the Coppersmith–Winograd algorithm as it is faster for practical values of N [110].
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Hence,H fits the form of a generalized Cauchy matrix with the parameters

r = 2L

σ′m = πt′m for m ∈ [M ]

σn = πtn for n ∈ [N ]

p2`[m] = ej2πf`t
′
m sin(2πW`t

′
m) for m ∈ [M ] and ` ∈ [L]

p2`+1[m] = ej2πf`t
′
m cos(2πW`t

′
m) for m ∈ [M ] and ` ∈ [L]

q2`[n] = ej2πf`tn cos(2πW`tn) for n ∈ [N ] and ` ∈ [L]

q2`+1[n] = ej2πf`tn sin(2πW`tn) for n ∈ [N ] and ` ∈ [L]

Therefore,H can be applied to an N × 1 vector in O(L(M +N) log 1
α

) operations.

Also, the matrix G + δI defined in the previous section is a symmetric generalized

Cauchy-like matrix (defined in Section 2.6). The diagonal entries are all

(G+ δI)[n, n] = φ(tn − tn) + δ = φ(0) + δ = δ +
L−1∑
`=0

2W`,

and the off-diagonal entries are

G[n, n′] = φ(tn − tn′)

=
L−1∑
`=0

sin[2πW`(tn − tn′)]
π(tn − tn′)

ej2πf`(tn−tn′ )

=
L−1∑
`=0

sin(2πW`tn) cos(2πW`tn′)− cos(2πW`tn) sin(2πW`tn′)

π(tn − tn′)
ej2πf`(tn−tn′ )

=
L−1∑
`=0

[
ej2πf`tn sin(2πW`tn)e−j2πf`tn′ cos(2πW`tn′)

π(tn − tn′)

−e
j2πf`tn cos(2πW`tn)e−j2πf`tn′ sin(2πW`tn′)

π(tn − tn′)

]
.
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Hence,G+ δI fits the form of a generalized Cauchy-like matrix with the parameters

r = L

dn = δ +
L−1∑
`=0

2W` for n ∈ [N ]

σn = πtn for n ∈ [N ]

p`[n] = ej2πf`tn sin(2πW`tn) for n ∈ [N ] and ` ∈ [L]

q`[n] = ej2πf`tn cos(2πW`tn) for n ∈ [N ] and ` ∈ [L]

Therefore,G+ δI can be applied to an N × 1 vector in O(LN log 1
α

) operations.

6.3 Spectral Properties

A symmetric generalized Cauchy-like matrix K̃ satisfies a low-rank displacement equation

DσK̃ − K̃Dσ = PQ∗ −QP ∗,

where P =

[
p0 · · · pr−1

]
∈ CN×r and Q =

[
q0 · · · qr−1

]
∈ CN×r. Also, the

entries of K̃ can be recovered from the parameters σ0, . . . , σN−1, d0, . . . , dN−1, and the

“generators” P andQ.

Furthermore, if K̃ is invertible, then K̃
−1

also satisfies a low-rank displacement equa-

tion

DσK̃
−1
− K̃

−1
Dσ = K̃

−1
QP ∗K̃

−1
− K̃

−1
PQ∗K̃

−1
,

and thus, K̃
−1

is also a symmetric generalized Cauchy-like matrix.

This fact has been exploited to yield recursive methods for inverting symmetric gener-

alized Cauchy-like matrices[61, 111]. These methods partition the generalized Cauchy-like

matrix K̃ into a 2×2 block matrix, compute the generators of the (1, 1)-block and its Schur

complement via recursion, and then determine the “generators” of K̃. This Schur recursion
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Figure 6.1: A plot of the eigenvalues of G. The largest 2WT = 400 eigenvalues are all
between λ1(G) ≈ 11.43 and λ400(G) ≈ 0.6597. The smallest 1577 eigenvalues are all
between λ424(G) ≈ 1.68 × 10−14 and 0. Only 24 eigenvalues fail to fit in one of those
ranges.

takes O(rN logN log 1
α

) operations to compute the generators of K̃
−1

. Unfortunately, for

our problem, when the number of samples exceeds
∑L−1

`=0 (2W`T +O(log(2W`T )), the

matrixG becomes numerically rank deficient. As such, these recursive methods for invert-

ingG are unstable if more than a few recursive stages are used.

Figure 6.1 shows a plot of the eigenvalues of G in descending order where we have

chosen N = 2000, L = 1, f0 = 0, W0 = 1
2
, T = 400, and t0, . . . , tN−1 are i.i.d.

Uniform[−T
2
, T

2
], i.e. our signal’s Fourier transform is supported on the single interval

Ω = [−1
2
, 1

2
]. It can be seen that the first ≈ |Ω|T = 400 eigenvalues are all roughly the

same order of magnitude, and for k > |Ω|T , the eigenvalues λk(G) decay exponentially

towards zero as k increases.

We remark that this behavior is very similar to that of the eigenvalues of the prolate

spheroidal wave functions (PSWF) [1–4]. The first ≈ 2WT PSWF eigenvalues are ≈ 1,

and the rest exponentially decay towards zero. Also, if our sample times were chosen to be

uniformly spaced, then the above matrix G becomes the prolate matrix (up to a constant

scale factor), and then, the first ≈ |Ω|T eigenvalues would tightly cluster around N
T

.
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6.4 Conjugate Gradient Descent

Conjugate gradient descent (CGD) is an iterative algorithm which aims to solve the system

of equationsAz = y for a positive definite matrixA ∈ CN×N and a vector y ∈ CN . If we

initialize CGD to start at z(0) = 0, then the output of CGD at the k-th iteration is

z(k) = arg min
z∈Kk(A,y)

∥∥z −A−1y
∥∥2

A
,

where theA-norm is defined as ‖v‖2
A := v∗Av, and

Kk(A,y) = span{y,Ay,A2y, . . . ,Ak−1y}

is the order-k Krylov subspace generated byA and y.

As a result, it can be shown that the error after k iterations satisfies the bound

∥∥z(k) −A−1y
∥∥2

A
≤
∥∥A−1y

∥∥2

A
· min

polynomials P
degP=k
P (0)=1

[
max

λ∈Spec(A)
|P (λ)|2

]
.

For a general matrix A, this bound is often simplified by first relaxing the maximum

over λ ∈ Spec(A) to the maximum over λ ∈ [λmin(A), λmax(A)], and then using properties

of Chebyshev polynomials to get

∥∥z(k) −A−1y
∥∥
A
≤
∥∥A−1y

∥∥
A
· 2
(√

κ− 1√
κ+ 1

)k
,

where κ = λmax(A)/λmin(A) is the condition number of A. Hence, CGD returns a vector

z(k) which satisfies
∥∥z(k) −A−1y

∥∥
A
≤ ε

∥∥A−1y
∥∥
A

in at most
⌈

1
2

√
κ log 2

ε

⌉
iterations. A

more detailed discussion regarding CGD can be found in [112].

For our matrixG+δI, the largest eigenvalue is∼ N
T

and the smallest eigenvalue is≈ δ.

Hence, the condition number is roughly κ ∼ N
Tδ

. Typically, the regularization parameter δ
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will be chosen to be small (values of 10−2 to 10−5 are typical), and thus, κ will be rather

large. Hence, the bound of
⌈

1
2

√
κ log 2

ε

⌉
iterations is worrisome. It is possible to get a better

bound if we exploit the clustering behavior of the eigenvalues ofG+ δI.

By using the fact that G = AA∗ has the same non-zero eigenvalues as A∗A =∑N−1
n=0 atna

∗
tn , matrix concentration inequalities from [113], and our bounds on the num-

ber of prolate spheroidal wave function eigenvalues in the transition region (Theorem 3 in

Section 3.3), we can get the following result.

Lemma 1. Suppose N ≥ |Ω|T , 2W`T ≥ 1 for all ` ∈ [L], δ > 0, ε ∈ (0, 1), and

that the sample times t0, . . . , tN−1 are i.i.d. Uniform[−T
2
, T

2
]. Then there exist constants

C0, C1, C2 > 0 and indices K1 and K2 such that

K2 −K1 ≤ C0L log
(π

2
|Ω|T

)
log

(
N2|Ω|2

δ2ε1/4

)

and with probability at least 1 − (3|Ω|T + 2)e
− 2N

3|Ω|T the following bound hold simultane-

ously:

λ1(G) ≤ C1
N

|Ω|T
,

λK1(G) ≥ C2
N

|Ω|T
,

λK2+1(G) ≤ 2δε1/8.

Furthermore, the following lemma gives a bound of the number of CGD iterations

required when working with a matrix with similar eigenvalue clustering behavior.

Lemma 2. Let A ∈ CN×N be a positive-definite matrix, and let y ∈ CN . Let z(k) ∈ CN

be the CGD iterates produced when solving the system of equations Az = y using CGD

with the initial point z(0) = 0, and let ε ∈ (0, 1) be the desired CGD tolerance. Suppose
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there exist real numbers δ, a, b, c0, c1, . . . , cp−1 with

δ(1 + 2ε1/8) < c0 < c1 < · · · < cp−1 < a < b

such that

Spec(A) ⊆
[
δ, δ(1 + 2ε1/8)

]⋃
{ci}p−1

i=0

⋃
[a, b].

Then, for some non-negative integer

k ≤

⌈
1

2

√
b

a

(
(p+ 8) log

b

δ
+ log

2

ε

)⌉
+ p+ 8,

we have

‖z(k) −A−1y‖A ≤ ε‖A−1y‖A.

The proof of this lemma invokes properties of Chebyshev polynomials to explicitly

construct a polynomial P (λ) such that P (0) = 1, P (ci) = 0 for i = 1, . . . , p, and |P (λ)| ≤

ε for λ ∈ [δ, δ(1 + 2ε1/8)] and λ ∈ [a, b]. Then, the degree of the polynomial is a bound on

the number of CGD iterations needed for convergence.

By applying Lemma 2 to the matrix G + δI along with the eigenvalue bounds from

Lemma 1, we obtain the following theorem.

Theorem 13. Suppose N ≥ |Ω|T , 2W`T ≥ 1 for all ` ∈ [L], δ > 0, ε ∈ (0, 1), and that

the sample times t0, . . . , tN−1 are i.i.d. Uniform[−T
2
, T

2
]. Suppose we run CGD with the

initial starting point z(0) = 0 to solve the system of equations (G + δI)z = y. Then, with

probability at least 1− (3|Ω|T + 2)e
− 2N

3|Ω|T , CGD will need at most

k ≤ O

(
L · polylog

(
|Ω|T, N

|Ω|T
,
1

δ
,
1

ε

))
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iterations to return a solution z(k) ∈ CN such that

∥∥z(k) − (G+ δI)−1y
∥∥
G+δI

≤ ε
∥∥(G+ δI)−1y

∥∥
G+δI

.

6.5 Experiments

We run a synthetic experiment to test the efficiency of our proposed method for multiband

signal reconstruction as the number of samples M gets large. We first generate a multiband

signal x(t) whose Fourier transform is supported on Ω = [−0.9,−0.6]∪[0.1, 0.2]∪[0.9, 1.0]

by summing several sinusoids at random frequencies in those bands. For several values of

N between 210 and 218, we pick T such that N ≈ |Ω|T log
(
|Ω|T
0.01

)
where |Ω| = 0.5 is

the total occupied bandwidth, and then draw N random sample times t0, . . . , tN−1 i.i.d.

Uniform[−T
2
, T

2
]. This choice of T ensures that the spectrum ofG is very likely to have the

clustering behavior described in section 6.3. We then set δ = 10−4 and attempt reconstruct

the signal on a grid of M = N uniformly spaced sample times in [−T
2
, T

2
] using three

methods:

• Use CGD along with the fast method for applying G + δI to solve (G + δI)z = y.

Then, use the fast method for computingHz to evaluate x̃(t) at the uniformly spaced

times.

• Use CGD to solve (G+ δI)z = y, but explicitly formG+ δI. Then, explicitly form

H to evaluate x̃(t) at the uniformly spaced times.

• Solve the system (G + δI)z = y using MATLAB’s backslash operator. Then, ex-

plicitly formH to evaluate x̃(t) at the uniformly spaced times.

Note that due to memory constraints, we were only able to test the 2nd and 3rd methods

for N < 215. For each value of N , we repeat this experiment 10 times, to get an accurate

average result. The average time to compute the reconstructed signal at the uniform grid of

sample times versus the number of samples is shown in figure 6.2 and the average relative
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Figure 6.2: Plot of the time needed for each of the three methods to compute the recon-
structed signal on a uniformly spaced grid of M points from the N nonuniformly spaced
samples.

RMS error of the reconstructed uniform samples versus the number of samples is shown in

figure 6.3. All three methods achieve nearly identical reconstruction errors. For N > 211,

our proposed method is noticeably faster than the methods which don’t take advantage of

the structure of G + δI and H . Also, the total computation time needed for our method

scales roughly linearly with the number of samples. The average number of CGD iterations

vs. the number of samples N is shown in figure 6.4. By using the fast and approximate

method for applyingG+ δI, CGD takes slightly more iterations to converge.
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Figure 6.3: Plot of the relative RMS error of the reconstructed signal for each of the three
methods. All three methods yield a nearly identical reconstruction error for the values of
N for which all of them could be tested.

Figure 6.4: Plot of the number of CGD iterations needed for the first two methods versus
the number of samples N .
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CHAPTER 7

COMPRESSED SENSING OF MULTIBAND SIGNALS

In this chapter, we demonstrate a fast method to recover a multiband signal from com-

pressed measurements without knowing the active frequency bands a priori. In [6], the

authors use Slepian basis vectors to form a dictionary in which multiband signals have

a block-sparse representation. Then, they recover the multiband signal from compressed

measurements by using block-based CoSaMP, which works by alternating between esti-

mating the locations of the active frequency bands and solving a least squares problem to

obtain the optimal signal given the estimated frequency bands. We will make two novel

and significant improvements to their method. First, [6] assumed that the active frequency

bands are a subset of a fixed, finite set of non-overlapping frequency bands of constant

bandwidth. We will allow the frequency bands to have center frequencies from a contin-

uum of possibilities, and we will allow the bandwidths to vary. Second, we will replace

some of the steps involved with the method in [6] with some of our fast algorithms devel-

oped in earlier chapters of this thesis. This will allow us to efficiently solve large scale

instances of this problem.

7.1 Signal Model

Let x ∈ CN be a vector containing N samples from a multiband signal, i.e.

x[n] =
L−1∑
`=0

∫ f`+W`

f`−W`

X(f)ej2πfn df

where the intervals [f`−W`, f`+W`] for ` ∈ [L] are disjoint, and contained in [−1
2
, 1

2
]. Note

that for ease of notation, we use digital frequency, i.e. we assume the sampling frequency

is 1, and that none of the frequency bands are above the Nyquist rate.
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Now suppose we observe M � N compressed measurements of x, i.e. y = Ax for

some matrix A ∈ CM×N . Our goal is to recover the vector of uncompressed samples x

from the compressed measurements y.

7.2 Modulated Slepian Dictionary

In [6], they construct a dictionary for representing multiband signals as follows. First, they

divide the interval [−1
2
, 1

2
] into J frequency bands [−1

2
+ i

J
,−1

2
+ i+1

J
] for i ∈ [J ] which

have half-bandwidth W = 1
2J

. For each of these J frequency bands, they take the first

K Slepian basis vectors (where K is slightly larger than 2NW ) and modulate them to the

center frequency of the i-th frequency band, i.e.

Ψi = E
f

(i)
c
SK ∈ CN×K

where we again use the notationEf ∈ CN×N for f ∈ R to denote the diagonal modulation

matrix Ef [n, n] = ej2πfn, and f (i)
c = −1

2
+ 2i+1

2J
for i ∈ [J ]. Finally, they concatenate the

Ψi’s to form the multiband modulated Slepian dictionary

Ψ =

[
Ψ0 Ψ1 · · · ΨJ−1

]
∈ CN×JK .

Since samples of signals bandlimited to [−W,W ] are typically well-approximated by

the span of the firstK Slepian basis vectors, samples of signals bandlimited to [fc−W, fc+

W ] will typically be well-approximated by the span of the first K Slepian basis vectors

modulated to the center frequency fc, i.e. the span of the columns ofEfcSK . Hence, if our

multiband signal had L active frequency bands of the form {[−1
2

+ i
J
,−1

2
+ i+1

J
]}i∈I for

some subset I ⊂ [J ] with #(I) = L, then x will be well-approximated by the span of the

columns of ΨI , i.e. the submatrix of Ψ formed by the blocks Ψi for i ∈ I. This means
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that

x ≈ Ψα =
J∑
i=0

Ψiαi

where α ∈ CJK is a vector with J blocks αi ∈ CK for i ∈ [J ], and αi = 0 for i 6∈ I. In

other words, x ≈ Ψα for a group-sparse vector α.

7.3 Block-based CoSaMP

In [6], the authors propose using block-based CoSaMP to reconstruct the multiband signal

x from the compressed measurements y. They perform simulations demonstrating the

effectiveness of block-based CoSaMP for recovering multiband signals. We briefly outline

the main steps of block-based CoSaMP here.

First, initialize r(0) = y (residual), x(0) = 0, I(0) = ∅ (support set), m = 0 (iteration

number). Then, for each iteration m, perform the following steps:

1. Form the “proxy” of the residual h(m) = A∗r(m) = A∗(y −Ax(m)).

2. Identify a set Ω(m) ⊂ [J ] \ I(m) of the #(Ω(m)) = 2L new frequency bands with the

largest values of ‖Ψ∗ih(m)‖2

3. Merge the new bands with the current bands Λ(m) = Ω(m) ∪ I(m).

4. Solve the least-squares problem

α̃ = arg min
α∈CJK

‖y −AΨα‖2 subject to αi = 0 for i 6∈ Λ(m).

5. Prune Λ(m) from 3L indices (or 2L if this is the 0-th iteration) down to the subset

I(m+1) ⊂ Λ(m) with #(I(m+1)) = L indices which have the largest values of ‖α̃i‖2.

6. Update x(m+1) =
∑

i∈I(m+1)

Ψiα̃i and r(m+1) = y −Ax(m+1). Also, increment m.
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7.4 Fast Block-based CoSaMP for Multiband Signals

We make two significant improvements to the approach in [6]. First, [6] assumes that

the active frequency bands are each of the form [−1
2

+ i
J
,−1

2
+ i+1

J
] for i ∈ [J ]. This

effectively restricts the L center frequencies of the active bands to lie on a coarse grid of J

possible center frequencies, and the bandwidth of each frequency band are the same 1
J

. We

allow the center frequencies to lie on the continuum subject to mild separation conditions,

and we allow the bandwidths of each source to be different. Second, we speed up the

computationally intensive steps using some of the fast algorithms presented earlier in this

thesis. We outline our approach here.

Again, initialize r(0) = y (residual), x(0) = 0, I(0) = ∅ (support set), m = 0 (iteration

number). Then, for each iteration m, perform the following steps:

1. Form the “proxy” of the residual h(m) = A∗r(m) = A∗(y −Ax(m)).

2. Identify a set Ω(m) of 2L new frequency bands by computing our fast approximation

of the multitaper spectral estimate of h(m).

3. Merge the new bands with the current bands Λ(m) = Ω(m) ∪ I(m). Note that because

the active bands lie on the continuum, some of the newly identified frequency bands

in Ω(m) may overlap with the previous support set I(m).

4. Form a “fast” dictionary as follows: For each of the L′ frequency bands in Ω(m) =

{[f ′` − W ′
`, f
′
` + W ′

`]}L
′−1

`=0 , let F ` be an N× ≈ 2NW ′
` matrix whose columns are

the ≈ 2NW ′
` DFT vectors with frequencies in [f ′` −W ′

`, f
′
` + W ′

`], and let S` be an

N×O(log(NW ′
`) log 1

ε
) matrix whose columns are the modulated Slepian basis vec-

torsEf ′`
sk for k such that ε < λk < 1−ε. Then, set Ψ

(m)
` =

[
F ` S`

]
. Finally, con-

catenate the Ψ
(m)
` ’s to form the fast dictionary Ψ(m) =

[
Ψ

(m)
0 Ψ

(m)
1 · · · Ψ

(m)
L′−1

]
.
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5. Use conjugate gradient descent to solve the regularized least squares problem

α̃(m) = arg min
α
‖y −AΨ(m)α‖2

2 + γ‖α‖2
2

=
(
Ψ(m)∗A∗AΨ(m) + γI

)−1

Ψ(m)∗A∗y

6. Prune Λ(m) from L′ indices down to the subset I(m+1) ⊂ Λ(m) with #(I(m+1)) = L

indices which have the largest values of ‖α̃(m)
` ‖2.

7. Update x(m+1) =
∑

`∈I(m+1)

Ψ
(m)
` α̃` and r(m+1) = y −Ax(m+1). Also, increment m.

We now compare the computational complexities of the steps in our method to the steps

of the method in [6]. Instead of computing the norms of J modulated Slepian projections

‖Ψ∗ih(m)‖2 = ‖S∗KE∗f (i)
c
h(m)‖2 which takes O(J · NK) = O(N2) operations, our identi-

fication step takes O(N logN log(NWmulti) log 1
εmulti

) operations to compute the multitaper

spectral estimate of h(m), which is equivalent to computing the norms of N modulated

Slepian projections ‖S∗KE∗n/Nh(m)‖2 for n ∈ [N ].

To solve the least squares problem in [6], one must first compute the vector Ψ∗Λ(m)A
∗y

and the matrix Ψ∗Λ(m)A
∗AΨΛ(m) , and then compute α̃ = (Ψ∗Λ(m)A

∗AΨΛ(m))−1Ψ∗Λ(m)A
∗y.

Even if A is a fast compressed sensing matrix (such as a fast Johnson-Lindenstrauss ma-

trix), solving the system of equations Ψ∗Λ(m)A
∗AΨΛ(m)α̃ = Ψ∗Λ(m)A

∗y takesO((3LK)ω) =

O((LN/J)ω) operations where ω is the exponent in the runtime for solving linear systems.

In our method, the matrix Ψ(m) contains several DFT vectors and
∑L′−1

`=0 O(log(NW ′
`) log 1

ε
) ≤

O(L logN log 1
ε
) modulated Slepian basis vectors. Hence, applying the matrices Ψ(m) or

Ψ(m)∗ to a vector takes O(LN logN log 1
ε
) operations. If A is a fast compressed sensing

matrix, applying A or A∗ to a vector can be done in O(N logN) operations. Thus, each

iteration of conjugate gradient descent takes O(LN logN log 1
ε
) operations. Although we

have no mathematical justification, our experiments suggest the number of conjugate gra-

dient iterations required is not too large.
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Figure 7.1: Plots of the magnitude of the DTFT of the recovered signal (left) and the
difference between the recovered signal and the original signal (right).

7.5 Numerical Experiments

We test our fast version of block-based CoSaMP for multiband signals on a large scale

problem. We generate a vector x ∈ CN with N = 220 samples of a multiband signal

with L = 5 active frequency bands of widths W` between 1.0 × 10−4 and 6.0 × 10−3.

We then take M = 281589 compressed measurements using a simple subsampling matrix.

Our method recovers a vector x̃ with a residual error of ‖x̃ − x‖2/‖x‖2 = 2.71 × 10−6.

Roughly 150 seconds of precomputation time was needed to precompute the Slepian tapers

for the multitaper spectral estimate as well as the baseband Slepians for the fast dictionary.

Roughly 40 seconds of computation time were needed to recover the signal using our fast

version of block-based CoSaMP for multiband signals. We show a plot of the DTFT of the

original signal and the residual in Figure 7.5 above. Although our experiment involved a

signal that was 4096 times longer than that in [6], our algorithm was able to recover the

multiband signal to a high degree of accuracy in a reasonable amount of time.
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CHAPTER 8

CONCLUSIONS

This thesis presented several fast algorithms for working with a finite window of samples

from a multiband signal. These algorithms all revolve around the Slepian basis vectors

whose time-frequency localization properties make them useful in a wide variety of signal

processing applications. The computational complexity and memory requirements of all

of these algorithms scale linearly (times a few log factors) with respect to the number of

samples, which make them a feasible option in large scale problems. We conclude this

thesis with a brief summary of our results.

DPSS and PSWF Eigenvalues

We established novel non-asymptotic results (Theorems 1 and 2) which show that the num-

ber of DPSS eigenvalues between ε and 1 − ε scales logarithmically with ε and logarith-

mically with the time-bandwidth product. Our non-asymptotic results are similar to the

known asymptotic results, and they are substantively better than previous non-asymptotic

results. We were also able to use Theorems 1 and 2 to obtain non-asymptotic bounds on the

DPSS eigenvalues (Corollary 1) and sums involving the DPSS eigenvalues (Corollary 2),

and we extended our results to the PSWF eigenvalues (Theorem 3 and Corollaries 3 and 4).

These results enabled the fast algorithms in this thesis, and have important implications in

other works.

Fast computations with Slepian basis vectors

We presented fast algorithms for projecting a vector onto the span of the leading Slepian ba-

sis vectors (Theorem 4a), for performing dimensionality reduction with Slepian basis vec-
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tors (Theorem 4a combined with Theorem 5), and for solving systems of linear equations

involving the prolate matrix (Theorems 4b and 4c). These algorithms work by approxi-

mating the matrix of interest as the sum of a Toeplitz (or circulant) matrix plus a factored

low-rank matrix, both of which can be applied to a vector efficiently.

Thomson’s multitaper method for spectral estimation

We derived novel non-asymptotic bounds on the bias, variance, covariance, and probability

tails of Thomson’s multitaper spectral estimate (Theorems 6-10. These bounds are similar

to the existing asymptotic results when the multitaper spectral estimate uses K = 2NW −

O(log(NW )) tapers. However, when the traditional choice of K = 2NW − O(1) tapers

are used, the multitaper spectral estimate is prone to the effects of spectral leakage, and the

non-asymptotic bounds can be significantly worse, especially when the power spectrum of

interest has a high dynamic range. We also performed simulations to demonstrate these

principles.

We also presented a fast algorithm for approximating Thomson’s multitaper spectral

estimate on a grid of uniformly spaced frequencies (Theorems 11 and 12). Just like the

other fast algorithms involving the Slepian basis or the prolate matrix, the key to this fast

algorithm is that only logarithmically many of the Slepian basis eigenvalues are not very

close to 0 or 1.

Fast reconstruction from nonuniform samples

We presented a fast algorithm for reconstructing a multiband signal from nonuniform sam-

ples, provided we know the active frequency bands a priori. We first formulated recon-

structing the signal as a Tikhonov regularization problem, whose solution involves solving

a particular system of equations. The matrix corresponding to this system of equations

has a generalized Cauchy-like structure, which enables this matrix to be applied to a vec-

tor efficiently. Furthermore, although this matrix is ill-conditioned, we were able to prove
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in the single band case that the eigenvalues have a clustering behavior similar to that of

the PSWFs. We then used this to show that conjugate gradient descent could solve this

system of equations in a polylogarithmic number of iterations (Theorem 13). These obser-

vations show that using conjugate gradient descent along with a fast generalized Cauchy-

like matrix-vector multiply yields a fast algorithm for reconstructing a bandlimited signal

from nonuniform samples. We also showed simulations showing that this method works in

the multiband case as well, although we do not yet have theoretical results to justify this

rigorously.

Fast compressed sensing for multiband signals

We presented a fast version of the block-based CoSaMP algorithm for recovering a multi-

band signal from compressed measurements. Although we do not have rigorous guarantees

on the runtime or the accuracy, we performed a large scale simulation to demonstrate that

our algorithm runs in a reasonable amount of time, even when the signal of interest has

over a million samples.
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cillations in the hippocampus of the behaving rat,” Neuron, vol. 37, no. 2, pp. 311–
322, Jan. 2003.

[33] P. P. Mitra and B. Pesaran, “Analysis of dynamic brain imaging data,” Biophysical
Journal, vol. 76, no. 2, pp. 691–708, Feb. 1999.

[34] M. W. Jones and M. A. Wilson, “Theta rhythms coordinate hippocampal–prefrontal
interactions in a spatial memory task,” PLoS Biology, vol. 3, no. 12, R. Morris, Ed.,
e402, Nov. 2005.

[35] G. Bond et al., “A pervasive millennial-scale cycle in north atlantic holocene and
glacial climates,” science, vol. 278, no. 5341, pp. 1257–1266, 1997.

102



[36] M. Ghil et al., “Advanced spectral methods for climatic time series,” Reviews of
geophysics, vol. 40, no. 1, pp. 3–1, 2002.

[37] R. Vautard and M. Ghil, “Singular spectrum analysis in nonlinear dynamics, with
applications to paleoclimatic time series,” Physica D: Nonlinear Phenomena, vol. 35,
no. 3, pp. 395–424, May 1989.

[38] M. E. Mann and J. M. Lees, “Robust estimation of background noise and signal
detection in climatic time series,” Climatic Change, vol. 33, no. 3, pp. 409–445,
Jul. 1996.

[39] S. Minobe, “A 50-70 year climatic oscillation over the north pacific and north amer-
ica,” Geophys. Res. Lett., vol. 24, no. 6, pp. 683–686, Mar. 1997.

[40] J. Jouzel et al., “Extending the Vostok ice-core record of palaeoclimate to the penul-
timate glacial period,” Nature, vol. 364, no. 6436, pp. 407–412, Jul. 1993.

[41] D. J. Thomson, “Time series analysis of holocene climate data,” Philos. Trans.
Roy. Soc. London. Ser. A, Math. and Physical Sci., vol. 330, no. 1615, pp. 601–616,
1990.

[42] D. Brunton, A. Rodrigo, and E. Marks, “Ecstatic display calls of the Adélie penguin
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APPENDIX A

PROOFS FOR CHAPTER 3

A.1 Proof of Bounds on the Number of DPSS Eigenvalues in the Transition Region

(Theorems 1 and 2)

A.1.1 Proof overview

For any rectangular matrix X ∈ CM×N . we use the notation σk(X) to denote the kth

largest singular value of X . If k > min{M,N}, we define σk(X) = 0. Also, for a

Hermitian matrix A ∈ CN×N , we use the notation µk(A) to denote kth largest eigenvalue

of a symmetric matrix. Again, if k > N , we define µk(A) = 0. To be consistent with

standard notation, we define λk = µk+1(B) for k ∈ [N ], i.e. λk is the (k + 1)th largest

eigenvalue of theN×N prolate matrixB with bandwidth parameterW , which is defined in

(2.1). Although bothB and λk depend onN andW , our notation will omit this dependence

for convenience.

We first sketch a non-rigorous outline of our proof. We aim to show that B −B2 has

a low numerical rank. Therefore, very few of the eigenvalues of B − B2 are not near 0,

and thus, very few of the eigenvalues of B are not near 1 or 0. To show B − B2 has

a low numerical rank, recall that B is a matrix representation of the self-adjoint operator

TNBWTN . Hence,B −B2 is a matrix representation of the operator

TNBWTN − (TNBWTN)2 = TNBWBWTN − TNBWTNBWTN

= TNBW (I − TN)BWTN

= TNBW (I − TN)(I − TN)BWTN

Thus showing that the matrix B −B2 has a low numerical rank is equivalent to showing
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that the operator (I − TN)BWTN has a low numerical rank. This operator satisfies

〈δ`, (I − TN)BWTNδn〉 =
sin[2πW (`− n)]

π(`− n)
for ` ∈ Z \ [N ], n ∈ [N ],

where {δn}n∈Z are the Euclidean basis sequences for `2(Z). If we let X be the “matrix”

representation of this operator with respect to the Euclidean basis, then the entries of X

are a smooth function of the row and column indices, and X has what is known as a low

displacement-rank structure. These facts can be exploited to show that X , and thus also

(I−TN)BWTN , has a low numerical rank. Proving this rigorously requires that we truncate

(I − TN)BWTN to a finite dimensional subspace, and take the limit as the dimension goes

to infinity. The following lemma allows us to start a formal and rigorous version of the

above argument.

Lemma 3. Suppose for some r ∈ [N ] and L0 ∈ N, there exists a sequence of matrices

XL ∈ R2L×N for L = L0, L0 + 1, . . . , such that:

• lim
L→∞

∥∥(B −B2)−X∗LXL

∥∥2

F
= 0,

• σr+1(XL) ≤
√
ε(1− ε) for all L ≥ L0.

Then, #{k : ε < λk < 1− ε} ≤ r.

Proof. By the first property, lim
L→∞

µr+1(X∗LXL) exists and is equal to µr+1(B−B2). Then

by using the fact that µr+1(X∗LXL) = σr+1(XL)2 for all L ≥ L0 along with the second

property, we have

µr+1(B −B2) = lim
L→∞

µr+1(X∗LXL) = lim
L→∞

σr+1(XL)2 ≤ ε(1− ε).

The eigenvalues of B − B2 are {λk(1 − λk)}N−1
k=0 . Also, the function λ 7→ λ(1 − λ) is

increasing for λ < 1
2

and decreasing for λ > 1
2

and symmetric about λ = 1
2
. As a result,

113



ε < λ < 1− ε if and only if λ(1− λ) > ε(1− ε). Therefore,

#{k : ε < λk < 1−ε} = #{k : λk(1−λk) > ε(1−ε)} = #{k : µk(B−B2) > ε(1−ε)} ≤ r.

We will prove both Theorem 1 and Theorem 2 by using Lemma 3. In Section A.1.2, we

construct a sequence of matrices XL ∈ R2L×N which satisfies the first property above. In

Section A.1.3, we show that the singular values of each matrix XL decays exponentially,

which allows us to obtain the bound in Theorem 1. In Section A.1.4, we refine the rate

at which the singular values of each XL decay, which allows us to obtain the bound in

Theorem 2.

A.1.2 Constructing the sequence of matricesXL

First, we state a sinc function identity. For any W ∈ (0, 1
2
) and any m,n ∈ Z,

∞∑
`=−∞

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)
=

sin[2πW (m− n)]

π(m− n)
.

By using this identity, we can write the entries ofB −B2 as:

(B −B2)[m,n]

= B[m,n]−
N−1∑
`=0

B[m, `]B[`, n]

=
sin[2πW (m− n)]

π(m− n)
−

N−1∑
`=0

sin[2πW (m− `)]
π(m− `)

sin[2πW (`− n)]

π(`− n)

=
∞∑

`=−∞

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)
−

N−1∑
`=0

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)

=
−1∑

`=−∞

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)
+
∞∑
`=N

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)
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where the rearranging of terms is valid since the summands decay like O(|`|−2) as ` →

±∞, and thus, all the sums are absolutely convergent.

For each integer L ≥ 1, we define an index set

IL = {−L,−L+ 1 . . . ,−2,−1} ∪ {N,N + 1, . . . , N + L− 2, N + L− 1}

and we defineXL ∈ R2L×N by

XL[`, n] =
sin[2πW (`− n)]

π(`− n)
for ` ∈ IL and n ∈ [N ].

Note that we index the rows of XL by IL instead of the usual [2L] for convenience. We

will also index the rows and/or columns of other matrices with dimension 2L by IL. With

this definition, the entries ofX∗LXL are

(X∗LXL)[m,n]

=
∑
`∈IL

XL[`,m]XL[`, n]

=
−1∑

`=−L

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)
+

N+L−1∑
`=N

sin[2πW (`−m)]

π(`−m)

sin[2πW (`− n)]

π(`− n)

From the equations for (B −B2)[m,n] and (X∗LXL)[m,n] above, we have that

lim
L→∞

(X∗LXL)[m,n] = (B −B2)[m,n]

for each of the N2 entries. Therefore,

lim
L→∞

∥∥(B −B2)−X∗LXL

∥∥2

F
= lim

L→∞

N−1∑
m=0

N−1∑
n=0

∣∣(B −B2)[m,n]− (X∗LXL)[m,n]
∣∣2 = 0.

This shows that the sequence of matrices XL ∈ R2L×N satisfies the first property of

Lemma 3. We will now focus on bounding the singular values of each XL in order to
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prove that these matricesXL satisfy the second property of Lemma 3.

A.1.3 Proof of Theorem 1

In [114], Beckermann and Townsend showed that matrices with a low-rank displacement

have rapidly decaying singular values provided the spectra of the left and right displacement

matrices are well separated. More specifically, suppose a matrix X ∈ CM×N satisfies the

displacement equation

CX −XD = UV ∗

where C ∈ CM×M and D ∈ CN×N are normal matrices and U ∈ CM×ν and D ∈ CN×ν .

If there are closed, disjoint subsets E,F of C such that Spec(C) ⊂ E and Spec(D) ⊂ F

then the singular values ofX satisfy

σνk+1(X) ≤ σ1(X)Zk(E,F )

for all integers k ≥ 0, where Zk(E,F ) are the Zolotarev numbers [115] for the sets E and

F . As a rule of thumb, whenE and F are “well-separated”, Zk(E,F ) decays exponentially

with k. For more details about Zolotarev numbers, see Appendix E.1.

In Appendix E.2, we build on the work of Beckermann and Townsend to prove the

following theorem.

Theorem 14. SupposeX ∈ CM×N satisfies the displacement equation

CX −XD = UV ∗

where C ∈ CM×M and D ∈ CN×N are normal matrices with real eigenvalues and U ∈

CM×ν and V ∈ CN×ν . If Spec(C) ⊂ (−∞, c1] ∪ [c2,∞) and Spec(D) ⊂ [d1, d2] where

116



c1 < d1 < d2 < c2, then for any integer k ≥ 0,

σνk+1(X) ≤ 4‖X‖ exp

[
− π2k

log(16γ)

]
where γ =

(c2 − d1)(d2 − c1)

(c2 − d2)(d1 − c1)
.

We now show that the matrices XL defined in Section A.1.2 satisfy a low-rank dis-

placement equation, and use Theorem 14 to bound their singular values. Define a diagonal

matrixD ∈ RN×N byD[n, n] = n for n ∈ [N ]. For each integer L ≥ 1, define a diagonal

matrix CL ∈ R2L×2L by CL[`, `] = ` for ` ∈ IL (again, we index CL by ` ∈ IL for

convenience). With this definition, we have

(CLXL −XLD)[`, n] = CL[`, `]XL[`, n]−XL[`, n]D[n, n]

= ` · sin[2πW (`− n)]

π(`− n)
− sin[2πW (`− n)]

π(`− n)
· n

=
1

π
sin[2πW (`− n)]

=
1

π
[sin(2πW`) cos(2πWn)− cos(2πW`) sin(2πWn)] .

From this, it is clear that we can factor

CLXL −XLD = ULV
∗

where UL ∈ R2L×2 is defined by

UL[`, 0] =
1√
π

sin(2πW`) and UL[`, 1] =
1√
π

cos(2πW`) for ` ∈ IL,

and V ∈ RN×2 is defined by

V [n, 0] =
1√
π

cos(2πWn) and V [n, 1] = − 1√
π

sin(2πWn) for n ∈ [N ].

In other words,XL has a rank-2 displacement with respect to the matrices CL andD.
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Since Spec(CL) = IL ⊂ (−∞,−1] ∪ [N,∞) and Spec(D) = [N ] ⊂ [0, N − 1], we

can apply Theorem 14 with parameters c1 = −1, d1 = 0, d2 = N − 1, c2 = N , and ν = 2.

The theorem tells us that for every integer k ≥ 0,

σ2k+1(XL) ≤ 4‖XL‖ exp

[
− π2k

log(16γ)

]
where γ =

(c2 − d1)(d2 − c1)

(c2 − d2)(d1 − c1)
= N2.

For any L ≥ 1, XL is a submatrix of XL+1, and so, X∗LXL � X∗L+1XL+1. Hence,

X∗LXL � lim
L→∞

X∗LXL = B −B2. Therefore,

‖XL‖2 = ‖X∗LXL‖ ≤ ‖B −B2‖ = max
k

[
λk − λ2

k

]
≤ max

0≤λ≤1
[λ− λ2] =

1

4
,

and thus, ‖XL‖ ≤ 1
2

for all L ≥ 1. Substituting γ = N2 and ‖XL‖ ≤ 1
2

into the above

bound yields

σ2k+1(XL) ≤ 2 exp

[
− π2k

log(16N2)

]
for all integers k ≥ 0. So, if we set

k =

⌈
1

π2
log(16N2) log

(
2√

ε(1− ε)

)⌉
=

⌈
1

π2
log(4N) log

(
4

ε(1− ε)

)⌉
,

we obtain σ2k+1(XL) ≤
√
ε(1− ε) for all L ≥ 1.

This proves the second property in Lemma 3 for r = 2k and L0 = 1. Therefore, we

have proved that

#{k : ε < λk < 1− ε} ≤ 2k = 2

⌈
1

π2
log(4N) log

(
4

ε(1− ε)

)⌉
,

which is exactly the content of Theorem 1.
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A.1.4 Proof of Theorem 2

First, note that if W ∈ [1
4
, 1

2
), the bound in Theorem 2 is greater than the bound in Theo-

rem 1, which has already been established. So we will henceforth assume that W ∈ (0, 1
4
).

Now, set L1 =
⌊

1
4W

⌋
(clearly, L1 ≥ 1). For each integer L ≥ L1 + 1, we partition the

index set

IL = {−L,−L+ 1 . . . ,−2,−1} ∪ {N,N + 1, . . . , N + L− 2, N + L− 1}

into three sets

I(0)
L = {−L,−L+ 1 . . . ,−L1 − 2,−L1 − 1}

∪ {N + L1, N + L1 + 1, . . . , N + L− 2, N + L− 1}

I(1)
L = {−L1,−L1 + 1, . . . ,−2,−1}

I(2)
L = {N,N + 1, . . . , N + L1 − 2, N + L1 − 1}

and then accordingly partition XL into three submatrices X(0)
L ∈ R2(L−L1)×N , X(1)

L ∈

RL1×N , andX(2)
L ∈ RL1×N defined by

X
(i)
L [`, n] = XL[`, n] for ` ∈ I(i)

L and n ∈ [N ].

Once again, we index the rows of each X(i)
L by ` ∈ I(i)

L for convenience. We proceed

to bound the singular values of X(0)
L ,X

(1)
L ,X

(2)
L , and then use these bounds to bound the

singular values ofXL.
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Singular values ofX(0)
L

The submatrix X(0)
L , has the same low-rank displacement structure as XL. Specifically,

we can write

C
(0)
L X

(0)
L −X

(0)
L D = U

(0)
L V

∗

where C(0)
L ∈ R2(L−L1)×2(L−L1) is the diagonal submatrix of CL defined by C(0)

L [`, `] = `

for ` ∈ I(0)
L , U (0)

L ∈ R2(L−L1)×2 is the submatrix of UL defined in by U (0)
L [`, q] = UL[`, q]

for ` ∈ I(0)
L and q ∈ {0, 1}, andD and V are the same as defined in Section A.1.3.

Since Spec(C
(0)
L ) = I(0)

L ⊂ (−∞,−L1 − 1] ∪ [N + L1,∞) and Spec(D) = [N ] ⊂

[0, N − 1], we can once again apply Theorem 14, but with the parameters c1 = −L1 − 1,

d1 = 0, d2 = N − 1, c2 = N + L1, and ν = 2. Then, the theorem tells us that for any

integer k0 ≥ 0,

σ2k0+1(X(0)) ≤ 4‖X(0)
L ‖ exp

[
− π2k0

log(16γ)

]
where γ =

(c2 − d1)(d2 − c1)

(c2 − d2)(d1 − c1)
=

(
N + L1

L1 + 1

)2

.

Since X(0)
L is a submatrix of XL, we have ‖X(0)

L ‖ ≤ ‖XL‖ ≤ 1
2
. Also, since L1 =⌊

1
4W

⌋
≥ 1

4W
− 1 > 0 and N+x

x+1
is a non-increasing function of x > 0, we can bound

γ =

(
N + L1

L1 + 1

)2

≤
(
N + ( 1

4W
− 1)

( 1
4W
− 1) + 1

)2

= (4NW + 1− 4W )2 ≤ (4NW + 1)2.

Substituting γ ≤ (4NW + 1)2 and ‖X(0)
L ‖ ≤ 1

2
into the above bound yields

σ2k0+1(X
(0)
L ) ≤ 2 exp

[
− π2k0

log[16(4NW + 1)2]

]
= 2 exp

[
− π2k0

2 log(16NW + 4)

]

for all integers k0 ≥ 0.
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Singular values ofX(1)
L

To bound the singular values of X(1)
L , we exploit the fact that its entries X(1)

L [`, n] =

sin[2πW (`− n)]

π(`− n)
are a smooth function of ` and n to construct a tunable low-rank approx-

imation ofX(1)
L .

Define the sinc function g(t) =
sin(2πWt)

πt
. For each n ∈ [N ], define

gn(t) = g(t− n) =
sin[2πW (t− n)]

π(t− n)
,

and let

Pk,n(t) =
k−1∑
m=0

pm,nt
m

be the degree k−1 Chebyshev interpolating polynomial for gn(t) on the interval [−L1,−1].

We now define the low rank approximation X̃
(1)

L ∈ RL1×N by

X̃
(1)

L [`, n] = Pk,n(`) =
k−1∑
m=0

pm,n`
m for ` ∈ I(1)

L and n ∈ [N ].

We can factor X̃
(1)

L = WP whereW ∈ RL1×k and P ∈ Rk×N are defined byW [`,m] =

`m and P [m,n] = pm,n. Hence, rank(X̃
(1)

L ) ≤ k.

By Theorem 20 (in Appendix E.3), the Chebyshev interpolating polynomial satisfies

|gn(t)− Pk,n(t)| ≤ (L1 − 1)k

22k−1k!
max

ξ∈[−L1,−1]

∣∣g(k)
n (ξ)

∣∣ for all t ∈ [−L1,−1].

Also, by Lemma 19 (in Appendix E.3), the derivatives of the unshifted sinc-function g(t)

can be bounded by

∣∣g(k)(t)
∣∣ ≤ (2πW )k min

{
2W

k + 1
,

2

π|t|

}
for all t ∈ R.
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Hence, for any ` ∈ I(1)
L and n ∈ [N ], we have

∣∣∣X(1)
L [`, n]− X̃

(1)

L [`, n]
∣∣∣ = |gn(`)− Pk,n(`)|

≤ (L1 − 1)k

22k−1k!
max

ξ∈[−L1,−1]

∣∣g(k)
n (ξ)

∣∣
=

(L1 − 1)k

22k−1k!
max

ξ∈[−L1,−1]

∣∣g(k)(ξ − n)
∣∣

=
(L1 − 1)k

22k−1k!
max

t∈[−L1−n,−n−1]

∣∣g(k)(t)
∣∣

≤ (L1 − 1)k

22k−1k!
max

t∈[−L1−n,−n−1]
(2πW )k min

{
2W

k + 1
,

2

π|t|

}
=

(L1 − 1)k

22k−1k!
(2πW )k min

{
2W

k + 1
,

2

π(n+ 1)

}
=

4(π
2
W (L1 − 1))k

k!
min

{
W

k + 1
,

1

π(n+ 1)

}
.

We proceed to bound the Frobenius norm ofX(1)
L − X̃

(1)

L . Set N1 =
⌊
k+1
πW

⌋
. Then,

∥∥∥X(1)
L − X̃

(1)

L

∥∥∥2

F
=

N−1∑
n=0

−1∑
`=−L1

∣∣∣X(1)
L [`, n]− X̃

(1)

L [`, n]
∣∣∣2

≤
N−1∑
n=0

−1∑
`=−L1

16(π
2
W (L1 − 1))2k

(k!)2
min

{
W 2

(k + 1)2
,

1

π2(n+ 1)2

}

=
N−1∑
n=0

16L1(π
2
W (L1 − 1))2k

(k!)2
min

{
W 2

(k + 1)2
,

1

π2(n+ 1)2

}
≤

∞∑
n=0

16L1(π
2
W (L1 − 1))2k

(k!)2
min

{
W 2

(k + 1)2
,

1

π2(n+ 1)2

}

≤
16L1(π

2
W (L1 − 1))2k

(k!)2

[
N1−1∑
n=0

W 2

(k + 1)2
+

∞∑
n=N1

1

π2(n+ 1)2

]

≤
16L1(π

2
W (L1 − 1))2k

(k!)2

[
W 2N1

(k + 1)2
+

1

π2N1

]
,

where the last line follows from the bound
∑∞

n=N1

1
(n+1)2 ≤ 1

N1
.
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We proceed to weaken this result to obtain a more usable upper bound as follows:

∥∥∥X(1)
L − X̃

(1)

L

∥∥∥2

F
≤

16L1(π
2
W (L1 − 1))2k

(k!)2

[
W 2N1

(k + 1)2
+

1

π2N1

]
≤

16(L1 − 1)(π
2
WL1)2k

(k!)2

[
W 2N1

(k + 1)2
+

1

π2N1

]
=

16(π
2
WL1)2k

(k!)2

[
W 2(L1 − 1)N1

(k + 1)2
+
L1 − 1

π2N1

]
≤

16(π
2
WL1)2k

(k!)2

[
W 2N1L1

(k + 1)2
+

L1

π2(N1 + 1)

]
≤

16(π
2
W · 1

4W
)2k

(k!)2

[
W 2 · k+1

πW
· 1

4W

(k + 1)2
+

1
4W

π2 · k+1
πW

]

=
8

π(k + 1)(k!)2

(π
8

)2k

≤ 5600

π

( π
48

)2k

.

The 2nd line follows from the inequalities (L1 − 1)2k ≤ L2k
1 and L1(L1 − 1)2k ≤ (L1 −

1)L2k
1 . The 4th line holds since L1−1

N1
≤ L1

N1+1
is equivalent to L1 ≤ N1 + 1, which is true

since L1 ≤
⌊

1
4W

⌋
≤ 1

4W
< k+1

πW
≤
⌊
k+1
πW

⌋
+ 1 = N1 + 1. The last line holds due to the fact

that (k + 1)(k!)2 ≥ 1
700

62k for all integers k ≥ 0.

Since rank(X̃
(1)

L ) ≤ k, we have σk+1(X̃
(1)

L ) = 0. Hence, we can bound

σk+1(X
(1)
L ) =

∣∣∣σk+1(X
(1)
L )− σk+1(X̃

(1)

L )
∣∣∣

≤
∥∥∥X(1)

L − X̃
(1)

L

∥∥∥
≤
∥∥∥X(1)

L − X̃
(1)

L

∥∥∥
F

≤
√

5600

π

( π
48

)k
.

Singular values ofX(2)
L

We can exploit the symmetry between X(2)
L and X(1)

L to show that the singular values of

X̃
(2)

L are the same as those of X̃
(1)

L . Specifically, for any indices ` ∈ I(2)
L and n ∈ [N ], we

123



have that N − 1− ` ∈ I(1)
L and N − 1− n ∈ [N ], and that

X
(2)
L [`, n] =

sin[2πW (`− n)]

π(`− n)

=
sin[2πW ((N − 1− `)− (N − 1− n))]

π((N − 1− `)− (N − 1− n))

= X
(1)
L [N − 1− `,N − 1− n].

Since the singular values of a matrix are invariant under permutations of rows/columns,

σk+1(X
(2)
L ) = σk+1(X

(1)
L ) ≤

√
5600

π

( π
48

)k
for all integers k ≥ 0.

Singular values ofXL

Due to the way we partitionedXL into three submatrices, we have

X∗LXL = X
(0)∗
L X

(0)
L +X

(1)∗
L X

(1)
L +X

(2)∗
L X

(2)
L .

Then, by using the Weyl eigenvalue inequalities along with the bounds on the singular

values ofX(0)
L ,X(1)

L , andX(2)
L , we have

σ2k0+2k+1(XL)2 = µ2k0+2k+1(X∗LXL)

≤ µ2k0+1(X
(0)∗
L X

(0)
L ) + µk+1(X

(1)∗
L X

(1)
L ) + µk+1(X

(2)∗
L X

(2)
L )

= σ2k0+1(X
(0)
L )2 + σk+1(X

(1)
L )2 + σk+1(X

(2)
L )2

≤ 4 exp

[
− π2k0

log(16NW + 4)

]
+

5600

π

( π
48

)2k

+
5600

π

( π
48

)2k

= 4 exp

[
− π2k0

log(16NW + 4)

]
+

11200

π

( π
48

)2k

for any integers k0 ≥ 0 and k ≥ 1.
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If we set

k0 =

⌈
1

π2
log(16NW + 4) log

(
5

ε(1− ε)

)⌉
and

k =

⌈
1

2 log(48
π

)
log

( 56000
π

ε(1− ε)

)⌉
then we obtain

σ2k0+2k+1(XL)2 ≤ 4 exp

[
− π2k0

log(16NW + 4)

]
+

11200

π

( π
48

)2k

≤ 4ε(1− ε)
5

+
ε(1− ε)

5

= ε(1− ε),

i.e., σ2k0+2k+1(XL) ≤
√
ε(1− ε). Our steps hold for all L ≥ L1 + 1.

This proves the second property of Lemma 3 for r = 2k0 + 2k and L0 = L1 + 1.

Therefore, #{k : ε < λk < 1− ε} ≤ 2k0 + 2k. We can loosen this bound to make it more

“user friendly” as follows:

#{k : ε < λk < 1− ε}

≤ 2

⌈
1

π2
log(16NW + 4) log

(
5

ε(1− ε)

)⌉
+ 2

⌈
1

2 log(48
π

)
log

( 56000
π

ε(1− ε)

)⌉
≤ 2

π2
log(16NW + 4) log

(
5

ε(1− ε)

)
+

1

log(48
π

)
log

( 56000
π

ε(1− ε)

)
+ 4

=
2

π2
log(16NW + 4) log

(
5

ε(1− ε)

)
+

1

log(48
π

)
log

(
5

ε(1− ε)

)
+

log
(

11200
π

)
log(48

π
)

+ 4

=

(
2

π2
log(16NW + 4) +

1

log(48
π

)

)
log

(
5

ε(1− ε)

)
+

log
(

11200
π

)
log(48

π
)

+ 4

=
2

π2
log

(
exp

(
π2

2 log(
48
π

)

)
(16NW + 4)

)
log

(
5

ε(1− ε)

)
+

log
(

11200
π

)
log(48

π
)

+ 4

≤ 2

π2
log(100NW + 25) log

(
5

ε(1− ε)

)
+ 7,

which establishes Theorem 2.
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A.2 Proof of DPSS Eigenvalue Bounds (Corollaries 1 and 2)

First, we state a result from [7] which bounds λk for two values of k near 2NW .

Lemma 4. For any N ∈ N and W ∈ (0, 1
2
),

λb2NW c−1 ≥
1

2
≥ λd2NW e.

To derive bounds on λk, we will set ε such that the transition region is too narrow

to contain k, and thus conclude either λk ≥ 1 − ε (if k ≤ b2NW c − 1) or λk ≤ ε (if

k ≥ d2NW e). To derive bounds on
∑K−1

k=0 (1 − λk) and
∑N−1

k=K λk, we will simply apply

the bounds on λk and the formula for the sum of a geometric series.

A.2.1 Lower bounds on λk for k ≤ b2NW c − 1

For any integer k such that 0 ≤ k ≤ b2NW c − 1, set

ε = 8 exp

[
−b2NW c − k − 2

2
π2 log(4N)

]
,

and suppose for sake of contradiction that λk < 1− ε.

By using the assumption k ≤ b2NW c − 1 and Lemma 4, we have 1
2
≤ λb2NW c−1 ≤

λk < 1 − ε, i.e., ε < 1
2
. Therefore, ε < 1

2
≤ λb2NW c−1 ≤ λk < 1 − ε, i.e. both k and

b2NW c − 1 are in the transition region {k′ : ε < λk′ < 1 − ε}, and thus, so are all the

indices k′ between k and b2NW c − 1. Hence,

#{k′ : ε < λk′ < 1− ε} ≥ #{k′ : k ≤ k′ ≤ b2NW c − 1} = b2NW c − k.
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However, since ε < 1
2
, by Theorem 1 we have

#{k′ : ε < λk′ < 1− ε} ≤ 2

⌈
1

π2
log(4N) log

(
4

ε(1− ε)

)⌉
<

2

π2
log(4N) log

(
8

ε

)
+ 2

= b2NW c − k.

This is a contradiction. Therefore,

λk ≥ 1− ε = 1− 8 exp

[
−b2NW c − k − 2

2
π2 log(4N)

]
for 0 ≤ k ≤ b2NW c − 1.

In a similar manner, we can assume λk < 1− ε, where

ε = 10 exp

[
− b2NW c − k − 7

2
π2 log(100NW + 25)

]
,

and then invoke Theorem 2 to obtain a contradiction. Therefore,

λk ≥ 1− ε = 1− 10 exp

[
− b2NW c − k − 7

2
π2 log(100NW + 25)

]
for 0 ≤ k ≤ b2NW c − 1.

Combining these two bounds establishes the first part of Corollary 1.

A.2.2 Upper bounds on λk for k ≥ d2NW e

For any integer k such that d2NW e ≤ k ≤ N − 1, set

ε = 8 exp

[
−k − d2NW e − 1

2
π2 log(4N)

]
,

and suppose for sake of contradiction that λk > ε.

By using the assumption k ≥ d2NW e and Lemma 4, we have ε < λk ≤ λd2NW e ≤ 1
2
,

i.e., ε < 1
2
. Therefore, ε < λk ≤ λd2NW e ≤ 1

2
< 1 − ε, i.e., both k and d2NW e are in the
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transition region {k′ : ε < λk′ < 1 − ε}, and thus, so are all the indices k′ between k and

d2NW e. Hence,

#{k′ : ε < λk′ < 1− ε} ≥ #{k′ : d2NW e ≤ k′ ≤ k} = k − d2NW e+ 1.

However, since ε < 1
2
, by Theorem 1 we have

#{k′ : ε < λk′ < 1− ε} ≤ 2

⌈
1

π2
log(4N) log

(
4

ε(1− ε)

)⌉
<

2

π2
log(4N) log

(
8

ε

)
+ 2

= k − d2NW e+ 1.

This is a contradiction. Therefore,

λk ≤ ε = 8 exp

[
−k − d2NW e − 1

2
π2 log(4N)

]
for d2NW e ≤ k ≤ N − 1.

In a similar manner, we can assume λk > ε, where

ε = 10 exp

[
− k − d2NW e − 6

2
π2 log(100NW + 25)

]
,

and then invoke Theorem 2 to obtain a contradiction. Therefore,

λk ≤ ε = 10 exp

[
− k − d2NW e − 6

2
π2 log(100NW + 25)

]
for d2NW e ≤ k ≤ N − 1.

Combining these two bounds establishes the second part of Corollary 1.
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A.2.3 Bounds on
∑K−1

k=0 (1− λk) for K ≤ b2NW c

For any integer K such that 1 ≤ K ≤ b2NW c, we can apply the first part of the lower

bound for λk in Corollary 1 along with the inequality e−x

1−e−x ≤
1
x

for x > 0 to obtain

K−1∑
k=0

(1− λk) ≤
K−1∑
k=0

8 exp

[
−b2NW c − k − 2

2
π2 log(4N)

]

≤
K−1∑
k=−∞

8 exp

[
−b2NW c − k − 2

2
π2 log(4N)

]

=

8 exp

[
−b2NW c −K − 1

2
π2 log(4N)

]
1− exp

[
− 1

2
π2 log(4N)

]
≤ 16

π2
log(4N) exp

[
−b2NW c −K − 2

2
π2 log(4N)

]
.

In a similar manner, we can apply the second part of the lower bound for λk in Corol-

lary 1 instead of the first part of the lower bound to obtain

K−1∑
k=0

(1− λk) ≤
K−1∑
k=0

10 exp

[
− b2NW c − k − 7

2
π2 log(100NW + 25)

]

≤
K−1∑
k=−∞

8 exp

[
− b2NW c − k − 7

2
π2 log(100NW + 25)

]

=

8 exp

[
− b2NW c −K − 6

2
π2 log(100NW + 25)

]
1− exp

[
− 1

2
π2 log(100NW + 25)

]
≤ 20

π2
log(100NW + 25) exp

[
− b2NW c −K − 7

2
π2 log(100NW + 25)

]
.

Combining these two bounds establishes the first part of Corollary 2.
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A.2.4 Bounds on
∑N−1

k=K λk for K ≥ d2NW e

For any integer K such that d2NW e ≤ K ≤ N−1, we can apply the first part of the upper

bound for λk in Corollary 1 along with the inequality e−x

1−e−x ≤
1
x

for x > 0 to obtain

N−1∑
k=K

λk ≤
N−1∑
k=K

8 exp

[
−k − d2NW e − 1

2
π2 log(4N)

]
≤

∞∑
k=K

8 exp

[
−k − d2NW e − 1

2
π2 log(4N)

]

=

8 exp

[
−K − d2NW e − 1

2
π2 log(4N)

]
1− exp

[
− 1

2
π2 log(4N)

]
≤ 16

π2
log(4N) exp

[
−K − d2NW e − 2

2
π2 log(4N)

]
.

In a similar manner, we can apply the second part of the upper bound for λk in Corol-

lary 1 instead of the first part of the upper bound to obtain

N−1∑
k=K

λk ≤
N−1∑
k=K

10 exp

[
− k − d2NW e − 6

2
π2 log(100NW + 25)

]
≤

∞∑
k=K

10 exp

[
− k − d2NW e − 6

2
π2 log(100NW + 25)

]

=

10 exp

[
− K − d2NW e − 6

2
π2 log(100NW + 25)

]
1− exp

[
− 1

2
π2 log(100NW + 25)

]
≤ 20

π2
log(100NW + 25) exp

[
− K − d2NW e − 7

2
π2 log(100NW + 25)

]
.

Combining these two bounds establishes the second part of Corollary 2.
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A.3 Proof of PSWF Eigenvalue Bounds

First, we state a result by Boulsane, Bourguiba, and Karoui [88] which quantifies how close

the PSWF eigenvalues are to DPSS eigenvalues with the same time-bandwidth product.

Lemma 5. For any N ∈ N and W ∈ (0, 1
2
),

(
∞∑
k=0

∣∣∣λk(N,W )− λ̃k(πNW )
∣∣∣2)1/2

≤ 4π2W 3

3 sin(2πW )
,

where we define λk(N,W ) = 0 for k ≥ N for ease of notation.

In particular, we note that this implies

∣∣∣λk (N, c

πN

)
− λ̃k(c)

∣∣∣ ≤ ( ∞∑
k=0

∣∣∣λk (N, c

πN

)
− λ̃k(c)

∣∣∣2)1/2

≤ δc,N :=
4c3

3πN3 sin(2c
N

)

for all c > 0 and all integers N > 2c
π

and k ≥ 0. Also, for any c > 0, we have δc,N ↘ 0 as

N →∞, and thus,

lim
N→∞

λk(N,
c

πN
) = λ̃k(c).

A.3.1 Proof of Theorem 3

Since
∣∣∣λk (N, c

πN

)
− λ̃k(c)

∣∣∣ ≤ δc,N , we have

ε < λ̃k(c) < 1− ε =⇒ ε− δc,N < λk

(
N,

c

πN

)
< 1− ε+ δc,N

for all integers k ≥ 0. For sufficiently large N , δc,N < ε and so, we may apply Theorem 2

for W = c
πN

to obtain

#
{
k : ε < λ̃k(c) < 1− ε

}
≤ #

{
k : ε− δc,N < λk

(
N,

c

πN

)
< 1− ε+ δc,N

}
≤ 2

π2
log

(
100c

π
+ 25

)
log

(
5

(ε− δc,N)(1− ε+ δc,N)

)
+ 7.
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Since this bound holds for all sufficiently large N , we may take the limit as N → ∞ to

obtain

#
{
k : ε < λ̃k(c) < 1− ε

}
≤ lim

N→∞

[
2

π2
log

(
100c

π
+ 25

)
log

(
5

(ε− δc,N)(1− ε+ δc,N)

)
+ 7

]
≤ 2

π2
log

(
100c

π
+ 25

)
log

(
5

ε(1− ε)

)
+ 7.

A.3.2 Proof of PSWF eigenvalue bounds (Corollary 3)

For any 0 ≤ k ≤
⌊

2c
π

⌋
− 1, we can apply Corollary 1 for any N > 2c

π
and W = c

πN
to

obtain

λk

(
N,

c

πN

)
≥ 1− 10 exp

[
−

⌊
2c
π

⌋
− k − 7

2
π2 log

(
100c
π

+ 25
)] .

Since this holds for all N > 2c
π

, we have

λ̃k(c) = lim
N→∞

λk

(
N,

c

πN

)
≥ 1− 10 exp

[
−

⌊
2c
π

⌋
− k − 7

2
π2 log

(
100c
π

+ 25
)] .

Similarly, for any k ≥
⌈

2c
π

⌉
, we can apply Corollary 1 for any N > k and W = c

πN
to

obtain and

λk

(
N,

c

πN

)
≤ 10 exp

[
−

k −
⌈

2c
π

⌉
− 6

2
π2 log

(
100c
π

+ 25
)] .

Since this holds for all N > k, we have

λ̃k(c) = lim
N→∞

λk

(
N,

c

πN

)
≤ 10 exp

[
−

k −
⌈

2c
π

⌉
− 6

2
π2 log

(
100c
π

+ 25
)] .
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A.3.3 Proof of PSWF eigenvalue sum bounds (Corollary 4)

For any integer K such that 1 ≤ K ≤
⌊

2c
π

⌋
, we can apply the lower bound for λ̃k(c) in

Corollary 3 along with the inequality e−x

1−e−x ≤
1
x

for x > 0 to obtain

K−1∑
k=0

(
1− λ̃k(c)

)
≤

K−1∑
k=0

10 exp

[
−

⌊
2c
π

⌋
− k − 7

2
π2 log

(
100c
π

+ 25
)]

≤
K−1∑
k=−∞

10 exp

[
−

⌊
2c
π

⌋
− k − 7

2
π2 log

(
100c
π

+ 25
)]

=

10 exp

[
−

⌊
2c
π

⌋
− k − 6

2
π2 log

(
100c
π

+ 25
)]

1− exp

[
− 1

2
π2 log

(
100c
π

+ 25
)]

≤ 20

π2
log

(
100c

π
+ 25

)
exp

[
−

⌊
2c
π

⌋
−K − 7

2
π2 log

(
100c
π

+ 25
)] .

Similarly, for any integer K ≥
⌈

2c
π

⌉
, we can apply the upper bound for λ̃k(c) in Corol-

lary 3 along with the inequality e−x

1−e−x ≤
1
x

for x > 0 to obtain

∞∑
k=K

λ̃k(c) ≤
∞∑
k=K

10 exp

[
−

k −
⌈

2c
π

⌉
− 6

2
π2 log

(
100c
π

+ 25
)]

=

10 exp

[
−

k −
⌈

2c
π

⌉
− 6

2
π2 log

(
100c
π

+ 25
)]

1− exp

[
− 1

2
π2 log

(
100c
π

+ 25
)]

≤ 20

π2
log

(
100c

π
+ 25

)
exp

[
−

K −
⌈

2c
π

⌉
− 7

2
π2 log

(
100c
π

+ 25
)] .
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APPENDIX B

PROOFS FOR CHAPTER 4

B.1 Proof of Theorem 4

Denote the eigendecomposition of the prolate matrix to beB = SΛS∗ where

S =

[
s0 s1 · · · sN−1

]
∈ RN×N

is the matrix containing the Slepian basis eigenvectors and

Λ = diag(λ0, λ1, . . . , λN−1) ∈ RN×N

is the diagonal matrix containing the Slepian basis eigenvalues. For any set I ⊆ [N ],

we will define SI ∈ RN×#(I) to be the submatrix of S which contains the columns sk

for k ∈ I sorted in ascending order of k, and we will define ΛI ∈ R#(I)×#(I) to be the

diagonal submatrix of Λ which contains the eigenvalues λk for k ∈ I sorted in ascending

order of k.

B.1.1 Proof of Theorem 4a

Since K ∈ [N ] satisfies λK−1 > ε and λK < 1 − ε, we can partition the indices [N ] as

follows:

I1 = {k ∈ [K] : λk ≥ 1− ε}

I2 = {k ∈ [K] : ε < λk < 1− ε}

I3 = {k ∈ [N ] \ [K] : ε < λk < 1− ε}

I4 = {k ∈ [N ] \ [K] : λk ≤ ε}.
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Then, we can write

B = SΛS∗ = SI1ΛI1S
∗
I1 + SI2ΛI2S

∗
I2 + SI3ΛI3S

∗
I3 + SI4ΛI4S

∗
I4 ,

SKS
∗
K = SI1S

∗
I1 + SI2S

∗
I2 ,

Sε =

[
SI2 SI3

]
.

By defining

D1 =

I−ΛI2 0

0 −ΛI3

 ,
we have,

SεD1S
∗
ε = SI2 (I−ΛI2)S∗I2 − SI3ΛI3S

∗
I3 .

Hence,

SKS
∗
K − (B + SεD1S

∗
ε) =

(
SI1S

∗
I1 + SI2S

∗
I2

)
−
(
SI1ΛI1S

∗
I1 + SI2ΛI2S

∗
I2 + SI3ΛI3S

∗
I3 + SI4ΛI4S

∗
I4

)
−
(
SI2 (I−ΛI2)S∗I2 − SI3ΛI3S

∗
I3

)
= SI1 (I−ΛI1)S∗I1 − SI4ΛI4S

∗
I4

For all k ∈ I1, we have 1− ε ≤ λk ≤ 1, and thus 0 ≤ 1− λk ≤ ε. Hence, ‖I−ΛI1‖ ≤ ε.

For all k ∈ I4, we have 0 ≤ λk ≤ ε. Hence, ‖ΛI4‖ ≤ ε. Then, since
[
SI1 SI4

]
has

orthonormal columns, we have that

‖SKS∗K − (B + SεD1S
∗
ε)‖ = ‖SI1 (I−ΛI1)S∗I1 − SI4ΛI4S

∗
I4‖

= max{‖I−ΛI1‖, ‖ΛI4‖}

≤ ε.
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B.1.2 Proof of Theorem 4b

Partition [N ] into I1, I2, I3, I4 as done in the previous subsection. Then, we can write

B = SΛS∗ = SI1ΛI1S
∗
I1 + SI2ΛI2S

∗
I2 + SI3ΛI3S

∗
I3 + SI4ΛI4S

∗
I4 ,

SKΛ−1
K S

∗
K = SI1Λ

−1
I1 S

∗
I1 + SI2Λ

−1
I2 S

∗
I2

Sε =

[
SI2 SI3

]
.

By defining

D2 =

Λ−1
I2 −ΛI2 0

0 −ΛI3

 ,
we have,

SεD2S
∗
ε = SI2

(
Λ−1
I2 −ΛI2

)
S∗I2 − SI3ΛI3S

∗
I3 .

Hence,

SKΛ−1
K S

∗
K − (B + SεD2S

∗
ε)

=
(
SI1Λ

−1
I1 S

∗
I1 + SI2Λ

−1
I2 S

∗
I2

)
−
(
SI1ΛI1S

∗
I1 + SI2ΛI2S

∗
I2 + SI3ΛI3S

∗
I3 + SI4ΛI4S

∗
I4

)
−
(
SI2

(
Λ−1
I2 −ΛI2

)
S∗I2 − SI3ΛI3S

∗
I3

)
= SI1

(
Λ−1
I1 −ΛI1

)
S∗I1 − SI4ΛI4S

∗
I4

For all k ∈ I1, we have 1 − ε ≤ λk ≤ 1, and so 1 ≤ 1
λk
≤ 1

1−ε . Hence, 0 ≤ 1
λk
− λk ≤

1
1−ε − (1− ε) ≤ ε

1−ε + ε ≤ 2ε+ ε = 3ε (because 0 < ε < 1
2
), and thus, ‖Λ−1

I1 −ΛI1‖ ≤ 3ε.

For all k ∈ I4, we have 0 ≤ λk ≤ ε. Hence, ‖ΛI4‖ ≤ ε. Then, since
[
SI1 SI4

]
has
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orthonormal columns, we have that

‖SKS∗K − (B + SεD2S
∗
ε)‖ = ‖SI1

(
Λ−1
I1 −ΛI1

)
S∗I1 − SI4ΛI4S

∗
I4‖

= max{‖Λ−1
I1 −ΛI1‖, ‖ΛI4‖}

≤ 3ε.

B.1.3 Proof of Theorem 4c

Partition [N ] into two sets as follows:

I1 = {k ∈ [N ] : λk ≥ 1− ε or λk ≤ ε}

I2 = {k ∈ [N ] : ε < λk < 1− ε}

Then, we can write

B = SΛS∗ = SI1ΛI1S
∗
I1 + SI2ΛI2S

∗
I2 ,

(B2 + αI)−1B = SI1
(
Λ2
I1 + αI

)−1
ΛI1S

∗
I1 + SI2

(
Λ2
I2 + αI

)−1
ΛI2S

∗
I2 ,

Sε = SI2 .

By defining

D3 =
(
Λ2
I2 + αI

)−1
ΛI2 −

1

1 + α
ΛI2

we have,

SεD3S
∗
ε = SI2

((
Λ2
I2 + αI

)−1
ΛI2 −

1

1 + α
ΛI2

)
S∗I2
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Hence,

(B2 + αI)−1B −
(

1

1 + α
B + SεD3S

∗
ε

)
=
(
SI1

(
Λ2
I1 + αI

)−1
ΛI1S

∗
I1 + SI2

(
Λ2
I2 + αI

)−1
ΛI2S

∗
I2

)
− 1

1 + α

(
SI1ΛI1S

∗
I1 + SI2ΛI2S

∗
I2

)
−
(
SI2

((
Λ2
I2 + αI

)−1
ΛI2 −

1

1 + α
ΛI2

)
S∗I2

)
= SI1

((
Λ2
I1 + αI

)−1
ΛI1 −

1

1 + α
ΛI1

)
S∗I1

The matrix
(
Λ2
I1 + αI

)−1
ΛI1 − 1

1+α
ΛI1 is diagonal with entries of the form

λk
λ2
k + α

− λk
1 + α

=
λk − λ3

k

(1 + α)(λ2
k + α)

.

For k ∈ I1 such that 1− ε ≤ λk ≤ 1, we have

0 ≤ λk − λ3
k

(1 + α)(λ2
k + α)

=
(1− λk)(λ2

k + λk)

(1 + α)(λ2
k + α)

≤ 1− λk
1 + α

· λ2
k + λk

αλ2
k + αλk

≤ ε

1 + α
· 1

α
≤ ε

α
.

For k ∈ I1 such that 0 ≤ λk ≤ ε, we have

0 ≤ λk − λ3
k

(1 + α)(λ2
k + α)

=
λk(1− λ2

k)

(1 + α)(λ2
k + α)

≤ ε · 1
(1 + α) · α

≤ ε

α
.

Hence, all the diagonal entries are between 0 and ε
α

, and thus,

∥∥∥(Λ2
I1 + αI

)−1
ΛI1 − 1

1+α
ΛI1

∥∥∥ ≤ ε

α
.
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Finally,

∥∥∥∥(B2 + αI)−1B −
(

1

1 + α
B + SεD3S

∗
ε

)∥∥∥∥
=

∥∥∥∥SI1 ((Λ2
I1 + αI

)−1
ΛI1 −

1

1 + α
ΛI1

)
S∗I1

∥∥∥∥
=
∥∥∥(Λ2

I1 + αI
)−1

ΛI1 − 1
1+α

ΛI1

∥∥∥
≤ ε

α
.

B.2 Proof of Theorem 5

Our goal is to show thatB − FWF
∗
W is well-approximated as a factored low rank matrix.

To do this, we will express B − FWF
∗
W in terms of other matrices, whose entries also

have a closed form. We will then derive a factored low rank approximation for each of

these other matrices. Finally, we will combine these low rank approximations to get a

factored low rank approximation forB − FWF
∗
W .

For convenience, set W ′ = 2bNW c+1
2N

. We letA0,B0 ∈ RN×N be defined by

A0[m,n] =


1

π(m− n)
− 1

N sin
(
πm−n

N

) if m 6= n,

0 if m = n,

and

B0[m,n] =
2 sin(π(W −W ′)(m− n))

π(m− n)
for m,n ∈ [N ].

Also, we let DA ∈ CN×N and DB ∈ CN×N be diagonal matrices with diagonal entries

DA[n, n] = ej2πW
′n andDB[n, n] = ej(W+W ′)n for n ∈ [N ].
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With these definitions, we can write the (m,n)-th entry ofB − FWF
∗
W as

(B − FWF
∗
W )[m,n]

=
sin(2πW (m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

=
sin(2πW (m− n))

π(m− n)
− sin(2πW ′(m− n))

π(m− n)
+

sin(2πW ′(m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

=
2 sin(π(W −W ′)(m− n)) cos(π(W +W ′)(m− n))

π(m− n)

+
sin(2πW ′(m− n))

π(m− n)
− sin(2πW ′(m− n))

N sin(πm−n
N

)

= B0[m,n] cos(π(W +W ′)(m− n)) +A0[m,n] sin(2πW ′(m− n))

=
1

2
ejπ(W+W ′)mB0[m,n]e−jπ(W+W ′)n +

1

2
e−jπ(W+W ′)mB0[m,n]ejπ(W+W ′)n

+
1

2j
ej2πW

′mA0[m,n]e−j2πW
′n − 1

2j
e−j2πW

′mA0[m,n]ej2πW
′n

=
1

2
DB[m,m]B0[m,n]DB[n, n] +

1

2
DB[m,m]B0[m,n]DB[n, n]

+
1

2j
DA[m,m]A0[m,n]DA[n, n]− 1

2j
DA[m,m]A0[m,n]DA[n, n]

=

[
1

2
DBB0D

∗
B +

1

2
D∗BB0DB +

1

2j
DAA0D

∗
A −

1

2j
D∗AA0DA

]
[m,n].

Hence,

B − FWF
∗
W =

1

2j
DAA0D

∗
A −

1

2j
D∗AA0DA +

1

2
DBB0D

∗
B +

1

2
D∗BB0DB. (B.1)

Thus, we can find a low-rank approximation forB−FWF
∗
W by finding low-rank approx-

imations forA0 andB0.

In order to do so, we now defineA1 ∈ RN×N by

A1[m,n] =


A0[m,n]− 1

π(m− n+N)
− 1

π(m− n−N)
if m 6= n,

0 if m = n.
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Next, we letH ∈ RN×N denote the Hilbert matrix, which has entries

H [m,n] =
1

m+ n+ 1
for m,n ∈ [N ],

and let J ∈ RN×N be the so-called exchange matrix, i.e.

J [m,n] =


1 if m+ n = N − 1

0 otherwise.

Note that for an arbitrary X ∈ RN×N , JX is simply X flipped vertically and XJ is X

flipped horizontally. Using these definitions, we can writeA0 as

A0 =
1

π
(HJ − JH) +A1. (B.2)

By combining (B.1) and (B.2), we get

BN,W − FN,WF
∗
N,W

=
1

2j
DA

[
1

π
(HJ − JH) +A1

]
D∗A −

1

2j
D∗A

[
1

π
(HJ − JH) +A1

]
DA

+
1

2
DBB0D

∗
B +

1

2
D∗BB0DB.

(B.3)

Therefore, we can come up with a factored low rank approximation for B − FWF
∗
W by

first deriving factored low rank approximations for each of the matricesH ,A1, andB0.

Low rank approximation ofH

Our goal is to construct a factored low-rank matrix H̃ ∈ RN×N such that ‖H − H̃‖ ≤ δH

for some desired δH > 0. To do this, we show that the Hilbert matrix H is the solution

to a Lyapunov equation. Then, we use Lemma 20 (proven in Section E.4) to construct a

low-rank approximation toH .
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Let A ∈ RN×N be the diagonal matrix with diagonal entries A[n, n] = n + 1
2

for

n ∈ [N ], and let U ∈ RN be a vector of all ones. It is easy to verify that the positive

definite solution X to AX + XA∗ = UU ∗ is simply X = H . The minimum and

maximum eigenvalues ofA are λmin(A) = 1
2

and λmax(A) = N− 1
2
, and thus the condition

number forA is κ = 2N − 1. Thus, by applying Lemma 20 with δ = δH
π

, we can construct

Z ∈ RN×rH with

rH =

⌈
1

π2
log(8N − 4) log

(
4π

δH

)⌉
such that

‖H −ZZ∗‖ ≤ δH
π
‖H‖.

It is shown in [116] that the operator norm of the infinite Hilbert matrix is bounded above by

π, and thus, the finite dimensional matrixH satisfies ‖H‖ ≤ π. Therefore, ‖H−ZZ∗‖ ≤

δH , as desired.

Low rank approximation ofA1

Next, we construct a factored low-rank matrix Ã1 ∈ RN×N such that ‖A1− Ã1‖ ≤ δA for

some desired δA > 0. In this case we will require a different approach. We begin by noting

that by using the Taylor series expansions 1

1

sin πx
− 1

πx
=

2

π

∞∑
k=1

(1− 2−(2k−1))ζ(2k)x2k−1,

and
1

π(x+ 1)
+

1

π(x− 1)
= − 2x

π(1− x2)
= − 2

π

∞∑
k=1

x2k−1,

1Here, ζ(s) :=
∑∞

n=1 n
−s is the Riemann-Zeta function.
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we can write

A1[m,n] =
1

π(m− n)
− 1

N sin
(
πm−n

N

) − 1

π(m− n+N)
− 1

π(m− n−N)

=
2

Nπ

∞∑
k=1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1

.

We can then define an approximation Ã1 ∈ RN×N to A1 by truncating the series to rA

terms:

Ã1[m,n] :=
2

Nπ

rA∑
k=1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1

.

Note that each entry of Ã1 is a polynomial of degree 2rA − 1 in both m and n. Thus, we

can also write

Ã1[m,n] =

2rA−1∑
k=0

2rA−1∑
`=0

ck,`m
kn`,

for some set of coefficients ck,` ∈ R. If we define V A ∈ RN×2rA by V A[m, k] = mk

and define CA ∈ R2rA×2rA by CA[k, `] = ck,`, then it is easy to see that we can write

Ã1 = V ACAV
∗
A. Thus, rank(Ã1) ≤ 2rA.

Next, we note that by using the identity (1 − 21−s)ζ(s) =
∑∞

n=1
(−1)n+1

ns
for s > 1, we

have

0 ≤ 1− (1− 2−(2k−1))ζ(2k) =
∞∑
n=2

(−1)n

n2k
≤ 1

22k
,

where the inequality follows from the fact that this is an alternating series whose terms

decrease in magnitude. Hence, we can bound the truncation error |A1[m,n] − Ã1[m,n]|
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by

|A1[m,n]− Ã1[m,n]| =

∣∣∣∣∣ 2

Nπ

∞∑
k=rA+1

[
1− (1− 2−(2k−1))ζ(2k)

](m− n
N

)2k−1
∣∣∣∣∣

≤ 2

Nπ

∞∑
k=rA+1

[
1− (1− 2−(2k−1))ζ(2k)

] ∣∣∣∣m− nN

∣∣∣∣2k−1

≤ 2

Nπ

∞∑
k=rA+1

1

22k
· 1

=
2

3Nπ

(
1

2

)2rA

.

Therefore, the error ‖A1 − Ã1‖2
F is bounded by:

‖A1−Ã1‖2
F =

N−1∑
m=0

N−1∑
n=0

|A1[m,n]−Ã1[m,n]|2 ≤ N ·N ·

[
2

3Nπ

(
1

2

)2rA
]2

=
4

9π2

(
1

2

)4rA

.

Hence,

‖A1 − Ã1‖ ≤ ‖A1 − Ã1‖F ≤
2

3π

(
1

2

)2rA

.

So for any δA ∈ (0, 8
3π

), we can set rA =
⌈

1
2 log 2

log
(

2
3πδA

)⌉
to ensure ‖A1 − Ã1‖ ≤ δA

and

rank(Ã1) ≤ 2

⌈
1

2 log 2
log

(
2

3πδA

)⌉
.

Low rank approximation ofB0

To construct a factored low-rank matrix B̃0 ∈ RN×N such that ‖B0− B̃0‖ ≤ δB for some

desired δB > 0, we use a similar approach as above. Using the Taylor series

sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
,
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we can write

B0[m,n] =
2 sin(π(W −W ′)(m− n))

π(m− n)

=
∞∑
k=0

2(−1)k[π(W −W ′)(m− n)]2k+1

(2k + 1)!π(m− n)

=
2

Nπ

∞∑
k=0

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k

.

We can then define a new matrix B̃0 ∈ RN×N by truncating the series to rB terms:

B̃0[m,n] :=
2

Nπ

rB−1∑
k=0

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k

.

Note that each entry of B̃0 is a polynomial of degree 2rB − 2 in both m and n. Thus, we

could also write

B̃0[m,n] =

2rB−2∑
k=0

2rB−2∑
`=0

c′k,`m
kn`,

for a set of scalars c′k,` ∈ R. If we define V B ∈ RN×(2rB−1) by V B[m, k] = mk and

define CB ∈ R(2rB−1)×(2rB−1) by CB[k, `] = c′k,`, then it is easy to see that we can write

B̃0 = V BCBV
∗
B. Thus, rank(B̃0) ≤ 2rB − 1.

Since |π(W − W ′)N | =
∣∣∣π (W − 2bNW c+1

2N

)
N
∣∣∣ = π

2
|2NW − 2 bNW c − 1| ≤ π

2
,

and (2k + 1)! ≥ 2
9
· 32k+1 for all integers k ≥ 0, we can bound the truncation error

|B0[m,n]− B̃0[m,n]| by:

|B0[m,n]− B̃0[m,n]| ≤

∣∣∣∣∣ 2

Nπ

∞∑
k=rB

(−1)k[π(W −W ′)N ]2k+1

(2k + 1)!

(
m− n
N

)2k
∣∣∣∣∣

≤ 2

Nπ

∣∣∣∣∣(−1)rB [π(W −W ′)N ]2rb+1

(2K + 1)!

(
m− n
N

)2K
∣∣∣∣∣

≤ 2

Nπ

(
π
2

)2rB+1

2
9
· 32rB+1

· 1

=
3

2N

(π
6

)2rB
,
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where we have used the fact that an alternating series whose terms decrease in magnitude

can be bounded by the magnitude of the first term. Thus, the error ‖B0−B̃0‖2
F is bounded

by:

‖B0− B̃0‖2
F =

N−1∑
m=0

N−1∑
n=0

|B0[m,n]− B̃0[m,n]|2 ≤ N ·N ·
[

3

2N

(π
6

)2rB
]2

=
9

4

(π
6

)4rB
.

Hence,

‖B0 − B̃0‖ ≤ ‖B0 − B̃0‖F ≤
3

2

(π
6

)2rB
.

So for any δB ∈ (0, 3
2
), we can set rB =

⌈
1

2 log
6
π

log
(

3
2δB

)⌉
to ensure ‖B0 − B̃0‖ ≤ δB

and

rank(B̃0) ≤ 2

⌈
1

2 log 6
π

log

(
3

2δB

)⌉
− 1.

Putting it all together

Now that we have a way to construct a factored low rank approximation ofH ,A1, andB0,

we will combine those results to derive a factored low rank approximation forB−FWF
∗
W .

For any ε ∈ (0, 1
2
), set2 δH = 4π

15
ε and δA = δB = 7

30
ε. Then, let H̃ = ZZ∗, Ã1 =

V ACAV
∗
A, and B̃0 = V BCBV

∗
B be defined as in the previous subsections. Also, define

∆H = H − H̃ , ∆A = A1 − Ã1, ∆B = B0 − B̃0. By using these definitions along

with (B.3), we can write

B − FWF
∗
W = L+ ∆,

2It may be possible to obtain a slightly better bound via a more careful selection of δA, δB , and δH . We
have not pursued such refinements here as there is not much room for significant improvement.
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where

L =
1

2j
DA

[
1

π
(H̃J − JH̃) + Ã1

]
D∗A −

1

2j
D∗A

[
1

π
(H̃J − JH̃) + Ã1

]
DA

+
1

2
DBB̃0D

∗
B +

1

2
D∗BB̃0DB

=
1

2πj
(DAZZ

∗JD∗A −DAJZZ
∗D∗A −D∗AZZ∗JDA −D∗AJZZ∗DA)

+
1

2j
(DAV ACAV

∗
AD

∗
A −D∗AV ACAV

∗
ADA)

+
1

2
(DBV BCBV

∗
BD

∗
B +D∗BV BCBV

∗
BDB)

and

∆ =
1

2j
DA

[
1

π
(∆HJ − J∆H) + ∆A

]
D∗A −

1

2j
D∗A

[
1

π
(∆HJ − J∆H) + ∆A

]
DA

+
1

2
DB∆BD

∗
B +

1

2
D∗B∆BDB.

If we define

L1 =

[
1

2πj
DAZ − 1

2πj
DAJZ − 1

2πj
D∗AZ

1

2πj
D∗AJZ · · ·

· · · 1

2j
DAV A − 1

2j
D∗AV A

1

2
DBV B

1

2
D∗BV B

]
,

and

L2 = [DAJZ DAZ D∗AJZ D∗AZ · · ·

· · · DAV AC
∗
A D∗AV AC

∗
A DBV BC

∗
B D∗BV BC

∗
B] ,
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then L = L1L
∗
2 and L1,L2 ∈ CN×r′ , where

r′ = 4 · rH + 2 · 2rA + 2 · (2rB − 1)

= 4

⌈
1

π2
log(8N − 4) log

4π

δH

⌉
+ 4

⌈
1

2 log 2
log

2

3πδA

⌉
+ 4

⌈
1

2 log 6
π

log
3

2δB

⌉
− 2

≤ 4

π2
log(8N − 4) log

4π

δH
+

2

log 2
log

2

3πδA
+

2

log 6
π

log
3

2δB
+ 10

=
4

π2
log(8N − 4) log

15

ε
+

2

log 2
log

20

7πε
+

2

log 6
π

log
45

7ε
+ 10

=

(
4

π2
log(8N − 4) +

2

log 2
+

2

log 6
π

)
log

15

ε
+

2

log 2
log

4

21π
+

2

log 6
π

log
3

7
+ 10

≤
(

4

π2
log(8N) + 6

)
log

(
15

ε

)
.

Also, by applying the triangle inequality and the fact that ‖DA‖ = ‖DB‖ = ‖J‖ = 1, we

see that

‖B − (FWF
∗
W +L1L

∗
2)‖ = ‖∆‖

≤ 2

π
‖∆H‖+ ‖∆A‖+ ‖∆B‖

≤ 2

π
δH + δA + δB

=
2

π
· 4πε

15
+

7ε

30
+

7ε

30

= ε.

Together, these two facts establish the theorem.
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APPENDIX C

PROOFS FOR CHAPTER 5

C.1 Proof of Results in Section 5.1

C.1.1 Norms of Gaussian random variables

In this subsection, we develop results on the 2-norm of linear combinations of Gaussian

random variables, which will be critical to our proofs of the theorems in Section 5.1.

First, we state a result from [117] regarding the product of four jointly complex Gaus-

sian vectors.

Lemma 6. [117] Suppose a, b, c,d ∈ CK have a joint complex Gaussian distribution.

Then

E[a∗bc∗d] = E[a∗b]E[c∗d] +E[c∗⊗a∗]E[d⊗b] +E[a∗E[bc∗]d] + 2E[a∗]E[b]E[c∗]E[d],

where ⊗ denotes the Kronecker product.

It should be noted that [117] proves a more general result for the product of four joint

complex Gaussian matrices, but this is a bit harder to state. So we give the result for vectors.

We now prove a result regarding the norm-squared of linear combinations of complex

Gaussians.

Lemma 7. Let x ∼ CN (0,R) for some positive semidefinite R ∈ CN×N and let U ,V ∈

CK×N . Then, we have:

E
[
‖Ux‖2

2

]
= tr[URU ∗] and Cov

[
‖Ux‖2

2 , ‖V x‖
2
2

]
= ‖URV ∗‖2

F .
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Proof. The expectation of ‖Ux‖2
2 can be computed as follows

E
[
‖Ux‖2

2

]
= E [tr [Uxx∗U ∗]] = tr [E [Uxx∗U ∗]] = tr [UE [xx∗]U ∗] = tr [URU ∗] .

Since the entries of x are jointly Gaussian with mean 0, the entries of Ux and V x are

also jointly Gaussian with mean 0. Then, by applying Lemma 6 (with a = b = Ux and

c = d = V x), we find that

Cov
[
‖Ux‖2

2 , ‖V x‖
2
2

]
= E

[
‖Ux‖2

2 · ‖V x‖
2
2

]
− E

[
‖Ux‖2

2

]
E
[
‖V x‖2

2

]
= E [x∗U ∗Uxx∗V ∗V x]− E [x∗U ∗Ux]E [x∗V ∗V x]

= E [x∗V ∗ ⊗ x∗U ∗]E [V x⊗Ux] + E [x∗U ∗E [Uxx∗V ∗]V x]

+ 2E[x∗U ∗]E[Ux]E[x∗V ∗]E[V x].

We proceed to evaluate each of these three terms.

Since x ∼ CN (0,R), we can write x = R1/2y where y ∼ CN (0, I) and R1/2 is

the unique positive semidefinite squareroot of R. Then, by using the identity X1X2 ⊗

X3X4 = (X1 ⊗X3)(X2 ⊗X4) for appropriately sized matrices X1,X2,X3,X4, we

obtain

E[V x⊗Ux] = E
[
V R1/2y ⊗UR1/2y

]
= E

[(
V R1/2 ⊗UR1/2

)
(y ⊗ y)

]
=
(
V R1/2 ⊗UR1/2

)
E[y ⊗ y]

Since the entries of y are i.i.d. CN (0, 1), E [y[n]y[n′]] = 0 for all indices n, n′ ∈ [N ].

(Note that E[y[n]2] 6= 0 if the entries of y were i.i.d. N (0, 1) instead of CN (0, 1).) Hence,

E[y ⊗ y] = 0, and thus, E[V x ⊗ Ux] = (V R1/2 ⊗ UR1/2)E[y ⊗ y] = 0. Similarly,

E[x∗V ∗ ⊗ x∗U ∗] = 0∗, and so, E [x∗V ∗ ⊗ x∗U ∗]E [V x⊗Ux] = 0.
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Using the cyclic property of the trace operator, linearity of the trace and expectation

operators, and the fact that E[xx∗] = R, we find that

E [x∗U ∗E [Uxx∗V ∗]V x] = E [tr [E [Uxx∗V ∗]V xx∗U ∗]]

= tr [E [E [Uxx∗V ∗]V xx∗U ∗]]

= tr [UE [xx∗]V ∗V E [xx∗]U ∗]

= tr [URV ∗V RU ∗]

= ‖URV ∗‖2
F .

Finally, since E[x] = 0, we have E[Ux] = E[V x] = 0 and E[x∗U ∗] = E[x∗V ∗] =

0∗. Hence,

2E[x∗U ∗]E[Ux]E[x∗V ∗]E[V x] = 0.

Adding these three terms yields,

Cov
[
‖Ux‖2

2 , ‖V x‖
2
2

]
= E [x∗V ∗ ⊗ x∗U ∗]E [V x⊗Ux] + E [x∗U ∗E [Uxx∗V ∗]V x]

+ 2E[x∗U ∗]E[Ux]E[x∗V ∗]E[V x].

= ‖URV ∗‖2
F .

C.1.2 Concentration of norms of Gaussian random variables

Next, we state a result from [118] regarding concentration bounds for sums of independent

exponential random variables.

Lemma 8. [118] Let Z0, . . . , ZN−1 be independent exponential random variables with

E[Zn] = µn. Then, the sum

Z :=
N−1∑
n=0

Zn
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satisfies

P {Z ≥ βE[Z]} ≤ β−1e−κ(β−1−lnβ) for β > 1,

and

P {Z ≤ βE[Z]} ≤ e−κ(β−1−lnβ) for 0 < β < 1,

where

κ =

N−1∑
n=0

µn

max
n=0,...,N−1

µn
.

We now apply this lemma to derive concentration bounds for ‖Ax‖2
2, where x is a

vector of Gaussian random variables andA is a matrix.

Lemma 9. Let x ∼ CN (0,R) for some positive semidefinite R ∈ CN×N . Also, let

A ∈ CK×N . Then, the random variable ‖Ax‖2
2 satisfies

P
{
‖Ax‖2

2 ≥ βE
[
‖Ax‖2

2

]}
≤ β−1e−κ(β−1−lnβ) for β > 1,

and

P
{
‖Ax‖2

2 ≤ βE
[
‖Ax‖2

2

]}
≤ e−κ(β−1−lnβ) for 0 < β < 1,

where

κ =
tr [ARA∗]

‖ARA∗‖
.

Proof. Since x ∼ CN (0,R), we can write x = R1/2y where y ∼ CN (0, I) and R1/2 is

the unique positive semidefinite squareroot ofR. Then, using eigendecomposition, we can

write R1/2A∗AR1/2 = WDW ∗ where W is unitary and D = diag(d1, . . . , dn). Since

W is unitary, z := W ∗y ∼ CN (0, IN). Then, we have:

‖Ax‖2
2 = x∗A∗Ax = y∗R1/2A∗AR1/2y = y∗WDW ∗y = z∗Dz =

N−1∑
n=0

dn |z[n]|2 .

Since z ∼ CN (0, IN), we have that z[0], . . . ,z[N − 1] are i.i.d. CN (0, 1). Hence,
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dn|z[n]|2 ∼ Exp(dn), and are independent. If we apply Lemma 8, the fact that the trace and

operator norm are invariant under unitary similarity transforms, and the matrix identities

tr[XX∗] = tr[X∗X] and ‖XX∗‖ = ‖X∗X‖, we obtain

P
{
‖Ax‖2

2 ≥ βE
[
‖Ax‖2

2

]}
≤ β−1e−κ(β−1−lnβ) for β > 1,

and

P
{
‖Ax‖2

2 ≤ βE
[
‖Ax‖2

2

]}
≤ e−κ(β−1−lnβ) for 0 < β < 1,

where

κ =

N−1∑
n=0

dn

max
n=0,...,N−1

dn
=

tr[D]

‖D‖
=

tr[WDW ∗]

‖WDW ∗‖
=

tr
[
R1/2A∗AR1/2

]
∥∥∥R1/2A∗AR1/2

∥∥∥ =
tr [ARA∗]

‖ARA∗‖
.

We note that similar bounds can be obtained by applying the Hanson-Wright Inequality

[119, 120].

C.1.3 Intermediate results

We continue by presenting a lemma showing that certain matrices have a spectral represen-

tation as an integral of a frequency dependent rank-1 matrix.

Lemma 10. For any frequency f ∈ R, define a complex sinusoid ef ∈ CN by ef [n] =

ej2πfn for n ∈ [N ]. Then, we have:

B =

∫ W

−W
efe

∗
f df, I =

∫ 1/2

−1/2

efe
∗
f df, and

∫
Ω

efe
∗
f df = I−B,

where Ω = [−1
2
, 1

2
] \ [−W,W ]. Furthermore, if x(t) is a stationary, ergodic, zero-mean,

Gaussian stochastic process x(t) with power spectral density S(f), and x ∈ CN is a vector
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of equispaced samples x[n] = x(n) for n ∈ [N ], then the covariance matrix of x can be

written as

R := E[xx∗] =

∫ 1/2

−1/2

S(f)efe
∗
f df.

Proof. For any m,n ∈ [N ], we have

∫ W

−W
ef [m]ef [n] df =

∫ W

−W
ej2πf(m−n) df =

sin[2πW (m− n)]

π(m− n)
= B[m,n],

and ∫ 1/2

−1/2

ef [m]ef [n] df =

∫ 1/2

−1/2

ej2πf(m−n) df =


1 if m = n

0 if m 6= n

= I[m,n].

We can put these into matrix form as

∫ W

−W
efe

∗
f df = B and

∫ 1/2

−1/2

efe
∗
f df = I.

From this, it follows that

∫
Ω

efe
∗
f df =

∫ 1/2

−1/2

efe
∗
f df −

∫ W

−W
efe

∗
f df = I−B.

Finally, using the definition of the power spectral density, we have

R[m,n] = E[x[m]x[n]] =

∫ 1/2

−1/2

S(f)ej2πf(m−n) df =

∫ 1/2

−1/2

S(f)ef [m]ef [n] df

for m,n ∈ [N ]. Again, we can put this into matrix form as

R := E[xx∗] =

∫ 1/2

−1/2

S(f)efe
∗
f df.

Next, we show that the expectation of the multitaper spectral estimate is the convolution
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of the power spectral density S(f) with the spectral window ψ(f).

Lemma 11. The expectation of the multitaper spectral estimate can be written as

E
[
Ŝmt
K (f)

]
=

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′

where

ψ(f) :=
1

K
tr
[
S∗Ke−fe

∗
−fSK

]
=

1

K
‖S∗Ke−f‖

2
2 =

1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]e−j2πfn

∣∣∣∣∣
2

is the spectral window of the multitaper estimate.

Proof. Since Ŝmt
K (f) =

1

K

∥∥S∗KE∗fx∥∥2

2
where x ∼ CN (0,R), by Lemma 7, we have

E
[
Ŝmt
K (f)

]
=

1

K
tr
[
S∗KE

∗
fREfSK

]
.

We can rewrite this expression as follows:

E
[
Ŝmt
K (f)

]
=

1

K
tr
[
S∗KE

∗
fREfSK

]
=

1

K
tr

[
S∗KE

∗
f

(∫ 1/2

−1/2

S(f ′)ef ′e
∗
f ′ df

′

)
EfSK

]

=
1

K

∫ 1/2

−1/2

S(f ′) tr
[
S∗KE

∗
fef ′e

∗
f ′EfSK

]
df ′

=
1

K

∫ 1/2

−1/2

S(f ′) tr
[
S∗Kef ′−fe

∗
f ′−fSK

]
df ′

=

∫ 1/2

−1/2

S(f ′)ψ(f − f ′) df ′,

=

∫ f+1/2

f−1/2

S(f − f ′)ψ(f ′) df ′

=

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′,
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where the last line follows since S(f) is 1-periodic (by definition) andψ(f) =
1

K
‖S∗Ke−f‖2

2

is 1-periodic (because e−f [n] = e−2πfn is 1-periodic for all n ∈ [N ]).

Finally, it’s easy to check that ψ(f) can be written in the following alternate forms:

ψ(f) =
1

K
tr
[
S∗Ke−fe

∗
−fSK

]
=

1

K
‖S∗Ke−f‖2

2 =
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]e−j2πfn

∣∣∣∣∣
2

.

Lemma 12. The spectral window ψ(f) defined in Lemma 11, satisfies the following prop-

erties:

• ψ(f) = ψ(−f) for all f ∈ R

•
∫ W

−W
ψ(f) df = 1− Σ

(1)
K and

∫
Ω

ψ(f) df = Σ
(1)
K where Ω = [−1

2
, 1

2
] \ [−W,W ]

• 0 ≤ ψ(f) ≤ N

K

Proof. First, the spectral window is an even function since

ψ(−f) =
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]ej2πfn

∣∣∣∣∣
2

=
1

K

K−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

sk[n]e−j2πfn

∣∣∣∣∣
2

= ψ(f)

for all f ∈ R.

As a consequence, we can set SK =

[
s0 s1 · · · sK−1

]
∈ RN×K and write ψ(f) =

ψ(−f) =
1

K
tr
[
S∗Kefe

∗
fSK

]
=

1

K
‖S∗Kef‖

2
2. Then, the integral of the spectral window
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ψ(f) over [−W,W ] is

∫ W

−W
ψ(f) df =

∫ W

−W

1

K
tr
[
S∗Kefe

∗
fSK

]
df

=
1

K
tr

[
S∗K

(∫ W

−W
efe

∗
f df

)
SK

]
=

1

K
tr [S∗KBSK ]

=
1

K
tr [ΛK ]

=
1

K

K−1∑
k=0

λk

= 1− 1

K

K−1∑
k=0

(1− λk)

= 1− Σ
(1)
K ,

where we have used the notation ΛK = diag(λ0, . . . , λK−1). Similarly, the integral of the

spectral window ψ(f) over Ω = [−1
2
,−W ) ∪ (W, 1

2
] is

∫
Ω

ψ(f) df =

∫
Ω

1

K
tr
[
S∗Kefe

∗
fSK

]
df

=
1

K
tr

[
S∗K

(∫
Ω

efe
∗
f df

)
SK

]
=

1

K
tr [S∗K(I−B)SK ]

=
1

K
tr [I−ΛK ]

=
1

K

K−1∑
k=0

(1− λk)

= Σ
(1)
K .

Finally, the spectral window is bounded by

0 ≤ ψ(f) =
1

K
‖S∗Kef‖

2
2 ≤

1

K
‖S∗K‖

2 ‖ef‖2
2 =

N

K
,
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where we have used ‖S∗K‖ = 1 (because SK is orthonormal) and ‖ef‖2
2 = N .

C.1.4 Proof of Theorem 6

By Lemma 11, we have

E
[
Ŝmt
K (f)

]
=

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′.

We now split the expression for the bias into two pieces as follows:

Bias
[
Ŝmt
K (f)

]
=
∣∣∣EŜmt

K (f)− S(f)
∣∣∣

=

∣∣∣∣∣
∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′ − S(f)

∣∣∣∣∣
=

∣∣∣∣∫ W

−W
S(f − f ′)ψ(f ′) df ′ +

∫
Ω

S(f − f ′)ψ(f ′) df ′ − S(f)

∣∣∣∣
≤
∣∣∣∣∫ W

−W
S(f − f ′)ψ(f ′) df ′ − S(f)

∣∣∣∣︸ ︷︷ ︸
local bias

+

∣∣∣∣∫
Ω

S(f − f ′)ψ(f ′) df ′
∣∣∣∣︸ ︷︷ ︸

broadband bias

.

Since S(f) is twice continuously differentiable, for any f ′ ∈ [−W,W ], there exists a

ξf ′ between f − f ′ and f such that

S(f − f ′) = S(f)− S ′(f)f ′ +
1

2
S ′′(ξf ′)f

′2.

Then, since |S ′′(ξf ′)| ≤ max
ξ∈[f−W,f+W ]

|S ′′(ξ)| = M ′′
f ,
∫W
−W ψ(f) df = 1 − Σ

(1)
K , and 0 ≤
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ψ(f ′) ≤ N
K

for all f ′ ∈ R, we can bound the local bias as follows:

∣∣∣∣∫ W

−W
S(f − f ′)ψ(f ′) df ′ − S(f)

∣∣∣∣
=

∣∣∣∣∫ W

−W

(
S(f)− S ′(f)f ′ +

1

2
S ′′(ξf ′)f

′2
)
ψ(f ′) df ′ − S(f)

∣∣∣∣
=

∣∣∣∣∣∣
∫ W

−W
S(f)ψ(f ′) df ′ − S(f)−

∫ W

−W
S ′(f)f ′ψ(f ′)︸ ︷︷ ︸

odd w.r.t. f ′

df ′ +
1

2

∫ W

−W
S ′′(ξf ′)f

′2ψ(f ′) df ′

∣∣∣∣∣∣
=

∣∣∣∣∫ W

−W
S(f)ψ(f ′) df ′ − S(f)− 0 +

1

2

∫ W

−W
S ′′(ξf ′)f

′2ψ(f ′) df ′
∣∣∣∣

≤
∣∣∣∣∫ W

−W
S(f)ψ(f ′) df ′ − S(f)

∣∣∣∣+

∣∣∣∣12
∫ W

−W
S ′′(ξf ′)f

′2ψ(f ′) df ′
∣∣∣∣

=
∣∣∣S(f)(1− Σ

(1)
K )− S(f)

∣∣∣+

∣∣∣∣12
∫ W

−W
S ′′(ξf ′)f

′2ψ(f ′) df ′
∣∣∣∣

≤ S(f)Σ
(1)
K +

1

2

∫ W

−W
|S ′′(ξf ′)||f ′|2ψ(f ′) df ′

≤ S(f)Σ
(1)
K +

1

2

∫ W

−W
M ′′

f |f ′|2
N

K
df ′

= S(f)Σ
(1)
K +

M ′′
fNW

3

3K

≤MfΣ
(1)
K +

M ′′
fNW

3

3K

Since S(f ′) ≤ max
f ′∈R

S(f ′) = M , we can bound the broadband bias as follows:

∣∣∣∣∫
Ω

S(f − f ′)ψ(f ′) df ′
∣∣∣∣ =

∫
Ω

S(f − f ′)ψ(f ′) df ′

≤
∫

Ω

Mψ(f ′) df ′

= MΣ
(1)
K
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Combining the bounds on the local bias and broadband bias yields

Bias
[
Ŝmt
K (f)

]
≤
∣∣∣∣∫ W

−W
S(f − f ′)ψ(f ′) df ′ − S(f)

∣∣∣∣︸ ︷︷ ︸
local bias

+

∣∣∣∣∫
Ω

S(f − f ′)ψ(f ′) df ′
∣∣∣∣︸ ︷︷ ︸

broadband bias

≤MfΣ
(1)
K +

M ′′
fNW

3

3K
+MΣ

(1)
K

=
M ′′

fNW
3

3K
+ (M +Mf )Σ

(1)
K ,

which establishes Theorem 6.

C.1.5 Proof of Theorem 7

Without the assumption that S(f) is twice differentiable, we can still obtain a bound on the

bias. Using the bounds mf = min
ξ∈[f−W,f+W ]

S(ξ) ≤ S(f ′) ≤ max
ξ∈[f−W,f+W ]

S(ξ) = Mf and

0 ≤ S(f ′) ≤ maxξ∈R S(ξ) = M along with the integrals
∫W
−W ψ(f) df = 1 − Σ

(1)
K and∫

Ω
ψ(f) df = Σ

(1)
K , we can obtain the following upper bound on EŜmt

K (f)− S(f):

EŜmt
K (f)− S(f) =

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′ − S(f ′)

=

∫ W

−W
S(f − f ′)ψ(f ′) df ′ +

∫
Ω

S(f − f ′)ψ(f ′) df ′ − S(f ′)

≤
∫ W

−W
Mfψ(f ′) df ′ +

∫
Ω

Mψ(f ′) df ′ −mf

= Mf (1− Σ
(1)
K ) +MΣ

(1)
K −mf

= (Mf −mf )(1− Σ
(1)
K ) + (M −mf )Σ

(1)
K

≤ (Mf −mf )(1− Σ
(1)
K ) +MΣ

(1)
K ,

Similarly, we can obtain the following lower bound on EŜmt
K (f)− S(f):
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EŜmt
K (f)− S(f) =

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′ − S(f ′)

=

∫ W

−W
S(f − f ′)ψ(f ′) df ′ +

∫
Ω

S(f − f ′)ψ(f ′) df ′ − S(f ′)

≥
∫ W

−W
mfψ(f ′) df ′ +

∫
Ω

0ψ(f ′) df ′ −Mf

= mf (1− Σ
(1)
K ) + 0−Mf

= −(Mf −mf )(1− Σ
(1)
K )−MfΣ

(1)
K

≥ −(Mf −mf )(1− Σ
(1)
K )−MΣ

(1)
K .

From the above two bounds, we have

Bias
[
Ŝmt
K (f)

]
=
∣∣∣EŜmt

K (f)− S(f)
∣∣∣ ≤ (Mf −mf )(1− Σ

(1)
K ) +MΣ

(1)
K ,

which establishes Theorem 7.

C.1.6 Proof of Theorem 8

Since Ŝmt
K (f) =

1

K

∥∥S∗KE∗fx∥∥2

2
where x ∼ CN (0,R), by Lemma 7, we have

Var
[
Ŝmt
K (f)

]
= Var

[
1

K

∥∥S∗KE∗fx∥∥2

2

]
=

1

K2
Cov

[∥∥S∗KE∗fx∥∥2

2
,
∥∥S∗KE∗fx∥∥2

2

]
=

1

K2

∥∥S∗KE∗fREfSK
∥∥2

F
.

We focus on bounding the Frobenius norm of S∗KE
∗
fREfSK . To do this, we first split it

into two pieces - an integral over [−W,W ] and an integral over Ω = [−1
2
, 1

2
] \ [−W,W ]:
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S∗KE
∗
fREfSK

= S∗KE
∗
f

(∫ 1/2

−1/2

S(f ′)ef ′e
∗
f ′ df

′

)
EfSK

= S∗K

(∫ 1/2

−1/2

S(f ′)E∗fef ′e
∗
f ′Ef df

′

)
SK

= S∗K

(∫ 1/2

−1/2

S(f ′)ef ′−fe
∗
f ′−f df

′

)
SK

= S∗K

(∫ f+1/2

f−1/2

S(f + f ′)ef ′e
∗
f ′ df

′

)
SK

= S∗K

(∫ 1/2

−1/2

S(f + f ′)ef ′e
∗
f ′ df

′

)
SK

= S∗K

(∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′ +

∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK

= S∗K

(∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
)
SK + S∗K

(∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK .

We will proceed by bounding the Frobenius norm of the two pieces above, and then

applying the triangle inequality. Since S(f) ≤ max
f∈R

S(f) = M for all f ∈ R, we trivially

have

S∗K

(∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK � S∗K

(∫
Ω

Mef ′e
∗
f ′ df

′
)
SK

= S∗K [M(I−B)]SK

= M(I−ΛK).
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Then, since P � Q implies ‖P ‖F ≤ ‖Q‖F , we have

∥∥∥∥S∗K (∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK

∥∥∥∥
F

≤ ‖M(I−ΛK)‖F

=

√√√√K−1∑
k=0

M2(1− λk)2

= M
√
KΣ

(2)
K .

Obtaining a good bound on the first piece requires a more intricate argument. We define

1W (f) = 1 if f ∈ [−W,W ] and 1W (f) = 0 if f ∈ [−1
2
, 1

2
] \ [−W,W ]. For convenience,

we also extend 1W (f) to f ∈ R such that 1W (f) is 1-periodic. With this definition, we can

write

∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′ =

∫ 1/2

−1/2

S(f + f ′)1W (f ′)ef ′e
∗
f ′ df

′

=

∫ 1

0

S(f + f ′)1W (f ′)ef ′e
∗
f ′ df

′

=
N−1∑
`=0

∫ `+1
N

`
N

S(f + f ′)1W (f ′)ef ′e
∗
f ′ df

′

=
N−1∑
`=0

∫ 1
N

0

S(f + f ′ + `
N

)1W (f ′ + `
N

)e
f ′+

`
N

e∗
f ′+

`
N

df ′

=

∫ 1
N

0

N−1∑
`=0

S(f + f ′ + `
N

)1W (f ′ + `
N

)e
f ′+

`
N

e∗
f ′+

`
N

df ′,

where the second line holds since S(f), 1W (f), and ef are 1-periodic. Now, for any

f ′ ∈ R, the vectors
{

1√
N
e
f ′+

`
N

}N−1

`=0

form an orthonormal basis of CN . Hence, we have

∥∥∥∥∥
N−1∑
`=0

a`e
f ′+

`
N

e∗
f ′+

`
N

∥∥∥∥∥
2

F

= N2

N−1∑
`=0

|a`|2

for any choice of coefficients {a`}N−1
`=0 and offset frequency f ′ ∈ R. By applying this
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formula, along with the triangle inequality and the Cauchy-Shwarz Integral inequality, we

obtain

∥∥∥∥∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
∥∥∥∥2

F

=

∥∥∥∥∥∥
∫ 1

N

0

N−1∑
`=0

S(f + f ′ + `
N

)1W (f ′ + `
N

)e
f ′+

`
N

e∗
f ′+

`
N

df ′

∥∥∥∥∥∥
2

F

≤

∫ 1
N

0

∥∥∥∥∥
N−1∑
`=0

S(f + f ′ + `
N

)1W (f ′ + `
N

)e
f ′+

`
N

e∗
f ′+

`
N

∥∥∥∥∥
F

df ′

2

=

∫ 1
N

0

N

(
N−1∑
`=0

S(f + f ′ + `
N

)2
1W (f ′ + `

N
)2

)1/2

df ′

2

≤

∫ 1
N

0

N2 df ′

∫ 1
N

0

N−1∑
`=0

S(f + f ′ + `
N

)2
1W (f ′ + `

N
)2 df ′


= N

N−1∑
`=0

∫ 1
N

0

S(f + f ′ + `
N

)2
1W (f ′ + `

N
)2 df ′

= N
N−1∑
`=0

∫ `+1
N

`
N

S(f + f ′)2
1W (f ′)2 df ′

= N

∫ 1

0

S(f + f ′)2
1W (f ′)2 df ′

= N

∫ 1/2

−1/2

S(f + f ′)2
1W (f ′)2 df ′

= N

∫ W

−W
S(f + f ′)2 df ′

= 2NWR2
f

Since SK ∈ RN×K is orthonormal, ‖S∗KXSK‖F ≤ ‖X‖F for any Hermitian matrix

X ∈ CN×N . Hence,

∥∥∥∥S∗K ∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′SK

∥∥∥∥
F

≤
∥∥∥∥∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
∥∥∥∥
F

≤ Rf

√
2NW.
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Finally, by applying the two bounds we’ve derived, we obtain

∥∥S∗KE∗fREfSK
∥∥
F

=

∥∥∥∥S∗K (∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
)
SK + S∗K

(∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK

∥∥∥∥
F

≤
∥∥∥∥S∗K (∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
)
SK

∥∥∥∥
F

+

∥∥∥∥S∗K (∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK

∥∥∥∥
F

≤ Rf

√
2NW +M

√
KΣ

(2)
K ,

and thus,

Var
[
Ŝmt
K (f)

]
=

1

K2

∥∥S∗KE∗fREfSK
∥∥2

F
≤ 1

K

(
Rf

√
2NW

K
+MΣ

(2)
K

)2

.

C.1.7 Proof of Theorem 9

Since Ŝmt
K (f) =

1

K

∥∥S∗KE∗fx∥∥2

2
where x ∼ CN (0,R), by Lemma 7, we have

Cov
[
Ŝmt
K (f1), Ŝmt

K (f2)
]

= Cov

[
1

K

∥∥S∗KE∗f1
x
∥∥2

2
,

1

K

∥∥S∗KE∗f2
x
∥∥2

2

]
=

1

K2

∥∥S∗KE∗f1
REf2SK

∥∥2

F
.

It’s trivial to conclude that Cov
[
Ŝmt
K (f1), Ŝmt

K (f2)
]
≥ 0. We now focus on obtaining an

upper bound on the Frobenius norm of S∗KE
∗
f1
REf2SK . To do this, we first split it into

three pieces - an integral over [f1 −W, f1 +W ], an integral over [f2 −W, f2 +W ], and an
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integral over Ω′ = [−1
2
, 1

2
] \ ([f1 −W, f1 +W ] ∪ [f2 −W, f2 +W ]):

S∗KE
∗
f1
REf2SK

= S∗KE
∗
f1

(∫ 1/2

−1/2

S(f)efe
∗
f df

)
Ef2SK

=

∫ 1/2

−1/2

S(f)S∗KE
∗
f1
efe

∗
fEf2SK df

=

∫ 1/2

−1/2

S(f)S∗Kef−f1e
∗
f−f2

SK df

=

∫ f1+W

f1−W
S(f)S∗Kef−f1e

∗
f−f2

SK df +

∫ f2+W

f2−W
S(f)S∗Kef−f1e

∗
f−f2

SK df

+

∫
Ω′
S(f)S∗Kef−f1e

∗
f−f2

SK df.

By using the triangle inequality, the identity ‖xy∗‖F = ‖x‖2‖y‖2 for vectors x,y, the

Cauchy-Shwarz Inequality, and the facts that ψ(f) ≤ N
K

and
∫

Ω
ψ(f) df = Σ

(1)
K , we can

bound the Frobenius norm of the first piece by

∥∥∥∥∫ f1+W

f1−W
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥2

F

≤
(∫ f1+W

f1−W

∥∥S(f)S∗Kef−f1e
∗
f−f2

SK
∥∥
F
df

)2

≤
(∫ f1+W

f1−W
S(f) ‖S∗Kef−f1‖2 ‖S

∗
Kef−f2‖2 df

)2

≤
(∫ f1+W

f1−W
S(f)2 ‖S∗Kef−f1‖

2
2 df

)(∫ f1+W

f1−W
‖S∗Kef−f2‖

2
2 df

)
=

(∫ W

−W
S(f + f1)2 ‖S∗Kef‖

2
2 df

)(∫ f1−f2+W

f1−f2−W
‖S∗Kef‖

2
2 df

)
=

(∫ W

−W
S(f + f1)2Kψ(f) df

)(∫ f1−f2+W

f1−f2−W
Kψ(f) df

)
≤
(∫ W

−W
S(f + f1)2 ·N df

)(∫
Ω

Kψ(f) df

)
= 2NWR2

f1
·KΣ

(1)
K

= R2
f1
· 2NWKΣ

(1)
K
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In a nearly identical manner, we can bound the second piece by

∥∥∥∥∫ f2+W

f2−W
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥2

F

≤ R2
f2
· 2NWKΣ

(1)
K .

The third piece can also be bounded in a similar manner, but the details are noticeably

different, so we show the derivation:

∥∥∥∥∫
Ω′
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥2

F

≤
(∫

Ω′

∥∥S(f)S∗Kef−f1e
∗
f−f2

SK
∥∥
F
df

)2

≤
(∫

Ω′
S(f) ‖S∗Kef−f1‖2 ‖S

∗
Kef−f2‖2 df

)2

≤
(∫

Ω′
M ‖S∗Kef−f1‖2 ‖S

∗
Kef−f2‖2 df

)2

≤M2

(∫
Ω′
‖S∗Kef−f1‖

2
2 df

)(∫
Ω′
‖S∗Kef−f2‖

2
2 df

)
= M2

(∫
Ω′
Kψ(f − f1) df

)(∫
Ω′
Kψ(f − f2) df

)
≤M2

(∫
Ω′1

Kψ(f − f1) df

)(∫
Ω′2

Kψ(f − f2) df

)

= M2

(∫
Ω

Kψ(f) df

)(∫
Ω

Kψ(f) df

)
= M2

(
KΣ

(1)
K

)2

where Ω′1 = [−1
2
, 1

2
] \ [f1 −W, f1 +W ] and Ω′2 = [−1

2
, 1

2
] \ [f2 −W, f2 +W ].

Finally, by applying the three bounds we’ve derived, we obtain

∥∥S∗KE∗f1
REf2SK

∥∥
F

≤
∥∥∥∥∫ f1+W

f1−W
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥
F

+

∥∥∥∥∫ f2+W

f2−W
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥
F

+

∥∥∥∥∫
Ω′
S(f)S∗Kef−f1e

∗
f−f2

SK df

∥∥∥∥
F

≤ Rf1

√
2NWKΣ

(1)
K +Rf2

√
2NWKΣ

(1)
K +MKΣ

(1)
K ,
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and thus,

Cov
[
Ŝmt
K (f1), Ŝmt

K (f2)
]

=
1

K2

∥∥S∗KE∗f1
REf2SK

∥∥2

F

≤

(
(Rf1 +Rf2)

√
2NW

K
Σ

(1)
K +MΣ

(1)
K

)2

.

C.1.8 Proof of Theorem 10

Since Ŝmt
K (f) =

1

K

∥∥S∗KE∗fx∥∥2

2
where x ∼ CN (0,R), by Lemma 9, we have

P
{
Ŝmt
K (f) ≥ βEŜmt

K (f)
}
≤ β−1e−κf (β−1−lnβ) for β > 1,

and

P
{
Ŝmt
K (f) ≤ βEŜmt

K (f)
}
≤ e−κf (β−1−lnβ) for 0 < β < 1,

where

κf =
tr
[
S∗KE

∗
fREfSK

]∥∥S∗KE∗fREfSK
∥∥ .

We can get an upper bound on S∗KE
∗
fREfSK in the Loewner ordering by splitting it

into two pieces as done in the proof of Theorem 8, and then bounding each piece:

S∗KE
∗
fREfSK

= S∗K

(∫ W

−W
S(f + f ′)ef ′e

∗
f ′ df

′
)
SK + S∗K

(∫
Ω

S(f + f ′)ef ′e
∗
f ′ df

′
)
SK

� S∗K
(∫ W

−W
Mfef ′e

∗
f ′ df

′
)
SK + S∗K

(∫
Ω

Mef ′e
∗
f ′ df

′
)
SK

= S∗K (MfB)SK + S∗K (M(I−B))SK

= MfΛK +M(I−ΛK)

= MfI + (M −Mf )(I−ΛK).

Then, by using the fact that P � Q =⇒ ‖P ‖ ≤ ‖Q‖ for PSD matrices P and Q, we
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can bound,

∥∥S∗KE∗fREfSK
∥∥ ≤ ‖MfI + (M −Mf )(I−ΛK)‖ = Mf + (M −Mf )(1− λK−1).

We can also get a lower bound on tr[S∗KE
∗
fREfSK ] = KE

[
Ŝmt
K (f)

]
by using the

formula for E
[
Ŝmt
K (f)

]
from Lemma 11 along with the properties of the spectral window

derived in Lemma 12 as follows:

tr[S∗KE
∗
fREfSK ] = KE

[
Ŝmt
K (f)

]
= K

∫ 1/2

−1/2

S(f − f ′)ψ(f ′) df ′

≥ K

∫ W

−W
S(f − f ′)ψ(f ′) df ′

= K

∫ W

−W
S(f − f ′)

[
N

K
−
(
N

K
− ψ(f ′)

)]
df ′

= K

∫ W

−W
S(f − f ′)N

K
df ′ −K

∫ W

−W
S(f − f ′)

(
N

K
− ψ(f ′)

)
df ′

= N

∫ f+W

f−W
S(f ′) df ′ −

∫ W

−W
S(f − f ′)(N −Kψ(f ′)) df ′

≥ N

∫ f+W

f−W
S(f ′) df ′ −

∫ W

−W
Mf (N −Kψ(f ′)) df ′

= 2NWAf −
(

2NW −K
(

1− Σ
(1)
K

))
Mf

= K
(

1− Σ
(1)
K

)
Mf − 2NW (Mf − Af )

Combining the upper bound on
∥∥S∗KE∗fREfSK

∥∥with the lower bound on tr[S∗KE
∗
fREfSK ],

yields

κf =
tr
[
S∗KE

∗
fREfSK

]∥∥S∗KE∗fREfSK
∥∥ ≥ K

(
1− Σ

(1)
K

)
Mf − 2NW (Mf − Af )

Mf + (M −Mf ) (1− λK−1)
.

C.2 Proof of Results in Section 5.2
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C.2.1 Fast algorithm for computing Ψ(f) at grid frequencies

To begin developing our fast approximations for Ŝmt
K (f), we first show that an eigenvalue

weighted sum of N tapered spectral estimates can be evaluated at a grid of frequencies

f ∈ [L]/L where L ≥ 2N in O(L logL) operations and using O(L) memory.

Lemma 13. For any vector x ∈ CN and any integer L ≥ 2N , the quantity

Ψ(f) :=
N−1∑
k=0

λkŜk(f) where Ŝk(f) =

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

can be evaluated at the grid frequencies f ∈ [L]/L in O(L logL) operations and using

O(L) memory.

Proof. Using eigendecomposition, we can writeB = SΛS∗, where

S =

[
s0 s1 · · · sN−1

]

and

Λ = diag(λ0, λ1, . . . , λN−1).

For any f ∈ R, we let Ef ∈ CN×N be a diagonal matrix with diagonal entries

Ef [n, n] = ej2πfn for n ∈ [N ].
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With this definition, Ψ(f) can be written as

Ψ(f) =
N−1∑
k=0

λkŜk(f)

=
N−1∑
k=0

λk

∣∣∣∣∣
N−1∑
n=0

sk[n]x[n]e−j2πfn

∣∣∣∣∣
2

=
N−1∑
k=0

λk
∣∣s∗kE∗fx∣∣2

=
N−1∑
k=0

Λ[k, k]
∣∣(S∗E∗fx)[k]

∣∣2
= x∗EfSΛS∗E∗fx

= x∗EfBE
∗
fx

This gives us a a formula for Ψ(f) =
∑N−1

k=0 λkŜk(f) which does not require computing

any of the Slepian tapers. We will now use the fact thatB is a Toeplitz matrix to efficiently

compute Ψ( `
L

) for all ` ∈ [L]/L.

First, note that we can “extend” B to a larger circulant matrix, which is diagonalized

by a Fourier Transform matrix. Specifically, define a vector of sinc samples b ∈ RL by

b[`] =



sin[2πW`]

π`
if ` ∈ {0, . . . , N − 1}

0 if ` ∈ {N, . . . , L−N}

sin[2πW (L− `)]
π(L− `)

if ` ∈ {L−N + 1, . . . , L− 1}

,

and letBext ∈ RL×L be defined by

Bext[m,n] = b[m− n (mod L)] for m,n ∈ [L].
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It is easy to check thatBext[m,n] = B[m,n] for all m,n ∈ [N ], i.e., the upper-left N ×N

submatrix ofBext isB. Hence, we can write

B = Z∗BextZ,

where

Z =

 IN×N

0(L−N)×N

 ∈ RL×N

is a zeropadding matrix. Since Bext is a circulant matrix whose first column is b, we can

write

Bext = F−1 diag(Fb)F

where F ∈ CL×L is an FFT matrix, i.e.,

F [m,n] = e−j2πmn/L for m,n ∈ [L].

Note that with this normalization, the inverse FFT satisfies

F−1 =
1

L
F ∗,

as well as the conjugation identity

F−1y =
1

L
Fy for all y ∈ CN .

Next, for any f ∈ R, letDf ∈ CL×L be a diagonal matrix with diagonal entries

Df [m,m] = ej2πfm for m ∈ [L],
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and for each ` ∈ [L], let C` ∈ CL×L be a cyclic shift matrix, i.e.,

C`[m,n] =


1 if n−m ≡ ` (mod L)

0 otherwise
.

Since Ef and Df are both diagonal matrices and Ef [n, n] = Df [n, n] for n ∈ [N ], we

have

ZE∗f = D∗fZ and EfZ
∗ = Z∗Df

for all f ∈ R. Also, it is easy to check that cyclically shifting each column of F by `

indices is equivalent to modulating the rows of F , or more specifically

FD∗`/L = C`F and D`/LF
∗ = F ∗C∗`

for all ` ∈ [L]. Additionally, for any vectors p, q ∈ CL, we will denote p ◦ q ∈ CL to be

the pointwise multiplication of p and q, i.e.,

(p ◦ q)[`] = p[`]q[`] for ` ∈ [L],

and p~ q ∈ CL to be the circluar cross-correlation of p and q, i.e.,

(p~ q)[`] =
L−1∑
`′=0

p[`′]q[`′ + ` (mod L)] for ` ∈ [L].

Note that the circular cross-correlation of p and q can be computed using FFTs via the

formula

p~ q = F−1(Fp ◦ Fq).

We will also use the notation |p|2 = p ◦ p for convenience.
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We can now manipulate our formula for Ψ( `
L

) as follows

Ψ( `
L

) := x∗E`/LBE
∗
`/Lx

= x∗E`/LZ
∗BextZE

∗
`/Lx

= x∗E`/LZ
∗F−1 diag(Fb)FZE∗`/Lx

=
1

L
x∗E`/LZ

∗F ∗ diag(Fb)FZE∗`/Lx

=
1

L
x∗Z∗D`/LF

∗ diag(Fb)FD∗`/LZx

=
1

L
x∗Z∗F ∗C∗` diag(Fb)C`FZx

=
1

L

L−1∑
`′=0

(Fb)[`′] · |(C`FZx) [`′]|2

=
1

L

L−1∑
`′=0

(Fb)[`′] · |(FZx) [`′ + ` (mod L)]|2

=

(
1

L
Fb~ |FZx|2

)
[`].

=

(
F−1

(
1

L
FFb ◦ F |FZx|2

))
[`]

=
(
F−1

(
F−1Fb ◦ F |FZx|2

))
[`]

=
(
F−1

(
b ◦ F |FZx|2

))
[`].

Therefore,

[
Ψ( 0

L
) Ψ( 1

L
) · · · Ψ(L−2

L
) Ψ(L−1

L
)

]T
= F−1

(
b ◦ F |FZx|2

)
.

So to compute Ψ(f) at all grid frequencies f ∈ [L]/L, we only need to compute

F−1
(
b ◦ F |FZx|2

)
, which can be done in O(L logL) operations using O(L) memory

via three length-L FFTs/IFFTs and a few pointwise operations on vectors of length L.
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C.2.2 Approximations for general multitaper spectral estimates

Next, we present a lemma regarding approximations to spectral estimates which use or-

thonormal tapers.

Lemma 14. Let x ∈ CN be a vector of N equispaced samples, and let {vk}N−1
k=0 be any

orthonormal set of tapers in CN . For each k ∈ [N ], define a tapered spectral estimate

Vk(f) =

∣∣∣∣∣
N−1∑
n=0

vk[n]x[n]e−j2πfn

∣∣∣∣∣
2

.

Also, let {γk}N−1
k=0 and {γ̃k}N−1

k=0 be real coefficients, and then define a multitaper spectral

estimate V̂ (f) and an approximation Ṽ (f) by

V̂ (f) =
N−1∑
k=0

γkVk(f) and Ṽ (f) =
N−1∑
k=0

γ̃kVk(f).

Then, for any frequency f ∈ R, we have

∣∣∣V̂ (f)− Ṽ (f)
∣∣∣ ≤ (max

k
|γk − γ̃k|

)
‖x‖2

2.

Proof. Let V =

[
v0 · · · vN−1

]
, and let Γ, Γ̃ ∈ RN×N , and Ef ∈ CN×N be diagonal

matrices whose diagonal entries are Γ[n, n] = γn, Γ̃[n, n] = γ̃n, and Ef [n, n] = ej2πfn for
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n ∈ [N ]. Then,

V̂ (f) =
N−1∑
k=0

γkVk(f)

=
N−1∑
k=0

γk

∣∣∣∣∣
N−1∑
n=0

vk[n]x[n]e−j2πfn

∣∣∣∣∣
2

=
N−1∑
k=0

γk
∣∣v∗kE∗fx∣∣2

=
N−1∑
k=0

Γ[k, k]
∣∣(V ∗E∗fx)[k]

∣∣2
= x∗EfV ΓV ∗E∗fx.

In a nearly identical manner,

Ṽ (f) = x∗EfV Γ̃V ∗E∗fx.

Since V is orthonormal, ‖V ‖ = ‖V ∗‖ = 1. Since Ef is diagonal, and all the diagonal

entries have modulus 1, ‖Ef‖ = ‖E∗f‖ = 1. Hence, for any f ∈ R, we can bound

∣∣∣V̂ (f)− Ṽ (f)
∣∣∣ =

∣∣∣x∗EfV
(
Γ− Γ̃

)
V ∗E∗fx

∣∣∣
≤ ‖x‖2‖Ef‖‖V ‖‖Γ− Γ̃‖‖V ∗‖‖E∗f‖‖x‖2

= ‖Γ− Γ̃‖‖x‖2
2

=
(

max
k
|γk − γ̃k|

)
‖x‖2

2,

as desired.
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C.2.3 Proof of Theorem 11

Recall that the indices [N ] are partitioned as follows:

I1 = {k ∈ [K] : λk ≥ 1− ε}

I2 = {k ∈ [K] : ε < λk < 1− ε}

I3 = {k ∈ [N ] \ [K] : ε < λk < 1− ε}

I4 = {k ∈ [N ] \ [K] : λk ≤ ε}.

Using the partitioning above, the unweighted multitaper spectral estimate Ŝmt
K (f) can

be written as

Ŝmt
K (f) =

1

K

K−1∑
k=0

Ŝk(f)

=
∑

k∈I1∪I2

1

K
Ŝk(f),

and the approximate estimator S̃mt
K (f) can be written as

S̃mt
K (f) =

1

K
Ψ(f) +

1

K

∑
k∈I2

(1− λk)Ŝk(f)− 1

K

∑
k∈I3

λkŜk(f)

=
N−1∑
k=0

λk
K
Ŝk(f) +

∑
k∈I2

1− λk
K

Ŝk(f)−
∑
k∈I3

λk
K
Ŝk(f)

=
∑

k∈I1∪I4

λk
K
Ŝk(f) +

∑
k∈I2

1

K
Ŝk(f)

Thus, Ŝmt
K (f) and S̃mt

K (f) can be written as

Ŝmt
K (f) =

N−1∑
k=0

γkŜk(f) and S̃mt
K (f) =

N−1∑
k=0

γ̃kŜk(f)
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where

γk =


1/K k ∈ I1 ∪ I2,

0 k ∈ I3 ∪ I4,

and γ̃k =


λk/K k ∈ I1 ∪ I4,

1/K k ∈ I2,

0 k ∈ I3.

We now bound |γk − γ̃k| for all k ∈ [N ]. For k ∈ I1, we have λk ≥ 1− ε, and thus,

|γk − γ̃k| =
∣∣∣∣ 1

K
− λk
K

∣∣∣∣ =
1− λk
K

≤ ε

K
.

For k ∈ I2 ∪ I3 we have γk = γ̃k, i.e., |γk − γ̃k| = 0. For k ∈ I4, we have λk ≤ ε, and

thus,

|γk − γ̃k| =
∣∣∣∣0− λk

K

∣∣∣∣ =
λk
K
≤ ε

K
.

Hence, |γk − γ̃k| ≤ ε
K

for all k ∈ [N ], and thus by Lemma 14,

∣∣∣Ŝmt
K (f)− S̃mt

K (f)
∣∣∣ ≤ ε

K
‖x‖2

2

for all frequencies f ∈ R.

C.2.4 Proof of Theorem 12

To evaluate the approximate multitaper estimate

S̃mt
K (f) =

1

K
Ψ(f) +

1

K

∑
k∈I2

(1− λk)Ŝk(f)− 1

K

∑
k∈I3

λkŜk(f)

at the L grid frequencies f ∈ [L]/L one needs to:

• For each k ∈ I2 ∪ I3, precompute the Slepian basis vectors sk and eigenvalues λk.

Computing the Slepian basis vector sk and the corresponding eigenvalue λk for a

single index k can be done in O(N logN) operations and O(N) memory via the

method described in [94]. This needs to be done for #(I2 ∪ I3) = #{k : ε <
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λk < 1 − ε} = O(log(NW ) log 1
ε
) values of k, so the total cost of this step is

O(N log(N) log(NW ) log 1
ε
) operations and O(N log(NW ) log 1

ε
) memory.

• For ` ∈ [L], evaluate Ψ( `
L

).

If L ≥ 2N , then evaluating Ψ( `
L

) for ` ∈ [L] can be done in O(L logL) operations

and O(L) memory as shown in Lemma 13. If N ≤ L < 2N , then 2L ≥ 2N , so

by Lemma 13, we can evaluate Ψ( `
2L

) for ` ∈ [2L] in O(2L log 2L) = O(L logL)

operations and O(2L) = O(L) memory and then simply downsample the result to

obtain Ψ( `
L

) for ` ∈ [L].

• For each k ∈ I2 ∪ I3 and each ` ∈ [L], evaluate Ŝk( `L).

Evaluating Ŝk(
`
L

) =
∣∣∣∑N−1

n=0 sk[n]x[n]e−j2πn`/L
∣∣∣2 for all ` ∈ [L] can be done by

pointwise multiplying sk and x, zeropadding this vector to length L, computing

a length-L FFT, and then computing the squared magnitude of each FFT coeffi-

cient. This takes O(L logL) operations and O(L) memory. This needs to be done

for #(I2 ∪ I3) = O(log(NW ) log 1
ε
) values of k, so the total cost of this step is

O(L logL log(NW ) log 1
ε
) operations and O(L log(NW ) log 1

ε
) memory.

• For each ` ∈ [L], evaluate the weighted sum above for S̃mt
K ( `

L
).

Once Ψ( `
L

) and Ŝk( `L) for k ∈ I2 ∪ I3 are computed, evaluating S̃mt
K ( `

L
) requires

O(#(I2 ∪ I3)) = O(log(NW ) log 1
ε
) multiplications and additions. This has to be

done for each ` ∈ [L], so the total cost is O(L log(NW ) log 1
ε
) operations.

So, the total cost of evaluating the approximate multitaper estimate S̃mt
K (f) at the L grid

frequencies f ∈ [L]/L is O(L logL log(NW ) log 1
ε
) operations and O(L log(NW ) log 1

ε
)

memory, where we have used the assumption L ≥ N .
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APPENDIX D

PROOFS FOR CHAPTER 6

D.1 Proof of Lemma 1

Note that λk(G + δI) = λk(G) + δ = λk(AA∗) + δ = λk(A∗A) + δ. So we can bound

the eigenvalues ofG+ δI by bounding the eigenvalues of

A∗A =
N−1∑
n=0

atna
∗
tn ,

which is a sum of independent, self-adjoint, positive semidefinite, rank-1 operators. As

such, it will be helpful to note two matrix concentration results from [113]. Furthermore,

we will show that E[A∗A] = N
T
Bc

ΩT c
TBc

Ω where Bc
Ω is an operator which bandlimits a signal

to the frequency bands in Ω, and T c
T is an operator which timelimits a signal to [−T

2
, T

2
].

As such, the eigenvalues of E[A∗A] have a very similar behavior to the prolate spheroidal

wave functions (PSWFs). Specifically, ≈ |Ω|T eigenvalues will be on the order of N
T

,

and the rest will exponentially decay towards 0, with only the first |Ω|T + O(log(|Ω|T ))

eigenvalues being significant.

We will split this proof up into a few subsections. First, we will state the necessary

matrix concentration results from [113]. Next, we will

D.1.1 Matrix concentration results

The first result gives tail bounds for the minimum and maximum eigenvalues of a sum of

finite-dimensional random Hermitian matrices.

Theorem 15. [113] Consider a finite sequence {Xn} of random, Hermitian matrices with
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common dimension d. Assume that

0 ≤ λmin(Xn) and λmax(Xn) ≤ R for each index n.

Introduce the random matrix

Y =
∑
n

Xn.

Define the minimum eigenvalue µmin and maximum eigenvalue µmax of the expectation EY :

µmin = λmin(EY ) = λmin

(∑
n

EXn

)
,

µmax = λmax(EY ) = λmax

(∑
n

EXn

)
.

Then,

P {λmin(Y ) ≤ (1− ρ)µmin} ≤ d

[
e−ρ

(1− ρ)1−ρ

]µmin/R

for ρ ∈ [0, 1),

P {λmax(Y ) ≥ (1 + ρ)µmax} ≤ d

[
eρ

(1 + ρ)1+ρ

]µmax/R

for ρ ≥ 0.

The second result gives a tail bound for the maximum eigenvalue of a sum of random

Hermitian matrices which depends on the intrinsic dimension of their expectation, as op-

posed to the actual dimension, which may be much larger.

Theorem 16. [113] Consider a finite sequence {Xn} of random, Hermitian matrices of

the same size, and assume that

0 ≤ λmin(Xn) and λmax(Xn) ≤ R for each index n.

Introduce the random matrix

Y =
∑
n

Xn.
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Suppose that we have a semidefinite upper boundM for the expectation EY :

M � EY =
∑
n

EXn.

Define an intrinsic dimension bound and a mean bound

d = intdim(M ) =
trM

‖M‖
and µmax = λmax(M).

Then,

P {λmax(Y ) ≥ (1 + ρ)µmax} ≤ 2d

[
eρ

(1 + ρ)1+ρ

]µmax/R

for ρ ≥ R/µmax.

Although this theorem is proved for finite-dimensional Hermitian matricesXn, it easily

extends to infinite-dimensional self-adjoint operators by using the techniques in [121].

D.1.2 Modulated Prolate Spheroidal Wave Functions

We construct an orthonormal basis for PWΩ(R) by using modulated PSWFs to form an

orthonormal basis for each PW[f`−W`,f`+W`](R), and then merging these bases.

Recall that for any bandwidth W > 0 the bandlimiting operator Bc
W : L2(R)→ L2(R)

is defined by

(Bc
Wy)(t) =

∫ ∞
−∞

sin[2πW (t− t′)]
π(t− t′)

y(t′) dt′ for t ∈ R,

and for any duration T > 0, the timelimiting operator T c
T : L2(R)→ L2(R) is defined by

(T c
T y)(t) =


y(t) if |t| ≤ T

2

0 if |t| ≥ T
2

.
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Also, for any f ∈ R, we define a modulation operator Ef : L2(R)→ L2(R) by

(Efy)(t) = ej2πfty(t) for t ∈ R.

Note that the modulation operator satisfies Êfy(f ′) = ŷ(f ′ − f), i.e. the modulation oper-

ator shifts the Fourier transform of a function.

For any W > 0 and T > 0, we will use the notation ψ(0)
W,T , ψ

(1)
W,T , . . . ∈ L2(R) to denote

the prolate spheroidal wave functions (PSWFs), i.e. the eigenfunctions of Bc
WT c

TBc
W , where

the PSWF eigenvalues 1 > λ
(0)
W,T > λ

(1)
W,T > · · · > 0 are sorted in decreasing order. This

notation allows us to distinguish the PSWFs and PSWF eigenvalues for different values of

W and T . Since the PSWFs
{
ψ

(k)
W,T

}∞
k=0

form an orthonormal basis for PW[−W,W ](R), the

modulated PSWFs
{
Efψ(k)

W,T

}∞
k=0

form an orthonormal basis for PW[f−W,f+W ](R). Note

that this holds for any W > 0 and f ∈ R. Then, since

Ω =
L−1⋃
`=0

[f` −W`, f` +W`]

is a union of L non-overlapping intervals, we have that

L−1⋃
`=0

{
Ef`ψ

(k)
W`,T

}∞
k=0

forms an orthonormal basis for PWΩ(R).

D.1.3 Multiband Prolate Spheroidal Wave Functions

We construct another orthonormal basis for PWΩ(R) as follows. First, we define an opera-

tor Bc
Ω : L2(R)→ L2(R) by

(Bc
Ωy)(t) =

∫ ∞
−∞

φ(t− t′)y(t′) dt′ for t ∈ R,
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where, as a reminder, we defined φ ∈ L2(R) by

φ(t) =

∫
Ω

ej2πft df =
L−1∑
`=0

sin(2πW`t)

πt
ej2πf`t.

Note that for any y ∈ L2(R), this operator satisfies B̂c
Ωy(f) = 1Ω(f)ŷ(f) for all f ∈ R,

i.e. Bc
Ω bandlimits a signal’s continuous-time Fourier transform to Ω. Then, we define the

multiband PSWFs ψ(0)
Ω,T , ψ

(1)
Ω,T , . . . ∈ PWΩ(R) to be the orthonormal eigenfunctions of the

self-adjoint operator Bc
ΩT c

TBc
Ω, where the eigenvalues 1 > λ

(0)
Ω,T ≥ λ

(1)
Ω,T ≥ · · · > 0 are

sorted in descending order. Note that
{
ψ

(k)
Ω,T

}∞
k=0

forms an orthonormal basis for PWΩ(R).

D.1.4 Bound on 1st eigenvalue of A∗A

With the matrix concentration bounds and the theory on the modulated PSWFs and the

multiband PSWFs, we are now ready to bound some of the eigenvalues of A∗A. First, we

show that with high probability, the largest eigenvalue of A∗A is a small constant factor

larger than N
T

.

Lemma 15. For any constant ρ0 >
|Ω|T
N

, we have

P
[
λ1(A∗A) ≥ (1 + ρ0)

N

T

]
≤ (2|Ω|T + 2)

[
eρ0

(1 + ρ0)1+ρ0

] N
|Ω|T

.

Proof. Since

A∗A =
N−1∑
n=0

atna
∗
tn

is the sum of the rank-1 operators which are self-adjoint, positive semidefinite, and inde-

pendent (because the tn’s are independent), we can apply Theorem 16.

For any τ ∈ [−T
2
, T

2
], the largest eigenvalue of aτa∗τ is

λmax(aτa
∗
τ ) = ‖aτ‖2 = ‖âτ‖2 =

∫ ∞
−∞
|âτ (f)|2 df =

∫ ∞
−∞
|e−j2πfτ1Ω(f)|2 df = |Ω| =: R,
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where we used the fact that the Fourier transform of aτ is âτ (f) = e−j2πft1Ω(f).

Next, we compute the expectation E[A∗A]. To do this, we note that for any z ∈ L2(R)

and any τ ∈ R, we have

〈aτ , z〉 = 〈âτ , ẑ〉 =

∫ ∞
−∞

âτ (f)ẑ(f) df =

∫ ∞
−∞

ej2πft1Ω(f)ẑ(f) df

=

∫ ∞
−∞
B̂c

Ωz(f)ej2πfτ df = (Bc
Ωz)(τ).

Hence, if τ ∼ Uniform[−T
2
, T

2
], then for any z1, z2 ∈ L2(R), we have

〈z1,E[aτa
∗
τ ]z2〉 = E[〈z1, aτ 〈aτ , z2〉〉] = E[〈z1, aτ 〉 〈aτ , z2〉] = E

[
(Bc

Ωz1)(τ)(Bc
Ωz2)(τ)

]
=

1

T

∫ T/2

−T/2
(Bc

Ωz1)(τ)(Bc
Ωz2)(τ) dt =

1

T
〈Bc

Ωz1, T c
TBc

Ωz2〉 =
1

T
〈z1,Bc

ΩT c
TBc

Ωz2〉 ,

and thus, E[aτa
∗
τ ] = 1

T
Bc

ΩT c
TBc

Ω. Then, since the tn’s are i.i.d. Uniform[−T
2
, T

2
], we have

E[A∗A] = E

[
N−1∑
n=0

atna
∗
tn

]
=

N−1∑
n=0

E
[
atna

∗
tn

]
=

N−1∑
n=0

1

T
Bc

ΩT c
TBc

Ω =
N

T
Bc

ΩT c
TBc

Ω.

Note that since Bc
Ω and T c

T are orthogonal projections, the eigenvalues of Bc
ΩT c

TBc
Ω are

all between 0 and 1. We now define Q : L2(R) → L2(R) to be the operator obtained by

increasing the largest eigenvalue of Bc
ΩT c

TBc
Ω to exactly 1 while leaving the eigenfunctions

and the other eigenvalues unchanged. Then, we can use N
T
Q � N

T
Bc

ΩT c
TBc

Ω = E[A∗A] as

the semidefinite upper bound required by Theorem 16. By definition, ‖Q‖ = 1. Also, since

tr[Bc
ΩT c

TBc
Ω] = |Ω|T , we have

tr[Q] = tr[Bc
ΩT c

TBc
Ω] + λ1(Q)− λ1(Bc

ΩT c
TBc

Ω) ≤ |Ω|T + 1.

Therefore, the intrinsic dimension bound satisfies

d := intdim
(
N

T
Q
)

=
tr
[
N
T
Q
]∥∥N

T
Q
∥∥ =

tr [Q]

‖Q‖
≤ |Ω|T + 1

1
= |Ω|T + 1.
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Also, the mean bound is

µmax := λmax

(
N

T
Q
)

=
N

T
‖Q‖ =

N

T
.

So by applying Theorem 16 with Y = A∗A, R = |Ω|, d ≤ |Ω|T + 1, and µmax = N
T

,

we obtain

P
{
λ1(A∗A) ≥ (1 + ρ0)

N

T

}
≤ (2|Ω|T + 2)

[
eρ0

(1 + ρ0)1+ρ0

] N
|Ω|T

for ρ0 ≥
|Ω|T
N

.

D.1.5 Bound on K1-th eigenvalue of A∗A

Next, we shall derive a probabilistic lower bound on λK1(A∗A) where K1 = |Ω|T −

O(L log(|Ω|T )).

Lemma 16. For any constant γ1 ∈ (0, 1
4
), let

K1 = #
{
k : λ

(k)
Ω,T ≥ 1− γ1

}
.

Then, for any ρ1 ∈ (0, 1), we have

P
[
λK1(A∗A) ≤ (1− ρ1)(1− γ1)

N

T

]
≤ |Ω|T

[
e−ρ1

(1− ρ1)1−ρ1

](1−γ1)
N
|Ω|T

.

Proof. We will prove this theorem by looking at the restriction of the operator A∗A to the

K1-dimensional subspace S1 = span
{
ψ

(k)
Ω,T

}K1−1

k=0
, and then applying matrix concentration

bounds.

First, we define an operator VK1 : CK1 → L2(R) by

VK1v =

K1−1∑
k=0

v[k]ψ
(k)
Ω,T .
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The adjoint V∗K1
: L2(R)→ CK1 is defined by

(V∗K1
y)[k] =

〈
ψ

(k)
Ω,T , y

〉
for k ∈ [K1].

Now, we will seek to bound λmin(V∗K1
A∗AVK1), and then use this to bound λK1(A∗A). We

note that the self-adjoint operator V∗K1
A∗AVK1 : CK1 → CK1 satisfies

V∗K1
A∗AVK1 = V∗K1

(
N−1∑
n=0

atna
∗
tn

)
VK1 =

N−1∑
n=0

V∗K1
atna

∗
tnVK1 ,

and thus, is equivalent to a sum of i.i.d. rank-1 K1 × K1 positive semidefinite Hermitian

matrices.

For any τ ∈ [−T
2
, T

2
], the largest eigenvalue of V∗K1

aτa
∗
τVK1 is bounded by

λmax(V∗K1
aτa

∗
τVK1) =

∥∥V∗K1
aτ
∥∥2 ≤ ‖aτ‖2 = |Ω| =: R,

where we made use of our earlier calculation that ‖aτ‖2 = |Ω|. Also, since E[A∗A] =

N
T
Bc

ΩT c
TBc

Ω, we have that

E[V∗K1
A∗AVK1 ] =

N

T
V∗K1
Bc

ΩT c
TBc

ΩVK1 =
N

T
diag

(
λ

(0)
Ω,T , λ

(1)
Ω,T , . . . , λ

(K1−1)
Ω,T

)
,

where we have made use of the fact that the multiband PSWFs are the eigenfunctions of

Bc
ΩT c

TBc
Ω. Then, by the definition of K1, we have

µmin := λmin
(
E[V∗K1

A∗AVK1 ]
)

=
N

T
λ

(K1−1)
Ω,T ≥ (1− γ1)

N

T
.

So by applying Theorem 15 with Y = V∗K1
A∗AVK1 , d = K1, R = |Ω|, and µmin =
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N
T
λ

(K1−1)
Ω,T , we get that

P
{
λmin(V∗K1

A∗AVK1) ≤ (1− ρ1)
N

T
λ

(K1−1)
Ω,T

}
≤ K1

[
e−ρ1

(1− ρ1)1−ρ1

] N
|Ω|T λ

(K1−1)
Ω,T

.

Finally, we use the Courant-Weyl-Fischer min-max characterization to obtain

λK1(A∗A) = max
subspaces S
dimS=K1

min
x∈S
‖x‖=1

〈x,A∗Ax〉 ≥ min
x∈S1
‖x‖=1

〈x,A∗Ax〉 = min
v∈CK1

‖v‖2=1

〈VK1v,A∗AVK1v〉

= min
v∈CK1

‖v‖2=1

〈
v,V∗K1

A∗AVK1v
〉

= λmin(V∗K1
A∗AVK1)

By applying this inequality along withK1 = #
{
k : λ

(k)
Ω,T > 1− γ1

}
≤ |Ω|T and λ(K1−1)

Ω,T ≥

1− γ1, we obtain the bound

P
{
λK1(A∗A) ≤ (1− ρ1)(1− γ1)

N

T

}
≤ P

{
λmin(V∗K1

A∗AVK1) ≤ (1− ρ1)(1− γ1)
N

T

}
≤ P

{
λmin(V∗K1

A∗AVK1) ≤ (1− ρ1)
N

T
λ

(K1−1)
Ω,T

}

≤ K1

[
e−ρ1

(1− ρ1)1−ρ1

] N
|Ω|T λ

(K1−1)
Ω,T

≤ |Ω|T
[

e−ρ1

(1− ρ1)1−ρ1

](1−γ1)
N
|Ω|T

.

D.1.6 Bound on K2-th eigenvalue of A∗A

Next, we shall derive a deterministic upper bound on λK2+1(A∗A) where K2 = |Ω|T +

O(L log(|Ω|T )).
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Lemma 17. Let γ2 ∈ (0, 1
2
) be given and set

K2 = #
{

(k, `) : ` ∈ [L], λ
(k)
W`,T

> γ2

}
.

Then if 2W`T ≥ 1 for all ` ∈ [L], we have

λK2+1(A∗A) ≤
(

8π2

3

)1/4

N |Ω|γ1/2
2 .

Proof. Define a subspace

S2 = span
{
Ef`ψ

(k)
W`,T

: ` ∈ [L], λ
(k)
W`,T

> γ2

}
⊂ PWΩ(R).

Note that dimS2 = K2. Then, by the Courant-Fischer-Weyl min-max theorem, we have

λK2+1(A∗A) = min
subspaces S
dimS=K2

max
x⊥S
‖x‖=1

〈A∗Ax, x〉 ≤ max
x⊥S2
‖x‖=1

〈A∗Ax, x〉

= max
x⊥S2
‖x‖=1

‖Ax‖2
2 = max

x⊥S2
‖x‖=1

N−1∑
n=0

|〈atn , x〉|
2 = max

x⊥S2
‖x‖=1

N−1∑
n=0

|(Bc
Ωx)(tn)|2 ,

where we again used the fact that 〈aτ , x〉 = (Bc
Ωx)(τ) for all τ ∈ R and x ∈ L2(R). We

will bound the |(Bc
Ωx)(tn)|’s for a signal x ⊥ S2 by exploiting the fact that Bc

Ωx lies in the

span of the modulated PSWFs whose eigenvalues are small, and thus, have little energy in

[−T
2
, T

2
].

Formally, suppose x ∈ L2(R) satisfies x ⊥ S2 and ‖x‖ = 1. Since Bc
Ω is an orthogonal

projection operator onto PWΩ(R), we have Bc
Ωx ∈ PWΩ(R), Bc

Ωx ⊥ S2, and ‖Bc
Ωx‖ ≤

‖x‖ = 1. Since {Ef`ψ
(k)
W`,T

: ` ∈ [L], k ∈ N0} is an orthonormal basis for PWΩ(R), and

Bc
Ωx ⊥ S2 = span

{
Ef`ψ

(k)
W`,T

: ` ∈ [L], λ
(k)
W`,T

> γ2

}
we can write

Bc
Ωx =

L−1∑
`=0

∑
λ

(k)
W`,T

≤γ2

c`,kEf`ψ
(k)
W`,T
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for some coefficients c`,k ∈ C which satisfy

L−1∑
`=0

∑
λ

(k)
W`,T

≤γ2

|c`,k|2 .

We now split the signal Bc
Ωx (which is bandlimited to Ω) into each of its single band com-

ponents, i.e. for each ` ∈ [L], define

x` =
∑

λ
(k)
W`,T

≤γ2

c`,kψ
(k)
W`,T

,

so that

Bc
Ωx =

L−1∑
`=0

Ef`x`.

We pause to make a couple of observations. Since the Fourier transform of Ef`x` is sup-

ported on [f` −W`, f` +W`] for each ` ∈ [L], these signals are orthogonal, and thus,

‖Bc
Ωx‖2 =

∥∥∥∥∥
L−1∑
`=0

Ef`x`

∥∥∥∥∥
2

=
L−1∑
`=0

‖Ef`x`‖
2 =

L−1∑
`=0

‖x`‖2 ,

where the last equality holds since the modulation operators Ef` are unitary. Also, since the

PSWFs ψ(k)
W`,T

are also orthogonal on [−T
2
, T

2
], we have

∫ T/2

−T/2
|x`(t)|2 dt =

∫ T/2

−T/2

∣∣∣∣∣∣∣
∑

λ
(k)
W`,T

≤γ2

c`,kψ
(k)
W`,T

(t)

∣∣∣∣∣∣∣
2

dt =
∑

λ
(k)
W`,T

≤γ2

|c`,k|2
∫ T/2

−T/2

∣∣∣ψ(k)
W`,T

(t)
∣∣∣2 dt

=
∑

λ
(k)
W`,T

≤γ2

λ
(k)
W`,T
|c`,k|2 ≤

∑
λ

(k)
W`,T

≤γ2

γ2|c`,k|2 = γ2‖x`‖2,

i.e. the energy of x` in the time interval [−T
2
, T

2
] is “small”.

Since each x` is a sum of PSWFs with bandwidthW`, each x` is bandlimited to [−W`,W`].
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Hence, we can write

x`(t) =

∫ W`

−W`

x̂`(f)ej2πft df,

and thus, the energy χ`(t) := |x`(t)|2 can be written as

χ`(t) = x`(t)x`(t)

=

(∫ W`

−W`

x̂`(f)ej2πft df

)(∫ W`

−W`

x̂`(f ′)e
−j2πf ′t df ′

)
=

∫ W`

−W`

∫ W`

−W`

x̂`(f)x̂`(f ′)e
j2π(f−f ′)t df df ′.

Then, the derivative of χ`(t) can be bounded by

|χ′`(t)|2 =

∣∣∣∣∫ W`

−W`

∫ W`

−W`

x̂`(f)x̂`(f ′)j2π(f − f ′)ej2π(f−f ′)t df df ′
∣∣∣∣2

≤
[∫ W`

−W`

∫ W`

−W`

∣∣∣x̂`(f)x̂`(f ′)
∣∣∣2 df df ′] [∫ W`

−W`

∫ W`

−W`

∣∣∣j2π(f − f ′)ej2π(f−f ′)t
∣∣∣2 df df ′]

=

[∫ W`

−W`

∫ W`

−W`

|x̂`(f)|2 |x̂`(f ′)|2 df df ′
] [∫ W`

−W`

∫ W`

−W`

4π2(f − f ′)2 df df ′
]

= ‖x̂`‖4
L2([−W`,W`])

· 32π2

3
W 4
`

=
32π2

3
W 4
` ‖x`‖4,

where we have used the Cauchy-Schwarz inequality along with the Parseval-Plancherel

identity. For convenience, set C =
(

128π2

3

)1/4

, so that |χ′`(t)| ≤ 1
2
C2W 2

` ‖x`‖2 for all

t ∈ R. Hence, for any τ, t ∈ R, we can use the fundamental theorem of calculus to obtain

χ`(t) = χ`(τ) +

∫ t

τ

χ′`(t) dt ≥ χ`(τ)−
∫ t

τ

|χ′`(t)| · | dt| ≥ χ`(τ)− 1

2
C2W 2

` ‖x`‖2 · |t− τ |,

i.e.

|x`(t)|2 ≥ |x`(τ)|2 − 1

2
C2W 2

` ‖x`‖2 · |t− τ |.

Now, suppose that |x`(τ)|2 > Cγ
1/2
2 W`‖x`‖2 for some τ ∈ [−T

2
, T

2
].
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If τ ≤ 0, then since 2W`T ≥ 1 ≥ 4γ
1/2
2

C
, we have 2γ

1/2
2

CW`
≤ T

2
. Hence,

[
τ, τ +

2γ
1/2
2

CW`

]
⊂

[−T
2
, T

2
], and thus,

∫ T/2

−T/2
|x(t)|2 dt ≥

∫ τ+
2γ

1/2
2

CW`

τ

|x(t)|2 dt

≥
∫ τ+

2γ
1/2
2

CW`

τ

[
|x(τ)|2 − 1

2
C2W 2

` ‖x`‖2 · |t− τ |
]
dt

>

∫ τ+
2γ

1/2
2

CW`

τ

[
Cγ

1/2
2 W`‖x`‖2 − 1

2
C2W 2

` ‖x`‖2 · |t− τ |
]
dt

= Cγ
1/2
2 W`‖x`‖2 · 2γ

1/2
2

CW`

− 1

2
C2W 2

` ‖x`‖2 · 1

2

(
2γ

1/2
2

CW`

)2

= γ2‖x`‖2.

Similarly, if τ > 0, then since 2W`T ≥ 1 ≥ 4γ
1/2
2

C
, we have 2γ

1/2
2

CW`
≤ T

2
. Hence,[

τ − 2γ
1/2
2

CW`
, τ

]
⊂ [−T

2
, T

2
], and thus,

∫ T/2

−T/2
|x(t)|2 dt ≥

∫ τ

τ−
2γ

1/2
2

CW`

|x(t)|2 dt

≥
∫ τ

τ−
2γ

1/2
2

CW`

[
|x(τ)|2 − 1

2
C2W 2

` ‖x`‖2 · |t− τ |
]
dt

>

∫ τ

τ−
2γ

1/2
2

CW`

[
Cγ

1/2
2 W`‖x`‖2 − 1

2
C2W 2

` ‖x`‖2 · |t− τ |
]
dt

= Cγ
1/2
2 W`‖x`‖2 · 2γ

1/2
2

CW`

− 1

2
C2W 2

` ‖x`‖2 · 1

2

(
2γ

1/2
2

CW`

)2

= γ2‖x`‖2.

In either case, we obtain
∫ T/2

−T/2
|x(t)|2 dt > γ2‖x`‖2 which contradicts

∫ T/2

−T/2
|x(t)|2 dt ≤

γ2‖x`‖2 derived earlier. Therefore,

|x`(τ)|2 ≤ Cγ
1/2
2 W`‖x`‖2 for all τ ∈ [−T

2
, T

2
].
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Then, by using the triangle inequality and the Cauchy-Schwarz inequality, we obtain

|(Bc
Ωx)(τ)| =

∣∣∣∣∣
L−1∑
`=0

(Ef`x`)(τ)

∣∣∣∣∣
≤

L−1∑
`=0

|(Ef`x`)(τ)|

≤
L−1∑
`=0

∣∣ej2πf`τx`(τ)
∣∣

≤
L−1∑
`=0

|x`(τ)|

≤
L−1∑
`=0

C1/2γ
1/4
2 W

1/2
` ‖x`‖

≤

(
L−1∑
`=0

Cγ
1/2
2 W`

)1/2(L−1∑
`=0

‖x`‖2

)1/2

=
C1/2γ

1/4
2

21/2

(
L−1∑
`=0

2W`

)1/2

‖Bc
Ωx‖

≤ C1/2γ
1/4
2

21/2
|Ω|1/2,

and thus,

|(Bc
Ωx)(τ)|2 ≤ 1

2
C|Ω|γ1/2

2 for all τ ∈ [−T
2
, T

2
].

Finally, by applying this bound to our earlier derived bound for λK2+1(A∗A), we have

λK2+1(A∗A) ≤ max
x⊥S2
‖x‖=1

N−1∑
n=0

|(Bc
Ωx)(tn)|2 ≤

N−1∑
n=0

1

2
C|Ω|γ1/2

2 =

(
8π2

3

)1/4

N |Ω|γ1/2
2 .

We are now ready to prove Lemma 1. First, by applying Lemma 15 with ρ0 = 1.3603

(chosen so that eρ0
(1+ρ0)1+ρ0

≤ e−2/3 and ρ0 ≥ 1 ≥ |Ω|T
N

), we get that

λ1(G) = λ1(A∗A) ≤ (1 + ρ0)
N

T
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fails with probability at most

(2|Ω|T + 2)

[
eρ0

(1 + ρ0)1+ρ0

] N
|Ω|T
≤ (2|Ω|T + 2)e

− 2N
3|Ω|T .

Next, by applying Lemma 16 with γ1 = 0.02 and ρ1 = 0.9046 (chosen such that(
e−ρ1

(1−ρ1)1−ρ1

)1−γ1

≤ e−2/3), we get that

λK1(G) = λK1(A∗A) ≥ (1− ρ1)(1− γ1)
N

T

fails with probability at most

|Ω|T
[

e−ρ1

(1− ρ1)1−ρ1

](1−γ1)
N
|Ω|T
≤ |Ω|Te−

2N
3|Ω|T .

Furthermore, by applying Lemma 17 with γ2 =

√
6δ2ε1/4

πN2|Ω|2
, we get that λK2+1(G) =

λK2(A∗A) ≤
(

8π2

3

)1/4

N |Ω|γ1/2
2 = 2δε1/8 holds with probability 1. Therefore, the

bounds

λ1(G) ≤ C1
N

|Ω|T
,

λK1(G) ≥ C2
N

|Ω|T
,

λK2+1(G) ≤ 2δε1/8.

for C1 = 1 + ρ1 and C2 = (1− ρ0)(1− γ1) hold with probability at least

1− (3|Ω|T + 2)e
− 2N

3|Ω|T .
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Furthermore, using equation (2) in [90], we obtain

K1 = #
{
k : λ

(k)
Ω,T ≥ 1− γ1

}
= |Ω|T +

L

π2
log
(π

2
|Ω|T

)
log

(
γ1

1− γ1

)
+ o

(
log
(π

2
|Ω|T

))
,

and

K2 = #
{

(k, `) : ` ∈ [L], λ
(k)
W`,T

> γ2

}
=

L−1∑
`=0

#
{
k : λ

(k)
W`,T

> γ2

}
=

L−1∑
`=0

2W`T +
1

π2
log(πW`T ) log

(
1− γ2

γ2

)
+ o (log (πW`T ))

≤
L−1∑
`=0

2W`T +
1

π2
log
(π

2
|Ω|T

)
log

(
1− γ2

γ2

)
+ o

(
log
(π

2
|Ω|T

))
= |Ω|T +

L

π2
log
(π

2
|Ω|T

)
log

(
1− γ2

γ2

)
+ o

(
log
(π

2
|Ω|T

))
.

Hence,

K2 −K1 =
L

π2
log
(π

2
|Ω|T

)(
log

(
1− γ2

γ2

)
− log

(
γ1

1− γ1

))
+ o

(
log
(π

2
|Ω|T

))
≤ L

π2
log
(π

2
|Ω|T

)(
log

(
1

γ2

)
+ log(49)

)
+ o

(
log
(π

2
|Ω|T

))
=

L

π2
log
(π

2
|Ω|T

)(
log

(
πN2|Ω|2√

6δ2ε1/4

)
+ log(49)

)
+ o

(
log
(π

2
|Ω|T

))
≤ C0L log

(π
2
|Ω|T

)
log

(
N2|Ω|2

δ2ε1/4

)
,

for some constant C0, as desired.

195



D.2 Proof of Lemma 2

As mentioned in Section 6.4, error satisfies

∥∥z(k) −A−1y
∥∥2

A
≤
∥∥A−1y

∥∥2

A
· min

polynomials P
degP=k
P (0)=1

[
max

λ∈Spec(A)
|P (λ)|2

]
.

Our goal is to construct a low-degree polynomial Q(λ) such that Q(0) = 1 and |Q(λ)| ≤ ε

for all λ ∈ Spec(A), which allows us to obtain the bound
∥∥z(k) −A−1y

∥∥
A
≤ ε

∥∥A−1y
∥∥
A

.

To construct such a polynomial, we will use the Chebyshev polynomials of the first

kind, which are defined by

Td(λ) =
1

2

[(
λ+
√
λ2 − 1

)d
+
(
λ−
√
λ2 − 1

)d]
,

for non-negative integers d. These satisfy the following key properties:

deg Td = d and all d roots of Td(λ) lie in [−1, 1]

|Td(λ)| ≤ 1 for all λ ∈ [−1, 1]

|Td(λ)| is increasing on [1,∞) and decreasing on (−∞,−1]

|Td(λ)| ≥ 1

2

(
|λ|+

√
|λ|2 − 1

)d
for all |λ| ≥ 1.

With these properties in mind, set

d =

⌈
1

2

√
b

a

(
(p+ q) log

b

δ
+ log

2

ε

)⌉
,

and consider the degree d+ p+ q polynomial

Q(λ) =

(
1 + ε1/q − λ/δ

)q
(1 + ε1/q)

q

[
p−1∏
i=0

ci − λ
ci

] Td(b+ a− 2λ

b− a

)
Td

(
b+ a

b− a

) .

Clearly, Q(0) = 1. We can bound |Q(λ)| for λ ∈ Spec(A) in three cases:
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Case I: δ ≤ λ ≤ δ(1 + 2ε1/q).

Over this range of λ, we have |1 + ε1/q−λ/δ| ≤ ε1/q and |ci−λ| ≤ ci for all i ∈ [p]. Since

|Td(·)| is increasing on [1,∞) we have
∣∣Td( b+a−2λ

b−a )
∣∣ ≤ ∣∣Td( b+ab−a)

∣∣. Therefore,

|Q(λ)| =
∣∣1 + ε1/q − λ/δ

∣∣q
|1 + ε1/q|q

[
p−1∏
i=0

|ci − λ|
|ci|

] ∣∣∣∣Td(b+ a− 2λ

b− a

)∣∣∣∣∣∣∣∣Td(b+ a

b− a

)∣∣∣∣
≤
(
ε1/q
)q

1q

[
p−1∏
i=0

ci
ci

] ∣∣∣∣Td(b+ a

b− a

)∣∣∣∣∣∣∣∣Td(b+ a

b− a

)∣∣∣∣
= ε.

Case II: λ = ci for some i ∈ [p].

We trivially have |Q(λ)| = 0 ≤ ε.

Case III: a ≤ λ ≤ b.

Over this range of λ, we have |1 + ε1/q − λ/δ| ≤ b/δ and |ci − λ| ≤ b for i ∈ [p]. Also,

ci ≥ δ for all i ∈ [p]. Since −1 ≤ b+a−2λ
b−a ≤ 1, we have |Td( b+a−2λ

b−a )| ≤ 1. Also, we can

bound

∣∣∣∣Td(b+ a

b− a

)∣∣∣∣ ≥ 1

2

(b+ a

b− a

)
+

√(
b+ a

b− a

)2

− 1

d

=
1

2

(1 + a/b

1− a/b

)
+

√(
1 + a/b

1− a/b

)2

− 1

d

=
1

2

(
1 +

√
a/b

1−
√
a/b

)d

≥ 1

2
e2d
√
a/b

where we have made use of the identity 1+c
1−c +

√(
1+c
1−c

)2 − 1 = 1+
√
c

1−
√
c

for 0 ≤ c < 1 and the
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inequality 1+c
1−c ≥ e2c for 0 ≤ c < 1. Therefore, we can bound

|Q(λ)| = |1 + ε1/q − λ/δ|q

|1 + ε1/q|q

[
p−1∏
i=0

|ci − λ|
ci

] ∣∣Tn ( b+a−2λ
b−a

)∣∣∣∣Tn ( b+ab−a

)∣∣
≤ (b/δ)q

1q

[
p−1∏
i=0

b

δ

]
1

1

2
e2d
√
a/b

= 2

(
b

δ

)p+q
e−2d
√
a/b

≤ ε,

where the last inequality holds due to our choice of d.

Therefore, for the integer

k = d+ p+ q =

⌈
1

2

√
b

a

(
(p+ q) log

b

δ
+ log

2

ε

)⌉
+ p+ q,

we have

min
polynomials P

degP=k
P (0)=1

[
max

λ∈Spec(A)
|P (λ)|2

]
≤ max

λ∈Spec(A)
|Q(λ)|2 ≤ ε2.

Hence, after at most k iterations, we have

∥∥z(k) −A−1y
∥∥
A
≤ ε

∥∥A−1y
∥∥
A
.

Note that this proves a slightly more general result than Lemma 2. Simply set q = 8 to

obtain the content of Lemma 2.

D.3 Proof of Theorem 13

From Lemma 1, we have that with probability at least 1− (3|Ω|T + 2)e
− 2N

3|Ω|T , the bounds

λ1(G+ δI) = λ1(G) + δ ≤ C1
N

T
+ δ =: b,
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λK1(G+ δI) = λK1(G) + δ ≥ C2
N

T
+ δ =: a,

λK2+1(G+ δI) = λK2+1(G) + δ ≤ δ + 2δε1/8,

all hold. Therefore,

Spec(G+ δI) ⊆ [δ, δ + 2δε1/8]
⋃
{λk(G+ δI)}K2

k=K1+1

⋃
[a, b].

Then, by applying Lemma 2, with a = C2
N

T
+ δ, b = C1

N

T
+ δ, p = K2 − K1 ≤

C0L log
(
π
2
|Ω|T

)
log
(
N2|Ω|2
δ2ε1/4

)
, and {ci}pi=1 = {λk(G+ δI)}K2

k=K1+1, we have that CGD

will need at most

k ≤

⌈
1

2

√
b

a

(
(p+ 8) log

b

δ
+ log

2

ε

)⌉
+ p+ 8 = L · polylog

(
|Ω|T, N

|Ω|T
,
1

δ
,
1

ε

)

iterations to return a vector z(k) such that

∥∥z(k) − (G+ δI)−1y
∥∥
G+δI

≤ ε‖(G+ δI)−1y‖G+δI,

as desired.
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APPENDIX E

MISCELLANEOUS RESULTS

E.1 Zolotarev numbers

In this section, we review some properties of Zolotarev numbers, which will be useful in

our analysis in Section E.2. With the exception of Corollary 6, all the results here have

been proven elsewhere. However, we state these results and outline the proofs for sake of

completeness.

For any integer k ≥ 0, we let Rk,k denote the set of rational functions ϕ(z) = p(z)
q(z)

such that p(z) and q(z) are polynomials with degree at most k. For any two disjoint, closed

subsets of the Riemann sphereE,F ⊂ C∪{∞}, the Zolotarev number Zk(E,F ) is defined

as

Zk(E,F ) = inf
ϕ∈Rk,k

sup
z∈E
|ϕ(z)|

inf
z∈F
|ϕ(z)|

.

Note that any rational function ϕ(z) = p(z)
q(z)

can be extended to a continuous function on the

Riemann sphere C ∪ {∞} by defining ϕ(∞) = lim
|z|→∞

ϕ(z) and ϕ(z) = ∞ for any z such

that q(z) = 0.

Beckermann and Townsend [114] proved the following bound on the Zolotarev num-

bers for the intervals E = [−b,−a] and F = [a, b].

Theorem 17. [114] For any reals b > a > 0, and any integer k ≥ 0,

Zk([−b,−a], [a, b]) ≤ 4 exp

[
− π2k

log(4b
a

)

]
.

The proof of Theorem 17 involves using theory of elliptic functions to construct a ra-

tional function ϕ ∈ Rk,k for which

sup
z∈[−b,−a]

|ϕ(z)|

inf
z∈[a,b]

|ϕ(z)|
≤ 4 exp

[
− π2k

log(4b
a

)

]
.
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A fact about Zolotarev numbers is that they are invariant under invertible Möbius trans-

forms [122].

Lemma 18. [122] For any two disjoint, closed subsets of the Riemann sphere E,F ⊂

C ∪ {∞} and any Möbius transform φ(z) =
β1z + β2

β3z + β4

such that β1β4 6= β2β3, we have

Zk(φ(E), φ(F )) = Zk(E,F ) for all integers k ≥ 0.

This fact is easily proved by noting that ϕ∗ ∈ Rk,k is the extremal rational function for

(φ(E), φ(F )) if and only if ϕ∗ ◦ φ ∈ Rk,k is the extremal rational function for (E,F ).

Using this fact, Beckermann and Townsend proved the following bound on the Zolotarev

numbers for two non-overlapping intervals.

Corollary 5. [114] For any two intervals [c1, c2] and [d1, d2] that are nonoverlapping, and

any integer k ≥ 0,

Zk([c1, c2], [d1, d2]) ≤ 4 exp

[
− π2k

log(16γ)

]
where γ =

(d1 − c1)(d2 − c2)

(d2 − c1)(d1 − c2)
.

Proof. It is trivial to check that γ > 1 when [c1, c2] and [d1, d2] do not overlap. Now, set

α = 2γ − 1 + 2
√
γ2 − γ and define the Möbius transforms

φ1(z) =
(d2 − d1)(z − c2)

(d2 − c2)(z − d1)
and φ2(z) =

(α− 1)(z + 1)

(α + 1)(z − 1)
.

One can check that φ1([c1, c2]) = [0, γ−1
γ

] = [0, (α−1)2

(α+1)2 ] = φ2([−α,−1]) and φ1([d1, d2]) =

[1,∞] = φ2([1, α]), and that both φ1 and φ2 are bijections. Thus, the Möbius transform

φ = φ−1
2 ◦ φ1 satisfies φ([c1, c2]) = [−α,−1] and φ([d1, d2]) = [1, α]. So by applying

Theorem 17, Lemma 18, and the bound α = 2γ − 1 + 2
√
γ2 − γ ≤ 4γ, we have

Zk([c1, c2], [d1, d2]) = Zk([−α,−1], [1, α]) ≤ 4 exp

[
− π2k

log(4α)

]
≤ 4 exp

[
− π2k

log(16γ)

]
.
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In a nearly identical manner, we can also prove the following bound.

Corollary 6. For any real numbers c1 < d1 < d2 < c2, and any integer k ≥ 0,

Zk([−∞, c1] ∪ [c2,∞], [d1, d2]) ≤ 4 exp

[
− π2k

log(16γ)

]
where γ =

(c2 − d1)(d2 − c1)

(c2 − d2)(d1 − c1)
.

Proof. Again, since c1 < d1 < d2 < c2, we have γ > 1. Now, set α = 2γ− 1 + 2
√
γ2 − γ

and define the Möbius transforms

φ1(z) =
(d2 − d1)(z − c1)

(d2 − c1)(z − d1)
and φ2(z) =

(α− 1)(z + 1)

(α + 1)(z − 1)
.

One can check that φ1([−∞, c1] ∪ [c2,∞]) = [0, γ−1
γ

] = [0, (α−1)2

(α+1)2 ] = φ2([−α,−1]) and

φ1([d1, d2]) = [1,∞] = φ2([1, α]), and that both φ1 and φ2 are bijections. Thus, the Möbius

transform φ = φ−1
2 ◦φ1 satisfies φ([−∞, c1]∪ [c2,∞]) = [−α,−1] and φ([d1, d2]) = [1, α].

So by applying Theorem 17, Lemma 18, and the bound α = 2γ− 1 + 2
√
γ2 − γ ≤ 4γ, we

have

Zk([−∞, c1] ∪ [c2,∞], [d1, d2]) = Zk([−α,−1], [1, α])

≤ 4 exp

[
− π2k

log(4α)

]
≤ 4 exp

[
− π2k

log(16γ)

]
.

E.2 Singular values of matrices with low rank displacement

With the exception of Theorem 14, the results in this section have all been proven else-

where. Furthermore, the proof of Theorem 14 is very similar to that of Theorem 19. How-

ever, we state these results and the proof of Theorem 14 for sake of completeness.

Throughout this section, we suppose that X ∈ CM×N satisfies the displacement equa-
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tion

CX −XD = UV ∗,

where C ∈ CM×M and D ∈ CN×N are normal matrices, and U ∈ CM×ν and V ∈

CN×ν (where it is understood that ν � min{M,N} for the results in this section to be

useful). Our goal is to show that X is approximately low-rank under certain assumptions

on Spec(C) and Spec(D).

Beckermann and Townsend [114] showed that the numerical rank ofX can be bounded

in terms of Zolotarev numbers.

Theorem 18. [114] If Spec(C) ⊂ E and Spec(D) ⊂ F , then the singular values of X

satisfy

σνk+j(X) ≤ σj(X)Zk(E,F )

for any integers j ≥ 1, k ≥ 0.

The proof involves showing that for any rational function ϕ ∈ Rk,k, we can construct a

rank-(νk + j − 1) matrix Y such that

X − Y = ϕ(C)(X −Xj−1)ϕ(D)−1

whereXj−1 is the best rank-(j − 1) approximation toX . Then, by applying the facts that

‖ϕ(C)‖ ≤ sup
z∈E
|ϕ(z)|,

‖ϕ(D)−1‖ ≤ sup
z∈F
|ϕ(z)−1| =

(
inf
z∈F
|ϕ(z)|

)−1

,

‖X −Xj−1‖ = σj(X),
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along with the submultiplicativity of the matrix norm, we obtain

σνk+j(X) ≤ ‖X − Y ‖ ≤ ‖ϕ(C)‖ · ‖X −Xj−1‖ · ‖ϕ(D)−1‖ ≤ σj(X) ·
sup
z∈E
|ϕ(z)|

inf
z∈F
|ϕ(z)|

.

This bound holds for any ϕ ∈ Rk,k. Taking the infimum over all ϕ ∈ Rk,k yields

σνk+j(X) ≤ σj(X)Zk(E,F ).

By combining Theorem 18 (with j = 1) along with Corollary 5, Beckermann and

Townsend established the following result.

Theorem 19. [114] If Spec(C) ⊂ [c1, c2] and Spec(D) ⊂ [d1, d2] where [c1, c2] and [d1, d2]

are nonoverlapping, then for any integer k ≥ 0,

σνk+1(X) ≤ 4‖X‖ exp

[
− π2k

log(16γ)

]
where γ =

(d1 − c1)(d2 − c2)

(d2 − c1)(d1 − c2)
.

In an identical manner, we can combine Theorem 18 (with j = 1) along with Corol-

lary 6 to establish Theorem 14 (stated in Section A.1.3).

E.3 Polynomial approximations of the sinc function

For a bandwidth parameter W > 0, we define the sinc function

g(t) =
sin(2πWt)

πt
for t ∈ R.

First, we prove the following bound on the derivatives of g(t).

Lemma 19. For any non-negative integer k,

∣∣g(k)(t)
∣∣ ≤ (2πW )k min

{
2W

k + 1
,

2

π|t|

}
for all t ∈ R.

Proof. For k = 0, we can apply the inequality | sin θ| ≤ min{|θ|, 2} to obtain |g(t)| ≤

min{2W, 2
π|t|}. Hence, we can proceed with the case where k ≥ 1. Note that we can write

204



the sinc function as

g(t) =
sin(2πWt)

πt
=

∫ W

−W
ej2πft df.

By differentiating under the integral sign k times, we obtain

g(k)(t) =
dk

dtk

[∫ W

−W
ej2πft df

]
=

∫ W

−W

dk

dtk
[
ej2πft

]
df =

∫ W

−W
(j2πf)kej2πft df.

Applying the triangle inequality yields the bound

∣∣g(k)(t)
∣∣ =

∣∣∣∣∫ W

−W
(j2πf)kej2πft df

∣∣∣∣
≤
∫ W

−W

∣∣(j2πf)kej2πft
∣∣ df

=

∫ W

−W
(2π|f |)k df

=
(2πW )k+1

π(k + 1)
.

Alternatively, using integration by parts before applying the triangle inequality yields

∣∣g(k)(t)
∣∣ =

∣∣∣∣∫ W

−W
(j2πf)kej2πft df

∣∣∣∣
=

∣∣∣∣∣
[
(j2πf)k

ej2πft

j2πt

]f=W

f=−W
−
∫ W

−W
j2πk(j2πf)k−1 e

j2πft

j2πt
df

∣∣∣∣∣
=

∣∣∣∣(j2πW )kej2πWt

j2πt
− (−j2πW )ke−j2πWt

j2πt
−
∫ W

−W
j2πk(j2πf)k−1 e

j2πft

j2πt
df

∣∣∣∣
≤
∣∣∣∣(j2πW )kej2πWt

j2πt

∣∣∣∣+

∣∣∣∣(−j2πW )ke−j2πWt

j2πt

∣∣∣∣+

∣∣∣∣∫ W

−W
j2πk(j2πf)k−1 e

j2πft

j2πt
df

∣∣∣∣
≤
∣∣∣∣(j2πW )kej2πWt

j2πt

∣∣∣∣+

∣∣∣∣(−j2πW )ke−j2πWt

j2πt

∣∣∣∣+

∫ W

−W

∣∣∣∣j2πk(j2πf)k−1 e
j2πft

j2πt

∣∣∣∣ df
=

(2πW )k

2π|t|
+

(2πW )k

2π|t|
+

∫ W

−W

k

|t|
(2π|f |)k−1 df

=
(2πW )k

π|t|
+

(2πW )k

π|t|

=
2(2πW )k

π|t|
.

205



Combining the two bounds yields

∣∣g(k)(t)
∣∣ ≤ min

{
(2πW )k+1

π(k + 1)
,
2(2πW )k

π|t|

}
= (2πW )k min

{
2W

k + 1
,

2

π|t|

}
.

We finish this section by noting a well-known theorem on Chebyshev interpolation.

Theorem 20. [123] Suppose g ∈ Ck[a, b] for some positive integer k. Define the Cheby-

shev interpolating polynomial of degree k − 1 by

Pk(t) =
k∑

m=1

g(tm)
∏

m′=1,...,k
m′ 6=m

t− tm′
tm − tm′

where

tm =
b+ a

2
+
b− a

2
cos

(
2m− 1

2k
π

)
for m = 1, . . . , k

are the Chebyshev nodes used for interpolation. Then, for any t ∈ [a, b], we have

|g(t)− Pk(t)| ≤
(b− a)k

22k−1k!
max
ξ∈[a,b]

∣∣g(k)(ξ)
∣∣ .

We will use both Lemma 19 and Theorem 20 in Section A.1.4 to prove Theorem 2.

E.4 Low rank approximation to solutions of Lyapunov equations

Iterative methods for efficiently computing a low-rank approximation to the solution of a

Lyapunov system have been well-studied [124, 125]. Here we prove a lemma which shows

how to construct a factored low-rank approximation to the solution of a Lyapunov equation

where the right side is low-rank.

Lemma 20. LetA ∈ RN×N be a symmetric positive definite matrix with condition number

κ, let U ∈ RN×M with M ≤ N , and letX ∈ RN×N be the positive definite solution to the
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Lyapunov equation

AX +XA∗ = UU ∗.

Then for any δ ∈ (0, 1], there exists an N × rM matrix Z with

r =

⌈
1

π2
log (4κ) log

(
4

δ

)⌉
, (E.1)

such that

‖X −ZZ∗‖ ≤ δ‖X‖. (E.2)

Proof. The CF-ADI algorithm presented in [126] constructs a factor Z ∈ RN×rM by con-

catenating a series of r N ×M matrices, Z =

[
Z1 Z2 · · · Zr

]
, where

Z1 =
√

2p1(A+ p1I)−1U

Zk =

√
pk
pk−1

(
I− (pk + pk−1)(A+ pkI)−1

)
Zk−1, k = 2, . . . , r,

for some choice of positive real numbers p1, . . . , pr. They show that the matrix ZZ∗ pro-

duced by this iteration is equivalent to the matrix produced by the ADI iteration given in

[124], and thus, ZZ∗ satisfies

X −ZZ∗ = φ(A)Xφ(A)∗ where φ(x) =
r∏
j=1

x− pj
x+ pj

.

(This is shown in [124] by using induction on r.) Therefore, the error ‖X−ZZ∗‖ satisfies

‖X −ZZ∗‖ ≤ ‖X‖ · ‖φ(A)‖2 = ‖X‖ · max
x∈Spec(A)

|φ(x)|2 ≤ ‖X‖ · max
x∈[a,b]

|φ(x)|2,

where a = λmin(A) and b = λmax(A) (so κ = b
a
). In [125], it is shown that for a given in-

terval [a, b] and a number of ADI iterations r, there exists a choice of parameters p1, . . . , pr
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such that maxx∈[a,b] |φ(x)|2 = α, where α satisfies

I(
√

1− α2)

I(α)
=

4rI(κ−1)

I(
√

1− κ−2)
,

where I(τ) is the complete elliptic integral of the first kind, defined by

I(τ) :=

∫ π/2

0

(1− τ 2 sin2 θ)−1/2 dθ.

It is shown in [127] that the elliptic nome, defined as

q(τ) := exp

[
−πI(

√
1− τ 2)

I(τ)

]

satisfies

τ 2 = 16q(τ)
∞∏
n=1

(
1 + q(τ)2n

1 + q(τ)2n−1

)8

.

For 0 ≤ τ ≤ 1, the range of the elliptic nome is 0 ≤ q(τ) ≤ 1. Hence, the above equation

gives us the inequality τ 2 ≤ 16q(τ). By using the definition of the elliptic nome, this

inequality becomes
I(
√

1− τ 2)

I(τ)
≤ 2

π
log

4

τ
for 0 ≤ τ ≤ 1.

So, by setting the number of iterations as r =
⌈

1
π2 log (4κ) log

(
4
δ

)⌉
, we have

2

π
log

4

α
≥ I(

√
1− α2)

I(α)
=

4rI(κ−1)

I(
√

1− κ−2)
≥

4 · 1
π2 log(4κ) log(4

δ
)

2
π

log(4κ)
=

2

π
log

4

δ
.

Hence, maxx∈[a,b] |φ(x)|2 = α ≤ δ, and thus, ‖X −ZZ∗‖ ≤ δ‖X‖, as desired.

Note, it is shown in [124] that (E.1) is a good approximation for the number of iterations

needed to get the relative error less than δ, provided that κ � 1. It is shown in [125] that

(E.1) is a good approximation provided that r ≥ 3. Here, we have shown that (E.1) is

sufficient to guarantee a strict bound on the error.
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The choice of parameters p1, . . . , pr which minimizes maxx∈[a,b] |φ(x)|2 is given by

the formula pk = bdn
[

2k−1
2r
I(
√

1− κ−2),
√

1− κ−2
]
, where dn[z, τ ] is the Jacobi elliptic

function. This function is defined as dn[z, τ ] =
√

1− τ 2 sin2 ϕ, where ϕ satisfies
∫ ϕ

0
(1 −

τ 2 sin2 θ)−1/2 dθ = z. If the Jacobi elliptic function dn is not available, a suboptimal choice

of parameters p1, . . . , pr is given by pk = a
2k−1

2r b
2r−2k+1

2r , i.e., we can pick the parameters

to be evenly spaced on a log scale.

If the matrix A is diagonal, each iteration of the CF-ADI algorithm above will take

O(N) operations. Hence, the matrix Z can be computed in O(rN) operations.
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