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SUMMARY

In some situations, a user would like to communicate without detection. It has been

shown that it is impossible to achieve positive rate while remaining undetectable to a third

party. However, that work assumes that the detector is certain about their own noise power,

which inherently has uncertainty because that knowledge is based on a measurement. By

exploiting this uncertainty the transmitter can achieve a positive rate while remaining un-

detectable to a third party. This positive rate is quantified in numerous scenarios: Single

Input Single Output (SISO) Additive White Gaussian Noise (AWGN) and Rayleigh chan-

nels (with channel state information (CSI) and channel distribution information (CDI)), and

Multiple Input Multiple Output (MIMO) Rayleigh channels. Finally, building on previous

work, it is shown that for a detector to lower their maximum possibility of an error, they

should not take as many samples as possible–a counterintuitive result. This is explained in

more detail in the last chapter.

ix



CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

In wireless communications there are situations where a user would want to communicate

such that his emissions are undetectable to other users—that is, transmit with privacy. One

emerging example is underlay cognitive radio (CR) [1], where a secondary user seeks to

communicate with such low power as to not interfere with or be detected by primary users.

Another example is secure communications where a wireless user does not want to reveal

his presence in the spectrum to an eavesdropper. Many attacks on wireless networks are

predicated on an attacker’s ability to determine that a target is transmitting [2, 3]. By

transmitting with sufficiently low power we can avoid potential network attacks and also

politely use the spectrum in the presence of primary users. In this thesis we determine

the achievable communications rate afforded by the privacy constraint under a variety of

eavesdropper and channel assumptions.

To formalize our objective, consider a scenario where two users, Alice and Bob, would

like to communicate over a wireless channel without being detected by a detector, Dave.

Dave’s objective is not to decode Alice’s transmissions, but merely to detect the presence

of Alice’s transmissions. If Alice does not want to reveal her position or even her existence,

encrypting her communications is not enough. Bash, Goeckel, and Towsley found that if

Alice knows a lower bound of Dave’s noise power, O(
√

N) bits can be sent in N channel

uses while guaranteeing that Dave’s sum of probability of false alarm PFA and missed

detection PMD is asymptotically arbitrarily close to one [4].

To make this more clear, we define two terms. I(N), which behaves as O(
√

N), is

the number of undetected error-free bits that can be sent in N channel uses. Likewise,

Cpr = limN→∞ I(N)/N is the error-free privacy channel capacity. The result in [4] means

that Cpr = 0 in Additive White Gaussian Noise (AWGN) channels. While the asymptotic
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rate is zero, this does not mean no information can be communicated—I(N) is positive so

long as the probability of detection is nonzero. Bash, Goeckel, and Towsley’s work is the

first work that we are aware of that puts information theoretic bounds on low probability of

detection communication.

The square root law found in [4] relates to problems in steganography where a fixed-

size, finite-alphabet covertext object can be changed to hide a message. Because the cover-

text object is transmitted noiselessly in steganography, O(
√

N log N) bits can be transmitted

by modifying O(
√

N) symbols in covertext of size N [5, Ch. 8, Ch. 13]. If we put this in

information theory terms of rate over a channel, where covertext of size N is analogous

to N channel uses, this is still asymptotically zero rate despite the noiseless transmission

because limN→∞O(
√

N log N)/O(N) = 0.

However, it is possible to achieve a positive rate when we assume that Dave is uncer-

tain of his noise level and uses a radiometer (energy detector) as his detection test. This

improves upon the AWGN case with noise power certainty, where positive privacy rate

is not possible with a radiometer detector. However, it is important to note that while a

radiometer is the optimal detector for AWGN systems where Dave knows his noise vari-

ance, a radiometer is not optimal when Dave does not know his noise variance [6]. Thus,

the result we present is not as strong as the one in [4], but our result does demonstrate

that in practical situations, a positive rate is possible while still guaranteeing that Dave’s

PMD + PFA → 1.

It is important to distinguish privacy capacity from secrecy capacity, which is the max-

imum error free rate that Alice can talk to Bob, while preventing an eavesdropper from

decoding Alice’s transmissions. The constraints of privacy and secrecy, while different, do

not actually supersede one another [7].

In this thesis we delve into greater detail the notion of an SNR wall [4], and how Alice

can use it to her advantage to communicate without being detected. We also try to estimate

what kinds of uncertainty we can reasonably expect and the resultant communication rates
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that Alice and Bob can achieve over Single Input-Single Output (SISO) and Multiple Input-

Multiple Output (MIMO) AWGN and Rayleigh channels. We use several assumptions of

channel information: channel state information (CSI) on the Alice-Bob and Alice-Dave

channels and CSI on the Alice-Bob channel and channel distribution information (CDI) on

the Alice-Dave channel.

1.2 Privacy Capacity

Privacy capacity involves three parties: a transmitter, receiver, and detector. It is dependent

not only on the transmitter’s choice of coding scheme, but also the detector’s detection

scheme.

1.2.1 System Setup

Consider the communications scenario in Figure 1 where Alice transmits a circularly sym-

metric Gaussian signal s[n], where n is the time index, with mean 0 and variance Γs. Bob

is her intended receiver, and Dave is a passive detector. Dave is trying to determine Alice’s

presence–whether or not she is transmitting. Finally, Bob and Dave experience circularly

symmetric Gaussian noise of zero mean and variance Γr and Γd, respectively.

Alice .

s[n] ∼ CN(0,Γs)
X

√
ψ

rαr
+

r[n] ∼ CN(0,Γr)

Bob

X√
ψ

rαd

+

d[n] ∼ CN(0,Γd)

Dave

Figure 1: System block diagram.

When a random variable X has a circularly symmetric complex Gaussian distribution

with mean µ and variance Γ it is denoted as X ∼ CN(µ,Γ). Bob and Dave are located

distances rr and rd from Alice, respectively. All of our signals s[n], r[n], and d[n], are

3



mutually independent. We assume the received signal power, P, is a scaled monomial

function of the distance, which is consistent with the free space path loss model where

P ∝ 1/r2 [8, p. 107], as well as multipath path loss models, where P ∝ 1/rα with α, the

path loss exponent, as low as 1.2 and as high as 6.2 [9]. We will let P = ψ/rα for some

proportionality constant ψ. The uncertainty in Dave’s noise power measurement is given

by Γ̂d ∈ [A, B], where Γd is the true noise power. As discussed in Chapter 5, one source of

Dave’s noise uncertainty Alice can expect and put reasonable bounds on is thermal noise.

This is something she can estimate without any knowledge of her channel to Dave.

1.2.2 Detection Metrics

To define privacy capacity, we assume that Dave is trying to distinguish between the fol-

lowing two signal hypotheses,

H0 : x[n] = d[n], (1)

H1 : x[n] =
√

ψ

rαd
s[n] + d[n], (2)

with n ∈ {1, ...,N} and associated probability distributions P0(x) and P1(x), respectively.

The privacy capacity Cpr is defined as the maximum error free rate at which Alice can

talk to Bob, while guaranteeing that Dave’s sum of probabilities of detection errors is ϵ

close to one—that is,

ξ = PMD + PFA > 1 − ϵ, (3)

where PMD is the probability of missed detection and PFA is the probability of false alarm

for some arbitrarily small ϵ.

It is not immediately obvious that ξ being close to one should be our objective. We

are adding two probabilities, which normally results in a value bounded between 0 and 2.

However, PFA+PMD = PFA+1−PD, and PD ≥ PFA, where PD is the probability of detection.

A detector can always achieve PD = PFA by ignoring the input data and flipping a coin with

probability of heads being PD, and declaring a detection when it is heads [10]. Hence any
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algorithm the detector uses should be able to achieve PD ≥ PFA. Additionally, if PD < PFA,

then the detector can simply switch what they declare a detection and a non-event.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

Dave’s Receiver Operating Characteristic

Dave
wan

ts

to
push

Alic
e wan

ts to
push

ε

Best Performance, Theoretical
Best Performance, Realistic
Realistic
Worst Performance, Theoretical
Worst Performance, ε close

Figure 2: Dave’s receiver operating characteristic curves, where best and worst are with

respect to Dave.

We can draw this notion of ϵ closeness on a receiver operating characteristic (ROC)

curve. In Fig. 2 we’ve graphed the detector’s probability of detection for any given prob-

ability of false alarm. The best and worst cases depicted are from Dave’s perspective. His

absolute best case performance achieves a 100% chance of detecting Alice for any PFA. Of

course, in the real world, he can’t actually achieve this, but a realistic best case would be

the dotted curve in green, where there’s a rapid rise in PD as PFA increases from 0 until

PD hits 1. In the worst case, Dave ignores the data and flips coins instead, achieving the

black dashed line of PD = PFA. A realistic scenario for Dave is that of the dashed red

curve. Dave would like to push this curve out to the upper left corner, where he would have

a very large PD for any PFA. Conversely, Alice would like to force Dave’s ROC curve to

the black dashed line. Practically, Alice can’t push Dave’s performance that low, but aims

to make his curve ϵ close to the worst case (only ϵ greater). In other words, Alice wants
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PD < PFA + ϵ, which follows from (3).

This ϵ parameter is Alice’s notion of outage, which is analogous to how power con-

strained capacity denotes outage in terms of probability of error.

1.2.3 Theoretical Privacy Capacity

It is possible to bound ξ by bounding the total variation distance between P0(x) and P1(x),

defined as

||P1 − P0||1 =
∫
|P1(x) − P0(x)|dx. (4)

Under the optimal detector for distinguishing P1(x) from P0(x) [11, Ch. 13],

ξ = 1 − 1
2
||P1 − P0||1. (5)

Hence, if we force ||P1 − P0|| < 2ϵ, then Dave’s ξ > 1 − ϵ.

1.3 Practical Privacy Rate

Recall that the capacity of an AWGN channel is actually a maximization problem solving

for the optimal input distribution while keeping the probability of transmission error less

than ϵ. Similarly, to find the privacy capacity under noise uncertainty, we would have to

find the input distribution that maximizes the rate of information between Alice and Bob

while still keeping ξ > 1 − ϵ. We leave this as an open problem, as the challenge is that

for each input distribution Alice could choose, there is a corresponding optimal detector

for Dave. A brute force search over all possible input distributions is infeasible as there

are infinitely many possible input distributions; to find the optimal input distribution would

require a different analytical approach.

We avoid this issue by fixing the detection test to be an energy detector (radiometer),

described by

T (x) =
1
N

xH x =
1
N

N∑

n=1

x[n]∗x[n] > γ, (6)
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where γ is the detection threshold of Dave’s choosing and N is the number of samples.

The capacity of an AWGN channel is maximized with a Gaussian input distribution, and

the optimal detector for a Gaussian input is a radiometer, so we assume Gaussian signaling

for Alice. Under these constraints, we are no longer solving for Cpr and instead are solving

for an achievable privacy rate Rpr. This particular Rpr is a lower bound of Cpr, as it is an

achievable privacy rate with the choice of a particular input distribution (Gaussian) and the

optimal detector for that distribution (a radiometer). It is possible that there exists some

other input distribution and it’s corresponding optimal detector that will result in a higher

privacy rate.

The Gaussian input signal is in actuality a shared secret between Alice and Bob. In

a traditional AWGN channel without privacy constraints, we know that this achieves and

doesn’t exceed capacity [12, p. 200].

1.4 SNR Wall

We furthermore assume that Dave is uncertain of his noise power—that is, he only knows

his noise Γ̂d is contained to an interval I = [A, B]. In this scenario, Tandra and Sahai showed

that robust detection of Alice is impossible [6], even if Dave takes an infinite number of

samples. In their proof, they derive

PFA = max
Γ̂d∈[A, B]

Q


γ − Γ̂d√

2
N Γ̂d


(7)

PMD = 1 − min
Γ̂d∈[A, B]

Q


γ − Γs − Γ̂d√

2
N (̂Γd + Γs)


, (8)

where they have used the Central Limit Theorem (CLT) on the chi square distribution of the

test statistic. From this they conclude that Dave cannot detect Alice if she transmits below

the SNR wall of B−A
Γd

. By maximizing PFA and PMD independently, Dave’s true performance

is no worse, and with probability 1 better, than if he did not maximize over I. If Dave were

to instead just assume one value of Γ̂d ∈ I, then with probability 1, Dave’s assumption
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about Γ̂d is incorrect, and his PMD and PFA will be higher than what he calculates.

In Tandra and Sahai’s work, when PFA and PMD are maximized independently, B max-

imizes (7) and A maximizes (8). Because it is obviously impossible for Γ̂d to be A and

B simultaneously, Dave’s detection performance can be improved and remain robust. We

instead analyze the scenario that Dave maximizes their sum,

ξ′ = min
γ

max
Γ̂d∈[A, B]

PFA(̂Γd, γ) + PMD(̂Γd, γ
′). (9)

Dave performs a min max—for any fixed threshold γ, he has to maximize ξ′ over the

uncertainty interval for robustness. But he is free to choose any threshold γ, and hence

minimizes over his choice of γ to improve detection performance. While we are primarily

concerned with this min max, which considers his worst case performance, He. et al studies

the implications of taking into account the distribution of noise uncertainty [13].

While in this thesis we only consider that Dave is uncertain about his noise power,

Che et. al derive the channel capacity when none of Alice, Bob, or Dave know the noise of

both the binary symmetric Alice-Bob channel and the noisier binary symmetric Alice-Dave

channel [14].

1.5 Other Means to Overcome the Square Root Law

While in this thesis we only examine exploiting noise power uncertainty to transmit more

than O(
√

n) bits in n channel uses, there are other means. For example, Dave’s ignorance of

when Alice transmits allows her to transmit O(min(
√

n log(T (n)), n) bits in n channel uses,

where T (n) is the number of time slots each containing n symbol periods, and Alice may use

only a single slot [15]. Another method is the presence of a friendly uninformed jammer,

which allows Alice to transmit O(n) bits in n channel uses, thereby achieving a positive

rate [16, 17, 18]. A third method is to consider a different channel type not subject to the

square root law, such as a continuous time, infinite-bandwidth Poisson channel without a

peak power constraint. The privacy capacity of such a channel is infinite [19].
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CHAPTER 2

SISO PRIVACY RATE WITH MEASUREMENT UNCERTAINTY

This chapter examines privacy rate for SISO AWGN and Rayleigh channels. Both CSI and

CDI are considered for Rayleigh channels.

2.1 AWGN Channel Privacy Rate with Measurement Uncertainty

As is well known, Alice can transmit at a rate of log2(1+Γs/Γr) bits per channel use over a

AWGN channel when her transmit power is constrained to Γs and Bob’s noise power is Γr

[12, Ch 9]. Using this we define the privacy rate as

Rpr = max
Γs: limN→∞ ξ′(N,Γs)=1

log2(1 + ψ

rαr
Γs
Γr

), (10)

where ξ′(N,Γs) is the sum of PFA and PMD after N observations. By maximizing Γs we

are maximizing Alice’s rate, but we limit ourselves only to the situations where Dave’s ξ′

approaches 1 as he approaches an infinite number of samples.

2.1.1 Privacy Rate

First we need to establish our PFA and PD:

PFA = Pr(T (x) > γ; H0)

= Pr


1
N

N∑

n=1

d[n]∗d[n] > γ



= Qχ2
2N

(
2Nγ

Γ̂d

)
(11)

PD = Pr(T (x) > γ; H1)

= Qχ2
2N


2Nγ

Γ̂d +
ψ

rαd
Γs

 (12)

9



lim
N→∞

PFA =



0, if γ > Γ̂d

1, if γ < Γ̂d

, (13)

lim
N→∞

PD =



0, if γ > Γ̂d +
ψ

rαd
Γs

1, if γ < Γ̂d +
ψ

rαd
Γs,

(14)

where Qχ2
2N

is the tail probability of a chi square distribution of 2N samples, and for some

choice of Γ̂d ∈ [A, B]. We want to maximize Alice’s signal power while forcing ξ → 1, so

we can either force PD → 0 or PFA → 1. To do this we need to satisfy

γ < Γ̂d (15)

or

γ > Γ̂d +
ψ

rαd
Γs (16)

for all γ and some Γ̂d ∈ [A, B] while maximizing Γs. For γ < B, we can choose Γ̂d = B to

satisfy (15). For γ ≥ B, we can’t satisfy (15) but we can satisfy (16) by choosing Γ̂d = A

and constraining

ψ

rαd
Γs < B − A. (17)

Hence, the Signal to Noise Ratio (SNR) wall to force ξ → 1 is

Γs = rαd (B − A)/ψ. (18)

Given this, for Alice to achieve privacy, she should emit less power than (18), resulting in

Rpr = lim
N→∞

log2(1 + ψ

rαr
Γs
Γr

)

= log2

(
1 +

(
rd
rr

)α B−A
Γr

)
. (19)

2.1.2 Lower Bound on SNR Wall

Alice can communicate with a positive rate given by (19) while forcing Dave’s detector’s

PD → 0 or PFA → 1 so long as she talks below the SNR wall in (18). Unfortunately, Alice
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does not know what Dave’s uncertainty is, so Alice cannot know with certainty if she is

communicating just below the SNR wall to maximize her rate. However, she can lower

bound all of the SNR wall parameters under some assumptions.

In most situations there is at least some area in which Alice can be certain that there

is no eavesdropper, such as her immediate vicinity or her building. She can use this to

lower bound rd. Dave’s noise level depends on the temperature, so Alice can also lower

bound B − A by assuming a temperature uncertainty that is less than what is available in

highly-accurate thermometers. The noise level Γd can also be lower bounded by assuming

a temperature in Dave’s receiver and some noise figure. The path loss exponent α can be

lower bounded as well based on the propagation environment characteristics.

With these lower bounds, Alice can achieve private communication—that is, she can

pick a rate R < Rpr = log2

(
1 +

(
rd
rr

)α B−A
Γr

)
. Numerical results are discussed in Chapter 5.

Goeckel et. al examine the implications when Dave has the full collection of chan-

nel observations, instead of abstracting Dave’s error to the noise level only being known

between A and B [20]

2.2 Rayleigh Fading Channel Privacy Rate with Measurement Uncer-
tainty

Privacy rate can be applied to other channels as well. Here we examine how Rayleigh

fading, under both CSI and CDI, affects our privacy rate.

2.2.1 Problem Statement

We can also apply similar analysis to Rayleigh fading channels with complex valued sym-

bols as depicted in Fig. 3. All other aspects of the scenario are the same as the AWGN

setup. For simplicity, the channel gains Hd and Hr are assumed to be static over the signal-

ing period.
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Alice .

s[n] ∼ CN(0,Γs)
X

Hr ∼ CN(0,Γhr)
X√
ψ

rαr

+

r[n] ∼ CN(0,Γr)
Bob

X
Hr ∼ CN(0,Γhd)

X√
ψ

rαd

+

d[n] ∼ CN(0,Γd)
Dave

Figure 3: System block diagram.

For detection the two hypotheses are:

H0 : x[n] = d[n] (20)

H1 : x[n] =

√
ψ

rαd
Hd s[n] + d[n]. (21)

When Alice has CSI for the Alice-Dave channel, Dave and Alice’s objectives are the

same as the AWGN case. We use the same strategy to analyze the privacy rate in this

scenario. This is an unlikely scenario in practice because Dave and Alice do not cooperate

in any way, but the resulting privacy rate gives us an idea of the best case privacy rate Alice

can hope to achieve.

When Alice only has CDI for the Alice-Dave channel, Dave’s objective is the same as

the AWGN case. However, Alice can no longer guarantee that ξ′ → 1 because she will

not know the instantaneous value of the channel fade. Accordingly, we have to change the

constraint in the privacy rate definition to be E[limN→∞ ξ′(Γs,N)] > 1 − ϵ.

2.2.2 Privacy Rate Under Alice-Dave CSI

Under CSI with a static channel gain, the channel is still characterized as a AWGN channel

with a known scalar multiplier, so we assume Gaussian signaling for Alice. Dave uses

the same detection test as the AWGN case and hence the same detection threshold. The

12



probability of detection is now

PD = Pr(T (x) > γ; H1),

= Qχ2
2N


2Nγ

Γ̂d +
ψ

rαd
|Hd|2Γs

 . (22)

We quickly see that aside from the addition of a new scale factor |Hd|2 everywhere there

is ψ

rαd
, our equations for the Rayleigh fading CSI case will be the same as the AWGN case.

Hence Alice should talk below

Γs =
(B − A)rαd
|Hd|2ψ . (23)

Using the SNR from (23),

Rpr|Hd,Hr = lim
N→∞

log2(1 + ψ

rαr
Γs
Γr

)

= log2(1 +
(

rd
rr

)α |Hr |2
|Hd |2

B−A
Γr

). (24)

Assuming Hd ∼ CN(0,Γhd) and Hr ∼ CN(0,Γhr), we have

Rpr = log2(1 +
(

rd
rr

)α
Ω Γhr
Γhd

B−A
Γr

), (25)

where Ω ∼ F(2, 2), that is, an F-distribution. With this, the ergodic rate is

Rpr,erg =

∫ ∞

0
log2

(
1 +

(
rd
rr

)α Γhr
Γhd

B−A
Γr

x
)

fx(x)dx

=

∫ ∞

0
log2(1 +

(
rd
rr

)α Γhr
Γhd

B−A
Γr

x)(1 + x)−2dx

= D
D−1 log2(D), (26)

where D = Γhr
Γhd

B−A
Γr

(
rd
rr

)α
.

We can also find the outage rate

Pr(Rpr < c) = Pr
(
F(2, 2) ≤ 2c − 1

D

)

=
(2c − 1)

(2c − 1) + D
(27)

as shown in Figure 4.
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2.2.3 Analysis of Privacy Rate under CSI

Alice can communicate with a positive rate and ξ arbitrarily close to 1 so long as she talks

below the SNR wall in (23). If we compare the privacy rates of the Rayleigh fading and

AWGN channels,

Pr(Privacy RateRayleigh < Privacy RateAWGN) = 1

1+
Γhr
Γhd

.

we can see that if the channel gains have identical distributions, then the probability that the

Rayleigh fading channel under CSI has a greater privacy rate than the AWGN channel is

actually one half. There is a small probability that the channel gain ratio will be very large

in Alice’s favor, and this causes the ergodic privacy rate under CSI to increase over the

rate of the AWGN channel. This phenomenon is similar to what occurs in physical layer

security - by sending at a high rate when the channel is in Alice’s favor, Alice can achieve

a higher ergodic secrecy capacity under fading channels than under a AWGN channel [21].

A plot of the outage rate can be found in Fig. 4. We discuss numerical results are discussed

in Chapter 5.
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2.2.4 Privacy Rate under Alice-Dave CDI

Next we study the privacy rate when only CDI is known about the Alice-Dave channel. We

still assume CSI for the Alice-Bob channel. We assume that Alice’s signal is uncorrelated

with the channel gain to Dave: E[s[n]∗Hd] = 0 ∀n. Otherwise the system setup is the same

as the CSI case. However, Alice can no longer guarantee that ξ′ → 1 because she no longer

knows the exact value of Hd when she transmits. Hence, we have to modify our definition

of privacy rate to

R̃pr,ϵ = max
limN→∞ E[ξ′(Γs,N)]≥1−ϵ

log2(1 + ψ

rαr
Γs
Γr

). (28)

While PFA remains the same, we must further analyze PD.

lim
N→∞

PD|Hd =



0, if γ′ > Γ̂d +
ψ

rαd
|Hd|2Γs

1, if γ′ < Γ̂d +
ψ

rαd
|Hd|2Γs

(29)

lim
N→∞

E[PD] =



0, with probability 1 − Qχ2
2


γ − Γ̂d

ψ

rαd
ΓsΓhd/2



1, with probability Qχ2
2


γ − Γ̂d

ψ

rαd
ΓsΓhd/2

 .
(30)

When we analyze ξ′ we can see that the worst case scenario for Alice is when Dave

picks γ = B, which maximizes PD. For any γ < B, we choose Γ̂d = B. Hence to have

limN→∞ E[ξ′(N,Γs)] ≥ 1 − ϵ , we need

PFA + PMD ≥ 1 − ϵ

1 − Qχ2
2


B − A

ψ

rαd
ΓsΓhd/2

 ≥ 1 − ϵ. (31)

Thus, to maximize rate under the constraint, Alice should transmit with power

Γs =
B − A

ψ

rαd
Q−1
χ2

2
(ϵ)Γhd/2

.

Assuming CSI on the Alice-Bob channel, we have

R̃pr,ϵ |Hr = log2

1 +
|Hr|2
Γhd/2

B − A
Γr

(
rd

rr

)α 1
Q−1
χ2

2
(ϵ)

 . (32)
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Because |Hr|2 ∼ Γhr
2 χ

2
2, we can find the ergodic rate

R̃pr,ϵ,erg =

∫ ∞

0
log2 (1 +Gx)

e−x/2

2
dx

=
1

ln(2)
exp

(
1

2G

)
E1

(
1

2G

)
(33)

where E1(x) =
∫ ∞

x
e−t

t dt and G =
(

rd
rr

)α B−A
Γr

Γhr
Γhd

1
Q−1
χ2

2
(ϵ) . The derivation of the integral can be

found in the appendix.

We can also find the outage rate

Pr(R̃pr,ϵ ≤ c) = Pr
(
χ2

2 ≤ (2c − 1)
1
G

)

= 1 − Qχ2
2

(
(2c − 1)

1
G

)
. (34)

2.2.5 Comparison of Privacy Rates Under Different Channels

A plot of the privacy rates can be found in Fig. 5 with all parameter ratios set to one (that is,

Γhr
Γhd
= rr

rd
= 1). As we previously observed, the ergodic privacy rate of a Rayleigh channel

under CSI is greater than that of a AWGN channel because of the small probability of

having a channel gain ratio in Alice’s favor. We also observe that the ergodic privacy rate

for a Rayleigh channel under CDI is lower than that of an AWGN channel, with only small

increases in privacy rate for orders of magnitude increases in ϵ.
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CHAPTER 3

MIMO RAYLEIGH PRIVACY RATE

We also extend our results to MIMO Rayleigh fading channels with complex valued sym-

bols (Fig. 6). We also assume that while Alice and Bob have multiple antennas, Dave only

has one antenna.

Alice .

s[n] ∼ CN(0,Q)

nt × 1
X

[H]ij[B]ij

(nr × nt)
[H]ij ∼ CN(0,H(i, j))

[B]i j =

√
ψ

([rr]i j)α

+

r[n] ∼ CN(0, diag(R(i)))

Bob

X[G]i[D]i

(1 × nt)
[G]i ∼ CN(0,G(i))

[D]i =

√
ψ

([rd]i)α

+d[n] ∼ CN(0,Γd) Dave

Figure 6: The circle multiplication symbols denote matrix multiplication.

Let a bolded quantity represent a vector or matrix. Let CN(µ,Ξ) denote a vector of cir-

cularly symmetric complex jointly Gaussian random variables with mean µ and covariance

matrix Ξ. Let nt and nr denote the number of transmit and receive antennas, respectively.

Let the [v]i operator be the ith entry of a vector v, and let the [M]i j operator be the row

i, column j entry of a matrix M. Let H denote the set of all variances of the matrix H,

with Var([H]i j) = H(i, j). Let the diag operator denote a diagonal matrix with the diagonal

entries given by the argument.

Alice sends signal s[n] at time index n. Bob and Dave experience noise r[n] and d[n],

respectively. Bob’s jth antenna is located [rr]i j away from Alice’s ith antenna, and Dave’s

antenna is located [rd]i away from Alice’s ith antenna. Bob and Dave experience channel

gains H and G, respectively. We denote the diagonal entries of Q, the covariance matrix of

our signal s[n], as S(i). For simplicity, the channel gains H and G are assumed to be static
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over the signaling period.

Dave’s detection hypotheses are

H0 : x[n] = d[n] (35)

H1 : x[n] =
nt∑

i=1

√
ψ

([rd]i)α
[G]i[s[n]]i + d[n]. (36)

Alice’s objective is to find the maximum error-free rate at which she can communicate to

Bob while forcing ξ ≥ 1 − ϵ.

3.1 Privacy Rate under Alice-Dave Channel Distribution Information
(CDI)

We assume Dave uses the same detection test from (6). Let L[n] =
∑nt

i=1

√
ψ

([rd]i)α
[G]i[s[n]]i+

d[n], and let l =
∑nt

i=1
ψ

([rd]i)α
|[G]i|2Γsi + Γ̂d. Therefore L[n] ∼ CN(0, l). Then we can find

Dave’s detection probability

PD = Pr


1
N

N∑

n=1

(L[n]∗L[n]) > γ′


= Qχ2
2N


2Nγ′

∑nt
i=1

ψ

([rd]i)α
|[G]i|2S(i) + Γ̂d

 . (37)

Dave’s asymptotic PD and PFA are [22]

lim
N→∞

PFA =



0, γ′ > Γ̂d

1, γ′ < Γ̂d

(38)

lim
N→∞

PD =



0, γ′ >
nt∑

i=1

ψ

([rd]i)α
|[G]i|2S(i) + Γ̂d

1, γ′ <
nt∑

i=1

ψ

([rd]i)α
|[G]i|2S(i) + Γ̂d

(39)

For Dave to robustly detect Alice he should choose the γ′ that maximizes ξ′. Forcing

ξ′ → 1 is equivalent to forcing PD → 0 for Γ̂d = B [22]. However, we can only lower

bound Pr(ξ′ → 1) because under CDI the [G]i’s are random. Hence

Pr


nt∑

i=1

ψ

([rd]i)α
|[G]i|2S(i) < B − A

 ≥ 1 − ϵ. (40)
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Ideally we would use a generalized chi square distribution (the |[G]i|2 are χ2
2 distributed)

and calculate the set S that satisfies (40). However, we are unable to find an analytical

solution. Instead, we use the Lyapunov Central Limit Theorem (LCLT) for an approximate

analytical solution (see Chapter 3.1.1), and also compute the constraint numerically (see

Chapter 3.1.2).

Once we have the set of valid power allocations,

Rpr = max
Q: S satisfies (40), [Q]ii≤S (i) ∀i,

Q positive semidefinite

log2 |I +HQHH |. (41)

3.1.1 Analytic Solution to Privacy Rate under Alice-Dave CDI

For this solution we assume [rd]i = rd, [G]i = Γg,R(i) = Γr, [rr]i j = rr,H(i, j) = Γh ∀i, j.

These parameter uniformity assumptions allow us to use the Marchenko-Pastur (MP) law

[23]. We also assume nt = nr = ñ, but these results can be generalized to nt , nr.

We use the LCLT, which unlike the classical CLT allows for the random variables to not

be identically distributed but requires some extra bounds on their means and variances. The

LCLT allows us to avoid the problem of using the inverse tail of a generalized chi square

distribution Q−1
χ2

2;S(·), where the function itself depends on S, the values we are trying to

solve for. By applying the LCLT to (40),

ñ∑

i=1

ψ

rαd
ΓgS(i) + Q−1(ϵ)

√√
ñ∑

i=1

(
ψ

rαd
ΓgS(i)

)2

≤ B − A. (42)

At first glance this equation seems like a solution to bypass the difficulty of an analytical

solution. However, the application of the LCLT in this instance assumed that ñ, the number

of Alice’s (and Bob’s) antennas, approaches infinity. Additionally, we have assumed that all

of Alice’s antennas are equidistant to Dave. This would require that all of Alice’s antennas

be placed on a circle (or sphere), with the center at Dave. However, we will see in Chapter

3.1.2 that the combination of the LCLT’s ñ→ ∞ assumption with the following constraint

results in a good approximation of privacy rate.
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To simplify (42), we use the norm property that for ai ≥ 0,

√∑
i a2

i ≤
∑

i ai, (43)

giving us the new constraint function

nt∑

i=1

S(i) ≤ B − A

(1 + Q−1(ϵ)) ψrαd Γg
. (44)

To understand (43), observe that the unit ball described by setting the right hand side (RHS)

of (43) to one is a strict subset of the unit ball described by setting the left hand side of (43)

to one. Hence by using the RHS, we have restricted the valid set of power allocations that

we are maximizing over.

From this point forward we use the MP distribution. The MP law tells us the distribution

of the eigenvalues of a matrix JJH when [J]i j ∼ CN(0, 1) [23]. The parameter uniformity

assumptions allow us to write our new channel matrix H̃ =
√
ΓhJJH. If the distribution of

the eigenvalues for the general H were known, that distribution could be used.

If we take the singular value decomposition (SVD) of H̃ =
√
ΓhUΣVH where Σ =

diag(σi) and let Q = VSVH where S = diag(S(i)
Γr

) then our privacy rate approximation is

Rpr,CLT = max
S: S(i)≥0 ∀i,
S satisfies (44)

ñ∑

i=1

log2

(
1 + σ2

i
ΓhψS(i)

rαr Γr

)
(45)

where σ2
i = λi are the eigenvalues of JJH. Our numerical solution in 3.1.2 considers the off

diagonal elements of Q.

By using Lagrange multipliers and Kuhn-Tucker conditions, we can find the optimal

power allocation as

S(i) =


θ

(1 + Q−1(ϵ)) ψrαd Γg
− Γrrαr
ψΓhλi



+

∀i (46)

where θ is a water filling parameter chosen such that

B − A
1 + Q−1(ϵ)

=

ñ∑

i=1

(
θ

1 + Q−1(ϵ)
−

(
rr

rd

)α
ΓrΓg

λiΓh

)+
(47)
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Figure 7: Privacy rates vs B−A
Γr

under the LCLT model. Rates increase with ϵ and number
of antennas

The familiar water filling solution follows from the fact that applying the LCLT and

(43) changes our constraint function (44) to a total power constraint.

While the eigenvalue distribution of H̃ converges asymptotically with the number of

antennas, it converges very quickly. By using equations (15), (19), (20), and (21) in [23]

with

P0 =
B−A
Γr

1
1+Q−1(ϵ)

Γh
Γg

(
rd
rr

)α
(48)

we get an analytical approximation of the privacy rate. The complete equations are not

particularly insightful but have been included in the appendix.

If nt , nr, the rate bound can be found numerically by evaluating (15) in [23]. The

privacy rates are plotted in Fig. 7 for 1, 3, 5, and 7 antennas, with ϵ = 0.001, 0.01, and 0.1.

This privacy rate differs to that found in [24], which also analyzed a MIMO setup be-

tween Alice and Bob. Hero derives Cpr = E
[
log

(
1
2

√
1 + µλ2

i

)]
where λi are the eigenvalues

of HHH and µ is a water-filling parameter. However, the low probability of detection (LPD)

constraint in [24] is different from ours, instead constraining the Chernoff exponent, which
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limits how quickly Dave’s detection errors decay exponentially to zero. This Chernoff ex-

ponent constraint acknowledges that while Dave’s detection will be asymptotically perfect

with noise power certainty, it is still possible to transmit a finite amount of data with a

reasonably high ξ for Dave. Our result differs because we assume noise power uncertainty

and a radiometer for Dave.

3.1.2 Numerical Solution to Privacy Rate under Alice-Dave CDI

Again, we are interested in maximizing Alice’s rate under the constraint given by (40).

By using the generalized χ2
2 distribution [25], we plot valid power allocations for arbitrary

values of ψ, B−A
Γr
,G,Γd and rd, with ñ = 3.

Because the rate monotonically increases with power, we are only interested in power

allocations at the boundary of our constraint function. The discrete points in Fig. 8 come

from (40), whereas the surface plot is that of an ellipsoid, as ( x
S(1) )

2 + ( y
S(2) )

2 + ( z
S(3) )

2 = 1,

where S can be found by solving S(i) = B−A
ψ

([rd ]i)α
Q−1
χ2

2
(ϵ)G(i)/2

, the maximum power allowed for

that antenna if only that antenna were used [22]. The model match can be evaluated by

calculating the average of ( x
S(1) )

2 + ( y
S(2) )

2 + ( z
S(3) )

2, which is approximately 0.9 for the

plotted values and for thirty other sets of arbitrarily chosen parameters. Additionally, all

the points are strictly interior to the corresponding ellipsoid. As a side note, consider that

the constraint surface for total power-constrained MIMO is a plane in the first hyperoctant.

When just accounting for thermal noise, we have a low resultant transmit power, as

we will see in Chapter 5. Under the traditional sum power constraint, maximizing MIMO

capacity at low SNR involves beamforming. The optimal beamforming covariance matrix

is Q = PvvH, where P is the power constraint and v is the right singular vector of H that

corresponds to its largest singular value. We can employ this same method for the MIMO

privacy rate. However it is important to note that while precoding with the right singular

vectors is optimal under the sum power constraint, it is not optimal under a per-antenna

power constraint [26]. Finding the privacy rate can be reformulated as finding the maximum

of the capacities with per-antenna power constraints for each valid power allocation in Fig.
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8. The advantage of using the right singular vectors is that it is computationally inexpensive

- it only involves finding the SVD of H and then scaling the vector out to the boundary of the

valid power allocation surface. Additionally, the beamforming approach does not require

the parameter uniformity assumptions, unlike the LCLT approach.

By using only one eigenchannel and sending only one symbol x ∼ CN(0, σ2
x), we

precode x̂ = vx. Defining Γs = (S(1),S(2), . . . ,S(nt))T , our power allocation is Γs = σ
2
xṽ,

where ṽ is the vector such that [ṽ]i = |[v]i|2. We find the scalar σ2
x such that Γs is at

the boundary of the set of valid power allocations. Having found σ2
x and λ1, the largest

eigenvalue of HHH,

Rpr,beamforming = log2(1 + σ2
xλ1

Γr
). (49)

We then use a Monte-Carlo simulation to find the ergodic rate. Additionally, we do

a brute force search to find the true ergodic privacy rate. In our Monte Carlo simulation,

for every realization of H we discretize the space of valid power allocations, calculate the

per antenna power constrained (PAPC) capacity at each allocation [26], and then pick the

maximum across all power allocations. Because calculating the PAPC capacity is computa-

tionally expensive at low power allocations [26], we also present a lower bound which sets

the channel covariance matrix as the diagonal matrix with the per antenna power constraints

along the diagonal.

We compare the LCLT, beamforming, grid search, and grid search lower bound meth-

ods under the parameter uniformity assumptions (as required by the LCLT) in Fig. 9. We

see that at 3 antennas the computationally fast LCLT method provides a good approxima-

tion of the privacy rate. However, we see increasing the number of antennas increases the

error in the LCLT approximation. There are three factors affecting the error approximation:

the use of the LCLT which assumes ñ → ∞, the use of the MP law which also assumes

ñ→ ∞ but converges quite rapidly, and the use of inequality (43). All three factors together

combine to result in an approximation that lower bounds the true privacy rate, and becomes

worse as the number of antennas increases.
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Figure 9: Comparison of privacy rates vs B−A
Γr

under different models

0 0.5 1 1.5 2
0

1

2

3

B−A
Γr

R
at

e
(b

its
pe

rc
ha

nn
el

us
e)

MIMO Privacy Rate vs B−A
Γr

Grid Search, rd = [5 5 5]
CLT
Beamforming, rd = [5 5 5]
Grid Search, rd = [2 5 5]
Beamforming, rd = [2 5 5]

Figure 10: Privacy rates vs B−A
Γr

. in skewed vs not skewed

26



The beamforming solution performs well with parameter uniformity, but as the privacy

constraint region becomes skewed, the approximation error grows (Fig. 10). With pa-

rameter uniformity, the privacy constraint region is symmetric and represents the best case

scenario for the beamforming solution, allowing it to perform well despite using only one

eigenchannel and the wrong precoding matrix.

We can apply all these results to look at some hypothetical numbers on privacy rates.
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CHAPTER 4

DAVE’S OPTIMAL NUMBER OF SAMPLES

In most detection problems we assume that the detector should take as many samples as

possible. This chapter will examine is this is still the case if the noise power is uncertain.

4.1 Worst case scenario

So far we have assumed that Dave’s detection performance increases with the number of

samples he takes, despite being forced to have ξ′ > 1 − ϵ [22]. We showed that asymp-

totically, Dave’s ξ′ is either 0 or 1, depending on Alice’s transmit power. However, the

assumption that more samples is better is actually incorrect, given constraint (9). To see

this, we define ξ” to be ξ′ at 1 sample,

ξ′′ = min
γ′

max
Γ̂d∈[A, B]

exp


−γ′

Γ̂d +
ψ

rαd
Γs

 − exp
(−γ′
Γ̂d

) . (50)

We can plainly see that because ψ

rαd
Γs > 0, ξ′ > 0 at N = 1. Also, ξ′ < 1 because an

exponential with a negative exponent must be less than 1. However, we showed that at an

infinite number of samples, Dave’s ξ′ = 1, provided Alice’s transmit power is low enough.

Because ξ′ is a continuous function over N, there must exist some finite N where ξ′ is

minimized for Dave, and we revise (9) to

ξ′′′ = min
N

min
γ′

max
Γ̂d∈[A, B]

[
PFA(̂Γd, γ

′,N) + PMD(̂Γd, γ
′,N)

]
. (51)

This result initially seems counterintuitive. In any detection scenario, the detector is at

worst no better off, and almost always better off by gathering more samples. In this sce-

nario, the detector is actually better off ignoring samples past the optimal number (or just

collecting that many samples in the first place). However, if we look at (51), we see that

Dave is trying to account for the worst case scenario when he maximizes Γ̂d over I. As

Dave collects more samples, there is a chance that he will observe a rare event that repre-

sents his worst case. Because his test statistic is cumulative, he will eventually accumulate
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Figure 11: PDFs of test statistics at finite (top graph) and infinite (bottom graph) samples.
The dotted PDFs are those at the lower end of the uncertainty interval.

enough rare events that decrease his detection performance.

Another way to analyze this situation is with the test statistic probability density func-

tion (pdf)’s themselves.

At a large number of samples, by the CLT, the pdf of the test statistic under each

hypothesis converges to a Gaussian distribution, and with an infinite number of samples

the Gaussian distribution converges to a delta function at the mean of the distribution.

The red deltas in Figure 11 represent the null hypothesis of Alice not transmitting. H0,l

represents the null hypothesis pdf with Γ̂d = A, and H0,u represents the null hypothesis

pdf with Γ̂d = B. Conversely, the blue deltas represent the alternate hypothesis that Alice

is transmitting, with H1,l representing the alternate hypothesis pdf with Γ̂d = A, and H1,u

representing the alternate hypothesis pdf with Γ̂d = B.

If Dave considers any detection threshold less than H0,U , such as γ1, by the robustness

criterion in (51), he chooses Γ̂d = B. This means the PDFs of his test statistic are H0,U and

H1,U , implying he will have 100% false alarms. If Dave considers any detection threshold
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greater than H1,L, such as γ2, by the robustness criterion in (51), he chooses Γ̂d = A. This

means the PDFs of his test statistic are H0,L and H1,L, implying that he will have 100%

misses. Thanks to Alice’s power constraint in (17) here does not exist a threshold that

Dave can choose that will allow his asymptotic ξ to be less than 1, and hence it would seem

that Alice can communicate while forcing Dave’s ξ′′ to asymptotically approach 1.

However, if we analyze the finite sample case, we see that the assumption that Dave

should take as many samples as possible is not valid. For simplicity we have assumed

enough samples for the CLT to be valid, but the results hold if we use the true chi square

distribution instead.

The strategy employed in the infinite sample case no longer works because the PDFs

now have a support that is not infinitesimal. Dave can choose any detection threshold he

desires, as long as he satisfies the robustness criterion in (51). Dave could choose the

threshold γ1, in which case there is no choice of Γ̂d and the corresponding PDFs that will

force his ξ′′′ to be arbitrarily close to 1. From Fig. 11, with γ1 as Dave’s choice of detection

threshold, his worst case ξ over the choice of Γ̂d would be on the order of 15%. Previously,

for any choice of γ for Dave, the worst case ξ′′ was asymptotically 1.

In order for Dave to actually compute the optimal N, γ′, and Γ̂d in (51), Dave needs to

know Alice’s Γs. Because we are assuming that Alice and Dave are not cooperative, it is

not realistic to assume that Dave has this information. However, if Alice assumes that Dave

knows Γs, then Alice will be assuming the best case detection performance for Dave under

the constraints he is given, and Alice will be guaranteed to communicate with privacy.

As we can see in Fig. 12, there is a dramatic decrease in privacy rate when we assume

Dave uses the optimal number of samples. This is the robust assumption to take, because

if Dave doesn’t use the optimal number of samples, Alice could transmit with more power.

However, the fact that private communication is even possible, given our assumptions, is

of great significance.

The optimal number of samples decreases as B−A
Γr

increases, as seen in Fig. 13.
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4.2 Average Case Scenario

The intuition behind why more samples isn’t always better for Dave in the previous scenario

was that he was maximizing his worst case for robustness. So if instead, Dave targeted the

average case, intuition would be that we would return to the standard situation of more

samples is better, or at the very least, not worse. And in fact, we see that this is the case.

While we were not able to show this analytically, we did numerically compute the

average case

ξ̂ = min
N

min
γ′

∫ B

A

[
PFA(̂Γd, γ

′,N) + PMD(̂Γd, γ
′,N)

]
f̂Γd

(̂Γd)dΓ̂d (52)

where f̂Γd
is the pdf of Γ̂d. Assuming a uniform distribution on Γ̂d, we can see in Fig. 14

that ξ′′ decreases monotonically with respect to N, assuming that the optimal threshold γ′opt

has been chosen.

This scenario is not entirely realistic because we are assuming that Dave has knowledge

about f̂Γd
, and more importantly that he is not trying to be robust about his detection method.

This detection metric would allow for his calculated ξ′′ to be not be his true sum of detection

errors because Γ̂d is only going to be one value in I. However, analyzing this scenario
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does provide some more intuition for the initially counterintuitive result for the worst case

scenario.

4.3 Further Extension of Finite Sample Results

We leave this finite sample analysis as an open problem for the other types of channels

we consider: SISO and MIMO Rayleigh channels. While we didn’t conduct the finite

sample analysis on such channels, the fact that we can overcome the square root law in

[4] by assuming noise uncertainty, radiometer use, and Dave’s taking of a finite number of

samples, is the important aspect in this work.
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CHAPTER 5

PRACTICAL RATES

One concern in achieving these rates in practice is that Alice will not be certain of where

the SNR wall is, especially under the Rayleigh fading case as the SNR wall is random. To

give some practical rates we can assume some reasonable lower bounds.

For the non-fading case let us assume Dave is at least 5 meters away because she can

see at least 5m in her immediate vicinity that there are no eavesdroppers. We adopt a free

space propagation model with isotropic antennas. The measurement uncertainty can be

lower bounded by Dave’s temperature uncertainty. Thermal noise power can be written as

Γd = kBT̂ B, (53)

where kB is Boltzman’s constant, T̂ is an uncertain temperature in Kelvin in the range

[TA,TB] and B is bandwidth. An accurate thermometer provides readings within 0.015 K

at 298 K [27]. For propagation loss, we will adopt a free space propagation model, which

sets α = 2. Using these values Alice can compute a worst case SNR wall. For her privacy

rate, we will assume that the noise power in the Alice-Dave channel and the Alice-Bob

channel are the same. We will also assume that Alice knows her distance to Bob. For the

transmission frequency we will assume Alice is transmitting at 900 MHz. Finally, Alice

needs to know a lower bound on Γd, so she will take the lower end of the uncertainty range

for thermal noise power. These values are summarized in Table 1.

Table 2 gives the MIMO and SISO rates for the common bandwidths of 1, 10, and 20

MHz. For the MIMO case, we assume three antennas at each of Alice and Bob, we use the

parameter uniformity assumptions so all of Alice’s antennas are the same distance away

from Dave’s antennas, and we assume all the noise variances on the channels from Alice

to Dave are the same. While these bitrates found in Table 2 are low, if Alice can obtain

better estimates of the noise uncertainty by taking into account interference sources or other

factors, this privacy rate can increase.
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Table 1: Assumed values

True Temperature (T ) 298 K
Temperature Range 297.985 K - 298.015 K
Detector Distance (rd) 5 meters
Receiver Distance (rr) 20 meters
Propagation Parameter (α) 2
Alice-Dave Noise Power Alice-Bob Noise power
Wavelength 333 mm

Table 2: Privacy Rates

Bandwidth MIMO Rpr SISO Rpr

1 MHz 98.1 bits/s 9.07 bit/s
10 MHz 981.2 bits/s 90.7 bit/s
20 MHz 1962.3 bits/s 181.4 bits/s

The MIMO privacy rates are 2.7 times greater than having four individual SISO chan-

nels. It is important to remember that the search space for power allocation is not a plane

like the standard total power constrained capacity problem—the search space is ellipsoidal

in nature, as we see in Fig. 8. This non-planar shape allows us to increase our capacity by

a factor beyond the number of antennas.

If Bob gets closer to Alice, the private rate can increase dramatically, as shown in Fig.

15. We previously saw in Fig 7 that we can also increase the privacy rate if Dave’s noise

uncertainty were to increase.

5.1 Other Sources of Noise Uncertainty

Up to this point we assumed that Dave’s noise uncertainty is not affected by Alice’s be-

havior. However, Alice could set up interference sources that turn on and off at random

intervals. This interference can create more noise uncertainty for Dave and increase Al-

ice’s privacy rate. Also, because Alice set up the interference sources herself, she can

estimate Dave’s uncertainty from these sources.

Additionally, there can be other noise sources present that are not in collusion with

Alice. In the extreme underlay scenario, the primary user could be seen as an interference
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source that increases Dave’s noise uncertainty. However, Bob has to be able to reject the

noise for this to increase his rate, because otherwise his noise increases as well and offsets

the gain in allowable transmit power.

We leave further study into these areas as an open problem.
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CHAPTER 6

CONCLUSION

It is possible to overcome the square root law of private communication if two assumptions

are made: the detector is uncertain of its noise level and the detector uses a radiometer. We

showed that the detector should only take into account a finite number of samples, and that

while the detector cannot actually calculate the optimal number of samples without know-

ing the transmitter’s power, the detector does know that the optimal number of samples

decreases as its uncertainty about the noise increases. Further work would be to analyze

Rayleigh SISO and MIMO channels to confirm that a finite number of samples is optimal

in those cases as well.
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APPENDIX

In equation (33) we use the integral
∫ ∞

0
log2 (1 +Gx)

e−x/2

2
dx =

1
ln(2)

exp
(

1
2G

)
E1

(
1

2G

)

where E1(x) =
∫ ∞

x
e−t

t dt (and therefore d
dx E1(x) = − e−x

x ). We first need to show that
∫

log2 (1 +Gx)
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2
dx ?
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ln(2)
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+
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)
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By plugging in our integral bounds, we have

1
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The equation for ergodic MIMO capacity as derived in [23] is

C ≈ gnr log2


a2ntP0 + nr

∫ ∞
µcut

dµ′ fr(µ′) 1
µ′

gnr

 + nr

∫ ∞

µcut

du fr(µ) log2(µ)

where

g =
L
nr
≈

∫ ∞

µcut

dµ fr(u),
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is the fraction of the channel modes used by the transmitter,

µcut =
r
∫ ∞
µcut

dµ′ fr(µ′)

a2P0 + r
∫ ∞
µcut

dµ fr(µ) 1
µ

is the minimum eigenvalue used by the transmitter,

fr(µ) =



√
(µ − ar)(br − µ)

2πµr
, ar ≤ µ ≤ br

0, otherwise

,

ar = (
√

r − 1)2,

br = (
√

r + 1)2,

r =
nr

nt
,

and a in the large matrix limit asymptotically approaches the root mean square transmit to

receive attenuation.

When r = 1, we have the results

∫ ∞

µcut

dµ f1(µ) =1 −
√

(4 − µcut)µcut + 4 arcsin
( √

µcut

2

)

2π
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1
µ
= − 1

2
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1
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1
π
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( √
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