
REDUCING SOFTWARE’S ATTACK SURFACE WITH CODE DEBLOATING

A Thesis Proposal
Presented to

The Academic Faculty

By

Chenxiong Qian

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

College of Computing

Georgia Institute of Technology

May 2021

© Chenxiong Qian 2021

REDUCING SOFTWARE’S ATTACK SURFACE WITH CODE DEBLOATING

Thesis committee:

Dr. Wenke Lee, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. William R. Harris, Co-Advisor
Principal Scientist
Galois, Inc

Dr. Taesoo Kim
School of Computer Science
Georgia Institute of Technology

Dr. Alessandro Orso
School of Computer Science
Georgia Institute of Technology

Dr. Brendan Saltaformaggio
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Date approved: April 22, 2020

People in their right minds never take pride in their talents.

Harper Lee

To Kill A Mockingbird

To my wife,

Junqi Zhao,

and my parents,

for all their unconditional love, support and belief in me.

ACKNOWLEDGMENTS

First, I want to express my sincere appreciation to my advisor, Dr. Wenke Lee, who

offered me the chance to start my academic career in Georgia Tech. Along my PhD journey,

Wenke gave me ample freedom to explore ideas and patiently guided me to pursue the

good research direction. I will never forget the words: “Do good work and good results

will come.” Besides the research mentoring, his self-respect, integrity, and generosity are

driving me to be a good and decent man. I hope one day, I can be a good advisor to my

future students, as Wenke has been to me.

I am extremely grateful to my co-advisor Dr. William R. Harris for his fully support

during my PhD’s beginning years and my job hunting. His solid knowledge of program

analysis and formal verification has been essentially helpful to my research work. His

good taste of research inspired me to cultivate my own research taste. I will never forget

the time when he stayed up late helping me on submissions and shared his favorite pizza

topping with anchovies.

Another person who had led me to where I am today is Dr. Xiapu Luo. He started

advising me when I was an undergraduate and his passion on doing research motivated me

to pursue PhD after graduation. I would like to express special thanks to him, as my mentor

and friend.

This thesis cannot be done without the help of many brilliant and friendly colleagues. I

would like to take the opportunity to thank the following collaborators: Prof. Taesoo Kim,

Prof. Hyungjoon Koo, Prof. Hong Hu, Dr. Pak Ho Chung, Dr. Yanick Fratantonio, Prof.

Wei Meng, ChangSeok Oh, Mansour Alharthi, Carter Yagemann, Prof. Chengyu Song,

Ren Ding, and Prof. Kangjie Lu.

I would like to thank Prof. Taesoo Kim, Prof. Alessandro Orso and Prof. Brendan D.

Saltaformaggio for taking time to serve on my thesis committee and providing insightful

feedback.

v

I would like to thank the IISP staffs: Elizabeth Ndongi, Trinh Doan and Gloria Griess-

man for their efforts to provides such an enjoyable research environment.

Last but not least, I want to thank my wife and my parents for their support, patience

and unconditional love throughout this journey.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xii

Summary . xv

Chapter 1: Introduction . 1

Chapter 2: Motivation . 6

Chapter 3: Related Work . 9

Chapter 4: Heuristic-based Approach . 12

4.1 Overview and Design . 12

4.1.1 Execution Trace Collection . 13

4.1.2 Heuristic-based Path Inference . 15

4.1.3 Debloated Binary Synthesization 18

4.2 Evaluation . 22

4.2.1 Code Reduction . 23

4.2.2 Functionality Validation . 24

vii

4.2.3 Effectiveness of Path Finding . 26

4.2.4 Security Benefits . 29

4.2.5 Performance Overhead . 31

4.2.6 Debloating Real-world Programs 32

Chapter 5: Feature-code Map Approach . 36

5.1 Overview . 36

5.2 Design . 38

5.2.1 Feature Set for Chromium Debloating 38

5.2.2 Feature-Code Mapping . 39

5.2.3 Prompt Webpage Profiling . 42

5.3 Evaluation . 43

5.3.1 Code Discovery with a Relation Vector 44

5.3.2 Non-deterministic Paths Discovery with Webpage Profiling 46

5.3.3 Hyperparameter Tuning . 47

5.3.4 Chromium Debloating in Practice 49

Chapter 6: Code Partitioning Approach . 54

6.1 Overview . 54

6.2 Design . 56

6.2.1 Type Reference Graph Building 56

6.2.2 Relation Construction . 57

6.2.3 Code Partitioning . 64

6.3 Evaluation . 66

viii

6.3.1 Effectiveness of Code Partitioning 67

6.3.2 Comparison With Manual Analysis 70

Chapter 7: Reflections . 73

7.1 Limitations . 73

7.1.1 High-level Feature Extraction . 73

7.1.2 Memory Overhead . 74

7.1.3 Fault Handling . 74

7.2 Future Work . 74

Chapter 8: Conclusion . 76

Appendices . 78

Appendix A: RAZOR . 79

Appendix B: SLIMIUM . 80

References . 84

ix

LIST OF TABLES

4.1 Failed test cases by RAZOR binaries and CHISEL binaries. CHISEL failed
some tests with different reasons: Wrong operations, Infinite loop, Crashes,
and Missing output. For RAZOR binaries, we show the heuristic that makes
the program pass all tests. 25

4.2 Vulnerabilities before and after debloating by RAZOR and CHISEL. ✓

means the binary is vulnerable to the CVE, while ✗ mean it is not vul-
nerable. CVEs with ∗ are evaluated in [5]. 30

4.3 Debloating FIREFOX and FOXITREADER with RAZOR, together with diff-
ferent path-finding heuristics. 33

4.4 Per-site browser debloating . 33

4.5 N-fold validation of zLib heuristic on FIREFOX. First, we randomly split
Alexa’s Top 50 websites into five groups, and select two groups (20 web-
sites) as the training set and others (30 websites) as the test set for 10 times.
Second, we randomly split the 50 website into 10 groups, and select five
groups (25 websites) as the training set, and others (25 websites) as the test
set for 10 times. 34

5.1 Chromium features as a debloating unit (#: count). 38

5.2 Code and CVE reduction across debloated variants of Chromium per each
category (See Figure Figure 5.7 in detail). 49

6.1 Chromium’s source code details. 66

6.2 Code reduction across debloated variants of Chromium per each category. . 71

6.3 DEPART’s peformance. 72

x

A.1 Settings for evaluating PATHFINDER on the CHISEL benchmarks. We use
the training set to debloat the binary, and run the generated code with the
testing set. The last column is the options we pass to the binaries during
training and testing. 79

B.1 Summary of Chromium CVEs and relevant unit features for debloating. . . 81

B.2 Chromium features as a unit of debloating. The columns V, P, C, and E
represent the number of CVEs, Feature Policy support, Chromium support,
and Experimental flag support respectively (Yes: ●, No: ✗, Partial: ◗). . . . 82

B.3 Chromium CVEs associated with our feature set. The severity column
ranges from low(❘), medium(❚) to high(■). 83

xi

LIST OF FIGURES

2.1 A bloated image parser. 6

2.2 Debloating an image parser. (a) shows the code of the bloated image parser,
where the program invokes different functions to handle PNG or JPEG files
based on the options. The control-flow graphs before and after debloating
are shown in (b) and (c). 7

4.1 Overview of RAZOR. It takes in the bloated program binary and a set
of test cases and produces a minimal, functional binary. TRACER col-
lects the program execution traces with given test cases and converts them
into a control-flow graph (CFG). PATHFINDER utilizes control-flow-based
heuristics to expand the CFG to include more related-code. Based on the
new CFG, GENERATOR generates the debloated binary. 12

4.2 A snippet of the collected trace. It includes the range of each executed
basic block, the taken/non-taken of each condition branch, and the concrete
target of indirect jumps/calls. We also record the frequency of each indirect
jump/call target (after #). 13

4.3 Identifying related-code with different heuristics. Dashed branches and
blocks are not executed and thus are excluded from the left CFG, while
others are executed. 15

4.4 Synthesize debloated assembly file. Each basic block is assigned a unique
label; indirect calls are expanded with comparisons and direct calls; fault
handling code is inserted. 19

4.5 Code size reduction on two benchmarks. We use RAZOR to debloat both
SPEC CPU2006 benchmarks and CHISEL benchmarks without any path
finding and achieve 68.19% and 78.8% code reduction. CHISEL removes
83.4% code from CHISEL benchmarks. 23

xii

4.6 Path finding on CHISEL benchmarks with different heuristics. The top part
is the code reduction, while the bottom part is the number of crashes. ‘none’
means no heuristic is used. 26

4.7 A crash case reduced by applying zCode heuristic. 28

4.8 A crash case reduced by applying zFunc heuristic. 28

4.9 A crash case reduced by applying zCall heuristic. 28

4.10 A crash case reduced by applying zLib heuristic. 28

4.11 Performance overhead by RAZOR on SPEC CPU®2006 benchmarks. The
average overhead is 1.7%. 31

5.1 High-level overview of SLIMIUM. It leverages a concept of feature subset-
ting (feature as a unit of debloating) to guide a binary instrumentation as
feedback on top of feature-code mapping and profiling results. 36

5.2 Feature-code mapping with relation vectors that enable the inference of
relevant object files for a certain feature. 41

5.3 Contour plot of additionally discovered code size with a set of different
relation vectors R⃗ = (rc,rs). 45

5.4 Breakdown of additional code discovery rates for each feature group across
different relation vectors. 45

5.5 Ratio between non-deterministic code (dark bars on top) and the rest for
the selected features. A prefix of TP_ represents a third-party component. . 46

5.6 Average code reduction with a combination of different thresholds (rc: call
invocation, rs:name similarity, T : code coverage rate) when loading the
front page of the Top 1000 Alexa websites. The baseline represents the
size of code reduction based on the initial feature-code map before applying
Algorithm Algorithm 3 in Appendix. 47

5.7 Code coverage rate of various features across different websites. A prefix
of TP_ represents a third-party component. 51

xiii

6.1 High-level overview of DEPART. It first takes in the software’s LLVM IR
bitcode files and perform static analysis to assign various relations among
the types, global variables, and functions. After that, the PARTITIONING

module applies rules to partition the code and types into distinct groups. . . 55

6.2 Source code of the example for illustrating relation construction. 59

6.3 LLVM IR code of the example for illustrating relation construction. 59

6.4 The points-to graphs for functions @Derived and @test. 61

6.5 The taint propagations for functions @Derived and @test. 62

6.6 Apply Rule 1-3 to group types. 67

6.7 Apply Rule 4 to connect types and their member functions’ implementations. 68

6.8 Apply Rule 5 to group code control-dependent on each other. 69

6.9 Apply Rule 6 to group code data-dependent on each other. 69

xiv

SUMMARY

Current software is designed to support a large spectrum of features to meet various

users’ needs. However, each end-user only requires a small set of the features to perform

required tasks, rendering the software bloated. The bloated code not only hinders optimal

execution, but also leads to a larger attack surface. Code debloating technique, which aims

to remove the unneeded features’ code, has been proposed to reduce the bloated software’s

attack surface. However, there is a fundamental gap between the features needed by a user

and the implementation, so it is challenging to identify the code that only supports the

needed features.

Previous works ask end-users to provide a set of sample inputs to demonstrate how they

will use the software and generate a debloated version of the software that only contains the

code triggered from running the sample inputs. Unfortunately, software debloated by this

approach only supports running given inputs, presenting an unusable notion of debloating:

if the debloated software only needs to support a fixed set of inputs, the debloating process

is as simple as synthesizing a map from the input to the observed output. We call this

Over-debloating Problem. This dissertation focuses on removing software’s unneeded code

while providing high robustness for debloated software to run more inputs sharing the same

functionalities with the given inputs, with approaches either using heuristics, feature-code

map, or code partitioning.

First, the thesis presents RAZOR, which first collects executed code for running the

software on the given inputs and then uses heuristics to infer non-executed code related to

the given inputs. In the end, RAZOR rewrites the software to keep not only the executed

code but also the inferred code, which makes the debloated software support running other

inputs besides the given ones. However, in RAZOR, the heuristics are syntax-based and can

only infer a limited set of related code, which fails on debloating large-scale and complex

software such as web browsers.

xv

Later, the thesis presents SLIMIUM, which uses a feature-code map to debloat the web

browser Chromium at feature-level. In SLIMIUM, the feature-code map is initially created

from manual analysis and then it is expanded using static program analysis. However,

relying on manual efforts to identify features and relevant code is time-consuming and

difficult to be applied to other software.

Finally, the thesis presents DEPART, which provides a general approach to debloat

large-scale and complex software written with object-oriented programming (OOP) lan-

guages without any manual efforts. DEPART performs pure static analysis to automatically

partitions a program into distinct groups implementing different features, which is later

used for debloating. The key idea of DEPART is to relate the software’s code and types

(i.e., defined objects sharing unique behaviors in OOP) by analyzing the code’s various

operations. Based on the relations, we propose several rules to describe the conditions that

should be satisfied for including types and code into a same group.

xvi

CHAPTER 1

INTRODUCTION

As commodity software is designed to support more features and platforms to meet various

users’ needs, its size tends to increase in an uncontrolled manner [1, 2]. However, each end-

user usually just requires a small subset of these features, rendering the software bloated.

The bloated code not only leads to a waste of memory, but also opens unnecessary attack

vectors. Indeed, many serious vulnerabilities are rooted in the features that most users never

use [3, 4]. Therefore, security researchers are beginning to explore software debloating,

which aims to remove code of unneeded features, as an emerging solution to this problem.

However, it is challenging to identify the unneeded code because of the fundamental gap

between the unneeded features and the code implementation.

To fill the gap, end-users are asked to provide a set of sample inputs to demonstrate

how they will use the software, as in CHISEL [5]. Unfortunately, programs debloated by

this approach only supports given inputs, presenting an unusable notion of debloating: if

the debloated software only needs to support a fixed set of inputs, the debloating process is

as simple as synthesizing a map from the input to the observed output.

In order to practically debloat programs based on user-supplied inputs, we must iden-

tify the code that is necessary to completely support required functionalities but is not exe-

cuted when processing the sample inputs, called related-code. Unfortunately, related-code

identification is difficult. In particular, it is challenging for end-users (even developers) to

provide an input corpus that exercises all necessary code that implements a feature. This

dissertation presents two approaches to solve this problem: (1) use heuristics to infer code

similar to the executed code and keep both executed code and inferred code in the debloated

software; (2) create a feature-code map statically and use it as a reference to identify needed

features from executed code.

1

First, I present Razor, in which we design four heuristics that infer related-code based

on the assumption that code paths with more significant divergence represent less related

functionalities. Specifically, given one executed path p, we aim to find a different path q

such that 1) q has no different instructions, or 2) q does not invoke new functions, or 3)

q does not require extra library functions, or 4) q does not rely on library functions with

different functionalities. Then, we believe q has functionalities similar to p and treat all

code in q as related-code. From 1) to 4), the heuristic includes more and more code in the

debloated binary. For a given program, we will gradually increase the heuristic level until

the generated program is stable. In fact, our evaluation shows that even the most aggressive

heuristic introduces only a minor increase of the final code size. After identifying related-

code with the heuristics, we develop a binary-rewriting platform to remove unnecessary

code and generate a debloated program. To understand the efficacy of RAZOR, we evalu-

ated it on three sets of benchmarks: all SPEC CPU2006 benchmarks, 10 coreutils programs

used in previous work, and two real-world large programs, the web browser FIREFOX and

the closed-sourced PDF parser FOXITREADER. In our evaluation, we performed tracing

and debloating based on one set of training inputs and tested the debloated program using

a separate set of functionally similar inputs. Our results show that RAZOR can effectively

reduce 70-80% of the original code. At the same time, it introduces only 1.7% overhead to

the new binary. We compared RAZOR with CHISEL on debloating 10 coreutils programs

and found that CHISEL achieves a slightly better debloating result (smaller code size), but

it fails several programs on given test cases. Further, CHISEL introduces exploitable vul-

nerabilities to the debloated program, such as buffer overflows resulting from the removed

boundary checks. RAZOR does not introduce any security issues. We also analyzed the

related-code identified by our path finder and found that different heuristics effectively

improve the program robustness.

While RAZOR uses heuristics to infer related-code and generates more stable debloated

versions of software than previous systems, it also suffers two major limitations. First, the

2

heuristics are syntax-based, so they cause both false negatives and false positives. For

example, even the most aggressive heuristic, which groups library calls to infer similar

functionalities, cannot guarantee that all the related-code is identified. Moreover, syntax-

based heuristics possibly identify related-code that shares different functionalities because

developers can implement different features using same library calls. Second, software

with stateful modules (e.g., networking communication, local caching) executes different

code paths for same inputs (i.e., non-deterministic code). Therefore, simply running given

inputs to get executed code misses finding non-deterministic code. To address these two

limitations, I present my second work, SLIMIUM, which aims to debloat one of the most

large-scale and complex software Chromium that dominates the web browser market share

(i.e., 70%). In this work, we first manually explore the source code and documents to cre-

ate an initial feature-code map. After that, we do static analysis to seek more relevant code

for the features defined in the feature-code map. To do that, for the unmapped code, we

calculate a two-dimensional relation vector, R⃗ = (rc,rs), which consists of the following

two vector components: i) call invocations (rc) and ii) similarity between object file names

using the hamming distance [6] (rs). The relation vector serves as a metric on how inten-

sively any two objects are germane to each other. The intuition behind this is that i) it is

reasonable to include an object as part of a feature if function calls would be frequently

invoked each other, ii) relevant code is likely to be implemented under a similar path name.

We tackle the non-deterministic code problem by reloading a webpage multiple times until

reaching a point when no more new exercised functions are observed with a fixed sliding

window (i.e., the length of revisiting that does not introduce a new exercised function). Our

experimental results demonstrate the practicality and feasibility of SLIMIUM for 40 popu-

lar websites, as on average it removes 94 CVEs (61.4%) by cutting down 23.85 MB code

(53.1%) from defined features (21.7% of the whole) in Chromium.

While SLIMIUM can debloat Chromium, but it cannot be easily extended to debloat

other large-scale software because it requires having professional knowledge of the source

3

code and taking much manual efforts to create the initial feature-code map (i.e., 40 working

hours in our experiment). Finally, I present DEPART that performs pure static analysis to

automatically partition a program into groups implementing distinct features. Based on the

observation that large-scale and complex software is usually developed with object-oriented

programming (OOP) languages, in which types are defined to represent objects sharing

unique behavior. First, DEPART extracts the type reference graphs in the program. Second,

DEPART conduct static analysis on the code to identify the various operations (e.g., object

allocation, attribute access, member function implementation, etc.) performed among code

and types. We address the challenge of building data dependence relations among code by

proposing a novel static analysis with a combination of points-to analysis and taint analysis.

With the static analysis results, DEPART builds the relation graphs to assigns relations

among code and types. In the end, DEPART defines several rules to describe the conditions

that should be satisfied to include code and types into a group implementing the same

feature. We have evaluated DEPART on debloating Chromium and our experimental results

show that DEPART identifies more features than the manual analysis used in SLIMIUM and

DEPART removes more code than SLIMIUM when debloating for 40 popular websites.

The dissertation is organized as follows:

• I first illustrate the motivation for removing code of unneeded features in software

and the limitations exist in previous debloating systems in Chapter §2.

• I then introduce the related work for identifying/removing unused features’ code and

partitioning code in Chapter §3.

• In Chapter §4, I present our first work that debloats bloated binaries using heuristics

to infer code that is not executed but share similar functionalities with given inputs.

• In Chapter §5, I present our second work that debloats the web browser Chromium

using a prebuilt feature-code map.

4

• In Chapter §6, I present a novel approach for partitioning a program automatically

into groups implementing distinct features and apply it on debloating Chromium.

• In Chapter §7, I discuss the limitations of the proposed work and present the future

work.

• Finally, I conclude this dissertation in Chapter §8.

5

CHAPTER 2

MOTIVATION

Current software is designed to support more features and platforms to meet various users’

needs, its size tends to increase in an uncontrolled manner [1, 2]. However, each end-user

usually just requires a small subset of these features, rendering the software bloated. For

an example, there are around 80% features in Chromium are only used by less than 10%

of the websites in the wild [7]. The bloated code not only leads to a waste of memory,

but also opens up unnecessary attack vectors. Indeed, many serious vulnerabilities are

rooted in the features that most users never use [3, 4]. Therefore, security researchers are

beginning to explore software debloating as an emerging solution to this problem. I will

show a motivation example that contains bloated code to describe how previous debloating

systems debloat the program and their limitations.

1 #define MAX_SIZE 0xffff
2 #define ALIGN(v,a) (((v+a-1)/a)*a)
3 void imageParser(char *options, char *file_name) {
4 if (!strcmp(options, "PNG"))
5 parsePNG(file_name);
6 else if (!strcmp(options, "JPEG"))
7 parseJPEG(file_name);
8 }
9 void parsePNG(char *file_name) {

10 char * img = (char *)malloc(MAX_SIZE + 16);
11 if ((img % 16) != 0)
12 img = ALIGN(img, 16);
13 readToMem(img, file_name);
14 }
15 void parseJPEG(char *file_name) { ... }

Figure 2.1: A bloated image parser.

Figure 2.1 shows a bloated program, which is designed to parse image files in different

formats. Based on the user-provided options (line 4 and 6), the program invokes function

6

imageParser

return

6

F

T

4

F

T

parsePNG

10

F

T

11

12

13

7

parseJPEG

5

return

(a) Original control-flow graph.

imageParser

return

5

T

4

parsePNG

10

F

T

11

12

13

return

(b) Debloated control-flow graph

Figure 2.2: Debloating an image parser. (a) shows the code of the bloated image parser,
where the program invokes different functions to handle PNG or JPEG files based on the
options. The control-flow graphs before and after debloating are shown in (b) and (c).

parsePNG to parse PNG images (line 5) or invokes function parseJPEG to handle JPEG

images (line 7). In function parsePNG, the code first allocates memory to hold the image

content and saves the memory address in img (line 10). Then it makes sure img is aligned to

16-bytes with the macro ALIGN (line 11 and 12). Finally, it invokes function readToMem to

load the image content from file into memory for further processing. Function parseJPEG

has a structure similar to parsePNG, so we skip its details.

Although the program in Figure 2.1 merely supports two image formats, it is still

bloated if the user only uses it to process PNG files. For example, screenshots on iPhone

devices are always in PNG format [8]. In this case, the code is bloated with the unneces-

sary JPEG parser, which may contain security bugs [9]. Attackers can force it to process

malformed JPEG images to trigger the bug and launch remote code execution. In real-world

software ecosystem, we can easily find document readers (e.g., Preview on MacOS) that

support obsolete formats (e.g., PCX, Sun Raster, TGA). We can debloat these programs to

reduce their code sizes and attack surfaces.

Previous systems assume the set of given test cases is complete and only keeps the code

triggered from running the test cases. However, it is impossible to provide test cases that

cover all related-code of the required functionalities. In this case, some related-code will

not be triggered. If we simply remove all never-executed code, the program functionality

7

will be broken. For example, the code at lines 11 and 12 of Figure 2.1 will make sure the

pointer img is aligned to 16. Based on the concrete execution context, the return value of

malloc (at line 10) may or may not satisfy the alignment requirement. If the execution just

passes the check at line 11, the simple method will delete line 12 for the minimal code size.

However, if the later execution expects an aligned img, the program will show unexpected

behavior or even crash. We call this Over-debloating Problem.

To solve this problem, I first propose RAZOR that uses four heuristics to infer related-

code and debloats software on instruction-level, then I propose SLIMIUM that debloats

large-scale software on feature-level using a feature-code map built from manual analysis

and static analysis. In the end, I propose an approach to automatically partition a program

by doing summarization based a program’s self-defined data structures’ operations. With

the summarization result, we can automatically build a program’s feature-code map without

any manual efforts.

8

CHAPTER 3

RELATED WORK

It is crucial to identify accurately unneeded code to avoid Over-debloating Problem. To

that end, prior works largely fall into three categories to identify unused features: a) binary

analysis (e.g., static or dynamic analysis), b) supplementary information with the help of a

compilation toolchain, and c) machine learning techniques.

Debloating with binary analysis One of the early works based on static analysis is Code-

Freeze [10]. It presents a technique, dubbed “code stripping and image freezing” that elim-

inates imported functions not in use at load time, followed by freezing the remaining code

to protect it from further corruption (e.g., injecting code). Because it targets executable

binaries whose sources are unavailable, this approach performs code removal atop a con-

servative static analysis. DamGate [11] introduces a framework to customize features at

runtime. It leverages a handful of existing tools to build a call graph through both static and

dynamic analyses. In a similar vein, TRIMMER [12] begins with identifying unnecessary

features based on an user-defined configuration, followed by eliminating corresponding

code from interprocedural analysis statically.

Meanwhile, Shredder [13] aims to filter out potentially dangerous arguments of well-

known APIs (e.g., assembly functions). It first collects the range of API parameters that

a benign application takes and then enforces a policy to obey the allowable scope of the

parameters from initial analysis. For example, a program would be suspended upon a call

invocation with unseen arguments. Both FACE-CHANGE [14] and Kernel tailoring [15,

16] apply the concept of debloating to the kernel. The former makes each application

view its own shrinking version of the kernel, facilitating dynamic switching at runtime

across different process contexts, whereas the latter automatically generates a specific ker-

9

nel configuration used for compiling the tailored kernel. Meanwhile, both the bloat-aware

design [17] and JRed [18] apply program customization techniques to Java-based applica-

tions; whereas Babak et al. [19] propose a debloating technique for web applications.

Debloating with supplementary information Another direction toward code debloat-

ing takes advantage of a compilation toolchain to obtain additional information. Piece-

Wise [20] introduces a specialized compiler that assists in emitting call dependencies and

function boundaries within the final binary as supplementary information. The modified

loader then takes two phases (i.e., page level and function level) to invalidate unneeded

code at load time.

Debloating with machine learning techniques Recent advancements in debloating lever-

age various machine learning techniques to identify unused code or features. CHISEL [21]

produces a transformed version that removes unneeded features with reinforcement learn-

ing. Because it relies on test cases as an input to explore internal states, it might suffer from

incorrect results when running a mutation that encounters an unexpected state. Hecate [22]

leverages deep learning techniques to identify features and corresponding functions. It uses

both a recursive neural network (RNN) to compute semantic representation (e.g., unique

embedding vector per each opcode and operand) and a convolutional neural network (CNN)

for a function mapping as a multi-class classifier. Binary control flow trimming [23] intro-

duces a contextual control flow graph (CCFG) that enables the expression of explicitly

user-unwanted features among implicitly developer-intended ones, learning a CCFG pol-

icy based on runtime traces. BlankIt [24] applies machine learning to predicate functions

needed at load time.

Other efforts to reduce attack surface The work of Snyder et al. [25] leverages Web

API standards to limit the functionality of a website. However, it has two major differ-

ences: a) the attack surface only contains standard Web APIs without considering non-web

10

features, and b) the hardening mechanism lies in disabling specific features by intercepting

JavaScript, implemented as one of the browser extensions. The actual implementation code

still resides in memory; thus it could be circumvented [26] with an expected access.

Anh et al. [27] propose bloat metrics for the first time to systematically quantify the

bloatness of each program, library, and system library. CARVE [28] takes an approach of

debloating unused source code, which requires both open source and a rebuilding process.

Cimplifier [29] demonstrates that a container image could shrink its size up to 95%, pre-

serving its original functionalities. Recently, Microsoft released ApplicationInspector [30],

an attack surface analysis tool based on known patterns, automatically identifying third-

party software components that might impact security. Other efforts include code removal

based on configurable features for applications [31], system call specialization [32], and its

policy generation [33] for containers.

11

CHAPTER 4

HEURISTIC-BASED APPROACH

To address Over-debloating Problem, I first propose RAZOR that uses heuristics to identify

related-code effectively and debloats post-deployment software without source code. I will

first demonstrate the overview and design of RAZOR in Section §4.1 and then show the

evaluation in Section §4.2.

4.1 Overview and Design

bloated
binary

Tracer

test
cases execution

traces

Dynamorio

Intel PIN

Intel PT

Path Finder Generator

debloated
binary

CFG

decode

CFG'

Heuristic A

Heuristic B

... fault handler

instrumenter

assembler

Figure 4.1: Overview of RAZOR. It takes in the bloated program binary and a set of
test cases and produces a minimal, functional binary. TRACER collects the program ex-
ecution traces with given test cases and converts them into a control-flow graph (CFG).
PATHFINDER utilizes control-flow-based heuristics to expand the CFG to include more
related-code. Based on the new CFG, GENERATOR generates the debloated binary.

Figure 4.1 shows an overview of our post-deployment debloating system, RAZOR.

Given a bloated binary and a set of test cases that trigger required functionalities, RA-

ZOR removes unnecessary code and generates a debloated binary that supports all required

features with minimal code size. To achieve this goal, RAZOR first runs the binary with the

given test cases and uses TRACER to collect execution traces (§4.1.1). Then, it decodes the

traces to construct the program’s CFG, which contains only the executed instructions. In

order to support more inputs of the same functionalities, PATHFINDER expands the CFG

based on our control-flow heuristics (§4.1.2). The expanded CFG contains non-executed

instructions that are necessary for completing the required functionalities. In the end, with

12

[0x4004e3: true]
[0x4004ee: false]
[0x400614: true & false]

[0x400677: 0x4005e6#18,0x4005f6#6]

...

...

Executed Blocks

[0x4005c0,0x4005f2]

[0x400596,0x4005ae]

...

Conditional Branches

Indirect Calls/Jumps

Figure 4.2: A snippet of the collected trace. It includes the range of each executed basic
block, the taken/non-taken of each condition branch, and the concrete target of indirect
jumps/calls. We also record the frequency of each indirect jump/call target (after #).

the expanded CFG, GENERATOR rewrites the original binary to produce a minimal version

that only supports required functionalities (§4.1.3).

4.1.1 Execution Trace Collection

TRACER executes the bloated program with given test cases and records the control-flow in-

formation in three categories: (1) executed instructions, including their memory addresses

and raw bytes; (2) the taken or non-taken of conditional branches, like je that jumps if

equal; (3) concrete targets of indirect jumps and calls, like jmpq *%rax that jumps to the

address indicated by register %rax. Our TRACER records the raw bytes of executed instruc-

tions to handle dynamically generated/modified code. However, instruction-level recording

is inefficient and meanwhile most real-world programs only contain static code. Therefore,

TRACER starts with basic block-level recording that only logs the address of each executed

basic block. During the execution, it detects any dynamic code behavior, like both writable

and executable memory region (e.g., just-in-time compilation [34]), or overlapped basic

blocks (e.g., legitimate code reuse [35]), and switches to the instruction-level recording

to avoid missing instructions. A conditional branch may get executed multiple times and

finally covers one or both targets (i.e., the fall-through target and the jump target). For

indirect jump/call instructions, we log all executed targets and count their frequencies.

13

Figure 4.2 shows a piece of collected trace. It contains two executed basic blocks, one at

address 0x4005c0 and another at 0x400596. The trace also contains three conditional branch

instructions: the one at 0x4004e3 only takes the true target; the one at 0x4004ee only takes

the false target; the one at 0x400614 takes both targets. One indirect call instruction at

0x400677 jumps to target 0x4005e6 for 18 times and jumps to target 0x4005f6 for six times.

As the program only has static code, TRACER does not include the instruction raw bytes.

We find that it is worthwhile to use multiple tools to collect the execution trace. First,

no mechanism can record the trace completely and efficiently. Software-based instrumen-

tation can faithfully log all information but introduces significant overhead [36, 37, 38].

Hardware-based logging can record efficiently [39] but requires particular hardware and

may not guarantee the completeness (e.g., data loss in INTEL PT [40]). Second, program

executions under different tracing environments will show divergent paths. For example,

DYNAMORIO always expands the file name to its absolute path, leading to different exe-

cuted code in some programs (e.g., vim). Therefore, we provide three different implemen-

tations with different software and hardware mechanisms. End-users can choose the best

one for their requirement or even merge traces from multiple tools for better code coverage.

CFG construction. With the collected execution traces, RAZOR disassembles the bloated

binary and constructs the partial control-flow graph (CFG) in a reliable way. Different

from previous works that identify function boundaries with heuristics [41, 42, 43, 44, 45],

RAZOR obtains the accurate information of instruction address and function boundary from

the execution trace. For example, we can find some of all possible targets of indirect jumps

and calls.

Starting from such reliable information, we are able to identify more code instruc-

tions [46]. For conditional branch instructions, both targets are known to us. Even if one

target is not executed, we can still reliably disassemble it. For indirect jumps, we can iden-

tify potential jump tables with specific code patterns [47]. For example, jmpq *0x4e65a0(,%rdx,8)

indicates a jump table starting from address 0x4e65a0. By identifying more instructions,

14

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

L9:
 mov %rax,%rdi
 call log@plt

L9:
 mov %rax,%rdi
 call log@plt

L2:
 mov %rbx,%rax
 jmp L3

F

T

L1:
 cmp %rbx,%rax
 jge L3

L3:
 cmp %rcx,%rax
 jge L5

L4:
 mov %rcx,%rax
 jmp L5

L6:
 mov %rax,%rdi
 call L_absl
 jmp L7

F

T

L5:
 test %rax,%rax
 jns L7

F

T

L7:
 test %rax,%rax
 jle L9

L8:
 mov %rax,%rdi
 call sqrt@plt
 jmp L9

F

T

zCode
zCall
zLib
zFunc

Figure 4.3: Identifying related-code with different heuristics. Dashed branches and blocks
are not executed and thus are excluded from the left CFG, while others are executed.

we are able to include them in the binary if our heuristic treats them as related-code.

4.1.2 Heuristic-based Path Inference

Considering the challenge of generating test cases to cover all code, we believe no perfect

method can completely identify all missed related-code. As the first work trying to mitigate

the problem, we adopt the best-effort heuristic approach to include more related-code.

Next, we present these heuristics one by one, from the conservative one (including less

code) to the aggressive one (including more code):

15

(1) Zero-code heuristic (zCode). This heuristic adds new edges (i.e., jumps between

basic blocks) into the CFG. For conditional branch instructions that only have one target

taken (the fall-through target or the jump target), PATHFINDER checks whether the non-

taken target is already in the CFG (i.e., reached through other blocks). If so, PATHFINDER

permits the jump from this instruction to the non-taken target. This heuristic does not add

any new instructions and thus will not affect the code reduction.

Figure 4.3 shows an example of related-code identification with heuristics, with the

original CFG on the left and the expanded CFG on the right. The code is designed to calcu-

late log(sqrt(absl(max(rax,rbx,rcx)))). Dashed branches and blocks are not executed

during tracing, while others are executed. The original execution path is L1→L2→L3→L5→L7→L9.

Blocks L4, L6, L8, and the branch L1→L3 are missed in the original CFG. With the zCode

heuristic, PATHFINDER adds branch L1→L3 into the new CFG, as L3 is the non-taken

branch of the conditional jump jge L3 in L1 and it is already reached from L2 in the current

CFG.

(2) Zero-call heuristic (zCall). This heuristic includes alternative execution paths that

do not trigger any function call. With this heuristic, PATHFINDER starts from the non-

taken target of some conditional branches and follows the control-flow information to find

new paths that finally merge with the executed ones. If such a new path does not in-

clude any call instructions, PATHFINDER includes all its instructions to the CFG. When

PATHFINDER walks through non-executed instructions, we do not have the accurate infor-

mation for stable disassembling or CFG construction. Instead, we rely on existing mech-

anisms [47, 43] to perform binary analysis. When applying the zCall heuristic on the

example in Figure 4.3, PATHFINDER further includes block L4, and path L3→L4→L5, as

this new path merges with the original one at L5 and does not contain any call instruction.

(3) Zero-libcall heuristic (zLib). This heuristic is similar to zCall, except that PATHFINDER

includes the alternative paths more aggressively. The new path may have call instructions

that invoke functions within the same binary or external functions that have been executed.

16

Algorithm 1: Path-finding algorithm.
Input: CFG - the input CFG; libcall_groups - the library call groups.
Output: CFG′ - the expanded CFG
CFG′← CFG
/* iterate over each conditional branch */

1 for cnd_br ∈ CFG:
2 nbb = get_non_taken_branch(cnd_br)
3 if nbb == NULL: continue
4 if heuristic ≥ zCode and nbb ∈ CFG:
5 CFG′ = CFG′ ∪ {cnd_br→nbb}
6 paths = get_alternative_paths(CFG′, nbb)
7 for p ∈ paths:
8 include = false
9 if heuristic == zCall: include = !has_call(p)

10 elif heuristic == zLib: include = !has_new_libcall(p)
11 elif heuristic == zFunc:
12 include = !has_new_func(CFG′, p, libcall_groups)
13 if include:
14 CFG′ = CFG′ ∪ p

However, zLib does not allow calls to non-executed external functions. In Figure 4.3, with

this heuristic, PATHFINDER adds block L6 and path L5→L6→L7 to the CFG, as that path

does not have any call to non-executed external functions.

(4) Zero-functionality heuristic (zFunc). This heuristic further allows including non-

executed external functions as long as they do not trigger new high-level functionali-

ties. To correlate library functions with functionalities, we check their descriptions and

group them manually. For libc functions, we classify the ones that fall into the same

subsection in [48] to the same group. For example, log and sqrt are in the subsection

Exponentiation and Logarithms, and thus we believe they have similar functionalities.

With this heuristic, PATHFINDER includes block L8 and path L7→L8→L9, as sqrt has a

functionality similar to the executed function log.

Algorithm 1 shows the steps that PATHFINDER uses to find related-code that completes

functionalities. For each conditional branch in the input CFG (line 1), the algorithm in-

vokes the function get_non_taken_branch to get the non-taken branch (line 2). If both

branches have been taken, the algorithm proceeds to the next conditional branch (line 3).

Otherwise, PATHFINDER starts to add code depending on the given heuristic (line 4 to

17

14). If the non-taken branch is reachable in the current CFG (line 4), zCode enables the

new branch in the output CFG (line 5). If the heuristic is more aggressive than zCode,

PATHFINDER first gets all alternative paths that start from the non-taken branch and finally

merges with some executed code (line 6). Then, it iterates over all paths (line 7) and calls

corresponding checking functions (i.e., has_call, has_new_libcall, and has_new_func)

to check whether or not the path should be included (line 9 to 12). In the end, PATHFINDER

adds the path to the output CFG if it satisfies the condition (line 14).

4.1.3 Debloated Binary Synthesization

With the original bloated binary and the expanded CFG, GENERATOR synthesizes the de-

bloated binary that exclusively supports required functionalities. First, it disassembles the

original binary following the expanded CFG and generates a pseudo-assembly file that

contains all necessary instructions. Second, GENERATOR modifies the pseudo-assembly to

create a valid assembly file. These modifications symbolize basic blocks, concretize indi-

rect calls/jumps, and insert fault handling code. Third, it compiles the assembly file into an

object file that contains machine code of the necessary instructions. Fourth, GENERATOR

copies the machine code from the object file into a new code section of the original binary.

Fifth, GENERATOR modifies the new code section to fix all references to the original code

and data. Finally, GENERATOR sets the original code section non-executable to reduce the

code size. We leave the original code section inside the debloated program to support the

potential read from it (e.g., jump tables in code section for implementing switch [49]).

Basic Block Symbolization

We assign a unique label to each basic block and replace all its references with the label.

Specifically, we create the label L_addr for the basic block at address addr. Then, we scan

all direct jump and call instructions and replace their concrete target addresses with corre-

sponding labels. In this way, the assembler will generate correct machine code regardless

18

0x0:
 jne 0x4 ;true
0x2:
 jne 0x6 ;false
0x4:
 jz 0xb ;both
0x6:
 call 0x40
0xb:
 call *%rax ;0x70,0x80

L_0x0:
 jne L_0x4
 jmp cond_fail
L_0x2:
 jne cond_fail
L_0x4:
 jz L_0xb
L_0x6:
 call L_0x40
L_0xb:
 cmp %rax, 0x70
 jne L_i1
 call L_0x70
L_i1:
 cmp %rax, 0x80
 jne ic_fail
 call L_0x80

Figure 4.4: Synthesize debloated assembly file. Each basic block is assigned a unique
label; indirect calls are expanded with comparisons and direct calls; fault handling code is
inserted.

of how we manipulate the assembly file. Figure 4.4 shows an assembly file before and after

the update, illustrating the effect of basic block symbolization. Before the update, all call

and jump instructions use absolute addresses, like jne 0x6 in basic block 0x0. After the

symbolization, the basic block at 0x6 is assigned the label L_0x6, while instruction jne 0x6

is replaced with jne L_0x6. Similarly, instruction call 0x40 in block 0x06 is replaced with

call L_0x40. One special case is the conditional branch jne 0x6 in basic block 0x2. In the

extended CFG, it only takes the fall-through branch, which means that jumping to block

0x6 should not be allowed in the debloated binary. Therefore, instead of replacing 0x6 with

symbol L_0x6, we redirect the execution to the fault handling code cond_fail (will discuss

in §4.1.3). Note that basic block symbolization only updates explicit use of basic block

addresses, i.e., as direct call/jump targets. We handle the implicit address use, like saving

function address into memory for indirect call, with the indirect call/jump concretization.

19

Indirect Call/Jump Concretization

Indirect call/jump instructions use implicit targets that are loaded from memory or calcu-

lated at runtime. We have to make sure all possible targets point to the new code section.

For the sake of simplicity, we use the term indirect call to cover both indirect calls and

indirect jumps.

With the execution traces, GENERATOR is able to handle indirect calls in two ways.

The first method is to locate constants from the original binary that are used as code ad-

dresses and replace them with the corresponding new addresses, as in [41, 42]. However,

this method requires a heavy tracing process that records all execution context and a time-

consuming data-flow analysis. Therefore, it is impractical for large programs. The second

method is to perform the address translation before each indirect call, as in [47]. In particu-

lar, we create a map from the original code addresses to the new ones. Before each indirect

call, we map the old code address to the new one and transfer the control-flow to the new

address.

Our GENERATOR takes a method similar to the second one, but with different trans-

lations for targets within the same module (named local targets) and targets outside the

module (named global targets). For local targets, we define a concrete policy for each

indirect call instruction. Specifically, we replace the original call with a set of compare-

and-call instructions, one for each local target that is executed by this instruction at tracing.

Then, we call the new address of the matched old addresses. Global targets have different

addresses in multiple runs because of the address space layout randomization (ASLR). We

use a per-module translation table to solve this problem. Different from previous work that

creates a translation table for all potential targets in the module [47], our translation table

contains only targets that are ever invoked by other modules. At runtime, if the target ad-

dress is outside the current module, we use a global translation function to find the correct

module and look up its translation table to get the correct new address to invoke.

Figure 4.4 gives an example of indirect call concretization. In the execution trace, in-

20

struction call *%rax in block 0xb transfers control to function at 0x70 and 0x80. Our

concretization inserts two cmp instructions, one to compare with the address 0x70 and an-

other to compare with 0x80. For any successful comparison, GENERATOR inserts a direct

call to transfer the control-flow to the corresponding new address.

Security benefit. Our design achieves a stronger security benefit on control-flow pro-

tection over previous methods. For example, the previous work binCFI [47] uses a map

to contain all valid code addresses, regardless of which instruction calls them. Thus, any

indirect call instruction can reach all possible targets, making the protection vulnerable to

existing bypasses [50, 51, 52]. Our design is functionally equivalent to creating one map

for each indirect call, which contains both the targets obtained from the trace and the tar-

gets inferred by our PATHFINDER. For inter-module indirect calls, we limit the targets to a

small set that is ever invoked by external modules. In this way, attackers who try to change

the control flow will have fewer choices, and the debloated binary will be immune to even

advanced attacks.

Frequency-based optimization. Depending on the number of executed targets, we may

insert many compare-and-call instructions that will slow the program execution. For ex-

ample, one indirect call instruction in perlbench benchmark of SPEC CPU2006 has at

least 132 targets, and each target is invoked millions of times. To reduce the overhead,

we rank all targets with their execution frequencies and compare the address with high-

frequent targets first. The targets inferred from heuristics have a frequency of zero. With

this optimization, we can reduce the overhead significantly.

Fault Handling

Running a debloated binary may reach removed code or disabled branches for various rea-

sons, such as a user’s temporal requirement for extra functionalities or malicious attempts

to run unnecessary code. We redirect any such attempt to a fault handler that exits the

execution and dumps the call stack. Specifically, for conditional jump instructions with

21

only one target taken, we intercept the branch to the non-taken target to hook any attempt

of the invalid jump. Similarly, for indirect call instructions, if no allowed target matches

the runtime target, we redirect the execution to the fault handler.

Figure 4.4 includes examples of hooking failed conditional jumps and indirect calls.

For instruction jne 0x4 in block 0x0, we insert jmp cond_fail to redirect the branch to

the fall-through target to the fault handler cond_fail. Similarly, we update instruction

jne 0x6 with jne cond_fail to prevent jumping to the non-executed target. For condi-

tional branch jz 0xb which has both targets taken, we do not insert any code. For in-

struction call *%rax, we insert code jne ic_fail in the case that all allowed targets are

different from the real-time one.

4.2 Evaluation

In this section, we perform extensive evaluation in order to understand RAZOR regarding

the following aspects:

• Code reduction. How much code can RAZOR reduce from the original bloated

binary (§4.2.1)

• Functionality. Does the debloated binary support the functionalities in given test

cases (§4.2.2) How effective is PATHFINDER in finding complementary code? (§4.2.3)

• Security. Does RAZOR reduce the attack surface of the debloated binaries? (§4.2.4)

• Performance. How much overhead does RAZOR introduce into the debloated bi-

nary? (§4.2.5)

• Practicality. Does RAZOR work on commonly used software in the real world?

(§4.2.6)

Experiment setup. We set up three sets of benchmarks to evaluate RAZOR: 29 SPEC

CPU2006 benchmarks, including 12 C programs, seven C++ programs, and 10 Fortran

programs; 10 coreutils programs used in the CHISEL paper1 [5]; the web browser FIRE-

1We appreciate the help of CHISEL authors for sharing the source code and their benchmarks.

22

0%
20%
40%
60%
80%

100%

pe
rlb

en
ch

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sli

e3
d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
hm

m
er

sje
ng

G
em

sF
D

TD
lib

qu
an

tu
m

h2
64

re
f

to
nt

o
lb

m
om

ne
tp

p
as

ta
r

w
rf

sp
hi

nx
3

xa
la

nc
bm

k
AV

ER
AG

E

Razor

(a) SPEC CPU2006

0%
20%
40%
60%
80%

100%

bz
ip

2
ch

ow
n

da
te

gr
ep

gz
ip

m
kd

ir rm so
rt ta
r

un
iq

AV
ER

AG
E

Razor Chisel

(b) CHISEL benchmarks

Figure 4.5: Code size reduction on two benchmarks. We use RAZOR to debloat both SPEC
CPU2006 benchmarks and CHISEL benchmarks without any path finding and achieve
68.19% and 78.8% code reduction. CHISEL removes 83.4% code from CHISEL bench-
marks.

FOX and the close-source PDF reader FOXITREADER. We use the software-based trac-

ing tools that rely on DYNAMORIO and PIN to collect the execution traces of SPEC and

CHISEL benchmarks, to get accurate results; for the complicated programs FIREFOX and

FOXITREADER, we use the hardware-based tracing tool (relying on INTEL PT) to guar-

antee the execution speed to avoid abnormal behaviors. We ran all the experiments on a

64-bit Ubuntu 16.04 system equipped with Intel Core i7-6700K CPU (with eight 4.0GHz

cores) and 32 GB RAM.

4.2.1 Code Reduction

We applied RAZOR on SPEC CPU2006 benchmarks and CHISEL benchmarks to measure

the code size reduction. For SPEC benchmarks, we treated the train dataset as the user-

given test cases. For CHISEL benchmarks we obtained test cases from the paper’s authors.

We did not apply any heuristics of path finding for this evaluation. As RAZOR works

on binaries, we cannot measure the reduction of source code lines. Instead, we compare

23

the size of the executable memory region before and after the debloating, specifically, the

program segments with the executable permission. Figure 4.5a shows the code reduction of

SPEC benchmarks debloated by RAZOR. Figure 4.5b shows the code reduction of CHISEL

benchmarks, debloated by CHISEL and RAZOR.

On average, RAZOR achieves 68.19% code reduction for SPEC benchmarks and 78.8%

code reduction for CHISEL benchmarks. Especially for dealII, hmmer, gamess, and tar,

RAZOR removes more than 90% of the original code. For bwaves, zeusmp, and GemsFDTD,

RAZOR achieves less than 30% code reduction. We investigated these exceptions and found

that these programs are relatively small and the train datasets already trigger most of the

code.

Meanwhile, CHISEL achieves 83.4% code reduction on CHISEL benchmarks. For seven

programs, CHISEL reduces more code than RAZOR, while RAZOR achieves higher code

reduction than CHISEL for the other three programs. CHISEL tends to remove more code

as long as the execution result remains the same. For example, variable initialization code

always gets executed at the function beginning. CHISEL will remove it if the variable is not

used in the execution, while RAZOR will keep it in the debloated binary. Although CHISEL

performs slightly better than RAZOR on code reduction, we find that the debloated binaries

from CHISEL suffer from robustness issues (§4.2.2) and security issues (§4.2.4).

4.2.2 Functionality Validation

We ran the debloated binaries in CHISEL benchmarks against given test cases to understand

their robustness. For each benchmark, we compiled the original source code to get the orig-

inal binary and compiled the debloated source code from CHISEL to get the CHISEL binary.

Then, we used RAZOR to debloat the original binary with given test cases, generating the

RAZOR binary. Next, we ran the original binary, the CHISEL binary, and the RAZOR bi-

nary again with the test cases. We examine the execution results to see whether the required

functionalities are retained in the debloated binaries.

24

Table 4.1: Failed test cases by RAZOR binaries and CHISEL binaries. CHISEL failed some
tests with different reasons: Wrong operations, Infinite loop, Crashes, and Missing output.
For RAZOR binaries, we show the heuristic that makes the program pass all tests.

Program Version # of Failed by Chisel Failed
Tests W I C M by Razor

bzip2 1.0.5 6 2 – 2 – – (zLib)
chown 8.2 14 – – – – – (zFunc)
date 8.21 50 5 – 3 – – (zLib)
grep 2.19 26 – – – 6 – (zLib)
gzip 1.2.4 5 – 1 – – – (zLib)
mkdir 5.2.1 13 – – – 1 – (zLib)
rm 8.4 4 2 – – – – (zFunc)
sort 8.16 112 – – – – – (zCall)
tar 1.14 26 3 – – 4 – (zCall)
uniq 8.16 16 – – – – – (zCall)

Table 4.1 shows the validation result. RAZOR binaries produce the same results as

those from the original binaries for all test cases of all programs (the last column), showing

the robustness of the debloated binaries. Surprisingly, CHISEL binaries only pass the tests

of three programs (i.e., chown, sort, and uniq) and trigger some unexpected behaviors

for the other seven programs. Considering that CHISEL verifies the functionality of the

debloating binary, such a low passing rate is confusing. We checked these failed cases and

the verification process of CHISEL and found four common issues.

Wrong operation. The debloated program performs unexpected operations. For exam-

ples, bzip2 should decompress the given file when the test case specifies the -d option.

However, the binary debloated by CHISEL always decompresses the file regardless of what

option is used. We suspect that CHISEL only uses one test case of decompression to debloat

the program and thus removes the code that parses command line options.

Infinite loop. CHISEL may remove loop condition checks, leading to infinite loops. For

example, gzip fails one test case because it falls into a loop in which CHISEL drops the

condition check. We believe the reason is that the test case used by CHISEL only iterates the

loop one time. The verification step of CHISEL should identify this problem. However, we

found that the verification script adopts a small timeout (e.g., 0.1s) and treats any timeout

25

40
30
20
10

0%
20%
40%
60%
80%

100%

bzip
2

ch
ow

n
date grep gzip

mkdir rm sort tar uniq
AVG

cr
as

h
#

<—
>

re
du

ct
io

n
ra

te

none
zCode

zCall
zLib

zFunc

Figure 4.6: Path finding on CHISEL benchmarks with different heuristics. The top part
is the code reduction, while the bottom part is the number of crashes. ‘none’ means no
heuristic is used.

as a successful verification. Therefore, it cannot detect any infinite loops.

Crashes. The debloated binary crashes during execution. For example, date crashes three

test cases because CHISEL removes the check on whether the parameters of strcmp are

NULL. bzip2 crashes three test cases for the same reason.

Missed output. CHISEL removes code for printing out on stdout and stderr, leading to

missed results. For example, grep fails six test cases, as the binary does not print out any

result even through it successfully finds matched strings. We find that in the verification

script of CHISEL, all output of the debloated binaries is redirected to the /dev/null device.

Therefore, it cannot detect any missing or inconsistent output.

4.2.3 Effectiveness of Path Finding

We use two sets of experiments to evaluate the effectiveness of PATHFINDER on finding

the related-code of required functionalities. First, we use RAZOR to debloat programs with

different heuristics, from the empty heuristic to the most aggressive zFunc heuristic, aiming

to find the least aggressive heuristic for each program. Second, we perform N-fold cross

validation to understand the robustness of our heuristic. In this subsection, we focus on the

first experiment and leave the N-fold cross validation in §4.2.6.

We tested RAZOR on CHISEL benchmarks as follows: (1) design training inputs and

testing inputs that cover the same set of functionalities; (2) trace programs with the train-

26

ing inputs and debloat them with none, zCode, zCall, zLib, and zFunc heuristics; (3) run

debloated binaries on testing inputs and record the failed cases. The setting of evaluating

PATHFINDER is given in Table A.1 of Appendix A. We use the same options for training

inputs and testing inputs to make sure that the debloated binaries are tested for the same

functionalities as those triggered by the training inputs. The difference is the concrete value

for each option or the file to process. For example, when creating folders with mkdir, we

use various parameters of the option -m for different file mode sets. For program bzip2 and

gzip, we use different files for training and testing.

Figure 4.6 presents our evaluation result, including the code reduction (the top half)

and the number of failed test cases (the bottom half) under different heuristics. We can see

that debloating with a more aggressive heuristic leads to more successful executions. All

binaries generated without any heuristic fail on some testing inputs. grep fails on all 38

testing inputs, while chown and rm fail more than half of all tests. The zCode heuristic helps

mitigate the crash problem, like making grepwork on 19 test cases. However, all generated

binaries still fail some inputs. The zCall heuristic further improves the debloating quality.

For program sort, tar, and uniq, it avoids all previous crashes. With the zLib heuristic,

only two programs (i.e., chown and rm) still have a small number of failures. In the end,

debloating with the zFunc heuristic reduces all crashes in all programs.

Interestingly, although aggressive heuristics introduce more code to the debloated bi-

nary (shown in the top of Figure 4.6), they do not significantly decrease the code reduction.

Without any heuristic, the average code reduction rate of 10 programs is 78.7%. The num-

ber is reduced by −0,4%, 3.8%, 8.8%, and 12.6% when applying zCode, zCall, zLib, and

zFunc heuristics, respectively. Therefore, even with the most aggressive zFunc heuristic,

the code reduction does not decrease heavily. At the same time, all crashes are resolved,

showing the benefits of applying heuristics. Note that the zCode heuristic slightly increases

the code reduction over the no heuristic case, as it enables more branches of conditional

jumps, which in turn reduces the instrumentation of failed branches.

27

int fillbuf(...) { ...
if (minsize <= maxsize_off)
if (...) ...

newalloc = newsize+ ...;
}

Figure 4.7: A crash case reduced by ap-
plying zCode heuristic.

int fts_safe_changedir(..,){
if (dir) {
tmp=strcmp(dir,".."); ...

} ...
}

Figure 4.8: A crash case reduced by ap-
plying zFunc heuristic.

int compare(line *a,line *b) {
alen = a->length - 1UL;
blen = b->length - 1UL;
if (alen == 0UL) {
diff = -(blen != 0UL);

} else {
if (blen == 0UL) {
diff = 1;

} else { ... }
}}

Figure 4.9: A crash case reduced by ap-
plying zCall heuristic.

int main(...) { ...
fail = make_dir(..);
if (!fail) {
if (!create_parents) {
if (!dir_created) {
tmp_7=gettext("error");
error(0,17,tmp_7,tmp_6);
fail = 1;
...

}}}}

Figure 4.10: A crash case reduced by ap-
plying zLib heuristic.

We investigated the failed cases mitigated by different heuristics and show some case

studies as follows:

(1) The zCode heuristic enables the non-taken branch for executed conditional jumps. Fig-

ure 4.7 shows part of the function fillbuf of program grep that fails if we do not use the

zCode heuristic. The training inputs always trigger the true branch of the condition at line

2 and jump to line 3, which in turn reach line 4. However, in the execution of testing inputs,

the conditional at line 2 takes the false branch (i.e., minsize > maxsize_off) and triggers

the jump from line 2 to line 4. This branch is not allowed from execution traces. The zCode

heuristic enables this branch, as line 4 has been reached in the previous execution.

(2) The zCall heuristic includes alternative paths that do not trigger any call instructions.

Figure 4.9 shows an example where the zCall heuristic helps include necessary code in the

debloated binary. Function compare in program sort uses a sequence of comparisons to

find whether two text lines are different. Since the training inputs have no empty lines, the

28

condition at line 4 and line 7 always fails. However, the testing inputs contain empty lines,

which makes these two conditional jumps take the true branches. The zCode heuristic

adds lines 5 and 8 and related branches to the debloated program, which effectively avoids

this crash.

(3) The zLib heuristic allows extra calls to native functions or library functions if they have

been used in traces. It helps avoid a crash in program mkdir when we use the debloated

binary to change the file mode of an existing directory. Figure 4.10 shows the related code,

which crashes because of the missing code from line 6 to line 9. Since mkdir does not allow

changing the file mode of an existing directory, the code first invokes function gettext to

get the error message and then calls library function error to report the error. The zLib

heuristic includes this path in the binary because both gettext and error are invoked by

some training inputs.

(4) The zFunc heuristic includes alternative paths that invoke similar library functions.

Figure 4.8 shows the code that causes rm to fail without this heuristic. When rm deletes a

folder that contains both files and folders, it triggers the code at line 3 to check whether it is

traversing to the parent directory. Since the training inputs never call strcmp, the debloated

binary fails even with the zLib heuristic. However, the training inputs ever invoke function

strncmp, which has the functionality similar to strcmp (i.e., string comparison). Therefore,

the zFunc heuristic adds this code in the debloated binary.

The results show that PATHFINDER effectively identifies related-code that completes

the functionalities triggered by training inputs. It enhances the robustness of the debloated

binaries while retaining the effectiveness of code reduction.

4.2.4 Security Benefits

We count the number of reduced bugs to evaluate the security benefit of our debloating.

For each program in the CHISEL benchmark, we collected all its historical vulnerabilities,

including the ones shown in the current version and the ones only in earlier versions. For

29

Table 4.2: Vulnerabilities before and after debloating by RAZOR and CHISEL. ✓ means
the binary is vulnerable to the CVE, while ✗ mean it is not vulnerable. CVEs with ∗ are
evaluated in [5].

Program CVE Orig Chisel Razor

bzip2-1.0.5

CVE-2010-0405 ✓
CVE-2011-4089* ✗
CVE-2008-1372 ✗ ✔
CVE-2005-1260 ✗ ✔

chown-8.2 CVE-2017-18018* ✓ ✘ ✘
date-8.21 CVE-2014-9471* ✓ ✘

grep-2.19 CVE-2015-1345* ✓ ✘ ✘
CVE-2012-5667 ✗ ✔

gzip-1.2.4
CVE-2005-1228* ✓ ✘ ✘
CVE-2009-2624 ✓
CVE-2010-0001 ✓ ✘ ✘

mkdir-5.2.1 CVE-2005-1039* ✓
rm-8.4 CVE-2015-1865* ✓
sort-8.16 CVE-2013-0221* ✗
tar-1.14 CVE-2016-6321* ✓ ✘
uniq-8.16 CVE-2013-0222* ✗

the former bugs, we check whether the buggy code has been removed by the debloating

process. If so, the debloating process helps avoid related attacks. For the latter bugs, we

figure out whether their patches are retained in the debloated binary. If not, the debloated

process makes the program vulnerable again. Table 4.2 shows our evaluation result, includ-

ing 16 CVEs related to CHISEL benchmarks. 13 bugs are shown in the current version, and

10 of them are evaluated in [5] (followed by *). Three bugs only exist in older versions

(i.e., CVE-2010-0405, CVE-2009-2624, and CVE-2010-0001).

RAZOR successfully removes four CVEs from the original binaries and does not in-

troduce any new bugs. Specifically, CVE-2017-18018 in chown, CVE-2015-1345 in grep,

CVE-2005-1228 and CVE-2010-0001 in gzip are removed in the debloated binaries. Six

vulnerabilities from bzip, date, gzip, mkdir, rm, and tar remain, as the test cases execute

related vulnerable code. Another six vulnerabilities are not caused by the binary itself. For

example, CVE-2011-4089 is caused by the race condition of the bash script bzexe, not by

the bzip2 binary. Therefore, RAZOR will not disable such bugs.

30

-2%

0%

2%

4%

6%

8%

pe
rlb

en
ch

bz
ip

2
gc

c
bw

av
es

ga
m

es
s

m
cf

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d
go

bm
k

de
al

II
so

pl
ex

po
vr

ay
ca

lc
ul

ix
hm

m
er

sj
en

g
G

em
sF

D
TD

lib
qu

an
tu

m
h2

64
re

f
to

nt
o

lb
m

om
ne

tp
p

as
ta

r
w

rf
sp

hi
nx

3
xa

la
nc

bm
k

AV
ER

A
G

E

16% Razor

Figure 4.11: Performance overhead by RAZOR on SPEC CPU®2006 benchmarks. The
average overhead is 1.7%.

With a more aggressive code removal policy, CHISEL disables two more CVEs than

RAZOR, but unfortunately brings three old bugs to the debloated binaries. Specifically,

CHISEL removes the vulnerable code of CVE-2014-9471 from date and the code of CVE-

2016-6321 from tar. Meanwhile, it removes the patches of CVE-2008-1372 and CVE-

2005-1260 in bzip2, and CVE-2012-5667 in grep, rendering the debloated binaries vul-

nerable to these already-fixed bugs.

Compared to CHISEL, RAZOR removes the bloated code in a conservative way. Al-

though such strategy may hinder removing more bugs, but it also helps avoid new bugs in

the debloated binary. This result is consistent with our findings in §4.2.2, where CHISEL

achieves higher code reduction but fails some expected functionalities.

4.2.5 Performance Overhead

Efficient Debloating. On average, RAZOR takes 1.78 seconds to debloat CHISEL bench-

marks, 8.51 seconds for debloating FIREFOX, and 50.42 seconds to debloat FOXITREADER

As a comparison, CHISEL has to spend one to 11 hours to debloat the relatively small

CHISEL benchmarks. Therefore, RAZOR is a practical debloating tool.

Runtime Overhead. We measured the performance overhead introduced by RAZOR

to SPEC benchmarks and show the result in Figure 4.11. On average, RAZOR introduces

1.70% overhead to debloated programs, indicating its efficiency for real-world deployment.

The highest overhead occurs on the debloated perlbench binary, which slows the execu-

31

tion by 16%. We inspected the debloated programs and confirmed that the indirect call

concretization is the main source of the performance overhead. With the indirect call con-

cretization, one indirect call instruction is replaced by several comparison and direct calls.

For perlbench, some indirect call instructions have more than 100 targets. Correspond-

ingly, RAZOR introduces a large number of if-else there, leading to a high performance

overhead. We deployed the frequency-based optimization and reduced the overhead from

over 100% to the current 16%. We plan to use binary search to replace current one-by-one

matching in order to further reduce the overhead.

4.2.6 Debloating Real-world Programs

To evaluate the practicality, we used RAZOR to debloat two widely used software pro-

grams – the web browser FIREFOX and the closed-sourced PDF reader FOXITREADER.

For FIREFOX, we ran RAZOR to load the top 50 Alexa websites [53]. We randomly picked

25 websites as the training inputs and used the other 25 websites as the testing inputs. For

FOXITREADER, we ran RAZOR to open and scroll 55 different PDF files that contain ta-

bles, figures, and JavaScript code. We randomly picked 15 of them as the training inputs

and used the other 40 files as the testing inputs.

Code reduction and functionality. Table 4.3 shows the code reduction rate and the

number of failed cases of debloated binaries with different path-finding heuristics. Both

FIREFOX and FOXITREADER require at least the zLib heuristic to obtain crash-free bina-

ries, with 60.1% and 87.0% code reduction, respectively. Without heuristics, FIREFOX fails

on 13 out of 25 websites and FOXITREADER fails on 39 out of 40 PDF files. The zCode

heuristic helps reduce FOXITREADER crashes to 10 PDF files and increases the code reduc-

tion by avoiding fault-handling instrumentation. The zLib and the zFunc heuristic eliminate

all crashes. Compared with the non-heuristic debloating, the zLib heuristic only decreases

the code reduction rate by 7.5% for FIREFOX and by 2.8% for FOXITREADER. Therefore,

it is worth using this heuristic to generate robust binaries.

32

Table 4.3: Debloating FIREFOX and FOXITREADER with RAZOR, together with diffferent
path-finding heuristics.

Heuristic FireFox FoxitReader
crash-sites reduction crash-PDFs reduction

none 13 67.6% 39 89.8%
zCode 13 68.0% 10 89.9%
zCall 2 63.1% 5 89.4%
zLib 0 60.1% 0 87.0%
zFunc 0 60.0% 0 87.0%

Table 4.4: Per-site browser debloating

Type Site Reduction Heuristic Benefits

Banking

bankofamerica.com 69.4% zCall +6.3%
chase.com 69.6% zCall +6.5%
wellsfargo.com 68.8% zCall +5.7%
all-3 68.1% zCall +5.0%

E-commerce

amazon.com 71.4% none +3.8%
ebay.com 70.7% none +3.1%
ikea.com 70.6% none +3.0%
all-3 70.4% none +2.8%

Social Media

facebook.com 70.8% zCall +7.7%
instagram.com 71.6% zCall +8.5%
twitter.com 74.0% none +6.4%
all-3 71.8% none +4.2%

Performance overhead. We ran the debloated FIREFOX (with zLib) on several bench-

marks and found that RAZOR introduces −2.1%, 1.6%, 0%, and 2.1% overhead to Octane

[54], SunSpider [55], Dromaeo-JS [56], and Dromaeo-DOM [57] benchmarks. For FOX-

ITREADER, we did not find any standard benchmark to test the performance. Instead, we

used the debloated binaries to open and scroll the testing PDF files and did not find any

noticeable slowdown.

Application – per-site browser isolation. As one application of browser debloating, we

can create minimal versions that support particular websites, effectively achieving per-site

isolation [58, 59, 60] . For example, the bank can provide its clients a minimal browser that

only supports functionalities required by its website while exposing the least attack surface.

To measure the benefit of the per-site browser, we applied RAZOR on three sets of popular

33

Table 4.5: N-fold validation of zLib heuristic on FIREFOX. First, we randomly split Alexa’s
Top 50 websites into five groups, and select two groups (20 websites) as the training set
and others (30 websites) as the test set for 10 times. Second, we randomly split the 50
website into 10 groups, and select five groups (25 websites) as the training set, and others
(25 websites) as the test set for 10 times.

Train/Test ID #Failed Reduction failed websites

20/30

T10 1 59.3% wordpress.com
T11 0 59.3%
T12 1 59.3% wordpress.com
T13 1 59.3% twitch.tv
T14 1 59.3% wordpress.com
T15 1 59.5% wordpress.com
T16 2 59.5% twitch.tv, wordpress.com
T17 1 59.3% twitch.tv
T18 1 59.3% twitch.tv
T19 2 59.6% wordpress.com, twitch.tv

25/25

T00 0 59.3%
T01 2 59.1% wordpress.com, twitch.tv
T02 2 59.3% wordpress.com, twitch.tv
T03 2 59.1% wordpress.com, twitch.tv
T04 0 59.2%
T05 1 59.1% aliexpress.com
T06 0 59.2%
T07 0 59.1%
T08 2 59.3% wordpress.com, twitch.tv
T09 0 59.1%

and security-sensitive websites: banking websites, websites for electronic commerce, and

social media websites. Table 4.4 shows the debloating result, the used path-finding heuristic

and the security benefits over the general debloating in Table 4.3. As we can see, the

banking websites can benefit with at least 5.0% code reduction for the per-site minimal

browser. The E-commerce websites will have around 3.0% extra code reduction, a little less

because of its high requirement on user interactions. Surprisingly, social media websites

can benefit by up to 8.5% extra code reduction and at least 4.2% when supporting all three

websites. We believe the minimal web browser through binary debloating is a practical

solution for improving web security.

34

N-fold Cross Validation of Heuristics

To further evaluate the effectiveness of our heuristics, we conducted N-fold cross valida-

tion on FIREFOX with the zLib heuristic, as it is the least aggressive heuristic that renders

FIREFOX crash-free.We performed two sets of evaluations and show the result in Table 4.5.

First, we randomly split Alexa’s Top 50 websites into five groups, 10 websites per group.

We picked two groups (20 websites) for training and used the remaining 30 websites for

testing. We performed this evaluation 10 times. The result in the table shows that during

one test with ID T11, the debloated FIREFOX successfully loads and renders 30 testing web-

sites. The debloated FIREFOX fails two websites (6.7%) seven times and fails one website

(3.3%) two times. Second, we randomly split Alexa’s Top 50 websites into 10 groups, five

websites per group. We randomly picked five groups (25 websites) for training and used the

others (25 websites) for testing. We performed this evaluation 10 times. The result shows

that, in five times, the debloated FIREFOX loads and successfully renders the tested 25

websites. The debloated FIREFOX fails one (4%) website one time and fails two websites

(8%) four times. The code size reduction is consistently round 60%. These results show

that our heuristics are effective for inferring non-executed code with similar functionalities

of training inputs. Among all the tests, only three websites trigger additional code and the

program gracefully exits with warning information. We plan to check these websites to

understand the failure reasons.

We also manually checked what code of FIREFOX was removed. We find that code re-

lated to features such as record/replay, integer/string conversion, compression/decompression

are removed.

35

CHAPTER 5

FEATURE-CODE MAP APPROACH

While the heuristic-based approach shown in §4 suffers from both false positives and false

negatives, so it does not work for large-scale software with dynamic inputs. In this Chapter,

I propose SLIMIUM that uses a feature-code map to debloat one of the large-scale and

complex software, Chromium. I will introduce the overview of SLIMIUM in Section §5.1

and the design in detail in Section §5.2.

5.1 Overview

(Approach)

Entire code

F1 F2

Profiling

Debloating

a

b

c

Object(compilation unit)

Function

Feature
{f0, f1, f3}

Feature
{f2, f3, f5, f6}1

2

Static AnalysisSource Code

f1f0 f2 f3 f4 f5 f6

IR

Feature
Discovery

Call Graph Generation

Dynamic
Analysis

Feature Code
Mapping

Profiling
Results

3 Top 1000
Website Visits

4 User Activity
Analysis

1’

2’

3’

4’

f1f0 f2 f3 f4 f5 f6

Instrumentation5 Binary Rewriting

Debloated
Version

External
Resources

(Outputs)

(Inputs)

CVEs

Figure 5.1: High-level overview of SLIMIUM. It leverages a concept of feature subsetting
(feature as a unit of debloating) to guide a binary instrumentation as feedback on top of
feature-code mapping and profiling results.

Figure Figure 5.1 shows an overview of SLIMIUM for debloating Chromium. SLIM-

IUM consists of three main phases: i) feature-code mapping generation, ii) prompt website

profiling based on page visits, and iii) binary instrumentation based on i) and ii).

Feature-Code Mapping To build a set of unit features for debloating, we investigate

source code [61], previously-assigned CVEs pertaining to Chromium, and external re-

sources [62, 63] for the Web specification standards (Step ➊ in Figure Figure 4.1). Ta-

36

ble Table 5.1 summarizes 164 features with four different categories. Once the features

have been prepared, we generate a feature-code map that aids further debloating from the

two sources (➊’ and ➋’). From the light-green box in Figure Figure 5.1, consider the binary

that contains two CUs to which three and four consecutive binary functions (i.e., { f0− f2}

and { f3− f6}) belong, respectively. The initial mapping between a feature and source code

relies on a manual discovery process that may miss some binary functions (i.e., from the

source generated at compilation). Then, we apply a new means to explore such missing

functions, followed by creating a call graph on the IR (Intermediate Representation) (Step

➋, Section §5.2.2).

Website Profiling The light-yellow box in Figure Figure 5.1 enables us to trace exercised

functions when running a Chromium process. SLIMIUM harnesses a website profiling to

collect non-deterministic code paths, which helps to avoid accidental code elimination. As

a baseline, we perform differential analysis on exercised functions by visiting a set of web-

sites (Top 1000 from Alexa [64]) multiple times (Step ➌). For example, we mark any func-

tion non-deterministic if a certain function is not exercised for the first visit but is exercised

for the next visit. Then, we gather exercised functions for target websites of our interest

with a defined set of user activities (Step ➍). During this process, profiling may identify a

small number of exercised functions that belong to an unused feature (i.e., initialization).

As a result, we obtain the final profiling results that assist binary instrumentation (➌’ and

➍’).

Binary Rewriting The final process creates a debloated version of a Chromium binary

with a feature subset (Step ➎ in Figure Figure 5.1). In this scenario, the feature in the green

box has not been needed based on the feature-code mapping and profiling results, erasing

the functions { f0, f1, f3} of the feature. As an end user, it is sufficient to take Step ➍ and ➎

for binary instrumentation where pre-computed feature-code mapping and profiling results

are given as supplementary information.

37

Table 5.1: Chromium features as a debloating unit (#: count).

Class Features
(#)

Functions
(#)

Function
Size (KB)

CVEs
(#)

Feature Policy
Directives (#)

Experimental
Flags (#)

HTML5 6 8,103 1,721 15 0 0
JS API 100 71,082 17,204 57 25 15
Non-web 57 62,594 21,303 77 0 0
Wasm 1 1,189 869 4 0 0

Total 164 142,968 41,097 153 25 15

5.2 Design

5.2.1 Feature Set for Chromium Debloating

We begin with investigating all Web APIs to group them into different features from the ap-

proach in Snyder et al. [25], and exploring the Chromium’s source code structure to include

other features with an absence of Web APIs. Besides, we utilize external resources [63, 62]

that list comprehensive features to define our final feature set for debloating. Note that we

have excluded i) glue code that is commonly shared among multiple features and ii) code

pertaining to fundamental security mechanisms such as SOP (Same Origin Policy) and CSP

(Content Security Policy), which means that these security relevant features will be always

retained in a debloated version of Chromium regardless of our profiling phase (§5.2.3). In

Table Table 5.1, we define 164 Chromium features that can be harnessed as a debloating

unit, classifying them into four categories: JS API, HTML5, Non-web, and Wasm. Note

that wasm (Web assembly) is the only feature that does not belong to HTML5, JS API, or

the standard Web specifications. Interested readers can find further details regarding unit

features in the Appendix (Table Table B.2). In summary, a few notable statistical values

are as follows: i) 153 CVEs reside in 42 debloatble features (25% of all the features),

ii) 25 Feature Policy directives are included as part of our feature set, iii) 15 features can be

enabled with an experimental flag, eight of which are defined as Feature Policy directives 1.

1accelerometer, ambient-light-sensor, fullscreen, magnetometer, gyroscope, vr, publickey-credentials, and
xr-spatial-tracking

38

JavaScript API Chromium offers Web APIs that interact with web contents through

JavaScript interfaces. In particular, we utilize caniuse [63] to classify the JavaScript APIs

because it actively keeps track of browser-and-version-specific features as collective intel-

ligence. Some of them have been combined due to a common implementation (i.e., Blob

constructing and Blob URLs as a Blob API), resulting in 100 sub-categories.

HTML5 As the latest HTML version, HTML5 defines a rich feature set including audio,

video, vector graphics (i.e., SVG, canvas), MathML, and various form controls as part of

HTML by default. We define six major features that cause either a large code base or

previous vulnerabilities (i.e., known CVEs). Recently, MarioNet [65] has demonstrated a

new class of attacks that sorely relies on HTML5 APIs (i.e., a feature of service workers)

in modern browsers, leading successfully unwanted operations.

Non-web Features Our finding shows that there are a few Chromium-browser-specific

features such as devTools, extensions, and PDF that have been exposed to various attacks

in the past years (Table B.3). To exemplify, we could find 26 CVEs pertaining to a PDF

feature alone. Additionally, we define each third-party component as a feature, assuming

external code has a minimal dependency on each other. Indeed, this assumption holds for

our features because their core implementations are often mutually exclusive. For exam-

ple, few call invocations have been discovered among each other under the third_party

directory based on our call graph analysis. Note that we have excluded a few of them when

the feature is heavily employed by other parts such as protobuf.

5.2.2 Feature-Code Mapping

Generating a feature-code map is a key enabler to make our debloating approach feasible.

In this section, we describe how to create such mapping in a reliable and efficient manner.

To this end, we introduce a concept of a relation vector to seek more relevant code for a

certain feature.

39

Manual Feature-Code Discovery

To determine the corresponding code to each feature, we begin with a manual inves-

tigation on source files that implement a certain feature, which is worthwhile because

Chromium often offers well-structured directories and/or file names and test suites. For

example, the test set of the battery feature resides in external/wpt/battery-status

and battery-status under the directory of blink/web_tests that contains a collec-

tion of various test suites. With additional exploration, we could infer the implementation

for that feature is within battery under the directory of blink/renderer/modules that

contains a collection of various renderer modules.

Feature-Oriented Call Graph Generation

Function Identifier Once the above initial mapping is complete, SLIMIUM constructs a

call graph based on IR functions. Recall that we aim to directly remove binary functions on

top of the mapping information; hence SLIMIUM instruments the final Chromium binary

by assigning a unique identifier for each IR function at its build. The discrepancy between

IR and binary functions happens because of i) object files irrelevant to the final binary at

compilation (i.e., assertions that ensure a correct compilation process or platform-specific

code) and ii) de-duplication at link time [66] (i.e., a single constructor or destructor of a

class instance would be selected if redundant) 2. It is noted that we can safely discriminate

all binary functions because they are a subset of IR functions.

Indirect Call Targets As Chromium is mainly written in a C++ language, there are inher-

ently a large number of indirect calls, including both virtual (91.8%) [67] and non-virtual

calls. Briefly, we tackle identifying indirect call targets using the following two techniques:

i) backward data analysis for virtual calls and ii) type matching for non-virtual calls. In case

of failing the target in a backward data analysis for a virtual call invocation, we attempt to

2In our experiment, almost half of IR functions were disappeared.

40

f1

f2 f3

f4 f5 f6

f8 f9f7

Object

(2, 0.5) (1, 0)
O1

O2 O3

O4
(3, 0.75) (1, 0.25)

aabb

bbbb cccc

bbbc

O5

bbcc

(1, 0.5)

Feature X
(1, 0.25)

(2,) (1,)
O1

O2 O3

O4

(3,) (1,)

aabb

bbbb cccc

bbbc

O5

bbcc

(1,)

(1,)
(0.75,)

O1

O4

aabb

bbbc

O5

bbcc

Feature X

(0.8,)

(1,)

(0.75, 0.25)

O1

O4

aabb

bbbc

O5

bbcc

Feature X

(0.8, 0.5)
(1, 0.5)

(Step I) Identify objects from a call graph (Step II) Compute rc and rs for an obj-obj relation vector, RO(rc, rs) (Step III) Compute rc and rs for a feature-obj relation vector RF(rc, rs)

Figure 5.2: Feature-code mapping with relation vectors that enable the inference of relevant
object files for a certain feature.

use type matching. Note that it is infeasible to obtain all indirect call targets with full

accuracy.

Feature-Code Mapping with Relation Vectors

At this point, we have a large directed call graph (nodes labeled with a function identifier

and edges that represent caller-callee relationships) and an initial mapping between a fea-

ture and corresponding source files. Even with the mapping information alone, it is possible

to learn partial binary functions that belong to relevant object files; however, there are quite

a few missing links, including binary functions from sources generated at compilation.

To seek more relevant object files for each feature, we define a two-dimensional relation

vector, R⃗ = (rc,rs), which represents the following two vector components: i) call invoca-

tions (rc) and ii) similarity between two object file names using the hamming distance [6]

(rs). The relation vector serves as a metric on how intensively any two objects are germane

to each other. The intuition behind this is that i) it is reasonable to include an object as part

of a feature if function calls would be frequently invoked each other, ii) relevant code is

likely to be implemented under a similar path name, and iii) a non-deterministic code path

problem (i.e., exceptions) can be minimized by including all functions within an object.

Figure Figure 5.2 illustrates three phases that automatically infer relevant code at the

object level. First, as in Step I, we group a set of binary functions that belong to the same

object (i.e., f7 and f8 with a dotted-line area). In this example, there are five objects

grouped with nine functions total. Second, we build another directed graph for object

dependencies (Step II) based on the edges from the previous function call graph. Each

41

edge defines an object-object relation vector, R⃗O = (rc,rs), between two objects (nodes).

For R⃗O, each component can be computed as the number of call invocations and a hamming

distance value. For instance, the RO between O1 and O2 can be represented as (2,0.5)

because of two function invocations (i.e., (f2) → (f4, f5)) and a hamming distance value

of 0.5 from the two object names (i.e., aabb and bbbb). Third, we consider a feature on

top of the object dependency graph (Step III). The initial mapping from manual discovery

comes into play, which identifies relevant objects for a certain feature. Suppose the two

objects, O2 and O3, belong to Feature X (dotted-line in blue). Now, we compute another

relation vector, a feature-object relation vector, R⃗F = (rc,rs) for the edges only connected

to the feature. For R⃗F , the rc component represents the rate of call invocations between

the feature and the surrounding objects (that have edges) whereas the rs component is an

amortized hamming distance value between the object name and the object name(s) that

belong to the feature. In this example, the RF between Feature X and the object O1 would

be (0.75,0.25) because rc =
2+1

1+2+1 and rs =
0.5+0

2 , respectively. Hence, the result can be

interpreted as follows: the O1 has a high outgoing call invocation rate to the functions in

Feature X ; however, its object name is not close enough. Algorithm Algorithm 3 briefly

shows pseudo-code on how to explore any relevant objects for further debloating using

relation vectors.

Note that we open both rc and rs as hyperparameters of our heuristic algorithm to deter-

mine the proximity between a feature and an object, ranging from 0 to 1. In our experiment,

we use the value of 0.7 for both parameters (See Section §5.3.3 in detail).

5.2.3 Prompt Webpage Profiling

We employ a dynamic profiling technique to complement static analysis (i.e, feature-code

mapping) because the granularity of our debloating approach aims at the function level.

Various tools are available such as Dynamorio [36] and Intel Pin [68] to obtain exercised

functions at runtime through dynamic instrumentation. However, instrumented code in-

42

evitably introduces considerable performance degradation that leads to a huge lag when

running a giant application such as Chromium. Although a hardware-assisted means such

as Intel PT [69] significantly addresses the performance issue during a trace, decoding the

trace result is non-negligible (i.e., a couple of hours when visiting a certain webpage for a

few seconds in Chromium).

Due to the impracticality of prior approaches, we devise a new means to trace with an

in-house instrumentation, recording exercised functions akin to an AFL’s [70] approach

of a global coverage map. First, we allocate a shared memory that can cover the entire

IR functions, a superset of binary functions. Second, we build Chromium so that it could

mark every exercised function in the shared memory. Third, we promptly obtain the list of

exercised functions by parsing the whole bits in the shared region after visiting a target web-

page. We have not experienced any slowdown with the instrumented version of Chromium

during our profiling because our instrumentation requires merely a few bit-operations, a

memory read, and a memory write for each function.

As discussed before, it is highly likely to trigger divergent execution paths due to

Chromium’s inherent complexity even when loading the same page again. We tackle this

problem simply by reloading a webpage multiple times until reaching a point when no

more new exercised functions are observed with a fixed sliding window (i.e., the length of

revisiting that does not introduce a new exercised function; 10 in our case). With the Top

1000 Alexa websites [64], we had to visit a main page of each site approximately 172 times

on average. Note that we leave this sliding window open as a hyperparameter.

5.3 Evaluation

In this section, we evaluate SLIMIUM on a 64-bit Ubuntu 16.04 system equipped with In-

tel(R) Xeon(R) E5-2658 v3 CPU (with 48 2.20 GHz cores) and 128 GB RAM. In particular,

we assess SLIMIUM from the following three perspectives:

• Correctness of our discovery approaches: How well does a relation vector technique

43

discover relevant code for feature-code mapping (Section §5.3.1) and how well does

a prompt web profiling unveil non-deterministic paths (Section §5.3.2)?

• Hyperparameter exploration: What would be the best hyperparameters (thresholds)

to maximize code reduction while preserving all needed features reliably (Section §5.3.3)?

• Reliability and practicality: Can a debloated variant work well for popular websites

in practice (Section §5.3.4)? In particular, we have quantified the amount of code that

can be removed (Section §5.3.4) from feature exploration (Section §5.3.4). We then

highlight security benefits along with the number of CVEs discarded accordingly

(Section §5.3.4).

5.3.1 Code Discovery with a Relation Vector

Our investigation for the initial mapping between features and source code requires ap-

proximately 40 hours of manual efforts for a browser expert. We identify 164 features and

6,527 source code files that account for 41.1 MB (37.4%) of the entire Chromium binary.

Then, we apply a relation vector technique to seek more objects, as described in §5.2.2.

To exemplify, the initial code path for Wasm only indicates the directory of v8/src/wasm,

however, our technique successfully identifies relevant code in v8/src/compiler. In this

case, although the object names under that directory differ from the beginning directory

(i.e., wasm), the call invocation component of the vector correctly deduces the relationship.

Figure Figure 5.3 concisely depicts that varying threshold pairs of name similarity (rs)

and call invocation (rc) are inversely proportional to additional code discovery at large.

The dark blue area on the lower left corner holds relatively a high value (i.e., 57.0 MB for

(0.5,0.5)) whereas the yellow area on the upper right holds a low one (i.e., 42.3 MB for

(0.9,0.9)). Similarly, Figure Figure 5.4 shows a distribution of additional code discovery

rate with a handful of different threshold sets from (0.5,0.5) to (0.9,0.9). The boxplot

44

Figure 5.3: Contour plot of additionally discovered code size with a set of different relation
vectors R⃗ = (rc,rs).

Figure 5.4: Breakdown of additional code discovery rates for each feature group across
different relation vectors.

implies a moderate variance with outliers, but the medians consistently decrease at all four

groups when raising those parameters because it means less code would be included for

a feature, intolerant of fewer call invocations and dissimilar path names. For non-web

45

Extensions
W

ebRTC
PDF
DevTools
TP-libvpx
W

eb Bluetooth
TP-sqlite
Service W

orkers
TP-boringssl
TP-ffm

peg
Accessibility
SVG
W

eb Anim
ations

IndexedDB
W

eb Storage
TP-angle
exec-out-of-viewport
TP-harfbuzz-ng
Audio elem

ent
TP-libxm

l
Fetch
W

eb Audio
W

ebGL
TP-libwebp
TP-freetype
File
W

eb Notifications
TP-dav1d
TP-opus
Paym

ent
requestIdleCallback
Canvas 2D
W

eb Sockets
W

eb W
orkers

doc.currentScript
TP-hunspell
exec-not-rendered
TP-libxslt
Page Visibility
TP-libjpeg_turbo

0

1

2

3

4

5

co
de

 si
ze

 (M
B)

deterministic
non-deterministic

Figure 5.5: Ratio between non-deterministic code (dark bars on top) and the rest for the
selected features. A prefix of TP_ represents a third-party component.

features, the median is close to zero because of many features from third-party libraries,

which implies that those components have a minimal dependency. In our experiment, we

set both hyperparameters (rc and rs) to 0.7, resulting in a 9.3% code increase (41.1 →

44.9 MB) on average, each of which breaks down into 4.9%, 8.6%, 5.0%, and 57.7% for

HTML5, JSAPI, Non-Web, and Wasm, respectively. We discuss how to select the best

hyperparameters for SLIMIUM in Section §5.3.3.

5.3.2 Non-deterministic Paths Discovery with Webpage Profiling

To identify non-deterministic code paths, we performed webpage profiling for the Top 1000

Alexa websites in an automated fashion: opening a main page of each site in Chromium,

waiting for 5 seconds to load, exiting, and repeating until no more exercised functions are

found via a differential analysis. Our empirical results show that it requires continuous

visits of 172 times on average.

Figure Figure 5.5 illustrates non-deterministic portions of whole code from the top 40

debloatable features in size. The rate varies depending on each feature. On the one hand,

46

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=10%)

5

10

15

20

25

30

35

C
o
d
e
 R

e
d
u
ct

io
n
 (

M
B

)

boxed italics text in data coords

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=15%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=20%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=25%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=30%)

5

10

15

20

25

30

35

C
o
d
e
 R

e
d
u
ct

io
n
 (

M
B

)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=35%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=40%)

5

10

15

20

25

30

35

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

rc (T=45%)

5

10

15

20

25

30

35

baseline

rs =0:5

rs =0:6

rs =0:7

rs =0:8

rs =0:9

Figure 5.6: Average code reduction with a combination of different thresholds (rc: call
invocation, rs:name similarity, T : code coverage rate) when loading the front page of the
Top 1000 Alexa websites. The baseline represents the size of code reduction based on
the initial feature-code map before applying Algorithm Algorithm 3 in Appendix.

network (Service Workers, Fetch), local cache (third_party_sqlite, IndexedDB)

and animation features (SVG, Web Animations) trigger a substantial portion of non-deterministic

code, mostly because they are designed for flexible behaviors (i.e., networking, caching, an-

imation). For example, Service Workers acts as proxy servers, which heavily relies on

network status and caching mechanism, and Fetch fetches resources across the network.

In a similar vein, third_party_sqlite and IndexedDB store data on a local machine

for future services. Interestingly, we observe that non-deterministic code rates of SVG and

Web Animations are also high because, in general, advertisements employ those features

to trace any changes whenever a page is reloaded. On the other hand, features such as PDF,

Web Bluetooth, and Accessibility maintain a low non-deterministic code rate (i.e.,

opening the same PDF document).

5.3.3 Hyperparameter Tuning

In this section, we explore four tunable hyperparameters (thresholds) for SLIMIUM: i) two

relation vector components: call invocation (rc) and name similarity (rs) (Section §5.2.2),

ii) code coverage rate (T), and iii) sliding window size, that is, the length of revisiting times

that no new function has been exercised. We empirically set up the sliding window as 10

47

described in Section §5.2.3, hence here focuses on the other three thresholds.

In particular, T is an important factor that determines whether a feature can be a can-

didate to be further eliminated based on the portion of exercised code. This is because

i) part of feature code may contain initialization or configuration for another and ii) a small

fraction of feature code may be exercised for a certain functionality. Under such cases, we

safely maintain the exercised functions of that feature instead of removing the whole fea-

ture code. To summarize, we keep entire code (at the feature granularity) if code coverage

rate is larger than T or exercised code alone (at the function granularity) otherwise.

Figure Figure 5.6 depicts the size of eliminated code on average by loading the front

page of the Top 1000 Alexa websites to explore the best hyperparameters, namely R⃗F =

(rc,rs) and T , empirically. Each subfigure represents the size of code reduction (y-axis)

depending on a different combination of rc (x-axis) and rs (line) where both rc and rs range

from 0.5 to 0.9, and T is a fixed value (ranging from 10% to 45%). One insight is that a

higher T value improves code reduction because unexercised code for more features has

been removed; e.g., 11.9 MB code removal with (rc, rs, T) = (0.7, 0.7, 0.1) whereas 27.3

MB with (0.7, 0.7, 0.45). Another insight is that a lower pair of (rc,rs) often improves code

reduction. For example, 30.1 MB code has been removed where T is 30% with (rc, rs) =

(0.5, 0.5) while only 24.9 MB with (rc, rs) = (0.7, 0.7). However, sometimes a lower pair

of (rc,rs) does not improve code reduction because of the dynamics of our code discovery

process; e.g., the first three subfigures indicate that code reduction with 0.6 of rc is not

smaller than the one with 0.5 or 0.55.

However, higher code reduction may decrease reliability of a debloated variant because

it increases the chance of erasing non-deterministic code. As it is significant to strike a

balance between code elimination and reliable binary instrumentation, we finally choose

(rc, rs, T) = (0.7, 0.7, 0.3) with the following three observations. First, there is little impact

on code reduction increase when T reaches up to around 25%. Second, with a rs fixed, code

reduction decreases from rc = 0.7 heavily (i.e., T is 25%, 30% or 35%). Third, with a rc

48

fixed, code reduction slightly drops from rs = 0.7. Exploration for a different combination

of hyperparameters per feature looks also promising, which is open as part of our future

research.

5.3.4 Chromium Debloating in Practice

Table 5.2: Code and CVE reduction across debloated variants of Chromium per each cate-
gory (See Figure Figure 5.7 in detail).

Category Websites User Activities Code Reduction
Size (MB)

Code Reduction
Rate (%)

Number of
Removed CVEs

Airline aa, delta, spirit, united Login; search a flight; make a payment; cancel the flight, logout. 24.17 53.8 97

Email gmail, icloud, outlook, yahoo Login; read/delete/reply/send emails (with attachments); open attachments; logout. 23.75 52.9 97

Financial americanexpress, chase, discover, paypal Login; check a statement; pay a bill; transfer money; logout. 23.45 52.2 91

News cnn, cnbc, nytimes, washingtonpost Read breaking news; watch videos; search other news. 24.19 53.9 98

Remote Working bluejeans, slack, webex, zoom Schedule a meeting; video/audio chat; share a screen; end the meeting. 18.57 41.4 81

Shopping amazon, costco, ebay, walmart Login; track a previous order; look for a product; add it to the cart; checkout; logout. 24.33 54.2 98

Social Media instagram, facebook, twitter, whatsapp
Login; follow/unfollow a person; write a post and comment;
like a post; send a message; logout. 23.30 51.9 93

Sports bleacherreport, espn, nfl, nba Check news, schedules, stats, and players. 24.39 54.3 98

Travel booking, expedia, priceline, tripadvisor Login; search hotels; reserve a room; make a payment; logout. 24.16 53.8 97

Video amazon, disneyplus, netflix, youtube
Search a keyword; play a video (forward/pause/resume);
switch screen modes (normal/theatre/full) ; adjust a volume 24.18 53.9 93

All – – 17.43 38.8% 73

In this section, we choose 40 popular websites from 10 categories to thoroughly assess

reliability and security benefits of our debloating framework in practice instead of just

loading the main page of a website. Table Table 5.2 summarizes a series of user activities

of each website and experimental results for both code and CVE reduction.

Code Reduction and Reliability

Code Reduction Table Table 5.2 shows empirical code reduction with a debloated Chromium

that allows a limited number of websites per each category. It removes 53.1% (23.85 MB)

of the whole feature code on average with a single exception of Remote Working category

(41.4% removal) because it harnesses WebRTC (See Section §5.3.4 in detail). Likewise, a

debloated mutation that supports all 40 websites removes 38.8% code (around 17.4MB) as

the last line of Table Table 5.2.

Next, we evaluate code reduction relevant to security features including four major

ones that are fundamentally important to a modern web environment: same origin policy

49

(SOP), content security policy (CSP), subresource integrity (SRI) and cross-origin resource

sharing (CORS). Based on our manual profiling results, all 40 websites employ these four

features where code coverage on average are 8.3%, 39.1%, 34.0% and 79.0% for SOP,

CSP, SRI and CORS, respectively. Since SOP, CSP and SRI are not part of our feature set,

SLIMIUM offers corresponding security features at all times. Although CORS is part of

our feature-code map, we observe heavy use of this feature for the websites in our experi-

ment (i.e., min/max code coverages are 60.5%/85.8%), thus SLIMIUM does not remove any

code. We have other security related features in our feature-code map, such as Credential

Management, FIDO U2F, and Web Cryptography. The corresponding code may be pos-

sibly removed because of low code coverage; for example, none of the 40 websites uses the

feature of FIDO U2F based on our profiling results. In this case, if a website would trigger

any code for a security feature removed by SLIMIUM, a debloated Chromium variant would

throw an illegal instruction exception and stop loading a page rather than allow one to visit

a website without that security feature.

Reliability We have repeated the same activities (from initial webpage profiling) using

different mutations, resulting in flawless browsing for all cases without any crash. As a case

study, we investigate three websites in a Remote Working category that offer their ser-

vices with native applications on top of a Chromium engine. Both Slack and Bluejeans

are built with an Electron framework [71] (embedded Chromium and Node.js), containing

109.4 MB and 111.6 MB code, respectively, where Zoom contains 99.6 MB. Compared to

those applications, our debloated version for Remote Working sorely contains 91.4 MB

(up to 18.1% code reduction) that maintains every needed functionality. Note that Webex

has been ruled out because it runs on Java Virtual Machine.

With the different debloated versions of Chromium, we were able to visit all 40 websites

flawlessly thanks to non-deterministic code identification and appropriate hyperparameter

selection ((rc, rs, T) = (0.7, 0.7, 0.3)). However, theoretically it is possible to encounter

50

Airlin
e
Email

Fin
ancia

l
New

s

Rem
ote

_W
ork

ing

Shopping

Soci
al_

Media
Sport

s
Tra

vel
Video

Accelerometer
Execute Command

Full Screen
Gyroscope

Media/Stream
MediaRecorder

Orientation Sensor
PDF

Payment Request
Selection

Synchronous Clipboard
TP_abseil-cpp

TP_libaddressinput
TP_libphonenumber

TP_libsrtp
TP_libvpx
TP_libyuv

TP_lzma_sdk
TP_opus
TP_pffft

TP_usrsctp
TP_webrtc_overrides

TP_zlib
Video Element

Web Audio
Web Authentication
Web Cryptography

Web Workers
WebRTC 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Code Coverage Rate

Figure 5.7: Code coverage rate of various features across different websites. A prefix of
TP_ represents a third-party component.

a false positive with a hyperparameter set of other choice. For example, by increasing T

from 0.3 to 0.35, a debloated Chromium mutation would fail to load Bluejeans and CNN

with the accidental removal of Web Audio API. Similarly, we observe additional failures

of Nytimes, Washingtonpost, and Whatsapp, with the removal of Web Workers when

T =0.4.

51

Feature Exploration

Figure Figure 5.7 depicts the heatmap for actual code coverage rates across different fea-

tures per each category in Table Table 5.2 at a glance. Note that common features have

been eliminated to show a distinct feature usage alone. The websites from the Remote

Working group clearly adopt several unique Web features designed for Real-Time Commu-

nication (RTC) that are hardly seen from the others, including WebRTC and Media Stream,

and the third party libraries (i.e., webrtc_overrides, usrsctp, opus, libsrtp). We

also confirm a handful of interesting instances based on our activities as follows. A PDF

feature has been rarely used but Financial because of opening PDF documents (i.e.,

bank statements). Financial and Travel have harnessed Accelerometer, Gyroscope,

and Orientation Sensor for checking device orientation. Remote Working and Video

sorely adopt Full Screen due to switching to a screen mode. Most websites employ the

libphonenumber feature to maintain personal information with a login process whereas

News and Sports do not. All the above examples explain that inner components in Chromium

have been well-identified for the debloating purpose.

Security Benefits

To confirm the security benefits of our approach, we have collected 456 CVEs pertaining

to Chromium from online resources [72, 73] and official (monthly) security updates from

Google. We focus on the rest of the 364 CVEs that have been patched for the last two

years (Some of them might be assigned in previous years), excluding 92 of them in case of

i) no permission to access CVE information or ii) a vulnerability relevant to other platforms

(i.e, iOS, Chrome OS). Although it may be less useful to count CVEs for a single version

of Chromium because different versions are generally exposed to a different CVE set, we

include them to evaluate the effectiveness of debloated mutations. It is noteworthy that

we check out both vulnerable code and corresponding patches for mapping the CVEs to

affected features.

52

Table Table B.1 in Appendix summarizes Chromium CVEs by 13 different vulnerability

types and three severity levels that are associated with features for debloating. We adopt the

severity level (i.e., High, Medium, Low) of each CVE calculated by the National Vulner-

ability Database (NVD) [73]. The most common vulnerability type is use-after-free (52),

followed by overflow (46), and insufficient policy enforcement (43). Other vulnerability

types include uninitialized memory, XSS (cross site scripting), and null dereference. Inter-

ested readers may refer to the full list of Chromium CVEs in Appendix Table Table B.3.

Note that 153 (out of 364) CVEs are associated with 42 features in our feature-code map.

From our experiments in Table Table 5.2, around 94 out of 153 potential CVEs (61.4%)

have been removed on average when visiting the websites of our choice at each category.

The number of CVEs that has been eliminated for the group of Remote Working is rela-

tively low predominately due to RTC features. SLIMIUM successfully removes 73 CVEs

(47.7%) across all 40 websites.

53

CHAPTER 6

CODE PARTITIONING APPROACH

I presented an approach for debloating Chromium at feature-level in Chapter §5. However,

the approach relies on a feature-code map initially created with manual efforts, which is

time-consuming and requires professional knowledge of the source code. In our experi-

ment, the manual analysis took 40 working hours for an expert who is a maintainer of the

Chromium’s rendering engine (Blink [74]) to create the feature-code map at the first place.

Therefore, it is challenging and time-consuming to extend the approach to debloat newer

versions of Chromium with updates that change code heavily (e.g., adding new features,

removing old features, reconstruct implementations of existing features, etc.), as well as to

apply the technique to other large-scale and complex software. To tackle this problem, I

will present DEPART, which is a framework that uses pure static analysis to automatically

partitions a program into distinct groups implementing different features, which is later

used for debloating.

6.1 Overview

Figure 6.1 shows an overview of DEPART for partitioning software’s source code. DEPART

consists of three main phases: i) type reference graph building, ii) relation construction, and

iii) code partitioning.

Type Reference Graph Building In software that is developed with object-oriented pro-

gramming (OOP) languages, an object is designed to have unique attributes and behaviors,

and distinct features are implemented with different objects at most of the time. Thus, to

distinguish the features implemented in a large-scale and complex software, we need to

first identify the types (i.e., classes and structs in C/C++) defined in the source code and

54

T1

T2 T3

T7

T4

T5 T6

T8

T9 T10

T12 T13

T11

T0

Types

Global
Variables

F0

F1

Global
Variables

F2

F4

F3

Global
Variables

F5

F6

F10
F9

Global Variables

F7

F8 F11

LLVM
IR Code

T10,T11

M1 M2 M3 M4

Class/Struct

Function

Global Variables

Module

Partitioning M1 M2 M3 M4

Member Function Impl

label

Type Reference

Function Invocation

Data Dependence

Attribute Access

Object Allocation

Figure 6.1: High-level overview of DEPART. It first takes in the software’s LLVM IR
bitcode files and perform static analysis to assign various relations among the types, global
variables, and functions. After that, the PARTITIONING module applies rules to partition
the code and types into distinct groups.

model their relationships. Since structs can be regarded as simpler classes without member

functions, we will use types to indicate both classes and structs in the remaining of this

chapter. DEPART iterates all the LLVM IR modules (each IR module is generated from a

source code file) to extract all the types, and then it builds type reference graphs, in which

each node represents a type and a directed edge exists between two type nodes when the

source type refers to the destination type. The top part in Figure 6.1 shows that four type

reference graphs are built from all the extracted types (e.g., type T0 does not refer to any

other types, type T1 refers to types T2 and T3, etc.). We will discuss the details of building

type reference graphs in §6.2.1.

Relation Construction In large-scale and complex software, a feature is commonly im-

plemented across multiple source code files. Therefore, DEPART performs a set of static

analyses to group IR modules implementing the same feature by assigning relations among

types, functions, and global variables. There are three kinds of relations between a function

and a type: (1) the function is one of the member functions of the type; (2) the function

allocates objects of the type; (3) the function accesses a type’s attributes. For example,

55

in Figure 6.1, the function F0 in module M1 is type T0’s member function, the func-

tion F5 allocates objects of the type T 6 and function F10 in module M4 accesses type

T8’s attributes. Note that the attribute access relation is labeled with all the accessed at-

tributes’ types (i.e., T0 and T11). Figure 6.1 also shows that the functions are related

with either invocations (e.g., F0→F1) or data dependencies (e.g., F4→F6), and functions

and global variables are related with data dependencies (e.g., F5→M3’S GLOBAL VARI-

ABLES). We describe the relations’ definitions and the details about constructing these

relations in §6.2.2.

Code Partitioning After assigning relations among the code (i.e., function), data (i.e.,

global variables) and types. DEPART’s partitioning module defines rules and uses graph

algorithms to group the IR modules that implement the same feature. The rules describe

the conditions that the relations among types and IR modules must satisfy if they can be

regarded as implementing the same feature. For example, in Figure 6.1, the partitioning

module generates three groups: IR modules M2 and M3 are included into one group,

while M1 and M2 are separated into two other groups. The definitions of the rules are

described in §6.2.3.

6.2 Design

6.2.1 Type Reference Graph Building

Algorithm 2: Build the type reference graphs.
Result: typeRe f Graphs
for classType : allClassTypes:

handleClassType(classType);
Function handleClass(classType)

for element : classType:
elemType = element.type;
if elemType→isPointerTy() || elemType→isAggregateTy():

elemType = getBaseType(elemType); // Unwrap the type.
if elemType→isClassTy():

typeRe f Graphs[classType].insert(elemType);
end

56

Algorithm 2 shows the pseudocode for building type reference graphs. It begins with

iterating all the classes extracted from IR modules, and it calls the procedure handleClass

to identify each class’s type references. The procedure handleClass traversals the class’s

elements: for each element, it first obtains the element’s type and then it calls the procedure

getBaseType to unwrap the element’s type if it is a pointer type or an aggregate type. After

that, if the resulted type (i.e., elemType) is also a class type, then elemType is added into

classType’s refer-to set. In other words, a directed edge is added between the source class

node whose type is classType and the destination class node whose type is elemType.

6.2.2 Relation Construction

DEPART aims to partition the software to group IR modules into distinct sets implementing

different features. Thus, the key challenge is to decide what IR modules should be regarded

as implementing the same feature. Since each IR module consists of the data field (i.e.,

global variables) and code (i.e., functions); thus, DEPART performs static analysis on the

global variables and functions to figure out the relations among IR modules and relies on

the relations to make the decision. Also, DEPART leverages the interactions between code

and types to help group IR modules.

Figure 6.1 shows that DEPART’s static analysis assigns five kinds of relations among

global variables, functions, and types. The relations are defined as follows:

• Member Function Implementation (MFI). This relation starts from a function F in a

IR module and points to a class type C. The relation is assigned when F is a member

function of C.

• Function Invocation (FI). This relation starts from a function F1 and points to another

function F2. The relation is assigned when F1 invokes F2.

• Object Allocation (OA). This relation starts from a function F and points to a type

C. The relation is assigned when F allocates objects of type C.

57

• Data Dependence (DD). This relation starts from a function F1 and points to another

function F2 or points to a global variable GV . The relation is assigned between F1

and F2 when: (1) F1 invokes F2 and F1 writes the return value from F2; (2) F2

invokes F1 and F1 writes the parameters passed from F2. The relation is assigned

between F1 and GV when F1 reads or writes GV .

• Attribute Access (AA). This relation starts from a function F and points to a type

C, and the relation is labeled with {C1,C2, ...,Cn}. The relation is created when

F accesses attributes of an object of type C and the accessed attributes’ types are

{C1,C2, ...,Cn}.

DEPART performs static analysis to assign the relations among types, functions, and

global variables. Identifying a class’s member functions is straightforward from checking

the names because the member functions’ names have a prefix string containing the class’

name. For instance, if a class’s name is STUDENT, then its member functions’ names share

the prefix “STUDENT::” in C++. However, to construct the other four relations: FI, OA,

DD and AA, we need to analyze the IR modules’ code. In particular, constructing DD

relations is challenging because of the widely used pointers in C/C++ code. To address this

challenge, DEPART proposes a novel static analysis by combining points-to analysis and

taint analysis. I will show a motivation example to describe how we construct the relations

(i.e., FI, OA, DD and AA) with static analysis.

Figure 6.2 shows the C++ code of our motivation example. The code defines one

global variable (i.e., g) and four classes (i.e., A, B, Base and Derived), in which class

Derived inherits class Base that defines a virtual function foo. Besides, the code defines a

function test, which first creates an object of class Derived (i.e., d) and invokes its virtual

function foo. After that, test sets the global variable g to 42 and assigns the global variable

to d’s nested attribute accessed through d→b.a.v.

Figure 6.3 shows the simplified LLVM IR code of the example, we omit the defini-

tions of some global variables and functions, and skip part of the instructions to make the

58

int g = 0;
class A {

int v;
};

class B {
A a;

};

class Base {
virtual void foo() {...}

};

class Derived : public Base {
B b;
void foo() {...}

};

void test() {
Derived *d = new Derived();
d->foo();
g = 42;
d->b.a.v = g;

}

Figure 6.2: Source code of the example for illustrating relation construction.

@g = 0

@Derived_VT = [
null,
@Derived_TI,
@Derived.foo
]

void @Derived(%cls.Derived* %0)
{
%2 = alloca %cls.Derived*
store %0, %2
%3 = load %2
//call cls.Base’s constructor
...
%5 = cast %3 to void***
%6 = GEP @Derived_VT[2]
%7 = cast %6 to void**
store %7, %5
}

void @test() {
%1 = alloca %cls.Derived*
%2 = call @new(i64 16)
%3 = cast %2 to %cls.Derived*
call @Derived(%3)
store %3, %1
%5 = load %1
%6 = cast %5 to void (%cls.Derived*)***
%7 = load %6
%8 = load %7
call void %8(%5)
store 42, @g
%9 = load @g
%10 = load %1
%11 = GEP %10.b
%12 = GEP %11.a
%13 = GEP %12.v
store %9, %13
ret void
}

Figure 6.3: LLVM IR code of the example for illustrating relation construction.

illustration clearer. Besides g, the code also shows the global variable Derived_VT, which

defines the virtual table of class Derived. The virtual table is an array of three pointers: the

first one is a null pointer; the second one points to a string representing the type informa-

tion (i.e., @Derived_TI); the last one is a function pointer of Derived’s virtual function foo

(i.e., @Derived.foo). We list the IR instructions of two functions, including test and class

59

Derived’s constructor function @Derived that is automatically generated by the compiler.

FI To build function invocation relations between functions, DEPART directly extract the

Call instruction’s target function if it is a direct call; otherwise DEPART adopts existing

techniques [75, 76, 77, 78, 79] to resolve the targets if it is a virtual function call. For

the remaining indirect calls that are not virtual function calls, DEPART simply ignores

them because we do not want to introduce any over-approximations to relate functions not

supposed to be connected. In Figure 6.3, the function @test directly invokes functions

@new and @Derived, and indirectly invokes the virtual function @Derived.foo.

OA To assign object allocation relations between a function and a type, DEPART ana-

lyzes the function’s Alloca instructions to extract the allocated object’s type. Note that

if the type is a pointer type or aggregate type (e.g., ArrayType, VectorType), DEPART un-

wraps it and obtains its element type as the destination of the OA relation. In Figure 6.3,

two OA relations will be created from the functions @Derived and @test to the class type

Derived.

AA To create attribute access relation between a function and a type, DEPART analyzes

the function’s GEP instructions. A GEP instruction in LLVM [80] is used to get the address

of an object’s element, it like a high-level version of the lea instruction in x86. DEPART

first gets a GEP instruction’s base object’s type and unwraps the attribute’s type, then a

AA relation labeled with the attribute type is assigned between the function and the base

object’s type. In Figure 6.3, the GEP instruction in the function @Derived will not introduce

a AA relation because @Derived_VT is not a class/struct type. On the other hand, the first

two GEP instructions create two AA relations: from @test to class type Derived with a

label “B”, from @test to class type B with a label “A”, respectively. However, the last

GEP instruction does not create a AA relation because the accessed attribute’s type is not a

class/struct type though the base object has the class type A.

60

@Derived_VT
@new

%0

%2

%3 %5

%6

%7

store

load

cast

cast

GEP:[2]

%1

%2

%3

%5 %6 %7 %8

%9

%10 %11 %12 %13

@g

42

call

cast

store

load cast load load

load

GEP:b GEP:a GEP:v

@Derived @test

Figure 6.4: The points-to graphs for functions @Derived and @test.

DD To build the data dependence relations, analyzing a single type of instructions is not

sufficient. Instead, besides instructions Load and Store that are used for data reading and

writing, the other instructions whose operations affect the operands of Load and Store are

also considered. Traditional data dependence analysis using backward data analysis is not

effective enough to capture all the DD relations because of the widely spread pointers in

C/C++. For example, to decide where the second Store instruction in function @Derived

writes, the backward data analysis starts from the destination operand (i.e., %5) and traces

all the way back to %3, which is loaded from %2. Because %2 is a Alloca instruction that

allocates a new address and points to nowhere, thus the analysis stops and fails to capture

the destination address, which is %0 stored to %2 right after the Alloca instruction.

In order to address the limitation in backward data analysis, we propose a novel static

analysis combining points-to analysis and taint analysis. DEPART first iterates a function’s

instructions and builds a points-to graph. Not liking the classic points-to analysis [81,

82] that resolves the constraints sooner or later, DEPART builds the graph embedding the

points-to constraints and never resolves them. Figure 6.4 shows the points-to graphs of

@Derived and @test. In a points-to graph, each node is a pointer value and the directed

edge is labeled with the instruction type. In particular, the GEP edge’s label also contains

the attribute being accessed.

61

@Derived_VT @new

%0

%2

%3 %5

%6

%7

store

load

cast

cast

GEP:[2]

%1

%2

%3

%5 %6 %7 %8

%9

%10 %11 %12 %13

@g

42

call

cast

store

load cast load load

load

GEP:b GEP:a GEP:v

@Derived
@test

&t1

&t2

&t4

&&t2

&t2
&&&t2

&t1[2]

&&t1[2]

&&&t1[2]…

&t3

&t3

&&t3

&t3 &&&t3 &&t3

t4

&t3

&t3 &t3.b &t3.b.a.v

…

……

Figure 6.5: The taint propagations for functions @Derived and @test.

With the points-to graphs, before determining the memory pointed to by Load’s and

Store’s operands, we first select the memory of our interest. Recall that the DD relation is

assigned between two functions or between a function and a global variable, thus our goal

is to figure out the code’s read and write operations on three parts of the memory: (1) global

variables; (2) the function’s incoming arguments; (3) the return values of invocations. Next,

instead of performing traversal on the points-to graphs to resolve each pointer’s points-to

set, which suffers from performance slowdown [81, 82]; DEPART performs taint analysis

on the points-to graphs.

Figure 6.5 shows how the taint analysis works. DEPART first marks the pointers point-

ing to global variables, incoming arguments, and invocations’ return values as taint sources.

Each taint source is assigned a unique taint label and is appended one or multiple & at the

beginning to indicate the number of the nested levels of the pointer. For example, global

variables @Derived_VT and @g are tainted, %0 is tainted because it is an incoming ar-

gument while %2 is tainted because it is the return value of invoking function @new. All

these taint source pointers are single-level pointers (i.e., a pointer that directly points to

some memory); thus, their labels are appended with one & at the beginning (i.e., &t1,

&t2, &t3, &t4).

For each tainted source, DEPART starts propagating its taint along the edges follow-

62

ing the instruction’s semantic, as shown in Figure 6.5, which only presents the key taint

propagation flows because of space limit.

• StoreWhen the taint [&]nT is being propagated from the source node to the desti-

nation node, DEPART taints the destination node with taint [&]n+1T (e.g., %0→%2

in function @Derived).

• LoadWhen the taint [&]nT is being propagated from the source node to the destina-

tion node, DEPART taints the destination node with taint [&]n−1T if n > 0 (e.g. %1

→ %5 in function @test); otherwise, taint is not propagated to the destination node.

• CastWhen the taint is being propagated between source node and destination node,

DEPART first checks the source type’s and destination type’s levels of the pointers.

If they are same, DEPART simply copy the taint from one node to another; other-

wise DEPART propagates the taint by appending or removing &n at the beginning

of the original taint, in which n is the distance between the levels of pointers. For

example, for the case %2 ↔ %3 in function @test, the instruction is casted from

i8* to %cls.Derived*, both of which are single-level pointers; thus the taint is just

copied between %2 and %3. However, for the case %5↔ %6 in function @test, the

instruction is cast from %cls.Derived* to void (%cls.Derived8)***, in which

the source type is a single-level pointer while the destination type is a three-levels

pointer; thus the distance is two and the taint &t3 in %5 becomes &&&t3 in %6.

• GEP For GEP instruction, the taint propagation strategy between the source node and

destination node follows the semantic of assignment. The insight is that when an

object is tainted with label T, its attributes are also tainted with labels in the format

of T.attr. Therefore, the taint of the source node should be appended with the

attribute’s name and copied to the destination node (e.g., @Derived_VT →%6, %10

→ %11).

63

After finishing the taint propagation, DEPART checks Load and Store instructions’

operands’ taint sets to determine the memory read or written. For a Load instruction, DE-

PART checks its source node’s taint set and removes all the & in any taints to extract the

memory that is read. Take the Load instruction in @Derived as an example, %2 has the

taint &&t2; thus, memory tainted with t2 is regarded as being read by the code, which

indicates the memory of incoming argument %0. For a Store instruction, DEPART cross-

checks the source node’s and the destination node’s taint sets to extract the memory ad-

dresses it reads and writes. Particularly, we filter out the read-write pairs originates from

the same taint (e.g., &&t1[2] in %7 and &&&t1[2] in %5). Therefore, by checking the

Store instructions in functions @Derived and @test, we find that @Derived writes t1[2]

to t2 and @test writes t4 to t3.b.a.v.

6.2.3 Code Partitioning

Once the relation construction is complete, DEPART first defines rules to build graphs con-

necting IR modules and the types, and then employs classic graph algorithms for find-

ing connected components (CCs) [83] or strongly connected components (SCCs) [84] to

group IR modules and types. To this end, we introduce some definitions that will be used

in describing the code partitioning rules.

Definition 1 (Type Component). A type component TC is a set of types, in which any two

types are connected in type reference graphs, as we have discussed in §6.2.1.

Definition 2 (Module). A module M contains a set of functions and global variables: M =

(Fs,GVs) (Fs = {F1,F2, ...,Fn}, GVs = {GV1,GV2, ...,GVm}).

Definition 3 (Group). A group G comprises a set of IR modules and types: G = (Ts,Ms)

(Ts = {T1,T2, ...,Tn}, Ms = {M1,M2, ...,Mm}).

Definition 4 (Function Data-Dependence). A function F1 is data-dependent on a function

F2 if: (1) F1 invokes F2 and F1 writes the return value; (2) F1 is invoked by F2 and F1 writes

64

the incoming arguments; (3) there exists a global variable GV , F1 reads GV and F2 writes

GV ; (4) there exists a function F3, F1 is data-dependent on F3 and F3 is data-dependent on

F2.

Definition 5 (Function Control-Dependence). A function F1 is control-dependent on a

function F2 if: (1) F1 invokes F2; (2) there exists a function F3, F1 invokes F3 and F3

invokes F2.

DEPART aims to do partitioning on a program’s code and generates a set of groups

({G1,G2, ...,Gn}), and requires that each group implements a distinct feature. We will

discuss the rules that DEPART uses to seek the modules and types that should be included

in the same group.

Rule 1 . Types belong to the same TC should be grouped into the same group.

Rule 2 . If an attribute with type T1 is only accessed through an object with type T2, then

T1 and T2 should be in the same group.

Rule 3 . If a type T1 is allocated by modules Ms1, a type T2 is allocated by modules Ms2

and Ms1 is equal to Ms2, then T1 and T2 should be in the same group.

Rule 4 . If a module M has a function F, which is connected to a type T with MFI relation,

then M and T should be grouped into the same group.

Rule 5 . For a set of functions Fs = {F1,F2, ...,Fn} that belong to Ms = {M1,M2, ...,Mm}, if

any two functions Fi and Fj in Fs are control-dependent on each other, then all the modules

in Ms should be grouped into the same group.

Rule 6 . For a set of functions Fs = {F1,F2, ...,Fn} that belong to Ms = {M1,M2, ...,Mm},

if any two functions Fi and Fj in Fs are data-dependent on each other, then all the modules

in Ms should be grouped into the same group.

Note that Rule 1 to Rule 3 are employed for grouping types while Rule 4 to Rule 6 are

used for grouping the code and relating code to grouped types.

65

Table 6.1: Chromium’s source code details.

Type Code
Class Struct Total Module Function Global Variable

Number 53,044 15,868 68,912 26,451 622,105 125,997

Grouping Types In software developed with OOP languages, a feature’s implementation

usually defines a set of types that represent the objects involved in the feature. Therefore,

the necessity of partitioning code into groups implementing distinct features is to group the

types at first. DEPART expands the type reference graphs by adding edges required from

applying Rule 2-3, and it uses use the graph algorithm to find the SCCs to group the types.

After applying Rule 1-3, all the types that refer to each other, are uniquely referred and

types whose objects are allocated in same modules, are all grouped.

Grouping Code Once the type grouping is completed, DEPART applies Rule 4-6 to start

code grouping on top of the type grouping’s results. Note that applying Rule 4-6 will cause

merging of existing groups because different groups might contain code that is supposed to

be in a same group.

6.3 Evaluation

In this section, we evaluate DEPART on Chromium’s source code of version 77.0, whose

details are list in Table 6.1. In particular, we assess from the following two perspectives:

• Effectiveness Of Code Partitioning. How many types and how much code can

be partitioned into distinct groups? What are the types and code distribution over

groups? §6.3.1

• Comparison With Manual Analysis. Does DEPART achieve benefits when compar-

ing with partitioning code with manual analysis? When applying DEPART to debloat

Chromium, does it identify extra features not included by SLIMIUM? Does DE-

PART remove more code than SLIMIUM? How long does DEPART take to partition

66

Chromium? §6.3.2

6.3.1 Effectiveness of Code Partitioning

0 100 200 300 400 500 600
Type Group Size

0

10000

20000

30000

40000

To
ta

l G
ro

up
ed

 T
yp

e

Type Group Distribution
Rule 1
Rule 2
Rule 3

Figure 6.6: Apply Rule 1-3 to group types.

Figure 6.6 shows the results of applying Rule 1-3 to group class types. The x-axis is

the type group’s size starting from two while the y-axis is the accumulation of the grouped

types. As we can see: (1) applying Rule 1 groups 9,843 types into 3,680 groups, in which

most groups share the sizes of two (i.e., 2,902 groups) and three (i.e., 475 groups); (2)

applying Rule 2 groups 20,892 types into 7,045 groups, in which most groups share the

size between two and six (i.e., 6795 groups); (3) applying Rule 3 groups 47,040 types into

10,088 groups whose sizes are mostly less than 30. Note that the biggest group contains

593 types, which represents the instruction operators defined in the JavaScript runtime v8’s

source code file machine-operator.cc.

67

0 200 400 600 800 1000
Type Group Size

0

10000

20000

30000

40000

50000

60000

To
ta

l G
ro

up
ed

 T
yp

e

Type Group Distribution
Rule 4

(a) Grouped types after applying Rule 4.

0 25 50 75 100 125 150 175
Code Group Size

0

2500

5000

7500

10000

12500

15000

17500

To
ta

l G
ro

up
ed

 C
od

e

Code Group Distribution
Rule 4

(b) Grouped code after applying Rule 4

Figure 6.7: Apply Rule 4 to connect types and their member functions’ implementations.

Figure 6.7 shows the grouped types and code after applying Rule 4, which basically

connects types to code implementing the member functions and merges the type groups

when their implementations share same code. Note that type groups with size one can also

be grouped with code. In total, 59,441 types and 18,753 modules are grouped into 16,799

groups, in which some of the groups contain only types or code. In particular, Figure 6.7b

shows that there are 122,97 groups containing only one code module while Figure 6.7a

shows that there are 7,777 groups containing only one type, which means that it is common

that multiple classes are defined and implemented in a same source code file. Note that the

biggest group has 1,104 types and 171 code modules mainly from the JavaScript engine v8

and the rendering engine blink.

Figure 6.8 shows the grouped types and code after applying Rule 5, which merges

groups with code control-dependent on each other. Comparing with the results from Fig-

ure 6.7, we find that the number of groups containing only one module decreases a lot (i.e.,

from 12,297 to 7,767) but still most of the groups have code from two to 10 modules. Note

that the biggest group has 8,344 types and 3,003 modules. We investigated this group and

figured out that this group mainly contains code across the UI of the browser, the rendering

engine.

Figure 6.9 shows the grouped types and code after applying Rule 6, which merges

68

0 2000 4000 6000 8000
Type Group Size

0

10000

20000

30000

40000

50000

60000

To
ta

l G
ro

up
ed

 T
yp

e

Type Group Distribution
Rule 5

(a) Grouped types after applying Rule 5.

0 500 1000 1500 2000 2500 3000
Code Group Size

0

5000

10000

15000

20000

25000

To
ta

l G
ro

up
ed

 C
od

e

Code Group Distribution
Rule 5

(b) Grouped code after applying Rule 5

Figure 6.8: Apply Rule 5 to group code control-dependent on each other.

0 2000 4000 6000 8000 10000 12000
Type Group Size

0

10000

20000

30000

40000

50000

60000

To
ta

l G
ro

up
ed

 T
yp

e

Type Group Distribution
Rule 6

(a) Grouped types after applying Rule 6.

0 1000 2000 3000 4000 5000 6000
Code Group Size

0

5000

10000

15000

20000

25000
To

ta
l G

ro
up

ed
 C

od
e

Code Group Distribution
Rule 6

(b) Grouped code after applying Rule 6

Figure 6.9: Apply Rule 6 to group code data-dependent on each other.

groups with code data-dependent on each other. Comparing with the results from Fig-

ure 6.8, we find that the number of groups containing only one module decreases a lot (i.e.,

from 7,767 to 5,123) and most of the groups have code from two to 100 modules, which

means some of the small groups are merged because of data dependence relations. Note

that the biggest group has 12,911 types and 6,549 modules, which is extended from the

biggest group in Figure 6.8 by including more type and code related to the rendering en-

gine, JavaScript engine and some code from the third-party library Skia that is used for

graphics operations.

At this point, we have applied all the rules to group Chromium’s code and types and

69

we get 5,123 groups containing only one module, 1,453 groups containing two modules,

165 modules containing three modules, etc., and one group containing 6,549 modules. We

filter the biggest group and select the remaining 6,996 groups as the identified features,

including 18,157 code modules and 33,737 types.

6.3.2 Comparison With Manual Analysis

The code size of the 6,996 groups is 62.04 MB (56.4%) of the entire Chromium binary,

which achieves 38.2% increase over the feature-code map (44.9 MB) used in §5.3.1.

Feature Identification

Extra Identified Features 6.3.1

Printer/Cloud Printing, Debug, Json Parser, Media Galleries, Music Manager,

Auto Fill, Download Manager, Signing/Account, Spell Checker, Kids Manage-

ment/Supervised User, Safe Browsing, Task Manager, Translator, Feature Engage-

ment, Headless Mode, Themes, Task Manager, etc.

Comparing DEPART with SLIMIUM regarding feature identification is challenging. The

reason is twofold: firstly, a feature in SLIMIUM usually contains larger code size because

the manual analysis assumes that code under same directory belongs to the same feature

(e.g., code under directory third_party/pdfium); secondly, DEPART does not tell the

features’ names while each feature in SLIMIUM is assigned a name manually. Therefore,

we first check the intersections between each group from DEPART and each feature’s code

of SLIMIUM, if there are intersections, then the group from DEPART is regarded as a sub-

feature of the feature identified in SLIMIUM. By doing this, we find that each feature

from SLIMIUM is divided into 28 sub-features in DEPART. In particular, the feature PDF

is divided into 96 dub-features and the feature WebRTC is divided into 92 sub-features.

Second, to find out the extra features identified by DEPART, we manually investigate the

groups sharing no code intersections with any features in SLIMIUM and try to figure out

70

feature name from the source code file names and the types included in the groups. The

above text box lists part of the features identified by DEPART.

Code Reduction

Table 6.2: Code reduction across debloated variants of Chromium per each category.

Category Websites SLIMIUM
Size (MB)

DEPART (164 Features)
Size (MB)

DEPART (All Features)
Size (MB)

Airline aa, delta, spirit, united 24.17 23.82(-1.45%) 32.45(+34.26%)

Email gmail, icloud, outlook, yahoo 23.75 23.18(-2.40%) 31.89(+34.27%)

Financial americanexpress, chase, discover, paypal 23.45 21.92(-6.52%) 31.67(+35.05%)

News cnn, cnbc, nytimes, washingtonpost 24.19 22.42(-7.32%) 32.50(+34.35%)

Remote Working bluejeans, slack, webex, zoom 18.57 17.18(-7.49%) 27.53(+48.25%)

Shopping amazon, costco, ebay, walmart 24.33 22.84(-6.12%) 32.90(+35.22%)

Social Media instagram, facebook, twitter, whatsapp 23.30 21.95(-5.70%) 31.76(+35.92%)

Sports bleacherreport, espn, nfl, nba 24.39 21.87(-10.33%) 31.98(+31.12%)

Travel booking, expedia, priceline, tripadvisor 24.16 22.77(-5.75%) 32.91(+36.22%)

Video amazon, disneyplus, netflix, youtube 24.18 22.88(-5.38%) 32.49(34.37+%)

All – 17.43 16.72(-4.07%) 26.78(+53.64%)

To determine the code reduction that DEPART can achieve, we follow the experiment

performed in §5.3.4 to use the code partitioning results to debloat Chromium for 40 popular

websites. Table 6.2 shows the code reduction results, in which the third column shows the

code reduction of SLIMIUM, the fourth column shows the code reduction of DEPART when

applying debloating the groups sharing code intersections with SLIMIUM’s 164 features,

and the last column shows DEPART’s code reduction when applying debloating all the

groups resulted from partitioning.

Note that DEPART remove less code than SLIMIUM when debloating the groups sharing

code with the 164 features identified in SLIMIUM. The reason is that: in SLIMIUM, a

feature’s code size is larger, thus when using the code coverage threshold (i.e., 35%) to

decide removing a feature or not, the feature is decided to be removed and all the feature’s

unexecuted code will be reduced; however, when the feature is divided into multiple smaller

sub-features in DEPART and using the same code coverage threshold usually decides to

keep the sub-features. On the other hand, Table 6.2 shows that DEPART removes above

71

Table 6.3: DEPART’s peformance.

Time (min:second) Memory (GB)

Relation Construction 19:33 33.89
Code Partitioning 3:21 6.12

31% code than SLIMIUM when applying to all the partitioned groups, which makes sense

as DEPART identifies more features than SLIMIUM.

Performance

Table 6.3 shows the time and memory performance of running DEPART. The relation con-

struction is resource-consuming because it parses all the 26,451 code modules, performs

static analysis on the code and constructs the relations among types and functions. Besides

that, the code partitionning phase only takes three minutes and 21 seconds, which is much

faster than the manual analysis in SLIMIUM (i.e., 40 hours).

72

CHAPTER 7

REFLECTIONS

In this chapter, I will first discuss the limitations of the proposed work in this thesis. Later,

I will discuss some of the future directions that this dissertation opens up.

7.1 Limitations

This section discusses the limitations of the proposed work above from the perspectives of

high-level feature extraction, memory overhead, and fault handling.

7.1.1 High-level Feature Extraction

We have seen that DEPART can do code partitioning on a program and divide the code

into a set of groups implementing distinct features. However, the generated groups mostly

contain small code with less than 10 code modules, which implement sub-features belong

to a high-level feature. This issue is caused by the limitations of the rules that DEPART

uses to group types and code. The rules defined in DEPART either heavily rely on relation

recursion to completely avoid grouping types and code that cannot be proved 100% related

(e.g., type reference recursion, control-dependence recursion, data-dependence recursion)

or only include types or code are always bonded by the same operations (e.g., object allo-

cation in same modules, exclusively accessing attributes).

Not liking the feature-code map generated from manual analysis in SLIMIUM, in which

each feature has a name; the partitioned code resulted from DEPART do not have names,

rendering the extracted features cannot be understood at high level.

73

7.1.2 Memory Overhead

Besides reducing attack surface, another benefit is supposed to achieve from debloating is

saving memory usages at runtime, especially on IoT devices that suffer from the limited

resource problem. However, none of the three proposed systems achieves this goal. SLIM-

IUM and DEPART rewrites the binary through marking the unneeded code with illegal in-

structions, resulting the same-sized binaries. More seriously, RAZOR produces debloated

binaries using more memory than the originals because it creates a new code section in

the binary; and the old code section is only marked read-only instead of being removed

because of supporting some corner cases.

7.1.3 Fault Handling

Like all the existing debloating systems, our proposed work also has the limitation of han-

dling the situations in which the removed code is triggered. RAZOR, SLIMIUM and DE-

PART choose to exit the running process once this scenario happens, which is not only

user-unfriendly but also possible to cause security issues. For example, users’ data might

be lost or user’ privacy can be leaked because the running process for data backup or data

encryption is killed.

7.2 Future Work

This section discusses some future directions that this dissertation opens up.

Improving static analysis. We have seen that employing static analysis in debloating

systems helps generating debloated software with higher robustness. RAZOR syntactically

analyzes the binary instructions to infer code similar with executed code, which generates

binaries that support running extra inputs other than the inputs used for training. SLIMIUM

uses static analysis to extend the feature-code map created manually and it helps reduce

more code. DEPART employs static analysis to automatically partition a program into

74

groups implementing distinct features, which saves the manual efforts for building feature-

code map. However, as we have discussed in §7.1.1, the static analysis still has limitations

causing the failure of generating high-level features. We believe that the static analysis can

be improved by constructing more relations with higher semantics (e.g., detecting common

patterns of invoking member functions, chaining memory reads/writes, etc.). Furthermore,

we will improve the static analysis to define rules matching design patterns used in software

industry. Finally, exploring new static analysis involved with probabilistic approaches is

also believed to be beneficial for code partitioning.

Using NLP. To extract high-level features that can be understood by users, simply parti-

tioning the code is not enough as assigning feature names to the code groups is necessary.

We believe that applying NLP techniques on the grouped code and types can help extracting

the feature names automatically.

Customizing compiling toolchains. Customizing the compiling toolchain (i.e., compil-

ers, linkers) is a powerful approach for instrumenting programs. To address the memory

overhead limitation discussed in §7.1.2, one possible solution is to modify the compiler

to generate shadow copies of the code that only contain empty functions and customizes

the linker to link the shadow code as required. Take a further step, we can also customize

the compiling toolchain to insert fault handlers in the program to gently handle the situa-

tions when the removed code is triggered. For example, a fault handler that asks users to

make the choices between exiting the process and restoring the removed code would be

acceptable.

75

CHAPTER 8

CONCLUSION

Previous debloating systems ask end-users to provide a set of sample inputs to demon-

strate how they will use the software and generate a debloated version of the software that

only contains the code triggered from running the sample inputs. Unfortunately, software

debloated by this approach only supports running given inputs, presenting an unusable no-

tion of debloating: if the debloated software only needs to support a fixed set of inputs,

the debloating process is as simple as synthesizing a map from the input to the observed

output. We call this Over-debloating Problem. This dissertation focuses on removing soft-

ware’s unneeded code while providing high robustness for debloated software to run more

inputs sharing the same functionalities with the given inputs, with approaches either using

heuristics, feature-code map, or code partitioning.

First, the thesis presents RAZOR, which first collects executed code for running the

software on the given inputs and then uses heuristics to infer non-executed code related to

the given inputs. In the end, RAZOR rewrites the software to keep not only the executed

code but also the inferred code, which makes the debloated software support running other

inputs besides the given ones. However, in RAZOR, the heuristics are syntax-based and can

only infer a limited set of related code, which fails on debloating large-scale and complex

software such as web browsers.

Later, the thesis presents SLIMIUM, which uses a feature-code map to debloat the web

browser Chromium at feature-level. In SLIMIUM, the feature-code map is initially created

from manual analysis and then it is expanded using static program analysis. However,

relying on manual efforts to identify features and relevant code is time-consuming and

difficult to be applied to other software.

Finally, the thesis presents DEPART, which provides a general approach to debloat

76

large-scale and complex software written with object-oriented programming (OOP) lan-

guages without any manual efforts. DEPART performs pure static analysis to automatically

partitions a program into distinct groups implementing different features, which is later

used for debloating. The key idea of DEPART is to relate the software’s code and types

(i.e., defined objects sharing unique behaviors in OOP) by analyzing the code’s various

operations. Based on the relations, we propose several rules to describe the conditions that

should be satisfied for including types and code into a same group.

77

Appendices

APPENDIX A

RAZOR

Program Training
Set Size

Testing
Set Size Options

bzip2 10 30 -c
chown 6 17 -h, -R
date 22 33 –date, -d, –rfc-3339, -utc
grep 19 38 -a, -n, -o, -v, -i, -w, -x
gzip 10 30 -c
mkdir 12 24 -m, -p
rm 10 20 -f, -r
sort 12 28 -r, -s, -u, -z
tar 10 30 -c, -f
uniq 24 40 -c, -d, -f, -i, -s, -u, -w

Table A.1: Settings for evaluating PATHFINDER on the CHISEL benchmarks. We use the
training set to debloat the binary, and run the generated code with the testing set. The last
column is the options we pass to the binaries during training and testing.

79

APPENDIX B

SLIMIUM

Algorithm 3: Explore a pertinent object to a feature
Result: added_ob jects
in_nodes = f eature.in_nodes; // Obtain the incoming/outgoing nodes
out_nodes = f eature.out_nodes;
r_c, r_s = 0.7; // Initialize hyperparameters
for node : in_nodes:

sum_c, sum_in_c, sum_in_s, in_num = 0;
for edge : node.out_edges:

(c,s) = edge.relation;
sum_c += c; // Sum up call invocations
if edge.end_node in f eature.nodes:

sum_in_c += c;
sum_in_s += s; // Sum up hamming distance values
in_num += 1;

if sum_in_c / sum_c > r_c || sum_in_s / in_num > r_s:
added_ob jects.add(node);

for node : out_nodes:
sum_c, sum_in_c, sum_in_s, in_num = 0;
for edge : node.in_edges:...

if edge.start_node in f eature.nodes:......

80

Table B.1: Summary of Chromium CVEs and relevant unit features for debloating.

Vulnerability Type High Medium Low Total Relevant Features

Bad cast 1 0 0 1 -

Bypass 3 22 2 27
document.{currentScript, domain}, Page Visibility, requestIdleCallback,
Extensions, Service Workers, Video, and Web Audio

Disclosure 1 16 1 18 Extensions, Media Source, third_party_boringssl, Timing, Video, and Web Audio

Inappropriate implementation 0 14 1 15 DevTools, Extensions, and PDF

Incorrect security,
handling, permissions 9 31 0 40

Extensions, DevTools, Navigator, Service Workers,
URL, URL formatter, Web Assembly, WebRTC, and XMLHttpRequest

Insufficient policy
enforcement 3 36 4 43

Canvas 2D, createImageBitmap, DevTools, Extensions, Payment, WebGL,
Service Workers, Shared Web Workers, Page Visibility, requestIdleCallback,
createImageBitmap, and document.{currentScript, and domain}

Insufficient validation 5 11 0 16 DevTools, IndexedDB, PDF, WebGL, and Web Assembly

Out of bound read 2 12 0 14 PDF, third_party_sqlite, and WebRTC

Out of bound write 3 5 0 8 PDF and Web Assembly

Overflow 14 32 0 46
Blob, Canvas 2D, Media Stream, PDF, Web Assembly, Web SQL,
WebGL, WebGPU, WebRTC, and third_party_{angle, icu, and libxml}

Spoof 1 26 3 30 DevTools, Extensions, Full screen, Media Stream, and Web Bluetooth

Type Confusion 5 2 0 7 PDF, SVG, and WebRTC

Use after free 16 36 0 52

DevTools, Extensions, File, File System, IndexedDB, Media Capture,
MediaRecorder, PDF, Payment, Web Assembly, Web Audio,
Web MIDI, WebRTC, createImageBitmap,
execution-while-out-of-viewport, and third_party_{libvpx, and libxml}

Others 8 34 5 47
Canvas 2D, createImageBitmap, DevTools, Directory selection, Extensions,
Full screen, PDF, Service Workers, Web Assembly, Web Audio, WebRTC,
and third_party_ffmpeg

Total 71 277 16 364

81

Table B.2: Chromium features as a unit of debloating. The columns V, P, C, and E represent
the number of CVEs, Feature Policy support, Chromium support, and Experimental flag
support respectively (Yes: ●, No: ✗, Partial: ◗).

Class Feature Name Func. Size (B) V P C E Class Feature Name Func. Size (B) V P C E
Accessibility 3,018 774,862 ✗ ● ✗ Synchronous Clipboard 500 108,156 ✗ ◗ ✗

HTML5 Canvas 2D 1,153 254,979 3 ✗ ● ✗ JS API TextEncoder & TextDecoder 68 15,068 ✗ ● ✗
SVG 3,884 710,004 1 ✗ ● ✗ Timing 634 142,366 1 ✗ ● ✗
Video 518 98,402 2 ✗ ● ✗ Touch events 117 61,599 ✗ ● ✗
WebGL 1,789 445,175 5 ✗ ● ✗ URL 82 19,462 1 ✗ ● ✗
WebGPU 470 80,706 5 ✗ ● ✗ Vibration 104 14,600 ● ● ✗
AbortController & AbortSignal 33 5,187 ✗ ● ✗ Wake Lock 142 20,954 ● ● ✗

JS API Accelerometer 13 887 ● ● ● Web Animations 2,524 705,348 ● ◗ ✗
Ambient Light Sensor 16 1,936 ● ● ● Web Audio 2,485 587,711 5 ✗ ● ✗
Autoplay 65 13,763 ● ● ✗ Web Authentication 28 1,972 ● ● ●
Background Sync 739 145,961 ✗ ● ● Web Bluetooth 4,896 1,216,400 1 ✗ ● ●
Base64 12 2,356 ✗ ● ✗ Web Cryptography 664 148,808 ✗ ● ✗
Console 122 49,646 ✗ ● ✗ Web MIDI 339 56,585 1 ● ● ✗
Battery Status 123 13,889 ● ● ✗ Web Notifications 1,539 342,313 ✗ ● ✗
Beacon 13 2,071 ✗ ● ✗ Web Sockets 921 195,979 ✗ ● ✗
BigInt 95 34,269 ✗ ● ✗ Web SQL 923 185,985 1 ✗ ● ✗
Blob 850 205,670 1 ✗ ● ✗ Web Storage 3,177 698,731 ✗ ● ✗
Broadcast Channel 116 17,948 ✗ ● ● Web Workers 1,549 246,759 ✗ ● ✗
Channel messaging 106 31,310 ✗ ● ✗ WebRTC 16,993 4,797,715 8 ✗ ● ●
Constraint Validation 100 12,812 ✗ ● ✗ WebUSB 577 131,635 ● ● ✗
createImageBitmap() 613 116,031 4 ✗ ● ✗ WebVR 255 55,213 ● ● ●
Credential Management 224 57,680 ✗ ● ✗ WebXR 859 177,361 ● ● ●
Cross-Origin Resource Sharing 196 68,668 ✗ ● ✗ Window 325 73,359 ✗ ● ✗
crypto.getRandomValues() 6 642 ✗ ● ✗ XMLHttpRequest 164 41,196 1 ● ● ✗
CSS.supports() 3 617 ✗ ● ✗ DevTools 10,273 2,889,315 15 ✗ ● ✗
Custom Event 10 1,134 ✗ ● ✗ Non-web Extensions 25,073 5,735,571 29 ✗ ● ✗
Device Events 341 48,431 ✗ ◗ ✗ NACL & PNACL 671 187,277 ✗ ● ✗
Directory selection 324 53,452 1 ✗ ● ✗ PDF 8,253 2,601,303 26 ✗ ● ✗
Do Not Track 9 1,403 ✗ ● ✗ third_party_abseil-cpp 30 3,274 ✗ ● ✗
Document Object Model Range 89 37,579 ✗ ● ✗ third_party_angle 1,503 636,685 4 ✗ ● ✗
document.currentScript 1,073 230,083 3 ✗ ● ✗ third_party_boringssl 2,142 824,106 1 ✗ ● ✗
document.domain 929 209,395 3 ● ● ✗ third_party_breakpad 109 49,047 ✗ ● ✗
document.evaluate & XPath 335 92,237 ✗ ● ✗ third_party_brotli 42 34,158 ✗ ● ✗
document.execCommand() 6 1,282 ✗ ● ✗ third_party_cacheinvalidation 891 187,681 ✗ ● ✗
DOM Element 568 143,336 ✗ ● ✗ third_party_ced 46 50,842 ✗ ● ✗
DOM Parsing and Serialization 457 111,963 ✗ ● ✗ third_party_cld_3 332 82,148 ✗ ● ✗
Encrypted Media Extensions 374 67,794 ● ● ✗ third_party_crc32c 3 3,209 ✗ ● ✗
execution-while-not-rendered 1,029 217,103 ● ● ✗ third_party_dav1d 422 316,415 ✗ ● ✗
execution-while-out-of-viewport 2,621 587,719 1 ● ● ✗ third_party_ffmpeg 1,453 795,694 1 ✗ ● ✗
Feature Policy 152 53,400 ✗ ◗ ● third_party_flac 148 86,028 ✗ ● ✗
Fetch 2,418 509,398 ✗ ● ✗ third_party_fontconfig 394 126,702 ✗ ● ✗
FIDO U2F 1,456 467,216 ✗ ● ✗ third_party_freetype 776 400,392 ✗ ● ✗
File 1,833 390,459 3 ✗ ● ✗ third_party_harfbuzz-ng 993 554,211 ✗ ● ✗
Filesystem & FileWriter 947 169,129 ✗ ● ✗ third_party_hunspell 264 221,096 ✗ ● ✗
Full Screen 196 42,364 5 ● ● ● third_party_iccjpeg 2 1,302 ✗ ● ✗
Gamepad 709 143,215 ✗ ● ✗ third_party_icu 5,782 1,793,490 1 ✗ ● ✗
Geolocation 235 41,809 ● ● ✗ third_party_inspector_protocol 197 85,215 ✗ ● ✗
Gyroscope 13 919 ● ● ● third_party_jsoncpp 79 37,373 ✗ ● ✗
High Resolution Time 464 102,944 ✗ ● ✗ third_party_leveldatabase 608 180,080 ✗ ● ✗
IndexedDB 3,053 861,111 2 ✗ ● ✗ third_party_libaddressinput 281 92,267 ✗ ● ✗
Internationalization 73 45,243 1 ✗ ● ✗ third_party_libjingle_xmpp 399 87,405 ✗ ● ✗
IntersectionObserver 191 44,669 ✗ ● ✗ third_party_libjpeg_turbo 325 196,271 ✗ ● ✗
Intl.PluralRules 13 7,239 ✗ ● ✗ third_party_libphonenumber 235 85,665 ✗ ● ✗
Magnetometer 13 919 ● ● ● third_party_libpng 231 99,653 ✗ ● ✗
Media Capture 198 52,530 1 ● ● ✗ third_party_libsrtp 121 34,315 ✗ ● ✗
Media Recorder 275 67,833 1 ✗ ● ✗ third_party_libsync 1 163 ✗ ● ✗
Media Source Extensions 374 67,794 1 ✗ ● ✗ third_party_libvpx 1,696 1,456,960 2 ✗ ● ✗
Media Stream 83 14,057 2 ✗ ● ✗ third_party_libwebm 111 40,614 ✗ ● ✗
Mutation Observer 179 34,649 ✗ ● ✗ third_party_libwebp 672 399,824 ✗ ● ✗
Native Filesystem 433 104,131 ✗ ● ● third_party_libxml 977 498,403 2 ✗ ● ✗
navigator.hardwareConcurrency 1 19 1 ✗ ● ✗ third_party_libxslt 394 216,254 ✗ ● ✗
Network Information 64 8,960 ✗ ● ✗ third_party_libyuv 455 172,021 ✗ ● ✗
Orientation Sensor 54 7,314 ✗ ● ● third_party_lzma_sdk 6 1,458 ✗ ● ✗
oversized-images 59 18,273 ● ● ✗ third_party_modp_b64 2 774 ✗ ● ✗
Page Visibility 946 214,054 3 ✗ ● ✗ third_party_openscreen 1 67 ✗ ● ✗
Payment 841 232,875 3 ● ◗ ✗ third_party_opus 304 313,488 ✗ ● ✗
Permissions 494 119,978 ✗ ● ✗ third_party_ots 220 141,284 ✗ ● ✗
Picture-in-Picture 225 35,203 ● ● ✗ third_party_perfetto 720 183,312 ✗ ● ✗
Pointer events 146 42,262 ✗ ● ✗ third_party_pffft 35 23,113 ✗ ● ✗
Pointer Lock 14 1,786 ✗ ● ✗ third_party_re2 320 168,288 ✗ ● ✗
Push 629 134,239 ✗ ● ✗ third_party_s2cellid 8 2,280 ✗ ● ✗
requestAnimationFrame() 85 19,503 ✗ ● ✗ third_party_sfntly 1,350 114,962 ✗ ● ✗
requestIdleCallback 1,175 260,757 3 ✗ ● ✗ third_party_smhasher 6 2,386 ✗ ● ✗
Resize Observer 127 28,509 ✗ ● ✗ third_party_snappy 20 4,492 ✗ ● ✗
Screen Orientation 170 26,174 ✗ ● ✗ third_party_sqlite 896 1,016,192 1 ✗ ● ✗
Selection 511 156,461 ✗ ● ✗ third_party_tcmalloc 167 37,048 ✗ ● ✗
Server-sent events 75 11,329 ✗ ● ✗ third_party_unrar 384 175,136 ✗ ● ✗
Service Workers 4,518 1,049,970 4 ✗ ● ✗ third_party_usrsctp 397 310,183 ✗ ● ✗
Shared Web Workers 419 79,337 1 ✗ ● ✗ third_party_webrtc_overrides 44 3,876 ✗ ● ✗
Speech Recognition 843 229,729 ✗ ◗ ✗ third_party_woff2 18 24,982 ✗ ● ✗
Speech Synthesis 216 35,928 ✗ ● ✗ third_party_zlib 177 92,515 ✗ ● ✗
Streams 698 126,798 ✗ ◗ ✗ wasm 2,723 1,893,353 ✗ ● ✗

82

Table B.3: Chromium CVEs associated with our feature set. The severity column ranges
from low(❘), medium(❚) to high(■).

Features Category Sev. CVE Features Category Sev. CVE
Blob Overflow ❚ 2017-15416 PDF Overflow ❘ 2018-6120
Canvas 2D Insufficient policy ■ 2019-5766 ❚ 2017-15408

■ 2019-5814 ❚ 2018-17461
Others ❚ 2019-5787 ❚ 2018-17469
Overflow ■ 2018-18338 ❚ 2019-5792
UAF ❚ 2019-5758 ❚ 2019-5795

DevTools Inappropriate implementation ❚ 2018-18344 ❚ 2019-5820
Incorrect security ❘ 2018-6112 ❚ 2019-5821

❚ 2018-6112 Type Confusion ❚ 2018-6170
❚ 2018-6139 UAF ■ 2017-15410

Insufficient policy ❚ 2017-15393 ■ 2017-5127
❚ 2019-5768 ■ 2018-18336

Insufficient validation ■ 2018-6101 ■ 2019-5762
❚ 2018-6039 ❚ 2017-15411
❚ 2018-6046 ❚ 2017-5126

Others ❚ 2018-6152 ❚ 2018-6088
UAF ■ 2018-6111 ❚ 2019-5756

❚ 2018-6111 ❚ 2019-5772
Directory selection Others ❚ 2018-6095 ❚ 2019-5805
document.* Bypass ❚ 2019-5799 ❚ 2019-5868

❚ 2019-5800 Service Workers Bypass ❚ 2018-6093
Insufficient policy ❚ 2018-18350 Incorrect security ❚ 2018-6091
UAF ■ 2019-5759 Insufficient policy ❚ 2019-5779

Extensions Bypass ❚ 2018-6070 Others ❚ 2019-5823
❚ 2018-6089 Shared Web Workers Insufficient policy ❚ 2018-6032

Disclosure ■ 2018-6179 SVG Type Confusion ❚ 2019-5757
Inappropriate implementation ■ 2018-20065 third_party_angle Overflow ■ 2018-17466
Incorrect security ■ 2018-16064 ❚ 2019-5806

■ 2019-5793 ❚ 2019-5817
❚ 2017-15420 ❚ 2019-5836
❚ 2018-6110 third_party_boringssl Disclosure ■ 2017-15423

Insufficient policy ■ 2019-13754 third_party_ffmpeg Others ■ 2017-1000460
❘ 2018-6045 third_party_icu Overflow ■ 2017-15422
❚ 2017-15391 third_party_libvpx UAF ❚ 2018-6155
❚ 2017-15394 ❚ 2019-5764
❚ 2018-6035 third_party_libxml Overflow ❚ 2017-5130
❚ 2019-13755 UAF ❚ 2017-15412
❚ 2019-5778 third_party_sqlite OOB read ❚ 2019-5827

Others ■ 2019-5838 Timing Disclosure ❚ 2018-6134
❚ 2018-16086 URL Incorrect security ❚ 2019-5839
❚ 2018-6121 ❚ 2018-6042
❚ 2018-6138 Video, Web Audio Bypass ❚ 2018-6168
❚ 2018-6176 Disclosure ❚ 2018-6177
❚ 2019-5796 Web Assembly Incorrect security ❚ 2018-6116

Spoof ❚ 2019-13691 ❚ 2018-6131
UAF ■ 2018-20066 Insufficient validation ❚ 2018-6036

■ 2018-6054 OOB write ❚ 2017-15401
❚ 2018-20066 Others ■ 2017-5132
❚ 2019-5878 ❚ 2018-6061

Extensions, DevTools Incorrect security ❚ 2018-6140 Overflow ❘ 2018-6092
Others ❚ 2018-16081 UAF ❚ 2017-15399
Spoof ❚ 2018-6178 Web Audio Bypass ❚ 2018-6161

File UAF ❚ 2018-6123 Others ■ 2018-16067
❚ 2019-5786 UAF ■ 2018-18339
❚ 2019-5788 ■ 2018-6060

File System ❚ 2019-5872 ❚ 2017-5129
Full screen Others ❚ 2018-17471 Web Bluetooth Spoof ■ 2018-16079

❚ 2018-17476 Web MIDI UAF ❚ 2019-5789
Spoof ❚ 2017-15386 Web SQL Overflow ■ 2018-20346

❚ 2018-16080 WebGL Insufficient policy ❚ 2018-6047
❚ 2018-6096 Insufficient validation ■ 2018-6034

IndexedDB Insufficient validation ❚ 2019-5773 Overflow ■ 2017-5128
UAF ❚ 2019-13693 ❚ 2018-6038

Media Capture ■ 2017-15395 ❚ 2018-6162
Media Source Extensions Disclosure ■ 2018-16072 WebGPU ❚ 2018-17470
Media Stream Overflow ❚ 2019-5824 ❚ 2018-17470

Spoof ❚ 2018-6103 ❚ 2018-6073
MediaRecorder UAF ■ 2018-18340 ❚ 2018-6154
Navigator Incorrect security ❚ 2018-6041 ❚ 2019-5770
Payment Insufficient policy ❚ 2018-20071 WebRTC Incorrect security ❚ 2018-6130

❚ 2019-13763 OOB read ❚ 2018-16083
UAF ❚ 2019-5828 ❚ 2018-6129

PDF Inappropriate implementation ❚ 2018-20065 Others ❚ 2018-6132
Insufficient validation ■ 2016-10403 Overflow ❚ 2018-6156
OOB read ❚ 2018-16076 Type Confusion ❚ 2018-6157
OOB write ■ 2017-5133 UAF ■ 2019-5760

❚ 2018-6144 ❚ 2018-16071
Others ■ 2019-13679 XMLHttpRequest Incorrect security ■ 2019-5832

83

REFERENCES

[1] G. J. Holzmann, “Code Inflation,” IEEE Software, vol. 32, no. 2, Mar. 2015.

[2] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A Multi-OS Cross-Layer
Study of Bloating in User Programs, Kernel and Managed Execution Environments,”
in Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software
Transformation, 2017.

[3] The Heartbleed Bug, http://heartbleed.com/.

[4] CVE-2014-0038: Privilege Escalation in X32 ABI, https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0038, 2014.

[5] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective Program Debloating via
Reinforcement Learning,” in Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[6] Wikipedia, Hamming distance, https://en.wikipedia.org/wiki/Hamming_distance,
2020.

[7] Chromium, Chrome platform status, https://chromestatus.com/features.

[8] J. Martellaro, Why Your iPhone Uses PNG for Screen Shots and JPG for Photos,
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-
shots-and-jpg-for-photos.

[9] ImageTragick, ImageMagick Is On Fire: CVE-2016-3714, https : / / imagetragick .
com/.

[10] C. Mulliner and M. Neugschwandtner, Breaking payloads with runtime code strip-
ping and image freezing, 2015.

[11] T. L. Yurong Chen and G. Venkataramani, “Damgate: Dynamic adaptive multi-
feature gating in program binaries,” in Proceedings of the Second Workshop on
Forming an Ecosystem Around Software Transformation (FEAST), 2017.

[12] A. G. Hashim Sharif Muhammad Abubakar and F. Zaffar, “Trimmer: Application
specialization for code debloating,” in Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE), 2018.

[13] S. Mishra and M. Polychronakis, “Shredder: Breaking Exploits through API Special-
ization,” in Proceedings of the 34th Annual Computer Security Applications Confer-
ence (ACSAC), 2018.

84

http://heartbleed.com/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0038
https://en.wikipedia.org/wiki/Hamming_distance
https://chromestatus.com/features
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://www.macobserver.com/tmo/article/why-your-iphone-uses-png-for-screen-shots-and-jpg-for-photos
https://imagetragick.com/
https://imagetragick.com/

[14] X. Z. Zhongshu Gu Brendan Saltaformaggio and D. Xu, “Face-change: Application-
driven dynamic kernel view switching in a virtual machine,” in Proceedings of the
44th IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2014.

[15] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg, A. Ruprecht, W.
Schroder-Preikschat, D. Lohmann, and R. Kapitza, “Attack surface metrics and au-
tomated compile-time os kernel tailoring,” in Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), 2013.

[16] H.-C. Kuo, J. Chen, S. Mohan, and T. Xu, “Set the configuration for the heart of the
os: On the practicality of operating system kernel debloating,” in Proceedings of the
ACM on Measurement and Analysis of Computing Systems, 2020.

[17] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for big data applica-
tions,” in Proceedings of the 2013 international symposium on memory management
(ISMM), 2013.

[18] D. W. Yufei Jiang and P. Liu, “Jred: Program customization and bloatware mitigation
based on static analysis,” in Proceedings of the 40th Annual Computer Software and
Applications Conference (ACSAC), 2016.

[19] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quantifying the secu-
rity benefits of debloating web applications,” in Proceedings of the 28th USENIX
Security Symposium (USENIX Security 19), 2019.

[20] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-wise compi-
lation and loading,” in Proceedings of the 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 869–886.

[21] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik, “Effective program debloating via
reinforcement learning,” in Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), 2018.

[22] H. Xue, Y. Chen, G. Venkataramani, and T. Lan, “Hecate: Automated customization
of program and communication features to reduce attack surfaces,” in International
Conference on Security and Privacy in Communication Systems (SecureComm),
2019.

[23] M. Ghaffarinia and K. W. Hamlen, “Binary control-flow trimming,” in Proceedings
of the 25th ACM Conference on Computer and Communications Security (CCS),
2019.

[24] C. Porter, G. Mururu, P. Barua, and S. Pande, “Blankit library debloating: Get-
ting what you want instead of cutting what you don’t,” in Proceedings of the 41st

85

ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2020.

[25] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to vibrate: A cost-
benefit approach to improving browser security,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security (CCS), 2017.

[26] snyderp, Some blocked features still accessible, https://github.com/snyderp/web-
api-manager/issues/97, 2018.

[27] A. Quach and A. Prakash, “Bloat factors and binary specialization,” in Proceedings
of the Second Workshop on Forming an Ecosystem Around Software Transformation
(FEAST), 2019.

[28] M. D. Brown and S. Pande, “Carve: Practical security-focused software debloat-
ing using simple feature set mappings,” in Proceedings of the Second Workshop on
Forming an Ecosystem Around Software Transformation (FEAST), 2019.

[29] V. Rastogi, D. Davidson, L. De Carli, S. Jha, and P. McDaniel, “Cimplifier: Au-
tomatically Debloating Containers,” in Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, 2017.

[30] Microsoft, Application Inspector, https://github.com/microsoft/ApplicationInspector,
2020.

[31] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven software de-
bloating,” in Proceedings of the 12th European Workshop on Systems Security (Eu-
roSec), 2019.

[32] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal system call spe-
cialization for attack surface reduction,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[33] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine: Automated
system call policy generation for container attack surface reduction,” in Proceedings
of the International Conference on Research in Attacks, Intrusions, and Defenses
(RAID), 2020.

[34] Google, V8 JavaScript Engine, https://chromium.googlesource.com/v8/v8.git.

[35] H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao, “Software Watermarking Us-
ing Return-Oriented Programming,” in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015.

86

https://github.com/snyderp/web-api-manager/issues/97
https://github.com/snyderp/web-api-manager/issues/97
https://github.com/microsoft/ApplicationInspector
https://chromium.googlesource.com/v8/v8.git

[36] D. Bruening and S. Amarasinghe, “Efficient, Transparent, and Comprehensive Run-
time Code Manipulation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 2004.

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2005.

[38] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of the
2005 USENIX Annual Technical Conference, 2005.

[39] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s Manual,
325384-068US. Nov. 2018, vol. 3 (3A, 3B, 3C & 3D): System Programming Guide,
ch. 35.

[40] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee,
“Enforcing Unique Code Target Property for Control-Flow Integrity,” in Proceedings
of the 25th ACM Conference on Computer and Communications Security, 2018.

[41] S. Wang, P. Wang, and D. Wu, “Reassembleable Disassembling,” in Proceedings of
the 24th USENIX Conference on Security Symposium, 2015.

[42] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, C. Kruegel,
and G. Vigna, “Ramblr: Making Reassembly Great Again,” in Proceedings of the
24th Annual Network and Distributed System Security Symposium, 2017.

[43] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-Agnostic Function Detection
in Binaries,” in Proceedings of the 2nd IEEE European Symposium on Security and
Privacy, 2017.

[44] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT: Learn-
ing to Recognize Functions in Binary Code,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014.

[45] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing Functions in Binaries with
Neural Networks,” in Proceedings of the 24th USENIX Conference on Security Sym-
posium, 2015.

[46] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi,
“Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space
Layout Randomization,” in Proceedings of the 34th IEEE Symposium on Security
and Privacy, 2013.

87

[47] M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,” in Proceedings
of the 22nd USENIX Security Symposium, 2013.

[48] Function and Macro Index, https://www.gnu.org/software/libc/manual/html_node/
Function-Index.html.

[49] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler,
and M. Franz, “Readactor: Practical Code Randomization Resilient to Memory Dis-
closure,” in Proceedings of the 36th IEEE Symposium on Security and Privacy, 2015.

[50] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of Control: Over-
coming Control-Flow Integrity,” in Proceedings of the 35th IEEE Symposium on
Security and Privacy, 2014.

[51] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz, “Coun-
terfeit Object-oriented Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications,” in Proceedings of the 36th IEEE Symposium on Se-
curity and Privacy, 2015.

[52] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer,
“Control-Flow Integrity: Precision, Security, and Performance,” ACM Comput. Surv.,
2017.

[53] The Top 500 Sites on the Web, https://www.alexa.com/topsites.

[54] Octane, https://chromium.github.io/octane.

[55] SunSpider, https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html.

[56] Dromaeo-JS, http://dromaeo.com/?dromaeo.

[57] Dromaeo-DOM, http://dromaeo.com/?dom.

[58] T. C. Projects, Site Isolation, https://www.chromium.org/Home/chromium-security/
site-isolation.

[59] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang, “The Web/Local Bound-
ary Is Fuzzy: A Security Study of Chrome’s Process-based Sandboxing,” in Pro-
ceedings of the 23rd ACM SIGSAC Conference on Computer and Communications
Security, 2016.

[60] P. Snyder, C. Taylor, and C. Kanich, “Most Websites Don’t Need to Vibrate: A Cost-
Benefit Approach to Improving Browser Security,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017.

88

https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html
https://www.alexa.com/topsites
https://chromium.github.io/octane
https://webkit.org/perf/sunspider-1.0.2/sunspider-1.0.2/driver.html
http://dromaeo.com/?dromaeo
http://dromaeo.com/?dom
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation

[61] T. C. Projects, Getting Around the Chromium Source Code Directory Structure,
https : / / www. chromium . org / developers / how - tos / getting - around - the - chrome -
source-code, 2020.

[62] W3C, All standars and drafts, https://www.w3.org/TR/, 2020.

[63] Caniuse.com, Support tables for HTML5, CSS3, etc. https : / / caniuse .com/#feat=
feature-policy, 2020.

[64] Alexa, The top 500 sites on the web, https://www.alexa.com/topsites, 2020.

[65] P. Papadopoulos, P. Ilia, M. Polychronakis, E. P. Markatos, S. Ioannidis, and G.
Vasiliadis, “Master of web puppets: Abusing web browsers for persistent and stealthy
computation,” in Proceedings of the Network and Distributed System Security Sym-
posium (NDSS), 2019.

[66] S. Kell, D. P. Mulligan, and P. Sewell, “The missing link: Explaining elf static link-
ing, semantically,” in Proceedings of the 2016 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2016.

[67] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike, “Enforcing forward-edge control-flow integrity in GCC & LLVM,” in Pro-
ceedings of the 23rd USENIX Security Symposium (USENIX Security 14), 2014.

[68] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2005.

[69] Intel Processor Trace Tools, https:/ /software.intel .com/en- us/node/721535, Ac-
cessed: 2018-11-1.

[70] american fuzzy lop, http://lcamtuf.coredump.cx/afl/, Accessed: 2020-2-12, 2020.

[71] Electron, https://www.electronjs.org/, 2020.

[72] C. Details, Vulnerabilities statistics on Google Chrome, https : / /www.cvedetails .
com/product/15031/Google-Chrome.html?vendor_id=1224, 2019.

[73] N. I. of Standards and Technology, National Vulnerability Database, https: / /nvd.
nist.gov/, 2020.

[74] Chromium, Blink (rendering engine), https://www.chromium.org/blink.

89

https://www.chromium.org/developers/how-tos/getting-around-the-chrome-source-code
https://www.chromium.org/developers/how-tos/getting-around-the-chrome-source-code
https://www.w3.org/TR/
https://caniuse.com/#feat=feature-policy
https://caniuse.com/#feat=feature-policy
https://www.alexa.com/topsites
https://software.intel.com/en-us/node/721535
http://lcamtuf.coredump.cx/afl/
https://www.electronjs.org/
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://www.cvedetails.com/product/15031/Google-Chrome.html?vendor_id=1224
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.chromium.org/blink

[75] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos, “Shrinkwrap:
Vtable protection without loose ends,” in Proceedings of the 31st Annual Computer
Security Applications Conference, 2015.

[76] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: Securing C++ virtual calls from
memory corruption attacks,” in 21st Annual Network and Distributed System Secu-
rity Symposium, 2014.

[77] A. Prakash, X. Hu, and H. Yin, “Vfguard: Strict protection for virtual function calls
in cots c++ binaries,” 2015.

[78] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike, “Enforcing forward-edge control-flow integrity in gcc and llvm,” in Pro-
ceedings of the 23rd USENIX Conference on Security Symposium, 2014.

[79] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song, “Vtrust:
Regaining trust on virtual calls.,” in NDSS, 2016.

[80] LLVM, The often misunderstood gep instruction, https://llvm.org/docs/GetElementPtr.
html.

[81] L. O. Andersen, “Program analysis and specialization for the c programming lan-
guage,” Tech. Rep., 1994.

[82] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1996.

[83] Wikipedia, Component (graph theory), https://en.wikipedia.org/wiki/Component_
(graph_theory).

[84] ——, Strongly connected component, https : / / en . wikipedia . org / wiki / Strongly _
connected_component.

90

https://llvm.org/docs/GetElementPtr.html
https://llvm.org/docs/GetElementPtr.html
https://en.wikipedia.org/wiki/Component_(graph_theory)
https://en.wikipedia.org/wiki/Component_(graph_theory)
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/Strongly_connected_component

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Motivation
	3 | Related Work
	4 | Heuristic-based Approach
	Overview and Design
	Evaluation

	5 | Feature-code Map Approach
	Overview
	Design
	Evaluation

	6 | Code Partitioning Approach
	Overview
	Design
	Evaluation

	7 | Reflections
	Limitations
	Future Work

	8 | Conclusion
	Appendices
	A | Razor
	B | Slimium

	References

