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SUMMARY 

 Overcoming the strength-ductility tradeoff is a widely pursued goal in the materials 

community. In recent years, design, fabrication, and optimization of heterogeneous 

microstructures have been extensively explored to achieve exceptional combinations of 

strength and ductility. However, there is currently a critical lack of the mechanics 

understanding of heterogeneous microstructures. In general, structural heterogeneities 

generate mechanical heterogeneities that are manifested as spatially non-uniform back 

stresses and forward stresses. These long-range, directional internal stresses can result in 

enhanced yield strength, work hardening, and tensile ductility. To understand the effects 

of heterogeneous microstructures and associated internal stresses on mechanical properties, 

this thesis is focused on development of novel constitutive and atomistic models for several 

emergent heterogeneous material systems, including additively manufactured metal alloys, 

gradient nanotwinned metals, nanocrystalline thin films, and nanodispersion-strengthened 

composites. Overall, the thesis research provides a new framework to bridge the structural 

heterogeneities and mechanical heterogeneities in several heterogeneous material systems 

through new constitutive models of strain gradient plasticity, internal-stress-dependent 

crystal plasticity, and dual-phase crystal plasticity. Atomistic simulations uncover the 

critical deformation processes that are strength/rate-controlling. Coupled with novel 

material processing, characterization, and testing, the modeling and simulation results offer 

quantitative predictions and mechanistic insights toward the design of heterogeneous 

metallic materials with improved combinations of strength and ductility. 
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CHAPTER 1. INTRODUCTION 

1.1 Heterogeneous Metallic Materials 

Metals and alloys are the most commonly used class of engineering materials. This is 

mainly because they have either high strength or high ductility. However, a superior 

combination of strength and ductility is rarely achieved: high-strength metals and alloys 

usually suffer from poor ductility. For example, nanocrystalline metals exhibit strength 

near 1 GPa but only less than 5% tensile ductility [1]. Pre-worked metals  have high 

strength due to high dislocation density from severe plastic deformation, but their 

diminishing strain hardening capability leads to limited ductility [2]. Therefore, it is a great 

challenge to develop stronger and tougher materials. 

In recent years, there have been many explorations of structural heterogeneity designs, 

including bimodal, lamellar, gradient and hierarchical nanostructures as shown in Figure 

1.1, in order to achieve high strength with good ductility. This route of heterogeneity 

engineering shows promising combinations of strength and ductility. However, there is 

currently a critical lack of fundamental understanding of heterogeneous microstructures. 

Therefore, the focus of this thesis is to understand the mechanics and physics of these 

heterogeneous metallic systems, thereby facilitating and inspiring better design of 

structural heterogeneities to achieve exceptional combinations of high strength and 

ductility. 
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Figure 1.1 Yield strength versus uniform elongation of metals adapted from [3]. The 

shaded area under the banana-shaped curve covers the strength-ductility data of 

conventional metals with homogeneous microstructures. 

 

1.2 Mechanical Heterogeneities and Internal Stresses 

Metals and alloys usually contain different microstructural heterogeneities across many 

length scales, for example, (i) short-range ordering and clustering in high-entropy alloys, 

(ii) grain boundaries in nanocrystalline metals, (iii) reinforced particle in nanocrystals, (iv) 

chemical segregation and dislocation cells in additively manufactured alloys, (v) gradient 

nanotwinned metals. These heterogeneities with different mechanical properties produce 

heterogeneous stress distributions inside materials when external loading is applied.  We 

define the differences between the local stress and the average macroscopic stress as 
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internal stresses. These internal stresses (also called residual stresses upon unloading) 

strongly influence the strength, ductility, fracture and fatigue properties of the materials. 

The internal stresses are usually categorized into three types based on their length scales as 

shown in Figure 1.2: (i) macrostresses or type-I internal stresses that occurs over a distance 

comparable to the size of the component, (ii) intergranular internal stresses or type-II 

internal stresses at the scale of grain size and (iii) intragranular internal stresses or type-III 

internal stresses at the level of sub-grain microstructures. Such internal stresses are long-

range, directional and self-equilibrating, producing the Bauschinger effect and kinematic 

hardening. 

 

Figure 1.2 Schematic illustration of the distribution of macro internal stresses, 

intergranular internal stresses and intragranular internal stresses in a randomly orientated 

polycrystalline material, adapted from [4]. 

 

Type II 

Type III 
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Figure 1.3 presents a general framework for understanding the mechanics of different 

types of heterogeneous nanostructures (shown in upper-row images). Let us consider 

gradient nanotwinned (GNT) Cu as an example. It is important to take into consideration 

the size of a selected representative volume element (RVE) relative to the characteristic 

length scales of GNT Cu, which feature the wavelength of periodically varying twin 

thickness (on the order of hundreds of micrometers) as well as the nanotwin thickness (on 

the order of tens of nanometers). As shown in the red panel of Figure 1.3, when the entire 

sample of GNT Cu is taken as a “large” RVE, the strengthening effect of structural gradient 

inside the RVE can be characterized by partitioning the overall stress into the back and 

effective stresses based on the plasticity model of kinematic hardening [5-7]. The back 

stress reflects the strengthening contribution from the directional, long-range internal stress 

arising from plastically inhomogeneous deformation in gradient structures, while the 

effective stress represents the strengthening contribution from the non-directional, short-

range resistance to gliding dislocations from lattice friction and local pinning obstacles. In 

contrast, the blue panel of Figure 1.3 shows an alternative approach of choosing a “small” 

RVE that contains twin lamellae with a uniform thickness. Suppose a “small” RVE 

represents a “soft” region containing uniformly-thick twin lamellae, while another adjacent 

“small” RVE represents a “hard” region containing uniformly-thin twin lamellae. A 

structural gradient across the two RVEs results in a gradient of plastic strain, whose 

strengthening effect can be characterized by the constitutive model of strain gradient 

plasticity. Therefore, the strengthening effects of nanotwin gradients and uniform 

nanotwins are separated in the “small-RVE” approach, while these two strengthening 

effects are combined in the “large-RVE” approach. Note that the “small” RVEs with 
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uniform twin thickness also contain structural heterogeneity due to the presence of twin 

boundaries (TBs) and twin lamellae with different orientations. The strengthening effect of 

such kind of structural heterogeneity at the “small” RVE level can be characterized by the 

corresponding back and effective stresses. Hence, the multiple types of back stress in GNT 

Cu originate from structural heterogeneities at different length scales and thus illustrate the 

complexity of back stresses arising from highly heterogeneous microstructures. 

 

Figure 1.3 Unified mechanics framework of heterogeneous microstructures. The 

mechanical heterogeneities induce plastic strain gradient leading to extra strengthening and 

hardening. 

 

 In summary, structural heterogeneities generate mechanical heterogeneities that are 

manifested as spatially non-uniform back stresses and forward stresses. These long-range, 

directional internal stresses can result in enhanced yield strength, work hardening, and 

tensile ductility. To understand the effects of heterogeneous microstructures and associated 

internal stresses on mechanical properties, this thesis research is focused on development 
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of novel constitutive and atomistic models for several emergent heterogeneous material 

systems, including additively manufactured metal alloys, gradient nanotwinned metals, 

nanocrystalline thin films, and nanodispersion-strengthened metal composites. 

1.2.1 Microscale Heterogeneities in Additively Manufactured Alloys 

 

Figure 1.4 Typical microstructures of laser powder-bed-fusion (L-PBF) produced 316 

stainless steels (SS) adapted from [8]. a, A schematic of various length scales uncovered 

in L-PBF 316L SS. b, A cross-sectional electron backscatter diffraction (EBSD) inverse-

pole figure. c, A cross-sectional scanning electron microscopy (SEM) image, revealing 

fusion boundaries, high-angle grain boundaries (HAGBs), and solidification cellular 

structures. d, A bright-field transmission electron microscopy (TEM) image of 

solidification cells. e, A high-angle annular dark-field (HAADF) scanning TEM (STEM) 

image of the solidification cells shown in d. The nanoparticles segregated to the cell walls 

were identified as transition-metal-rich silicates formed during L-PBF processing. f, EBSD 

IPF map acquired with a 1-µm step size. g, EBSD image quality (IQ) map with HAGBs 

and low-angle grain boundaries (LAGBs) superimposed. h, A map of the kernel average 

misorientation (KAM), measured in degrees, to illustrate the local misorientation across 

individual grain. i, A HAADF STEM (Z contrast) image showing segregation of Mo and 
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Cr to the solidification cellular walls and a LAGB, with corresponding Fe, Mo, and Cr 

energy-dispersive spectroscopy (EDS) maps that confirm this segregation. 

 AM materials produced by laser powder-bed-fusion (L-PBF) feature highly non-

equilibrium microstructures such as high dislocation density, irregular and tortuous grain 

morphologies, cellular structures, and chemical segregation. These unique microstructural 

characteristics result in mechanical properties that significantly differ from traditional 

materials. The L-PBF technology shares many common roots with welding as both 

processes melt and bond materials by utilizing a localized heat source. The highly localized 

heating and rapid cooling associated with a melt pool, in conjunction with the repetition of 

this thermomechanical process layer-by-layer, give rise to large thermal gradients and 

therefore large residual stresses within highly non-equilibrium microstructures as shown 

in Figure 1.4. The thermal gradients are affected by many processing parameters, including 

build plate/powder bed temperature, laser power, powder thermophysical characteristics, 

melt pool size, etc. The convolution of these processing parameters often leads to a 

complex residual stress field within the build part. It remains a great challenge to 

understand the origin and impact of complex residual stresses correlated to the 

heterogeneities. While recent studies on the macroscale residual stresses in AM materials 

have revealed various deleterious effects such as loss of net shape, detachment from 

support structures, or even failure of the build parts, the influences of the microscale 

residual stress on the mechanical performance of AM materials remain elusive, due largely 

to the difficulty of measurements of their spatial-temporal evolution at the micrometer 

length scales. 
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 In the first part of this thesis, we develop a crystal plasticity finite element (CPFE) 

model to quantitatively characterize the effects of both intragranular and intergranular 

internal stresses on AM stainless steels. This CPFE model is further extended to investigate 

an AM high-entropy alloy with a dual-phase microstructure; the dual-phase CPFE model 

is used to inversely determine the elastic-plastic properties of individual phases based on 

in situ neutron diffraction experiments. The CPFE simulations are applied to interpret 

experimental results and provide guidance for improving the mechanical properties of AM 

materials through tuning the printing conditions and heterogeneous microstructures. 

1.2.2 Macroscale Heterogeneities in Gradient Nanotwinned Cu 

 In addition to microscale heterogeneities in AM materials, macroscale heterogeneities 

can lead to an exceptional combination of high strength and ductility, for example, in 

gradient nanotwinned Cu (GNT-Cu) [9]. The extraordinary strengthening effect of GNT-

Cu results from plastic strain gradients arising in plastically deformed gradient structures. 

As shown in Figure 1.5, an increase in nanostructure gradient causes a marked increase of 

the sample-level yield strength, and a large nanostructure gradient produces a high yield 

strength exceeding that of the strongest component of the gradient nanostructure. The extra 

strength is measured as a function of structure and strength gradients. These results call for 

a fundamental understanding of the strengthening effects of plastic strain gradients 

originating from gradient nanostructures. In addition, given the high tunability of its 

gradient structures, GNT Cu can serve as an effective model system for benchmarking the 

gradient theories of plasticity.   
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In the second part of this thesis, we develop a gradient theory of plasticity by 

incorporating the strengthening effect of plastic strain gradient into the J2 flow theory. 

Motivated by the simple gradient theory of plasticity by Bassani [10], a scalar measure of 

plastic strain gradient is introduced into a hardening rate relation, so that higher-order 

stresses and additional boundary conditions are not needed. This approach enables a 

quantitative analysis of strain gradient plasticity without much mathematical complexity. 

To study the gradient plastic responses of GNT Cu under uniaxial tension, we reduce the 

general three-dimensional (3D) gradient theory into a one-dimensional (1D) theory, and 

numerically implement this 1D theory with the finite-difference method. Numerical 

simulations reveal the primary effects of strain gradient plasticity on GNT Cu with different 

structure gradients. Also, we numerically implement the 3D gradient theory into the 

general finite element package ABAQUS/Explicit by writing user subroutines and simulate 

the 3D stress-strain responses in GNT Cu by accounting for the effects of strain gradient 

plasticity. Based on insights gained from both 1D and 3D gradient plasticity simulations, 

we explore the optimization of structure and strength gradients toward achieving the 

maximum strength of GNT Cu.  
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Figure 1.5 Mechanical properties of GNT structures adapted from [11], (A) Tensile 

engineering stress-strain relations of GNT samples in comparison with those of 

homogeneous nanotwinned components. (B) Yield strength, stress at 1% strain, and 

ultimate tensile strength of GNT samples with various structural gradients. 

 

Heterogeneous materials often exhibit significant back stress upon unloading. Based 

on the experimentally measured back stress, a mechanistically-based gradient plasticity 

finite element (GPFE) model is further developed to directly elucidate the origin of extra 

strengths arising from strain gradient plasticity, so as to connect the back stresses with 

underlying gradient microstructures. These GPFE models allow us to design GNT 

materials with higher strengths by optimizing the structural gradient distributions. 

1.2.3 Nanoscale Heterogeneities in Nanocrystalline Metals and Composites 

 Beyond the constitutive modeling of micro- and macro-scale heterogeneities in Part I 

and II, we investigate the mechanics of nanoscale heterogeneities including interfaces 

using atomistic simulations. Strengthening in structural metals and alloys is often built 

upon a fundamental principle of hindering dislocation glide through the rational 

deployment of different types of obstacles, e.g., precipitates and grain boundaries. 

Incorporation of second phases with high hardness and stiffness into a metal matrix, 

forming metal matrix composites, provides an effective approach for strengthening and 

stabilizing metal nanostructures. For nanocrystalline and ultrafine-grained metals, grain 

boundaries impede further dislocation glide, raising plastic deformation resistance. Our 

atomistic simulations are coupled with experiments to provide an in-depth understanding 

of the strengthening effects of those nanoscale heterogeneities.    
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Figure 1.6 Two major heterogeneities in nanocrystalline metals and alloys. (Top right) 

Grain boundaries in nanocrystalline metals Au and Al. (Bottom right) Nano-dispersed 

carbon particles in Cu 

 We perform molecular dynamics (MD) simulations using LAMMPS [12] to study the 

interaction between dislocations and nano-C particles. The atomic interactions in the Cu-

C system are modeled by combining the embedded atom method (EAM) potential for Cu-

Cu interaction, the Tersoff potential for C-C interaction, and the Lennard-Jones potential 

for Cu-C interaction. Our MD simulations and theoretical analyses enable a fundamental 

understanding of the underlying mechanisms responsible for the ultrahigh strength and 

high hardening of the nanocomposites with nano-C embedded in a nanocrystalline Cu 

matrix. In addition to nano-C reinforced metal matrix composites, we investigate the 

atomic-scale plastic deformation mechanisms in ultrafine-grained/nanocrystalline thin 

films of Al and Au, in order to understand the effects of nanoscale heterogeneities on the 

evolution of deformed nanocrystalline structures. Recently, our experimental collaborators 

Pure metals

Nanocrystalline metallic materials

Nano-dispersed composite

Grain boundary as 
major heterogeneity

Nano-dispersed C particles
(spacing ~ 10 nm)
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observed pronounced grain growth in ultrafine-grained thin films of Al and Au by in situ 

transmission electron microscopy (TEM) straining experiments. To understand these 

experimental results, we conduct MD simulations of nanocrystalline Al films and use a 

newly-developed coloring scheme to track GB migration over time. The combined in situ 

TEM observation and MD simulation results can reveal the important role of grain growth 

in plastically deforming nanocrystalline Al. Moreover, our experimental collaborators used 

a MEMS-based nanomechanical testing platform to measure the stress relaxation responses 

and associated activation volumes in ultrafine-grained Au and Al thin films. To interpret 

their experimental results and further guide experimental design, we investigate the thermal 

activation of dislocation nucleation by atomistic reaction pathway calculations using the 

nudged elastic band (NEB) method. The NEB method allows us to overcome the timescale 

limitation of MD simulations. As such, we directly compare the atomistically calculated 

activation volumes with the corresponding experimental measurements. The combined in 

situ activation volume measurement and atomistic simulation enable us to understand the 

rate-limiting plastic deformation mechanisms in ultrafine-grained metallic materials. 
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Part I: Microscale Heterogeneities in Additively Manufactured Alloys 
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CHAPTER 2. LATTICE STRAINS AND DIFFRACTION 

EXPERIMENTS 

2.1 Introduction 

 In situ synchrotron X-ray diffraction (SXRD) and neutron diffraction experiments are 

widely used in a broad range of disciplines, including materials science, geophysics, 

environmental science, biophysics and others [13, 14]. They can provide measurements of 

the average lattice strains in different families of grains with specific orientations in 

polycrystalline materials [4, 15]. In the elastic regime, the lattice strain of individual grains 

increases linearly with the macroscopically applied stress, as demonstrated, for example, 

by neutron diffraction of copper [15], steel [16-20], nickel-based alloys [21, 22], and SXRD 

of austenitic stainless steel [23, 24]. The linear relationship also holds for the average lattice 

strains in each grain family and is usually characterized by the so-called diffraction elastic 

constants [25-28], which vary with the orientation of the grain family. The lattice strains 

and diffraction elastic constants have many possible uses in the analysis of microscale 

residual stresses [29] and progressive yielding [23, 24]. However, it is hard to find solutions 

for lattice strains and diffraction elastic constants of many materials in the literature. The 

demand for these solutions is expected to grow in the coming years, as in situ diffraction 

experiments can be used for high-throughput and data-analytics studies of the mechanical 

behavior of polycrystalline materials with varying compositions and microstructures, such 

as high-entropy alloys [30], additively manufactured alloys [23, 24], heterogeneous 

nanostructured metals and alloys [3, 31], and others. 
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 In this Chapter, we make a combined use of the classical Eshelby inclusion solution 

[32] and the self-consistent method of microstructure homogenization [33] to derive a 

general analytic solution of the grain-level lattice strains and diffraction elastic constants. 

This solution is applicable to a broad class of elastically isotropic polycrystals with cubic 

crystal symmetry, including face-centered cubic (FCC), body-centered cubic (BCC) and 

diamond cubic (DC) crystals. Bollenrath, Hauk and Müller [25] derived an analytic 

solution of diffraction elastic constants of a cubic polycrystal using Kröner’s self-consistent 

method [34]. De Wit obtained alternative solutions of diffraction elastic constants [27]. But 

they did not provide the general analytic solution of lattice strains, and their derivations of 

the diffraction elastic constant solutions were not completely presented. The diffraction 

elastic constants can be also calculated using different numerical methods. One is based on 

the self-consistent polycrystal model that requires a numerical average of lattice strains in 

grains within the same family [15]. Another is based on the finite element polycrystal 

model that relies on a full numerical calculation of lattice strains in a polycrystalline 

aggregate [35]. Nonetheless, the analytic solutions are highly desired to facilitate the clear 

understanding and robust parametric study of the lattice strain effects. Here we adopt a 

modern micromechanics notation [33] to derive a general analytic solution of the lattice 

strains and diffraction elastic constants for cubic polycrystals. This solution can be readily 

understood and applied. It only requires an input of the three independent elastic constants 

of a cubic crystal. The associated numerical results are validated by literature data as well 

as polycrystal elasticity finite element simulations. Since the present solution requires only 

simple algebraic calculations, one can pursue straightforward numerical calculations to 
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determine lattice strains and diffraction elastic constants for any cubic polycrystals using a 

MATLAB code. 

 

2.2 Lattice Strains and Diffraction Elastic Constants 

 Figure 2.1a shows the schematic diagram of in situ SXRD measurement of lattice 

strains in a polycrystalline specimen under uniaxial tension. An incident X-ray beam into 

the specimen is diffracted to generate a series of Debye-Scherrer rings [36]. Each diffracted 

spot (i.e., red segment) on a ring corresponds to a family of grains with a common 

crystallographic plane, such as a {111} plane, oriented along a specific spatial direction, 

for example, the loading direction (denoted as LD), transverse direction (TD), or normal 

direction (ND) of the specimen. By tracking the change of lattice spacings during tensile 

testing, one can obtain the average lattice strains in different grain families as a function of 

applied load, and further calculate the stresses in these grain families using single-crystal 

elastic constants. Figure 2.1b shows a two-dimensional cross section of a representative 

volume element (RVE) in the tensile specimen. In a typical grain (highlighted in red) in 

this RVE, the unit normal vector n  of a set of lattice planes is oriented along LD, and the 

unit normal vector m of another set of lattice planes is oriented along TD. Each grain is 

associated with a set of the orthonormal crystal basis vectors   c c c

1 2 3, ,e e e . Also plotted are 

the representative grains in different {hkl} grain families oriented along LD. Different 

grain families usually exhibit different lattice strains and diffraction elastic constants, due 

to the elastic anisotropy of grain crystals. 
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Figure 2.1 Schematic diagrams of in situ SXRD measurements of lattice strains in a 

polycrystalline material. (a) Schematic of SXRD experiment, showing an incident X-ray 

beam into a polycrystalline specimen diffracted to generate a series of Debye-Scherrer 

rings. The loading direction (denoted as LD), transverse direction (TD), and normal 

direction (ND) of the specimen are marked.  (b) Schematic of a cross section of a 

representative volume element (RVE) of a polycrystalline aggregate in the tensile specimen 

in (a), subject to an uniaxial tensile stress 0 . The unit normal vector n  is oriented along 

LD and m along TD. Each grain is associated with a set of local orthonormal crystal basis 

vectors 
c c

1 2,e e , and 
c

3e  (not shown). Representative grains in respective {200}, {220} and 

{111} families oriented along LD are marked.  

 Consider a {hkl} grain family consisting of N grains in an RVE (Figure 2.1b). These 

grains are numbered by 1,…α ,…, N. To predict the average lattice strains and diffraction 

elastic constants in this grain family, one needs to derive a linear tensorial relation between 

the macroscopic stress ij  and the strain 
( )α

ij  in the grain α , i.e., 

  ( ) ( )α α
klij ijklU=   (2.1) 

0

0

200
111

220

(b)(a)

n

me1

c

e2

c

e1

c

e2

c

e1

c

e2

c
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where 
( )α

ijklU  is the constrained compliance tensor of the grain α  embedded in the 

polycrystal.  It should be noted that under a macroscopically applied load, the strain 

response of the grain α  in a polycrystal is not merely determined by single-crystal elastic 

constants, since elastic anisotropic grains interact with each other to adjust local strains for 

accommodating their deformation incompatibility. Hence, 
( )α

ijklU  is different from the 

single-crystal compliance tensor 
( )α

ijklM  and will be derived in Section 2.3. Also note that 

throughout this paper, all the components of vectors and tensors expressed with the index 

notation are resolved in the local orthonormal basis of the grain crystal, e.g., 

 c,( ) c,( ) c,( )

1 2 3, ,e e e
  

 in grain α ; the Einstein summation convention is used for repeated 

indices, except for repeated α  and  .  

 Under an applied uniaxial tensile stress 0  (Figure 2.1b), the macroscopic stress tensor 

ij  acting on the polycrystalline RVE can be expressed as  

  ( ) ( )

0

α α
ij i jn n=   (2.2) 

where 
( )α

in  denotes the components of the unit vector along LD resolved in terms of the 

local cubic basis of the single-crystal grain α . The lattice strain 
( )

LD

α  along LD can be 

similarly resolved in terms of the local cubic basis as  

  
( ) ( ) ( ) ( )

LD

α α α α

ij i jn n=   (2.3)

  

Substitution of Eqs. (2.1) and (2.2) into Eq. (2.3) yields 
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( ) ( ) ( ) ( ) ( ) ( )

LD 0

α α α α α α

ijkl i j k lσ U n n n n=  (2.4)

  

The average lattice strain LD  in the {hkl} grain family along LD is, therefore, given by 

  
( )

LD LD

1

1 N
α

αN =

=    (2.5) 

The corresponding diffraction elastic constant is defined as  

 LD

LD 0

1
hklE

=



 (2.6) 

Combining Eqs. (2.4-2.6), one can express LD

hklE  as   

 
( ) ( ) ( ) ( ) ( )

1LD

1 1 N
α α α α α

ijkl i j k lhkl
α

U n n n n
E N =

=   (2.7) 

once 
( )α

ijklU  is specified.  

2.3 General Solution for the Constrained Compliance Tensor U  

 As shown in section 2.2, the constrained compliance tensor 
( )α

ijklU  is key to determining 

the lattice strains and diffraction elastic constants for a cubic polycrystal. In this section, a 

general solution of this compliance tensor is derived using the direct notation. We consider 

a polycrystalline RVE with a specific distribution of grain orientations. The anisotropic 

elasticity tensor of the grain α  is denoted as 
( )α

L . As discussed earlier, the lattice strain 

response of this grain is not merely determined by 
( )α

L , since elastic anisotropic grains 
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interact with each other to adjust local strains. To account for such grain interactions, we 

consider a single-crystal grain in an RVE as a spherical inclusion embedded in a 

homogeneous matrix. As shown by Eshelby  [32], the stress and strain fields are uniform 

in the spherical inclusion and can be determined using the Eshelby inclusion solution. We 

determine the effective elastic stiffness tensor of the homogeneous matrix L  using the self-

consistent method [33]. The macroscopic stress   and strain   applied to the RVE are 

taken to be the volume averages of the stress and strain in all the grains, respectively. They 

are related by 

   = L  , = M   (2.8) 

where M  is the effective elastic compliance tensor of the RVE, i.e., 
1−

=M L . When the 

RVE is subjected to macroscopic applied strain,  ,  the Eshelby inclusion solution [33] 

shows that the uniform strain ( )α  in the spherical grain inclusion is given by 

  
( ) ( )α α= T   (2.9) 

where the global strain concentration tensor 
( )α

T  [33] is given by 

  ( )
1

1
( ) ( ) ( )α α α

−
− = + −

  
T I S L L L  (2.10) 

In Eq. (2.10), I  is the fourth rank identify tensor and ( )α
S is the Eshelby inclusion tensor 

of a spherical grain inclusion embedded in a matrix with the elastic stiffness tensor of L . 

From Eqs. (2.8) & (2.9), the strain ( )α  in the grain α  can be expressed in terms of the 

macroscopic stress   as 
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( ) ( )α α= U   (2.11) 

where the grain compliance tensor ( )α
U is given by 

  
( ) ( )α α=U T M   (2.12) 

 

2.4 Constrained Compliance Tensor U  in a Cubic Polycrystal  

 From the grain compliance tensor ( )α
U  given in Section 3, we derive a general solution 

of the diffraction elastic constants for an elastically isotropic polycrystal with cubic crystal 

symmetry. Using the index notation, the components of 
( )α

L  can be expressed in terms of 

the local crystal basis as [33] 

  ( ) ( )( )

12 44 11 12 442α

ijkl ij kl ik jl il jk ijklL C C C C C d     = + + − −+  (2.13) 

where 11C , 12C  and 44C  are the single-crystal elastic constants, ij  is the Kronecker delta 

and the non-zero components of ijkld  are 
1111 2222 3333 1d d d= = = . As shown by Qu and 

Cherkaoui [33], it is helpful to introduce the symbolic representations for the fourth-order 

tensors involved, so as to facilitate a convenient algebraic operation for these tensors, 

including addition, subtraction, multiplication, and inverse. To this end, the components of 

( )α
L  can be equivalently written as  

  ( ) ( ) ( )( )

1 2 3 2 3

1 1
3 2 2 2 2

3 2

α

ijkl ij kl ik jl il jk ijklL d          = − + + + −  (2.14) 
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where 1 11 123 2C C = + , 2 11 122 C C = −  and 3 442 2C = . Then the fourth-order tensor ( )α
L  

in Eq. (2.14) can be written symbolically as [37] 

 ( )( )

1 2 33 ,2 ,2α   =L  (2.15)

  

We consider a polycrystal having random grain orientations and thus an isotropic elasticity 

tensor L . With the same symbolic notation, L  and its corresponding compliance tensor 

M  are respectively written as 

 ( )3 ,2 ,2K  =L  and 
1 1 1

, ,
3 2 2K  

 
=  

 
M  (2.16) 

where K  is the effective bulk modulus and   is the effective shear modulus of the 

elastically isotropic polycrystal. The equations for K  and   from the self-consistent 

solution [37] are given by  

  ( )11 12

1
2

3
K C C= +  (2.17) 

 ( ) ( ) ( )( )
3 2

11 12 44 11 12 44 11 12 11 128 5 4 7 4 2 0C C C C C C C C C C  + + − − − − + =  (2.18) 

Given the single-crystal elastic constants, one can calculate K  from Eq. (2.17) and   by 

solving Eq. (2.18). On the other hand, the Eshelby inclusion tensor for a spherical inclusion 

in an elastically isotropic matrix can be written symbolically as [33] 

 ( )( ) 3 ,2 ,2α   =S  (2.19) 
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where  

 
3 4

K

K



=

+
 and 

3 6

15 20

K

K






+
=

+
 (2.20) 

In addition, the fourth-order identity tensor is ( )1,1,1=I . Our symbolic calculations of 

( )α
T  based on Eq. (2.10) and ( )α

U based on Eq. (2.12) yield 

  ( )

1 2 3

1 1 1
, ,

3 (3 3 ) 2 (2 2 ) 2 (2 2 )

α

K K         

 
 =
      + − + − + −      

U  (2.21) 

To proceed further, we represent  ( )α
U  symbolically as  

  ( ) (3 ,2 ,2 )α a b c=U  (2.22) 

where 3a , 2b and 2c  correspond to the respective component of ( )α
U in Eq. (2.21). By 

comparing Eqs. (2.14) and (2.15), we rewrite ( )α
U  in Eq. (2.22) as 

  ( ) ( ) ( )( ) 1 1
3 2 2 2 2

3 2

α

ijkl ij kl ik jl il jk ijklU a b c b c d     = − + + + −  (2.23) 

The solution of 
( )α

ijklU  in Eq. (2.23) enables numerical calculations of the lattice strains and 

diffraction elastic constants in Sections 5 and 6, as well as the grain-level stresses for the 

study of progressive yielding in different grain families [24].  It should be emphasized that 

this solution applies to a random orientation of grains. Consideration of crystallographic 

textured polycrystals is beyond the scope of this work. 
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2.5 Diffraction Elastic Constants along LD 

 Consider the grain α  in a {hkl} grain family along LD. In the crystal basis of this grain, 

the component of the unit vector 
( )

n


 along the [hkl] direction can be expressed as  

  ( ) ( )( ) ( ) ( ) ( ) 2 2 2

1 2 3, , , , /α α αn n n h k l h k l= = + +n
  (2.24)  

From Eqs. (2.7) and (2.23), the diffraction elastic constant for the {hkl} grain family along 

LD is derived as  

  ( ) ( )
3

4
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1LD

1 1 3 2
2 2

3

N
α α α α α α α α α

i i k k i i j j ihkl
α i

a b
n n n n cn n n n b c n

E N =

− 
= + + − 

 
   (2.25) 

With 
( ) ( ) 1α α

i in n = ,  substitution of Eq. (2.24) into Eq. (2.25) yields  

  ( )
LD

1 3 4
4

3hkl

a b
b c

E

+
= − −   (2.26) 

where the orientation index parameter   is defined as  

  

( )

2 2 2 2 2 2

2
2 2 2

h k l k h l

h k l

+ +
 =

+ +
  (2.27) 

This orientation parameter varies between 0 and 1/3 to cover all the grain families with 

random orientations, and they are 0, 19/121, 1/4 and 1/3 for the representative grain 

families of {200}, {311}, {220} and {111}, respectively. Equation (2.26) reveals a linear 

dependence of LD1/ hklE  on  , which is modulated by b c− . Since 

( )  3 2 2 34 ( ) / (2 2 ) (2 2 )b c    − = − + − + −              , the sign of ( )4 b c−  is 
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determined by the anisotropy ratio ( )44 11 12 3 22 / /A C C C  = − = . Hence, Eq. (2.26)  

indicates that if 1A  , then 0b c−   and thus LD

hklE  increases for increasing  , and vice 

versa. For example, 
111 200

LD LDE E   for FCC Cu, because of A = 3.21, while 
111 200

LD LDE E  for 

BCC Nb, due to A = 0.49. This analysis relates the anisotropy ratio A with the relative 

magnitude of 
111

LDE  and 
200

LDE , a factor that strongly influences the progressive yielding 

responses during loading and the residual stresses after unloading in different grain families 

[4]. 

 Using the analytic solution of Eq. (2.26), we calculated the diffraction elastic constants 

for various cubic polycrystals, with the experimental values of single-crystal elastic 

constants [38] (as also provided in the Appendix). Table 1 lists the numerical results of the 

diffraction elastic constants along LD for 26 representative elastically isotropic 

polycrystals with FCC, BCC and DC crystal symmetries (as indicated in the Appendix). 

 

Table 2.1 Diffraction elastic constants 
hklE along LD (in GPa) 

 
200E  

220E  
111E  

311E  

Ag 65.30 88.43 100.27 78.14 

Al 67.09 71.29 72.80 69.67 

Au 63.55 84.69 95.25 75.36 

Cu 101.15 139.06 158.91 122.05 

Ir 491.12 554.66 579.65 529.19 

Ni 183.74 237.86 263.76 214.38 
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Table 2.1 continued 

Pb 18.59 26.97 31.74 23.10 

Pd 107.11 142.53 160.18 126.92 

Pt 159.41 182.98 192.47 173.45 

Cr 298.59 267.89 259.02 278.54 

Fe 175.18 224.29 247.40 203.11 

K 2.50 3.96 4.92 3.25 

Li 7.43 12.4 15.97 9.93 

Mo 335.10 325.04 321.81 328.71 

Na 4.41 7.56 9.92 5.98 

Nb 127.25 100.46 93.87 109 

Ta 166.76 190.41 199.86 180.87 

V 136.79 126.33 123.19 130.03 

W 408.65 410.07 410.55 409.54 

C 963.66 1037.68 1064.95 1008.86 

Ge 117.23 135.63 143.12 128.15 

Si 147.69 168.02 176.10 159.84 

CuZn 70.13 116.95 150.42 93.69 

Cu3Au 103.15 133.9 148.67 120.54 

NiAl 144.94 200.23 229.4 175.35 

SS 316L 149.25 212.69 247.81 183.66 

 

 To validate the present analytic solution and associated calculations of diffraction 

elastic constants, we compared our numerical results of FCC Cu and stainless steel (SS) 
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316L with literature data. Table 2.2 shows that our results of diffraction elastic constants 

along LD closely match those by Clausen et al. [15], who used the Kröner self-consistent 

solution and the same sets of single-crystal elastic constants as ours. In addition, Table 2.2 

shows that our results for diffraction elastic constants along LD  for SS 316L reasonably 

agree with SXRD measurements [24].  

Table 2.2 Comparison the present model predictions of diffraction elastic constants 
hklE  

(in GPa) along LD with those by Clausen et al. [15] for Cu and SS 316L and with SXRD 

measurements for SS 316L [24]. 

 200E  
220E  

111E  
311E  

Cu (this work) 101.2 139.1 158.9 122.1 

Cu [15] 101.5 138.7 158.0 121.8 

SS 316L (this work) 149.3 212.7 247.8 183.7 

SS 316L [15] 149.8 212.0 246.2 183.2 

SS 316L [24] 139.1 219.1 264.1 179.6 

 

2.6 Diffraction Elastic Constants along TD 

 Consider a {hkl} grain family along TD in an RVE (Figure 2.1b). The grains in this 

family are numbered as 1,…  ,…, N.  In the local crystal basis of the grain  , the 

component of the unit vector 
( )

m


 along the [hkl] direction can be expressed as 

  ( ) ( )( ) ( ) ( ) ( ) 2 2 2

1 2 3, , , , /m m m h k l h k l= = + +m
     (2.28) 
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It should be emphasized that in this {hkl} grain family, the unit vector along LD, 
( )

n


,  can 

be any vector perpendicular to 
( )

m


. Without loss of generality, we can express 
( )

n


 using 

a single variable  . Specifically, we introduce the orthonormal basis vectors ( )
p

  and 
( )

q


 

in the plane perpendicular to 
( )

m


 

  
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( ) 2 2

1 2 3

( ) ( ) ( ) ( ) 2 2 2 2 2 2 2

1 2 3

, , , ,0 /

, , , , /

p p p k h h k

q q q hl kl h k h k h k l

= = − +

= = − − + + +

p

q

   

   
 (2.29) 

Then, 
( )

n


 can be expressed as  

  
( ) ( ) ( )cos sinn = p +q
     (2.30) 

with   as the angle between 
( )

n


 and 
( )

p


. By this construction, 
( )

n


 is perpendicular to 

( )
m


 automatically.  

 Similar to 
( )

LD

α  in Eq. (2.3), the lattice strain 
( )

TD

  along TD can be calculated as  

  
( ) ( ) ( ) ( )

TD ij i jm m=      (2.31)

  

Substitution of Eq. (2.1) (replacing α  by  ) into Eq. (2.31) yields 

  
( ) ( ) ( ) ( ) ( ) ( )

TD 0 ijkl i j k lσ U m m n n=       (2.32)
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The average lattice strain TD  in the {hkl} grain family along TD is given by 

  
( )

TD TD

1

1 N

N =

=  



   (2.33) 

The corresponding diffraction elastic constant TD

hklE  is defined as  

  TD

TD 0

1
hklE

= −



 (2.34) 

Since 
0  and 

TD  have opposite signs by virtue of Poisson’s effect, TD

hklE  defined in Eq. 

(2.34) is positive. From Eqs. (2.32) to (2.34), TD

hklE  can be expressed as 

  
( ) ( ) ( ) ( ) ( )

1TD

1 1 N

ijkl i j k lhkl
U n n m m

E N =

= −      



 (2.35)

  

Substitution of Eq. (2.23) into Eq. (2.35) yields  

  ( ) ( ) ( )
3

2 2
( ) ( )

1 1TD

1 1 3 2
2

3

N

i ihkl
i

a b
b c n m

E N

 

 = =

− 
= − + − 

 
   (2.36) 

For a sufficiently large RVE, the {hkl} grain family along TD should contain a sufficient 

number of grains with random orientations in the plane spanned by ( )
p

  and 
( )

q


. Hence, 

one can change the summation over   grains in Eq. (2.36) to the integration over   from 

0 to 2π , and then use Eq. (2.30) to obtain  
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( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

2π 3 2 2

1TD 0

3 2 2 2

1

1 3 2 1
2 cos sin d

3 2π

3 2

3

i i ihkl
i

i i i

i

a b
b c p q m

E

a b
b c p q m

  

  

  
=

=

−
= − − − +

−  = − − − +
  



       

 (2.37) 

Substituting Eqs. (2.28) and (2.29) into Eq. (2.37), we obtain 

  ( )
TD

1 3 2
2

3hkl

a b
b c

E

−
= − − −   (2.38) 

where the orientation index parameter   is defined in Eq. (2.27).  

 Similar to LD

hklE ,  we calculated the numerical values of TD

hklE  using Eq. (2.38) and 

single-crystal elastic constants in the Appendix. Table 3 lists the numerical results of TD

hklE  

for 26 representative elastically isotropic polycrystals with FCC, BCC and DC crystal 

symmetries. 

Table 2.3 Diffraction elastic constants 
hklE along TD (in GPa). 

 
200E  

220E  
111E  

311E  

Ag 165.35 247.21 296.06 208.77 

Al 189.76 206.98 213.44 200.22 

Au 144.77 202.29 233.17 176.24 

Cu 268.3 420.22 517.98 347.12 

Ir 1824.28 2317.3 2546.73 2105.67 

Ni 556.41 848.88 1029.22 710.07 

Pb 43.16 67.52 83.16 55.81 

Pd 262.84 378.12 442.87 325.09 



 

 31 

Table 2.3 continued 

Pt 392.63 466.65 497.94 436.08 

Cr 1722.85 1294.79 1195.75 1426.61 

Fe 538.86 812.42 977.91 683.39 

K 6.50 12.52 18.11 9.31 

Li 18.67 37.64 56.92 27.32 

Mo 1168.72 1108.85 1090.23 1130.38 

Na 12.17 28.57 51.86 19.03 

Nb 343.44 252.56 232.08 280.12 

Ta 471.74 572.27 616.03 530.25 

V 387.47 346.78 335.06 360.88 

W 1456.48 1465.52 1468.55 1462.14 

C 8391.01 12171.11 14321.73 10424.59 

Ge 489.97 683.84 787.73 596.12 

Si 590.51 778.95 871.67 696.31 

CuZn 175.65 352.21 529.7 256.37 

Cu3Au 264.74 375.35 436.09 324.87 

NiAl 408.88 669.73 850.62 541.3 

SS 316L 433.18 763.86 1024.57 594.95 

 

2.7 Diffraction Elastic Constants along any Q  direction 

 Consider a {hkl} grain family along the direction of a diffraction vector Q in an RVE. 

The grains in this family are numbered as 1,… ,…, N. The orientation of grains in this 
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family can be represented by a single variable 
( )

  and three orthogonal unit vectors as 

shown in Figure 2,  

   

( ) ( )

( ) ( )

( ) ( ) ( )( )

2 2 2

1, 2, 3

2 2

1, 2, 3

2 2 2 2 2 2 2

1, 2, 3

, , /

, ,0 /

, , /

Q Q Q h k l h k l

p p p k h h k

q q q hl kl h k h k h k l

= = + +

= = − +

= = − − + + +

Q

p

q

 (2.39) 

Here, the components of Q, p and q are all expressed in the local crystal basis of grain  . 

 

Figure 2.2 Schematic to calculate DECs along TD. In the coordinate system spanned by 

the orthonormal vectors {Q, p, q}, the dashed line circle represents all the unit vectors n 

that form a constant angle   with the diffraction vector Q. 

 

 For the {hkl} grain family along the Q direction, the angle between Q and the loading 

direction n must be a constant, such that ( )
n associated with grain   can be expressed as 

  ( ) ( ) ( )( )cos cos sin sin
  

   = + +n Q p q  (2.40) 
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where   denotes the angle between Q and ( )
n ,  and 

( )
  denotes the angle between p and 

the vector component of ( )
n resolved in the plane of p and q.  

 The normal strain along Q for each grain ( )
Q


  is given by 

  ( ) ( ) ( ) ( )
0Q ijkl i j k lU QQ n n

   
 =  (2.41) 

Substitution of Eqs. (2.22), (2.39) and (2.40) into Eq. (2.41) yields 

 

( )

( )( )

( ) ( ) ( )( ) ( ) ( )( )

2 2

0

3 2
2 2

1

3 2
2 cos 2 1 2 cos

3

2 2 cos sin sin cos cos sin sin

Q

i i i i i i

i

a b
c b c

b c Q Q p q p q



   


 



      
=

−
= + + − − 

 + − + + +
  



  

(2.42) 

The corresponding diffraction elastic constant 
hkl

QE  is defined as  

  

( )

1 0

1 1 N
Q

hkl

QE N







=

=   (2.43) 

With a sufficient number of grains, we can change the summation over   grains in Eq. 

(2.43) to the integration over   from 0 to 2π . Substituting Eq. (2.42) into Eq. (2.43), we 

obtain the general solution of diffraction elastic constant 
hkl

QE  for any diffraction vector Q, 
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( )

( )( ) ( ) ( )

( )( )

2

00

3
2 2 2 2 2 2

1

2 2 2

1 1

2

3 2
2 cos 2 1 2 cos sin

3

3 2
2 cos 2 sin 2cos

3

Q

hkl

Q

i i i

i

d

E

a b
c b c b c Q p q

a b
b b c

   

 

  

  

=

=

−
= + + − −  + − +

−
= + + − − 



  

  (2.44) 

This expression is consistent with Eq. (2.26) when 0 =  and Eq. (2.38) when 90 = . 

 

 

2.8 Validation by Finite Element Simulations  

 To further validate our micromechanics solutions, we performed polycrystal elasticity 

finite element simulations for FCC Cu, Ni, and BCC Nb using the commercial finite 

element program ABAQUS [39]. The constitutive model of the anisotropic linear elasticity 

of single-crystal grains was implemented via a user material subroutine [24]. For finite 

element simulations, we constructed a “texture-free” polycrystal model consisting of 8000 

cubic elements, where each element represents a cubic-symmetry grain with random 

orientation. During a finite simulation of uniaxial tensile deformation, the lattice strain in 

each {hkl} grain family was determined by averaging the elastic strain of grains with their 

respective [hkl] direction along LD or TD (within a deviation of ±5°). Then we calculated 

the diffraction elastic constant 
hklE by the ratio of the applied tensile stress and 

corresponding lattice strain.   
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Figure 2.3 Plot of the reciprocal of diffraction elastic constant  1/ hklE  as a function of 

orientation parameter   along (a) LD and (b) TD for FCC Cu, Ni and BCC Nb. The solid 

lines represent the micromechanics (Micro) solutions, and the squares the finite element 

(FE) simulation results for the representative grain families of {200}, {311}, {220} and 

{111}, with their respective 3  values of 0, 57/121, 3/4 and 1. The small error bars of FE 

results represent the negligible standard deviations calculated from 10 FE polycrystal 

models with different random grain orientations.  

 

 Figure 2.3 shows the diffraction elastic constants of Cu, Ni, and Nb along LD (Figure 

2.3a) and TD (Figure 2.3b) calculated from the micromechanics solutions (i.e., Eq. (2.26) 

for LD and Eq. (2.38) for TD) as well as from the polycrystal elasticity finite element 

simulations. The micromechanics solutions (solid lines) are plotted as a function of the 

orientation index parameter 3  covering all the possible {hkl} grain families for a 

polycrystal with random orientation distribution of grains. The polycrystal elasticity finite 

element simulation results (squares) are given for the {200}, {311}, {220} and {111} grain 

families. For each family, we used 10 finite element polycrystal models with different 

random grain orientations, so as to obtain the mean value and standard deviation of 1/ hklE

(b)(a)
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. It is seen that the finite element results are in good agreement with the micromechanics 

solution, despite small differences in the numerical results of 1/ hklE between the two 

methods. These differences may arise from several approximations used in the 

micromechanics solution, including the self-consistent method of polycrystal 

homogenization and the spherical grain shape, as well as the use of a single element to 

represent each grain in the finite element simulations.   

 As shown in Figure 2.3, 1/ hklE  is linearly dependent on 3 . This is predicted by the 

micromechanics solutions, i.e., Eq. (2.26) for LD and Eq. (2.38) for TD. As discussed 

earlier, the slope of the 1/ hklE versus 3curve is dictated by the sign of b c− , which is 

further controlled by the anisotropy ratio A, with A = 1.0 for isotropic elasticity, 3.21 for 

Cu, 2.57 for Ni and 0.49 for Nb. As listed in the Appendix, the A values are greater than 1 

for most cubic polycrystals, so that 0b c−  . As a result, the slopes of both the LD1/ hklE  

versus 3  and the TD1/ hklE  versus 3  curves are negative. In contrast, the positive slopes 

for Nb is a result of 0b c−  . Among 26 cubic polycrystals in the Appendix, Cr, Mo, and 

V also have A < 1 and thus should have positive slopes for their respective 1/ hklE versus 

3 curves. In addition, the slopes of the LD1/ hklE  versus 3  and the TD1/ hklE  versus 3  

curves for Cu are larger than the corresponding ones for Ni because of the higher elastic 

anisotropy A of Cu.  

 

2.9 Summary 
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 We have derived a general analytic solution of grain-level lattice strains and diffraction 

elastic constants for an elastically isotropic polycrystal using a self-consistent 

micromechanics model. This solution is applicable to a broad class of “texture-free” 

polycrystals with cubic crystal symmetry and only requires an input of the three 

independent elastic constants of a cubic crystal. It establishes direct linear relations 

between the reciprocal of the elastic diffraction constant and the orientation index 

parameter, as given by Eq. (2.26) for the tensile loading direction and by Eq. (2.38) for the 

transverse direction. While these analytic relations are equivalent to those by Bollenrath, 

Hauk and Müller [25], our derivation is facilitated by the use of the components of related 

vectors and tensors resolved in the local crystal basis, such that it can be readily understood 

and applied. This approach can be taken to further obtain the related results such as resolved 

shear stresses for the study of progressive yielding in different grain families [24]. From a 

straightforward numerical implementation of this solution by MATLAB, we have 

calculated diffraction elastic constants for 26 representative cubic polycrystals. The results 

agree closely with modeling and experimental results in the literature as well as with our 

polycrystal elasticity finite element simulations.  

 Theoretical predictions of grain-level lattice strains and diffraction elastic constants 

complement in situ synchrotron X-ray and neutron diffraction experiments. They can be 

directly compared with experimental measurement of diffraction elastic constants, and also 

can be used for analysis of microscale residual stresses [29] and progressive yielding [23, 

24]. We expect these solutions will facilitate high-throughput and data-analytics studies of 

the mechanical behavior of polycrystalline materials with varying compositions and 
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microstructures, such as high-entropy alloys [30], additively manufactured alloys [23, 24], 

heterogeneous nanostructured metals and alloys [3, 31], and others. 
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CHAPTER 3. INTERNAL STRESSES IN ADDITIVELY 

MANUFACTURED STEELS 

3.1 Introduction   

 Residual stress is one of the most critical issues for additively manufactured (AM) 

metallic materials [8, 40-43]. Its presence can markedly influence the mechanical behavior 

of AM parts. This issue is especially significant for AM materials processed by selective 

laser melting (SLM), which inevitably results in substantial residual stresses. The build-up 

of high residual stresses during SLM processing can readily induce the damage and 

eventual failure of AM parts in service. As such, mitigation of residual stresses is 

considered as one of the most outstanding challenges in the AM field. To mitigate the 

deleterious effects of residual stresses, a fundamental understanding of their impact on the 

mechanical behavior of AM materials is needed. 

 The residual stresses in polycrystalline materials can be categorized according to two 

major classes [4, 44]: macroscale and microscale residual stresses. The so-called Type I 

macroscale residual stresses are distributed across the overall dimension of a part and 

contribute to its distortion.  They arise due to long range gradients of plastic deformation 

in the part, for example. By contrast, the microscale residual stresses manifest at the scale 

of microstructure and are categorized into two types: Type II intergranular residual stresses 

and Type III intragranular residual stresses. Type II self-equilibrates over a length scale of 

grains and results from strain incompatibility between grains. Type III is associated with 

the heterogeneous microstructure such as dislocation cells inside grains and also satisfies 
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the self-equilibrium condition. Generally, microscale residual stresses develop after 

material processing and subsequently evolve during deformation due to applied loading. 

Following the literature [15], we use the terms ‘residual stress’ and ‘internal stress’ 

interchangeably with regard to these microscale residual stresses. To understand and 

control the microscale residual stresses, it is necessary to track their spatiotemporal 

evolution in real time at high resolution. This has been often pursued by means of in situ 

X-ray or neutron diffraction methods [15, 18, 29, 35, 36, 45-49].  

 Additive manufacturing of metallic materials via laser powder-bed-fusion (L-PBF) 

results in highly non-equilibrium microstructures with a high density of dislocations, 

irregular and tortuous grain morphologies, cellular structures and chemical segregation [40, 

43]. These microstructural characteristics can result in mechanical properties that 

significantly differ from materials conventionally processed by wrought and cast [8, 50, 

51]. L-PBF shares many common roots with welding as both processes involve the melting 

and bonding of materials via motion of a local heat source. The highly localized heating 

and rapid cooling of a melt pool, in conjunction with the layer-by-layer repetition of such 

a thermomechanical process, give rise to large thermal gradients and heterogeneous 

residual stresses within a non-equilibrium microstructure [52-55]. The thermal gradients 

are affected by many processing parameters [56], including build plate/powder bed 

temperature, laser power, powder thermophysical characteristics, melt pool size, etc. The 

convolution of these parameters often leads to a complex residual stress field. While studies 

of the macroscale residual stresses in AM materials have revealed various deleterious 

effects such as loss of net shape, detachment from support structures, or even failure of the 

build parts [57], the ways in which microscale residual stresses influence the mechanical 
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performance of AM materials remain elusive. This is due to the difficulty in measurement 

and understanding of the spatial-temporal evolution of residual stresses at the scale of 

individual grains or phases [4].  

 Here we present a combined experimental and modeling study of the microscale 

residual stresses in AM 316L austenitic stainless steel. We performed in situ synchrotron 

X-ray diffraction (SXRD) measurements of lattice strains in AM stainless steel under 

uniaxial tension. Micromechanics and crystal plasticity finite element (CPFE) models were 

developed to understand the impact of elastic anisotropy, progressive yielding and 

hardening on the extent and evolution of lattice strains and associated Type II intergranular 

residual stresses. We observed pronounced tension-compression asymmetries in yield 

strength and strain hardening for AM stainless steel. Combining the experimental and 

CPFE modeling results, we show that such tension-compression asymmetries are 

associated with the back stresses that originate from heterogeneous dislocation 

distributions and resultant Type III intragranular residual stresses. Our work not only 

demonstrates an effective approach to quantitatively evaluate the microscale residual 

stresses of both intergranular and intragranular character, but also conveys the practical 

ramification that the microscale residual stress effects should be carefully considered when 

using AM to design and build complex components for structural applications.   

3.2 Microstructure Characterization of AM 316L Steels 

 The 316L stainless steel sample fabricated via L-PBF possesses a complex 

microstructure that is sensitive to laser processing parameters, as shown in previous studies 

[8, 58-60]. Here we use an open architecture Fraunhofer L37 L-PBF machine to build 316L 
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stainless steel plates. The electron backscatter diffraction (EBSD) image in Figure 3.1a 

shows that grains in the as-built sample are equiaxed from the top view and slightly 

elongated from the side view. The average grain size is 18 ± 9 µm, as measured from 

the top view. A rather weak texture is revealed in the build plane, as indicated by the 

pole figures in Figure 3.1b for stainless steel with the face-centered cubic structure. The 

high-angle annular dark-field (HAADF) scanning transmission electron microscopy 

(STEM) images in Figures 3.1c and 1d reveal insignificant chemical segregation in the as-

built sample. In the HAADF STEM image of Figure 3.1d, the dislocation structures do not 

appear to be well defined, as they consist of tangled dislocations and are decorated with 

some visible precipitates.  

 

Figure 3.1 Microstructure of as-printed 316L stainless steel.  (a) EBSD image along the 

build direction (BD) and transverse direction (TD), respectively. The EBSD image along 

the loading direction (LD) is similar to that along TD. The grain size distribution is obtained 
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from the top surface (the TD-LD  plane) in the image. (b) 001, 110, 111 pole figures 

corresponding to the EBSD image taken along the BD. (c) Top-view HAADF STEM image 

of the same sample in (a).  Tangled dislocations and a few twin boundaries (marked with 

white arrows) are visible; cellular structures are poorly defined. (d) A higher resolution 

HAADF STEM image of cellular structures compared to (c). Some precipitates are visible.    

 

3.3 Diffraction Experiments and Intergranular Internal Stresses 

 To investigate the microscale residual stresses in AM 316L stainless steel, we 

performed in situ SXRD measurements of lattice strains for the as-built sample subjected 

to uniaxial tension (as schematically illustrated in Figure 3.2a). Figure 3.2b shows the 

engineering and true stress-strain (σ-ε) curves up to the onset of necking. The 0.2%-offset 

yield strength 𝜎Y is 541 ± 11 MPa, which is consistent with the earlier results for AM 316L 

stainless steel [8, 50]. Such high strength is 2-3 times those of coarse-grained counterparts, 

and has been attributed to printing-induced sub-grain microstructures such as  dislocation 

cells [8]. Figure 3.2b also shows that further increase of the applied stress beyond 𝜎Y  

results in significant strain hardening, which is due to the deformation-induced evolution 

of heterogeneous microstructures [8]. For polycrystalline materials, the {hkl} grain family 

refers to a set of grains having the normal vector of {hkl} planes in a common direction. 

The so-called lattice strain for the {hkl} grain family is defined as ɛhkl = (dhkl-𝑑0
hkl)/𝑑0

hkl, 

where 𝑑hkl and 𝑑0
hkl

 denote the interplanar spacing of {hkl} planes under loading and at 

the stress-free state, respectively [45]. The stress-free lattice spacing 𝑑0
hkl

 was determined 

by annealing an as-built sample at 1200 °C for 1 hr. In Figure 3.2c, we plot the in situ 

SXRD measurements of lattice strain along the loading direction (LD) against the 

macroscopic true stress for four representative grain families of {220}, {111}, {200} and 
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{311}. In addition, Figure 3.2d shows the lattice strain measured along the transverse 

direction (TD) against the macroscopic true stress for four grain families of {220}, {111}, 

{200} and {311}. The lattice spacing as a function of the azimuthal angle can be seen in 

Figure S3. Note that the constituent grains in the {hkl} grain family along LD are largely 

different from those in the {hkl} family along TD, and there is no clear relation between 

them [15].  

 It is seen from Figure 3.2c that prior to tensile loading, the {200} grain family exhibits 

the largest magnitude of residual lattice strain (being negative) in the LD. In comparison, 

the {111} and {220} families show negligibly small residual lattice strains, while the {311} 

family exhibits a residual lattice strain similar to that of the {200} family. These residual 

lattice strains originate from the complex thermomechanical history associated with L-PBF 

processing. Figure 3.2c also shows that upon tensile loading, each of the four grain families 

exhibits a near linear increase of lattice strain against applied stress when the macroscopic 

tensile stress-strain response is within the linear elastic regime. This is followed by a 

nonlinear behavior of lattice strain when the applied stress approaches and exceeds 𝜎Y. 

More specifically, in the elastic regime, the {200} family shows the highest rate of increase 

of lattice strain, which indicates the softest response. In contrast, the {111} family exhibits 

the stiffest response. The lattice strains of the other two families fall in between these two 

limits, with the {311} family having values close to those of the {200} family, and the 

values for the {220} family close to those of the {111} family. Such anisotropic lattice 

strain responses in different grain families can be quantitatively characterized in terms of 

the diffraction elastic constant 𝐸hkl, which is given by the slope of the lattice strain versus 

applied stress curve for each {hkl} grain family [15]. The fitted values of 𝐸hkl are listed in 
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Table 3.1, which reflects the strong elastic anisotropy of austenitic stainless steel single 

crystals and are consistent with the lattice strain measurements of stainless steel processed 

by conventional routes [15]. As the applied stress approaches 𝜎Y (as indicated by the 

vertical dashed line in Figure 3.2c), the {200} family shows a markedly nonlinear increase 

of lattice strain with increase of applied stress, while the {220} family shows a nonlinear 

decrease of lattice strain. The nonlinear lattice strain responses of the {311} and {111} 

families are less pronounced. A similar nonlinear behavior of lattice strain has been shown 

by the previous studies of stainless steel processed by conventional routes [15]. They were 

generally attributed to the elastic and plastic anisotropy in different grain families, which 

will be further studied for AM stainless steel by our computational modeling.  

 Figure 3.2d shows that prior to tensile loading, the {200} family exhibits the largest 

magnitude of residual lattice strain (being negative) along TD. In comparison, the {111} 

and {220} families show negligibly small residual lattice strains, while the {311} family 

shows a residual lattice strain similar to that of the {200} family. As noted earlier, the 

constituent grains in the {hkl} family along TD are largely different from those in the {hkl} 

family along LD, such that the lattice strains in the nominally identical {hkl} grain families 

along LD and TD cannot be simply related. Nonetheless, due to the effect of Poisson’s 

contraction, an initial increase of tensile stress along LD results in a linear decrease of 

lattice strain along TD. Further loading gives rise to a nonlinear response of lattice strain 

along TD. Altogether, the in situ SXRD results in Figure 3.2c and 3.2d reveal the lattice 

strains in several representative grain families prior to and during tensile loading. We note 

that these lattice strains are elastic in nature and thus are proportional to Type II 

intergranular residual stresses, which will be quantitatively evaluated using 
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micromechanics and CPFE models later in this Chapter. Quantifying these Type II 

intergranular residual stresses provides a basis of further study of Type III intragranular 

residual stresses and their impact on the macroscopic mechanical behavior of AM stainless 

steel.        

 

Figure 3.2 Lattice strain behaviour of an AM 316 stainless steel sample measured via in 

situ SXRD. (a) Schematic of in situ SXRD setup, where the loading direction (LD), 

transverse direction (TD) and normal direction (ND) are illustrated. (b) Engineering and 

true stress-strain curves of uniaxial tension, plotted up to the onset of necking. (c) In situ 

SXRD results of lattice strain (ɛhkl) along LD in four grain families of {111}, {200}, {220}, 

{311}, respectively, plotted against the macroscopic true stress of the sample. The 0.2%-

offset yield strength (𝜎Y) is marked with a dashed line, separating the elastic and plastic 

regimes. (d) Same as (c) except along TD. 

 

a b

c d
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3.4 Tension-Compression Asymmetry and Intragranular Internal Stresses 

 To investigate the impact of microscale residual stresses on the mechanical behavior of 

AM stainless steel, we compared the stress-strain responses from uniaxial tension and 

compression experiments. As shown in Figure 3.3a, the tensile and compressive stress-

strain curves of the as-built samples exhibit pronounced asymmetries in yield strength and 

strain hardening. The 0.2%-offset yield strength from uniaxial compression is 600 ± 13 

MPa, which is higher than that from uniaxial tension 541 ± 11 MPa by approximately 60 

MPa. In addition, the normalized strain hardening rate, defined by (dσ/dε)/σ, is appreciably 

higher under compression than tension (Figure 3.3b). To evaluate the influence of 

microscale residual stresses on the tension-compression asymmetries, we also measured 

the tensile and compressive stress-strain curves (Figure 3.3a) for samples after stress-relief 

annealing at 500 ºC for 4 hrs. In this case, the compressive yield strength decreases to 560 

± 14 MPa, and the tensile yield strength increases to 554 ± 10 MPa. These results indicate 

that thermal annealing can markedly reduce the tension-compression asymmetry. This can 

be reasonably attributed to the relaxation of printing-induced non-equilibrium 

microstructures and associated microscale residual stresses in as-built samples. If the 

asymmetry was primarily caused by printing-induced voids, the stress-release annealing 

experiment at a low temperature would be unlikely to remove those voids, and thus the 

tension-compression asymmetry would be little affected. In addition, since our AM 

samples have large grain sizes, the tension-compression asymmetry that is typically 

reported in nanocrystalline materials [61] can be excluded. Despite the similar yield 

strengths in tension and compression after annealing, Figure 3.3b shows that the strain 

hardening rate is still higher in compression than tension in annealed samples. Moreover, 
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thermal annealing leads to an increased strain hardening rate in annealed samples than as-

printed samples for both tension and compression beyond the point of initial yielding. 

 The in situ SXRD experiments were further conducted to compare the lattice strain 

responses between as-printed and annealed samples under uniaxial tension. In Figure 3c, 

we plot the deviation of lattice strain 𝜀hkl from the linear response along LD,  ∆𝜀hkl =

𝜀hkl − 𝜎𝑎/𝐸hkl  , where σa is the applied tensile stress. ∆𝜀hkl  has often been used to 

examine the progressive yielding and hardening behavior of different grain families. Figure 

2c indicates that {200} and {220} families exhibit more pronounced deviation from the 

linear response.  Hence, ∆𝜀200 and ∆𝜀220 are used for further analysis of the lattice strain 

[15, 62] in the nonlinear regime against applied stress. Figure 3c indicates that deviation 

from the linear response occurs well below the 0.2%-offset yield strength for both samples. 

In addition, the non-zero ∆𝜀hkl prior to loading of the as-printed sample shows a marked 

initial value of compressive lattice strain, particularly for the {200} family, and thus 

suggests the high magnitude of Type II residual stresses in the as-printed sample. After 

annealing, such compressive shift reduces substantially but is not completely removed 

(Figure 3.3c). The {220} family also demonstrates a qualitatively similar trend despite a 

much smaller initial value of tensile lattice strain prior to loading. 



 

 49 

  

Figure 3.3 Experimental results of tension-compression asymmetry of AM 316L stainless 

steel. (a) True stress-strain curves of as-printed samples under tension and compression. 

Also plotted are the corresponding results of annealed samples. (b) Normalized hardening 

rate versus true strain corresponding to the four cases in (a). (c) In situ SXRD results for 

as-printed and annealed samples under unaixial tension, showing the lattice strain deviation 

(∆𝜀hkl) as a function of applied stress for {200} and {220} grain families. 

 

3.5 Micromechanics Modeling of Lattice Strains 

 The above in situ SXRD results have revealed that in the linear elastic regime, the 

lattice strains in different grain families increase with applied stress, but at different rates. 

This orientation dependence of lattice strain response can be characterized by the 

diffraction elastic constant of each grain family for uniaxial loading [15]. The in situ SXRD 

a

c

b
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results have also shown that the different grain families begin to exhibit non-linear lattice 

strain responses at different applied stresses. This progressive yielding behavior can be 

understood by considering the maximum resolved shear stress or equivalently the 

maximum Schmid factor in each grain family. In this Chapter, we developed a 

micromechanics model to determine both the diffraction elastic constant and Schmid factor 

in different grain families. These micromechanics results facilitate our understanding of 

how the lattice strain and progressive yielding responses depend on the elastic anisotropy 

of individual grain families. They are also used to benchmark CPFE simulations for further 

studies of the non-linear lattice strain evolution with an increase of applied stress as well 

as the tension-compression asymmetries in AM stainless steel. 

 

Figure 3.4  Illustration of the self-consistent micromechanics model of a polycrystalline 

aggregate. (a) A polycrystal consisting of different {hkl} grain families along the uniaxial 

loading direction. For example, the {111} grain family refers to a set of grains with the unit 

normal vector n of {111} planes along the loading direction. The X-rays reflected by the 

{hkl} planes are collected to track the average interplanar spacing of these {hkl} planes 

with deformation due to applied loading. (b) In the self-consistent polycrystal model, each 

single-crystal grain is approximated as a spherical inclusion with the anisotropic elastic 

111

110

100

a b

n
L

( )r
L

( )r

aa
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stiffness tensor 
( )r

L  embedded in a homogeneous matrix with the effective isotropic 

stiffness tensor L .  

 

 The micromechanics model illustrated in Figure 3.4a is concerned only with the regime 

of linear elastic response of a polycrystalline aggregate. A random distribution of grain 

orientations is assumed. This assumption facilitates the derivation of an analytic 

micromechanics solution that enables an effective assessment of the diffraction elastic 

constant, tensile stress, and maximum resolved shear stress within different grain families. 

The residual stress is not included in the grains, since the diffraction elastic constant is 

known to be independent of residual stress [15]. For each grain, its anisotropic elastic 

stiffness tensor is denoted as 
( )r

L , where r represents a family of grains with the same 

crystallographic orientation. Under a macroscopic applied load, the lattice strain and stress 

responses of individual grains in a polycrystalline aggregate are not simply determined by 

( )r
L . This is because of the elastic anisotropy of individual grains that leads inevitably to 

deformation incompatibility between neighboring grains. To account for such 

incompatibility and resulting mutual constraints between grains, the concept of a 

representative volume element (RVE) is invoked to represent an infinite homogeneous 

matrix. Given the random distribution of grain orientations, this RVE has an effective 

isotropic elastic response that is characterized by the isotropic elastic stiffness tensor  L . 

As shown in Figure 3.4b, a spherical inclusion is considered as a representative grain 

embedded in the RVE subjected to the macroscopic stress  . According to the Eshelby 

inclusion solution, the stress 
( )r and strain 

( )r  in the spherical inclusion are uniform [33]. 

The self-consistent micromechanics method [33] is used to determine the effective moduli 
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of polycrystalline stainless steel. These results are combined to derive the analytic formulas 

of stress and strain in the {hkl} grain family.  

 

 To understand the lattice strain and stress responses during in situ SXRD experiments, 

we considered an applied uniaxial tensile stress a  and used the above general solution 

to derive the corresponding lattice strain hkl  and stress hkl  along LD in the {hkl} grain 

family in the linear elastic regime. It follows that the diffraction elastic constant is given 

by 
hkl hkl/aE  = . We also calculated the normalized tensile stress 

hkl hkl / a  = , so as 

to compare the tensile stress along LD in different grain families, as well as the normalized 

maximum resolved shear stress 
hkl hkl / a  =  among the twelve {111}〈110〉  slip 

systems, so as to determine the sequence of onset of plastic yielding in different grain 

families. Using the anisotropic elastic constants of single-crystal stainless steel, we 

calculated the values of 
hklE , 

hkl  and  
hkl  for the four grain families, as listed in Table 

3.1. The diffraction elastic constants from the micromechanics model confirm that the 

{200} and {111} families are respectively the softest and stiffest along LD, respectively, 

which are consistent with the SXRD results and closely match the modeling results by 

Clausen et al. [15]. It is also seen from Table 1 that the relative magnitudes of the tensile 

stress along LD (given by 
hkl ) follow monotonically those of the diffraction elastic 

constant among different grain families. More interestingly, the relative magnitudes of the 

maximum resolved shear stress (given by 
hkl ) and thus the maximum Schmid factor do 

not follow monotonically those of the diffraction elastic constant and tensile stress along 

LD. Due to the favored orientation between the most stressed  {111}〈110〉 slip plane and 
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LD, the {220} family has the maximum resolved shear stress and thus the maximum 

Schmid factor, which implies the earliest onset of plastic yielding under uniaxial tension. 

The 
hkl values of both the {311} and {111} families are lower than that of the {220} 

family, indicating that yielding for these two families takes place at higher applied stresses 

than the {220} family. The {200} family still has the minimum resolved shear stress and 

thus minimum Schmid factor, which indicates the latest onset of plastic yielding among 

the four grain families. Finally, we note that while the diffraction elastic constants are 

independent of the printing-induced residual stresses that exist prior to loading, the stress 

and yielding responses in each grain family can be affected by these residual stresses, 

which will be further analyzed by CPFE modeling.  

 

Table 3.1 Diffraction elastic constants 
hklE  (in GPa) from the SXRD experiment (Exp), 

micromechanics (Micro) model and CPFE simulation, along with the normalized tensile 

stress 
hkl  and normalized maximum resolved shear stress 

hkl  from the micromechanics 

(Micro) model, in the {hkl} grain family of stainless steel. 

  

 {200} {311} {220} {111} 

hklE (Exp)  139.1 179.6 219.1 264.1 

hklE  (Micro)  147.3 183.7 210.7 245.9 

hklE (CPFE)  162.1 185.5 209.4 232.3 

hkl (Micro) 0.74 0.94 1.07 1.18 

hkl (Micro) 0.25 0.37 0.38 0.34 
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3.6 Crystal Plasticity Finite Element (CPFE) Framework 

 A CPFE model is developed to study the non-linear lattice strain behavior as well as 

the impact of Type II and Type III residual stresses on the mechanical behavior of AM 

stainless steel. The crystal plasticity constitutive equations are formulated within the rate-

dependent, finite-strain framework of elastic-plastic deformation for individual grain 

crystals [63]. Here we present the major constitutive equations and highlight the new 

development that accounts for the Type II and Type III residual stresses in AM stainless 

steel through the residual lattice strain and back stress, respectively. Within each single-

crystal grain, the deformation gradient tensor F is given in terms of the elastic deformation 

gradient tensor 
e

F  and plastic deformation gradient tensor 
p

F using the multiplicative 

decomposition, 
e p=F F F . The second Piola-Kirchhoff stress 

*
T  is given by   

  
* ( ) *( )r e= −T L E E  (3.1)  

In Eq. (3.1), 
( )r

L  is the elastic stiffness tensor of a single-crystal grain as defined in the 

micromechanics model; 
e

E  is the elastic Green strain tensor given by  

  
T1/ 2( )e e e= −E F F I   (3.2) 

where I is the 2nd rank identity tensor; and 
*

E is the eigen-strain tensor that reflects the 

residual lattice strain measured by in situ SXRD before loading and thus captures the effect 

of the Type II intergranular residual stress. The rate of change of 
p

F  is given by 
p p p=F L F  

and  

12

1

p p

i i i

i


=

= L m n , where p

i  is the plastic shear rate on the i-th slip system, and im  
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and in  are unit vectors of the associated slip direction and slip plane normal, respectively. 

For austenitic stainless steel with the face-centered cubic structure, twelve  111 110  slip 

systems are considered. The plastic shearing rate p

i  is given by a power law  

  

1/

0 sgn( )
−

= −

m

p p i i
i i i

i

b
b

s


    (3.3) 

where i  is the resolved shear stress given by 
* : sym( )i i i  T m n , 

0

p  is the reference 

plastic shear rate and m  is the strain rate sensitivity. In Eq. (3.3),  is  is the slip resistance 

with an identical initial value of 0s  for all the slip systems, and it evolves according to 

p

i ij j

j

s h =   and 0(1 / )a

ij ij j sh q h s s= − , where 
ijq  is the latent hardening matrix; the 

diagonal elements of 
ijq  are 1.0 and off-diagonal elements are 1.4. The hardening 

parameters 0h , a  and  ss  are taken to be identical for all slip systems. Twinning shear is 

not accounted for in the crystal plasticity model, since in situ SXRD data and post-mortem 

TEM data indicate that deformation twinning plays a negligible role at low strain levels 

(<10%).   

 Following Hu et al. [29], we represent the effect of Type III residual stresses in terms 

of the back stress tensor B that gives rise to the tension-compression asymmetry. The so-

called intergranular and intragranular back stresses in previous studies [64, 65] are 

collectively considered as the Type III residual stresses in this work, since both are 

associated with heterogeneous dislocation distributions within grains. The back stress 

tensor B is assumed to be deviatoric within the present pressure-independent crystal 
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plasticity model. The rate of change of B is taken as the sum of the rate of change of back 

stress in the twelve  {111}〈110〉  slip systems that is respectively proportional to the 

corresponding plastic shear rate, i.e., 

   
12

1

sym( )
p
jk p

b j j j

j

h e



−

=

= B m n  (3.4) 

where bh  and k are the material constants and taken to be identical for all the slip systems. 

The back stress tensor B is calculated by time integration of Eq. (3.4) with the initial value 

of B0, giving a non-linear, rate-independent evolution of B with increase of plastic shear 

strain, which is extension of a similar scalar relationship between the back stress and plastic 

strain by Pham et al. [65] The determination of B0 for AM stainless steel is discussed in 

the main text. Then the back stress on the i-th slip system ib  is calculated by resolving B 

back onto individual slip systems, i.e., 

  : sym( )i i ib = B m n  (3.5) 

 The above constitutive model was implemented in the finite element simulation 

package ABAQUS/Explicit [39] by writing a user material subroutine VUMAT. The 

parameters of the crystal plasticity model used are listed in Table 3.2, while the evaluation 

of E* and B0 will be discussed in detail later. In the finite element simulation, we 

constructed a three-dimensional cubic polycrystalline structure with 8000 cubic elements. 

Each element represents one single-crystal grain with an assigned orientation based on the 

EBSD data measured from the AM stainless steel sample. During CPFE simulations, the 

finite element polycrystal structure was first relaxed prior to applied loading, and then 
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subjected to uniaxial tensile or compressive deformation with the strain rate of 0.001/s. The 

lattice strain in different grain families was calculated from the elastic Green strain tensor 

e
E  resolved in LD or TD. The lattice strain for each family of grains was determined by 

averaging the elastic strain of grains within a deviation of o5  from the scattering vector 

direction with respect to LD or TD.   

 We stress that E* is the initial eigen-strain tensor arising from type II intergranular 

internal stresses, and B0 is the initial back-stress tensor arising from type III intragranular 

internal stresses. The grain-specific eigen-strain tensor E* was evaluated as follows. Based 

on the SXRD measurement of residual lattice strains in the {200}, {311}, {220} and {111} 

grain families, we assigned the initially estimated values to the eigen-strain tensor E* (i.e., 

normal components) for individual grains in the four grain families. Then we performed a 

CPFE simulation to relax the entire polycrystalline aggregate of 8000 grains without 

loading, so as to obtain the eigen-strain tensor E* for all grains in the simulated 

polycrystalline aggregate. More specifically, let us consider, as an example, one grain that 

belongs to both the {220} family along the loading direction (within a deviation of o5 ) 

and the {100} grain family along the transverse direction (within a deviation of o5 ). The 

corresponding E* for this grain is given by  

  
* L T

220 220 220 001 001 001=   + n n n n  (3.6) 

where 
L

220  and 
T

001  denote the lattice strain along the loading and transverse direction, 

respectively; 220n  and 001n  denote the unit vector along the [220] and [001] direction, 

respectively; and   denotes the tensor product between the two unit vectors. Supposing 
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the loading direction is along x axis and the transverse direction along y axis, the matrix 

components of E* can be written as  

  

L

220

* T

001

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0



= 

   
   

+   
  
  

  (3.7) 

For individual grains in the {200}, {311}, {220} and {111} families, the initially estimated 

values of E* were chosen to be twice the corresponding residual lattice strains measured 

from the SXRD experiment. After the CPFE relaxation without loading, the residual lattice 

strains in the {220}, {111}, {200} and {311} grain families are changed from their initially 

assigned values to closely match the SXRD measurements; meanwhile, the residual lattice 

strains in other grain families are also obtained. The E* values do not change during 

subsequent deformation simulations. 

 Due to the lack of direct experimental characterization of type III intragranular internal 

stresses in individual grains, we assigned identical values to B0 for all grains in the 

simulated polycrystalline assembly, which approximately represent the average type III 

intragranular internal stresses in these grains. To match the asymmetry of tensile and 

compressive yield strengths between experiment and simulation, the initial back stress 

components along LD and TD within the build plane are both chose to be 30 MPa.  As 

such, compared to the annealed sample without the initial back stresses, the compressive 

yield strength is elevated approximately by 30 MPa, since the initial back stress is 

directional and effectively increases the resistance to plastic yielding. On the other hand, 

the tensile yield strength is lowered approximately by 30 MPa, because the initial back 
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stress effectively reduces the resistance to plastic yielding. In addition, the initial back 

stress component along BD is chosen to be -60 MPa and the shear components of B0 are 

zero, so as to make B0 deviatoric. As a result, such initial back stresses lead to the 

asymmetry of tensile and compressive yield strengths by approximately 60 MPa in CPFE 

simulations. 

Table 3.2 Parameters used for crystal plasticity finite element calculations. 

 Parameter 

( )11 GPaC  204.6 

( )12 GPaC  137.7 

( )44 GPaC  126.2 

( )1

0 s −
 0.001 

m  0.023 

( )0 MPas  200 

( )0 MPah  250 

( )MPass  447 

a  0.7 

( )GPabh  126.2 

k  3000 
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3.7 CPFE Modeling of Non-linear Lattice Strains 

 While the micromechanics model provides analytic insights into the linear lattice strain 

behavior and the onset of plastic yielding in different grain families, we further developed 

a CPFE model to study the non-linear lattice strain behavior as well as the impact of Type 

II and Type III residual stresses on the mechanical behavior of AM stainless steel. The 

crystal plasticity constitutive equations are formulated within the rate-dependent, finite-

strain framework of elastic-plastic deformation for individual grain crystals [63]. To 

account for the effects of Type II and Type III residual stresses, we introduced the eigen-

strain tensor 
*

E and the back stress tensor B in the crystal plasticity model, respectively. 

More specifically, 
*

E  represents the printing-induced residual lattice strains and thus 

reflects the impact of Type II residual stresses. The components of 
*

E  for different grain 

families were estimated based on in situ SXRD measurements before loading, as described 

in the Methods section. On the other hand, the back stress tensor B represents the effective 

internal stresses within grains arising from heterogeneous dislocation distributions, thus 

reflecting the impact of Type III  residual stresses [29]. As such, the so-called intergranular 

and intragranular back stresses in previous studies [64, 65] are collectively considered as 

the Type III residual stresses in this work. The back stress tensor B is assumed to be 

deviatoric within the present pressure-independent crystal plasticity model. The initial 

values of the back stress tensor, denoted as B0, were assigned to represent the internal 

stresses arising from printing-induced heterogeneous dislocation structures. These initial 

values are responsible for the tension-compression asymmetry of yield strength of the as-

printed samples. Furthermore, the back stress tensor B in individual grains evolves with 

the local plastic shear on different {111}〈110〉 slip systems in a non-linear manner with an 
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increase of applied load. Such non-linear response reflects the rapid development of back 

stresses as measured with ~ 200 MPa at 3% strain under uniaxial tension and compression, 

which indicates a significant impact of deformation-induced back stresses on the plastic 

responses of AM stainless steel during loading. We implemented the crystal plasticity 

model in the finite element simulation package ABAQUS/Explicit [39] by writing a user 

material subroutine VUMAT. In finite element simulations, we constructed a three-

dimensional cubic polycrystalline structure with 8000 cubic elements. Each element 

represents one single crystal grain with an assigned orientation based on the EBSD data 

measured from the AM stainless steel sample. The numerical simulations generated the 

macroscopic stress-strain curves and lattice strain responses in different grain families.   

 Figure 3.5(a) shows the true stress-strain curve from CPFE simulation of uniaxial 

tension, which closely matches the experimental result. Figure 5(b) shows the simulated 

lattice strains along LD for the four grain families of {220}, {111}, {200} and {311} 

against the macroscopic tensile stress. It is seen that the main features of the simulated 

lattice strain responses, including stages prior to loading and in the linear elastic and non-

linear plastic regimes, are all in accordance with the experimental results. The fitted values 

of diffraction elastic constants 
hklE from CPFE simulations (as listed in Table 3.1) are close 

to the SXRD and micromechanics results. Further parametric studies indicate that the 

residual lattice strains prior to loading are directly correlated to the eigen-strain tensor 
*

E

and thus are responsible for Type II intergranular residual stresses.  

 To reveal the progressive yielding behavior of different grain families and associated 

non-linear lattice strain responses, Figure 3.5(c) shows the volume fraction of plastically 
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yielded grains against the macroscopic tensile stress for the four grain families. Supposing 

that the ‘mean’ yield stress for each grain family is given by the macroscopic stress giving 

50% yielded grains, we see from Figure 3.5(c) that the {220} family first yields, while the 

{200} family last yields; the mean yield stress of the {111} family is similar to the {200} 

family, and the {311} family is similar to the {200} family. This sequence of progressive 

yielding is mostly consistent the micromechanics model prediction, i.e., the relative 

magnitudes of the normalized maximum resolved shear stress 
hkl in Table 3.1. The only 

exception is the {311} family. This can be attributed to the large residual lattice strain in 

this grain family in the as-built sample (Figure 3.5(b)), which is accounted for in the CPFE 

model but not in the micromechanics model. In addition, we note that local deformation 

incompatibilities between neighboring grains can affect the stress state in individual grains, 

leading to the statistical variation of yield stresses of individual grains in each grain family 

and thus the gradual increase of volume fraction of yielded grains for each grain family in 

Figure 3.5(c). Comparison of Figure 3.5(b) and (c) also reveals that the highly non-linear 

response of the lattice strain versus applied stress for the {200} family begins at the 

macroscopic stress much lower than the mean yield stress of this grain family. This 

indicates that the non-linear lattice strain evolution for the {200} family is, in fact, initially 

associated with elastic deformation. That is, such non-linearity arises due to stress 

redistribution to this softest grain family (i.e., with the lowest diffraction elastic constant 

shown in Table 1); as other grain families progressively yield, they shed their loads onto 

the grains in the {200} family that remains elastic.  
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Figure 3.5 CPFE simulation results of the lattice strains in as-printed stainless steel under 

uniaxial tension. (a) Comparison of the true stress-strain curves of unaixial tension from 

experiment (Exp) and crystal plasticity (CP) finite element simulatoin. (b) Comparison of 

the lattice strains along LD against the macroscopic true stress for the {111}, {200}, {220}, 

{311} grain families from experiment and CPFE simulation. (c) Simulated volume fraction 

of plastically yielded grains within each family against the macrocopic true stress the as-

printed sample, showing the progressive plastic yielding among different grian families. 

(d) Same as (b) except along TD.  

 In addition, Figure 3.5(d) shows the simulated lattice strain along TD for the four grain 

families of {220}, {111}, {200} and {311} against the macroscopic tensile stress. It is seen 

that the residual lattice strain responses before loading, in the linear elastic regime, and in 

the non-linear plastic regime are consistent with the experimental results. The non-linear 

lattice strain responses along TD in different grain families have similar origins as those 

along LD. However, the elastic lattice strain responses along TD are more complicated. 

a b

c d
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For example, the non-monotonic variation of lattice strain in the 200 family around the 

macroscopic yield stress suggests the highly non-linear interactions between this grain 

family and other families during load shedding and redistributions as other grain families 

become progressively yielded. 

 

3.8 CPFE Modeling of Tension-Compression Asymmetry 

 To understand the effects of microscale residual stresses on the tension-compression 

asymmetry of AM stainless steel, we compared the CPFE simulations of uniaxial tension 

and compression. It is seen from Figure 3.6(a) that the simulated stress-strain curves of the 

as-printed sample agree with the experimental measurements. Further parametric studies 

indicate that the tension-compression asymmetry of the yield strength is predominantly 

controlled by the initial values of the back stress tensor B0. As described in the Section 3.6, 

we assigned identical values to B0 for all grains in the simulated polycrystalline aggregate, 

which approximately represent the average effect of type III intragranular internal stresses 

in these grains. That is, to match the simulation results of asymmetric tensile and 

compressive yield strengths with experimental ones, the initial back stress components 

along LD and TD within the build plane are both chosen to be 30 MPa, respectively; the 

initial back stress component along BD is chosen to be -60 MPa, so as to make B0 deviatoric; 

the shear components of B0 are chosen to be zero.  It should be noted that the non-linear 

relation between the back stress and plastic strain adopted in the CPFE model is also 

important. This is because the deformation-induced back stresses increase quickly with 

applied stress, reaching ~200 MPa at the yield point for both tension and compression. As 
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such, the back stress component along LD in tension and compression at the respective 

yield point in CPFE simulations match the corresponding experimental measurements. 

These results demonstrate the different effects of printing-induced back stresses and 

deformation-induced back stresses in the CPFE model. Nonetheless, since the back stresses 

represent the effective long-range resistances to dislocation glide within grains, the CPFE 

simulation results indicate that the asymmetry of tensile and compressive yield strengths 

in as-printed samples is caused primarily by the printing-induced back stress and associated 

Type III intragranular residual stresses, which arise from heterogeneous dislocation 

structures in as-printed samples. In addition, the asymmetric strain hardening rate is also 

captured in CPFE simulations (Figure 3.6(b)) by fitting the constitutive parameters in the 

non-linear relation of back stress versus plastic shear strain. This indicates that both the 

printing- and deformation-induced microstructures and associated Type III intragranular 

residual stress affect the asymmetric evolution of strain hardening rate.  

 For comparison, Figure 3.6(a) and (b) also show the simulated stress-strain curves and 

strain hardening rate-true stress curves of the annealed sample by taking the eigen-strain 

tensor 
*

E  and the initial values of the back stress tensor B0 as zero while keeping other 

model parameters unchanged. It is seen that the tension-compression asymmetries in yield 

strength and strain hardening are completely removed in CPFE simulations. Parametric 

studies indicate that zeroing the initial values of the back stress tensor B0 is essential to 

remove the tension-compression asymmetries in CPFE simulations of the annealed sample. 

In Figure 3.6(c), we plot the simulated lattice strain deviation (∆𝜀hkl) from the linear 

response for {200} and {220} grain families in the as-printed and annealed samples under 

unaixial tension. Their trends are similar to the correponding experimental results in Figure 
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3.2(c). However, the simulated initial values of ∆𝜀hkl vanish and the non-linearity of lattice 

strain is reduced during loading.  These responses arise from zeroing the eigen-strain tensor 

*
E  in the CPFE simulations of the annealed sample. Altogether, these CPFE results also 

suggest that thermal annealing during experiment had not fully relaxed the printing-

induced heterogeneous microstructures for completely removing back stresses and residual 

lattice strains in as-built samples. Finally, Figure 3.6(d) shows the simulated volume 

fraction of plastically yielded grains within the four grain families against the macrocopic 

tensile stress in the annealed sample. Compared to the correponding simulation results of 

the as-printed sample in Figure 3.5(c), the sequences of progressive yielding in different 

grain families are consistent between the two cases. However, the mean yield stressses of 

the {311} and {200} families in the annealed sample are markedly reduced due to the 

abscecne of the residual lattice strains (due to zeroing the eigen-strain tensor 
*

E ) in these 

two grain families. These results reinforce the notion that stress-relief heat treatment of 

AM samples can alter the footprints of microscale residual stresses through the 

experimentally measured lattice strain responses.  
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Figure 3.6 CPFE results of the tension-compression asymmetry of AM stainless steel. (a) 

Comparison of true stress-strain curves under uniaxial tension and compression from 

experiment (solid lines) and simulation (dashed lines) for as-printed and annealed samples. 

(b) Comparison of normalized strain hardening rate versus true strain under uniaxial 

tension and compression from experiment (solid lines) and simulation (dashed lines) for 

as-printed and annealed samples. (c) Simulated lattice strain deviation (∆𝜀ℎ𝑘𝑙) as a function 

of applied stress for {200} and {220} grain families for as-printed and annealed samples 

under unaixial tension. (d) Simulated volume fraction of plastically yielded grains within 

each family against the macrocopic true stress in the annealed sample, showing progressive 

plastic yielding among different grain families. 

 

3.9 Summary 

In summary, our combined experimental and modelling studies demonstrate that the 

microscale residual stresses have profound impacts on the yielding and strain hardening 

behavior of as-printed stainless steel. The in situ SXRD experiments provide a powerful 

a b

dc
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approach to unravel the residual lattice strains and associated Type II intergranular residual 

stresses for individual grain families in as-printed stainless steel as well as their evolution 

under applied loads.  The combined SXRD and modeling results elucidate the effects of 

elastic anisotropy, progressive yielding and strain hardening on the extent and evolution of 

lattice strains and associated Type II intergranular residual stresses in different grain 

families. A pronounced tension-compression asymmetry of yield strength is observed, 

together with an asymmetric work hardening behavior. Such tension-compression 

asymmetries are shown to be governed by the back stresses and associated Type III 

intragranular residual stresses, which arise from heterogeneous dislocation distributions 

that can be strongly influenced by both L-PBF processing and mechanical loading. Hence, 

it is important to distinguish the printing and loading-induced back stresses. Our CPFE 

simulations show that the former dictates the tension-compression asymmetry of yield 

strength in as-printed samples, while the latter can quickly build up during loading and 

thereby affect both the yield strength and strain hardening responses. Hence, both L-PBF 

processing and subsequent mechanical loading can contribute substantially to the back 

stress evolution as measured from the loading-unloading experiment on as-printed samples, 

leading to the strong Bauschinger effect of AM stainless steel. Moreover, we show that 

thermal annealing of as-printed samples could mitigate both Type II and Type III residual 

stresses but is difficult to erase completely the footprints of these microscale residual 

stresses in the tension-compression asymmetries. Altogether, our results demonstrate the 

quantitative and mechanistic connections between the microscale residual stresses and 

mechanical behavior of AM stainless steel. Future studies on linking the printing 

parameters with the resultant microstructural heterogeneities and associated microscale 
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residual stresses are necessary to enable the control and mitigation of these residual stresses. 

We expect that our work has general implications for AM metallic materials, since 

multiscale residual stress is a critical issue for this rapidly developing technology.  
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CHAPTER 4. NEUTRON DIFFRACTION-INFORMED 

CONSTITUTIVE MODELING OF ADDITIVELY 

MANUFACTURED EUTECTIC HIGH-ENTROPY ALLOYS 

4.1 Introduction 

 Nanolamellar metals exhibit high strength but come at the expense of hallmark ductility 

[66, 67]. Such strength-ductility tradeoff has been recently overcome by integrating the 

nanolamellar structure with a new composition design paradigm of multi-principal element 

alloys, also called high-entropy alloys (HEAs) [68-70]. However, nanolamellar materials 

have been often fabricated through thin-film deposition or (thermo-)mechanical processing 

with severe plastic deformation that is rather limited for practical applications. Additive 

manufacturing, also called three-dimensional (3D) printing, is an emerging technology for 

printing directly net-shaped components from digital models. In addition to the vast design 

freedom offered by this approach, the extreme printing conditions of metal alloys (e.g., via 

L-PBF) provide exciting opportunities for producing microstructures and mechanical 

properties beyond those achievable by conventional processing routes. For example, 

microstructures with highly heterogeneous grain geometries, sub-grain dislocation cells, 

chemical segregation at cell walls, and precipitates have been produced in a variety of AM 

metallic materials including stainless steels [8], cobalt- or nickel-based superalloys [71], 

aluminum alloys [72], and the novel HEAs. EHEA is a promising class of multi-principal 

element alloys with dual-phase lamellar structures that offer great potential for achieving 

excellent mechanical properties. Here, we use L-PBF to produce a unique type of far-from-

equilibrium microstructure in the form of dual-phase nanolamellae in an AlCoCrFeNi2.1 
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EHEA, which demonstrates an excellent combination of strength and ductility. Our work 

underscores the notion that additive manufacturing provides a powerful approach to 

engineer the heterogeneous nanostructured materials with superior mechanical 

performance.   

4.2 Ultrahigh Strength and Ductility Achieved by Hierarchical Microstructures 

 The AM AlCoCrFeNi2.1 EHEA is featured by eutectic colonies with nanolamellar 

structures (Figure 4.1b-d). Equiaxed colonies are observed predominantly on the top-view 

cross section of the sample, while elongated columnar colonies along the build direction 

(BD) are seen on the side-view cross section (Figure 4.1b). These colonies result from 

epitaxial growth across the hemispherical melt pool boundaries with further extension into 

the successive printed layers. Such epitaxial growth is common in alloys from L-PBF when 

the solidification microstructure is well-aligned along the maximum thermal gradient 

direction in parallel with BD. Since the laser scan direction was rotated by 90º between 

adjacent layers, the inter- and intra-layer laser remelting changed the direction of heat flux 

and thus promoted local side-branching. At the melt pool overlapping region, the direction 

of lamellar growth is ~45º inclined to the BD, and a subtle preferred orientation of FCC-

<110>//BD is observed. No appreciable changes in chemical composition are observed 

between the AlCoCrFeNi2.1 powders and as-printed samples.  
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Figure 4.1 Microstructure of the AlCoCrFeNi2.1 EHEA by L-PBF. a, Printed heatsink fan, 

octet lattice (strut size: ~300 μm), and gear (from left to right). b, 3D-reconstructed optical 

micrographs of as-printed AlCoCrFeNi2.1 EHEA. The inter-layer boundary, melt pool 

boundaries, and laser scan tracks are illustrated by the blue line, orange lines, and red 

arrows, respectively. c, A cross-sectional electron backscatter diffraction (EBSD, 

Methods) inverse-pole figure (IPF) map of as-printed AlCoCrFeNi2.1 EHEA with only FCC 

phase indexed, showing nanolamellar eutectic colonies. The build direction is vertical. The 

unindexed white regions are BCC phase. d, Secondary electron micrograph revealing the 
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typical nanolamellar structure. e, Bright field TEM image showing the nanolamellar 

structure. Insets show SAED patterns of BCC and FCC lamellae. f, Lamellar thickness 

distribution of BCC and FCC lamellae in as-printed AlCoCrFeNi2.1 EHEA. g, HAADF-

STEM image showing the modulated nanostructures within BCC lamella. h, APT maps of 

elemental distribution in a 100 × 78 × 5 nm section with an FCC/BCC interface in the 

center. Chemical fluctuations within BCC lamella are manifested by the nanoscale Ni-Al-

rich and Co-Cr-Fe-rich regions. 

 

 The high cooling rate of ~105-107 K/s associated with L-PBF gave rise to highly refined 

eutectic microstructures in as-printed samples. Scanning electron microscopy (SEM) and 

transmission electron microscopy (TEM) characterizations reveal a dual-phase 

nanolamellar structure comprising alternating BCC and FCC nanolayers (Figure 4.1d, e), 

with the respective thickness of λBCC = 64 ± 24 nm and λFCC = 151 ± 39 nm (Figure 4.1f). 

Hence, the corresponding interlamellar spacing is λ ≈ 215 nm, which is approximately half 

of that in the starting powder feedstock. Such dual-phase nanolamellar structures stand in 

contrast with the typical dual-phase micro-lamellar structures of AlCoCrFeNi2.1 EHEA 

from casting (λ ≈ 0.77-2 µm) or thermomechanical processing (λ ≈ 1.5-5 µm). The much 

thinner nanolamellae in the AM EHEA are a result of rapid solidification in the extreme 

printing conditions from L-PBF.  

 Compared with conventional counterparts, the AlCoCrFeNi2.1 EHEA from L-PBF 

shows distinct elemental distributions and phase structures. Both FCC and BCC phases in 

as-printed samples are solid solutions, as evidenced by the absence of superlattice 

reflections in neutron diffractions or extra super-lattice spots in the selected area electron 

diffraction (SAED) patterns (Figure 4.1e). A classical Kurdjumove-Sachs (K-S) 

orientation relationship was identified between the FCC and BCC solid solutions, giving 
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{111}FCC ‖ {110}BCC and <110>FCC ‖ <111>BCC. Elemental mapping and compositional 

analysis by high angular annular dark-field scanning TEM (HAADF-STEM) energy 

dispersive X-ray spectroscopy (EDX) revealed nearly identical chemical compositions 

between the dual phases. Neutron diffraction measurements confirmed that the as-printed 

EHEA is composed of FCC and BCC phases, which have a weight fraction of 67% and 

33%, respectively and show a lattice mismatch of 2.29%. No precipitates were detected in 

as-printed AlCoCrFeNi2.1 EHEAs. In contrast, conventional AlCoCrFeNi2.1 EHEAs 

consist of ordered L12 and B2 phases with different chemical compositions as well as 

copious nanoprecipitates; the B2/BCC lamellae are prominently rich in Ni and Al, whereas 

the L12/FCC lamellae are highly enriched by Co, Cr, and Fe. Altogether, the distinct 

lamellar thickness and elemental distributions between the AM and conventional 

AlCoCrFeNi2.1 EHEAs indicate that atomic diffusion and chemical ordering are largely 

suppressed during rapid solidification of L-PBF processing. With increasing solidification 

rate, the conventional process of diffusion-mediated eutectic solidification is shifted 

toward diffusion-less (polymorphic) solidification. As such, diffusion of solute atoms at 

the lamellar interfaces lags behind solidification front growth, leading to nearly identical 

compositions in the eutectic nanolamellae from L-PBF. 
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Figure 4.2 Tensile properties of AlCoCrFeNi2.1 EHEAs from L-PBF. a, Representative 

tensile stress–strain curves for as-printed and annealed AlCoCrFeNi2.1 EHEAs. The yield 

strength (σ0.2) and ultimate tensile strength (σu) are marked on the curves. b, Tensile yield 

strength versus uniform elongation of AM AlCoCrFeNi2.1 EHEAs in comparison with 

those of AM metal alloys with high strength (σ0.2 > 800 MPa) in the literature. 

 

4.3 Elastic Properties Extracted from Neutron Diffraction Experiments 

 Based on the neutron diffraction data of diffraction elastic constants, we developed a 

micromechanics model to inversely determine the anisotropic elastic constants of co-

deforming FCC and BCC phases in our AM EHEAs, which enabled us to perform the stress 

partition analysis in the two phases.  First, we derived an analytic micromechanics solution 

of diffraction elastic constants for co-deforming FCC and BCC phases by assuming their 

elastic properties are known. Then, we used the micromechanics solution to solve an 

optimization problem for determining the anisotropic elastic constants of both FCC and 

BCC phases in our AM EHEAs. 

 To derive the micromechanics solution, we considered a spherical FCC grain   in a 

{hkl} grain family embedded in an elastically isotropic matrix comprising a mixture of 

FCC and BCC phases. Suppose the matrix has the effective bulk modulus K  and shear 
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modulus  . Based on the previous analytic solution [73], we used the constrained 

compliance tensor 
( )
FCC


U  to relate the applied average stress tensor σ  and local strain tensor 

( )
FCC


ε  in the FCC grain   according to 

( ) ( )
FCC FCC

 
=ε U σ  

Here the fourth-order tensor 
( )
FCC


U  can be expressed in a compact symbolic form 

( ) ( ) ( ) ( )
FCC

FCC FCC FCC

1 2 3

1 1 1
, ,

3 3 3 2 2 2 2 2 2K K


         

 
 =
      + − + − + −

      

U  

where 
3 4

K

K



=

+
 and 

3 6

15 20

K

K






+
=

+
 are the components of the Eshelby tensor for a 

spherical inclusion58; 
FCC FCC FCC

1 11 123 2C C = + , 
FCC FCC FCC

2 11 122 C C = − , 
FCC FCC

3 112 2C =  are the 

combinations of FCC elastic constants. The above expression of 
( )
FCC


U  can be rewritten as 

( ) ( )FCC FCC FCC FCC3 ,2 ,2a b c


=U  

where FCCa , FCCb and FCCc are introduced to represent the corresponding terms in  
( )
FCC


U  

and they are dependent on both the FCC elastic constants 
FCC FCC FCC

11 12 44, ,C C C  and the 

effective elastic moduli of the isotropic matrix ,K  . From 
( )
FCC


U , we obtained the analytic 

solution of diffraction elastic constants of  grain   along the loading direction (LD)  

( )
FCC

FCC FCC
FCC FCC

FCC,

LD

1 3 4
4

3

hkl

hkl

a b
b c

E

  +
= = − − 

 

n ε n

n σ n
 



 

 77 

where n  is the unit vector along the loading direction, 
hkl

•  represents the average over 

grains with their [ ]hkl  directions aligned with n , and 
( )

2 2 2 2 2 2

2
2 2 2

h k l k h l

h k l

+ +
 =

+ +
 is the 

orientation index parameter. Following a similar procedure, we obtained the analytic 

solution of diffraction elastic constants of the BCC phase along LD,  

( )
BCC

BCC BCC
BCC BCC

BCC,

LD

1 3 4
4

3

hkl

hkl

a b
b c

E

  +
= = − − 

 

n ε n

n σ n
 

where 
BCC BCC,a b and BCCc  are introduced to represent the constrained compliance tensor 

( )
BCC


U  and they are dependent on the elastic constants of the BCC phase 

BCC BCC BCC

11 12 44, ,C C C  

and the effective elastic moduli of the isotropic matrix ,K  . We also obtained the similar 

analytic solution of diffraction elastic constants along the transverse direction (TD). We 

note that the elastic constants of 
FCC FCC FCC BCC BCC BCC

11 12 44 11 12 44, , , , , , ,C C C C C C K   completely 

determine the diffraction elastic constants of FCC and BCC phases, but they are not all 

independent of each other. Namely, we invoked the self-consistent method to evaluate the 

effective moduli ,K   for our dual-phase EHEAs. Hence, ,K   can be determined from 

the elastic constants of 
FCC FCC FCC BCC BCC BCC

11 12 44 11 12 44, , , , ,C C C C C C  and the volume fractions of 

FCC and BCC phases. Specifically, the average strain for a dual-phase EHEA over all grain 

orientations is given by 
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FCC FCC BCC BCC

FCC FCC BCC BCC

FCC FCC BCC BCC FCC FCC BCC BCC
FCC FCC BCC BCC 4 4 6 6

3 3 ,
5

4 6
3 ,

5

all all

all all

b b c c
a a

b c
a

 

 

   
 

= +

 = +
 

 + + +
= + 

 

 +
=  

 

ε ε ε

U U σ

σ

σ

 

where 
FCC  and 

BCC are the volume fractions of FCC and BCC phases, respectively, and 

, ,a b c  are the phase average of previously defined , ,a b c  quantities. Recall that the 

average compliance tensor M  is given by 

1 1
,

3 2K 

 
= =  

 
ε Mσ σ  

As such, the above result expresses ,K   in terms of 
FCC FCC FCC BCC BCC BCC

11 12 44 11 12 44, , , , ,C C C C C C . 

This self-consistent result is enforced by comparing the predicted values of ,K   with the 

corresponding experimental values.  

 Next, we used the above micromechanics solution to solve an optimization problem for 

determining the anisotropic elastic constants of FCC and BCC phases in our AM EHEAs. 

From the experimentally measured diffraction elastic constants and elastic moduli of AM 

EHEAs, we employed the gradient descent algorithm to minimize the error between 

predicted and measured values. We started with a random initial guess of 

FCC FCC FCC BCC BCC BCC

11 12 44 11 12 44, , , , , , ,C C C C C C K  =  x . Then we computed the target elastic 

properties arranged in a linear array of y , i.e.,   
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( )
FCC,200 FCC,220 FCC,111 FCC,311 FCC,331

LD LD LD LD LD

FCC,200 FCC,220 FCC,111 FCC,311 FCC,331

TD TD TD TD TD

BCC,200 BCC,110 BCC,211 BCC,321

LD LD LD LD

BCC,200 BCC,110 BCC,21

TD TD TD

[ , , , , ,

   , , , , ,

   , , , ,

   , ,

E E E E E

E E E E E

E E E E

E E E

=

=

y f x

1 BCC,321

TD, ,

1 5 9
   3 , 2 , ]

3 4 6 3

E

K
K

a b c K





− −

+ +

 

where the first 18 components in y are the diffraction elastic constants for different grain 

families along LD and TD, and the last 3 components serve to enforce the self-consistency 

for the dual-phase polycrystal, as discussed earlier. The target values of y are given as 0y  

taken from experimental measurements, i.e.,  

0 [136.53,  208.64, 238.72,  175.14,  222.78,

   399.34,  579.90, 784.18,  525.59,  646.36,

   107.75,  197.31, 192.44,  192.13,

   274.29,  542.89, 511.56,  491.94,

   0,           0,          171] GPa

=y

 

To find the optimal solution for the elastic constants of FCC and BCC phases, the loss 

function L is defined as 

( ) ( )
T

0 0L = − −y y g y y  

where the weight matrix is ( )diag 4,4,4, 4, 4,1,1,1,1,1,4,4,4,4,1,1,1,1,3,5,3g = . This 

weight matrix was introduced to balance the relative importance of different diffraction 

elastic constants because their values along TD are usually two times higher than those 



 

 80 

along LD. The gradient descent algorithm was used to minimize the loss function L by 

updating the components in 
ix  at the i-th iteration step along the gradient direction, 

1i i

L
+


= −


x x

x
 

The gradient 
L

x
 was calculated numerically by small perturbations near 

ix  and the 

iteration step size   is 31 10− . The iteration process of optimization was terminated when 

the norm of 
L

x
 is less than 31 10− . Three different sets of initial values of 0y  were tested 

and they all converged to the same result. The diffraction elastic constants are plot in the 

Figure 4.3 comparing to the experimental measured ones. The final optimized elastic 

constants of FCC and BCC phases for our AM HEAs are listed in Table 4.1.  

 

Figure 4.3 Plot of the reciprocal of diffraction elastic constant 
hkl1/ E  as a function of 

orientation parameter   along (left) LD and (right) TD for Al-HEA. The solid lines 

represent the micromechanics (Micro) solutions, and the squares the experiment results 

from the neutron diffraction experiment. 
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Table 4.1 Elastic constants of FCC and BCC phases in the AlCoCrFeNi2.1 EHEA 

determined from the micromechanics model (in GPa). 

FCC

11C  
FCC

12C  
FCC

44C  
BCC

11C  
BCC

12C  
BCC

44C  K    

258.72 177.52 124.82 282.44 259.75 131.90 225.03 63.37 

 

 

4.4 Dual-Phase Crystal Plasticity Finite Element Modeling 

A DP-CPFE model was developed to evaluate both linear and non-linear lattice strain 

responses as well as to perform the stress partition analysis in the dual-phase EHEA. We 

used the rate-dependent, finite strain, crystal plasticity constitutive formulation [24] for 

both FCC and BCC phases. The deformation gradient F is decomposed into 
e p=F F F , 

where 
e

F is the elastic deformation gradient and 
p

F  is the plastic deformation gradient. 

The elastic Green strain tensor can be defined as ( )
T

1/ 2e e e= −E F F I , where I  is second-

order identity tensor. The second Piola-Kirchhoff stress 
*

T  in the intermediate 

configuration can be determined as * : e=T C E , and C  is the forth-order single-crystal 

elastic tensor. The rate of plastic deformation gradient is given 
p p p=F L F . Here, the plastic 

velocity gradient is expressed as 
12

1

p p

i i ii


=
= L m n , where 

p

i  is the plastic shearing 

rate on i-th slip system, im  and in  are the slip direction and slip plane normal, 

respectively. We considered 12 {111} 110  slip systems in the FCC phase and 12 

{110} 111  in the BCC phase. The plastic shearing rate 
p

i  is given by a power-law 

relation, ( )
1/

0 / sgn
mp p

i i i is   = , where 0

p  is the reference shearing rate, i i i =  m T n  
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is the resolved shear stress, m is the rate sensitivity and is  is the slip resistance on the i-th 

slip system.  The slip resistance on each slip system starts with an identical initial value 0s  

and is hardened according to 
p

i ij jj
s h =  ; the hardening matrix is expressed as 

( )0 sat1 /
a

ij ij jh q h s s= − , where the diagonal components of ijq  are 1.0 and the off-diagonal 

components are 1.4. The parameters used in the above constitutive model are listed in Table 

4.2. 

Table 4.2 Parameters used in the DP-CPFE model 

Phase ( )1

0 s p −  m ( )0 MPas  ( )0 MPah  ( )sat MPas  a  

FCC 0.001 0.02 550 1000 600 0.7 

BCC 0.001 0.02 475 4000 750 0.7 

 

The above constitutive model was implemented in the general finite element package 

ABAQUS/Explicit by writing a user-defined material subroutine VUMAT. In finite 

element simulations, we constructed a polycrystalline cube comprising 8000 elements, 

where each element represents a single-crystal grain. The crystallographic orientation of 

each grain was randomly assigned to generate a texture-free sample. Each grain was also 

randomly assigned as an FCC or BCC phase, such that the corresponding volume fraction 

of each phase is consistent with experimental values. The polycrystal structure was 

subjected to uniaxial loading with a strain rate of 0.001s-1. The lattice strain response was 

extracted from the elastic strain tensor in each grain by writing a Python script through the 

ABAQUS-Python interface.  
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Figure 4.4 Lattice strain measurements and stress partitioning in FCC/BCC phases during 

uniaxial tension of AM AlCoCrFeNi2.1 EHEA, from in situ neutron diffraction experiments 

and DP-CPFE modeling. a, Evolution of the lattice strain over macroscopic true stress for 

representative FCC (including {111}, {200}, {220}, {311}) and BCC (including {110}, 

{211} and {321}) grain families along the loading direction. The experimental and 

simulated results are depicted by symbols and solid lines, respectively. The macroscopic 

yield strength is marked with the red dashed line. b, DP-CPFE simulation results of the 

macroscopic stress-strain response with the corresponding stress partitioning in BCC and 

FCC phases. c, Selected neutron diffraction spectra along the loading direction during 

deformation. During the in situ neutron diffraction measurements, the sample was unloaded 

at 2%, 5%, and 10% engineering strains, respectively. d, Dislocation density evolution in 

BCC and FCC phases, derived from the diffraction spectra in c and the modified 

Williamson-Hall method.  

 

It is important to note that DP-CPFE simulations further enable us to partition the bulk 

tensile stress into the corresponding tensile stress components in FCC and BCC phases, so 
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as to quantitatively evaluate the strain hardening behavior of co-deforming FCC and BCC 

nanolamellae. These simulations require a knowledge of anisotropic elastic constants of 

individual phases, which could not be readily obtained due to the non-equilibrium 

structures developed in as-printed EHEAs with the extremely small lamellar thicknesses 

and unique alloy compositions different from conventional counterparts. To address this 

issue, we used DP-CPFE simulations to solve an inverse problem to determine theses 

elastic constants, such that the predicted lattice strain responses (Figure 4.4a) and sample-

level stress-strain curve (Figure 4.4b) from DP-CPFE simulations closely match the 

experimental measurements. After solving this inverse problem, our DP-CPFE simulations 

can provide the true stress-strain curves in co-deforming FCC and BCC phases, as shown 

in Figure 4.4b. It is seen that both BCC and FCC nanolamellae exhibit high strain hardening 

for a fairly large range of tensile strains, but BCC nanolamellae make greater contributions 

to the overall high strain hardening responses than FCC nanolamellae, thereby promoting 

the overall high tensile ductility of the present EHEA. Evidently, the AM EHEA enables 

the high strain hardening behavior in its constituent BCC nanolamellae that is hitherto 

difficult to achieve in single-phase BCC nanostructures.  

 

4.5 Summary 

 In summary, we have harnessed additive manufacturing via L-PBF to develop a new 

class of dual-phase nanolamellar EHEAs that exhibits an exceptional combination of 

ultrahigh yield strength and large tensile ductility well surpassing other state-of-the-art 3D-

printed metal alloys. In particular, rapid solidification inherent to L-PBF enables the 
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formation of far-from-equilibrium heterogeneous nanostructures with chemical 

modulations, which lead to the unusual work-hardening capability of nanoscale BCC phase 

that is greatly enhanced by the co-deforming nanoscale FCC phases and their semi-

coherent interfaces. Additive manufacturing of multicomponent EHEAs not only offers a 

new means of pushing the limit of attainable microstructures and compositions for metal 

alloys, but also provides a general pathway for pursuing novel mechanical properties in 

many other metallic materials that can develop multi-phase lamellar structures such as 

aluminum alloys and titanium alloys.     
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Part II: Macroscale Heterogeneities in Gradient Nanotwinned Metals 
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CHAPTER 5. PHENOMENOLOGICAL THEORY OF STRAIN 

GRADIENT PLASTICITY 

5.1 Introduction 

 Gradient structured metals have received considerable attention in recent years due to 

their enhanced strength, ductility and fatigue resistance compared to non-gradient 

counterparts [3, 74, 75]. Structure gradients can give rise to substantial extra strengths [9, 

76, 77] that result from plastic strain gradients [10, 78-84] arising in plastically deformed 

gradient structures. However, the mechanics of gradient plasticity in gradient structures 

has not been clearly understood [85-88]. Recently, Cheng et al. [9] reported the fabrication 

of gradient nanotwinned (GNT) Cu having different gradient distributions of nanoscale 

twin thickness and thus different yield strength gradients. They showed that an increase in 

nanostructure gradient causes a marked increase of the sample-level yield strength, and a 

large nanostructure gradient produces a high yield strength exceeding that of the strongest 

component of the gradient nanostructure. In particular, they measured the extra strength as 

a function of structure and strength gradients. These results call for a fundamental 

understanding of the strengthening effects of plastic strain gradients originating from 

gradient nanostructures. In addition, given the high tunability of its gradient structures, 

GNT Cu can serve as an effective model system for benchmarking the gradient theories of 

plasticity.   

 In this Chapter, we develop a gradient theory of plasticity by incorporating the 

strengthening effect of plastic strain gradient into the J2 flow theory. Motivated by the 



 

 88 

simple gradient theory of plasticity by Bassani [10], we introduce a scalar measure of 

plastic strain gradient into a hardening rate relation, so that higher-order stresses and 

additional boundary conditions are not needed. This approach enables an effective analysis 

of strain gradient plasticity without much mathematical complexity. To study the gradient 

plastic responses of GNT Cu under uniaxial tension, we reduce the general three-

dimensional (3D) gradient theory into a one-dimensional (1D) theory, and numerically 

implement this 1D theory with the finite-difference method. Numerical simulations reveal 

the primary effects of strain gradient plasticity on GNT Cu with different structure 

gradients. In addition, we numerically implement the 3D gradient theory into the general 

finite element package ABAQUS/Explicit [39]. Numerical results from 3D gradient 

plasticity finite element (GPFE) simulations confirm those from 1D finite-difference 

simulations, and further reveal the impact of stress components neglected in the 1D 

gradient theory and simulations. Based on insights gained from both 1D and 3D gradient 

plasticity simulations, we explore the optimization of structure and strength gradients 

toward achieving the maximum strength of GNT Cu. 

5.2 Experiment 

 In this section, we provide a brief overview of the experimentally measured structure 

and strength gradients in GNT Cu. These results provide a basis for our development of 

gradient plasticity theories and associated computational models. As described in detail by 

Cheng et al. [9], direct-current electrodeposition was used to prepare GNT Cu samples 

with a controllable pattern of gradient nanotwinned structures. Figure 1a shows the 

schematic illustration of four types of GNT Cu samples, named GNT-1, GNT-2, GNT-3 

and GNT-4, respectively. The corresponding electron microscopy images of 
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microstructures can be found in Cheng et al. [9]. These samples have similar thickness L 

around 400 m, but different structure gradients through sample thickness. At each local 

region, preferentially oriented nanometer-scale twin lamellas are embedded within 

micrometer-scale columnar-shaped grains. As schematically illustrated in Figure 5.1a, 

GNT-1 exhibits approximately linear variations of twin thickness and grain size through 

sample thickness. The average twin thickness increases from 29 nm to 72 nm, with a 

concomitant increase of average grain size from 2.5 μm to 15.8 μm. Despite the dual 

gradient variations of twin thickness and grain size, the strengthening effects are mainly 

controlled by the gradient distributions of twin lamellas [9], due to their much smaller twin 

thicknesses than grain sizes. Hereafter, our description of structure gradients will focus on 

gradient distributions of nanotwinned structures. As also illustrated in Figure 1a,  GNT-2, 

GNT-3 and GNT-4 exhibit periodic, piecewise linear, continuous variations of twin 

thickness [9], which can be approximately represented by triangle waves of twin thickness 

with different wavelengths, i.e., about L, L/2 and L/3.5, respectively. In fact, the linear 

profile of twin thickness in GNT-1 can be represented by the half period of a triangle wave 

with wavelength 2L. For GNT-2 to GNT-4, the maximum and minimum twin thicknesses 

are close to those of GNT-1. As such, their twin thickness gradients are 2, 4 and 7 times 

that of GNT-1. We note that the control of the structural gradient becomes increasingly 

difficult with increasing structure gradient. As a result, GNT-4 has an actual sample 

thickness larger than 400 m, such that its twin thickness gradient is not as ideal as 8 times 

that of GNT-1. 

 The gradient nanotwin structures lead to the gradient strengths in GNT Cu. Figure 5.1b 

shows the measured indentation hardness profiles of GNT-1 to GNT-4 through their 
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sample thickness, which can be also represented by triangle waves of hardness with 

different wavelengths (i.e., about 2L, L, L/2 and L/3.5, respectively). These triangle wave 

profiles have approximately identical maximum hardness 1.5 GPa and minimum hardness 

0.8 GPa.  The measured hardness gradient, denoted as g, for GNT-1 to GNT-4 are 1.75, 

3.2, 6.0 and 11.6 GPa/mm, respectively. Most importantly, an increase of hardness gradient 

causes a marked increase in the sample-level yield strength [9]. These results will be 

presented along with the experimentally measured stress-strain curves of GNT Cu in 

section 5.4, where they will be compared with the corresponding gradient plasticity 

simulation results.   

 

Figure 5.1 Schematic illustration of four types of GNT Cu samples, named GNT-1, GNT-

2, GNT-3 and GNT-4, respectively [9]. (a) Through sample thickness, GNT-1 to GNT-4 

exhibit gradient twin structures (with periodic, piecewise linear, continuous variations of 

twin thickness) as well as gradient grain sizes. Preferentially oriented nanometer-scale twin 

lamellas (with twin boundaries represented by purple lines) are embedded within 

micrometer-scale columnar-shaped grains (with grain boundaries represented by blue 
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lines).  (b) Measured indentation hardness profiles through the sample thickness of GNT-

1 to GNT-4. Each hardness curve is labeled with its corresponding hardness gradient g.  

5.3 A Theory of Strain Gradient Plasticity   

 To study the mechanical behavior of GNT Cu, we developed a small-strain theory of 

strain gradient plasticity by incorporating the strengthening effect of plastic strain gradient 

into the classical J2 flow theory. In the following, we present the gradient theory using 

index notation − a free index ranges over 1 to 3 and repeated indices mean summation. The 

total strain rate ij  is decomposed into   

   
e p

ij ij ij= +    (5.1) 

In Eq. (5.1), the elastic strain rate 
e

ij  is related to the stress rate ij  by the generalized 

Hooke’s law  

   e 1
(1 )ij ij kk ijv v

E
 = + −      (5.2) 

where E is Young’s modulus, v is Poisson’s ratio, 1ij =  when i j=  and 0ij =  

otherwise. The plastic strain rate 
p

ij  obeys the J2-flow rule 

   p p
3

2

ij

ij


=  


 


 (5.3) 

In Eq. (5.3), ij
  is the deviatoric stress given by / 3ij ij kk ij

 = −      ,   is the equivalent 

stress 
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3

2
ij ij
 =      (5.4) 

and p  is the equivalent plastic strain rate given by a simple power-law relation  

   

1/

p p

0

m

s

 
=  

 


   (5.5) 

where 
p

0  is the reference plastic strain rate, s is the plastic flow resistance, and m is the 

strain rate sensitivity parameter. The accumulated equivalent plastic strain is given by 

p p

0

t

dt=   .  

 To account for the hardening effect of the plastic strain gradient, an effective measure 

of plastic strain gradient is introduced into a hardening rate relation, as motivated by the 

gradient plasticity theory from Bassani [10]. That is, the instantaneous hardening rate is 

given by  

   ps h=   (5.6) 

where the hardening rate coefficient h is   

   

( ) ( )1 2

0

p p

1 2

1
1 / 1 /

n n

h
h

 
 = +
 + +
 

 

   
 (5.7) 

In Eq. (5.7), the term outside the square bracket represents the conventional hardening 

effect due to plastic strain. In this term, 0h  is the hardening rate constant; 1  and 1n  control 

the nonlinear behavior of plastic strain hardening. Note that in Eq. (5.7), the second term 
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inside the square bracket reflects the extra hardening effect due to plastic strain gradient.  

Here   is defined as  

   p p

, ,i i=    (5.8) 

which is a scale measure of the spatial gradient of the accumulated equivalent plastic strain 

p p

, /i ix=    . As such, the hardening rate due to plastic strain gradient scales with 0h 

, where   is a constant. In addition, 2  and 2n  are used to control the range of 
p  where 

the hardening effect of plastic strain gradient predominates. That is, this hardening effect 

is pronounced when 
p  is less than 

2 , but it decays quickly as 
p  increases above 

2 .  

 To capture the hardening behavior of GNT Cu, 
2  is taken to be much smaller than 

1

; in addition, an appropriate   is taken such that 0h   is much larger than 
0h . As a 

result, Eq. (5.7) represents a two-stage hardening response of GNT Cu. Specifically, a high 

hardening rate on the order of 0h   predominates when 
p  is less than 

2 , while a low 

high hardening rate on the order of 
0h  takes over when 

p  becomes greater than 
2 . The 

two-stage hardening is characteristic of the stress-strain response of GNT Cu [9] and 

implies the following dislocation strengthening effects in gradient structures. In the first 

stage of hardening, geometrically necessary dislocations [78] are quickly generated to 

accommodate plastic strain gradients resulting from built-in structure and strength 

gradients. Geometrically necessary dislocations give rise to a high hardening rate, thus 

reflecting a strong non-local strengthening effect of plastic strain gradients. In the second 

stage, hardening due to built-in structure and strength gradients becomes saturated, leading 

to a markedly reduced hardening effect.  
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5.4 Gradient Plasticity in GNT Cu 

 To study the gradient plastic responses of GNT Cu under uniaxial tension, we set up 

GNT-1 to GNT-4 models with different structures and strength gradients in section 5.4.1. 

Considering the dominant axial stresses in these GNT models, we reduced the general 3D 

gradient theory into a 1D gradient theory in section 5.4.2. This 1D theory was numerically 

implemented to simulate the tensile responses of GNT-1 to GNT-4 models, as described in 

section 5.4.3. Numerical results were compared with experimental measurements in terms 

of the overall stress-strain responses of GNT-1 to GNT-4. Detailed analysis of the 

numerical results for GNT-1 revealed the primary strengthening effects of gradient 

plasticity in GNT Cu. 

5.4.1  GNT-1 to GNT-4 models 

 As shown in Figure 5.2a, we considered a rectangular block, with the dimensions of 

x y zL L L  , as a representative volume element of GNT-1 to GNT-4 samples. The z-axis 

of the block is oriented along the tensile loading direction, and the y-axis is along the 

sample thickness direction. A gradient distribution of initial plastic flow resistance 

( , 0)s y t =  (equivalent to initial tensile yield strength) is prescribed in the x-y cross section 

and along the y-axis. Based on the experimentally measured hardness profiles of GNT-1 to 

GNT-4 samples (Figure 5.1), we used triangle waves with different wavelengths and 

gradients to represent ( , 0)s y t =  for GNT-1 to GNT-4 models. A typical triangle wave 

(Figure 5.2b) is prescribed by three parameters: the maximum resistance 
0,maxs , minimum 

resistance 
0,mins  and wavelength  . To facilitate comparison among different GNT 
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models, 
0,maxs  is taken to be identical for GNT-1 to GNT-4 models and so is 

0,mins . 

Consider the GNT-1 model as an example. Its linear profile of GNT-1( , 0)s y t =  corresponds 

to the half period of a triangle wave, GNT-1 / 2 400μmyL = = , and is expressed as 

   GNT-1 GNT-1

0,max s( , 0)s y t s g y= = −    (5.9) 

where GNT-1

sg  is the gradient of initial plastic flow resistance. For GNT-2 to GNT-4 models, 

their triangle wave profiles of ( , 0)s y t =  have the same half period form as Eq. (5.9), but 

the respective 
sg  is increased to 2, 4 and 7 times GNT-1

sg , and the respective   is reduced 

to 1/2, 1/4 and 1/7 times GNT-1 . 

 

Figure 5.2 Schematics of GNT-1 to GNT-4 models. (a) A rectangular block is taken as a 

representative volume element of GNT Cu, with a gradient distribution of initial plastic 

flow resistance in the x-y cross section and under uniaxial tensile deformation along the z-

axis. (b) A triangle wave profile of initial plastic flow resistance along y-axis, with the 

maximum resistance 
0,maxs , minimum resistance 

0,mins  and wavelength  .  
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 Considering the fact that ( , 0)s y t =  for GNT-1 to GNT-4 models is only a function of 

coordinate y, we assumed all the stress and strain fields resulting from uniaxial tension 

depend only on coordinate y and time t. We further assumed that ( , )zz y t  is the only 

nonzero stress component. Compared to a full 3D stress analysis, this simplified 1D stress 

state facilitates a more physically transparent analysis of the primary strengthening effect 

of gradient plasticity. When a uniaxial stress state prevails, equilibrium is trivially satisfied. 

It follows that according to Eq. (5.4), the equivalent stress ( , )y t  is reduced to the axial 

stress ( , )zz y t ; according to Eq. (5.3), the equivalent plastic strain rate p ( , )y t  is reduced 

to the axial strain rate p ( , )zz y t , such that the lateral strain rate is given by

p p p( , ) ( , ) ( , ) / 2xx yyy t y t y t= = −    . Once ( , )zz y t  is solved, the average axial stress 

avg ( )zz t  is obtained by 

   
avg

0

1
( ) ( , )

yL

zz zz

y

t y t dy
L

 =    (5.10) 

 More specifically, to evaluate avg ( )zz t , we first solve for p ( , )zz y t , ( , )s y t  and ( , )zz y t  

by time integration of their respective rate equations. In the present 1D gradient theory, the 

plastic strain rate in Eq. (5.5) is reduced to  

   

1/

p p

0

( , )
( , )

( , )

m

zz
zz

y t
y t

s y t

 
=  

 


   (5.11) 

The accumulated equivalent plastic strain p ( , )y t  is given by 

p p p

0
( , ) ( , ) ( , )

t

zz zzy t y t y t dt = =    . The scale measure of the plastic strain gradient   in 
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Eq. (8) is reduced to p ( , ) /y t y=    . It follows that the hardening rate in Eq. (5.7) 

becomes 

   

( ) ( )1 2

p

0

p p

1 2

/
( , ) 1

1 / 1 /
n n

yh
h y t

  
 = +
 + +
 

 

   
 (5.12) 

As discussed earlier, with an appropriate choice of material parameters, this hardening rate 

relation represents the two-stage hardening behavior of GNT Cu. That is, a high hardening 

rate on the order of 
p

0 /h y    predominates when 
p  is less than 

2 , while a low high 

hardening rate on the order of 
0h  predominates when 

p  is greater than 
2 . Once p ( , )zz y t  

and ( , )h y t  are known, the hardening rate ( , )s y t  is determined by p( , ) ( , ) ( , )zzs y t h y t y t=  . 

Time integration of ( , )s y t  yields 
0

( , ) ( , )
t

s y t s y t dt =   . Suppose the x-y cross section in 

Figure 5.2a moves at a constant applied strain rate a

zz . The elastic strain rate along the z-

axis is  

   e a p( , ) ( , )zz zz zzy t y t= −    (5.13) 

and the elastic strain rate in the lateral direction is
e e e

xx yy zzv= = −    . The axial stress rate is 

   
e( , ) ( , )zz zzy t E y t=    (5.14) 

Time integration of ( , )zz y t   yields 
0

( , ) ( , )
t

zz zzy t y t dt =      . Finally, the average axial 

stress avg ( )zz t  is obtained using Eq. (5.10). 
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5.4.3  Results   

 We numerically implemented the 1D gradient theory in section 5.4.2 to simulate the 

tensile response of GNT-1 to GNT-4 models. Suppose the x-y cross section of a GNT model 

moves at a constant applied strain rate a

zz  of 3 11 10 s− −  . We obtained the average axial 

stress avg ( )zz t  versus applied tensile strain, a a( )zz zzt t=  , by explicit time integration of rate 

equations in section 5.4.2. The integration time step was taken as 31 10 s− . Eighty equally 

spaced integration points along the y-axis were used. The plastic strain gradient at each 

integration point was calculated by the central difference method. It should be emphasized 

that special care needs to be taken when calculating plastic strain gradients at both the free 

surface and at the end point of each half period. This is because, outside the free surface, 

the plastic strain does not exist; and at the end point of each half period, the plastic strain 

gradient flips sign when calculated from either side of the end point. We found that the 

forward or backward difference method can give a stable, physically-sound numerical 

solution. In other words, the plastic strain gradient at the material side of a free surface 

dictates local extra hardening; and the plastic strain gradient at one side of the end point of 

each half period controls local extra hardening. In contrast, the central difference method 

gives a zero-plastic strain gradient at the end point, resulting in an unable, oscillating 

solution around the end point. We further found that a similar treatment of plastic strain 

gradient is needed for the nonlinear wave profile of initial yield strength, as to be discussed 

in section 7. The material parameters used in numerical simulations are listed in Table 1. 

They were determined by fitting the experimentally measured stress-strain curves of GNT-

1 to GNT-4 samples. Because of the small strain rate sensitivity m and low applied strain 

rate a

zz  used, our numerical results represent the rate-independent responses under quasi-
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static loading conditions. As such, the simulated stresses and strains are given as functions 

of applied tensile strain a

zz  without explicit time dependence. 

 

Table 5.1 Parameters used in both 1D and 3D gradient plasticity simulations. 

( )GPa E    m  
0  ( )0 MPa h  

124 0.3 0.001 0.001 2000 

1  
1n  

2  
2n  ( )m  

0.015 0.6 0.0001 2.0 1.65  

 

 Figure 5.3a shows the numerical results of average tensile (engineering) stress avg

zz  

versus applied tensile (engineering) strain a

zz  for GNT-1 to GNT-4 models, which 

reasonably agree with the corresponding experimental results. Figure 3b shows the 

numerical results of the strain hardening rate avg ad / dzz zz   versus applied true strain for 

GNT-1 to GNT-4 models, which also reasonably agree with the corresponding 

experimental results. The experimental and simulated hardening rates clearly show the 

two-stage hardening behavior in GNT Cu, as discussed earlier in section 5.3.  For each 

GNT model, the sample-average yield strength is defined as the average tensile stress avg

zz  

at a

zz = 1% and thus denoted as 
1% . In Figure 5.3c, the predicted 

1%  for GNT-1 to GNT-

4 models (blue circles) are plotted as a function of hardness gradient g  and they 

reasonably agree with the corresponding experimental results (red squares). It is seen that 

the predicted 
1%  for GNT-1 has a relatively large deviation from the corresponding 
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experimental data point. This difference is mainly caused by a constant strength gradient 

used in the GNT-1 model, while several hardness plateaus are present in the experimental 

GNT-1 sample (see Figure 5.1b). These plateaus arise due to non-gradient variations of 

nanotwin size [9]. It is noted that the yield strength gradients 
sg  were prescribed for GNT-

1 to GNT-4 models, while the hardiness gradients g  were measured for GNT-1 to GNT-4 

samples in experiments. To compare the experimental and simulation results, we adopted 

the following scheme to convert 
sg  to g . That is, for GNT-1 to GNT-4 models, we used 

the experimental data of wavelength  , maximum yield strength 
0,maxs  and minimum 

yield strength 
0,mins ; the latter two were measured from the nanotwinned samples without 

structural gradient [9]. As such, these parameters fix the respective 
sg  for GNT-1 to GNT-

4 models. For example, the strength gradient for GNT-1 is a constant of 

GNT-1

s 0.56 GPa / mmg =  . Since the tensile yield strength is approximately three times the 

corresponding indentation hardness [89], we assumed 3 sg g  and thus obtained 

GNT-1 1.68 GPa / mmg =  . As such, the simulation results of 
1%  versus 

sg  can be 

converted to 
1%  versus g , so as to compare with the corresponding experimental results.  
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Figure 5.3 Comparison of experimental measurements [9] and simulation results of 

uniaxial tension from the 1D gradient theory of plasticity. (a) Tensile engineering stress 
avg

zz  versus engineering strain a

zz  for GNT-1 to GNT-4 from experiments (solid lines) and 

simulations (solid lines with symbols). (c) Strain hardening rate avg ad / dzz zz   versus true 

strain for GNT-1 to GNT-4 from experiments (solid lines) and simulations (solid lines with 

symbols).  (c) Sample-average yield strength 
1% versus hardness gradient g  for GNT-1 to 

GNT-4 from experiments (red squares) and simulations (blue dots). Also plotted is the 

predicted average yield strength 
1%  versus hardness gradient (blue curve) from additional 

simulations of 25 GNT models with increasing hardness gradient from 0 to 12 GPa/mm 

(equal increment). 

  

 In addition, we estimated the sample-average yield strength at zero hardness gradient, 

1%, 0g=  , from a rule-of-mixture average of yield strengths measured from four 

nanotwinned samples without structural gradient, but with different uniform twin 

a b

c
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thicknesses [9]. Then we calculated the extra strength of the GNT-1 model as  

1% 1% 1%, 0g= = −   . The extra strengths 
1%  for GNT-2 to GNT-4 models were 

calculated by the same procedure. To further characterize the non-linear functional 

dependence of 
1%  on g , we conducted additional simulations for 25 GNT models with 

increasing g  from 0 to 12 GPa/mm by equal increment. The corresponding results of  
1%

versus g  are plotted as the blue curve in Figure 5.3b. By least squares regression analysis 

of 
1% versus g data points for these 25 GNT models, we found that the simulated extra 

strength 
1%  closely follows  

   1% g =    (5.15) 

where the coefficient   was fitted as 41.7 MPa μm . This functional relationship 

between the extra strength and hardness gradient is reasonably supported by the available 

experimental data (red squares) and warrants further validation by more GNT Cu samples 

with different structure gradients in the future. As to be discussed later, this relation 

between 
1%  and g  originates from the hardening effect of the plastic strain gradient in 

GNT Cu.  

 Our detailed analysis of the numerical results for GNT-1 reveals several salient features 

in plastically deformed gradient structures, including progressive yielding, gradient 

distributions of plastic strain and extra plastic flow resistance. More specifically, Figure 4a 

shows the distributions of plastic flow resistance ˆ( )s y  along normalized ˆ ( / )yy y L=  at 

different applied strains a

zz . The initial linear profile of ˆ( )s y  at a 0zz =  corresponds to Eq. 
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(5.9), with the maximum and minimum yield strength of 446 MPa and 223 MPa, 

respectively, giving a constant strength gradient 0.56 GPa / mmsg =  . As a

zz  increases to 

0.25%, the soft region at large ŷ  becomes plastically yielded, while the hard region at 

small ŷ  remains elastic. Due to the hardening effects of both plastic strain and plastic 

strain gradient, ˆ( )s y  increases in the plastic region and exhibits a nonlinear profile 

represented by a black curved segment. In contrast, ˆ( )s y  remains unchanged in the elastic 

region and maintains a linear profile represented by a black straight segment. The location 

where the black curved and straight segments meet is the boundary between the elastic and 

plastic regions.  

 Figure 5.4b shows the distribution of plastic strain p ˆ( )zz y  (the black curve) when 

a 0.25%zz = . The plastic region with nonzero p ˆ( )zz y  can be readily identified. A gradient 

distribution of plastic strain develops within the plastic region, such that p ˆ( )zz y  has the 

largest value at ˆ 1y =  and decreases to zero at the elastic-plastic boundary. It is interesting 

to observe that the plastic strain gradient pˆ( ) /zzy y=     is close to a constant. To 

understand this result, we note that during the early stage of progressive yielding, the stress 

ˆ( )zz y  and thus ˆ( )s y  at a 0.25%zz =  is close to ˆ( , 0)s y t = . Based on Eq. (5.13), a 

constant plastic strain gradient in the plastic region can be estimated as    

   

a

s
( , 0) /

ˆ( )
zz s y t E g

y
y E




  − =  =


 (5.16) 



 

 104 

Equation (16) indicates that the plastic strain gradient ˆ( )y  is dictated by the built-in 

strength gradient 
sg . But the calculated ˆ( )y  from the black curve in Figure 5.4b is only 

about 1/3 of 
s /g E . This discrepancy is attributed to the nonlinear hardening responses at 

different ŷ  during the process of progressive yielding through the sample cross section.     

 

Figure 5.4 Simulation results of the GNT-1 model at different applied tensile strains a

zz  

from the 1D gradient theory of plasticity, showing the distributions of (a) plastic flow 

resistance ˆ( )s y , (b) plastic strain p ˆ( )zz y , (c) extra flow resistance ˆ( )s y , and (d) axial stress 

ˆ( )zz y .  

  

a b

c d
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 Figure 5.4c shows the extra plastic flow resistance ˆ( )s y  defined as the difference of 

ˆ( )s y  with and without the hardening effect of plastic strain gradient, the latter of which is 

evaluated by setting 0=  in Eq. (5.12). Compared to the initial ˆ( )s y  at a 0zz = , ˆ( )s y  is 

substantial, reaching a maximum of about 40 MPa at a 0.25%zz = . In addition, Figure 5.4d 

shows the distribution of axial stress ˆ( )zz y  at a 0.25%zz = . In the elastic region, ˆ( )zz y  is 

constant, reflecting a uniform distribution of tensile elastic strain e ˆ( )zz y  equal to applied 

tensile strain a

zz . In the plastic region, the non-linear profile of ˆ( )zz y  closely matches that 

of ˆ( )s y ; ˆ( )zz y  decreases from the elastic-plastic boundary to ˆ 1y = , due to the increased 

plastic strain and decreased elastic strain with increasing ŷ .   

 To reveal the effects of increasing load, Figure 5.4a shows that as a

zz  increases to 

0.35%, ˆ( )s y  further increases in the plastic region and continues to exhibit a nonlinear 

profile as a red curved segment; ˆ( )s y  remains unchanged in the elastic region and thus 

maintains a linear profile as a red straight segment. Moreover, the plastic region expands, 

while the elastic region shrinks, such that the elastic-plastic boundary moves to a smaller 

ŷ . This progressive yielding response is also evident in Figure 5.4b, showing an increased 

plastic region with a concomitant increase of p ˆ( )zz y . As a result, the region with the 

gradient distribution of plastic strain expands. The plastic strain gradient pˆ( ) /zzy y=     

becomes close to /sg E  as estimated by Eq. (16). Figure 5.4c shows ˆ( )s y  at a 0.35%zz =

. Compared to ˆ( )s y  at a 0.25%zz = , the increase of ˆ( )s y  is primarily caused by the extra 

hardening effect due to the plastic strain gradient. In addition, Figure 5.4d shows that in 
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the shrinking elastic region, the constant ˆ( )zz y  is elevated due to an increase of elastic 

strain; in the expanding plastic region, the non-linear distribution of ˆ( )zz y  follows that of 

ˆ( )s y  at a 0.35%zz = .  

 When a

zz  reaches 0.45%, the progressive yielding process has completed, such that 

the entire cross section becomes plastically yielded. Figure 5.4a shows that similar to ˆ( )s y  

at a 0zz = , the distribution of ˆ( )s y  at a 0.45%zz =  becomes almost linear again. This 

arises from the saturation of the extra hardening effect due to the plastic strain gradient, as 

to be further discussed next.  Figure 4b confirms that the plastic region occupies the entire 

cross section at a 0.45%zz = ; the plastic strain gradient ˆ( )y  is almost identical to /sg E  

as estimated by Eq. (5.16). Figure 5.4c shows ˆ( )s y  that varies weakly between 55-65 

MPa. This ˆ( )s y  represents the limit of the extra hardening effect due to the plastic strain 

gradient in GNT-1. To understand this limit, we note that Eq. (5.7) and accordingly Eq. 

(5.12) represent a two-stage hardening behavior. Namely, the hardening rate is dominated 

by the plastic strain gradient when 
p  is less than 

2  (= 0.0001) and decays quickly as 
p  

increases above 
2 , thereby giving rise to the limit of ˆ( )s y  due to plastic strain gradient. 

When 
p  increases above 

2  at the hardest region ( ˆ 0y = ), ˆ( )s y  becomes saturated in the 

entire cross section, resulting  in the saturation of the overall extra strength 
1%  from the 

plastic strain gradient as a

zz  approaches about 0.5% and beyond. Hence, the extra strength 

1%  as defined earlier provides an effective measure of the sample-level extra strength. In 

addition, during progressive yielding, the limit of ˆ( )s y  at different ŷ  is attained at 
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different a

zz , but the limit value of ˆ( )s y  depends weakly on ŷ , resulting in a linear 

profile of saturated ˆ( )s y . Figure 5.4d shows the nearly linear distribution of ˆ( )zz y  at 

a 0.45%zz = , which follows the corresponding ˆ( )s y .  

Figure 5.4a also shows the representative distribution of ˆ( )s y  at a high load of 

a 0.7%zz = . The overall linear profile (the green curve) is maintained with slight 

nonlinearity near ˆ 0y = . As a

zz  increases from 0.45% to 0.7%, the weak increase of ˆ( )s y  

is primarily caused by the hardening effect of plastic strain instead of plastic strain gradient. 

This result represents the saturated distribution of ˆ( )s y  that prevails under large tensile 

strains, e.g., in the range of 0.5% ~ 10% covered by the stress-strain curve in Figure 2a. In 

addition, the distributions of p ˆ( )zz y  and ˆ( )zz y  are very close to the corresponding 

distributions at a 0.45%zz =  with slight increase, while ˆ( )s y  remains unchanged. Similar 

to the case of a 0.45%zz = , the sample average of ˆ( )s y  at a 0.7%zz =  also approaches 

the extra strength 
1% . 

  For GNT-2 to GNT-4 models, the corresponding numerical results show that all the 

half-period profiles of plastic flow resistance ˆ( )s y , tensile plastic strain p ˆ( )zz y , extra flow 

resistance ˆ( )s y  and tensile stress ˆ( )zz y  show qualitatively similar trends as GNT-1. 

However, due to the increasing strength gradient, the plastic strain gradient ˆ( )y  and 

extra flow resistance ˆ( )s y  become increasingly stronger from GNT-2 to GNT-4, leading 

to the increasing sample-level yield strength 
1%  and thus increasing sample-level extra 

strength 
1% .  
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5.5 Gradient Plasticity Finite Element (GPFE) Simulations  

5.5.1 Method 

 To gain a complete understanding of the tensile responses of GNT-1 to GNT-4, we 

numerically implemented the 3D gradient plasticity theory in ABAQUS/Explicit and 

performed finite element simulations for 3D models of GNT-1 to GNT-4. We chose the 

classical rate-independent plasticity model with the Mises isotropic yield surface and 

associated plastic flow rule. Explicit time integration was used to simplify numerical 

calculations of plastic strain gradients and associated field variables. That is, the hardening 

rate relation of Eq. (5.12) was implemented by writing user subroutines VUSDFLD and 

VUHARD [39]. At the end of each time increment, VUSDFLD was used to calculate the 

gradient of equivalent plastic strain within each element with the finite-difference method; 

VUHARD was used to calculate the hardening response due to both plastic strain and 

plastic strain gradient; and then the updated yield strength s  and hardening rate h  were 

passed into ABAQUS/Explicit. The combined use of VUSDFLD and VUHARD provides 

a relatively simple method for 3D calculations of plastic strain gradients, as opposed to 

other VUMAT or UEL-based methods in ABAQUS [83, 84].  The 3D finite element 

models of GNT-1 to GNT-4 were constructed in ABAQUS/CAE [39]. Each GNT model 

has a thin-slice geometry of 400 μm 400 μm 50 μm    (corresponding to the schematic in 

Figure 5.2a) and contains 4096 brick elements with full integration (C3D8). Eight 

integration points in each brick element facilitate the direct finite-difference calculation of 

the plastic strain gradient within each element via VUSDFLD. To simulate uniaxial 

tension, we prescribed the following boundary conditions: the velocity along the z-



 

 109 

direction is 0.4 nm/s on the right side of the x-y surface; the displacement in the z-direction 

is fixed on the opposite side of the x-y surface; other surfaces are traction free. For the finite 

element GNT-1 to GNT-4 models, the initial distributions of yield strength were assigned 

according to the same triangle wave profiles as the corresponding 1D models in section 

5.4. The material parameters listed in Table 5.1 were also used in GPFE simulations. 

5.5.2 Results 

  

Figure 5.5 3D finite element simulation results of the GNT-1 model without accounting for 

the extra hardening effect of the plastic strain gradient. At the applied tensile strain of 
a 0.25%zz = , plotted are the distributions of (a) axial stress ( , )xx x y , (b) lateral shear 

stress ( , )yx x y  and (c) lateral normal stress ( , )xx x y . (d) Equilibrium analysis of the 

non-uniform stresses ( , )yx x y  and ( , )xx x y  acting on a rectangle area in the x-y cross 
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section as marked in (b) and (c); only stress components relevant to the equilibrium in the 

x-direction are plotted as red arrows.  

 

 The GPFE simulation results of GNT-1 to GNT-4, including the overall tensile stress-

strain curves and the axial stress and strain distributions in the cross section, agree closely 

with the corresponding 1D simulation results described in section 5.4.2. Next, we focus on 

the GPFE simulation results of stress components neglected in the 1D gradient theory and 

simulations. 

 Consider GNT-1 as an example. We first present the 3D finite element simulation 

results without considering the extra hardening effect of the plastic strain gradient. These 

results, as shown in Figure 5.5, were obtained by setting 0=  in Eq. (5.7). They serve to 

validate the simplification that we made to derive the 1D gradient theory, namely, stress 

components other than ( , )zz x y  are negligible.  Figure 5.5a shows the contour plot of 

( , )zz x y  in the x-y cross section at a 0.25%zz = . The large red contour corresponds to 

constant tensile stress ( , )zz x y  arising from elastic deformation, while the contour with 

varying colors other than red shows a gradient distribution of tensile stress ( , )zz x y  due 

to progressive yielding. The elastic-plastic boundary is located at the transition layer 

between the red and yellow contours. These results are consistent with those from the 1D 

gradient theory, i.e., the black curve in Figure 5.4a. Figure 5.5b and 5.5c show the contour 

plots of shear stress ( , )yx x y  and normal stress ( , )xx x y   in the transverse direction at 

a 0.25%zz = , respectively. First of all, it is seen that these stress components are much 

smaller than the corresponding axial stresses (Figure 5.5a), thus validating the 1D gradient 
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theory. Moreover, ( , )yx x y  and ( , )xx x y  exhibit non-uniform distributions in both x 

and y directions. These non-axial stresses originate from the gradient structure and 

associated gradient strength in the GNT-1 model. At any moment of a progressive yielding 

process, the axial stress and accordingly axial strain (including both its elastic and plastic 

components) vary along the y-direction, resulting in the varying lateral contraction 
xx  

along the y-direction, irrespective of different Poisson’s effects on the elastic and plastic 

parts of axial strain. Accommodation of the varying 
xx  (i.e., maintaining displacement 

continuity) along the y-direction gives rise to the non-zero shear stress ( , )yx x y . This 

further leads to other non-zero stress components such as ( , )xx x y , so as to maintain the 

stress equilibrium along the x-direction. It is interesting to note that while the axial stress 

zz  only varies along the y-direction, ( , )xx x y  varies along both x and y directions. This 

is because ( , )xx x y  must self-equilibrate within any x-z section, due to the absence of the 

applied load in the x-direction. The same reasoning is applicable to the cause of a non-

uniform distribution of ( , )yx x y  in both x and y directions. As an illustration, Figure 5d 

shows the non-uniform ( , )yx x y  and ( , )xx x y  acting on the sides of a rectangular area 

in the x-y cross section (as marked in Figure 5.5b and 5.5c), and these non-uniform stresses 
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give zero resultant force and satisfy the equilibrium condition in the x-direction.  

 

Figure 5.6 3D finite element simulation results of the GNT-1 model accounting for the 

extra hardening effect of the plastic strain gradient. (a) Comparison of the tensile stress-

strain curves between 1D and 3D simulations. At the applied tensile strain of a 0.25%zz =

, plotted are the distributions of (b) axial stress ( , )xx x y , (c) lateral shear stress ( , )yx x y

, and (d) lateral normal stress ( , )xx x y . 

 Next, we present the GPFE simulation results that account for the extra hardening effect 

of the plastic strain gradient by using the   value in Table 5.1. As shown in Figure 5.6a, 

the predicted tensile stress-strain curves are nearly identical between 1D and 3D 

simulations for GNT-1. Figure 5.6b-d show the contour plots of ( , )zz x y , ( , )yx x y  and 

( , )xx x y  in the x-y cross section of GNT-1 at a 0.25%zz = . Compared to Figure 5.5a, 

Figure 5.6b shows that the extra hardening due to the plastic strain gradient causes an 
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increase of the lowest axial stress ( , )zz x y  by about 50 MPa. However, compared with 

Figure 5.5b-c, Figure 5.6b-d show that the extra hardening does not lead to significant 

changes of ( , )yx x y  and ( , )xx x y . As a result, ( , )yx x y  and ( , )xx x y  are still much 

lower than ( , )zz x y  when the extra hardening effect is accounted for. Hence, the 

combined 3D finite element simulation results in Figs. 5.5 and 5.6 quantitatively 

demonstrate that the axial stress dominates over other stress components in GNT Cu 

undergoing uniaxial tensile deformation. 

5.6 Discussion 

5.6.1 Optimization of Gradient Structure toward Maximum Strength 

 Insights from the above gradient plasticity simulations can be applied to optimize the 

gradient structures and associated gradient strengths in a GNT-D(esign) model toward 

achieving its maximum strength. For the GNT-D(esign) model, we considered a family of 

gradient strength distribution represented by the triangle wave shown in Figure 5.2b. Given 

the initial plastic flow resistance ( , 0)s y t =  of the GNT-D model, its sample-average 

plastic resistance 
avgs  at a 1%zz =  can be expressed as  

   
avgs s s= +   (5.17) 

where s  is the rule-of-mixture average of ( , 0)s y t =  through the cross section and 

becomes 
0,max 0,min( ) / 2s s s= +  for the triangle wave profile of ( , 0)s y t = ; s  is the 

sample-average extra hardening arising from plastic strain gradient. In the current rate-

independent model, 
avgs  corresponds to the sample-average yield strength 

1% . According 
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to Figure 5.3b and Eq. (5.15), s  is approximately represented by 
s ss g g = =  , 

where  
sg  is the gradient of initial plastic flow resistance and given by 

s 0,max 0,min( ) / ( / 2)g s s= −   for  the triangle wave profile of ( , 0)s y t = ; the coefficient 
s  

is given by 
s / 3 72.2 MPa μmsg g= = =    . Thus, Eq. (5.17) becomes  

   0,max 0,min 0,max 0,min

avg s
2 / 2

s s s s
s 



+ −
= +  (5.18) 

 Based on Eq. (5.18), the avgs  of the GNT-D model can be optimized in the parameter 

space of {
0,maxs , 

0,mins ,  }. Generally speaking, certain regions in the parameter space 

may not be accessible due to constraints from material processing; moreover, when certain 

parameters reach their accessible limits, avgs  has to be optimized in a reduced parameter 

space. Three scenarios of optimization can be considered under the aforementioned 

constraints. First, we note that avgs  increases monotonically with increasing 
0,maxs , when 

both 
0,mins and   are fixed. This is because both s  and s  increase with 

0,maxs . For 

nanotwinned Cu, reducing twin spacing can raise 
0,maxs . However, it is difficult to keep 

reducing twin spacing by a specific processing method (e.g., electrodeposition [9]), such 

that avgs  is limited by accessible 
0,maxs . Second, avgs  increases monotonically by reducing 

 , when both 
0,mins and 

0,maxs  are fixed. In this case, as   decreases, s  increases, while 

s  remains unchanged. Similarly, it is difficult to keep reducing   by a specific processing 

method.  
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 The third scenario involves a non-monotonic change of avgs , thus requiring a search of 

the optimal parameter(s). For example. avgs  can be optimized by tuning 
0,mins , when 

0,maxs

and    are fixed. This is because increasing 
0,mins  raises s , but lowers s  due to 

decreasing 
sg . These two opposite effects can be optimized to achieve the maximum avgs

. As a more general example with two tunable parameters, Figure 5.7a shows the contour 

plot of 
1%  (equal to avgs ) for GNT-D in the parameter space of {

0,mins , / 2 }, when 
0,maxs

is fixed at 446 MPa, which is the highest local yield strength in the GNT-4 model. Note 

that we used the model values of 
0,maxs and 

0,mins  instead of the experimental data since the 

statistical variation of the latter can obscure the trend.  It is seen from Figure 5.7a that the 

maximum 
1%  occurs at the smallest / 2  and intermediate 

0,mins , consistent with the 

earlier discussion. From Figure 5.7a, the 
1%  versus 

0,mins curves are extracted for several 

representative / 2 , as shown in Figure 7b. In these curves,  
1%  invariably exceeds 

0,maxs

, which is the strength of the strongest component of the GNT-D model; moreover, the 

non-monotonic change of 
1%  with 

0,mins  becomes more pronounced as / 2  is 100 μm 

or smaller. For / 2 50 μm =  (as in the GNT-4 model), the corresponding peak value of 

1%  is 502 MPa when 
0,min 350 MPas =  . This optimized strength for the GNT-D model 

exceeds 
1% 490 MPa=   for the GNT-4 model with 

0,min 223 MPas =  . This result indicates 

that the strength of the experimental GNT-4 sample [9] would become higher if its 

0,min 223 MPas =  were to move to around 
0,min 350 MPas =  .   
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Figure 5.7 Optimization of the average plastic flow resistance avgs   by tuning 
0,mins and 

, while holding 
0,mins  fixed. (a) Contour plot of 

1%  (equal to avgs ) for GNT-D in the 

parameter space of {
0,mins , / 2 }, when 

0,maxs is fixed at 446 MPa. (b) 
1%  versus 

0,mins

curves extracted from (a) for several representative half periods / 2 . 

5.6.2 Plastic Strain Gradient  

 An important insight from the gradient plasticity simulation results in section 5.4.3 is 

that the plastic strain gradient ˆ( )y  in GNT Cu is dictated by the built-in structure and 

strength gradients, and the plastic strain gradient ˆ( )y  approaches a saturated value of 

about / / 3sg E g E=  throughout the sample cross section once progressive yielding is 

finished. This insight is further confirmed by Figure 5.8, where the blue line corresponds 

to the saturated plastic strain gradient 
1%  obtained from 25 GNT models with increasing 

hardness gradient g  between 0 and 12 GPa/mm by equal increment. Also shown in Figure 

5.8 is the theoretical prediction of  
1% / 3g E=  (black line). A close agreement between 

the numerical result and theoretical prediction indicates that despite the extra hardening 

effect of plastic strain gradient, the saturated plastic strain gradient, 
1% , is still given 

a b
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approximately by / / 3sg E g E= . It follows that we can evaluate the density of 

geometrically necessary dislocations g  in terms of the plastic strain gradient divided by 

the Burgers vector length b [78]. For example, from the simulation result of  
1%  in GNT 

Cu, we can estimate the corresponding 
1% / / (3 )g b g bE= =  . For GNT-4, 

1%  is about 

27 /m (Figure 5.8). When b is taken as 
102 10 m−  , g  is estimated as 11 210 / m . This g  

is much smaller than the measured extra dislocation density  ~
14 210 / m  needed for 

providing the measured extra strength of GNT-4 [9]. This discrepancy implies that the g  

originating from gradient nanotwins must induce a significant number of additional 

dislocations during the tensile plastic deformation of GNT-4. Resolving this discrepancy 

requires a future study of how the geometrically necessary dislocations originating from 

gradient nanotwins impact the generation of the extra dislocations with different characters 

and distributions that can give rise to the extra strengths measured from GNT Cu. 

  

Figure 5.8 Simulation results of saturated plastic strain gradient 
1%  at a 1%zz =  for 25 

GNT models with increasing g  from 0 to 12 GPa/mm (blue curve), as compared with the 
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theoretical prediction from 
1% / 3g E=  (black line). Blue dots correspond to numerical 

simulation results of GNT-1 to GNT-4. 

5.6.3 Nonlinear Strength Distribution  

 We also studied the effect of a non-linear distribution of initial plastic flow resistance 

on the tensile response of GNT Cu. To this end, we revised the GNT-1 and GNT-4 models 

by replacing their triangle wave profiles of ( , 0)s y t =  with sinusoidal wave profiles, while 

keeping the corresponding 
0,maxs , 

0,mins and   unchanged. As a result, the strength gradient 

becomes a nonlinear function of position y  in the sinusoidal wave profile, in contrast to a 

constant magnitude of strength gradient in the triangle wave profile. For example, the initial 

plastic flow resistance of the revised GNT-1 model is represented by the half period of a 

sinusoidal wave  

   
0,max 0,max 0,min( , 0) ( )sins y t s s s y



 
= = − −  

 
 (5.19) 

where the wavelength   is 2 yL .  

 We numerically implemented the 1D gradient theory for the revised GNT-1 to GNT-4 

models, with the same numerical procedure as for the triangle wave profiles of ( , 0)s y t =

. As we mentioned earlier, special attention should be paid to the finite-difference 

calculation of the plastic strain gradient. For a non-linear sinusoidal wave profile, the 

plastic strain gradient is initially zero at the end point of a half period, but becomes non-

zero with progressive yielding. As a result, the plastic strain gradient calculated from either 

side of the end point begins to flip sign as the integration time increases, leading to an 

unable, oscillating solution around the end point. We found that the forward or backward 
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difference method can give a stable, physically-sound numerical solution, similar to the 

cases of triangle wave profiles.   

 

Figure 5.9 Simulation results of the revised GNT-1 model with a nonlinear sinusoidal wave 

profile of initial plastic flow resistance from the 1D gradient theory of plasticity, showing 

the cross-sectional distribution of plastic flow resistance ˆ( )s y  at different applied tensile 

strains a

zz .  

 The numerical results of the revised GNT-1 to GNT-4 models are close to the 

corresponding GNT-1 to GNT-4 models with the triangle wave profiles of ( , 0)s y t = . As 

an example, Figure 5.9 shows the cross-sectional distributions of plastic flow resistance 

ˆ( )s y  at different applied tensile strains a

zz  for the revised GNT-1 model with ( , 0)s y t =  

given by Eq. (5.19). Comparing with the results in Figure 5.4a, the difference in ˆ( )s y  at 

the same a

zz  is small between the linear and nonlinear distributions of ( , 0)s y t = . Overall, 

all the results obtained from the triangle wave profiles of ( , 0)s y t =   are close to those from 

the nonlinear sinusoidal wave profiles with identical 
0,maxs , 

0,maxs and  . 
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5.7 Summary 

 We have developed a 3D gradient theory of plasticity by incorporating the 

strengthening effect of plastic strain gradient into the classical J2 flow theory. Numerical 

simulations based on a simplified 1D gradient theory show the dominant effects of gradient 

plasticity on GNT Cu under uniaxial tension, including progressive yielding, gradient 

distributions of plastic strain and extra flow resistance. We find that the extra strength 

depends on the hardness gradient g  (being three times strength gradient 
sg ) through Eq. 

(5.15), and the saturated plastic strain gradient, 
1% , is given by / / 3sg E g E= , as shown 

in Figure 5.8. Results from 3D gradient plasticity finite element simulations confirm 1D 

numerical results and further reveal the 3D distribution of non-axial stresses despite their 

negligible role in the overall tensile response of GNT Cu. Predictions of the optimal 

gradient structures and associated gradient strength distributions suggest possible routes 

for achieving the maximum strength of gradient nanostructures in GNT Cu.  

 While the present work has established a direct relationship between the built-in 

structure gradient and resultant plastic strain gradient in GNT Cu, future studies are needed 

to elucidate the mechanistic origin of the extra strength arising from plastic strain gradient. 

This requires a combined experimental and modeling effort to address several fundamental 

questions, including how geometrically necessary dislocations originate from built-in 

structure gradients and resulting plastic strain gradients, and how these geometrically 

necessary dislocations impact the generation of extra dislocations with different characters 

and distributions, leading to the extra strength in GNT Cu. In addition, the strengthening 

effect of the plastic strain gradient is characterized by a phenomenological relation of Eq. 
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(5.7) in this work. It remains to be established how the strengthening effect arises from the 

plastic strain gradient through a dislocation density-based model. Broadly, since GNT Cu 

represents a unique class of heterogeneous nanostructures with a high tunability of 

structure gradient, resolving the above issues may open opportunities for tailoring the 

structural heterogeneities in a variety of heterogeneous nanostructured materials [3] to 

obtain outstanding mechanical properties.   
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CHAPTER 6. MECHANISTICALLY-BASED THEORY OF 

STRAIN GRADIENT PLASTICITY 

6.1 Introduction 

The emergence of heterogeneous nanostructured metals offers great potential for 

achieving extraordinary mechanical properties such as ultra-high strength, ductility, 

toughness, and their combinations [8, 76, 86, 90-93]. The strengthening effects stemming 

from various types of heterogeneous nanostructures have been recently studied from 

different perspectives, including internal back and forward stresses [64, 94-98], 

Bauschinger effect [99, 100], plastic strain gradient [101-104], geometrically necessary 

dislocations (GNDs) [105-108], and among others [8, 92, 109, 110]. However, there is a 

critical lack of a general framework and associated exemplary study that unify these 

different perspectives. Such unification is essential to vastly accelerating efforts for 

understanding the origin of strengthening induced by heterogeneous nanostructures and 

therefore enabling more advanced development of heterogeneous nanostructured metals.  

Recently, gradient nanotwinned (GNT) Cu has been fabricated by stacking four 

homogeneous nanotwinned (HNT) components with increasing twin thickness [91, 102]. 

By tuning the processing condition, GNT Cu exhibits a periodic variation of twin thickness 

through sample thickness. As a result, its overall yield strength surpasses the rule-of-

mixture average of yield strengths of four HNT components, giving a substantial extra 

strength of GNT Cu. An increase of twin thickness gradient (hereafter referred to as 

structural gradient) can result in a marked increase of extra strength. Given the excellent 
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control of structural gradient and the resultant tunability of extra strength, GNT Cu can 

serve as a prototypical heterogeneous nanostructured material to unravel the origin of extra 

strengthening in heterogeneous nanostructures.  

Figure 6.1 presents a general framework for understanding the mechanics of 

heterogeneous nanostructures with GNT Cu as an example. Here it is important to take into 

consideration the size of a selected representative volume element (RVE) relative to the 

characteristic length scales of GNT Cu, which feature the wavelength of periodically 

varying twin thickness (on the order of hundreds of micrometers) as well as nanotwin 

thickness (on the order of tens of nanometers). As shown in the red panel of Figure 6.1, 

when the entire sample of GNT Cu is taken as a “large” RVE, the strengthening effect of 

structural gradient inside the RVE can be characterized by partitioning the overall stress 

into back and effective stresses based on the plasticity model of kinematic hardening[5-7]. 

The back stress reflects the strengthening contribution from the directional, long-range 

internal stress arising from plastically inhomogeneous deformation in gradient structures, 

while the effective stress represents the strengthening contribution from the non-

directional, short-range resistance to gliding dislocations from lattice friction and local 

pinning obstacles [64]. In contrast, the blue panel of Figure 6.1 shows an alternative 

approach of choosing a “small” RVE that contains twin lamellae with a uniform thickness. 

Suppose a “small” RVE represents a “soft” region containing uniformly-thick twin 

lamellae, while an adjacent “small” RVE represents a “hard” region containing uniformly-

thin twin lamellae. A structural gradient across the two RVEs results in a gradient of plastic 

strain, whose strengthening effect can be characterized by the constitutive model of strain 

gradient plasticity [102]. Note that such “small” RVEs with uniform twin thickness also 
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contain structural heterogeneity due to the presence of twin boundaries (TBs) and twin 

lamellae with different orientations. The strengthening effect of such kind of structural 

heterogeneity at the “small” RVE level can be characterized by the corresponding back and 

effective stresses [111]. Therefore, the strengthening effects of nanotwin gradients and 

uniform nanotwins are separated in the “small-RVE” approach, while these two 

strengthening effects are combined in the “large-RVE” approach.    

In this Chapter, we first measured the back stress and effective stress of four 

freestanding HNT Cu samples with different average twin thicknesses, and each HNT Cu 

sample is treated as a “small” RVE. Then we measured the sample-level back stress and 

effective stress of four GNT Cu samples with different structural gradients, and each GNT 

Cu sample is considered as a “large” RVE. The results from the two RVE approaches allow 

us to identify the extra back and effective stresses arising from structural gradients, thereby 

providing a deeper mechanistic understanding of the extra strengthening effect of 

heterogeneous nanostructures.  

 

Figure 6.1 A general framework for understanding the mechanics of heterogeneous 

nanostructures with GNT Cu as an example in terms of representative volume elements 

(RVEs) at different scales.  

 



 

 125 

6.2 Experiment 

Specifically, four HNT Cu samples, referred to as HNT-Ⓐ, HNT-Ⓑ, HNT-Ⓒ and 

HNT-Ⓓ, respectively, were prepared by direct-current electrodeposition. From HNT-Ⓐ to 

HNT-Ⓓ, the average twin thickness increases from 28, 37, 50 to 70 nm, respectively. These 

HNT Cu samples consist of columnar-shaped grains along their growth direction. Inside 

these grains, most of nanotwins are preferentially oriented with TBs perpendicular to the 

growth direction, as shown by the schematic illustration, scanning electron microscope 

(SEM) and transmission electron microscope (TEM) images for HNT-Ⓐ as an example 

(Figure 2a-c), respectively.  

 

Figure 6.2 Microstructure, back stress and effective stress of HNT Cu samples. a-c, 

Schematic, SEM image and TEM image of HNT-Ⓐ sample. The white arrow in b indicates 

the growth direction of HNT Cu. d, Loading-unloading tensile true stress-strain curves of 

four HNT Cu samples. e, Definition of back stress σb and effective stress σeff based on 

Dickson’s method in a magnified unloading-reloading branch of the stress-strain curve of 

HNT-Ⓐ sample. σf, flow stress; σry, reverse yield stress; σ*, stress interval past the peak 
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stress; δ, offset stain; E, elastic modulus. f, Back stress σb against tensile strain for four 

HNT Cu samples. Insert shows that the back stress of HNT Cu samples at ε = 2%, denoted 

as 
b, 2% , follows a linear relationship with the reciprocal of twin thickness. g, Same as f 

except for effective stress σeff.  

 

Figure 6.2d shows tensile true stress-strain curves with multiple unloading-reloading 

branches for four HNT Cu samples. The tensile stress   exhibits rapid increase at small 

strains and then switches to slow increase beyond the tensile strain ε of about 2%. A similar 

two-stage hardening response is also measured for GNT Cu, as to be shown. Hence, the 

tensile stress   at ε = 2%, denoted as
2% , is taken as an approximate measure of yield 

strength for both HNT and GNT Cu. From HNT-Ⓐ to HNT-Ⓓ, 
2%  decreases from 448, 

392, 320 to 228 MPa, showing a strong dependence on twin thickness in HNT Cu.  

Figure 6.2e shows a representative unloading-reloading branch of HNT-Ⓐ, where the 

Dickson’s method [112] is applied to partition the tensile stress into its components of back 

stress 
b  and effective stress 

eff . Once unloading begins at ε = 2%, the unloading curve 

deviates markedly from the reference curve of linear elastic unloading. Notably, reverse 

plastic yielding occurs while stress is still tensile, indicative of a strong Bauschinger effect 

associated with a high back stress and low effective stress.  

From multiple unloading-reloading branches (Figure 6.2d), 
b  and 

eff  were 

determined as a function of ε for four types of HNT Cu (Figs. 6.2f and 6.2g). From HNT-

Ⓓ to HNT-Ⓐ, 
b  increases markedly with decreasing twin thickness  . For example, 

b  

at ε = 2%, denoted as 
b, 2% , reaches 160 MPa in the softest HNT-Ⓓ with the largest   of 
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70 nm, as compared with 346 MPa in the strongest HNT-Ⓐ with the smallest   of 28 nm. 

The inset of Figure 6.2f shows that 
b, 2%  follows approximately a linear relationship with 

1/  . 
eff  exhibits a weak dependence on   at low ε and approaches a saturated value 

close to 100 MPa, as shown in Figure 6.2g. There is no significant increase in 
eff  with 

increasing ε, except for HNT-Ⓓ whose 
eff  increases from ~60 MPa at small ε to the 

saturated value close to 100 MPa at ε ~ 8%. Altogether, the above results indicate that the 

back stress of HNT Cu at ε = 2% is much higher than the corresponding effective stress 

and accounts for about 70% of the overall tensile stress. The twin thickness dependence of 

the tensile stress is caused almost entirely by that of the back stress, while the effective 

stress depends weakly on twin thickness.  

Taking HNT-Ⓐ, HNT-Ⓑ, HNT-Ⓒ and HNT-Ⓓ as building blocks, four types of GNT 

Cu were fabricated with the stacking sequence of ⒶⒷⒸⒹ, ⒶⒷⒸⒹⒹⒸⒷⒶ, 

2×ⒶⒷⒸⒹⒹⒸⒷⒶ and 4×ⒶⒷⒸⒹⒹⒸⒷⒶ, referred to as GNT-1, GNT-2, GNT-3 

and GNT-4, respectively. Taking GNT-3 as an example, we show the schematic illustration 

(Figure 6.3a) and SEM image (Figure 6.3b) of its microstructure with gradient twin 

thickness. A series of micro-hardness measurements were conducted through sample 

thickness. The measured hardness gradient, denoted as s, increases from 1.75 to 11.6 

GPa/mm for GNT-1 to GNT-4. For clarity of discussion, hereafter these hardness gradient 

values will be used to represent both structural and strength gradients in GNT Cu.  

Figure 6.3c shows tensile true stress-strain curves of four types of GNT Cu. From GNT-

1 to GNT-4, the sample-level tensile stress at the tensile strain of 2%, denoted as 
2% , 
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increases from 358, 406, 420 to 460 MPa, showing a strong dependence on structural 

gradient. Note that the sample-level stress and strain in GNT Cu are different from their 

local counterparts in sample’s cross section. Hence, we add an overbar to each sample-

level quantity for GNT Cu. It should be noted that each GNT Cu has the same volume 

fraction (~25%) of four homogeneous components of HNT-Ⓐ to HNT-Ⓓ. Based on the 

2%  of these four HNT components, a simple rule-of-mixture estimate of the 
2%  of GNT 

Cu gives 348 MPa. However, the measured 
2%  of all four GNT Cu samples surpasses the 

rule-of-mixture value, giving the respective extra strength of 10, 58, 70, 112 MPa from 

GNT-1 to GNT-4. These results clearly demonstrate the extra strengthening effects of 

structural gradients in GNT Cu.  

 

Figure 6.3 Microstructure, back stress and effective stress of GNT Cu samples. a, 

Schematic of microstructure in GNT-3. b, Corresponding SEM image. c, Loading-

unloading tensile true stress-strain curves. d, Back stress 
b  against true strain. e, Same as 

d except for effective stress 
eff . f, Back stress at ε = 2%, denoted as b, 2%  (y axis on the 

left), against structural gradient s induced back stress, along with 
GNT

b, 2%  (y axis on the 
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right)σ̅b
GNT. The open symbol and the horizontal dashed line represent the HNT-induced 

back stress 
HNT

b, 2% , which is estimated by the rule of mixture in terms of back stresses of 

four HNT Cu samples. 
GNT

b, 2%  σ̅b
GNTis the difference between b, 2%  and 

HNT

b, 2% . The error 

bars are evaluated from 3~5 measured values around ε = 2%. g, Same as f except for 

effective stress at ε = 2%, denoted as eff, 2% .  

6.3 Mechanistic-Based Strain Gradient Plasticity 

To determine dislocation mechanisms responsible for the extra back stress, we 

conducted TEM analysis of deformed HNT and GNT samples, and identified an unusual 

type of dislocation structure, called bundles of concentrated dislocations (BCDs), that only 

forms in GNT Cu, but not in HNT Cu. These BCDs facilitate the accumulation of GNDs 

for accommodating the gradients of plastic strain in GNT Cu that give rise to the extra 

strengthening effect. For example, Figure 4a shows the BCDs inside columnar grains in 

GNT-4 deformed to ε = 1%. These BCDs appear as long contrast strips (indicated by red 

arrows) aligned with the direction of twin thickness gradient. The BCD width along the 

horizontal direction increases from component Ⓐ to Ⓓ, ranging from 0.3 to 1.5 μm. The 

number fraction of grains with BCDs increases from 15% to 45%, indicating the variation 

of BCD morphology with gradient twin structure.  
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Figure 6.4 Deformation mechanisms in GNT Cu. a, Bundles of concentrated dislocations 

(BCDs) (indicated by the red arrows) in the SEM image of a GNT-4 sample at tensile strain 

of 1%. b, TEM image of a BCD in component Ⓓ of GNT-4, with misorientation mapping 

along a twin lamella as indicated by a solid line. c, Schematic illustration of dislocation 

structures in twin (T) and matrix (M) developed under applied stress , based on TEM 

results. Dislocations of Mode I, II and III are represented by green, brown and orange lines, 

respectively, and the corresponding Burgers vectors are shown on the Thompson 

tetrahedron. d, Incompatible deformation between twin (T) and matrix (M) in HNT 

structure, and e, resulting accumulation of geometrically necessary dislocations (denoted 

as GND_HNT). f, Incompatible deformation induced by sample-level plastic strain 

gradient stemming from structural gradient in GNT structure, and e, resulting accumulation 

of geometrically necessary dislocations (denoted as GND_GNT). 

To reveal the effect of BCDs on GNDs, Figure 6.4b shows the magnified TEM image 

of a BCD in the component Ⓓ of GNT-4. Across this BCD, the local contrast changes 

along the direction parallel to TBs. The orientation mapping technique [113] in TEM was 

used to characterize the variation of local contrast in terms of lattice misorientation  , 

which reaches ~8° across the BCD. It follows that the local density of GNDs associated 

with this BCD 
BCD

G  was estimated as 3.6 × 1014 m-2, and the corresponding average 
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density of GNDs inside grain 
GNT

G  is 6.5 × 1011 m-2, which is consistent with an estimate 

from the gradient of plastic strain in GNT-4. Hence, these GNDs associated with BCDs 

serve to accommodate gradients of plastic strain generated from structural gradients in 

GNT Cu. In addition, the dislocation types inside BCDs were analyzed using a two-beam 

diffraction technique in TEM [114, 115]. As illustrated in Figure 6.4c, we identified glide 

dislocation lines traversing several twin lamellae as Mode II dislocations (with slip plane 

inclined to TBs and Burgers vector parallel to TBs) [114-116]; we also observed BCDs 

consisting of tangled dislocation lines that can be Mode II or Mode I (with both the slip 

plane and Burgers vector inclined to TBs); many dislocation segments near TBs were also 

observed, and they are either Mode II or Mode III (with both slip plane and Burgers vector 

parallel to TBs).  

Based on the above results, we rationalize the strengthening effects in GNT Cu from 

various types of dislocation indicated in Figure 6.4c. First, the effective stress is likely 

controlled by the glide dislocations of Mode II traversing several twin lamellae. As 

discussed earlier, we measured the effective stresses that are almost independent of twin 

thickness and approach similar saturated values around 100 MPa in both HNT and GNT 

Cu. From Taylor’s hardening law [117, 118], the characteristic length scale associated with 

the effective stress of about 100 MPa can be estimated as ~100 nm, which is two and five 

times the twin thickness of NT-Ⓓ and NT-Ⓐ, respectively. Hence, the Mode II dislocation 

should have a characteristic length of ~100 nm between pinning points and thus consist of 

several connected segments, which traverse nanotwin lamellae and move concertedly as a 

continuous line on the corrugated {111} glide plane in the matrix and nanotwins [119, 

120].  



 

 132 

6.3.1 Intergranular Internal Stresses from Gradient Structures 

Next, we consider dislocations underlying the back stress associated with HNT Cu that 

exhibits a strong dependence on twin thickness. This type of back stress can stem from the 

directional, long-range internal stress of GNDs accumulated at TBs. During plastic 

deformation, glide dislocations on geometrically different slip systems in the matrix and 

nanotwins produce deformation incompatibility at TBs [105, 106]. Such incompatibility 

would lead to overlap or opening if the matrix and nanotwins were allowed to deform 

independently (Figure 6.4d). To accommodate the incompatibility, GNDs of Mode I should 

be accumulated at TBs (Figure 6.4e). Their density HNT

G  will scale with ( )/p b  , 

where p  is the local incompatible strain at a TB. Hence, the back stress associated with 

HNT

G  in HNT components will increase with decreasing twin thickness.  

6.3.2 Intragranular Internal Stresses from Nanotwins 

Finally, we consider dislocations providing the extra back stress that increases with 

structural gradient. In GNT Cu, BCDs belong to a new type dislocation structure consisting 

of tangled dislocation lines traversing several twin lamellae (Figure 6.4c). These BCDs can 

consist of sessile dislocation lines of Mode I and II. More importantly, these dislocations 

can act as forest obstacles [121-123] to facilitate the accumulation of Mode III dislocations 

at BCDs, which serve as GNDs to produce the misorientation across the BCD, as illustrated 

in Figs. 6.4f and 6.4g. These GNDs produce extra back stresses through long-range internal 

stresses to hinder dislocation glide in between BCDs [97, 124, 125]. Moreover, the 
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measured effective density of these GNDs inside grains, denoted as 
GNT

G , matches the 

gradient of plastic strain arising from the structural gradient in GNT Cu.  

6.4 Strain Gradient Plasticity Modeling of GNT Cu 

To investigate the origin of strengthening effects in GNT Cu, we developed a three-

dimensional strain gradient plasticity model that accounts for the back and effective 

stresses arising from structural gradient. In the following, we present the one-dimensional 

formulation of this model used in this work.   

The strain gradient plasticity model is formulated based on the classical J2 rate-

dependent plasticity theory [102]. The total tensile strain rate  is decomposed into elastic 

and plastic parts, 

 e p  = +  (6.1) 

In Eq. (6.1), the elastic strain rate e  is related to the tensile stress rate   by Hooke’s law 

 e / E =  (6.2) 

where E is Young’s modulus. The plastic strain rate p  is given by a viscoplastic relation  

 ( )
bp p

0 bsgn

m

S

 
   

 −
 = −
 
 

 (6.3) 
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where p

0  is the reference plastic strain rate, 
b  is the back stress, and S  is the isotropic 

plastic flow resistance dictating the effective stress. We assume that S  arises from the 

Taylor hardening [64], as given by  

 
SS M b =   (6.4) 

where M is the Taylor factor,   is the Taylor constant,   is the shear modulus of Cu, b is 

the Burgers vector length, and 
S  is the density of statistically stored dislocations (SSDs). 

According to the Kocks-Mecking model [118], the rate of 
S  is expressed as 

 ( )GNT p

S 1 S 2 S 3 Gk k k    = − +  (6.5) 

Within the parenthesis on the right hand side of Eq. (6.5), the first two terms represent the 

effect of multiplication and annihilation of SSD, respectively, while the third term 

represents the effect of GND arising from GNT on SSD; 
1k , 

2k  and 
3k  are the constant 

coefficient associated with these three terms, respectively.  

The total back stress is decomposed as 

 HNT GNT

b b b  = +  (6.6) 

where HNT

b  is the HNT-induced back stress and GNT

b  is the extra back stress arising from 

structural gradient. Note that HNT

b  originates from incompatible plastic deformation 

between the matrix and nanotwins, which produces GNDs on twin boundaries. The rate of 

HNT

b  is expressed as [126]  
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 ( )HNT HNT HNT HNT p

b sat bc   = −  (6.7) 

where HNT

sat  is the saturated value of the HNT-induced back stress and HNTc is the constant 

coefficient. According to our experimental measurements, HNT

sat  is proportional to the 

inverse of twin thickness  . Hence, HNT

sat  is expressed as  

 HNT

sat

b
 


=  (6.8) 

where   is the constant coefficient. Likewise, GNT

b  obeys a similar rate relation  

 ( )GNT GNT GNT GNT p

b sat bc   = −  (6.9) 

where GNT

sat  is the saturated value of the extra back stress arising from structural gradient 

and GNTc  is the constant coefficient. We assume that HNT

sat  is proportional to the extra 

GNDs associated with BCDs resulting from structural gradient and express HNT

sat  as  

 GNT GNT

sat GbL  =  (6.10) 

where L is the characteristic length of GNDs induced by structural gradient, and 
GNT

G  is 

the density of the extra GNDs resulting from the structural gradient and resultant plastic 

strain gradient. We express 
GNT

G  as [105] 

 

p

GNT

G
b





=  (6.11) 
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where p  represents the magnitude of the gradient of tensile plastic strain 
p p

0
'

t

dt =   

In a typical numerical simulation, the GNT Cu sample was subjected to uniaxial tension 

with a constant strain rate of 0.001 s-1. The finite difference method was used with the 

integration time step of 0.001 s. Given the periodicity of strength distribution in the cross 

section, we considered one period of the triangular wave of saturated HNT-induced back 

stress given by 346-160 MPa. Within this period, the normalized y-axis along the gradient 

direction was divided into 100 equally spaced sections. In the middle of the period, the 

central difference scheme is used to calculate the plastic strain gradient for ensuring 

numerical stability [102], and the skew difference is used at two ends of the period. The 

material parameters used in our simulations are listed in Table 6.1, which are determined 

by fitting model predictions to experimental results. 

Table 6.1 Parameters used in strain gradient plasticity simulations. 

Symbol (unit) Magnitude 

E (GPa) 115 

μ (GPa) 42 

m 500 

p

0 (s-1) 0.001 

M 3.0 

α 0.3 

b (nm) 0.255 
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Table 6.1 continued 

k1(m-1) 5e9 

k2 5e2 

k3 8.5e4 

cHNT 1e4 

cGNT 5e2 

L(μm) 90 

Figure 6.5a shows the simulated tensile stress-strain curves for GNT-1 to GNT-4, 

which agree with the experimental results in Figure 6.3c. Taking GNT-2 as an example, 

Figure 6.5b shows the SGP results of the sample-level tensile stress   along with its 

components of effective stress 
eff , back stress associated with HNT HNT

b , and extra back 

stress arising from structural gradient GNT

b . It is seen that HNT

b  provides a stronger 

strengthening effect than both 
eff  and GNT

b  in GNT-2. However, it should be 

emphasized that GNT

b  increases substantially with structural gradient, while HNT

b  and 

eff  do not, as shown in Figs. 6.5e and 6.5f. For GNT-2, Figure 6.5c shows the SGP results 

of cross-sectional distributions of plastic strain ( )p y  at different  , which directly reveal 

the evolution of plastic strain gradient associated with progressive yielding in the cross 

section. Namely, since the local yield strength decreases from component Ⓐ to Ⓓ, 

component Ⓓ first yields; and the plastic region with non-zero ( )p y  expands gradually 

to component Ⓐ with increasing  . Such progressive yielding is completed around 
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0.3% = . After that, a nearly linear distribution of ( )p y  with a constant plastic strain 

gradient is maintained with increasing  . The SGP result regarding the constant saturated 

gradient of plastic strain can be also be verified through a scaling analysis of plastic strain 

gradient.  

 

Figure 6.5 Numerical results of strain gradient plasticity modeling of GNT Cu, showing 

the spatiotemporal evolution of back stress and effective stress. a, Sample-level stress-

strain curves of GNT-1 to GNT-4. b, Sample-level tensile stress   for GNT-2, along with 

its components of effective stress 
eff , back stress associated with HNT HNT

b , and extra 

back stress arising from structural gradient GNT

b . c, Distribution of plastic strain p  as a 

function of position y (defined in inset and normalized by sample thickness) in the cross 

section of GNT-2 at different tensile strains. d, Same as c except for the local extra back 

stress 
GNT

b  arising from structural gradient. e, Sample-level extra back stress arising from 

structural gradient GNT

b against tensile strain for GNT-1 to GNT-4. f, Same as e except for 

sample-level effective back stress 
eff . The effective stresses in b and f are evaluated from 

the isotropic flow resistance S. 
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The saturated gradient of plastic strain after progressive yielding can understandably 

result in a saturated extra strength at the sample level. However, the saturation of extra 

strength is achieved until   reaches about 1%, which is larger than the characteristic strain 

of 0.3% =  to complete progressive yielding. To understand this delayed response, 

Figure 6.5d shows that ( )GNT

b y  is not statured immediately after the entire cross section 

becomes plastically yielded; the nonlinear hardening causes a further increase of ( )GNT

b y

, such that a uniform distribution of saturated ( )GNT

b y  is achieved until 1% = , giving 

the saturated extra strength at the sample level. Moreover, Figure 6.5e shows that the 

increasing structural gradient from GNT-1 to GNT-4 raises substantially the extra back 

stress GNT

b  at the sample level. In contrast, Figure 6.5f shows that the increasing structural 

gradient from GNT-1 to GNT-4 has negligible effects on both their effective stress 
eff  

and back stress associated with HNT HNT

b  at the sample level. These results underscore 

the predominant role of structural gradient and associated plastic strain gradient in the extra 

back stress GNT

b  and resultant extra strength of GNT Cu.  

6.5 Summary 

In summary, our combined experimental and modeling results have identified the 

primary source of extra strengthening in GNT Cu as the extra back stress arising from 

nanotwin structure gradient. The extra back stress is induced by the GNDs associated with 

BCDs that only form in gradient nanotwin structures. An increase in nanotwin structure 

gradient can lead to a substantial increase in plastic strain gradient giving rise to a high 

extra strength. In contrast, the strengthening effect of HNT Cu largely comes from a 
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different type of back stress originated from incompatible deformation between the matrix 

and nanotwins. Such back stress is enhanced with decreasing twin thickness. The effective 

stress is much less sensitive to the geometry of nanotwins in both GNT and HNT Cu. 

Altogether, these results underscore the predominant strengthening effect of the extra back 

stress arising from gradient structure, and thus point to a “going for nano” strategy for 

further enhancing the strength of GNT Cu by a simultaneous decrease of nanotwin 

thickness and increase of nanotwin gradient. This strategy requires innovations in material 

processing to push the limit of attainable nanostructure geometry in the future.  

Broadly, this work exemplifies a general mechanistic approach to unravel the 

strengthening mechanism in heterogeneous nanostructures. We demonstrate that in a 

material with hierarchical nanostructures such as GNT Cu, there generally exist multiple 

sources of back and effective stresses, due to different levels of structural heterogeneity 

with distinct characteristic length scales. A combined use of the “large RVE” and “small 

RVE” approaches enable us to decouple various sources of strengthening stemming from 

different types of structural heterogeneity. Future mechanistic studies along this line can 

provide deep insights and may pave the way for a rational development of heterogeneous 

nanostructured metals with outstanding mechanical performance. 
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Part III: Nanoscale Heterogeneities in Nanocrystalline Metals and 

Composites 
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CHAPTER 7. GRAIN GROWTH IN NANOCRYSTALLINE AL 

7.1 Introduction 

Decades of research have advanced our fundamental understanding of the role GBs 

have in the deformation process of nc metals. However, significant challenges remain 

toward quantitative characterization of GB-mediated deformation processes within real GB 

networks of nc metals as well as quantitative correlation between these processes and bulk 

mechanical properties. One of the limitations to widespread use of nc metals is the notable 

loss of ductility due to a lack of strain hardening which leads to localized deformation [1] 

and limited uniform elongation [127]. The combination of high flow stress and low work 

hardening in nc metals promotes neck formation, resulting in ‘unusable’ elongation and 

reduced tensile ductility. During the neck formation processes, the role of nano-grain 

coarsening on this behavior is not well understood. The abovementioned studies provide 

valuable insight into the mechanisms of deformation induced grain growth, but the 

techniques used are limited in the ability to measure the far-field applied stress while 

observing deformation processes, and thus cannot accurately correlate the GB-mediated 

processes with the mechanical properties.  

In this work, we investigate the active deformation mechanisms during tensile loading 

of nc Al thin films using two quantitative MEMS-based in situ TEM nanomechanical 

testing platforms. This approach allows us to measure far field stress values and correlate 

them with the active GB and dislocation-based deformation mechanisms with the goal of 

better understanding the deformation processes that dictate the onset of plastic instability 

and ultimately the mechanical properties of nc Al thin films. To better understand the 
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atomic-scale mechanisms underpinning GB migration, we conduct MD simulations, using 

a novel coloring scheme to track GB migration over time. The combined in situ observation 

and MD simulation results underscore the important role of grain growth in plastically 

deforming nc Al. 

7.2 Microstructures 

 Nc Al thin film specimens of 200 nm thickness were fabricated via electron beam 

evaporation of Al (99.99% purity) onto a Si substrate, at a pressure of ~10-6 Torr and 

deposition rate of 0.5 Ȧ/s. The specimens were fabricated using the same batch fabrication 

technique previously used to fabricate Au specimens. The technique involves optical 

lithography and a lift-off procedure to define rows of dog-bone shaped specimens, with a 

gauge section of width ~1.5 μm and length ~20 μm shown in Figure 7.1a. The specimens 

become free-standing after XeF2 etching of the Si substrate (see Figure 7.1b). Following 

fabrication, the films were annealed at 400 °C for 2 hours in a high vacuum oven. Using a 

micromanipulator, the specimens were detached from the row of specimens, placed onto 

the MEMS device, and clamped using UV-curable glue (Figure 7.1c). Note that the image 

in Figure 7.1c shows a fractured specimen captured post-deformation. Figure 7.1d is a pre-

deformation orientation map showing that the initial microstructure has no strong out-of-

plane texture with most GBs being of the random high-angle type (Figure 7.1f). The films 

have a general columnar grain structure with an average grain size of 57 ± 30 nm. The 

grain size distribution is shown in Figure 7.1e. 
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Figure 7.1 Sample fabrication and initial microstructure of Al thin film. (a) SEM image of 

free-standing specimen. (b) Tilted view to show free-standing specimen. (c) SEM image 

of specimen clamped to MEMS-device using UV-curable epoxy glue. Image is taken at a 

tilt in order to capture the amount of gauge length that is supported by glue. (d) Orientation 

map showing no out-of-plane texture, (e) corresponding grain size distribution and (f) GB 

misorientation distribution taken from ACOM data. 

 

7.3 Grain Growth under Tensile Deformation 

 Figure 7.2 is an example of the ability of the MEMS-based platform to capture real-

time deformation while reliably measuring far-field stress and strain values. The specimen 

was strained at 𝜀̇ ~ 3 × 10−4 s−1 until failure with roughly 45% of the specimen gauge in 

the view frame. Figure 7.2a-f are TEM micrographs that track the deformation and 

formation of a neck. The view frame is moved towards the end to capture the neck, with 

the arrowhead marking the same location in each figure (Figure 7.2 d-f). The far-field 

engineering stress and strain values for each figure are marked in the accompanying stress-

strain curve shown in Figure 7.2g. From the data, the yield point and Young’s modulus 

were determined to be 380 MPa and 8.9 GPa, respectively. The offset of the initial stress 
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from a zero value results from residual tensile stress developing when the glue shrinks after 

curing. The low Young’s modulus value stems from the approximate calculation of strain 

based on crosshead displacement values. The compliance of the glue leads to finite 

deformation of the thin film specimen along both the fillet region and the gauge section 

that is in contact with the glue. These sections of the specimen are not included in the free-

standing gauge length used to calculate strain, and therefore lead to an underestimate of 

Young’s modulus. While the measured value of Young’s modulus is highly sensitive to the 

accuracy of small strain measurement, this issue does not affect the ability of the technique 

to measure relatively large plastic strains, as has been previously demonstrated [128, 129]. 

The loading was paused twice in order to capture the neck formation in more detail, which 

resulted in the stress relaxation/drop seen prior to Figure 7.2d and after Figure 7.2e. From 

the pre-test Figure 7.2a to b, only minor contrast changes can be seen accompanied by a 

uniform reduction in width, with some contrast variations attributed to eliminating any film 

bending that might be present due to specimen manipulation. Continued width reduction is 

seen in the progression from Figure 7.2b to c, however slight localized width reduction can 

be seen near the top of the micrograph. As deformation unfolds to Figure 7.2d, localized 

reduction continues and leads to the development of a necked region. The neck further 

develops in Figure 7.2e and f where failure eventually occurs. Within this region, 

pronounced visible grain growth is observed, with grain sizes exceeding 250 nm.  
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Figure 7.2 Low magnification TEM images showing microstructure evolution at different 

strain values. The frames are taken at (a) 1.9%, (b) 4.9%, (c) 10%, (d) 14.5%, (d) 16.5% 

and (f) 18.7% total strain. Arrowhead in each designating the same feature. (g) Engineering 

stress-strain curve with the total strain of (a-f) indicated by the colored squares. 

 As deformation progresses and a neck develops, fast GB motion was observed within 

the necked region, with an example shown in Figure 7.3. Figure 7.3a shows that a neck has 

developed, and the corresponding stress has dropped below the ultimate tensile strength in 

Figure 7.3e. Resetting the TEM time t = 0, the vertical dimension of the grain marked by 

an arrowhead in Figure 7.3b is measured at 115 nm. After 78 seconds, only a slight decrease 

to 112 nm occurs. However, from Figure 7.3c to d, the bottom boundary migrates 12 nm 

in 5 seconds, resulting in a migration rate of 2.4 nm s-1. This indicates that within the necked 

region where the stresses are higher, boundary migration occurs at an increased speed 

resulting in the rapid collapsing of grains and by geometrical necessity, the rapid growth 

of neighboring grains. Within this region, the local gauge width is decreased from 1700 

nm to 1190 nm. For a simple lower-bound estimate, this indicates that the local stress is 

increased by a factor of 1.4, resulting in a local stress of at least 630 MPa. This value is not 
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accounting for any decrease in local film thickness that would also contribute to a further 

increase in stress. To better visualize the different migration rates, the grains traced in 

Figure 7.3b-d have been isolated and shown in Figure 7.3f-g and h-i, respectively. It is 

clear that the grain within the necked region experiences a larger change in grain size over 

the course of the 5 seconds separating Figure 7.3h and i due to the faster GB migration 

speed of 2.4 nm s-1. This is another example of ‘jerky’ type boundary motion, with limited 

motion for over a minute and then rapid boundary motion.  

 

Figure 7.3 Fast GB migration after neck develops. (a) Low magnification TEM image 

showing developed neck near top of snapshot. White circle indicates location of 

highlighted grain in (b-d). (e) Stress-strain curve with highlighted region corresponding to 

when snapshots (a-d) were recorded. Change in grain size as a function of time for (f,g) a 

grain in uniform region and (h,i) necked region (from b-d). Arrows indicate direction of 

boundary migration. Both (g) and (i) are taken 5 seconds after (f) and (h), respectively. The 

size scale for both grains is the same and the respective GB migration velocities and 

estimated local stress are given. 

7.4 Atomistic Modeling of Grain Growth 

 MD simulations of uniaxial tension of a nc Al thin film were performed using 

LAMMPS [47]. The initial thin film structure was constructed by a Voronoi tessellation 
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procedure that generated 32 grains with sizes of about 10 nm, nearly equiaxed shape, and 

random crystallographic orientations. The thin film structure has dimensions of 32.4 nm × 

32.4 nm × 32.4 nm and contains a total of 1,996,000 atoms. Periodic boundary conditions 

were imposed in the tensile loading direction, while other side surfaces are traction free. 

The interactions between Al atoms were modeled by an embedded atom method (EAM) 

potential [130]. To relax the GB structures, the system was annealed under zero stress by 

first heating to 900 K for 100 ps, then cooling to 300 K, and finally equilibrating at 300 K 

for 10 ps. Uniaxial tensile strain up to 100% was applied with a strain rate of 109 s-1 at 300 

K. A novel atom coloring scheme is developed and used to visualize both the initial GBs 

(𝑡 = 0) and current GBs (time t) in the same atomic configuration at time 𝑡. As a result, 

the morphological evolution of grains and GBs, particularly GB migration, can be traced 

clearly and continuously during tensile deformation of the nanocrystalline thin film. 

Specifically, the color of atom i is rendered based on a time-dependent parameter ∆𝑐𝑖(𝑡), 

which is defined as the difference of the centrosymmetry parameter of atom i at time t, 

denoted as 𝑐𝑖(𝑡), and that at  t = 0, denoted as 𝑐𝑖(0), such that ∆𝑐𝑖(𝑡) =  𝑐𝑖(𝑡) − 𝑐𝑖(0). To 

understand how ∆𝑐𝑖(𝑡) works, we first explain the meaning of 𝑐𝑖. Let us consider atom i in 

a perfect face-centered cubic lattice. In this case, the neighboring atoms around atom i obey 

the centrosymmetry, thus giving 𝑐𝑖 = 0. In contrast, when atom I sits in a stacking fault or 

a GB, the local centrosymmetry is broken, giving a positive 𝑐𝑖 that typically falls in the 

range of 10~20. A larger 𝑐𝑖 reflects a stronger deviation from the local centrosymmetry. 

Next, we explain the meaning of ∆𝑐𝑖(𝑡). Suppose atom i sits at a GB at t = 0, giving 𝑐𝑖(0) >

0; and atom j resides in the grain interior at t = 0, giving 𝑐𝑗(0) =  0. Due to GB migration, 

atom i resides in the grain interior at time t, giving 𝑐𝑖(𝑡) =  0 and thus ∆𝑐𝑖(𝑡) < 0; atom j 
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sits at a GB at time t, giving 𝑐𝑗(𝑡) > 0 and thus ∆𝑐𝑗(𝑡) > 0. Hence, ∆𝑐𝑖(𝑡) is negative for 

atom i that initially sits at a GB at 𝑡 = 0, but has left the GB at time t; and ∆𝑐𝑗(𝑡) is positive 

for atom j that initially resides in the grain interior at 𝑡 = 0, but has joined a GB at time t. 

In addition, ∆𝑐𝑘(𝑡) is zero for atom k that resides in the grain interior at both 𝑡 = 0 and 

time t. Using OVITO [131], we render atoms with three colors of red, blue and light gray 

for positive, negative and zero values of ∆𝑐𝑖(𝑡), respectively, so as to simultaneously 

visualize both the initial GBs (𝑡 = 0) and current GBs (time t) at the same time 𝑡. Since 

the parameter ∆𝑐𝑖(𝑡) is computed according to the unique number assigned to each atom 

throughout the whole MD simulation, the rigid-body displacement, elastic deformation and 

plastic deformation are automatically filtered out. Hence, the time-dependent 

morphological evolution of grains and GBs, particularly GB migration, can be visualized 

clearly and continuously. 

 

Figure 7.4 MD simulation setup and results of small and modest plastic deformation during 

uniaxial tension of a nc Al thin film. (a) Three-dimensional view of the nc structure after 
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annealing. Red segments indicate the cutting plane for exposing the x-y section of the film 

in (b). (b) Two-dimensional view of the x-y section of the film in (a). Atoms in (a-b) are 

colored by the common neighbor analysis in OVITO [131], showing atoms in GBs (light 

gray) and grain interiors (green). (c-f) MD snapshots at different applied tensile strains 𝜀 

from 0 to 40%, showing the dislocation emission and absorption at GBs, GB migration and 

sliding, and grain growth and shrinkage. Atoms in (c-f) are colored by a novel scheme 

explained in the Section 7.4 such that both the initial GBs (at 𝑡 = 0; with the constituent 

atoms colored in blue) and the current GBs (at time t; with the constituent atoms colored 

in red) are displayed in the same structure at time t; atoms in the stacking faults are colored 

in red; and other atoms are colored in light-gray. 

 Our MD simulations support in situ TEM observations of grain growth and further 

uncover the underlying atomic processes that are not directly visible through TEM. Figure 

7.4a and b show two views of the three-dimensional simulated nc Al thin film before tensile 

loading. In the x-y plane view, Figure 7.4b, four grains are labelled. These 4 grains and the 

associated GBs were traced during the MD simulation of tensile deformation. In Figure 

7.4a and b, the atomic configurations are colored by the common neighbor analysis in 

OVITO, so that the initial grain geometry and GB structures can be clearly visualized. 

Figure 7.4c-f present a series of MD images at different tensile strains 𝜀. In this work, a 

novel atom coloring scheme is developed and used to visualize both the initial GBs (𝑡 =

0) and current GBs (time t) in the same atomic configuration at time t. As described in 

detail above, this atom coloring scheme enables us to continuously trace the morphological 

evolution of grains and GBs, particularly GB migration, during tensile deformation of the 

nc thin film.  

 Close examination of the MD results (Figure 7.4c-f) reveals the active mechanisms 

underlying our in situ TEM observations of plastic deformation and fracture in nc Al thin 

films. Throughout the MD simulations, dislocation activity is observed frequently. These 

dislocations usually emit from one side of GBs, traverse the grains, and are absorbed into 
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the opposite side of GBs. Full dislocations of the 1/2〈110〉{111} type, which dissociate 

into leading and trailing partial dislocations of the 1/6〈110〉{112}  type separated by 

narrow stacking fault regions, are the majority of intragranular lattice defects, consistent 

with the high stacking fault energy of Al. As these dislocations glide inside grains, Lomer-

Cottrell locks (see circled examples in Figure 7.4c and d) occasionally form, due to the 

intersection of two dislocations on different slip systems. These locks are disrupted as the 

applied load increases. The unlocked dislocations further glide inside grains and are 

eventually absorbed into GBs. Occasionally, only a leading partial is emitted from a GB, 

leaving behind a long stacking fault; the subsequent emission of a trailing partial occurs 

with increased load.  For grains near the free surface, nucleation of surface dislocations is 

frequently observed, as the energy barrier of dislocation nucleation at the free surface is 

often lower than that in the bulk [132]. These MD results of deformation-induced 

dislocations of different types and on different slip systems complement our in situ TEM 

imaging that was taken along a specific orientation and thus revealed the activity of 

dislocations on certain slip systems. 

 In addition to dislocation activity, MD simulations reveal the active processes of GB 

migration and sliding. Because of random grain orientations, most GBs are of the mixed 

tilt and twist type. At 𝜀 = 10% (Figure 7.4c), GB migration is clearly visible thanks to the 

aforementioned novel coloring scheme, which enables the display of both the initial and 

current GBs at the same time. It is seen from Figure 7.4c that GB migration typically occurs 

at certain boundary segments and thus serves to accommodate local deformation 

incompatibilities between adjoining grains. GB migration is broadly distributed in different 

grains, thus facilitating an overall uniform elongation of the thin film. Coupled GB sliding 
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and migration are often reported in previous MD simulations of sheared bicrystals [133]. 

However, our MD simulations reveal less active GB sliding than GB migration at small 

tensile strains (e.g., Figure 7.4c at 𝜀 = 10%), largely because of the geometrical constraints 

of grain triple junctions. We note that while the novel atom coloring scheme is effective 

for displaying GB migration, GB sliding is less obvious from the colored GBs, but can be 

determined by movements of grain triple junctions and GB intersections at the free surface.  

 As the applied tensile strain 𝜀  increases from 20% to 40% (Figure 7.4d to f), GB 

migration gradually increases and also becomes increasingly non-uniform, resulting in 

large migration of several GBs. Compared to the triple junctions associated with interior 

GBs, the junctions between GBs and free surface are more prone to local reconstruction 

because of less surface constraints. As a result, the GBs intersecting the free surface often 

migrate much faster than the interior GBs. Migration of these near-surface GBs is often 

coupled with pronounced GB sliding, also because of the lack of surface constraints. Such 

GB sliding is evidenced by the formation of surface grooves, as seen in Figure 7.4d to f. 

These MD results suggest that GB migration in the TEM thin film samples likely initiated 

from the film surface. As the applied tensile strain increases, the interior triple junctions 

are reconstructed, resulting in coupled GB sliding and migration. These highly active 

processes of GB migration and sliding result in drastic grain morphology changes, as 

evidenced by the growth of grain 1 and 4, and the concurrent shrinkage of grain 3 

accompanied with a large shape change. The common occurrence of grain growth and 

shrinkage during MD is consistent with our in situ TEM observations. The change of grain 

2 is relatively small, confirming the common occurrence of non-uniform grain deformation 

in polycrystalline materials, as revealed in the experimental data of grain size statistics in 
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Figure 7.4a. Incidentally, our MD simulations further reveal that coupled GB sliding and 

migration are primarily caused by glide of GB disconnections (to be discussed later), 

instead of less frequent dislocation emission and absorption at GBs that mainly serve to 

accommodate local deformation incompatibilities during GB migration. 

 

Figure 7.5 MD simulation results of large plastic deformation and intergranular fracture 

during uniaxial tension of a nc Al thin film. (a-d)  MD snapshots at different applied tensile 

strains 𝜀 from 30% to 90%, showing the drastic grain growth and shrinkage through large 

GB migration and sliding, as well as intergranular fracture via sliding-off of GBs. The same 

atom coloring scheme is used as in Figure 7.4c-f. 

The MD simulations further reveal the highly localized plastic deformation and final 

intergranular fracture in the nc Al thin film at large applied tensile strains. From a series of 

MD snapshots in Figure 7.5, it is seen that plastic deformation becomes increasingly 

localized in the region containing grains 1-4. Large migration of GB13 and GB34 causes 

drastic growth of grains 1 and 4 and shrinkage of grain 3, eventually resulting in direct 

contact between grains 1 and 4. Meanwhile, large sliding of GB12 and GB34 occurs, leading 
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to growth of surface grooves associated with GB12 and GB34 (Figure 7.5b). The increased 

stress concentrations in these deep grooves cause the continued slide-off of GB12 and GB34, 

thereby producing the fractured surfaces of GB12 and GB34 (Figure 7.5c). As the sliding-

off of GB12 completes, the local fracture process switches to the sliding-off of GB34. These 

processes clearly demonstrate a predominant intergranular fracture mode through large GB 

sliding, which is consistent with that observed during our in situ TEM testing of Al thin 

film samples. 

 

Figure 7.6 MD results showing atomic-scale processes of migration of a general GB of 

mixed tilt and twist type in nc Al. (a-c) MD snapshots of migration of GB34 toward grain 

3 through the glide of GB steps (indicated by blue lines), signaling the glide of 

corresponding GB disconnections. This GB corresponds to the boxed region of GB34 in Fig 

7.4c at 10% strain. The atomic configuration is viewed along the 〈110〉  direction of grain 

3. The red dashed line indicates the edge-on {111}  plane in grain 3. 

The general GBs in the current study are mostly of mixed tilt and twist type with high 

angle misorientation. As such, it is difficult to resolve the exact atomic mechanisms of GB 

migration through in situ TEM observations. However, our MD simulations offer atomistic 

insight into GB migration. Figure 7.6 shows a representative example of stress-driven 

migration of a general GB between grain 3 and 4, denoted as GB34, at the applied tensile 

strain 𝜀 = 10%; this GB segment is boxed in Figure 7.4c. The atomic structure of GB34 is 
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viewed along the 〈110〉 direction of grain 3, thereby showing a clear image of projected 

〈110〉 atomic columns inside this grain. Since GB34 is of mixed tilt and twist type, grain 4 

is not aligned with a specific crystallographic direction, such that the projected atomic 

columns overlap with each other in grain 4. The contrast of projected atomic columns in 

the adjoining grain 3 and 4 facilitates our tracking of the atomically sharp GB34 during its 

migration. Note that GB34 consists of atomic-sized boundary steps on the edge-on 

{111} planes in grain 3. By comparing local GB steps (marked by blue lines) relative to a 

reference {111} plane marked by the red dashed line, it is seen from Figure 7.6a-c that 

migration of GB34 towards grain 3 occurs through glide of GB steps. In general, a GB 

disconnection consists of both a GB step and a GB dislocation component. For a GB of 

mixed tilt and twist type, the observed gliding of a GB step signals the movement of a 

corresponding GB disconnection, while the GB dislocation component cannot be easily 

visualized due to complex lattice geometry but usually moves simultaneously with the GB 

step. Hence, MD results in Figure 7.6 complement our in situ TEM observations by 

revealing the representative atomic-scale processes of coupled GB sliding and migration 

through gliding of disconnections on a general GB in nc Al.  

Despite differences in strain rate, grain morphology and film dimensions between MD 

simulations and experiments, qualitative agreement was found in the GB migration and 

fracture behavior, which was found most pronounced in areas with localized necking 

deformation. Both simulations and experimental results point to GB migration leading to 

grain growth as a dominant deformation mechanism. The MD simulations suggest that 

dislocation emission and absorption are not a major contributor to the migration and sliding 

but do play a role in accommodating deformation incompatibility at GBs. This is consistent 
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with experimental findings that showed in situ evidence of bend contours (suggestive of 

dislocation activity) and post-mortem observations of dislocation structures, but that GB 

migration was also observed to occur separate from dislocation evidence. Both simulations 

and experiments also show that GB migration begins early in deformation and is further 

promoted by increased stress due to localized deformation (necking or surface grooves). 

As with the experimental results, the simulations also show inhomogeneous grain growth 

with certain grains growing at the expense of other. Additionally, MD simulations reveal 

the atomic-scale processes of coupled GB sliding and migration through gliding of GB 

disconnections. Finally, large GB sliding is observed by both simulations and experiments 

(especially near fracture surface) and in both cases, leading to intergranular fracture as the 

observed failure mechanism. 

7.5 Summary 

Using in situ TEM MEMS-based straining combined with MD simulations, we have 

studied deformation-induced grain growth while investigating how the local stress imposed 

by necking promotes GB migration. The results of these experiments indicate that GB 

migration is primarily stress-induced, as opposed to thermally-driven GB migration during 

high temperature annealing or creep. The local increase in stress (either due to necking or 

a crack tip) drives faster GB migration. Measured GB migration speeds ranged from 0.2 – 

0.7 nm s-1 when the applied tensile stresses were close to the ultimate tensile strength of 

450 MPa, increased up to 2.5 nm s-1 for grains within the necked region where the local 

tensile stresses were elevated to around 630 MPa, and even rose to 6 nm s-1 for GB 

migration that occurred ahead of crack tip. MD simulations utilized a novel coloring 

scheme to easily track GB motion over time, which yielded qualitative agreement with 
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experimental observations that significant GB migration leads to grain growth. MD 

simulations further complement in situ experiments by uncovering the underlying atomic 

processes of grain growth and GB migration that are not directly visible through TEM. 

Altogether, these results underscore the important role of stress-driven grain growth in 

plastically deforming nanocrystalline metals, particularly in regions with large localized 

deformation. 
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CHAPTER 8. PLASTIC DEFORMATION KINETICS IN FCC 

NANOCRYSTALLINE METALS 

8.1 Introduction 

 Many inelastic deformation processes in metallic systems, including dislocation glide, 

deformation twining, phase transformation, grain boundary sliding, occur by stress-driven, 

thermally-activated atomic rearrangement. The rate of a stress-driven, thermally-activated 

process can be estimated based on transition-state theory (TST) [134], 
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where 
0v  is the trial frequency, 

Bk  is the Boltzmann constant, G  is the activation free 

energy of the transition state,   is the applied stress, T is the temperature. The trial 

frequency 
0v  is on the order of  11 110  s− , as dictated by atomic vibration. In order for a unit 

process observable in a typical laboratory strain rate such as 2 110  s− − , the activation energy 

needs to be around 30 Bk T , which is about 0.7 eV at room temperature. Hence, the activation 

energy, as a function of stress, is an important quantity that determines the kinetic rate 

within the transition-state theory. To a first approximation, the stress-dependent activation 

energy can be calculated from the nudged elastic band (NEB) method [132], as to be 

discussed in Section 8.3.1. The NEB method bridges the unit defect process to the 

macroscopic strain rate sensitivity that characterizes plastic deformation kinetics. 
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 On the experimental side, stress relaxation and measurements of associated activation 

volume represent one of the most effective ways of elucidating the strength/rate-controlling 

mechanisms governing the plastic deformation kinetics of polycrystalline metals and 

alloys. This approach has been well established in the study of conventional coarse-grained 

materials [135, 136], and it has been recently extended to study ultrafine-grained (ufg) and 

nanocrystalline (nc) metals [129, 137, 138]. However, the currently available results of 

activation volumes for ufg and nc metals are limited and, more importantly, puzzling, as to 

be discussed below.  

 

8.2 In Situ TEM Measurements of Activation Volume 

 This study investigates the plastic deformation kinetics of two different metal thin 

films: 200-nm thick nc Al and 100-nm thick ufg Au. Both specimens were fabricated 

following similar procedures involving optical lithography, electron beam evaporation of 

high purity Au or Al onto a Si substrate and a lift-off technique to reveal dog-bone shaped 

specimens with gauge dimensions of width 1.5 m and length 20 m. The nc Al specimens 

have an average grain size of 57 nm and a random out-of-plane texture while the Au 

specimens have an average grain size of 150 nm and exhibit <111> out-of-plane texturing. 

Bright-field TEM images of undeformed specimens for Al and Au are shown in Figure 8.1, 

respectively.  

The MEMS device is used to perform both in situ monotonic and stress-relaxation 

experiments. By performing consecutive stress-relaxations segments, the true activation 

volume 𝑉∗ is determined using the equation below  
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where k is Boltzmann’s constant, T is temperature, ∆𝜎12 is the stress increase during the 

elastic reloading, 𝜀𝑖̇2 is the initial plastic strain rate of the second relaxation and 𝜀𝑓̇1 is the 

final plastic strain rate of the first relaxation segment. The plastic strain rate 𝜀𝑝̇  is 

determined by  

  /p M = −   (8.3) 

where 𝜎̇ is stress rate obtained by fitting the stress relaxation data with logarithmic fit and 

𝑀  is the machine-specimen modulus. By combining Eq. (8.2) and Eq. (8.3), the true 

activation volume 𝑉∗ can be obtained from  
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Using Eq. (8.4) eliminates the dependency of 𝑉∗ on the strain rate and instead implies that 

the accuracy of 𝑉∗ depends on the stress rate, which is independent of gauge length and is 

more accurately determined using this technique. The accuracy of the determined stress 

rate depends on the signal-to-noise ratio (SNR) of the measurement. Previous work has 

shown that a SNR > 5 requires logarithmic fits with 𝑅2 > 0.9, which is used as a criterion 

for accurate 𝑉∗ measurements. The apparent activation volume 𝑉𝑎 can also be obtained by 

fitting the stress-relaxation data with a logarithmic variation in time t, following  
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where  is the stress drop, and 𝑐𝑟 and 𝑉𝑎 are the fitting parameters. The above equation 

can be rearranged to solve for the apparent activation volume 𝑉𝑎 , which is considered 

because it avoids the implicit assumption of constant dislocation density 𝜌𝑚 that is required 

in the true activation volume derivation. In this work, we determine both the apparent and 

true activation volumes, however, we primarily focus on true activation volume 

measurements as it is more characteristic of the rate-controlling deformation mechanisms 

and directly represents the dislocation velocity dependence on stress.  

 Figure 8.1 shows 𝑉∗  measurements for relaxation segments of different Au and Al 

specimens with different sample thickness. The measured activation volume for Au is 

ranged from 5b3 to 25b3.  For the Al, one group of activation volumes are larger than 15b3 

(with b being the Burgers vector length), while another group are between 1b3 to 10b3. This 

puzzle further motivates us to determine the rate-limiting process by the atomistic nudged 

elastic band calculations. 
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Figure 8.1 True activation volume measurements for Au and Al. (a) Au specimens with 

thickness of 100 nm and 200 nm. (b) Al specimens with thickness of 100 nm and 200 nm. 

8.3 Atomistic Modeling 

8.3.1 Nudged Elastic Band (NEB) Method  

 

Figure 8.2 Schematic illustration of nudged elastic band method and activation. (a) An 

illustration of the NEB method and MEP in a model system. (b) Definition of activation 

volume. 

 

 The NEB method is a chain-of-states approach to find the minimum energy path (MEP) 

on the potential energy surface (PES). In the coordinate configuration space of N atoms, 

the potential energy is a function of 3N degrees of freedom of atoms; that is each point in 

the PES corresponds to one configuration of atoms in the system, as shown in Figure 8.1. 

In general, there are local minimum, local maximum and saddle point on the PES. The 

MEP is the lowest energy path connecting two neighboring local minimum configurations. 

The maximum on the MEP is the saddle point which gives the activation energy barrier, 

that is the G  in Eq. (8.1). The derivative of activation energy with respect to stress gives 

us the activation volume, which characterizes the strain-rate sensitivity as shown in Figure 

8.2. 

Elber and Karplus, 1987;  Jonsson et al., 1994, 1998
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 In an NEB calculation, one should first obtain the initial and final configurations in two 

neighboring basins on the PES by using energy minimization. Then, multiple replicas are 

generated by linear interpolation of the coordinate of each atom between the initial and 

final states. Every two adjacent replicas are connected by a spring mimicking an elastic 

band of beads and spring. With proper relaxation, the internal replicas will converge to the 

MEP as shown in Figure 8.2a, while the initial state and final state are kept fixed. Let us 

denote 
iR  as the atomic coordinate of the replica i and estimate the unit tangent at each 

replica as 
it . The configuration force (3N dimensional vector) contains both the 

perpendicular component of the potential force and the parallel component of the spring 

force with respect to the tangent vector. 

  ( ) spring

i i iE
⊥

= − +F R F  (8.6) 

where ( )iE R  is the gradient of the potential energy with respect to the atomic coordinate 

for replica i. In the above equation, spring

iF  is the spring force acting on replica i with a 

spring constant of k.  

  ( )spring

1 1i i i i i ik + −= − − −F R R R R t  (8.7) 

Henkelman [139] also discussed in details how to estimate the tangent vector, force and 

other techniques to find the saddle point. The converged MEP is usually plotted as the 

energy versus the reaction coordinate. The reaction coordinate is defined as the relative arc 

length in the 3N hyperspace. For each replica, the arc length to the initial configuration is 

defined as, 
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R
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R R  (8.8) 

The normalized reaction coordinate s can be calculated according to 
0/s l l= , where 

0l  is 

the hyperspace arc length between the initial and final state.  

 The NEB method presented above is effective in finding the MEP of a highly localized 

activation process where the initial state and final state are relatively close to each other on 

the hyperspace. However, this method is inefficient to sample the MEP for extend defect 

nucleation such as dislocation nucleation, where the final local minimum is far away from 

the initial state. In order to capture the long MEP associated with extended defects, a large 

number of replicas are needed. This issue is more pronounced at the higher stress level, 

where the saddle point is near the initial configuration. To improve this computational 

inefficacy, a free-end NEB (FENEB) method has been developed by Zhu and coworkers 

[140]. The idea of the FENEB method is to reduce the MEP length. This is realized by 

removing the constraint of the final state as the local minimum. The final state is allowed 

to move freely on an energy iso-surface close to the initial state. In addition to the 

perpendicular component of potential force, a spring force is added to the last replica to 

keep the energy close to the energy of the initial state. Using this FENEB method, one 

could use much fewer replica to model extended defect such as dislocation nucleation, 

where the last replica is kept close to the saddle point and initial state thus significantly 

improving the computational efficiency. 

 For our 3D atomistic simulations, we mainly focus on the dislocation nucleation from 

surfaces or grain boundaries. We first set up a bi-crystal containing a tilt symmetrical grain 
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boundary with the tilt axis of [111] and grain boundary plane of [213], as shown in Figure 

8.3. This [111] tilt grain boundary is a representative grain boundary in the [111]-textured 

Au sample as observed in the experiment. The bi-crystal has the dimension of 16.3 nm × 

32.8 nm × 20.6 nm and contains 226,260 Au atoms. The periodic boundary condition is 

imposed in the X-[415] direction. A partial dislocation is embedded in grain #2 through 

molecular dynamics simulations of uniaxial tension along X axis. We use the defect-free 

configuration as the initial state and the configuration with a fully-developed partial 

dislocation as the final state in a fixed-end NEB calculation. After this fixed-end NEB 

calculation, we locate the replica whose energy is close to the energy of the first replica, 

and use that configuration as the final configuration in an FENEB calculation. Then a series 

of FENEB simulations with different applied strains are calculated. We also simulate a 

similar process of dislocation nucleation from the free surface in Au and Al. 

 

Figure 8.3 Atomistic simulation setup for grain boundary dislocation nucleation. 

 

Grain 1

x [415]z [111]

y [231]

Grain 2

Applied load



 

 166 

8.3.2 Displacive Process – Partial Dislocation Nucleation 

 We first examine the dislocation nucleation process from grain boundaries in Au. Our 

FENEB results in Figure 8.4 show partial dislocation nucleation from the intersection of 

the tilt grain boundary and free surface. Figure 8.4a shows the converged MEPs of 

dislocation nucleation, when the free-end energy has the same energy as the initial state. 

The initial dislocation-free configuration is shown in Figure 8.4b. The configuration in 

Figure 8.4c contains a grain boundary defect that facilitates the subsequent nucleation of a 

dislocation loop. The energy of this particular configuration is relatively insensitive to 

resolved shear stress since it is a local grain boundary defect and does not produce 

significant plastic deformation. The configuration in Figure 8.4e is the saddle-point state, 

where two adjacent patches of atoms are sheared relative to each other to form the partial 

dislocation core. This saddle-point state gives the corresponding activation energy of 

dislocation nucleation. We also calculate the stress-dependent activation energy and the 

results will be discussed later. 
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Figure 8.4 FENEB results of the partial dislocation nucleation at the grain boundary and 

free surface corner in Au. (a) Stress dependent minimum energy path for different resolved 

shear stresses. (b-e) Atomistic configuration on the MEP of 804 MPa resolved shear stress, 

(e) correspond to the saddle point. 

 

We perform similar FENEB simulations for dislocation nucleation from free surfaces in 

Au. Figure 8.5 shows partial dislocation nucleation from free surface. Figure 8.5a shows 

the converged MEPs of dislocation nucleation. Notice that there is no metastable state of 

local defect creation, as shown in Figure 8.4c. As the partial dislocation is emitted from the 

free surface, only a surface step is created and no other stress-insensitive defect is needed. 

The configuration in Figure 8.5e is the saddle point, where two adjacent patches of atoms 

are sheared relative to each other to form the partial dislocation core. The shape of the 

dislocation loop is close to a quarter of a circle, due to a symmetrical constraint from two 

free surfaces, while the dislocation loop nucleated from the grain boundary is elongated. 

We also calculate stress-dependent activation energy, as shown in Figure 8.6. 
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Figure 8.5 FENEB results of the partial dislocation nucleation at free-surface corners in 

Au. (a) Stress dependent minimum energy path for different resolved shear stresses. (b-e) 

Atomistic configuration on the MEP of 1099 MPa resolved shear stress, (e) correspond to 

the saddle point. 

 

We compare the activation energy versus the resolved shear stresses in Figure 8.6. The 

derivative of the energy barrier with respect to resolved shear stress gives the activation 

volume, which is closely related to the number of atoms in the dislocation loop at its saddle-

point state. As shown in Figure 8.6, the activation volume of surface nucleation is about 

31b3, while the activation volume of grain boundary nucleation is higher, around 52b3. This 

can be understood as follows. Similar activation processes usually have close zero-stress 

activation energies. If we approximate the activation curves as a straight line, then the 

activation volume can be estimated as * 0

a

G
V


= , where G0 is the zero-stress activation 

energy, 
a  is the athermal stress of this process. Therefore, the heterogeneous nucleation 

with a lower athermal stress needs a higher activation volume, as shown in Figure 8.6. 

Thus, the grain boundary nucleation has a higher activation volume than surface 

• Disconnection nucleation in Au

• Same process in Al
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nucleation. However, the activation volumes of both mechanisms are higher than the 

experimentally measured activation volumes. To understand this discrepancy, we further 

explore other possible deformation mechanisms. Our preliminary results indicate that the 

displacive deformation mechanisms such as, disconnection nucleation, slip transmission 

across grain boundary, and cross slip usually have similar activation volumes larger than 

10b3. 

 

Figure 8.6 Activation volume of partial dislocation nucleation in Au. (a) Stress-dependent 

activation energy of partial dislocation nucleation in Au. The negative of the slope of the 

curve is defined as activation volume. (b) Saddle-point configuration of surface nucleation 

when the activation energy is around 0.7 eV. (c) Saddle-point configuration of grain 

boundary (GB) nucleation when the activation energy is around 0.7 eV. 

 

We also perform the FENEB calculations for Al with a similar setup. Al has a higher 

shear modulus than Au, and Al also has a higher ideal shear strength than Au [141]. The 
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high stacking fault energy of Al further increases the stress needed to nucleation a partial 

dislocation. Figure 8.7 shows the stress-dependent energy barrier of surface dislocation 

nucleation in Al. The corresponding activation volume of Al is 16b3, which is higher than 

5b3 measured from 100 nm specimen and lower than 35b3 from 200 nm specimen. 

 

Figure 8.7 Activation volume of partial dislocation nucleation in Al. (a) Stress-dependent 

activation energy of partial dislocation nucleation in Al. The negative of the slope of the 

curves is defined as activation volume. (b) Saddle-point configuration of surface nucleation 

when the activation energy is around 0.7 eV. 

  

8.3.3 Diffusive Process – Grain Boundary Dislocation Climb 

 To identify GB processes underlying the group of large activation volumes, our 

FENEB calculations for various displacive processes associated with the motion, 

absorption, desorption, transmission of dislocations and disconnections at Au and Al GBs 

give the activation volumes larger than 320b . To identify GB processes underlying the 

group of small activation volumes less than 10b3, it has been suggested that they might 

correspond to either shearing of a patch of GB atoms or atomic diffusion [129, 137, 138]. 

a b
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However, our FENEB calculations indicate that neither process could give activation 

volumes in the range of 31b  to 310b . This is because shearing of a patch of GB atoms gives 

large activation volumes greater than 320b , while atomic diffusion gives small activation 

volumes on the order of 30.1b .  

 To solve the aforementioned puzzle, we made a hypothesis that the diffusive process 

associated with the non-conservative motion of GB dislocations/disconnections, such as 

their climb, in ultrafine-grained and nanocrystalline metals could be the controlling process 

giving activation volume in the range of 31b  to 310b . Our recent study provides direct 

evidence of GB dislocation climb under applied high stresses and room temperature from 

atomic resolution in situ HRTEM observation, as shown in Figure 8.8, where multiple grain 

boundary dislocations climb to accommodate the applied bending deformation. Inspired 

by this HRTEM result, we performed FENEB calculations of climb of a GB dislocation 

through double-jog formation and migration at the core of this GB dislocation, involving a 

series of unit processes of insertion of vacancies (equivalent to the removal of atoms) at 

the dislocation jogs. 
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Figure 8.8 GB dislocation climb mediated by diffusive processes of point defects at the 

dislocation core. 

 

Figure 8.9 shows the results of climb of a grain boundary dislocation through double-

jog nucleation and migration. The grain boundary shown in Figure 8.9 is a [110] ∑3 tilt 

twin boundary. A pre-existing dislocation is embedded by introducing a small 

misorientation between the two grains. The minimum energy path is calculated by adding 

vacancies to the dislocation core. After three vacancies are added to the dislocation core, a 

pair of double-jogs is fully developed. Figure 8.9e shows the corresponding saddle-point 

configuration with three atoms removed at the dislocation core. We also calculated the 

stress-dependent energy barriers and obtained the corresponding activation volume of 

1.5b3, as shown in Figure 8.10b. 
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Figure 8.9 MEP of the grain boundary climb in Au. (a) Stress dependent minimum energy 

path for different resolved shear stresses. (b-e) Atomistic configuration on the MEP of 552 

MPa resolved shear stress, (c) correspond to the saddle point. 

 The above diffusive process associated with GB dislocation climb was traditionally 

considered to prevail during creep deformation at high temperatures and low stresses. 

However, our FENEB calculations of double-jog motion give activation volumes in the 

range of 31b  to 310b  that match experimental measurements for ultrafine-grained and 

nanocrystalline metals from our and other groups [129, 137, 138].  
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Figure 8.10 MEP and activation volume of grain boundary climb in Au. (a) Stress 

dependent minimum energy paths for different stresses. (b) Energy barrier versus applied 

stress, giving the corresponding activation volume of 1.5b3. 

8.4 Discussion 

 To understand the above results, we note that Conrad [137] has developed an 

illuminating theoretical framework on the grain size dependence of activation volume, 

which gives a remarkable scaling relation similar to the classical Hall-Petch relationship 

for the grain size dependence of yield strength. To account for the grain size effect, Conrad 

used a dislocation pile-up model to connect the applied stress to a polycrystal with the local 

stress triggering a strength/rate-controlling process at the grain boundary (GB). He showed 

that the following Hall-Petch-type relation [137]   

  
2

* * 1/2

0 GB GB

1 1

*

M b

V V V K d


= +  (8.9) 

where *V  denotes the measured activation volume of a polycrystal; *

0V  represents the 

activation volume of an intragranular process such as the stress-driven, thermally activated 

cutting of forest dislocations inside grains; *

GBV  represents the activation volume of an 

a b
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intergranular process associated with GB sliding. In Eq. (8.9), M is the Taylor factor,   is 

the shear modulus, b  is the Burgers vector length, 
GBK  is the same Hall-Petch coefficient 

in the Hall-Petch relation of grain size-dependent yield strength and it is known to be 

dictated by the critical local stress at the GB for triggering the strength/rate-controlling 

process associated with GB deformation. The above Hall-Petch-type relation of grain size-

dependent activation volume in Eq. (8.9) has been verified by previous experimental 

studies such as nanotwinned and nanocrystalline Cu [142]. However, the measured 

activation volumes of ultra-fine-grained Al and Au, as discussed earlier, fall into two 

different characteristic groups. Namely, one group of activation volumes are larger than  

315b  and mostly between 320b  to 330b  (e.g., ultrafine-grained Al with the average grain 

size of 74 nm), while another group of activation volumes are between 31b to 310b  (e.g., 

ultrafine-grained Al with the average grain size of 47 nm). These differences cannot be 

simply attributed to the effect of grain sizes that only have relatively small changes in our 

ultra-fine-grained samples 

 To resolve the above puzzle and based on our FENEB calculations of activation 

volumes of GB-mediated processes, we generalize the Conrad’s relation in Eq. (8.9) to 

incorporate two competing rate-controlling processes at the GB. 

  
2 2

* * 1/2 * 1/2

0 GB-I GB-I GB-II GB-II

1 1

*

M b M b

V V V K d V K d

 
= + +  (8.10) 

where *

GB-IV  and *

GB-IIV represent the activation volume of two different types of intergranular 

process, respectively; 
GB-IK  and 

GB-IIK  are the respective Hall-Petch coefficient that 

depends on the critical local stress at the GB for triggering the respective strength/rate-
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controlling process associated with GB deformation. For ultrafine-grained and 

nanocrystalline samples with the same grain size, the change of operating flow stresses 

(along with the corresponding change of strain rate) can lead to activation of the 

rate/strength-controlling processes with different activation volumes. Equation (8.10) can 

capture this effect because 
GB-IK  and 

GB-IIK  have characteristically different values due to 

their dependence on the critical local stress to trigger the corresponding GB process. 

8.5 Summary 

Our in situ TEM/MEMS-based measurements and FENEB calculations have revealed 

two characteristic groups of activation volume ( * 315V b  and 3 * 31 10b V b  ), which signify 

an active competition between the displacive and diffusive types of rate-controlling GB 

mechanism in ultra-fine grained and nanocrystalline metals. The most important finding is 

that the diffusive type of rate-controlling GB mechanism can operate at room temperature 

in ultrafine-grained and nanocrystalline metals, due to their prevailing high stresses. This 

key finding is supported by in situ HRTEM observations.  
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CHAPTER 9. EXTRA HARDENING IN NANOGRAINED 

METAL COMPOSITES 

9.1 Introduction 

 High-performance materials with high strength and ductility are desirable for 

promoting weight saving and energy efficiency, but may unavoidably suffer from harsh 

environment such as high loads and high temperatures [143-145]. The strengthening 

mechanisms in structural metals and alloys are built on a fundamental principle of 

hindering dislocation slip through the introduction of different types of obstacles, e.g., 

precipitates and grain boundaries [146]. However, these dislocation obstacles are 

energetically unfavorable that can be merged or recovered at elevated temperatures, 

leading to serious property degradation [147, 148]. Nanograined metals, for example, have 

been extensively investigated for high strength. However, they exhibit limited hardening 

ability and low thermal stability, bottlenecking the development and applications of this 

new materials family. The alloying approach by one [149] or multiple [150-152] elements 

has been proven effective to address the “strength-stability” trade-off limitations, but often 

comes with high cost and faces challenges of recyclability and sustainability [153]. 

Moreover, the alloying-based approach is principally difficult to change the brittle nature 

of nanocrystalline metals. A concurrent attainment of high strength, large tensile ductility 

and good thermal stability in metallic materials presently seems impossible. 

Nanotwinning is a promising way of achieving a combined increase of strength and 

ductility [154, 155]. However, the applicability of the twinning strategy is limited to 
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specific metallic systems with low stacking-fault energy (e.g., Cu[156], Ag[157]), and may 

be insufficient for general applications. Incorporation of e second phases into metal matrix, 

forming the so-called metal matrix composite (MMC), provides a feasible approach for 

strengthening and stabilizing nanostructured metals [158-160]. Nevertheless, particles are 

generally agglomerated and distributed along grain boundaries, which aggravate stress 

concentrations leading to premature failure [159, 161]. Therefore, the tensile properties of 

nanocrystalline composites obtained so far have been disappointing, as the high tensile 

strength at the gigapascal level is inevitably accompanied by a lower ductility.  

Here we report a general approach to overcome the above dilemma. Our design 

concept aims to create high-density intragranularly dispersed nanoparticles in nanograins 

for work hardening and microstructural stabilization. Numerous intragranular interfaces, 

with strong interfacial bonding, enable us not only to fully harness the strengthening effect 

of nanograins but also to activate multiple hardening mechanisms via dislocation-interface 

interactions leading to improved tensile ductility in nanograined metals. We show that this 

nanodispersion strategy is able to push the limit of strength-ductility trade-offs. We 

prepared the nanocrystalline copper (nc-Cu) and nickel (nc-Ni) matrix composites with 

ultra-dense (5.6×1023 m-3) nanocarbon (2.6±1.2 nm) embedded inside nanograins. In 

contrast to traditional precipitate/dispersion strengthening strategies, we find that strong 

carbon-metal bonding is generated due to the defective nature of nanocarbon. Such strong 

interfacial bonding enables a unique two-stage hardening mechanism in nanograined 

metals, leading to enhanced tensile ductility. The dense nanocarbon dispersion also exerts 

a strong pinning effect on grain coarsening. The resultant nc-Cu composites (0.8 vol.% C) 

exhibit an exceptional combination of high tensile strength (1252±22 MPa), uniform 
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elongation (13.3±0.9%), and thermal stability (stable up to 0.72Tm, where Tm is the melting 

temperature of Cu). The present “nanodispersion-in-nanograins” strategy is applicable for 

other metals, offering a new pathway to develop engineering materials with ultra-high 

strength and stability. 

 

9.2 Experiment 

We developed a process to achieve a uniformly dense dispersion of carbon 

nanoparticles in nanograined metals using reduced graphene oxide (RGO) flakes as a 

precursor. This process involves high-energy ball milling of metal nanoflakes with RGO 

flakes uniformly distributed on powder surfaces. The ball milling process is particularly 

effective for fragmenting RGO sheets and then mixing them with the metallic matrix, 

leading to a highly uniform dispersion of carbon nanoparticles inside the resultant 

nanocrystalline metals. Microstructure characterization by transmission electron 

microscopy (TEM) in Figure 1a-c indicates that as-synthesized nc-Cu is dispersed with 

carbon nanoparticles. The average grain size of nc-Cu is 63 ± 16 nm, Figure 1a. A high 

density of uniformly distributed carbon nanoparticles, up to a carbon concentration of 0.8 

vol.%, is shown by a high-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) image in Figure 1b and electron energy loss spectroscopy 

(EELS) C imaging map in Figure 1c. The statistical histogram in Figure 1d indicates that 

the carbon nanoparticles have an average diameter of 2.6 ± 1.2 nm and a number fraction 

of ~92% inside grains as opposed to at grain boundaries. Because of their extremely small 

sizes, we refer to these carbon nanoparticles as ultra-nano-carbon (unc). 
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Figure 9.1 High-resolution TEM and APT characterization of nc-Cu composites (0.8 vol.% 

C). a, High-resolution HAADF-STEM image of the local atomic structure near unc 

particles taken along the [011] zone axis, as confirmed by the fast Fourier transformation 

(FFT) pattern in the inset. b, FFT-filtered image of a. Variation of color from black to 

yellow indicates intensities from low to high. Inset is the C imaging map for this region, 

showing that the low-intensity regions correspond to unc (due to the sensitivity of STEM 

image to atomic number Z). Inset shows two unc particles determined from their FFT 

image (see C for clarity). c, Intensity profile along the line in b, where the decrease of atom 

intensity in the unc-contained region is observed. The yellow line, which represents 90% 

of the averaged atom intensity of the Cu matrix, is taken as the cutoff intensity to estimate 

the diameter (4.1 nm) of the unc particle. d, Strain maps of εxx and εyy in the unc-contained 

region in a. The reference zero strain region is chosen from the dislocation free region (the 

upper-left corner of a). No obvious strain concentration is observed near the unc particle 

(marked by a dashed-line circle). e-f, Side-view APT images of C background and unc 

particles reconstructed with the threshold iso-composition surface below and above 0.25 

at.% C, respectively. g, Enlarged region in f, showing a representative unc particle, along 

with atomic distributions of Cu (10% of Cu atoms are shown to reduce the background 

intensity) and other detected impurities, including Al, Fe and O. h, Statistical histograms 

showing the size distributions of unc particles (124 counts). The average particle size is 2.5 
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± 1.2 nm. Inset shows a top-view APT image of unc particles, indicating their nearly 

spherical shapes. 

 

High-resolution TEM and atom probe tomography (APT) were used to characterize 

unc particles (Figure 9.1). The HAADF-STEM image in Figure 9.1a indicates that the Cu-

C interface is coherent and no significant lattice distortion is present surrounding unc 

particles. The individual particle size can be determined under HAADF-STEM by 

combining the fast Fourier transformation (FFT) filtered image and the intensity variation 

of lattice fringes, Figure 9.1b and c. This is due to the sensitivity of STEM image to the 

atomic number (Z). Geometrical phase analysis (GPA) strain mapping further indicates the 

coherency of Cu-C interface as the atomic strains around C nanoparticles exhibit nearly 

uniform distributions, Figure 9.1d. APT measurements (Figure 9.1e-h) show that the 

number density of unc particles reaches a high mean value of ~5.6 × 1023 m-3. Most unc 

particles are nearly spherical in shape and show random distributions, as revealed by the 

side-view (Figure 9.1f) and top-view APT images (inset of Figure 9.1h). The average size 

of unc particles from APT probe is 2.5 ± 1.2 nm (Figure 9.1h), in agreement with TEM 

measurements. Some trace amounts of impurities (i.e., Fe, Al, O) are detectable but no 

large clusters are found (Figure 9.1g); few carbon atoms are dissolved in Cu matrix (0.01 

at.%, Figure 9.1e), due to a highly limited solubility of carbon in Cu. 

We conducted in situ scanning electron microscope (SEM) micro-tensile tests to 

measure the mechanical properties of nc-Cu composites. As-prepared tensile samples have 

a sufficiently large number of Cu nanograins (~200) through the cross section (1.3 μm × 

1.3 μm), thus minimizing the sample size effect on measured mechanical properties [162, 
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163]. Two methods, namely elastic strain calibration and dynamic image tracking, were 

employed to ensure the validity of strain measurement during tensile testing. Five samples 

of each type were used to ensure the reproducibility of measurements. Figure 9.2a shows 

the representative tensile stress-strain curves of pure nc-Cu (with the average grain size of 

73 ± 16 nm), and two nc-Cu composites reinforced by 0.4 vol.% and 0.8 vol.% of unc 

particles, respectively. The reference nc-Cu has a yield strength (σy) of 660 ± 28 MPa, 

ultimate tensile strength (σu) of 776 ± 21 MPa, and elongation to failure (f) of 6.3% ± 

0.4%, which are consistent with those reported for bulk Cu samples with similar grain sizes 

[164]. For our nc-Cu composites, σy increases to 765 ± 32 MPa and 890 ± 21 MPa for the 

carbon volume fraction of 0.4% and 0.8%, respectively. Beyond plastic yielding, nc-Cu 

composites are further work-hardened until failure, giving the large σu of 995 ± 11 MPa 

and 1252 ± 22 MPa for 0.4 vol.% and 0.8 vol.% of unc, respectively, with the 

corresponding large uniform elongation (UE, u) of 10.6% ± 0.8% and 13.3% ± 0.9%. The 

σy of 0.8 vol.% of this unc sample is ~92% higher than that predicted from the Hall-Petch 

relation for Cu [165], and its σu approaches the strength limit of 

nanocrystalline/nanotwinned Cu [166] when the grain size/twin spacing is extremely small 

(~10 nm) [167, 168].  
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Figure 9.2 Tensile and thermal properties of nc-Cu composites. a, Representative tensile 

true stress-strain curves for pure nc-Cu and nc-Cu composites (with 0.4 vol.% and 0.8 

vol.% C, respectively). All tensile tests were performed at a strain rate of 5×10-4 s-1 and 

room temperature. The strains at which necking occurs were identified during the in situ 

scanning electron microscopy (SEM) deformation processes and marked with an open 

triangle on each curve. The inset shows the remarkable improvement of yield strength and 

electrical conductivity of nc-Cu composites over pure nc-Cu. b, Experimentally measured 

strain hardening rate dσ/dε (with σ and ε being the true stress and true strain, respectively) 

for nc-Cu composites and nc-Cu. Inset shows the strain hardening exponent (n = 

d(lnσ)/d(lnɛ)) as a function of strain. c, Thermal stability of nc-Cu composites: cumulative 

area fraction of grain size of the nc-Cu composite (0.8 vol.% C) annealed at various 

temperatures (873 K and 973 K) for 1h, in comparison with that of the reference nc-Cu 

annealed at 673 K for 1h. Inset shows pronounced grain growth in nc-Cu, as indicated by 

the ion-channeling cross-sectional image. In contrast, no grain growth was observed in nc-

Cu composites after annealing at 973 K for 1h. d, Yield strength versus uniform elongation 

of nc-Cu composites as compared with those of other Cu-based materials, including 

heterogeneous Cu, nanostructured Cu alloys and nanotwinned (nt) Cu. Superior properties 

a

dc

b
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are observed for nc-Cu composites. Sources of the references are cited in the 

supplementary materials.  

 

9.3 Atomistic Modeling 

 We used LAMMPS [169] to perform molecular dynamics simulations for studying 

interactions between dislocations and unc particles. The atomic interactions in the Cu-C 

system were modelled by combining the embedded atom method (EAM) potential [130] 

for Cu-Cu interaction, the Tersoff potential [170] for C-C interaction, and the Lennard-

Jones potential [171] for Cu-C interaction. A slab of face-centred cubic Cu single crystal 

was constructed with the dimension of 46.3 nm × 63.2 nm × 10.7 nm. The corresponding 

crystal orientation was X-[110], Y-[001], and Z-[11̅0]. Periodic boundary conditions were 

imposed in both the X and Z directions, while the Y surface of the slab was free to relax. 

A spherical C particle with a diameter d of 2.5 nm was embedded in the simulation cell, 

representing a periodic array of C particles with a spacing of 10.7 nm along the Z direction 

due to the periodic boundary condition imposed. This setup represents an equivalent C 

concentration of 0.8% as studied in our experiment. Both the crystalline C particle with a 

diamond cubic lattice structure and the amorphous C particle with a disordered atomic 

structure were modelled. Different C particle sizes and the effect of misfit strains between 

the C particle and Cu matrix were studied. Either one or two 60° dislocations of the 

1/2〈110〉{111} type were embedded in the simulation cell; the dislocation line was 

aligned along the Z-direction of [11̅0] and located on a {111} slip plane intersecting the C 

particle. To control the position and character of a dislocation embedded in the simulation 

cell, we first imposed the atomic displacements of this dislocation according to its elastic 
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solution and then relaxed the simulation cell to obtain a dissociated full dislocation 

consisting of a pair of leading and trailing partials with a stacking fault in between. The 

simulation cell was subjected to an imposed tensile strain up to 0.1% along the X-direction, 

which was sufficient to drive the dislocation(s) to bypass the periodic array of C particles. 

We obtained similar results by both molecular statics simulations (i.e., a sequence of 

energy minimization by the conjugate gradient method) and molecular dynamics 

simulations at low temperatures. The von Mises equivalent atomic strain field in Figure 

9.3d-g was produced by OVITO [131]. 

 

Figure 9.3 Hardening mechanisms in nc-Cu composites. a, HAADF-STEM image of the 

gauge region (marked with an “X” in the inset image) of a deformed nc-Cu composite (0.8 

vol.% C) after tensile straining. Two representative regions (I and II) containing a small 

and large unc particle, respectively, are chosen for microstructural analysis. b, HAADF-

STEM image of region I and corresponding strain maps (εxx and εyy). The zero-strain 

reference was chosen in the lower-left corner of this image. Residual compressive strain is 

found around the C particle. c, A high-resolution HAADF-STEM image shows atomic 

structure of region II, superimposed with the dilatation strain (εxx) map of the same region. 
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Three dislocation cores can be clearly identified at the C nanoparticle region (indicated by 

the yellow dashed circle), suggestive of a particle blockage mechanism. The Burgers circuit 

analysis (inset) of one dislocation indicates a Burgers vector of 1/2[011] (i.e., a full 

dislocation). d, Snapshots of MD simulations for the successive dislocation bypassing 

across a periodic array of unc particles aligned in the out-of-plane direction. The particle 

size is 2.5 nm and the particle spacing is 10.7 nm. Each dislocation dissociates into a pair 

of leading and trailing partials with a stacking fault in between. Atomic Mises strain maps 

in d reveal the local strain fields around dislocations and unc particles as well as long-range 

elastic interactions between dislocations. e-h, Magnified MD snapshots showing the three-

dimensional dislocation structure near a unc particle during the pinning of the leading 

partial (e), and the denning of the trailing partial (f). g, Nucleation of a dislocation loop 

from the unc particle on the primary slip system (s. s.) with the largest resolved shear stress. 

The two half loops form on parallel {111} slip planes. h, Nucleation of a dislocation loop 

on the secondary slip system with a lower resolved shear stress. Atoms in e-h are colored 

through common neighbor analysis, so that atoms in the perfect lattice are invisible. i, 

Stress-strain responses obtained from the two-stage hardening model, in comparison with 

the corresponding experimental results. 

Because of strong covalent C-C bonding, unc particles possess high resistance to 

plastic shear, thus inhibiting direct cutting of these particles by dislocations. Moreover, 

they can strongly hinder dislocation bypassing between them, due to the considerably small 

spacing of ~10 nm between unc particles. To reveal these effects, MD results in Figure 

9.3d show the dynamic processes of two 1/2〈110〉{111} full dislocations (marked as 1st 

and 2nd) that sequentially bypass a periodic array of unc particles embedded in a Cu matrix. 

The spherical unc particles have a diameter d of 2.5 nm and a spacing l of 10.7 nm, giving 

an equivalent C concentration of about 0.8 vol.%, as studied in our experiment. Atomic 

strain maps in Figure 9.3d reveal the strong pinning effects of unc particles on the two 

dislocations. Specifically, it shows that the obstructed 1st dislocation exerts a strong back 

stress to the 2nd dislocation, due to their long-range elastic interaction manifested as 

interconnected light-green strain contours. This back stress opposes the motion of the 2nd 

dislocation, giving rise to a strong back-stress hardening effect arising from unc particles 

[172]. Figure 9.3e-f present the corresponding three-dimensional process where the 1st 
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dislocation bypasses a representative unc particle via the Orowan mechanism [136]. After 

bypassing, an interface dislocation loop is left around the unc particle, producing a shell of 

high strain contour (in red). Similar MD results were obtained for both amorphous and 

diamond-cubic unc particles, as well as for random distributions of unc particles. These 

Orowan loops are geometrically necessary dislocations (GNDs) for accommodating the 

local deformation incompatibility around unc particles [173, 174]. An increase of applied 

load raises the density of GNDs, thereby increasing the local stress concentration around 

unc particles. To release these stresses, additional GND loops nucleate on other primary 

slip planes (Figure 9.3g) as well as on secondary slip planes (Figure 9.3h). These GND 

loops tend to spread out between unc particles with increasing load and thus impede the 

movement of dislocations on primary planes [173, 174], contributing to the strong work 

hardening of nc composites.  

 

9.4 Work Hardening Model 

Based on the above experimental and MD results, we developed a two-stage work 

hardening model to analyze the experimental stress-strain responses, in order to determine 

the major sources of extra work hardening of nc-Cu composites relative to nc-Cu.  

 We used a classical rate-dependent plasticity model to analyze the experimental stress-

strain response. The strain rate 
e p  = +  is decomposed into elastic strain rate 

e  and 

plastic strain rate 
p . The stress rate can be calculated from Young’s modulus E and elastic 

strain rate 
eE = . The normal stress/strain and the shear stress/strain are related through 
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the Taylor factor M, M = and p M = . The density of geometrically necessary 

dislocations from dispersed particles is G
pf

bd


 = , where f is the volume fraction of unc 

particles, b is the Burgers vector length, and d is the unc particle size. 

The plastic shear rate p  is determined by the resolved shear stress   and the total slip 

resistance 
T . 

 

1

0

T

m
p p 

 


 
=  

 
 

The total slip resistance can be expressed as 
UNC UNC

T y I II   = + + , where y  is the shear 

resistance for pure nc-Cu. The rapidly growing back stress 
UNC

I  due to the GNDs is 

expressed as, 

 ( )UNC UNC UNC

I I,sat I

pk   = −  

where k characterizes the back stress hardening rate and 
UNC G

I,sat 1 4%b D   =  is the saturated 

back stress value at 4% plastic strain. The resistance from stage II hardening 
UNC

II  is 

estimated as UNC G

II 2 b   = . The stress strain curves were calculated under the applied 

strain rate 
3 11 10  s− −  and the integration increment is 0.001 s. The parameter used in this 

model are listed below. 
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Table 9.1 Parameters used in the two-stage hardening model. 

M 0

p  m k 1  
2  y  

2.7 3 11 10  s− −  0.06 74 MPa 0.6 0.35 780 MPa 

 

During stage I hardening at small strains, nc-Cu composites exhibit markedly higher 

hardening rates (Figure 9.2b), quickly raising yield strengths by significant amounts 

relative to nc-Cu. According to Ashby [173], the density of GNDs from dispersed particles, 

𝜌𝐺, increases with plastic shear strain 𝛾 by 𝜌𝐺~𝑓𝛾/(𝑏𝑑), where f is the volume fraction of 

unc particles, b is the Burgers vector length, and d is the unc particle size. Strong bonding 

at Cu-C interfaces hinders the relaxation of GNDs around unc particles. As a result, the 

partially relaxed GNDs collectively exert a large long-range back stress to the strength-

limiting process, which could involve the activation of dislocation sources near GBs [175]. 

To account for this strong hardening effect, the total slip resistance on the primary slip 

plane 𝜏T  is expressed as 𝜏T = 𝜏y + 𝜏I
UNC, where 𝜏y is the shear resistance of the strength-

limiting process for pure nc-Cu; 𝜏I
UNC is the back stress from the GNDs on the primary slip 

planes arising from unc particles.  𝜏I
UNC rises quickly with increasing 𝜌𝐺  in a strong 

nonlinear manner, and becomes saturated at the tensile strain of a few percent. Afterwards, 

stage II hardening sets in, due to nucleation and spread of additional GNDs on secondary 

slip planes. To accounts for this additional GNDs hardening effect, the total slip resistance 

is expressed as 𝜏T = 𝜏y + 𝜏I
UNC + 𝜏II

UNC , where 𝜏I
UNC  has become saturated; 𝜏II

UNC  is the 

slip resistance from additional GNDs and increases with a lower rate than stage I due to 

the spread of these additional GNDs around unc particles [173]. As shown in Figure 9.3i, 
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the numerical results from the above two-stage hardening model agree closely with the 

experimentally measured stress-strain responses of nc-Cu composites and nc-Cu. Hence, 

𝜏I
UNC and 𝜏II

UNC  reflect the major sources of extra work hardening in nc-Cu composites 

relative to pure nc-Cu. 

9.5 Summary 

 By harnessing the ultra-dense and strong metal-carbon interfaces, we show that the 

incorporation of unc into nanocrystalline metals is an effective approach to achieve 

exceptional work hardening and high ductility, in conjunction with improved thermal 

stability. These combined properties are superior to those from other nanostructuring 

strategies including GB engineering [74], hierarchical microstructuring [3], and 

nanotwinning [176, 177]. Hence, nanodispersion of unc in nanograins represents a novel 

nanostructuring strategy that may be widely applicable to make ultrastrong and stable 

metallic materials, which would improve energy savings and system performance in 

engineering applications. 
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CHAPTER 10. CONCLUSION 

 Heterogeneous metallic systems often exhibit exceptional combinations of strength and 

ductility. To understand the mechanics of heterogeneous metallic systems, we have 

developed a unified framework in this thesis to elucidate the effects of mechanical 

heterogeneities arising from structural heterogeneities. This framework resides on (i) the 

large RVE method, which is centered on the evolution of back-stresses and forward-

stresses, and (ii) the small RVE method, which is focused on the effect of strain gradient 

on extra hardening. We applied this unified framework to the heterogeneities of different 

length scales: microscale, macroscale and nanoscale heterogeneities. 

 We have investigated the microscale heterogeneities in AM alloys in terms of two types 

of internal stresses, i.e., type-II intergranular internal stresses and type-III intragranular 

internal stresses. The effect of type-II intergranular internal stresses is shown to arise from 

the elastic anisotropy of grain crystals and is understood by a micromechanics model. In 

particular, we have derived a general analytic solution of grain-level lattice strains and 

diffraction elastic constants for an elastically isotropic polycrystal using a self-consistent 

micromechanics model. This solution is applicable to a broad class of “texture-free” 

polycrystals with cubic crystal symmetry and only requires an input of the three 

independent elastic constants of a cubic crystal.  

 We have combined experimental and modelling studies to analyze the microscale 

residual stresses in AM 316L steels, which have profound impacts on the yielding and 

strain hardening behavior of as-printed stainless steel. In situ SXRD experiments provide 

a powerful approach to unravel the residual lattice strains and associated Type II 
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intergranular residual stresses for individual grain families in as-printed stainless steel as 

well as their evolution under applied loads.  The combined SXRD and modeling results 

elucidate the effects of elastic anisotropy, progressive yielding and strain hardening on the 

evolution of lattice strains and associated Type II intergranular residual stresses in different 

grain families. On the other hand, a pronounced tension-compression asymmetry of yield 

strength is observed from as-printed stainless steel, together with an asymmetric work 

hardening behavior. Such tension-compression asymmetries are shown to be governed by 

the back stresses and associated Type III intragranular residual stresses, which arise from 

heterogeneous dislocation distributions that can be strongly influenced by both L-PBF 

processing and mechanical loading. Our CPFE simulations show that the former dictates 

the tension-compression asymmetry of yield strength in as-printed samples, while the latter 

can quickly build up during loading and thereby affect both the yield strength and strain 

hardening responses. Altogether, our results demonstrate the quantitative and mechanistic 

connections between the microscale residual stresses and mechanical behavior of AM 

stainless steel. 

 We have extended the micromechanics model and CPFE model to another AM metallic 

system of dual-phase eutectic high-entropy alloy. The micromechanics model is used to 

inversely determine the elastic constants of the FCC and BCC nanolamellae in the eutectic 

high-entropy alloy, on the basis of lattice strain data from neutron diffraction experiments. 

A dual-phase CPFE is developed to capture the stress partition and work hardening 

behaviors of the dual phase materials. It is shown that both BCC and FCC nanolamellae 

exhibit high strain hardening for a fairly large range of tensile strains, but BCC 

nanolamellae make greater contributions to the overall high strain hardening responses than 
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FCC nanolamellae, thereby promoting the overall high tensile ductility of the present 

EHEA. Hence, the AM dual-phase eutectic high-entropy alloy enables the high strain 

hardening behavior in its constituent BCC nanolamellae that is hitherto difficult to achieve 

in single-phase BCC nanostructures. 

 For the macroscale heterogeneities, we have chosen the gradient nanotwinned Cu as 

the model system to study the effect of structural gradient on its extra hardening response. 

We have developed a 3D gradient theory of plasticity by incorporating the strengthening 

effect of plastic strain gradient into the classical J2 flow theory. Numerical simulations 

based on a simplified 1D gradient theory show the dominant effects of gradient plasticity 

on GNT Cu under uniaxial tension, including progressive yielding, gradient distributions 

of plastic strain and extra flow resistance. We find that the extra strength depends on the 

hardness gradient g  (being three times strength gradient 
sg ) through Eq. (5.15). Results 

from 3D gradient plasticity finite element simulations confirm 1D numerical results and 

further reveal the 3D distribution of non-axial stresses despite their negligible role in the 

overall tensile response of GNT Cu. Predictions of the optimal gradient structures and 

associated gradient strength distributions suggest possible routes for achieving the 

maximum strength of gradient nanostructures in GNT Cu. 

 We have developed a mechanistically-based theory of strain gradient plasticity. Our 

combined experimental and modeling results have identified the primary source of extra 

strengthening in GNT Cu as the extra back stress arising from nanotwin structure gradient. 

The extra back stress is induced by the GNDs associated with BCDs that only form in 

gradient nanotwin structures. An increase in nanotwin structure gradient can lead to a 
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substantial increase in plastic strain gradient giving rise to a high extra strength. In contrast, 

the strengthening effect of HNT Cu largely comes from a different type of back stress 

originated from incompatible deformation between the matrix and nanotwins. Such back 

stress is enhanced with decreasing twin thickness. The effective stress is much less 

sensitive to the geometry of nanotwins in both GNT and HNT Cu. Altogether, these results 

underscore the predominant strengthening effect of the extra back stress arising from 

gradient structure, and thus point to a “going for nano” strategy for further enhancing the 

strength of GNT Cu by a simultaneous decrease of nanotwin thickness and increase of 

nanotwin gradient. This strategy requires innovations in material processing to push the 

limit of attainable nanostructure geometry in the future. 

 For the nanoscale heterogeneities, we have used in situ TEM MEMS-based straining 

experiments, combined with MD simulations, to study deformation-induced grain growth 

while also investigating how the local stress induced by necking promotes GB migration. 

The results of these experiments indicate that GB migration is primarily stress-induced, as 

opposed to thermally-driven GB migration during high temperature annealing or creep. 

MD simulations utilized a novel coloring scheme to track GB motion over time, which 

yielded qualitative agreement with experimental observations of significant GB migration 

leading to grain growth. MD simulations further complement in situ experiments by 

uncovering the underlying atomic processes of grain growth and GB migration that are not 

directly visible through TEM. Altogether, these results underscore the important role of 

stress-driven grain growth in plastically deforming nanocrystalline metals, particularly in 

regions with large localized deformation. 
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 We have combined in situ TEM/MEMS-based measurements and FENEB calculations 

to reveal two characteristic groups of activation volume ( * 315V b  and 3 * 31 10b V b  ), 

which signify an active competition between the displacive and diffusive types of rate-

controlling GB mechanism in ultrafine-grained and nanocrystalline metals. The most 

important finding is that the diffusive type of rate-controlling GB mechanism can operate 

at room temperature in ultrafine-grained and nanocrystalline metals, due to their prevailing 

high stresses.   

 Lastly, we have investigated the monodispersed carbon nanoparticles in nanograined 

Cu. We show that the incorporation of carbon nanoparticles into nanocrystalline metals is 

an effective approach to achieve exceptional work hardening leading to high ductility, in 

conjunction with improved thermal stability. These combined properties are superior to 

other nanostructuring strategies including GB engineering, hierarchical microstructuring, 

and nanotwinning. Hence, nanodispersion of carbon nanoparticles in nanograins represents 

a novel nanostructuring strategy that may be widely applicable to make materials with 

ultrahigh strength and stable nanostructures, which would improve energy savings and 

system performance in engineering applications. 

 Overall, this thesis research provides a new framework to bridge structural 

heterogeneities and mechanical heterogeneities in several emergent heterogeneous material 

systems through constitutive modeling and atomistic simulations. Coupled with novel 

material processing, characterization, and testing, the modeling and simulation results offer 

quantitative predictions and mechanistic insights toward the design of heterogeneous 

metallic materials with improved combinations of strength and ductility. This framework 

could be further applied to other heterogeneous metallic systems, such as gradient 
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nanograins, transmodal grains and other nanoprecipitate-hardened materials. A 

fundamental understanding of mechanics of heterogeneous metallic systems can open up 

opportunities of harnessing structural and mechanical heterogeneities for achieving 

outstanding mechanical properties of engineering materials.  

  

  



 

 197 

APPENDIX A. ELASTIC PROPERTIES OF REPRESENTATIVE 

CUBIC POLYCRYSTALS  

Table A1. Elastic properties of representative cubic polycrystals. The single-crystal elastic 

constants of 11C , 12C  and 44C  are taken from Simmons and Wang [38], except for those of 

stainless steel (SS) 316L from Clausen et al. [15]; the effective elastic consonants K  and   for 

elastically isotropic polycrystals are calculated from Eq. (2.17) and Eq. (2.18), respectively. 

 

Material Structure 11 (GPa)C   12 (GPa)C   44 (GPa)C   (GPa)K   (GPa)   A  

Ag FCC 124.00 93.40 46.10 103.60 30.20 3.01 

Al FCC 107.30 60.90 28.30 76.37 26.15 1.22 

Au FCC 192.90 163.80 41.50 173.50 27.89 2.85 

Cu FCC 168.40 121.40 75.40 137.07 48.17 3.21 

Ir FCC 580.00 242.00 256.00 354.67 216.97 1.51 

Ni FCC 246.50 147.30 124.70 180.37 86.90 2.51 

Pb FCC 49.50 42.30 14.90 44.70 8.79 4.14 

Pd FCC 227.10 176.00 71.70 193.03 48.28 2.81 

Pt FCC 346.70 250.70 76.50 282.70 63.69 1.59 

Cr BCC 339.80 58.60 99.00 152.33 113.89 0.70 

Fe BCC 231.40 134.70 116.40 166.93 82.45 2.41 

K BCC 4.14 3.31 2.63 3.59 1.33 6.34 
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Table A1 continued 

Li BCC 13.50 11.44 8.78 12.13 4.05 8.52 

Mo BCC 440.80 172.40 121.70 261.87 126.56 0.91 

Na BCC 6.15 4.96 5.92 5.36 2.56 9.95 

Nb BCC 240.20 125.60 28.20 163.80 37.64 0.49 

Ta BCC 260.20 154.50 82.60 189.73 69.23 1.56 

V BCC 228.00 118.70 42.60 155.13 47.09 0.78 

W BCC 522.40 204.40 160.80 310.40 160.08 1.01 

C DC 949.00 151.00 521.00 417.00 468.14 1.31 

Ge DC 128.40 48.20 66.70 74.93 54.45 1.66 

Si DC 166.70 64.40 79.80 98.50 66.83 1.56 

CuZn FCC 129.04 109.56 82.45 116.05 38.16 8.47 

Cu3Au FCC 190.69 138.30 66.31 155.76 46.29 2.53 

NiAl BCC 211.55 143.23 112.11 166.00 70.83 3.28 

SS 316L FCC 204.60 137.70 126.20 160.00 75.64 3.77 

 

  



 

 199 

REFERENCES 

[1]. M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of 

Nanocrystalline Materials. Progress in Materials Science, 2006. 51(4): 427-556. 

[2]. R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced 

Properties. Nature Materials, 2004. 3(8): 511-516. 

[3]. E. Ma and T. Zhu, Towards Strength–Ductility Synergy through the Design of 

Heterogeneous Nanostructures in Metals. Materials Today, 2017. 20: 323-331. 

[4]. D. Dye, H.J. Stone, and R.C. Reed, Intergranular and Interphase Microstresses. 

Current Opinion in Solid State & Materials Science, 2001. 5(1): 31-37. 

[5]. C.J. Bayley, W.a.M. Brekelmans, and M.G.D. Geers, A Comparison of Dislocation 

Induced Back Stress Formulations in Strain Gradient Crystal Plasticity. 

International Journal of Solids and Structures, 2006. 43(24): 7268-7286. 

[6]. N. Fleck, M. Ashby, and J. Hutchinson, The Role of Geometrically Necessary 

Dislocations in Giving Material Strengthening. Scripta Materialia, 2003. 48(2): 

179-183. 

[7]. H. Mughrabi, Deformation-Induced Long-Range Internal Stresses and Lattice 

Plane Misorientations and the Role of Geometrically Necessary Dislocations. 

Philosophical Magazine, 2006. 86(25-26): 4037-4054. 

[8]. Y.M. Wang, T. Voisin, J.T. Mckeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, 

W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, Philip j. Depond, M.J. Matthews, 

A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical Stainless Steels 

with High Strength and Ductility. Nature Materials, 2018. 17(1): 63-71. 

[9]. Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Extra Strengthening and Work 

Hardening in Gradient Nanotwinned Metals. 2018. 362(6414): eaau1925. 

[10]. J.L. Bassani, Incompatibility and a Simple Gradient Theory of Plasticity. Journal 

of the Mechanics and Physics of Solids, 2001. 49(9): 1983-1996. 

[11]. Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, and L. Lu, Extra Strengthening and Work 

Hardening in Gradient Nanotwinned Metals. Science, 2018. 362(6414): 559. 

[12]. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics. 

Journal of Computational Physics, 1995. 117(1): 1-19. 

[13]. G.E. Ice, J.D. Budai, and J.W.L. Pang, The Race to X-Ray Microbeam and 

Nanobeam Science. Science, 2011. 334(6060): 1234-1239. 



 

 200 

[14]. A.J. Allen, M.T. Hutchings, C.G. Windsor, and C. Andreani, Neutron Diffraction 

Methods for the Study of Residual Stress Fields. Advances in Physics, 1985. 34(4): 

445-473. 

[15]. B. Clausen, T. Lorentzen, and T. Leffers, Self-Consistent Modelling of the Plastic 

Deformation of Fcc Polycrystals and Its Implications for Diffraction Measurements 

of Internal Stresses. Acta Materialia, 1998. 46(9): 3087-3098. 

[16]. B. Clausen, T. Lorentzen, M.a.M. Bourke, and M.R. Daymond, Lattice Strain 

Evolution During Uniaxial Tensile Loading of Stainless Steel. Materials Science 

and Engineering A, 1999. 259(1): 17-24. 

[17]. M.R. Daymond, M.a.M. Bourke, R.B. Vondreele, B. Clausen, and T. Lorentzen, 

Use of Rietveld Refinement for Elastic Macrostrain Determination and for 

Evaluation of Plastic Strain History from Diffraction Spectra. Journal of Applied 

Physics, 1997. 82(4): 1554-1562. 

[18]. M.R. Daymond, C.N. Tome, and M.a.M. Bourke, Measured and Predicted 

Intergranular Strains in Textured Austenitic Steel. Acta Materialia, 2000. 48(2): 

553-564. 

[19]. J.W.L. Pang, T.M. Holden, and T.E. Mason, The Development of Intergranular 

Strains in a High-Strength Steel. Journal of Strain Analysis for Engineering Design, 

1998. 33(5): 373-383. 

[20]. J.W.L. Pang, T.M. Holden, J.S. Wright, and T.E. Mason, The Generation of 

Intergranular Strains in 309h Stainless Steel under Uniaxial Loading. Acta 

Materialia, 2000. 48(5): 1131-1140. 

[21]. T.M. Holden, A.P. Clarke, and R.A. Holt, Neutron Diffraction Measurements of 

Intergranular Strains in Monel-400. Metallurgical and Materials Transactions A, 

1997. 28(12): 2565-2576. 

[22]. T.M. Holden, R.A. Holt, and A.P. Clarke, Intergranular Strains in Inconel-600 and 

the Impact on Interpreting Stress Fields in Beat Steam-Generator Tubing. Materials 

Science and Engineering A, 1998. 246(1-2): 180-198. 

[23]. Y.M. Wang, T. Voisin, J.T. Mckeown, J.C. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. 

Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. 

Matthews, A.V. Hamza, and T. Zhu, Additively Manufactured Hierarchical 

Stainless Steels with High Strength and Ductility. Nature Materials, 2018. 17(1): 

63-70. 

[24]. W. Chen, T. Voisin, Y. Zhang, J.-B. Florien, C.M. Spadaccini, D.L. Mcdowell, T. 

Zhu, and Y.M. Wang, Microscale Residual Stresses in Additively Manufactured 

Stainless Steel. Nature Communications, 2019. 10(1): 4338. 



 

 201 

[25]. F. Bollenrath, V. Hauk, and E.H. Muller, On the Calculation of Polycrystalline 

Elasticity Constants from Single Crystal Data. Zeitschrift Fur Metallkunde, 1967. 

58(1): 76-82. 

[26]. H. Behnken and V. Hauk, Calculation of the X-Ray Elasticity Constants (Xec) of 

the Polycrystal from the Elastic Data of the Single-Crystal for Arbitrary Crystal 

Symmetry. Zeitschrift Fur Metallkunde, 1986. 77(9): 620-626. 

[27]. R. Dewit, Diffraction Elastic Constants of a Cubic Polycrystal. Journal of Applied 

Crystallography, 1997. 30: 510-511. 

[28]. T. Gnaupel-Herold, P.C. Brand, and H.J. Prask, Calculation of Single-Crystal 

Elastic Constants for Cubic Crystal Symmetry from Powder Diffraction Data. 

Journal of Applied Crystallography, 1998. 31: 929-935. 

[29]. J.N. Hu, B. Chen, D.J. Smith, P.E.J. Flewitt, and A.C.F. Cocks, On the Evaluation 

of the Bauschinger Effect in an Austenitic Stainless Steel-the Role of Multi-Scale 

Residual Stresses. International Journal of Plasticity, 2016. 84: 203-223. 

[30]. Y. Wu, W.H. Liu, X.L. Wang, D. Ma, A.D. Stoica, T.G. Nieh, Z.B. He, and Z.P. 

Lu, In-Situ Neutron Diffraction Study of Deformation Behavior of a Multi-

Component High-Entropy Alloy. Applied Physics Letters, 2014. 104(5): 051910. 

[31]. R. Li, Q. Xie, Y.-D. Wang, W. Liu, M. Wang, G. Wu, X. Li, M. Zhang, Z. Lu, C. 

Geng, and T. Zhu, Unraveling Submicron-Scale Mechanical Heterogeneity by 

Three-Dimensional X-Ray Microdiffraction. Proceedings of the National Academy 

of Sciences of the United States of America, 2018. 115(3): 483-488. 

[32]. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, 

and Related Problems. Proceedings of the Royal Society of London Series A, 1957. 

241(1226): 376-396. 

[33]. J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids. 2006: Wiley. 

[34]. E. Kroner, Allgemeine Kontinuumstheorie Der Versetzungen Und 

Eigenspannungen. Archive for Rational Mechanics and Analysis, 1960. 4(4): 273-

334. 

[35]. D.-F. Li and N.P. O'dowd, On the Evolution of Lattice Deformation in Austenitic 

Stainless Steels—the Role of Work Hardening at Finite Strains. Journal of the 

Mechanics and Physics of Solids, 2011. 59(12): 2421-2441. 

[36]. L. Margulies, G. Winther, and H.F. Poulsen, In Situ Measurement of Grain Rotation 

During Deformation of Polycrystals. Science, 2001. 291(5512): 2392-2394. 

[37]. J.W. Hutchinson, Elastic-Plastic Behaviour of Polycrystalline Metals and 

Composites. Proceedings of the Royal Society of London Series A, 1970. 

319(1537): 247-272. 



 

 202 

[38]. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated 

Aggregate Properties: A Handbook. 2nd ed. 1971, Cambridge, Mass.: Cambridge, 

Mass., M.I.T. Press. 

[39]. Abaqus 6.14, User's Manual. SIMULIA, Providence, R.I., 2016. 

[40]. W.E. Frazier, Metal Additive Manufacturing: A Review. Journal of Materials 

Engineering and performance, 2014. 23(6): 1917-1928. 

[41]. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. 

Pollock, 3d Printing of High-Strength Aluminium Alloys. Nature, 2017. 549: 365-

369. 

[42]. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive Manufacturing of 

Metals. Acta Materialia, 2016. 117: 371-392. 

[43]. T. Debroy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. 

Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic 

Components–Process, Structure and Properties. Progress in Materials Science, 

2017. 92: 112-224. 

[44]. P.J. Withers and H.K.D.H. Bhadeshia, Residual Stress. Part 1 – Measurement 

Techniques. Materials Science and Technology, 2001. 17(4): 355-365. 

[45]. Y.M. Wang, R.T. Ott, A.V. Hamza, M.F. Besser, J. Almer, and M.J. Kramer, 

Achieving Large Uniform Tensile Ductility in Nanocrystalline Metals. Physical 

Review Letters, 2010. 105(21): 215502. 

[46]. J. Hu and A.C.F. Cocks, A Multi-Scale Self-Consistent Model Describing the 

Lattice Deformation in Austenitic Stainless Steels. International Journal of Solids 

and Structures, 2016. 78-79: 21-37. 

[47]. R.G. Li, Q.G. Xie, Y.D. Wang, W.J. Liu, M.G. Wang, G.L. Wu, X.W. Li, M.H. 

Zhang, Z.P. Lu, C. Geng, and T. Zhu, Unraveling Submicron-Scale Mechanical 

Heterogeneity by Three-Dimensional X-Ray Microdiffraction. Proceedings of the 

National Academy of Sciences of the United States of America, 2018. 115(3): 483-

488. 

[48]. M.A. Kumar, B. Clausen, L. Capolungo, R.J. Mccabe, W. Liu, J.Z. Tischler, and 

C.N. Tome, Deformation Twinning and Grain Partitioning in a Hexagonal Close-

Packed Magnesium Alloy. Nature Communications, 2018. 9: 4761. 

[49]. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, In 

Situ X-Ray Imaging of Defect and Molten Pool Dynamics in Laser Additive 

Manufacturing. Nature Communications, 2018. 9(1): 1355. 



 

 203 

[50]. L.F. Liu, Q.Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J.X. Li, Z. Zhang, Q. Yu, 

and Z.J. Shen, Dislocation Network in Additive Manufactured Steel Breaks 

Strength-Ductility Trade-Off. Materials Today, 2018. 21(4): 354-361. 

[51]. Z. Sun, X. Tan, S.B. Tor, and C.K. Chua, Simultaneously Enhanced Strength and 

Ductility for 3d-Printed Stainless Steel 316l by Selective Laser Melting. NPG Asia 

Materials, 2018. 10: 127-136. 

[52]. P. Mercelis and J.-P. Kruth, Residual Stresses in Selective Laser Sintering and 

Selective Laser Melting. Rapid prototyping journal, 2006. 12(5): 254-265. 

[53]. D.W. Brown, D.P. Adams, L. Balogh, J.S. Carpenter, B. Clausen, G. King, B. 

Reedlunn, T.A. Palmer, M.C. Maguire, and S.C. Vogel, In Situ Neutron Diffraction 

Study of the Influence of Microstructure on the Mechanical Response of Additively 

Manufactured 304l Stainless Steel. Metallurgical and Materials Transactions a-

Physical Metallurgy and Materials Science, 2017. 48A(12): 6055-6069. 

[54]. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, and W.E. King, An Experimental 

Investigation into Additive Manufacturing-Induced Residual Stresses in 316l 

Stainless Steel. Metallurgical and Materials Transactions a-Physical Metallurgy 

and Materials Science, 2014. 45A(13): 6260-6270. 

[55]. M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, and T.A. Newman, 

High Strength and Ductility of Additively Manufactured 316l Stainless Steel 

Explained. Metallurgical and Materials Transactions a-Physical Metallurgy and 

Materials Science, 2018. 49A(7): 3011-3027. 

[56]. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.-P. Kruth, A Study of 

the Microstructural Evolution During Selective Laser Melting of Ti–6al–4v. Acta 

Materialia, 2010. 58(9): 3303-3312. 

[57]. Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, and J. Lin, Study on the 

Microstructure, Mechanical Property and Residual Stress of Slm Inconel-718 Alloy 

Manufactured by Differing Island Scanning Strategy. Optics & Laser Technology, 

2015. 75: 197-206. 

[58]. Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, and Z.J. Shen, Intragranular Cellular 

Segregation Network Structure Strengthening 316l Stainless Steel Prepared by 

Selective Laser Melting. Journal of Nuclear Materials, 2016. 470: 170-178. 

[59]. J.R. Trelewicz, G.P. Halada, O.K. Donaldson, and G. Manogharan, Microstructure 

and Corrosion Resistance of Laser Additively Manufactured 316l Stainless Steel. 

Jom, 2016. 68(3): 850-859. 

[60]. Z. Sun, X. Tan, S.B. Tor, and W.Y. Yeong, Selective Laser Melting of Stainless 

Steel 316l with Low Porosity and High Build Rates. Materials & Design, 2016. 

104: 197-204. 



 

 204 

[61]. A.C. Lund, T.G. Nieh, and C.A. Schuh, Tension/Compression Strength Asymmetry 

in a Simulated Nanocrystalline Metal. Physical Review B, 2004. 69(1): 012101. 

[62]. M. Daymond, C. Tomé, and M. Bourke, Measured and Predicted Intergranular 

Strains in Textured Austenitic Steel. Acta Materialia, 2000. 48(2): 553-564. 

[63]. S.R. Kalidindi, C.A. Bronkhorst, and L. Anand, Crystallographic Texture 

Evolution in Bulk Deformation Processing of Fcc Metals. Journal of the Mechanics 

and Physics of Solids, 1992. 40(3): 537-569. 

[64]. X. Feaugas, On the Origin of the Tensile Flow Stress in the Stainless Steel Aisi 

316l at 300 K: Back Stress and Effective Stress. Acta Materialia, 1999. 47(13): 

3617-3632. 

[65]. M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, and E. Mazza, Cyclic Deformation 

Response of Aisi 316l at Room Temperature: Mechanical Behaviour, 

Microstructural Evolution, Physically-Based Evolutionary Constitutive Modelling. 

International Journal of Plasticity, 2013. 47: 143-164. 

[66]. S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, and N.A. Mara, 

High-Strength and Thermally Stable Bulk Nanolayered Composites Due to Twin-

Induced Interfaces. Nature Communications, 2013. 4(1): 1696. 

[67]. Y.T. Zhu and X. Liao, Retaining Ductility. Nature Materials, 2004. 3(6): 351-352. 

[68]. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural 

Development in Equiatomic Multicomponent Alloys. Materials Science and 

Engineering: A, 2004. 375-377: 213-218. 

[69]. L. Fan, T. Yang, Y. Zhao, J. Luan, G. Zhou, H. Wang, Z. Jiao, and C.-T. Liu, 

Ultrahigh Strength and Ductility in Newly Developed Materials with Coherent 

Nanolamellar Architectures. Nature Communications, 2020. 11(1): 6240. 

[70]. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. 

Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: 

Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 

2004. 6(5): 299-303. 

[71]. D. Zhang, W. Niu, X. Cao, and Z. Liu, Effect of Standard Heat Treatment on the 

Microstructure and Mechanical Properties of Selective Laser Melting 

Manufactured Inconel 718 Superalloy. Materials Science and Engineering: A, 

2015. 644: 32-40. 

[72]. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. 

Pollock, 3d Printing of High-Strength Aluminium Alloys. Nature, 2017. 

549(7672): 365-369. 



 

 205 

[73]. Y. Zhang, W. Chen, D.L. Mcdowell, Y.M. Wang, and T. Zhu, Lattice Strains and 

Diffraction Elastic Constants of Cubic Polycrystals. Journal of the Mechanics and 

Physics of Solids, 2020. 138: 103899. 

[74]. K. Lu, Stabilizing Nanostructures in Metals Using Grain and Twin Boundary 

Architectures. Nature Reviews Materials, 2016. 1(5): 16019. 

[75]. X. Wu and Y. Zhu, Heterogeneous Materials: A New Class of Materials with 

Unprecedented Mechanical Properties. Materials Research Letters, 2017. 5(8): 

527-532. 

[76]. T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile 

Plasticity in Gradient Nano-Grained Copper. Science, 2011. 331(6024): 1587-1590. 

[77]. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening 

by Gradient Structure. Proceedings of the National Academy of Sciences of the 

United States of America, 2014. 111(20): 7197-7201. 

[78]. M.F. Ashby, Deformation of Plastically Non-Homogenous Materials Philosophical 

Magazine, 1970. 21(170): 399-424. 

[79]. E.C. Aifantis, On the Microstructural Origin of Certain Inelastic Models. Journal 

of Engineering Materials and Technology-Transactions of the Asme, 1984. 106(4): 

326-330. 

[80]. N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson, Strain Graident 

Plasticity - Theory and Experiment. Acta Metallurgica et Materialia, 1994. 42(2): 

475-487. 

[81]. W.D. Nix and H.J. Gao, Indentation Size Effects in Crystalline Materials: A Law 

for Strain Gradient Plasticity. Journal of the Mechanics and Physics of Solids, 1998. 

46(3): 411-425. 

[82]. A.G. Evans and J.W. Hutchinson, A Critical Assessment of Theories of Strain 

Gradient Plasticity. Acta Materialia, 2009. 57(5): 1675-1688. 

[83]. S.P. Lele and L. Anand, A Large-Deformation Strain-Gradient Theory for Isotropic 

Viscoplastic Materials. International Journal of Plasticity, 2009. 25(3): 420-453. 

[84]. S.P. Lele and L. Anand, A Small-Deformation Strain-Gradient Theory for Isotropic 

Viscoplastic Materials. Philosophical Magazine, 2008. 88(30-32): 3655-3689. 

[85]. J. Li and A.K. Soh, Modeling of the Plastic Deformation of Nanostructured 

Materials with Grain Size Gradient. International Journal of Plasticity, 2012. 39: 

88-102. 



 

 206 

[86]. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, 

and H. Gao, Evading the Strength-Ductility Trade-Off Dilemma in Steel through 

Gradient Hierarchical Nanotwins. Nature Communications, 2014. 5: 3580. 

[87]. Z. Zeng, X. Li, D. Xu, L. Lu, H. Gao, and T. Zhu, Gradient Plasticity in Graident 

Nano-Grained Metals. Extreme Mechanics Letters, 2016. 8: 213-219. 

[88]. J. Li, G.J. Weng, S. Chen, and X. Wu, On Strain Hardening Mechanism in Gradient 

Nanostructures. International Journal of Plasticity, 2017. 88: 89-107. 

[89]. M.F. Ashby and D.R.H. Jones, Engineering Materials 1. 2012, Oxford, UK: 

Butterworth-Heinemann. 

[90]. X. Li, L. Lu, J. Li, X. Zhang, and H. Gao, Mechanical Properties and Deformation 

Mechanisms of Gradient Nanostructured Metals and Alloys. Nature Reviews 

Materials, 2020. 5(9): 706-723. 

[91]. Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Extra Strengthening and Work 

Hardening in Gradient Nanotwinned Metals. Science, 2018. 362(6414): eaau1925. 

[92]. R.O. Ritchie, The Conflicts between Strength and Toughness. Nature Materials, 

2011. 10(11): 817-822. 

[93]. O. Bouaziz, Y. Brechet, and J.D. Embury, Heterogeneous and Architectured 

Materials: A Possible Strategy for Design of Structural Materials. Advanced 

Engineering Materials, 2008. 10(1-2): 24-36. 

[94]. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, and Y. Zhu, Heterogeneous 

Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility. 

Proceedings of the National Academy of Sciences of the United States of America, 

2015. 112(47): 14501-5. 

[95]. M. Yang, Y. Pan, F. Yuan, Y. Zhu, and X. Wu, Back Stress Strengthening and 

Strain Hardening in Gradient Structure. Materials Research Letters, 2016. 4(3): 

145-151. 

[96]. C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. 

Gao, and Y.T. Zhu, Interface Affected Zone for Optimal Strength and Ductility in 

Heterogeneous Laminate. Materials Today, 2018. 21(7): 713-719. 

[97]. H. Mughrabi, On the Role of Strain Gradients and Long-Range Internal Stresses in 

the Composite Model of Crystal Plasticity. Materials Science and Engineering: A, 

2001. 317(1-2): 171-180. 

[98]. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for 

Strain Gradient Plasticity. Journal of the Mechanics and Physics of Solids, 1998. 

46(3): 411-425. 



 

 207 

[99]. X. Hu, S. Jin, H. Zhou, Z. Yin, J. Yang, Y. Gong, Y. Zhu, G. Sha, and X. Zhu, 

Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy. Metallurgical and 

Materials Transactions A, 2017. 48(9): 3943-3950. 

[100]. O.B. Pedersen, L.M. Brown, and W.M. Stobbs, The Bauschinger Effect in Copper. 

Acta Metallurgica, 1981. 29(11): 1843-1850. 

[101]. Z. Zeng, X. Li, D. Xu, L. Lu, H. Gao, and T. Zhu, Gradient Plasticity in Gradient 

Nano-Grained Metals. Extreme Mechanics Letters, 2016. 8: 213-219. 

[102]. Y. Zhang, Z. Cheng, L. Lu, and T. Zhu, Strain Gradient Plasticity in Gradient 

Structured Metals. Journal of the Mechanics and Physics of Solids, 2020. 140: 

103946. 

[103]. Y. Wang, G. Yang, W. Wang, X. Wang, Q. Li, and Y. Wei, Optimal Stress and 

Deformation Partition in Gradient Materials for Better Strength and Tensile 

Ductility: A Numerical Investigation. Sci. Rep., 2017. 7(1): 10954. 

[104]. Y. Huang, H. Gao, W. Nix, and J. Hutchinson, Mechanism-Based Strain Gradient 

Plasticity—Ii. Analysis. Journal of the Mechanics and Physics of Solids, 2000. 

48(1): 99-128. 

[105]. M.F. Ashby, The Deformation of Plastically Non-Homogeneous Materials. 

Philosophical Magazine, 1970. 21(170): 399-424. 

[106]. N. Fleck, G. Muller, M.F. Ashby, and J.W. Hutchinson, Strain Gradient Plasticity: 

Theory and Experiment. Acta Metallurgica et Materialia, 1994. 42(2): 475-487. 

[107]. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, 

and Y. Zhu, Mechanical Properties of Copper/Bronze Laminates: Role of 

Interfaces. Acta Materialia, 2016. 116: 43-52. 

[108]. H. Gao, Y. Huang, W. Nix, and J. Hutchinson, Mechanism-Based Strain Gradient 

Plasticity—I. Theory. Journal of the Mechanics and Physics of Solids, 1999. 47(6): 

1239-1263. 

[109]. K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz, Nanoscale Heterogeneity 

Promotes Energy Dissipation in Bone. Nature Materials, 2007. 6(6): 454-462. 

[110]. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. 

Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent Intermetallic 

Nanoparticles and Superb Mechanical Behaviors of Complex Alloys. Science, 

2018. 362(6417): 933-7. 

[111]. H. Wang, Z. You, and L. Lu, Kinematic and Isotropic Strain Hardening in Copper 

with Highly Aligned Nanoscale Twins. Materials Research Letters, 2018. 6(6): 

333-338. 



 

 208 

[112]. J. Dickson, J. Boutin, and L. Handfield, A Comparison of Two Simple Methods for 

Measuring Cyclic Internal and Effective Stresses. Materials Science and 

Engineering, 1984. 64(1): L7-L11. 

[113]. D. Viladot, M. Veron, M. Gemmi, F. Peiro, J. Portillo, S. Estrade, J. Mendoza, N. 

Llorca-Isern, and S. Nicolopoulos, Orientation and Phase Mapping in the 

Transmission Electron Microscope Using Precession-Assisted Diffraction Spot 

Recognition: State-of-the-Art Results. Journal of Microscopy, 2013. 252(1): 23-34. 

[114]. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, and L. Lu, Plastic Anisotropy and 

Associated Deformation Mechanisms in Nanotwinned Metals. Acta Materialia, 

2013. 61(1): 217-227. 

[115]. Q. Lu, Z. You, X. Huang, N. Hansen, and L. Lu, Dependence of Dislocation 

Structure on Orientation and Slip Systems in Highly Oriented Nanotwinned Cu. 

Acta Materialia, 2017. 127: 85-97. 

[116]. T. Zhu and H. Gao, Plastic Deformation Mechanism in Nanotwinned Metals: An 

Insight from Molecular Dynamics and Mechanistic Modeling. Scripta Materialia, 

2012. 66(11): 843-848. 

[117]. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals. Part I.—

Theoretical. Proceedings of the Royal Society of London, Series A, 1934. 145(855): 

362-387. 

[118]. U. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The 

Fcc Case. Progress in Materials Science, 2003. 48(3): 171-273. 

[119]. H. Zhou, X. Li, S. Qu, W. Yang, and H. Gao, A Jogged Dislocation Governed 

Strengthening Mechanism in Nanotwinned Metals. Nano Lett., 2014. 14(9): 5075-

80. 

[120]. Q. Pan, H. Zhou, Q. Lu, H. Gao, and L. Lu, History-Independent Cyclic Response 

of Nanotwinned Metals. Nature, 2017. 551(7679): 214-217. 

[121]. X. Huang and G. Winther, Dislocation Structures. Part I. Grain Orientation 

Dependence. Philosophical Magazine, 2007. 87(33): 5189-5214. 

[122]. N. Hansen, R.F. Mehl, and A. Medalist, New Discoveries in Deformed Metals. 

Metallurgical and Materials Transactions A, 2001. 32(12): 2917-2935. 

[123]. T. Ungár, L.S. Tóth, J. Illy, and I. Kovács, Dislocation Structure and Work 

Hardening in Polycrystalline Ofhc Copper Rods Deformed by Torsion and Tension. 

Acta Metallurgica, 1986. 34(7): 1257-1267. 

[124]. C.W. Sinclair, W.J. Poole, and Y. Bréchet, A Model for the Grain Size Dependent 

Work Hardening of Copper. Scripta Materialia, 2006. 55(8): 739-742. 



 

 209 

[125]. H. Mughrabi, Dislocation Wall and Cell Structures and Long-Range Internal-

Stresses in Deformed Metal Crystals. Acta Metallurgica, 1983. 31(9): 1367-1379. 

[126]. J.L. Chaboche, Time-Independent Constitutive Theories for Cyclic Plasticity. 

International Journal of Plasticity, 1986. 2(2): 149-188. 

[127]. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and Ductility of Ultrafine 

Grained Aluminum and Iron Produced by Arb and Annealing. Scripta Materialia, 

2002. 47(12): 893-899. 

[128]. S. Gupta and O.N. Pierron, A Mems Tensile Testing Technique for Measuring True 

Activation Volume and Effective Stress in Nanocrystalline Ultrathin Microbeams. 

Journal of Microelectromechanical Systems, 2017. 26(5): 1082-1092. 

[129]. S. Gupta, S. Stangebye, K. Jungjohann, B. Boyce, T. Zhu, J. Kacher, and O.N. 

Pierron, In Situ Tem Measurement of Activation Volume in Ultrafine Grained 

Gold. Nanoscale, 2020. 12(13): 7146-7158. 

[130]. Y. Mishin, M. Mehl, D. Papaconstantopoulos, A.F. Voter, and J. Kress, Structural 

Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-

Atom Calculations. Physical Review B, 2001. 63(22): 224106. 

[131]. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with 

Ovito–the Open Visualization Tool. Modelling and Simulation in Materials Science 

and Engineering, 2009. 18(1): 015012. 

[132]. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate 

Dependence of Surface Dislocation Nucleation. Physical Review Letters, 2008. 

100(2): 025502. 

[133]. J.W. Cahn, Y. Mishin, and A. Suzuki, Coupling Grain Boundary Motion to Shear 

Deformation. Acta Materialia, 2006. 54(19): 4953-4975. 

[134]. P. Hänggi, P. Talkner, and M. Borkovec, Reaction-Rate Theory: Fifty Years after 

Kramers. Reviews of Modern Physics, 1990. 62(2): 251-341. 

[135]. G. Caillard and J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity. 

2003: Pergamon. 

[136]. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity. 2008, New York: 

Oxford Unversity Press Inc. 

[137]. H. Conrad, Plastic Deformation Kinetics in Nanocrystalline Fcc Metals Based on 

the Pile-up of Dislocations. Nanotechnology, 2007. 18(32): 325701. 

[138]. N.J. Karanjgaokar, C.S. Oh, J. Lambros, and I. Chasiotis, Inelastic Deformation of 

Nanocrystalline Au Thin Films as a Function of Temperature and Strain Rate. Acta 

Materialia, 2012. 60(13): 5352-5361. 



 

 210 

[139]. G. Henkelman, B.P. Uberuaga, and H. Jónsson, A Climbing Image Nudged Elastic 

Band Method for Finding Saddle Points and Minimum Energy Paths. The Journal 

of Chemical Physics, 2000. 113(22): 9901-9904. 

[140]. T. Zhu, J. Li, A. Samanta, H.G. Kim, and S. Suresh, Interfacial Plasticity Governs 

Strain Rate Sensitivity and Ductility in Nanostructured Metals. Proceedings of the 

National Academy of Sciences, 2007. 104(9): 3031. 

[141]. S. Ogata, J. Li, N. Hirosaki, Y. Shibutani, and S. Yip, Ideal Shear Strain of Metals 

and Ceramics. Physical Review B, 2004. 70(10): 104104. 

[142]. L. Lu, M. Dao, T. Zhu, and J. Li, Size Dependence of Rate-Controlling 

Deformation Mechanisms in Nanotwinned Copper. Scripta Materialia, 2009. 

60(12): 1062-1066. 

[143]. K. Lu, The Future of Metals. Science, 2010. 328(5976): 319-320. 

[144]. G.Y. Lai, High-Temperature Corrosion and Materials Applications. 2007: ASM 

international. 

[145]. M. Yamaguchi, H. Inui, and K. Ito, High-Temperature Structural Intermetallics. 

Acta Materialia, 2000. 48(1): 307-322. 

[146]. A. Argon, Strengthening Mechanisms in Crystal Plasticity. Vol. 4. 2008: Oxford 

University Press on Demand. 

[147]. S. Ringer, W. Yeung, B. Muddle, and I. Polmear, Precipitate Stability in Al  Cu

 Mg  Ag Alloys Aged at High Temperatures. Acta Metallurgica et Materialia, 

1994. 42(5): 1715-1725. 

[148]. X. Zhou, X. Li, and K. Lu, Enhanced Thermal Stability of Nanograined Metals 

Below a Critical Grain Size. Science, 2018. 360(6388): 526-530. 

[149]. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Design of Stable Nanocrystalline 

Alloys. Science, 2012. 337(6097): 951. 

[150]. T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. 

Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent Intermetallic 

Nanoparticles and Superb Mechanical Behaviors of Complex Alloys. Science, 

2018. 362(6417): 933. 

[151]. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy 

Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off. Nature, 2016. 

534(7606): 227-230. 

[152]. Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. 

Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, and Q. Yu, 



 

 211 

Tuning Element Distribution, Structure and Properties by Composition in High-

Entropy Alloys. Nature, 2019. 574(7777): 223-227. 

[153]. D. Raabe, C.C. Tasan, and E.A. Olivetti, Strategies for Improving the Sustainability 

of Structural Metals. Nature, 2019. 575(7781): 64-74. 

[154]. K. Lu, L. Lu, and S. Suresh, Strengthening Materials by Engineering Coherent 

Internal Boundaries at the Nanoscale. Science, 2009. 324(5925): 349-352. 

[155]. T. Lagrange, B.W. Reed, M. Wall, J. Mason, T. Barbee, and M. Kumar, 

Topological View of the Thermal Stability of Nanotwinned Copper. Applied 

Physics Letters, 2013. 102(1): 011905. 

[156]. Z. Cheng, H. Zhou, Q. Lu, H. Gao, and L. Lu, Extra Strengthening and Work 

Hardening in Gradient Nanotwinned Metals. Science, 2018. 362(6414). 

[157]. X. Ke, J. Ye, Z. Pan, J. Geng, M.F. Besser, D. Qu, A. Caro, J. Marian, R.T. Ott, 

and Y.M. Wang, Ideal Maximum Strengths and Defect-Induced Softening in 

Nanocrystalline-Nanotwinned Metals. Nature Materials, 2019. 18(11): 1207-1214. 

[158]. S.P. Rawal, Metal-Matrix Composites for Space Applications. Jom, 2001. 53(4): 

14-17. 

[159]. C. Du, S. Jin, Y. Fang, J. Li, S. Hu, T. Yang, Y. Zhang, J. Huang, G. Sha, and Y. 

Wang, Ultrastrong Nanocrystalline Steel with Exceptional Thermal Stability and 

Radiation Tolerance. Nature Communications, 2018. 9(1): 1-9. 

[160]. A. Mortensen and J. Llorca, Metal Matrix Composites. Annual review of materials 

research, 2010. 40: 243-270. 

[161]. L. Jiang, H. Yang, J.K. Yee, X. Mo, T. Topping, E.J. Lavernia, and J.M. 

Schoenung, Toughening of Aluminum Matrix Nanocomposites Via Spatial Arrays 

of Boron Carbide Spherical Nanoparticles. Acta Materialia, 2016. 103: 128-140. 

[162]. Y. Hu, Q. Guo, L. Zhao, Z. Li, G. Fan, Z. Li, D.-B. Xiong, Y. Su, and D. Zhang, 

Correlating Micro-Pillar Compression Behavior with Bulk Mechanical Properties: 

Nanolaminated Graphene-Al Composite as a Case Study. Scripta Materialia, 2018. 

146: 236-240. 

[163]. D. Jang and J.R. Greer, Size-Induced Weakening and Grain Boundary-Assisted 

Deformation in 60 Nm Grained Ni Nanopillars. Scripta Materialia, 2011. 64(1): 

77-80. 

[164]. S. Cheng, E. Ma, Y. Wang, L. Kecskes, K. Youssef, C. Koch, U. Trociewitz, and 

K. Han, Tensile Properties of in Situ Consolidated Nanocrystalline Cu. Acta 

Materialia, 2005. 53(5): 1521-1533. 



 

 212 

[165]. Y.M. Wang, R.T. Ott, T. Van Buuren, T.M. Willey, M.M. Biener, and A.V. Hamza, 

Controlling Factors in Tensile Deformation of Nanocrystalline Cobalt and Nickel. 

Physical Review B, 2012. 85(1): 014101. 

[166]. G. Wu, K.-C. Chan, L. Zhu, L. Sun, and J. Lu, Dual-Phase Nanostructuring as a 

Route to High-Strength Magnesium Alloys. Nature, 2017. 545(7652): 80-83. 

[167]. J. Schiøtz and K.W. Jacobsen, A Maximum in the Strength of Nanocrystalline 

Copper. Science, 2003. 301(5638): 1357-1359. 

[168]. L. Lu, X. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in 

Nanotwinned Copper. Science, 2009. 323(5914): 607-610. 

[169]. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics. 

Journal of Computational Physics, 1995. 117(1): 1-19. 

[170]. P. Erhart and K. Albe, Analytical Potential for Atomistic Simulations of Silicon, 

Carbon, and Silicon Carbide. Physical Review B, 2005. 71(3): 035211. 

[171]. S. Dorfman, K.C. Mundim, D. Fuks, A. Berner, D.E. Ellis, and J. Van Humbeeck, 

Atomistic Study of Interaction Zone at Copper–Carbon Interfaces. Materials 

Science and Engineering: C, 2001. 15(1-2): 191-193. 

[172]. J.C. Fisher, E.W. Hart, and R.H. Pry, The Hardening of Metal Crystals by 

Precipitate Particles. Acta Metallurgica, 1953. 1(3): 336-339. 

[173]. M.F. Ashby, Deformation of Plastically Non-Homogeneous Materials 

Philosophical Magazine, 1970. 21(170): 399-424. 

[174]. M.F. Ashby, Work Hardening of Dispersion-Hardened Crystals. Philosophical 

Magazine, 1966. 14(132): 1157-1178. 

[175]. A.S. Argon and S. Yip, The Strongest Size. Philosophical Magazine Letters, 2006. 

86(11): 713-720. 

[176]. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh Strength and High Electrical 

Conductivity in Copper. Science, 2004. 304(5669): 422-426. 

[177]. X. Ke, J. Ye, Z. Pan, J. Geng, M.F. Besser, D. Qu, A. Caro, J. Marian, R.T. Ott, 

Y.M. Wang, and F. Sansoz, Ideal Maximum Strengths and Defect-Induced 

Softening in Nanocrystalline-Nanotwinned Metals. Nature Materials, 2019. 

18(11): 1207-1214. 

 


	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	SUMMARY
	CHAPTER 1. Introduction
	1.1 Heterogeneous Metallic Materials
	1.2 Mechanical Heterogeneities and Internal Stresses
	1.2.1 Microscale Heterogeneities in Additively Manufactured Alloys
	1.2.2 Macroscale Heterogeneities in Gradient Nanotwinned Cu
	1.2.3 Nanoscale Heterogeneities in Nanocrystalline Metals and Composites


	CHAPTER 2. Lattice Strains and Diffraction Experiments
	2.1 Introduction
	2.2 Lattice Strains and Diffraction Elastic Constants
	2.3 General Solution for the Constrained Compliance Tensor
	2.4 Constrained Compliance Tensor  in a Cubic Polycrystal
	2.5 Diffraction Elastic Constants along LD
	2.6 Diffraction Elastic Constants along TD
	2.7 Diffraction Elastic Constants along any  direction
	2.8 Validation by Finite Element Simulations
	2.9 Summary

	CHAPTER 3. Internal Stresses in Additively Manufactured Steels
	3.1 Introduction
	3.2 Microstructure Characterization of AM 316L Steels
	3.3 Diffraction Experiments and Intergranular Internal Stresses
	3.4 Tension-Compression Asymmetry and Intragranular Internal Stresses
	3.5 Micromechanics Modeling of Lattice Strains
	3.6 Crystal Plasticity Finite Element (CPFE) Framework
	3.7 CPFE Modeling of Non-linear Lattice Strains
	3.8 CPFE Modeling of Tension-Compression Asymmetry
	3.9 Summary

	CHAPTER 4. Neutron Diffraction-Informed Constitutive Modeling of Additively Manufactured Eutectic High-Entropy Alloys
	4.1 Introduction
	4.2 Ultrahigh Strength and Ductility Achieved by Hierarchical Microstructures
	4.3 Elastic Properties Extracted from Neutron Diffraction Experiments
	4.4 Dual-Phase Crystal Plasticity Finite Element Modeling
	4.5 Summary

	CHAPTER 5. Phenomenological Theory of Strain Gradient Plasticity
	5.1 Introduction
	5.2 Experiment
	5.3 A Theory of Strain Gradient Plasticity
	5.4 Gradient Plasticity in GNT Cu
	5.4.1  GNT-1 to GNT-4 models
	5.4.2 1D Gradient Theory of Plasticity
	5.4.3  Results

	5.5 Gradient Plasticity Finite Element (GPFE) Simulations
	5.5.1 Method
	5.5.2 Results

	5.6 Discussion
	5.6.1 Optimization of Gradient Structure toward Maximum Strength
	5.6.2 Plastic Strain Gradient
	5.6.3 Nonlinear Strength Distribution

	5.7 Summary

	CHAPTER 6. Mechanistically-Based Theory of Strain Gradient Plasticity
	6.1 Introduction
	6.2 Experiment
	6.3 Mechanistic-Based Strain Gradient Plasticity
	6.3.1 Intergranular Internal Stresses from Gradient Structures
	6.3.2 Intragranular Internal Stresses from Nanotwins

	6.4 Strain Gradient Plasticity Modeling of GNT Cu
	6.5 Summary

	CHAPTER 7. Grain Growth in Nanocrystalline Al
	7.1 Introduction
	7.2 Microstructures
	7.3 Grain Growth under Tensile Deformation
	7.4 Atomistic Modeling of Grain Growth
	7.5 Summary

	CHAPTER 8. Plastic Deformation Kinetics in FCC Nanocrystalline Metals
	8.1 Introduction
	8.2 In Situ TEM Measurements of Activation Volume
	8.3 Atomistic Modeling
	8.3.1 Nudged Elastic Band (NEB) Method
	8.3.2 Displacive Process – Partial Dislocation Nucleation
	8.3.3 Diffusive Process – Grain Boundary Dislocation Climb

	8.4 Discussion
	8.5 Summary

	CHAPTER 9. Extra Hardening in Nanograined Metal Composites
	9.1 Introduction
	9.2 Experiment
	9.3 Atomistic Modeling
	9.4 Work Hardening Model
	9.5 Summary

	CHAPTER 10. Conclusion
	APPENDIX A. Elastic Properties of Representative Cubic Polycrystals
	REFERENCES

