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SUMMARY 

Prolonged ocean surface warming in North Pacific, such as those extreme events 

known as marine heatwaves, could lead to significant impact on coastal ecosystems. As 

such, predicting the North Pacific sea surface temperatures days to weeks to months or 

even years in advance, especially prolonged marine heatwaves and coastal variability, 

helps provide guidance to decision makers to understand the future ecosystem variation 

and to utilize the adverse situation to their benefits. Therefore, it is of vital importance to 

construct credible and effective ocean forecast systems on various spatial and temporal 

scales. While statistical models capture the large-scale dynamics and provide forecast skill 

comparable to the state-of-the-art climate models, regional dynamical models are necessary 

to resolve high resolution coastal processes and to improve coastal prediction skill. Thus, 

this thesis combined the use of a Linear Inverse Model (LIM) and the Regional Ocean 

Modeling System (ROMS), a widely-used empirical model and a commonly-accepted 

dynamical ocean model, to understand the North Pacific extremes and to evaluate North 

Pacific forecast on multiple spatial and temporal scales. This includes: (1) using LIM to 

analyze the statistical behaviors, progression, and prediction of marine heatwaves in 

Northeast Pacific; (2) using LIM to explore the prediction of North Pacific coastal systems 

and the impact of tropical versus extratropical Pacific on the prediction; (3) using a multi-

scale nesting configuration of ROMS to resolve coastal processes and to explore the near-

real time forecast skill around Pt Sal, California; (4) using the fine resolution grid of ROMS 

to quantify the impact of different forcings, including initial conditions, boundary forcings 

and atmospheric surface forcings, on the near-real time forecast. 
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CHAPTER 1. INTRODUCTION 

The North Pacific Ocean climate variability has important impacts on weather over 

North America and Asia, large-scale ocean warming, and coastal marine ecosystems. This 

is particularly evident over the last decade when the North Pacific has experienced a series 

of extreme climate events with the record-breaking multi-year (2013-2015) marine 

heatwaves and drought over North America, the second largest El Niño of the century in 

2015-2016, the recent record summer warming around the Alaskan Peninsula in 2019,  and 

the related impacts on marine ecosystems that include massive die offs of mammals and 

birds, the emergence of prolonged harmful algal blooms and the closure of commercial 

fisheries. While much progress has been done in predicting large-scale phenomena like El 

Niño, less is known about the dynamics and prediction skill of prolonged marine heatwaves 

and of coastal systems in the Pacific Basin. This work aims at understanding the forecast 

of these extremes and of coastal systems on multiple spatial and temporal scales from their 

large-scale dynamical evolution to their impacts on the coast at the scale that are relevant 

for managing marine ecosystem services and operations. 

1.1 Introduction to Climate Dynamics in North Pacific 

This section begins with an introduction to the Northeast Pacific marine heatwaves, 

as a novel concept of the North Pacific extremes and a motivation of the forecast study, 

followed by the introduction of the general atmospheric and oceanic circulation in North 

Pacific, relevant dominant large-scale dynamics and the impact of climate dynamics on 

marine ecosystem services and operations. 
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1.1.1 Northeast Pacific Marine Heatwaves 

Marine heatwaves (MHWs) are defined as extended periods of anomalously warm 

ocean surface temperatures and are often classified based on the intensity and duration of 

these warm anomalies (Hobday et al., 2016; Hobday et al., 2018). One of the most 

prominent MHWs was the 2013-2015 event, with a record-high warming of 2.8oC (Bond 

et al., 2015; Di Lorenzo and Mantua, 2016) that persisted over a broad range of Gulf of 

Alaska and California Current System. The following ecosystem impact was 

unprecedented, including but not limited to, massive stranding, entanglement and mortality 

of marine species and seabirds (Cavole et al., 2016; Jones et al., 2018; Santora et al., 2020) 

and prolonged harmful algal blooms that closed major fisheries (McCabe et al., 2016; Ryan 

et al., 2017; Sanford et al., 2019). Triggered by this event, MHWs are under scrutiny of the 

scientific community on a variety of aspects, including metrics for evaluating their 

severities (Hobday et al., 2016; Jacox et al., 2020a; Scannell et al., 2016), the driving 

mechanisms (Bond et al., 2015; Di Lorenzo and Mantua, 2016; Holbrook et al., 2019), the 

impacts of climate change on the frequency and intensity of the events (Oliver, 2019), the 

predictability of events in global climate models (Jacox et al., 2019b), and the impacts on 

marine ecosystem dynamics (Santora et al., 2020). 

Many studies have focused on diagnosing the driving mechanisms behind the 2013-

2015 MHW event. Specifically, the onset and growth of this extreme event is attributed to 

the persistence of atmospheric ridge (Bond et al., 2015), connected to the North Pacific 

Oscillation (NPO) (Baxter and Nigam, 2015), which acts to suppress the air-sea heat 

exchange and therefore increase ocean surface warming in the Northeast Pacific, 

resembling the North Pacific Gyre Oscillation (NPGO) (Di Lorenzo et al., 2008). This 
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warming propagates southwestward to the central equatorial Pacific via Wind-

Evaporation-SST (WES) feedback mechanism (Xie, 1999), a phenomenon known as the 

Pacific Meridional Mode (PMM) (Chiang and Vimont, 2004) and often identified as a 

precursor to the El Niño/Southern Oscillation (ENSO). During an El Niño, the re-

arrangement of tropical convection excites atmospheric Rossby wave to the higher 

troposphere and establishes an atmospheric teleconnection (Alexander et al., 2002) that 

influence the extratropical atmosphere and drives a subsequent ocean surface warming, 

which projects on the spatial pattern of the Pacific Decadal Oscillation (PDO) (Newman et 

al., 2003). These teleconnections from extratropics to tropics to extratropics are thought to 

have played a significant role in maintaining the prolonged MHW event (Di Lorenzo and 

Mantua, 2016) and are a key process for energizing the decadal variance of the Pacific 

basin (Di Lorenzo et al., 2015).  

As the definition of MHW is subject to the percentage threshold and the prolonged 

period, while some studies focus on the categorization based on the extremity of MHW 

magnitude (Hobday et al., 2016; Hobday et al., 2018), others have discovered that the low 

frequency baseline temperature could have a significant impact on those defined as MHWs 

(e.g. Oliver, 2019). Specifically, it has been discussed that it is the mean temperature 

increase that leads to the more frequent and extreme MHWs (Oliver, 2019). Others suggest 

that the low frequency large-scale dynamics such as the PDO play an important role in 

promoting prolonged MHWs (e.g. Joh and Di Lorenzo, 2017). More recently, starting in 

the summer of 2019, a marine heatwave event with record-breaking SSTa occurred in the 

Northeast Pacific (Amaya et al., 2020). The reappearance of record-breaking MHW within 

10 years seems to confirm the importance of baseline climate dynamics. Therefore, 
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triggered by these extreme MHWs, in the next sections and the following chapters we 

reviewed the ocean-atmosphere circulation and the dominant large-scale dynamics in 

North Pacific and, based on the understanding, modeled and analyzed how predictable the 

North Pacific Ocean is from a daily to interannual time scale.  

1.1.2 North Pacific Atmospheric & Oceanic Circulation 

Atmospheric and oceanic circulation processes interact in North Pacific and exhibit 

variability on timescales from diurnal (Clayson and Weitlich, 2007; Tanahashi et al., 2003) 

to seasonal (Jacox et al., 2019a), decadal and centennial (Mantua et al., 1997; Yeh et al., 

2011). The concept of ocean-atmosphere coupling is established on the mutual feedback 

between ocean and atmosphere such that a large-scale ocean surface warming or cooling 

induces diabatic heating or cooling of the atmosphere, which, through generating a lower- 

or higher-pressure system, affects atmospheric circulation. Atmospheric circulation, in turn, 

modifies the ocean thermal structure and circulation, giving rise to positive feedbacks that 

reinforce the initial ocean surface warming or cooling. 

In the tropical Pacific, the ocean-atmosphere coupling is characterized by an 

easterly trade wind inducing a positive ocean temperature gradient between western and 

eastern boundary of the Pacific basin. The cooler ocean surface temperature in the eastern 

tropical Pacific is associated with the equatorial Ekman upwelling, which brings cold water 

from depth to compensate the flow divergence on the ocean surface. The flow divergence 

is caused by the opposite direction Ekman transport, which is a net transport to the right 

(left) of the wind direction in the northern (southern) hemisphere balanced by Coriolis 

effect. Due to the presence of continents, flow in tropical Pacific in bounded, causing warm 
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water to accumulate in western tropical Pacific. The positive temperature gradient between 

western and eastern tropical Pacific is accompanied with negative pressure gradient in the 

overlying atmosphere, which reinforces the easterly trade wind that initially induces the 

positive temperature gradient on the ocean surface. 

In the North Pacific, the ocean-atmosphere coupling is featured by a midlatitude 

westerly and a tropical easterly trade wind, which, together with the continental boundaries, 

induces an anticyclonic subtropical ocean circulation gyre and a cyclonic subpolar gyre. 

The opposing wind direction results in a converging (diverging) Ekman transport and a 

corresponding Ekman downwelling (upwelling) in the subtropical (subpolar) region, which 

is balanced by a depth integrated equatorial (poleward) Sverdrup transport. The interior 

Sverdrup transport of the gyre is returned meridionally in narrow western boundary 

currents, as a balance between current vorticity and the noneligible fictional effect near the 

continental coastline. On the other hand, the shallower and broader eastern boundary 

circulation is driven by alongshore wind stress that creates offshore (onshore) Ekman 

transport with a compensating coastal upwelling (downwelling) (see Vallis, 2017).  

However, these atmospheric and oceanic circulation processes describe only the 

mean state circulation over many years and do not provide understanding toward the 

anomalous fluctuations of various spatial and temporal scales and the role of ocean-

atmosphere coupling in those fluctuations. Since Bjerknes (1968) linked the anomalous 

ocean surface warming in the equatorial Pacific to a deeper than normal Aleutian low, the 

ocean-atmosphere coupling connecting the anomalous climate dynamics in the tropical 

Pacific with the extratropics, which has been collectively represented as the tropical-
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extratropical teleconnection (Alexander et al., 2002), is widely researched in scientific 

communities of climate dynamics.    

1.1.3 Dominant Large-Scale Dynamics in North Pacific 

The ocean-atmosphere coupling in North Pacific is manifested in many large-scale 

dynamics, which are recognized to be dominant drivers for many anomalous phenomena 

of North Pacific. Therefore, it is of interest to review pertinent large-scale dynamics and 

scientific developments toward understanding these dynamics and their interactions in the 

tropical-extratropical teleconnection.  

1.1.3.1 El Niño Southern Oscillation (ENSO) 

The ENSO is the strongest interannual climate phenomenon in the tropical 

Pacific, presented as undulation between the unusual ocean surface warming (El Niño) and 

neutral and cooling (La Niña) in the equatorial Pacific with the coupled overlying pressure 

variation and atmospheric circulation shift (Southern Oscillation) (Bjerknes, 1966). 

Specifically, when the easterly trade wind in the tropical Pacific is punctuated by episodic 

westerly wind bursts, a warm anomaly appears as a result of the associated strong eastward 

flowing currents that carry warm surface waters from the western Pacific into the central 

Pacific (e.g. Chen et al., 2015a; Menkes et al., 2014). Another mechanism that is known to 

trigger El Niño is by exciting westward-propagating Rossby waves to the continental 

boundary that reflects as eastward-propagating, downwelling Kelvin waves, depressing the 

normal upwelling (e.g. Chen et al., 2015a; Menkes et al., 2014). 
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While these mechanisms explain the onset of the ENSO events and their 

variability within the tropical Pacific, it has been discussed that the ENSO can be initiated 

from extratropics through precursor dynamics. One of the mechanisms is identified by 

Vimont et al. (2003) as the seasonal footprinting mechanism, whereby the intrinsic 

atmospheric variability of the subtropics in winter with an expression of the southern lobe 

of the NPO pattern, the second leading sea level pressure (SLP) pattern over the North 

Pacific in winter (Linkin and Nigam, 2008), imparts a sea surface temperature (SST) 

“footprint” onto the ocean via changes in the surface heat fluxes. The SST footprint persists 

into summer, leading to a coupled zonal atmospheric circulation along the equator, and 

eventually produces the ENSO-like tropical variability in the following winter. The ENSO 

may also be promoted through the PMM (Chiang and Vimont, 2004), whereby the NPO-

induced modulation of the trade winds leads to SST anomalies that propagate 

southwestward to the central equatorial Pacific via WES feedback mechanism (Xie, 1999) 

to promote the initiation of the ENSO. 

As warming establishes along the equator, the atmospheric convection and heavy 

rainfall normally located in the western tropical Pacific migrates eastward to the central 

tropical Pacific, which leads to further weakening of the trade winds and further amplifying 

of the ocean surface warming. Once an El Niño event is fully developed, the delayed 

negative feedbacks involving ocean dynamics begin to dominate and eventually terminate 

the El Niño, returning the system to normal or sometimes overshooting into a cold La Niña 

phase (Battisti and Hirst, 1989; McPhaden, 2015; Schopf and Suarez, 1988).  

The ENSO-related SST variabilities in the tropical Pacific and the associated 

shifting patterns of atmospheric convection and rainfall are recognized to be influential on 
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the climate dynamics of the North Pacific. Weare et al. (1976) and many following studies 

(e.g. Zhang et al., 1996) revealed that the tropical Pacific variability is connected to the 

North Pacific, as the dominant Empirical Orthogonal Functions (EOF) pattern of Pacific 

SST variability has anomalies of one sign in the central and eastern equatorial Pacific and 

along the coast of North America and anomalies of the opposite sign in the western 

equatorial Pacific and the Kuroshio Extension (KE) region. During El Niño, the equatorial 

Pacific is subject to the eastward-propagating, downwelling Kelvin waves and, as they 

reach to the continental boundary, continues poleward as coastal Kelvin waves along the 

North America west coast. However, these coastal Kelvin waves are confined within a 

narrow band from the coast. The ENSO events also influence remote regions through 

atmospheric pathways, whereby the deep atmospheric convection shift associated with the 

ENSO-related SST variabilities serves as an atmospheric bridge that links to the North 

Pacific ocean variability (Alexander et al., 2002). 

1.1.3.2 Pacific Decadal Oscillation (PDO) 

The PDO is defined as the leading EOF of monthly SST anomalies in North 

Pacific, characterized by a monopole spatial structure with a strong coherent signature 

along the coast (Mantua et al., 1997) and a decadal oscillation in the corresponding time 

series. Specifically, the spatial pattern of the PDO is similar to the ENSO, with a warm 

phase and a cold phase oscillating over decades and a corresponding fluctuation of position 

and strength of the Aleutian Low. During the PDO warm phase, the Aleutian Low 

intensifies and moves southeastward over the central North Pacific, causing SST to 

decrease in the central North Pacific and to increase in the eastern Pacific. The decrease of 

SST in the central North Pacific is associated with the advection of cool and dry air from 
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the north, the increases of westerly winds and ocean-to-atmosphere turbulent heat fluxes, 

and the strengthened equatorward advection of temperature by Ekman currents (Schneider 

and Cornuelle, 2005). The increase of SST in the eastern Pacific is associated with 

enhanced poleward winds. During the PDO cold phase, the Aleutian Low weakens and is 

centered over the Northwest Pacific, with warm SST anomalies in the central North Pacific 

and cold SST anomalies in the eastern regions.  

As the understanding of mechanisms responsible for the PDO has been greatly 

improved over decades of scientific development, it is now well acknowledged that the 

PDO is, instead of a single physical mode and an inherent variability within the mid-

latitude North Pacific, associated with a combination of various phenomena and linked to 

the tropical variability. (See Newman et al., 2016 for the review of candidate mechanisms). 

The mechanisms include: (1) Due to the coupling between the PDO and the overlying 

Aleutian Low, it has been discussed that the large-scale stochastic atmospheric forcing via 

intrinsic variability of the Aleutian Low is one of the primary drivers forcing the PDO 

variability. (2) Furthermore, because of the similarity between the spatial pattern of the 

PDO and the ENSO as well as the similar connection to the Aleutian Low variation, Zhang 

et al. (1997) describes the PDO as “the decadal ENSO-like variability” and Newman et al. 

(2003) suggests that the ENSO-related tropical variability serves as a remote forcing that 

drives the PDO via the “atmospheric bridge”. (3) Ocean memory via “reemergence 

mechanism” (Alexander and Deser, 1995) preserves the temperature anomalies that mix 

downward throughout the deep mixed layer from the previous winter, remain at depth 

insulated from the surface in summer and resurface in the following winter. This 

mechanism occurs over a large area of the North Pacific, contributes to preserving the 
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thermal anomalies from one winter to the other so that the North Pacific Ocean retains a 

similar warming/cooling state that helps maintaining the PDO (Alexander et al., 1999; 

Alexander et al., 2001). (4) Westward-propagating oceanic Rossby waves excited by 

anomalous wind stress curl modulates the stability of the KE jet by shifting the latitude and 

intensity of the fronts (Qiu, 2003; Qiu and Chen, 2010). These waves propagate through 

the KE region in approximately 3-10 years (Sasaki and Schneider, 2011) and, combined 

with the air-sea interaction, are thought to be contributing to the PDO on multidecadal 

scales (Miyasaka et al., 2014). 

1.1.3.3 North Pacific Gyre Oscillation (NPGO) 

The NPGO is defined as the second leading EOF of Sea Surface Height anomalies 

(SSHa), characterized by a pronounced dipole structure in the Northeast Pacific with 

opposite signs between the subpolar regions and the subtropical region separated by the 

North Pacific Current (Di Lorenzo et al., 2008). The NPGO is closely related to the 

“Victoria Mode” (Bond et al., 2003), the second leading EOF of SSTa, but exhibits more 

prominent low-frequency fluctuations (Di Lorenzo et al., 2008). The similarity between 

the spatial structure of the NPGO-related wind anomalies and the expression of the NPO 

has led to a conclusion that the NPGO is the oceanic expression of the atmospheric NPO 

(Di Lorenzo et al., 2008).  

As defined, the NPGO has both a positive phase and a negative phase with a 

corresponding fluctuation of the NPO that collectively contributes to the decadal variability 

of the North Pacific. During the positive phase, the NPGO is expressed as negative SSHa 

in the subpolar regions and positive SSHa in the subtropical regions. The negative SSHa 
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induces positive Ekman pumping, which brings cold water from depth, whereas the 

positive SSHa leads to negative Ekman pumping, which pushes the surface warm water to 

depth. As a result, the SSTa structure, i.e., the Victoria Mode, of the NPGO is featured by 

the negative temperature anomalies within the subpolar regions and positive temperature 

anomalies within the subtropical regions. In terms of gyre circulation, the NPGO represents 

an intensification of the North Pacific Current, which bifurcates into a strengthening 

poleward and a strengthening equatorward propagation as it reaches to the coastal 

boundary, resulting in enhanced Alaskan Gyre and Subtropical Gyre along the coast. This 

is also supported by the corresponding wind forcing. Along the California Current system, 

the NPO-related equatorward wind forcing during the positive phase of the NPGO 

generates upwelling favorable conditions, whereas along the Alaskan current, the poleward 

wind forcing leads to downwelling favorable conditions. 

Studies of the climate impact of the NPGO have started to emerge: Di Lorenzo et 

al. (2010) presents a hypothesis that the NPGO-mode in the North Pacific leads to warming 

in the central tropical Pacific via the atmospheric response near Hawaii, the center of the 

southern lobe of the NPO. Ceballos et al. (2009) presents the propagation from the NPGO 

signal in the eastern North Pacific to the quasi-regular oscillation of the KE jet in the 

western North Pacific via the westward propagation of Rossby wave. The propagation 

takes about 2.5 years from where the signal emerges to reach to the KE region. As the 

NPGO and PDO are the two most important modes in North Pacific, the NPGO and PDO 

can alternate in control leading to different oceanic expressions. Di Lorenzo and Mantua 

(2016) and Joh and Di Lorenzo (2017) show the coupling between the NPGO and PDO is 

an important dynamic interaction to prolonged Northeast Pacific marine heatwaves.  
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1.1.3.4 Pacific Meridional Mode (PMM) 

The PMM (Chiang and Vimont, 2004) is a subtropical ocean-atmosphere coupling 

mode that initializes stochastically by the atmospheric fluctuation intrinsic to the mid-

latitude, but has a deterministic component during the persistent process (Amaya, 2019). It 

is characterized by the southwestward propagation of the anomalous warming from Baja 

California to the central tropical Pacific via WES feedback mechanism (Xie, 1999) and 

linked to the initiation and development of the ENSO. Specifically, a weakening NPO in 

subtropics induces relaxation of the trade wind, leading to a reduction of evaporation and 

latent heat flux along the southwestward propagation band and, thus the expansion of 

warming toward the equator and the intensification of the meridional mode. Anderson et 

al. (2013) proposed a Trade Wind Charging (TWC) hypothesis, whereby the PMM-related 

wind stress curl anomalies in the western Pacific force the subsurface heat content in the 

tropical Pacific to propagate eastward along the thermocline as Kelvin waves, shoaling and 

reaching the eastern equatorial Pacific, setting the stage for the onset of an El Niño event. 

1.1.3.5 Kuroshio Extension (KE) 

The KE is the eastward-flowing extension of the poleward-propagating Kuroshio, 

separated from the Japan coast where the zonal integral of wind stress curl is zero, featured 

by its eastward-flowing inertial jet, large-amplitude meanders, abundant mesoscale eddy 

variability and the strongest air-sea interaction in the North Pacific (Yasuda et al., 1992). 

It is by now well recognized that the KE jet undergoes a decadal oscillation between a 

stable and an unstable dynamic state: In the stable state, the KE jet tends to have a more 

stabilized stationary path, larger eastward surface transport and greater zonal penetration, 
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accompanied by an enhanced southern recirculation gyre and a decreased regional eddy 

kinetic energy (Qiu, 2000, 2003; Qiu and Chen, 2005). This stable eastward-propagating 

KE jet tends to be originated from a more northerly latitudinal location (Qiu, 2000, 2003; 

Qiu and Chen, 2005). These tendencies reverse in the unstable state.  

The dynamics contributing to the decadal oscillation of the KE jet are complex 

and various theories exist. These include: (1) The decadal oscillation of the KE jet is 

induced as the dynamical adjustment of the oceanic circulation to changes in wind stress 

curl according to the Sverdrup theory (Deser et al., 1999; Miller et al., 1998). The decadal 

variation of wind stress in the North Pacific asserts corresponding changes of Sverdrup 

transport in the interior of subtropical and subpolar gyres, which subsequently forces the 

compensation of the Sverdrup transport, the west boundary currents, and their downstream 

extensions, the KE, to adjust accordingly. (2) It is attributed to the baroclinic Rossby wave 

that is originated by the PDO-related or NPGO-related wind stress in the eastern North 

Pacific and that propagates and intensifies westward to the KE region (Ceballos et al., 

2009; Qiu, 2003). Specifically, during the PDO warm phase, the Aleutian Low intensifies 

and shifts southeastward over the central North Pacific, causing strengthened Ekman 

divergence and hence generating negative SSH anomalies. The negative SSH anomalies 

propagate westward as baroclinic Rossby waves at a phase speed of ~0.04m/s (i.e., 3-4 

years of propagation to the KE region) (Mizuno and White, 1983; Qiu, 2003) and weakens 

the KE jet and recirculation gyre into the unstable dynamic state. The opposite happens 

when the positive SSH anomalies induced by a weakened Aleutian Low in the central 

North Pacific propagates westward, which acts to strengthen the KE jet. Similarly, the 

NPGO-related wind stress curl in the eastern North Pacific induces the corresponding 
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baroclinic Rossby wave that propagates to the KE (Ceballos et al., 2009). (3) The KE jet 

interacts with the deeper or shallower bottom bathymetry to either stabilize or destabilize 

the KE jet (Qiu and Chen, 2005, 2010).  

1.1.3.6 California Current System (CCS) 

The CCS is among the most productive marine ecosystems, as the prevailing 

northerly wind along the coastal boundary drives offshore Ekman transport that is 

compensated by coastal upwelling. As such, cold water is brought up from depth along 

with rich nutrient, stimulating the growth of phytoplankton that forms the base of the 

marine food web (Carr, 2002; Chavez and Messie, 2009). However, the primary production 

varies substantially over years. Mechanisms driving the anomalous variation of the CCS 

have been studied. 

It is well documented that the ENSO, through both oceanic and atmospheric 

teleconnections, is one of the most important drivers for the seasonal to interannual CCS 

variability. From oceanic pathway, during El Niño, westerly wind bursts induce 

downwelling Kelvin waves that propagates eastward to the continental boundary, causing 

poleward propagating coastally-trapped Kelvin waves along the North America west coast, 

deepening thermocline and suppressing upwelling (McPhaden, 1999). However, Gill 

(1982) argues that this oceanic pathway is confined within the distance of ~50km from the 

coast and reaches only poleward of 15oN. Frischknecht et al. (2015) shows that the impact 

of tropical oceanic forcing dominates the variability in the nearshore region of the CCS. 

From atmospheric teleconnection, the deep atmospheric convection shifts to the central 
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equatorial Pacific and serves as an atmospheric bridge to impart on the Aleutian Low and 

drive ocean variability in the North Pacific (Alexander et al., 2002).  

While the ENSO dominates the seasonal to interannual variability of the CCS, the 

mechanisms driving decadal variability are still unclear. As the PDO and the associated 

spatial structure of the Aleutian Low possess a monopole structure in the eastern North 

Pacific, it is argued that the positive PDO serves to weaken the CCS variability as a part of 

the subtropical gyre while strengthens the subpolar Alaskan gyre (Lavaniegos and Ohman, 

2003; Trenberth and Hurrell, 1994). The opposite is true for strengthening the CCS 

variability and weakening the subpolar Alaskan gyre. In the meantime, the NPGO and the 

associated NPO structure have pronounced dipole structures, which coincide with the 

subpolar and subtropical interior and serve to strengthen (weaken) both the subpolar and 

subtropical variability during the positive (negative) phase of the NPGO (Di Lorenzo et 

al., 2008). As such, the interaction of the PDO and NPGO could collectively contribute to 

enhance or reduce the CCS variability (Bond et al., 2003; Di Lorenzo et al., 2008).  

However, nearshore processes of the CCS are more complex and combined with 

higher frequency variability. Due to the fact that the shoreline orientation and the local 

bathymetry rapidly varies along the coast of the CCS, the dynamic interaction between 

winds, sub-mesoscale eddies, surface and internal waves, mixing and surf zone processes 

can lead to complex three-dimensional local circulation in the nearshore CCS region.   

1.1.4 Impacts on Marine Ecosystem Services and Operations 

Climate variability has significant influence on the marine ecosystem services and 

operations, primarily through the “double integration hypothesis”, such that ocean serves 
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as an integrator that absorbs the variability of stochastic atmosphere and persists to affect 

the marine ecosystem (atmosphere – ocean – ecosystem) (Di Lorenzo and Ohman, 2013). 

Specifically, SST and mixed layer variability are the most important ocean variables 

involved in changing the ecological conditions, such as nutrient supply or primary 

production (Miller and Schneider, 2000).  

Atmosphere and ocean coupling dynamics responsible for the variability of these 

ocean indicators are different along the eastern boundary of the North Pacific compared 

with the western boundary. Along the eastern boundary, these ocean indicators are largely 

driven by net heat transport from the atmosphere and ocean processes such as local coastal 

upwelling and horizontal advection (Di Lorenzo et al., 2013a; Miller and Schneider, 2000). 

Large-scale climate dynamics such as the remote ENSO influence from the tropics, the 

Aleutian Low coupled with the PDO, the NPO coupled with the NPGO, downstream of the 

KE exert their influence on the local coastal upwelling and horizontal advection through 

modulating the subpolar and subtropical gyre circulation and the corresponding vertical 

transport response (Di Lorenzo et al., 2013a; Jacox et al., 2020b). Along the western 

boundary, the intensive air-sea coupling is featured by decadal oscillation of the KE jet, as 

the convergence and extension of the western boundary return flow of subpolar and 

subtropical gyre circulation. The Aleutian Low coupled with the PDO and the NPO 

coupled with the NPGO modulates the KE jet oscillation through westward propagation of 

the baroclinic Rossby wave generated from the eastern Pacific (e.g. Ceballos et al., 2009; 

Qiu and Chen, 2010).  

Ecosystem response to the climate variability is categorized into two primary types, 

based on whether a “regime shift” of marine species is directly linked to a climate driver 
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or the impact on a specie is mediated by trophic relationship (e.g. Overland et al., 2010). 

An example of the first type is sardine population in the Santa Barbara Basin, as the warmer 

temperatures are preferred for spawning and growth of sardine along the eastern Pacific 

boundary (Lluchbelda et al., 1992; Miller and Schneider, 2000). The latter one is drawn 

from a hypothesis that climate variability exerts controls on lower-trophic phytoplankton 

and zooplankton that eventually affects the upper trophic marine species, named as 

“bottom-up control” (Di Lorenzo et al., 2013b; Ware and Thomson, 2005).  

While climate variability exerts influence on the marine ecosystem, it also 

inevitably affects relevant services and operations for fisheries, aquaculture, shipping and 

scientific in-situ measurement. Therefore, it is of vital importance to understand air-sea 

coupling variability and climate extremes to make proactive decisions and to better adapt 

to the future variability. For a timescale of days, understanding the coastal ocean circulation 

in response to instant wind forcing and heat fluxes helps guide the scientific in-situ 

measurement to strategically plan for the sampling sites. For a seasonal to interannual 

timescale, understanding the marine species response to climate variability helps fisheries 

and aquaculture to adapt farming to the favorable conditions. 

1.2 Predictability of the North Pacific from Diurnal to Seasonal Timescale 

Ocean predictability of the North Pacific has been a subject of interest over decades, 

as achieving adequate predictability skill at temporal and spatial scales is of vital 

importance for navigation guidance, marine ecosystem balance, and decision planning for 

fisheries and aquaculture (Jacox et al., 2020b; Stock et al., 2015). How predictable the 

oceanic processes of North Pacific are and how much of the predictability in North Pacific 
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derives from mechanisms intrinsic to North Pacific versus remotely forced by the tropics 

is still an ongoing investigation.  

Dominant mechanisms contributing to the predictability of the North Pacific basin 

vary depending on which spatial and temporal scales that the mechanism exerts on. The 

ENSO has been identified as a dominant source of predictability in the tropical Pacific and 

largely contributes to predictability along the eastern Pacific boundary from seasonal to 

interannual time scales (Jacox et al., 2019a; Quan et al., 2006). The ocean memory via 

reemergence of subsurface temperature anomalies stored below the upper mix layer from 

year to year is also considered an important source of predictability to the Northeast Pacific, 

as the thermal inertia preserved in the mixed layer from the previous winter resurfaces in 

the following winter (Alexander et al., 1999). The PDO coupled with the Aleutian Low 

and the NPGO coupled with the NPO are the two most dominant large-scale climate 

dynamics in the North Pacific (Di Lorenzo et al., 2008; Mantua et al., 1997) and might also 

be a source of predictability on decadal time scales. These large-scale climate dynamics 

are most prominent in the eastern North Pacific and are found to modulate the decadal 

oscillation of the KE through the generation of baroclinic Rossby wave in the eastern North 

Pacific that propagates westward (Ceballos et al., 2009; Qiu, 2003; Schneider and Miller, 

2001) and potentially contribute to the predictability in the western North Pacific. 

Predictability of the KE, as a convergence region of the subpolar and subtropical gyre 

circulation, and predictability along the western boundary are therefore subject to the 

strength and positions of the gyre circulation (Qiu and Chen, 2010). Although these climate 

dynamics exert their influence on a decadal time scale, they serve as a sustained warming 
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or cooling source that affects the oceanic predictability on higher frequency time scales 

(Dias et al., 2019).  

While the predictability of the Pacific basin has been investigated in many previous 

studies, less is understood of the predictability along the North Pacific coastline. It is 

commonly acknowledged that the ENSO exerts its influence on the North Pacific via an 

atmospheric bridge and oceanic teleconnections (e.g. Capotondi et al., 2019 and reference 

therein). The atmospheric bridge with information from the remote tropics affects the 

oceanic processes mainly through net surface heat flux and wind-driven Ekman transport 

(Alexander et al., 2002), which are equally prominent along the coastal boundary of the 

eastern Pacific (Jacox et al., 2019a). Oceanic teleconnection via coastal Kelvin waves from 

the ENSO has influence on the eastern Pacific boundary within a narrow band from 

coastline and does not extend to the high latitude of the North Pacific (Frischknecht et al., 

2015; Newman et al., 2016). Besides the ENSO, the PDO and NPGO might also affect the 

predictability of the eastern Pacific boundary by modulating the subtropical and subpolar 

gyre. Specifically, the PDO influence along the coastline is featured by strengthening one 

gyre but weakening the other, while the NPGO affects the gyre circulations by 

simultaneous strengthening or weakening both gyres (Di Lorenzo et al., 2008). Still, the 

predictability along the eastern Pacific boundary is not fully exploited in the global climate 

model, as coastal upwelling as well as Kelvin waves are not properly resolved due to the 

coarse resolution. Moreover, these large-scale climate dynamics do not explain the high 

frequency variability (diurnal scale), as predictability of diurnal scale is linked to tidal 

processes, instantaneous oceanic response to the anomalous wind that deviates from the 

mean atmospheric circulation, and other nonlinear processes.  
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Several studies explored the predictability along the western boundary of Atlantic, 

while studies of the western Pacific boundary focused on the predictability of the KE. As 

western boundary currents share some common characteristics, specifically as the fast and 

narrow returning flow of the Sverdrup transport in the ocean interior (Miller et al., 1998), 

the findings of the predictability along the western boundary of the Atlantic have some 

reference values for the Pacific. Seasonal predictability along the western return flow was 

found to be at most comparable to the persistence forecast (Hervieux et al., 2019). These 

limited forecast skills were attributed to the poorly resolved continental shelf and the 

unrealistically laminar flow simulated by the global forecast systems (Stock et al., 2015). 

As a result, the Gulf Stream in the Atlantic, analogous to the Kuroshio current in the Pacific, 

extended too far north before separating from the eastern U.S. continental shelf (Hervieux 

et al., 2019), leading to inaccurate oceanic prediction. These findings suggest that the 

predictability along the western boundary of the Pacific might not be as good as the 

predictability along the eastern boundary and that the poorer seasonal predictability skill 

might be attributed to the unresolved continental shelf and the inaccurate representation of 

the western boundary flow. 

1.3 Motivation for the Present Study 

Predictability of the North Pacific, especially climate extremes and coastal variability, 

and the source mechanisms contributing to the predictability are still not clear. Specifically, 

this thesis aims to target the following questions in the field of predictability studies: (1) 

Are the Northeast Pacific marine heatwaves intrinsically unpredictable or a recurrent 

phenomenon of the Pacific dynamics? What is the role of tropical-extratropical interaction 

in shaping the progression of Northeast Pacific marine heatwaves? (2) How predictable the 
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North Pacific coastal waters are, especially the ocean indicators important to the coastal 

ecosystem? How does the tropical and extratropical forcing contribute to the predictability 

of these ocean indicators? (3) For a regional ocean forecast system, predictability skill 

relies on the appropriate formulation of ocean circulation, realistic initial forcings and 

lateral boundary conditions. To the extent that a model is a good surrogate for nature, 

understanding the sensitivity and response of forecast to forcings becomes crucial for a 

credible prediction to be a useful assessment. In regional climate models, it remains to be 

investigated for how much of the ocean predictability is controlled by initial forcing versus 

boundary forcings.  
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CHAPTER 2. THE CONTINUUM OF NORTHEAST PACIFIC 

MARINE HEATWAVES LINKED TO THE TROPICAL PACIFIC 

The content of this chapter was published in: 

Xu, T., M. Newman, A. Capotondi, and E. Di Lorenzo (2021), The Continuum of Northeast 
Pacific Marine Heatwaves and Their Relationship to the Tropical Pacific, 
Geophysical Research Letters, 48(2), 2020GL090661, 
doi:https://doi.org/10.1029/2020GL090661. 

The 2013-2015 multi-year Northeast Pacific marine heatwave (MHW) is considered 

a record-breaking event. It remains unclear if this event was an exception or merely the 

most pronounced of a group of similar events, and if its intensity and multi-year duration 

was driven by internal extratropical processes or intensified by the tropical Pacific 

influence. This chapter aims to (1) analyze the statistical behaviors of Northeast Pacific 

MHWs within the observed ERSST.v3 dataset over the 1950-2019 period, (2) develop a 

Pacific Linear Inverse Model (LIM) (Penland and Sardeshmukh, 1995) to generate a large 

ensemble simulation of the North Pacific and tropics, which provides a greater range of 

MHW expressions than the observational record alone. Both observed and simulated 

MHWs of various intensities and durations are identified to understand the characteristics 

and progression of the MHWs and to analyze the role of extratropical internal variability 

versus the remote influence of tropical Pacific in the progression of these events. 

2.1 Introduction 

Prolonged marine heatwaves (MHWs) in the Northeast Pacific, defined as extended 

periods of anomalously warm ocean temperatures, have been brought to the attention of 
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many scientists due to their unique progression patterns, extreme amplitudes and durations, 

and severe ecological impacts (e.g. Bond et al., 2015; Di Lorenzo and Mantua, 2016; 

Frolicher and Laufkotter, 2018; Holbrook et al., 2019). [See section 1.1.1 for a detailed 

introduction of Northeast Pacific MHWs, or see Holbrook et al. (2020) and Oliver et al. 

(2021) for reviews on current understanding of MHWs]. 

Are Northeast Pacific MHWs predictable? Away from regions of strong currents, 

midlatitude extratropical sea surface temperature (SST) anomalies are thought to be largely 

driven by unpredictable weather noise (Frankignoul and Hasselmann, 1977; Hasselmann, 

1976), which the ocean serves to integrate and thereby redden (Frankignoul and Reynolds, 

1983). Consistent with the stochastically-forced view of North Pacific Ocean mixed layer 

dynamics, studies have found that forcing from a resilient Northeast Pacific atmospheric 

ridge initiated the 2013-2015 event (Bond et al., 2015; Swain et al., 2014), so perhaps its 

start was unpredictable beyond the atmospheric forcing time scale. On the other hand, the 

MHW’s subsequent multi-year persistence has been linked to tropical teleconnections (Di 

Lorenzo and Mantua, 2016) emanating from the central and western tropical Pacific 

(Capotondi et al., 2019; Hartmann, 2015), suggesting the presence of a deterministic, 

potentially predictable component. 

Moreover, while over the past 70 years no other historical Northeast Pacific warm 

event had such record-breaking warming nor persisted so long as the 2013-2015 event 

(over 700 days in Hobday et al. (2018)), other intense warm events have occurred before 

and since (e.g. Amaya et al., 2016; Amaya et al., 2020; Oliver et al., 2018). In fact, 

prolonged Northeast Pacific warm events may be said to occur over a range of intensities 

and durations (Scannell et al., 2016). However, the short observational record provides 
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only a limited set of historical realizations of the MHWs that may not be adequate either 

to represent the full spectrum of possible MHWs or to entirely differentiate the behavior of 

long-lasting and high-intensity MHWs from short-lived and moderate-warming ones.  

We suggest that Northeast Pacific MHWs may be viewed as a recurrent phenomenon 

of the Pacific basin involving large-scale teleconnection dynamics, with the 2013-2015 

MHW being a particularly strong realization within a continuum of MHW events. In this 

view, MHWs are neither unprecedented nor intrinsically unpredictable in their dynamical 

evolutions, although some properties like the maximum amplitude may be (Hu et al., 2017). 

To demonstrate this point, we evaluate Northeast Pacific MHWs in the observational 

record by diagnosing a Pacific-basin Linear Inverse Model (LIM) (Penland and 

Sardeshmukh, 1995), an empirical dynamical model derived from observed anomaly 

covariances. The LIM is attractive for this purpose since it is able to capture observed 

climate anomaly evolution over extended periods (for example, its seasonal forecasts are 

generally comparable with state-of-the-art multi-model operational forecast 

ensembles; e.g. Newman and Sardeshmukh, 2017), yet its low dimensionality allows 

generation of long climate simulations suitable for hypothesis testing (e.g. Capotondi and 

Sardeshmukh, 2017; Newman et al., 2011b). Here, we develop a LIM to produce a large 

ensemble simulation of tropical and North Pacific SST anomalies, so that we may evaluate 

details of observed MHW evolution against the much larger sample of simulated MHW 

events. 

2.2 Data and Methods 

2.2.1 Data 



 25 

Monthly SST data from the 1950-2019 period were obtained from the National 

Oceanic and Atmospheric Administration (NOAA) Extended Reconstruction SST, version 

3 (ERSST.v3b; Smith et al. (2008)). SST anomalies (SSTa) were constructed by temporally 

smoothing SST fields with a 3-month running mean, removing the monthly climatology, 

and linearly detrending. 

2.2.2 Linear Inverse Model 

When the nonlinear portion of climate dynamics decorrelates much faster than the 

linear dynamics, we may approximate the evolution of a suitably-averaged climate 

anomaly state vector 𝐱(𝑡) as 

 d𝐱
d𝑡 = 𝐋𝐱 + 𝝃, (1) 

(Hasselmann, 1976; Penland and Sardeshmukh, 1995), where 𝐋  is a linear dynamical 

operator and 𝝃 is a vector of temporally white noise. From (1), the most probable state of 

x at 𝑡 + 𝜏 is 

 𝐱A(𝑡 + 𝜏) = 𝐆(𝜏)𝐱(𝑡) = exp(𝐋𝜏) 𝐱(𝑡), (2) 

which therefore represents the ensemble-mean forecast at lead 𝜏. 

A LIM (Penland and Matrosova, 1994; Penland and Sardeshmukh, 1995) 

empirically determines (1) from observed covariances. In this study, we constructed a LIM 

where 𝐱(𝑡)  consisted of the 19 leading principal components (PCs) of Pacific region 

(110oE to 60oW, 20oS to 60oN) SSTa, which explain 88.7% of the variance. This SST-only 
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model can capture the dominant seasonal climate dynamics (Penland and Sardeshmukh, 

1995), although fully capturing interannual-to-decadal variability requires including some 

measure of upper ocean heat content as well (e.g. Newman et al., 2011a). For example, we 

compared the lag-covariance statistics predicted by the LIM to those derived from 

observations, over lags ranging from 3-12 months (Figure 1). This “tau-test” (Penland and 

Sardeshmukh, 1995) showed that the LIM’s linear approximation is valid over several 

multiples of the 3-month training lag. 
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Figure 1. Lag covariance of (a1-a4) observation and (b1-b4) LIM prediction for 3-, 6-, 
9-, 12-month lead. Units are in (ºC2).
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In addition to being used as a skillful forecast model (2), the LIM may be run in 

simulation mode by integrating (1) forwards in time, driven by white noise forcing whose 

spatial structure is determined from the noise covariance 𝐐 =< 𝛏𝛏% > d𝑡 of the stationary 

Fluctuation-Dissipation relationship (Penland and Matrosova, 1994) 

 𝐋 < 𝐱𝐱% > +< 𝐱𝐱% > 𝐋% + 𝐐 = 0.	 (3) 

The LIM simulation is carried out following Penland and Matrosova (1994), which is a 

two-step integration of the white noise forcing following 

 𝐲(𝑡 + Δ) = 𝐲(𝑡) + 𝐋	𝐲(𝑡)	Δ + 𝐕!+𝚲"Δ	𝐧" ,	 (4) 

  𝐱(𝑡 + Δ/2) = {𝐲(𝑡) + 𝐲(𝑡 + Δ)}/2		 (5) 

 where 𝐲 is an intermediate vector, the scalar Δ is the incremental time step, 𝐕 represents 

the eigenvectors of 𝐐 and 𝚲 represents a diagonal matrix containing the eigenvalues of 𝐐 

such that 𝐐 = 𝐕𝚲𝐕% . Only the non-negative eigenvalues of 𝐐 and their corresponding 

eigenvectors are incorporated in the stochastic simulation, which is denoted as 𝚲& and 𝐕&. 

If negative eigenvalues exist, the non-negative eigenvalues are proportionately rescaled to 

maintain the same variance (i.e., the trace of 𝐐 is unchanged). The k-dimensional vector 

𝐧' of independent Gaussian deviates, each having unit variance, must be generated at each 

time step. Here, with a small Δ of 16 hours, we integrated the randomly perturbed noise 

forcing forward for a length of 140,000 years and retained the monthly data, which is then 

separated into 2000-member ensemble of 70-yr long segments matching the length of the 

observed record we examined. 
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2.3 Observed and LIM-Simulated Northeast Pacific Marine Heatwaves 

2.3.1 Composite Analysis of Observed Northeast Pacific Marine Heatwaves 

To diagnose Northeast Pacific MHWs, including their observed and simulated 

evolution, we defined a Northeast Pacific SSTa index (Figure 2a) by averaging SSTa 

within a representative region (150oW to 135oW, 35oN to 46oN; inset in Figure 2a). 

Following previous studies of oceanic (Hobday et al., 2016; Holbrook et al., 2019; Scannell 

et al., 2016) and atmospheric (e.g. Dole and Gordon, 1983; Miller et al., 2020) persistent 

anomalies, abnormally intense and persistent warm events were identified as occurring 

when the Northeast Pacific index exceeded a given temperature amplitude threshold 

(“intensity”) and persisted above it for a given length of time (“duration”). Defining MHW 

events using a 𝟏𝝈 amplitude threshold and 5 months duration, we found 12 discrete MHW 

events over the past 70 years (gray bars in Figure 2a; Table 1). 

Of course, this definition of an MHW event is not unique. More generally, as in the 

aforementioned studies, we calculated the frequency of abnormally warm events defined 

by varying intensity and duration thresholds. The resulting Intensity-Duration-Frequency 

(IDF) plot (Figure 2b) shows how MHW events are observed less frequently for increased 

intensity or duration thresholds. For example, extremely warm events persisting for a short 

period are about as frequent as more prolonged but weaker events. The 1𝜎-intensity and 5-

month-duration criteria (blue circle in Figure 2b) provide a representative set of observed 

MHW events for our analysis. 
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Figure 2. SSTa time series within the Northeast Pacific region and its corresponding 
frequency statistics as a function of intensity and duration. (a) Northeast Pacific 
index, defined as the spatially-averaged SSTa within the gray box region in the 
insert (overlaid on the winter 2014 SSTa). Gray bars mark each event that both 
exceeded one standard deviation (1𝝈) and persisted for ≥5 months. (b, c) Northeast 
Pacific MHW Intensity-Duration-Frequency (IDF) plot, derived from the (b) 
observed and (c) LIM-simulated Northeast Pacific time series, obtained by 
calculating the number of events exceeding each intensity and duration threshold 
pairs. In (b), dots mark those observed values significantly different from the LIM 
simulation (at a 95% significance level). 
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Table 1. Information for historical Northeast Pacific MHW events that exceed 1σ 
and persist ≥5 months in the observed Northeast Pacific index. 

# Start Date End Date Duration (months) 

1 1951/06 1951/11 6 

2 1956/12 1957/05 6 

3 1961/12 1962/08 9 

4 1965/02 1965/07 6 

5 1989/10 1990/02 5 

6 1990/12 1991/07 8 

7 1991/09 1992/01 5 

8 2004/11 2005/04 6 

9 2013/04 2013/08 5 

10 2013/11 2014/10 12 

11 2015/01 2015/11 11 

12 2019/05 2019/12 8 
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We also examined sensitivity to the region chosen to define the Northeast Pacific 

index. The mean duration of abnormally warm events (≥ 1𝜎) at each location within 

Northeast Pacific was around 4 to 6 months (Figure 3). [In contrast, the mean duration in 

the central and eastern equatorial Pacific region was around 6 to 8 months, typical of El 

Niño.] That is, the mean persistence of abnormally warm events in Northeast Pacific is not 

too sensitive to the location, so MHW duration may be represented using our Northeast 

Pacific index. 
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Figure 3. Average duration (in months) of warm events exceeding 1σ calculated at 
each grid point of our domain. Shading denotes the average duration from 
observations. Results of the LIM simulation are generally similar except in the 
regions enclosed by gray contours, where the observed duration is ±1month 
significantly different from the LIM simulation at a 95% significance level. 
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The composite evolution, including leads and lags, of the 12 observed Northeast 

Pacific MHWs identified in Figure 2a is shown in Figure 4. At 𝑡 = −12 months (Figure 

4a), the composite spatial pattern shows warm temperature anomalies extending zonally 

along 40oN within the central North Pacific Current region. These warm anomalies then 

extended eastward at 𝑡 = −6 months (Figure 4b), intensifying until the Northeast Pacific 

index reached the 1𝜎 threshold at 𝑡 = 0 months (Figure 4c). While the Northeast Pacific 

warming persisted at 𝑡 = +6 months (Figure 4d), El Niño conditions developed in the 

tropics, perhaps linked to the Northeast Pacific warming through the North Pacific 

Meridional Mode (NPMM) (Chiang and Vimont, 2004) that is often identified as an El 

Niño precursor (Capotondi and Sardeshmukh, 2015; Larson and Kirtman, 2014). At 𝑡 =

+12 months (Figure 4e), while El Niño persisted, the Northeast Pacific warming spread 

along the US West Coast, consistent with atmospheric teleconnections from the tropics 

(Alexander et al., 2002; Di Lorenzo and Mantua, 2016). 
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Figure 4. Composite Northeast Pacific MHW evolution based on (a-e) observations 
and (f-j) LIM simulation. The composite at t=0 month is calculated by averaging 
SSTa of all events at the time when the Northeast Pacific index first exceeds 1𝝈 and 
subsequently persists for at least five months. This pair of intensity and duration is 
also indicated by the blue circles in Figure 2b and c. Other maps represent the 
leading and lagging composites at t=±6 months and t=±12 months. Gray dots in (a-
e) show where the observed composite amplitude is significantly different from the 
LIM simulation at a 95% significance level. Number of events inserted on the top 
represents mean events per 70 years.
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2.3.2 Comparison to the LIM Simulation 

In this section, we evaluate how well these aspects of observed MHWs are 

reproduced within the LIM simulation. The IDF plot derived from the LIM simulated 

Northeast Pacific time series (Figure 2c) matches the observed IDF plot (Figure 2b), except 

for short (1~3 month) duration MHWs where the LIM event frequencies were 95% 

significantly different from the observed (black dots in Figure 2b). The significance test 

was carried out by (1) calculating the IDF of each ensemble to obtain the 2.5% as the lower 

bound and 97.5% as the upper bound at each intensity-duration pair, (2) determining 

whether the observed IDF at the corresponding intensity-duration pair lies outside the 

confidence interval. If so, there is a significant difference between the observation and the 

LIM simulation. 

Similarly, the mean duration of abnormally warm events (≥ 1𝜎) within the LIM 

simulation generally agrees well with observations, except for some small regions in the 

eastern equatorial Pacific, northwestern subtropics and northwestern Pacific (gray contours 

in Figure 3). In sum, the LIM simulation reproduces the statistics of observed MHWs over 

a continuum of intensities and durations, implying that it contains a full range of expression 

of MHWs consistent with observations.  

Composite evolution of the LIM-simulated MHWs (Figure 4f-j) also matches well 

with the observed evolution (Figure 4a-e). There are virtually no statistically significant 

differences between the observed and LIM composites from 𝑡 = 0 -12 months. The 

observed and LIM composites also have similar patterns prior to 𝑡 = 0 months, but LIM 

amplitudes are weaker than observed, significantly so in the Northwest Pacific (gray dots 
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in Figure 4a-e). Overall, the large ensemble LIM simulation contained on average 8 MHW 

events per 70 years, compared to 12 historical events over the past 70 years. This suggests 

that MHWs as a phenomenon share some common features in their evolution and that these 

prolonged and spatially evolving warm events are a recurrent feature of the Pacific basin. 

2.4 Characteristics Linked to the Tropical Pacific 

We next explore the sensitivity of LIM composite MHWs to different threshold 

criteria, in order to help understand extratropical versus tropical impacts on MHW intensity 

and duration. This is done by comparing composites where we vary one threshold while 

fixing the other.  

We first analyzed the sensitivity to duration, keeping the intensity fixed at 1𝜎 

(Figure 5). The PDF of durations from the simulated MHW events exceeding the 1𝜎 

intensity threshold and persisting at least five months (Figure 5a) shows a notable fraction 

of long-lived MHWs (up to 53 months) in the LIM simulation. From these simulated events, 

composite MHW evolution was determined for subsets with durations ≥ 6 months (Figure 

6a), ≥ 12  months (Figure 6b), and ≥ 18  months (Figure 6c). We found three key 

differences between longer and shorter duration MHW events: (1) while the MHW onset 

intensity was similar regardless of the duration thresholds, the maximum MHW amplitude 

was greater for longer-lasting MHWs, (2) the initial equatorial Pacific cold anomalies were 

stronger and persisted longer, and (3) the central Pacific El Niño was slower to develop, 

reaching greater peak amplitude at later lags (cf. t=+12 m for Figure 6b with t=+18 m for 

Figure 6c). Also, as the duration threshold was increased, the composite evolution became 

increasingly similar to the 2013-2015 MHW event. 



 38 

The relationship between Northeast Pacific MHW evolution and ENSO development 

is seen by plotting the composite evolution of the Northeast Pacific index against the 

corresponding Niño 3.4 index (Figure 5b). Each curve shows, for a different duration 

threshold indicated by the color shading, the concurrent evolution of the Northeast Pacific 

indices and Niño 3.4 indices, with time running in a counter-clockwise direction from -12 

to 24 months. Four distinctive phases of each MHW event are evident: (1) Initial equatorial 

Pacific cold anomalies persist as the MHW rapidly strengthens to first reach its 1𝜎 

threshold value at t=0 (open circles); (2) Subsequently, equatorial Pacific SSTa develop 

into El Niño conditions, with relatively little change in MHW amplitude; (3) With El Niño 

remaining strong or even amplifying, the MHW gradually weakens; (4) The El Niño fades 

in the equatorial Pacific. What distinguishes these curves from each other is that the longer 

duration events start with colder Niño3.4 values, and (more slowly) develop warmer 

Niño3.4 values, than the shorter duration events, despite identical MHW intensity at t=0. 

Overall, these results suggest a key tropical role in driving more persistent MHWs (Joh and 

Di Lorenzo, 2017; Liguori and Di Lorenzo, 2018), corroborating previous studies 

emphasizing the impact of tropical teleconnections on shaping the 2013-2015 MHW event 

(Capotondi et al., 2019; Di Lorenzo and Mantua, 2016). 
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Figure 5. Histogram and evolution of LIM-simulated Niño 3.4 index as a function of 
the Northeast Pacific index with varying duration thresholds, for fixed intensity 
threshold 1σ. (a) Probability distribution function (PDF) of durations for MHW 
events exceeding an intensity of 𝟏𝝈, starting at 5-month duration. Number of events 
inserted represents mean events per 70 years. (b) Niño 3.4 index as a function of 
Northeast Pacific index during the composite evolution of Northeast Pacific MHWs, 
from -12 months to +24 months, where each line represents varying duration 
thresholds ranging from 5 months (light green) to 20 months (blue). 
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Figure 6. Evolution of LIM-simulated Northeast Pacific MHW composites with 
varying duration thresholds: (a) 6 months, (b) 12 months, (c) 18 months, for fixed 
intensity threshold 1σ. Composite evolution from 6 months before to 24 months 
after the MHW initiation. Number of events inserted on top represents mean events 
per 70 years.
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We then repeated the analysis, but varied intensity thresholds for a fixed 6-month 

duration threshold (Figure 7 and Figure 8). The PDF of intensities from the simulated 

MHW events that persisted for ≥ 6-months duration and had an intensity ≥ 1𝜎 (Figure 7a) 

shows that the LIM simulation generated MHWs with amplitudes even greater than 

observed in the past 70 years (cf. Figure 2a). Composite MHW evolution was then 

determined for subsets with intensities ≥ 5/3𝜎  (Figure 8a), ≥ 2𝜎  (Figure 8b), and ≥

7/3𝜎 (Figure 8c). Unlike the results for increased event duration, there was little difference 

in the evolving patterns of weaker and stronger events apart from an overall increased 

amplitude throughout the Northeast Pacific. In particular, the initial cold anomalies in the 

equatorial Pacific were almost identical (first and second row of Figure 8), and the 

maximum El Niño warming occurred at about the same time (third and fourth row of Figure 

8), albeit with generally greater amplitude for higher MHW intensity thresholds. However, 

this relative tropical magnitude increase was less than the relative Northeast Pacific 

intensity increase. Similarly, the Northeast Pacific versus Niño 3.4 indices evolution curves 

(Figure 7b) demonstrate that increased MHW intensity depended much more on the initial 

Northeast Pacific value than on the initial Niño 3.4 value. Overall, these results suggest 

that MHW intensity may be more strongly affected by variability intrinsic to the 

extratropics than by ENSO teleconnections. 
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Figure 7. Same as Figure 5, except that the intensity threshold is varied while the 
duration threshold is fixed at 6 months. 
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Figure 8. Same as Figure 6, except that the intensity threshold is varied while the 
duration threshold is fixed at 6 months. 
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2.5 Implication on the 2013-2015 Marine Heatwave Event 

Finally, we evaluated how consistent the most extreme observed event, the 2013-

2015 MHW event, is with the above LIM diagnosis, starting by analyzing the evolution 

and corresponding 6-month-lead LIM prediction of this historical multi-year event. The 

observed evolution (Figure 9a-e) shows a large warm anomaly developing and then 

intensifying within a broad region of the Gulf of Alaska, concurrent with a strengthening 

La Niña (Figure 9a-b). The warm SSTa subsequently spread eastward and then along the 

entire Pacific North American coastal boundary, along with a meridional mode structure 

and weak positive tropical SSTa (Figure 9c-d). The event ended with El Niño developing 

in the equatorial Pacific (Figure 9e). Note that this evolution featured both long-lasting, 

record-breaking warm anomalies in Northeast Pacific and the delayed development of 

strong El Niño conditions. Based on our findings in the previous section, the long-lasting 

feature of this MHW event may be strongly affected by the tropical variability, while the 

record-breaking intensity of this event may be influenced by the intrinsic variability of the 

extratropics.  

The 6-month-lead LIM prediction patterns (Figure 9f-j) of the 2013-2015 MHW 

event, calculated from (2), track the observed evolution patterns (Figure 9a-e) with 

significant spatial correlation skill (R=0.60). Notably, the LIM prediction captured the 

North Pacific offshore warming in spring 2013 (Figure 9f) and the intensification of the 

anomalies in winter 2013/14 (Figure 9g). The NPMM-like warm anomalies with weak El 

Niño were also predicted (Figure 9h) in fall 2014 and winter 2014/15, and the emergence 

of El Niño in fall 2015 (Figure 9j). Overall, the LIM prediction of this historical MHW 
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event serves as another demonstration of the LIM’s capability for capturing Pacific 

dynamics and seasonal MHW evolution. 
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Figure 9. Evolution of seasonal SSTa, 2013-2015, from (a-e) observations, (f-j) 6-
month lead cross-validated LIM predictions. (a, f) March-April-May (MAM) 2013. 
(b, g) December-January-February (DJF) 2014. (c, h) September-October-
November (SON) 2014. (d, i) December-January-February (DJF) 2015. (e, j) 
September-October-November (SON) 2015.
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Lastly, while we have shown that the statistical behavior of the MHW composite was 

captured by the millennia-long LIM simulation, perhaps the 2013-2015 MHW event was 

too extreme for our simple stochastically-forced linear model. Therefore, we explored 

whether a subset of MHWs in the LIM simulation could be found that represented even 

this single historical event. Using an analogue approach (e.g. Ding et al., 2018; Vandendool, 

1994), we determined the 20 MHW events within the LIM simulation that had the highest 

spatial and temporal correlation to the 2013-2015 MHW event over its entire 32 month 

evolution.  

In general, in an analogue approach we would search a data library for the k-member 

states [𝐱(𝑡()) 𝐱(𝑡*) ) ⋯ 𝐱(𝑡') )] closest to a target state 𝐱(𝑡), where 𝑘 is the analogue 

index and 𝑡')  is the time of the analogue in the library. However, we are interested not just 

in finding a good match for a single observed state, 𝐱(𝑡), but in finding a match to a 

sequence of observed states during some prolonged period, 

 
𝐯(𝑡) = 5

𝐱(𝑡)
𝐱(𝑡 + 1)

⋮
𝐱(𝑡 + 𝑝)

9, (6) 

 where 𝑝 is the prolonged period of the persistent anomalies denoted by 𝐯(𝑡). In essence, 

we searched the k-member persistent anomalies [𝐯(𝑡()) 𝐯(𝑡*) ) ⋯ 𝐯(𝑡') )]  with the 

highest spatial and temporal correlation to the 2013-2015 MHW event over 32 months 

(𝑝 = 32, 𝑘 = 20). The spatial and temporal correlation was defined as the correlation 

between the observed long vector 𝐯(𝑡) and each simulated long vector 𝐯(𝑡′). The average 

of the 20 closest or “top-20” analogues, shown in Figure 10a-e, shows a similar evolution 
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pattern to the 2013-2015 event (R=0.71), although the intensities of the composite are not 

as extreme as the historical event, suggesting the importance of noise to the evolution of 

any individual event. 

To evaluate whether our LIM ensemble was dependent upon possible climate change, 

we repeated the analysis by constructing a new LIM from data only over the interval 1950-

1989, and then ran a separate ensemble LIM simulation. The “top-20” analogue composite 

from the new ensemble LIM simulation (Figure 10f-j) also captures the 2013-2015 event 

(R=0.7), but its amplitudes are a little weaker, which may only partly be explained by 

sampling. The overall similarity of both composites suggests that the 2013-2015 event 

evolved in a manner consistent with Pacific climate dynamics prior to the emergence of 

any visible climate change effects in the North Pacific. However, the pre-1990 LIM cannot 

entirely capture such a prolonged period of high amplitudes, suggesting some potential 

climate change component that remains to be quantified. 
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Figure 10. Composite evolution of top 20 model analogues of the 2013-2015 event 
within the LIM simulation.
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2.6 Climate Change Impact on the Northeast Pacific Marine Heatwaves 

In the previous section, the analogue composite constructed from the pre-1990 LIM 

ensemble has suggested some potential influence of climate change affecting the 2013-

2015 MHW event. Here we investigate the climate change influence on the statistics of 

Northeast Pacific MHWs by (1) adding the linear trend that was previously removed (see 

data processing in section 2.2) back to the observation and to each of the 2000-member 70 

years LIM ensemble, (2) then separating the 70-years observation and LIM ensemble into 

two 35-year periods. Any statistical behavior difference between the two periods, one 

corresponding to 1950-1984 and other corresponding to 1985-2020, is then considered a 

result of the climate change. [Note that all previous analysis in this chapter does not contain 

the linear trend.] 

We first generated the IDF map for the two periods (Figure 11). Compared with the 

observed IDF of 1950-1984 (shading of Figure 11a), the observed IDF of 1985-2020 

(shading of Figure 11b) showed overall higher frequency of extreme MHWs. Specifically, 

higher intensity MHWs have happened more frequently, while the frequency of longer-

duration MHWs has increased only slightly (shading of Figure 11c). Statistics of the LIM 

ensemble (contour lines of Figure 11) is overall consistent with the observation (shading). 

The characteristic of high-intensity MHWs happening more frequently and longer-duration 

MHWs occurring slightly more frequently is reproduced by the LIM ensemble, indicating 

that our large ensemble LIM simulation captures the influence of climate change on the 

statistical behavior of MHWs. The IDF analysis also corroborates with the result from the 

previous section, suggesting that the extreme intensity of the 2013-2015 event may be 

partly contributed by the influence of climate change.  
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Figure 11. IDF map for (a) 1950-1984, (b) 1985-2020, (c) the difference between the 
(b) and (a), with the observed linear trend. Shading is the observation. Color-dashed 
line is the LIM ensemble average. Black dots represent the observed frequencies 
under those intensity-duration pairs are 95% statistically different from LIM. 

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1950-1984

1 5 10 15
Duration (months)

0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

-0.4

-0.2

0

0.2

0.4

0

0.1

0.2

Fr
eq

ue
nc

y

1985-2020

Difference

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

1 5 10 15
0.1

0.5

0.9

1.3

In
te

ns
ity

 (°
C

)

Duration (months)
1 5 10 15

Duration (months)
1 5 10 15

Duration (months)

(a)

(b)

(c)



 52 

Having LIM ensemble consistent with observation, we now analyze, within the LIM 

ensemble capacity, how the concurrent evolution of the tropical Pacific and the Northeast 

Pacific MHWs varies under the influence of climate change. To do so, we calculated and 

showed the Niño 3.4 index as a function of the Northeast Pacific index during the two 

periods (Figure 12). With the intensity threshold fixed as 1𝜎 , each line represents a 

different duration threshold (from light orange to copper corresponds to 5 to 14 months 

duration threshold used in the 1950-1984 ensemble; from light green to blue corresponds 

to 5 to 20 months duration threshold used in the 1985-2020 ensemble; Figure 12a) used to 

identify the concurrent evolution of Niño 3.4 index and the Northeast Pacific index. In 

Figure 12b, color of the line represents a different intensity threshold, while the duration 

threshold is fixed as 6 months.  

Compared with the concurrent evolution of Niño 3.4 index and Northeast Pacific 

index within the 1950-1984 ensemble (light orange to copper in Figure 12a and b), the 

evolution within the 1985-2020 ensemble (light green to blue in Figure 12a and b) is overall 

shifted to a higher intensity. While having overall higher intensity for both the Northeast 

Pacific index and the Niño 3.4 index, the range of the variation becomes less. To be more 

exact, the magnitude increase from prior to the initiation of MHW to the peak is less within 

the 1985-2020 ensemble. The magnitude increase of the Niño 3.4 index is also smaller. 

Overall, this suggest that under the influence of climate change, the mean background 

states may become warmer but the variance may be decreasing. Thus, the intensity of the 

MHWs under the influence of climate change may be more extreme, whereas the variance 

of the MHW evolution may be decreasing.  
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Figure 12. Niño 3.4 index as a function of the Northeast Pacific index for 1950-1984 
and 1985-2020. (a) Intensity of MHWs is fixed at 𝟏𝝈, while the duration increases 
from 5 months. (b) Duration of MHWs is fixed at 6 months, while the intensity 
increases from 𝟏𝝈.
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2.7 Conclusion 

Our study explored Northeast Pacific warming events over a continuum of intensities 

and durations, including the evolution of conditions as extreme as occurred during the 

2013-2015 MHW, suggesting that these events are a recurrent phenomenon of North 

Pacific dynamics. Using the ensemble LIM simulation, we reproduced the statistics of 

observed MHWs, notably the relative frequencies of events with different durations and 

intensities and their corresponding composite evolution. The LIM large ensemble was then 

used to diagnose relative tropical and extratropical influences on MHW intensity and 

duration. We find that greater MHW duration is linked to stronger La Niña during the early 

stages of MHW evolution and to a subsequently extended development of El Niño, 

suggesting that the tropics play an important role in MHW duration. In contrast, MHW 

intensity depends primarily on North Pacific initial conditions, suggesting that MHW 

intensity may be largely driven by variability intrinsic to the extratropics. Both contributed 

to the multi-year persistence and record-breaking intensity of the 2013-2015 MHW event. 

Our analysis in terms of the potential role of climate change suggests that the mean 

changes in SST due to recent climate trends in the North Pacific are not a necessary 

requirement to explain the evolution of an event like the 2013-2015 MHW. The analysis 

of the ensemble LIM analogues trained with data between 1950-1989 captures MHWs that 

are dynamically consistent with the 2013-2015 event. Nevertheless, climate change is a 

contributing factor, particularly for the prolonged severity of the 2013-2015 MHW. Some 

recent studies (Laufkötter et al., 2020; Oliver, 2019) suggest that the main impact of climate 

change upon MHWs is through changing the mean rather than the variability, which is 

consistent with our approach.  
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Lastly, although the 2013-2015 Northeast Pacific MHW event motivated this study, 

the Northeast Pacific is not the only region where MHWs occur. They have been observed 

around the globe with various spatial and temporal scales (e.g. Benthuysen et al., 2018; 

Mills et al., 2013; Oliver et al., 2017), associated with different drivers. While our study 

focuses on Northeast Pacific MHWs and presents the LIM’s ability to capture the statistics 

and evolution of even the more extreme Northeast Pacific MHWs like the 2013-2015 event, 

it also points to a promising avenue for a global assessment and understanding of MHWs.   
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CHAPTER 3. THE ROLE OF TROPICAL PACIFIC AND NORTH 

PACIFIC ON FORECASTING SEA SURFACE TEMPERATURE 

AND HEIGHT ALONG THE NORTH PACIFIC COASTLINE 

In 0 we explored the statistical behaviors of Northeast Pacific marine heatwaves and 

had suggested that these marine heatwaves might have a predictable component, due to 

their connection to the remote tropical Pacific. Those analysis, however, focused only on 

the small sample size of abnormally warm time periods (i.e., the tail of probability density 

function) rather than the entire observed time period. Here we aimed to evaluate the 

forecast skill of the entire time period from LIM framework constructed by tropical Pacific 

and North Pacific sea surface temperature (SST) and sea surface height (SSH) anomalies. 

Our analysis specifically targeted four coastal regions, California Current System (CCS), 

Gulf of Alaska (GoA), East China Sea (ECS) and Kuroshio Extension (KE), for these are 

representative coastal ecosystem of the North Pacific. Our result suggested that CCS and 

GoA, located along the North Pacific eastern boundary, had some additional dynamical 

skill that were captured by the LIM, whereas the LIM was less skillful for forecasting the 

ECS and KE along the North Pacific western boundary. Within the framework, removing 

the tropical Pacific versus North Pacific anomalies, one at a time, allowed us to diagnose 

the role of tropical Pacific versus North pacific on the forecast of the North Pacific coastal 

areas. Our result indicated that the remote tropical Pacific had strong influence (at least 

comparable to local North Pacific influence) on the forecast skill of the two lower latitude 

coastal regions, CCS and ECS, whereas the influence of tropical Pacific was limited on the 

two further northern coastal regions, GoA and KE.  
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3.1 Introduction 

Coastal water, generally referred to regions within 100 km offshore with less than 

100 m water depth, occupies only about 7.5% of the ocean water. Yet it had been 

documented to have contributed to nearly 50% of the global marine fish productivity 

(Nellemann et al., 2008). Ecological conditions relevant to the primary productivity were 

found sensitive to SST and mixed layer variability (Miller and Schneider, 2000). Thus, 

providing a skillful forecast of these ocean conditions on a time scale relevant to 

ecosystem’s response, i.e., at least on a seasonal scale (Jacox et al., 2020b), is a critical 

task.  

 Among all the coastal waters of North Pacific, CCS, GOA, ECS and KE are the 

representative regions of focus in this study (Figure 15a). CCS, GOA and ECS were 

defined similar to Large Marine Ecosystem (LME) (Hervieux et al., 2019; Sherman, 1986; 

Stock et al., 2015), as “coherent ocean areas generally along continental margins whose 

ecological systems are characterized by similarities in bathymetry, hydrography, and 

biological productivity”. KE was not conventional in the definition of LME, as it was 

characterized by the convergent flow from the subtropical Kuroshio current of low 

productivity and the subarctic Oyashio current of high productivity (Qiu, 2019), which 

extends offshore to west of dateline. This unique characteristic leads to a defined KE 

covering from coastline to west of dateline, as in many previous studies (Joh and Di 

Lorenzo, 2019; Qiu et al., 2014 and references therein).     

 Seasonal prediction of the North Pacific coastal SST has been conducted through 

ensemble global-scale dynamical and statistical modeling systems. The state-of-the-art 
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North American multimodel ensemble (NMME) of coupled global climate models had 

shown a forecast correlation skill of ~0.5 within GoA and CCS at a 6-month lead (Hervieux 

et al., 2019). A recent study using a near-global LIM (Shin and Newman, 2021) had shown 

forecast skill within GoA and CCS comparable to NMME. 6-month-lead correlation skill 

of KE using the coupled global Fast Ocean Atmosphere Model (FOAM) was ~0.3 (Wu et 

al., 2016), which was consistent with the findings of LIMs (Alexander et al., 2008; Dias et 

al., 2019). Forecast of ECS (Peng et al., 2021) was conducted by the model-analog 

approach, which searched ocean states similar to present in the “data library” of Coupled 

Model Intercomparison Project phase 6 (CMIP6) and treated the subsequent evolution of 

those states as the forecast. This study showed that the 6-month-lead forecast skill of ECS 

was ~0.2-0.3.  

 Forecast skill of coastal SSH was less documented. It is of interest, as SSH is 

generally considered an indicator of the stratification and mixed layer depth and, thus, can 

be viewed as a proxy of the upper ocean heat content. NMME showed 6-month-lead SSH 

correlation skill of ~0.6-0.7 at GoA and CCS and ~0.1 at ECS and KE (Shin and Newman, 

2021). The same study also compared the NMME forecast skill to the near-global LIM, 

and showed that LIM had comparable-to-NMME skill at GoA and CCS and higher-than-

NMME skill at ECS and KE.  

 To understand the forecast skill contributed by local North Pacific versus remote 

tropical Pacific forcing, studies have developed, for instance, sensitivity tests of a 

dynamical model that run hindcasts driven by either local or remote forcing, i.e., one of 

them being full variability forcing and the other being only the climatology (Frischknecht 

et al., 2015). The statistical approaches were to construct the model framework of both the 
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tropical Pacific and the North Pacific state vectors and, by setting one of the state vectors 

to zero, the influence of remote tropical Pacific versus local North Pacific forcing was 

quantified (Dias et al., 2019).   

 Although the prediction skill of coastal waters is an active research area, it remains 

unclear the contribution of tropical Pacific versus North Pacific to the SST and SSH 

prediction skill of the representative North Pacific coastal waters. Thus, in this study, we 

(a) constructed a LIM framework of the tropical Pacific and the North Pacific SST and 

SSH for lead-1- to lead-12-month forecast, (b) evaluated the prediction skill of the targeted 

coastal waters against persistence, i.e., local memory, and (c) analyzed the influence of 

tropical Pacific SST and SSH versus the influence of North Pacific SST and SSH on the 

prediction skills. 

3.2 Data and Methods 

3.2.1 Data 

We obtained 1958-2017 monthly SSTs from the Hadley Centre Sea Ice and Sea 

Surface Temperature data set (HadISST) (Rayner et al., 2003) and monthly SSHs from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis 

System 4 (ORAS4) (Balmaseda et al., 2013). The spatial resolution was 1o×1o. The spatial 

domain ranged from 20oS to 60oN and from 110oE to 60oW, excluding any areas of Gulf 

of Mexico and the Atlantic Ocean. The SST anomaly (SSTa) and SSH anomaly (SSHa) 

were calculated by removing the climatological annual cycle and linear detrending.  

3.2.2 Linear Inverse Model 
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LIM and its ensemble mean forecast was extensively introduced in 2.2.2. Here we 

constructed a LIM framework of North Pacific (20oN to 60oN) and tropical Pacific (20oS 

to 20oN) SSTa and SSHa, as followed, 
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⎢
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⎥
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⎤
, 𝐆(𝜏) ≡ exp	(𝐋𝜏) (7) 

 where 𝐱  was leading Principal Components (PCs) of SSTa, 𝐲  was leading principal 

components of SSHa, the subscript TP referred to tropical Pacific and NP was North Pacific. 

We first separately calculated the Empirical Orthogonal Function (EOF) space of tropical 

Pacific SSTa, North Pacific SSTa, tropical Pacific SSHa and North Pacific SSHa and 

respectively retained 8, 18, 8, 12 leading PCs, which explained 82.32%, 82.51%, 74.77% 

and 57.88% of each corresponding total variance. The combination of PCs was determined 

by EOF truncation test, i.e., testing the forecast skill sensitivity to the number of PCs 

retained in the system. 

Estimation of 𝐋 and forecast skill was “ten-fold” cross-validated: (a) excludes 10% 

of the data at a time, (b) re-estimates 𝐋 using the remaining years and (c) computes the 

forecast initialized from that 10% previous excluded data. This procedure was repeated 10 

times and the forecast output was concatenated in the end. 

  Finally, the impact of tropical Pacific forcing versus the North Pacific forcing was 

evaluated by setting either 𝐱-,(𝑡) = 𝐲-,(𝑡) = 0 or 𝐱+,(𝑡) = 𝐲+,(𝑡) = 0. In the former 

scenario, forecast was entirely contributed by the initial tropical Pacific forcing. Whereas 

in the latter scenario it was solely contributed by the initial North Pacific forcing. Note that 
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it was allowed to maintain only one of the four state vectors as non-zeros, which allowed 

us to examine the role of the standalone state vector (Figure 18, Figure 19).  

3.3 Prediction Skill Compared to Persistence 

We first computed the persistence skill of SSTa at 3-, 6-, 9-, and 12-months lead 

(Figure 13a), i.e., the correlation between one SSTa time series and the lag-𝜏-months SSTa 

time series. This is considered a forecast based on only the local memory. Persistence 

showed forecast skill gradually decreasing over lead time, indicating that the “present” 

local memory played less of a role on the forecast skill over time. Areas with remaining 

forecast skill at 9- and 12-month lead covered from south California to the equatorial 

Pacific around dateline, resembling the pattern of PMM. Forecast skill was also seen with 

a pattern that extends from Peru to the equatorial Pacific around dateline, resembling the 

pattern of SPMM. These patterns were consistent with studies that suggest PMM and South 

PMM as important precursor dynamics (Chiang and Vimont, 2004; Zhang et al., 2014).  

Compared with persistence, LIM showed additional forecast skill within tropical 

Pacific (Figure 13b, c), which suggests that the precursor dynamics were captured by our 

LIM framework and, thus, transformed into forecast skill of the tropical Pacific. LIM also 

showed, to some degree, improved forecast skill along the North Pacific eastern boundary. 

This might be a result of incorporating the remote tropical forcing in the modeling system, 

as ENSO had been diagnosed as a source of predictability along the eastern boundary 

(Jacox et al., 2019a).  
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Figure 13. SSTa forecast skill of (a) persistence, (b) LIM, and (c) difference between 
LIM and persistence for 3-, 6-, 9-, 12-months lead. 
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We then examined the forecast skill of SSHa (Figure 14). Besides having gradually 

decreasing skill over lead months, persistence (Figure 14a) showed correlation skill 

remaining to be quite high above the latitude of KE. This suggest that SSHa of the higher 

latitude North Pacific might carry long term ocean memory, which might be the dominant 

source of SSHa predictability within the area.  

Compared with persistence, LIM showed additional forecast skill within the tropical 

Pacific and along the North Pacific eastern boundary (Figure 14b, c), potentially a result of 

ENSO and the propagation of coastally-trapped Kelvin waves. North of Japan, LIM’s 

forecast skill was slightly worse than the high persistence skill, which also emphasized the 

dominant role of local memory within those areas.  
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Figure 14. SSHa forecast skill of (a) persistence, (b) LIM, and (c) difference between 
LIM and persistence for 3-, 6-, 9-, 12-months lead.
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Then LIM and the persistence skill were spatially averaged within each targeted 

coastal regions (Figure 15). CCS was defined within 132oW-110oW, 28oN-50oN; GoA was 

defined within 158oW-130oW, 50oN-59oN; ECS was defined within 116oE-130oE, 22oN-

40oN; KE was defined within 138oE-164oE, 30oN-42oN (Figure 15a). In GoA, LIM’s SSTa 

and SSHa forecast skill (thick solid line and thick dash line of Figure 15b) were lower than 

persistence (thin solid line and thin dash line) for <6 lead months. For lead months ≥ 6, 

LIM’s forecast skills were higher than persistence, suggesting our LIM might have 

captured the remote forcing dynamics that contributed to the forecast skill. In CCS (Figure 

15c), LIM’s forecast skills were higher than persistence for lead months ≥ 4. This suggest 

that CCS might be strongly influenced by remote forcing and that influence reached to the 

low latitude CCS earlier than the high latitude GoA. 

In ECS (Figure 15d), the LIM and persistence skill were comparable from lead-1 to 

lead-12 months, and both skills decreased rapidly over lead months. This suggest that 

neither was ECS subject to local memory nor did our LIM framework capture any useful 

information that contributed to the forecast skill of ECS. It might also indicate that ECS 

was shielded from the remote forcing. In KE (Figure 15e), LIM’s skill was either 

comparable to or lower than the persistence skill, potentially due to the convergent flow 

containing large variability of mesoscale eddies and, thus, was considered as noise within 

the LIM framework. 
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Figure 15. Coastal regions of interest (a) and their corresponding spatially averaged 
forecast skill (b-e). 
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3.4 Influence of Tropical Pacific versus North Pacific 

To better understand the forecast skill of the representative coastal regions, we first 

evaluated the SSTa forecast skill contributed by North Pacific forcing versus tropical 

Pacific forcing (Figure 16). Under the contribution of tropical Pacific only, at 3-month lead 

(first row of Figure 16a), tropical Pacific influence was largely contained within the 

tropical Pacific, as the correlation skill within tropical Pacific was much higher than the 

skill outside tropical Pacific. At 6-month lead (second row of Figure 16a), forecast skill 

within North Pacific, especially along the coastal waters, increased as the influence from 

remote tropical forcing became stronger. At 9- and 12-month lead (third and fourth row of 

Figure 16a), the forecast skill gradually decreased within both the tropical Pacific and the 

North Pacific.  

Under the contribution of solely the initial North Pacific forcing (Figure 16b), it was 

seen that forecast skill along the North Pacific eastern boundary was initially high at 3-

month lead, and gradually decreased over lead months. Starting from 6-month lead, the 

forecast skill along the North Pacific eastern boundary was comparable between the skill 

contributed by the tropical Pacific and the skill contributed by the North Pacific. This 

indicated that the tropical Pacific was the source to the additional forecast skill captured by 

LIM. 
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Figure 16. SSTa LIM forecast skill contributed by (a) tropical Pacific, or (b) North 
Pacific at 3-, 6-, 9-, 12-lead months. 
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In terms of tropical Pacific influence on the SSHa forecast skill (Figure 17a), we saw 

high forecast skill within tropical Pacific at 3-month lead, which gradually decreased over 

lead months. Tropical Pacific forcing also contributed to high forecast skill along the 

eastern boundary of North Pacific, which was an indication of the coastal Kelvin waves 

carrying tropical Pacific information northwards, steered by the continental boundary.  

North Pacific forcing, on the other hand, was very persistent within North Pacific 

(Figure 17b). The persistent high correlation pattern was similar to the simple persistence 

model (Figure 14a), which suggest that SSH of the large area of North Pacific, except along 

the eastern boundary, was dominated by local memory.  
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Figure 17. SSHa LIM forecast skill contributed by (a) tropical Pacific, or (b) North 
Pacific at 3-, 6-, 9-, 12-lead months. 
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We further split the forecast skill contributed by tropical Pacific into forecast 

contributed by tropical Pacific SSTa versus contributed by tropical Pacific SSHa (Figure 

18a, b). Interestingly, while in Figure 16 we showed tropical Pacific contributed to the 

additional dynamical forecast skill along the North Pacific easter boundary, here the result 

showed, at California and south of California, the additional skill was contributed by 

tropical Pacific SSTa (Figure 18a), whereas at north of California, the additional skill was 

from tropical Pacific SSHa (Figure 18b).  

Similarly, influence of North Pacific was split into influence of North Pacific SSTa 

versus North Pacific SSHa (Figure 18c, d). Our result showed North Pacific SSTa had only 

limited influence (Figure 18c), consistent with findings that suggest midlatitude 

extratropical SSTa was largely driven by weather noise and, thus, intrinsically not 

predictable (Frankignoul and Hasselmann, 1977; Hasselmann, 1976). North Pacific SSHa 

(Figure 18d), on the other hand, was able to contribute to the SSTa forecast skill along the 

North Pacific eastern boundary. This might be related to SSH being a proxy of the 

thermocline depth and upper ocean heat content and, therefore, SSH-contributed to SST 

forecast might be considered a result of the influence of below surface ocean memory.  
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Figure 18. LIM forecast skill of SSTa at 3-, 6-, 9-, 12-month lead, by retaining only 
one non-zero state vector: (a) tropical Pacific SSTa; (b) tropical Pacific SSHa; (c) 
North Pacific SSTa; and (d) North Pacific SSHa. 
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In terms of tropical Pacific SSTa versus SSHa influence on SSHa forecast (Figure 

19a, b), it is seen that tropical Pacific SSTa contributed to the additional forecast skill of 

SSHa along the North Pacific eastern boundary, more than the contribution from tropical 

Pacific SSHa. 

As for North Pacific SSTa versus SSHa influence on SSHa forecast (Figure 19c, d), 

North Pacific SSTa had overall very limited influence, which corroborated with the 

unpredictable nature of the midlatitude SSTa (Frankignoul and Hasselmann, 1977; 

Hasselmann, 1976). North Pacific SSHa generated very persistent forecast skill, which 

indicated a dominant role of North Pacific subsurface ocean heat content on the persistent 

forecast skill. 
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Figure 19. LIM forecast skill of SSHa at 3-, 6-, 9-, 12-month lead, by retaining only 
one non-zero state vector: (a) tropical Pacific SSTa; (b) tropical Pacific SSHa; (c) 
North Pacific SSTa; and (d) North Pacific SSHa. 
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Lastly, the correlation skills contributed by initial tropical Pacific forcing versus by 

initial North Pacific forcing were spatially averaged within each targeted coastal regions 

(Figure 20), with the full LIM forecast skill superimposed (i.e., full LIM curves identical 

to Figure 15). In GoA, under the influence of North Pacific forcing, the SSTa and SSHa 

correlation skill was initial high and comparable to the skill of full LIM at lead-1 month 

(blue curves compared to purple curves in Figure 20a). Then the correlation skill 

contributed by North Pacific forcing gradually decreased as the lead months increased. On 

the other hand, under the influence of tropical Pacific forcing, the correlation skill gradually 

increased from lead-1 month to lead-6 month and then decreased afterwards (red curves), 

suggesting the first increasing, then decreasing influence on GoA forecast from the remote 

tropical Pacific. The tropical Pacific contributed forecast skill was lower than the North 

Pacific contributed forecast skill (red curves compared to blue curves), indicating that the 

forecast skill of GoA was dominated by the local North Pacific forcing. 

In CCS, the result was similar (Figure 20b). The difference was that tropical Pacific 

influence reached to a peak at lead-4 months, compared to the lead-6 months in GoA. This 

was a result of CCS located at a lower latitude than GoA. Another difference was that 

tropical Pacific influence became comparable to or slightly higher than the North Pacific 

influence at lead-6 months, which corroborates with the findings of Jacox et al. (2019a) 

that linked the CCS forecast skill to the ENSO variability.  

In ECS and KE, we have shown in previous analysis that the LIM forecast skill was 

at most comparable to persistence (Figure 15d, e). Thus, it was expected that the North 

Pacific forcing, in essence equivalent to local memory, dominated the LIM forecast skill. 

This was the case for KE (see that the blue curves almost overlapped with the pink curves, 
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and that the red curves were almost constant at 0). In ECS, however, tropical Pacific 

influence on SSTa became stronger than the North Pacific influence, starting from lead-5 

months, (despite that both tropical Pacific and north Pacific influence were very weak), 

suggesting some level of dominant control from tropical Pacific.  
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Figure 20. Spatially averaged SSTa (solid lines) and SSHa (dash lines) forecast skill 
of the full LIM (color identical to the region name), tropical Pacific LIM (red) and 
North Pacific LIM (blue).  
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3.5 Conclusion 

In this study we have constructed a LIM framework of North Pacific and tropical 

Pacific SST and SSH to analyze the forecast skill of SST and SSH at coastal waters of 

North Pacific and to understand the role of tropical Pacific versus North Pacific on the 

forecast. Our result suggested that the constructed LIM captured large-scale dynamics and, 

hence, provided additional forecast skill than the ocean memory persistence along the 

eastern boundary of North Pacific, whereas the forecast skill along the western boundary 

was largely contributed by the local memory.   

By only retaining the tropical Pacific anomalies versus the North Pacific in the LIM 

system, we examined the forecast skill solely contributed by tropical Pacific forcing versus 

by North Pacific forcing. Our result showed that the improved forecast skill of SST and 

SSH along the eastern boundary of North Pacific was contributed by tropical Pacific 

forcing, which corroborates with former studies that linked the forecast skill of CCS to the 

ENSO variability (Frischknecht et al., 2015; Jacox et al., 2019a). Furthermore, retaining 

only one of the four state vectors (e.g., tropical Pacific SST only) in the LIM system 

allowed us to differentiate the influence from SST versus from SSH. We showed that North 

Pacific SST provided very limited forecast skill, consistent with the unpredictable nature 

of the midlatitude extratropics. Whereas North Pacific SSH was very persistent and, hence, 

provided long term memory and forecast skill along the eastern boundary.  

This study has not considered the seasonal variation of the forecast skill (e.g., 

forecast initialized from January versus from July) and how the tropical versus North 

Pacific forcing acts onto the seasonal variation. To accurately represent the seasonal 
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variation, one may further assess the significance of the seasonal variation and compare 

the LIM constructed by the full records with the LIM that includes annual cycle, i.e., 

cyclostationary LIM, similar to the approach taken by a recent study on impact of annual 

cycle on ENSO variability in tropical Pacific (Shin et al., 2021). Whether our short 

historical record was enough to build a cyclostationary LIM of North Pacific and tropical 

Pacific and whether that was necessary remains to be explored. Overall, our current LIM 

framework provides a robust assessment based on the entire record and serves as a baseline 

for a future cyclostationary LIM study.  
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CHAPTER 4. THE NEAR-REAL TIME PREDICTION AND 

PREDICTABILITY DYNAMICS OF INNER-SHELF 

CIRCULATION AROUND PT. SAL, CALIFORNIA 

While the low-dimensional empirical LIM captures the large-scale ocean dynamics 

in the North Pacific (Newman et al., 2016) and their coastal footprint on scales of ~100 km, 

ocean processes near the coast at scales ~10 km to 100 m are not well-resolved in climate 

prediction models and data. To improve predictability along the coastline, where coastal 

processes dominate the variability, ocean models with fine resolution becomes necessary 

to resolve multi-scale coastal processes and their interactions with shallow bathymetry and 

complicated coastline (Jacox et al., 2019a). 

An experimental forecasting system for the inner shelf circulations around Pt. Sal, 

California, was implemented using a multi-scale nesting configuration of the Regional 

Ocean Modeling System (ROMS), integrated in the Coupled-Ocean-Atmosphere-Wave-

Sediment-Transport (COAWST) modeling system. The system was operational from 

September 1 to November 30, 2017 to assist the observational campaigns and in situ data 

collection of the Office of Naval Research (ONR) Inner Shelf Dynamics DRI field 

experiment (Kumar et al., 2020). Forecast of ocean conditions were conducted daily 

through the downscaling of several nested COAWST simulation grids (3km → 1km → 

600m → 200m), each forced with the COAMPS 2-days atmospheric forecasts at hourly 

resolution. By comparing the field observations to the model forecasts, we present an 

assessment of the skill of the COAWST forecasts focusing on the 200-meter scale.  
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To further diagnose the dynamics underlying the model forecast skill, we generated 

a set of ensemble simulations of the COAWST Pt. Sal modeling framework with different 

configurations of boundary and surface forcing conditions. Using this ensemble, we 

analyze and quantify the sources of predictability (e.g. deterministic vs. internal variability) 

that originate from knowledge of the open ocean boundary conditions, surface forcings, 

and initial conditions. We find that the initial conditions carry little skill beyond 2 days and 

that the largest fraction of dynamical skill is associated with knowledge of the surface and 

boundary conditions. This suggest that direct data assimilation to initialize the ocean model 

state may not be required for an operational ocean forecast in the inner shelf.  

4.1 Introduction 

Point Sal, a 5-kilometers coastal headland, is located in the Santa Maria Basin along 

the central California coast (Figure 21). Due to the fact that the shoreline orientation and 

the local bathymetry rapidly varies in the alongshore direction adjacent to Point Sal, the 

dynamic interaction between winds, sub-mesoscale eddies, surface and internal waves, 

mixing and surfzone processes can lead to complex three-dimensional local circulation 

near Point Sal (Kumar et al., 2019). Thus, although the circulation near Point Sal is 

primarily wind-driven (Strub et al., 1987), the combined effect from the ubiquitous 

coastline irregularity makes it the key interest of a multi-institutional effort supported by 

the Office of Naval Research Inner Shelf Departmental Research Initiative (Inner-shelf 

DRI). 
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Figure 21. Down-scaling nested grids and locations of in-situ measurement. (a) 
Modeling scheme downscales from 1km (L1), 600m (L2) to 200m (L3). The black 
dot marks the location of the wind station 46011. (b) Enlarged map for the 200m 
grid. White dot marks the location of the wind station SIO. Yellow dash box marks 
the range of deployed in-situ measurement. (c) The location of Point Sal and the 
deployed instruments relevant to this study during 2017 field measurement 
campaign. 
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To better understand and predict the exchange of water properties across the inner 

shelf over a range of temporal and spatial scales, the Inner-shelf DRI has launched an 

ongoing study on the ocean circulation in the vicinity of Point Sal using both the 

measurement approach and modeling approach. A study focused on the effect of wind 

relaxation on the generation of coastal buoyant plume (Suanda et al., 2016) shows that 

while an equatorward wind combined with Coriolis leads to cold water upwelling from the 

bottom to the nearshore surface, wind relaxation, on the other hand, is a favorable condition 

for a poleward propagation of warm water from the southern California. This poleward 

propagating warm plume can reach to Point Sal, although the width and the temperature of 

the plume decrease slightly. There are also studies on barotropic and baroclinic tides 

(Suanda et al., 2017), the generation and propagation of internal tide near Point Sal (Kumar 

et al., 2019). 

In Fall 2017, the Inner-shelf DRI organized a comprehensive field measurement 

experiments, including airborne thermal and radar remote sensing, drifting measurement 

platforms and in-situ moorings. The portion of the relevant measurements to this study is 

mapped in Figure 21c. To assist the in-situ measurement and to better understand the 

dynamics, an ocean forecast experiment system has been developed in this study to 

automatically predict the ocean state evolution for the future 48 hours on a daily basis.    

With the explosive growth of population and urban concentration near coastal 

regions, the necessity of closely monitoring and predicting the ocean state brings attention 

to scientists and researchers in oceanography and coastal engineering. But it was not until 

the late 1990s that the concept and the feasibility of developing a worldwide ocean 

observational program emerged and was broadly discussed (Harrison and Smith, 2002; 



 84 

Traon et al., 1999). Since then, forecasting future ocean conditions has undergone a rapid 

development and becomes operational in many oceanographic institutions, including the 

National Oceanic and Atmospheric Administration (NOAA) in USA, the Commonwealth 

Scientific and Industrial Research Organization (CSIRO) in Australia with the BLUElink 

project (Brassington et al., 2007), the wide MERSEA Integrated Project in Europe: in 

France with MERCATOR (Bahurel, 2006; Drevillon et al., 2008); in the UK with FOAM 

(Bell et al., 2000); in Italy with the MFS –Mediterranean Ocean Forecasting System 

(Pinardi et al., 2003); and in Norway with TOPAZ (Brusdal et al., 2003). 

With these worldwide and nationwide ocean operational forecast systems made 

available, along with the advances in more accurately measuring coastline and nearshore 

bathymetry, there are also many developing and developed regional ocean forecast system 

focusing on targeted coastal area. Marta-Almeida et al. (2011) developed a Python engine, 

named the Operational Ocean Forecast Engine (OOF𝜖 ), for automating regional and 

coastal ocean forecasts on a daily basis. This Python engine is developed to automatically 

execute the generation of forcing, simulation of ocean circulation using ROMS and 

analysis of simulation results in a sequence. Marta-Almeida et al. (2010) then utilized this 

python engine as a tool in developing a regional operational ocean forecast system in Brazil. 

This forecast system went through a long-period of model spin-up to adjust the model for 

operationality, but the resolution of the forecast is only ~9km in the alongshore direction 

and 2km near the coast to 12 km offshore in the cross-shore direction. Zhang et al. (2012) 

used the OOF𝜖 engine to provide nowcast and a five-day forecast, which covers the entire 

Texas-Lousiana continental shelf and slope in a higher resolution: ~500m near the coast 

and ~1-2km on the outer slope area. The lateral climatological forcing is obtained from the 
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Hybrid Coordinate Ocean Model (HYCOM) nowcast/forecast system (Smedstad et al., 

2010), a more up-to-dated hybrid ispycnal-sigma-pressure coordinate ocean model. 

A regional ocean forecast system consists of an ocean model to carry on the 

simulation of ocean circulation, realistic initial forcings and lateral boundary forcings to 

serve as model inputs. Error is inevitable if the model formulation is an imperfect 

approximation of the physical processes of the nature or if the uncertainty in forcings 

causes the error to propagate from the forcings and evolve and grow in the system. To what 

extent a model can represent the nature is not necessarily quantifying the predictability of 

nature. Instead, it is estimating the predictability limits for the numerical model to simulate 

and predict nature (Branstator and Teng, 2010). Without losing generality, to the extent 

that a model is a good surrogate for nature, the sensitivity and uncertainty of forcings 

becomes crucial for a credible prediction and a useful assessment. There are three types of 

forcings in a regional model: (1) initial forcings, (2) lateral boundary forcings and (3) 

surface atmospheric/external forcings. The first one is an initial-value problem, referred to 

as the predictability of the first kind (Lorenz, 1963), which is essentially the prediction of 

evolution given some knowledge of its initial state. The second and the third are boundary-

value problems, referred to as the predictability of the second kind (Lorenz, 1975), which 

is monitoring how the dynamical system responds to the continuous changing forcings. 

Consider a state variable in a unit area model as 𝑠(𝑥, 𝑦, 𝑧, 𝑡), initial forcing represents 

𝑠(𝑥, 𝑦, 𝑧, 0) , surface external forcing represents 𝑠(𝑥, 𝑦, 0, 𝑡) and the lateral boundary 

forcing corresponds to 𝑠(0, 𝑦, 𝑧, 𝑡), 𝑠(1, 𝑦, 𝑧, 𝑡), 𝑠(𝑥, 0, 𝑧, 𝑡) and 𝑠(𝑥, 1, 𝑧, 𝑡), assuming 𝑥, 

𝑦 are within a normalized range from 0 to 1. Therefore, the latter two forcing types are 
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considered separately because the lateral boundary forcings exist when a regional model is 

applied. 

Recently, the predictability dynamics of models has drawn increasing attention. Ezer 

and Mellor (1992) studied the impact of surface atmospheric forcing on the variability of 

ocean circulation in Gulf Stream by applying non-zero wind forcing but zero heat flux or 

vice versa. They also suggested that the effect on bottom layer variability is less related to 

the surface forcing but more directly caused by the fluctuations from the lateral boundaries. 

Wei et al. (2008) perturbed the initial conditions to form an ensemble global forecast 

system so that the forecast error explained by the perturbed initial conditions was studied. 

They focused on optimizing the choice of initial ensemble perturbations. But the effect 

from surface external forcing was not considered. In fact, initial-value predictability itself 

is a topic widely discussed (Sriver et al., 2015; Teng and Branstator, 2011; Wei et al., 2008). 

Teng and Branstator (2011) studied this initial-value problem to analyze the decadal 

predictability of sea surface and subsurface temperature (within 300m). Their study 

showed that integrated subsurface temperature is less chaos and, thus, has longer temporal 

predictability. On the other hand, Chen et al. (2015b) studied the effect of atmospheric 

forcing versus internal ocean advection on the warming along Northeast U.S. continental 

shelf in 2012 and found that temperature increase in that region is largely controlled by the 

net air-sea heat flux, because ocean advection was cooling the water column, counteracting 

the air-sea heat flux. Sieck and Jacob (2016) classified the circulation type of the lateral 

boundary forcing to study the internal variability related to the variability of the surface 

boundary forcing, specifically, the sea level pressure.  
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A regional model system is commonly expected to have all three types of forcings: 

initial, lateral boundary as well as surface external forcings. Therefore, when considering 

the influence of forcings, it is, at least, nontrivial to quantify the importance of each type 

of forcings and their time scale of domination in the model system. Ezer and Mellor (1992) 

suggested that without proper surface forcing, model showed less realistic Gulf Stream 

separation. Including the boundary inflow also played a role in improving the Gulf Stream 

variability. They concluded that the model domain should be extended to reduce the impact 

from the boundary forcing to the targeted interested area. Reichler and Roads (2003) 

showed that initial forcing alone was important up to 2-month lead time. Whether boundary 

forcing played a significant role compared with initial forcing depended on the strength of 

boundary forcing, i.e., whether strong El-Nino Southern Oscillation existed during 

prediction. Wu et al. (2005), on the other hand, suggested that the impact of initial forcing 

decreased with the increasing simulation time length, while the impact from the boundary 

forcing showed no significant trend and yet could reach to the interior model domain. 

Branstator and Teng (2010) indicated that the impact of the initial forcing would eventually 

be overcome by the boundary forcing. Beyond 10 years, the climate system became solely 

a boundary-value problem. Corti et al. (2015), however, showed that the predictability 

arose mainly from the external forcing for prediction time scale longer than 1 year. 

Depending on the region, the domination time scale of initialization varied. Among all 

these studies, boundary forcing is commonly interchangeable with external forcing, surface 

forcing, atmospheric forcing, especially for predictability study on a global model. In our 

study, we aim to cleanly separate the three types of forcing and individually quantify their 

contribution to the forecast error as time evolves, and to gain a better understanding of the 
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temporal control and spatial control from each forcing compared with the intrinsic model 

dynamics.  

The study herein presents the development of a multigrid ocean forecast system that 

downscales to a resolution of 200m (3km → 1km → 600m → 200m; Figure 21) in its 

highest resolution grid. The 200m grid covers the vicinity of Point Sal. The forecast system 

was automated to predict 2-day ocean circulation on a daily basis. The validation of the 

forecast result was assessed by comparing the 200m forecast with the observation collected 

in the 2017 Inner-shelf DRI field campaign. Then the predictability dynamics of the ocean 

forecast was studied by ensemble perturbation of the initial forcing, boundary forcing and 

surface atmospheric forcing. The layout of the following sections is: (section 4.2) 

methodology including the development of the ocean forecast system and the experiment 

setup for predictability dynamics; (section 4.3) assessment of ocean forecast compared 

with observations; (section 4.4) predictability feasibility of the forecast system. 

4.2 Methodology 

4.2.1 Development of the Ocean Forecast System 

The numerical model implemented in the ocean forecast system was the Regional 

Ocean Modeling System (ROMS). ROMS is a three-dimensional, free-surface, bathymetry 

following numerical model, which solves the finite-difference approximations of the 

Reynolds Averaged Navier Stokes equations with hydrostatic and Boussinesq 

approximations (Haidvogel et al., 2008; Shchepetkin and McWilliams, 2005).  
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The modeling system here was composed of four nested model domains with one-

way nesting and off-line techniques (Mason et al., 2010). The details of the model set-up 

and the effectiveness of simulating ocean circulation were described and validated in 

Suanda et al. (2016). Model bathymetry was interpolated from 1-arc second bathymetry 

provided by the NOAA National Centers for Environmental Information, U.S. Coastal 

Relief Model (CRM; http://www.ngdc.noaa.gov/mgg/coastal/crm.html; retrieved on April, 

2017). The grid resolution as aforementioned was from L0: Δ𝑥 =	3km, L1: Δ𝑥 =	1km, L2: 

Δ𝑥  = 600m, L3: Δ𝑥  = 200m. Because this is a collaboration project among multi-

institutions supported by Inner-shelf DRI, the ocean forecast of L0 and L1 was 

implemented through the open-source Rutgers ROMS in University of Santa Cruz. The 

ocean forecast of L2 and L3 was implemented through the ROMS module from the open-

source Coupled Ocean Atmospheric Wave and Sediment Transport (COAWST) modeling 

system (Warner et al., 2010) in Georgia Institute of Technology.  

The surface atmospheric forcing was obtained from the Coupled Ocean-

Atmosphere Mesoscale Prediction System (COAMPS) (Doyle et al., 2009; Hodur et al., 

2002) Real-Time Forecasts for Central and Northern California in Support of the Central 

and Northern California Ocean Observing System (CeNCOOS), developed and maintained 

by Naval Research Laboratory. The COAMPS Real-Time Forecast provides a 48-hour 

forecast on atmospheric forcing on a daily basis (https://www.nrlmry.navy.mil/coamps-

web/web/cencoos; retrieved during September and November 2017). The spatial resolution 

is 4km and temporal resolution is hourly in the COAMPS forecast. The obtained surface 

atmospheric forcing is then interpolated and applied in the ocean circulation forecast of 

each grid.  
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The initial and lateral boundary forcing was provided by the eddy-resolving, real-

time global and basin-scale ocean hindcast, nowcast, and prediction systems using the 

HYbrid Coordinate Ocean Model (HYCOM; https://www.hycom.org/; retrieved from 

September to November 2017) (Chassignet et al., 2009; Chassignet et al., 2007). The 

HYCOM nowcast/forecast system runs in real time at the Naval Oceanographic Office. 

The global nowcast/forecast system has a horizontal resolution of 1/12o.  

The experimental forecast system was carried out on a daily basis (Figure 22a) 

starting from August 23, 2017 to November 15, 2017. For instance, on August 23, 2017, a 

forecast experiment was implemented to predict the ocean circulation from 00:00:00 PST, 

August 23, 2017 to 00:00:00 PST, August 25, 2017. Simulated ocean circulation of the 

middle (00:00:00 PST, August 24, 2017) was extracted as the new initial forcing for the 

next forecast experiment. Then on August 24, 2017, a following forecast experiment was 

carried out to predict ocean evolution for the following 48 hours starting from 00:00:00 

PST, August 24, 2017. All in all, the forecast experiments were implemented in a way such 

that the initial forcing of a today’s experiment was extracted from the middle of a 

yesterday’s experiment. 

In each forecast experiment (Figure 22b), the forecast started from the downloading 

and interpolation of initial and lateral forcing from HYCOM and atmospheric forcing from 

COAMPS. Forecast ocean circulation, forced with these forcing, was simulated using the 

Rutgers ROMS on L0 grid. Then, the lateral boundary forcing of the L1 grid was 

interpolated from the simulated ocean trajectories of the L0 grid, whereas the initial forcing 

and the atmospheric forcing were interpolated from the forcing of L0 grid. Once the 

simulation of L1 grid was completed, results were transferred from University of Santa 
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Cruz to Georgia Institute of Technology to continue the simulation for the L2 and L3 grid, 

consecutively. Simulation results from the L3 grid were processed and transferred to the 

experimental forecast website (http://www.oces.us/onr/), where the latest forecast, as well 

as the historical forecast, the forcing and simulation results were stored and available for 

downloading. Every day, the forecast was completed and made available on the website 

around 17:00:00 PST. Extensive work and close collaboration between Georgia Institute 

of Technology and University of Santa Cruz was devoted to this project for automating 

and delivering the comprehensive experimental forecast system. 
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Figure 22. (a) Timeline of the daily 48-hour experimental forecast system. (b) 
Scheme of the experimental forecast system within each daily experiment. 
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4.2.2 Experimental Setup for Predictability Dynamics 

Some recent studies have used ensemble-based approaches to quantitatively 

measure predictability with perturbed forcings assuming the model yields perfect 

projections without perturbation (Branstator and Teng, 2010; Corti et al., 2015; Reichler 

and Roads, 2003; Sieck and Jacob, 2016; Sriver et al., 2015; Teng and Branstator, 2011; 

Tommasi et al., 2017; Wu et al., 2005). To account for the uncertainty induced by initial 

forcings, initial forcings were commonly extracted from different time stamps of the 

control simulation and applied at the predetermined starting point, while other boundary 

conditions were held fixed, to analyze the evolution and the deviation limit from the perfect 

model. The atmospheric perturbation or the boundary perturbation were conducted by 

swapping forcings to different time periods taken from the control simulation (Corti et al., 

2015) or by slightly offsetting the continuous changing physical parametrization in each 

ensemble experiment (Teng and Branstator, 2011). 

Here we assume the forecast trajectories from the developed ocean forecast system 

as the perfect surrogate of nature and obtain the daily cycle of the input variables by 

averaging the field at each hour. These experiments were divided into three groups (Table 

2): (1) initial forcings group (IC), in which identical initial forcings were applied at 

00:00:00 of each day from August 1st, 2017 to November 8th, 2017, each ensemble 

simulation lasted for 10 days, and, in total, this formed 100 ensemble members; (2) 

boundary forcings group (BC), in which the boundary forcings of the daily cycle were 

implemented at the 100 predetermined starting times the same as IC; (3) surface 

atmospheric forcings group (SBC), in which surface forcings of the daily cycle were 

applied. Each member of ensemble experiment lasted for 10 days and all started from the 
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same 100 predetermined time points. In these three groups, other conditions were held 

fixed to minimize the effect of other uncertainties, such as different model structures, grid 

resolution, parameters, and forcings. Using these 300 ensemble experiments, we hope to 

answer the following questions: to what extent is predictability dominated by the initial 

forcings? If exists, when and how will the boundary forcings and the surface forcings gain 

over the domination against the initial forcing? 

  To answer these questions, it is important to choose the appropriate state variables. 

Branstator and Teng (2010) mentioned that one of the inadequacies of predictability 

investigations is the limitation in the selection of state variables. Sea surface temperature 

(SST) is usually used as the indicator, but the subsurface quantities are more predictable 

(e.g., Griffies and Bryan 1997a) because the weather noise can be shielded to some extend 

and the predictable fluctuations can be isolated. Thus, this predictability study focuses not 

only on SST but also on bottom temperature (BT), as well as surface currents (SU, SV) 

and bottom currents (BU, BV).  
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Table 2. Summary of ensemble experiments with one type of forcing varied while 
fixing the other two. Each ensemble experiment has 100 members of 10-days 
simulation. 

Ensemble 
Experiments 

Input Initial Forcing Input Boundary 
Forcing 

Input Surface 
Boundary Forcing 

IC Diurnal Signal Control Simulation Control Simulation 

BC Control Simulation Diurnal Signal Control Simulation 

SBC Control Simulation Control Simulation Diurnal Signal 
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4.2.3 Predictability Metrics 

4.2.3.1 RMSD 

Another aspect that is at least equally important as designing the ensemble 

experiments and targeting the proper variables is the metrics used to quantify predictability. 

The most commonly employed metric to quantify how much the ensemble differs from the 

control simulation is the root-mean-square difference (RMSD).  

4.2.3.2 Correlation 

However, using RMSD is not enough to measure the difference caused by 

perturbing forcings. Considered an extreme situation where two trajectories (e.g., 

y(t) = sin(𝑡) and 𝑦A(t) = sin(𝑡) + 1) are identical with a constant unit bias, the RMSD 

between the two trajectories is 1, which is large given that the true trajectory 𝑦(𝑡) varies 

between -1 and 1. Thus, using RMSD as the only measure may send a misleading message 

that the two trajectories have significant difference with the order of magnitude similar to 

the trajectory variability. 

To avoid such situations, it is helpful to include correlation as a supplementary 

metric. In the above situation, the correlation between the two trajectories is 1, indicating 

that the forecast trajectory is highly correlated with the true trajectory and thus, may still 

be considered as a good forecast capturing the dynamics of the nature.  

4.2.3.3 Relative Entropy 
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While the RMSD measures the scale/magnitude of the difference between two 

trajectories and correlation measures the dynamical similarity, we need one more metric to 

summarize the mean signal difference and the spreading of error, i.e., the relative entropy 

(Kleeman, 2002) from information theory. In a dynamical system, suppose the prediction 

distribution is p, the climatological distribution is q, relative entropy (also called Kullback-

Leibler divergence) (Kullback and Leibler, 1951) is defined to be 

 R(p, q) = (𝑝 ln ,
𝑝
𝑞. 𝑑𝑉 (8) 

where V is the probability domain. 

Relative entropy is a measure of how one probability distribution differs from a 

second, reference probability distribution. One merit of using this metric is that it combines 

the information from the relative dispersion and the mean into measuring how different the 

prediction distribution is from the climatology. Another attractive property is, for 

predictions of a Markov process, R always decreases monotonically with time. When R 

asymptotes to zero, it indicates that the impact or the additional information carried by the 

specification of forcing is lost (Kleeman, 2002).  

With large enough sample size, the distributions p  and q  are approximately 

Gaussian. For the multivariate Gaussian distribution, R can be expressed as, 

 
R =

1
23ln 4

det8Σ!:
det8Σ":

; + 𝑡𝑟 ?Σ#8Σ!:
$%@ + 8𝜇" − 𝜇!:

&8Σ!:
$%8𝜇" − 𝜇!: − 𝑛D (9) 

in which n is the dimension of the state vector, µ is the 𝑛-dimensional mean vector, Σ is 

the n × n covariance matrix. 
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4.3 Assessment of the PILOT Forecast Experiments 

The temperature anomaly from the 24 mooring locations at -5 m depth (Figure 23) 

showed that the model temperature compared well to the observed temperature with an 

overall bias of ~1oC. The correlation was between 0.7 and 0.9. In general, model 

temperature captured the pattern and large temporal scale variability of the observed 

temperature. Along the 10m depth contour (NW2-RW2-BW1-PW1-PS1-PD1; see Figure 

21 compared with Figure 23), observed temperature has stronger high frequency 

variabilities (diurnal, semi diurnal and other high frequency variabilities) except PD1, 

which was located on the south of Pt. Sal. Because it was located inside the bay-like region, 

the temperature fluctuation was more relaxed (less high frequency) compared with others. 

Across the transect north of Pt. Sal (OC50-OC32N-OC17N), across the transect near Pt. 

Sal (MS100-PS50-PS30M-BW1) and across the south transect (VB50S-VB30S-VB25S), 

the high frequency variability of observed temperature increased from offshore to onshore. 

While the low frequency variability and the pattern of the observed temperature were well 

captured by the forecast system, the high frequency variability near the coastline was not 

so well captured. This could imply a possible effect from waves, especially the tidal wave. 

In general, the high frequency variability of observed temperature was substantially larger 

than the high frequency variability of model temperature as indicated by 𝑆.* /𝑆/*.  
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Figure 23. Temperature anomaly of 24 mooring sites at -5 m depth. Temperature 
anomaly was calculated by removing the regional mean temperature of 15.56oC 
from model temperature time series and removing the observational mean 
temperature of 14.70oC from observed temperature. R is the correlation coefficient, 
Sm2/So2 is the fraction of model temperature residual (total temperature subtracts 
the subtidal temperature) variance over observed temperature residual variance. 

Te
m

pe
ra

tu
re

 A
no

m
al

y 
at

 -5
 m

Model Observation



 100 

Temporal averaged stratification at the 24 mooring locations (Figure 24) also showed 

that the model stratification compared better with observed stratification in deeper 

innershelf mooring locations. The RMSE increased from offshore to onshore (OC50-

OC32N-OC17N, MS100-PS50-PS30M-BW1, VB50S-VB30S-VB25S). In shallower 

mooring locations, model temperature was more stratified and less energetic than the 

observed temperature, which was consistent with the analysis drawn from the temperature 

time series at -5 m depth.  

The peak temperature gradient revealed the depth where temperature dropped most 

significantly. According to the model stratification, these peak temperature gradients are 

mostly within 2- to 3-meter depth from the water surface. According to the observed 

temperature stratification, e.g., PW1, the depth of the peak temperature gradient was 

slightly deeper. In some other mooring locations, e.g., OC25NA, there were no obvious 

maximum temperature gradient. As shown, thermoclines in these mooring locations were 

brought to the surface possibly by upwelling, considered that the modeling and field 

measurement period is upwelling favorable. 
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Figure 24. Temporal averaged stratification (dT/dz) profile at 24 mooring sites. e is 
the root mean square error between the model temperature and observed 
temperature. 
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Rotary velocity (u, v) spectra, separating clockwise (CW) and counterclockwise 

(CCW) motions (Gonella, 1972), were calculated for the depth averaged currents at 

mooring locations. There was no distinct asymmetry between CW and CCW motions in 

these mooring locations (not shown) potentially due to a stronger frictional response in the 

inner shelf (Kumar et al., 2015). Thus, the two motions were combined into the total rotary 

spectra (Figure 25).   

In general, the observed total rotary spectra showed distinct peaks at diurnal and 

semidiurnal frequencies. Across the transect (MS100-PS50-PS40M-PS30M) near Pt. Sal., 

the energy density related to the diurnal frequency increased to the magnitude in the 

semidiurnal frequency, indicating a growing influence from the surface heat flux and 

diurnal wind oscillation. The same pattern was shown at PS30S closer to Pt. Sal. and across 

the transect (OC50-OC25NB) north of Pt. Sal. However, across the transect (VB50N-

VB30N-VB25N) south of Pt. Sal., the energy related to the semidiurnal frequency became 

more significant from offshore to onshore. This pattern of the energy of semidiurnal 

frequency higher than the energy of diurnal frequency was also shown further south of Pt. 

Sal. (VB50S-VB30S). The increasing energy in the semidiurnal frequency might be 

contributed by the bay-like bathymetry featured by a sharp direction change in coastline 

and leading to higher resonance in the semidiurnal frequency. Overall, the energy related 

to the semidiurnal frequency became more prominent from the north to the south. 

Comparisons between the model and the observation showed that the model slightly 

overestimated the energy in the low frequency band, i.e., the subtidal band (up to the 

diurnal frequency). Modeled and observed rotary spectra compared well in the diurnal band 

and in the semidiurnal frequency band. In the high frequency band (referred to frequencies 
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higher than the semidiurnal frequency band), modeled rotary spectra were weaker than the 

observed, consistent with Figure 23, potentially due to the lack of high-frequency surface 

and boundary forcing, and the limitation of the hydrostatic approximation, which might 

restrict the high-frequency variability (Kumar et al., 2015). 
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Figure 25. Total rotary spectra of the depth-averaged currents at mooring locations 
as a function of frequency (bottom axis) and period (top axis). Dashed lines 
represent diurnal frequency and semidiurnal frequency, respectively. 
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A summary assessment of model data comparison was shown in a Taylor diagram 

(Taylor, 2001) in which the standard deviations between the forecast and observed fields, 

their correlations, and their RMS difference were displayed (Figure 26). Statistics of the 

modeled temperature was closely concentrated inside a compact range, suggesting the 

stability of the temperature forecast. The normalized standard deviation varied from 0.8 to 

1.2 with a mean difference of 25% from the reference point (unit standard deviation). 

Normalized RMS difference changed from 0.4 to 0.7, which was within one order of 

magnitude difference. The correlation was between 0.75 and 0.93, suggesting the modeled 

temperature were well correlated with the observation.    

The modeled temperature was in general better simulated than the modeled currents. 

Statistics of modeled currents were in a broader range, especially in terms of the standard 

deviation. Across-shelf currents had standard deviations from 0.5 to 0.7 and along-shelf 

currents from 0.8 to 1.7, indicating that the across-shelf currents were underestimated and 

the along-shelf currents were overall overestimated. For correlation, along-shelf currents 

had correlations from 0.28 to 0.62, whereas the across-shelf currents had correlations from 

0 to 0.45, suggesting the along-shelf velocities were better simulated. Along-shelf currents 

had RMS difference from 0.8 to 1.2, whereas across-shelf currents had RMS difference 

from 0.8 to 1.5, indicating that there was in general one order of magnitude difference 

between the model and observation. The deviation of the modeled trajectories from the 

observations might be partly owed to the unresolved internal variability, imperfect initial 

and forcing conditions. 

As strong temporal coherence existed in the observed fields, meaning the potentially 

high similarity between today’s field and tomorrow, we produced a surrogate forecast by 
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sliding the field of today to tomorrow, i.e., persistence 1-day forecast. Similarly, if we slid 

the field of today to the day after tomorrow, we obtained the persistence 2-day forecast. 

The persistence forecast (both 1-day and 2-day) had similar standard deviation but large 

variability in terms of correlation and RMS difference. Compared with model data 

comparison statistics, persistence 1-day forecast had almost perfect (~1) scale of standard 

deviation in all mooring locations, comparable correlation scale and comparable RMS 

difference scale. Persistence 2-day forecast had inferior statistics compared with 

persistence 1-day forecast. Correlation from temperature mooring stations decreased to as 

low as 0.5 and the RMS difference increased to as high as one magnitude difference. 

Overall, the performance of the model system on forecasting the future 24-48 hours was 

comparable with persistence 1-day forecast and was better than the persistence 2-day 

forecast, indicating the robustness and validity of our modeling framework. 
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Figure 26. Taylor diagram to summarize the statistics of the forecast variables, 
including temperature (circle) of 24 stations, across-shelf (u; diamond) and along-
shelf (v; square) current of 12 stations (locations as shown in Figure 21). Black color 
of the symbols represents the statistics calculated based on our second-day forecast 
(24–48-hour forecast) of the multi-grid forecast system. Dark gray represents the 1-
day persistence forecast, and light gray represent the 2-day persistence forecast. The 
radial distances from the origin (0, 0) are proportional to the standard deviation of 
model normalized by the standard deviation of observation; the radial distances 
from (1, 0) represents the RMSE between the model and observation and 
normalized by the standard deviation of the observation; the azimuthal positions 
indicate the correlation coefficient. 

Model Data Comparison
Persistence 1-day
Persistence 2-day

U V Temperature
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4.4 Predictability of the Forecast System 

4.4.1 Temporal Control of Input Forcings 

To quantify the potential predictability induced by forcings as a function of the 

elapsed time, the RMS difference was analyzed between ensemble experiments and the 

control simulation for targeted variables (Figure 27). IC ensemble experiments were 

designed to replace the original initial forcing with the diurnal signal, resulting in huge 

differences to the control simulation at the start of modeled trajectories (Figure 27), 

consistent with the finding of Corti et al. (2015). As time elapsed, the impact of initial 

forcing was weakened rapidly and the difference between IC ensembles and the control 

simulation continuously decreased.  

For the BC ensemble experiments, the boundary forcing was replaced by the diurnal 

signal while other forcings were identical as used in the control simulation. As such, the 

RMS difference was minimum at the beginning of elapsed time. As time evolved, the 

“wrong” boundary forcing continuously dragged the model trajectories away from the 

control simulation, resulting in increasing RMS difference. Similarly, the SBC ensemble 

also showed minimum RMS difference at the beginning and gradually increased with time. 

Comparing the bottom variables (Figure 27b, d, e) with the surface (Figure 27a, c, 

f), the surface variables showed clear fluctuation of the RMS difference in the diurnal 

frequency (i.e., fluctuated every 24 hours), whereas the diurnal fluctuation was much less 

significant for those bottom variables. 
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Besides, it also showed a scale difference in the error induced by different types of 

forcing. Among the three groups of ensemble experiments, BC showed the largest growing 

error and the largest error variability (red line and shading in Figure 27), followed by SBC 

(black line and shading) and IC (blue line and shading). More specifically, we observed, 

for SST and BT, RMSE gradually changed as time evolved, indicating that the initial 

forcing still played a role on the temperature trajectories after some time. However, for 

both surface and bottom currents, there showed a prompt change immediately after the 

model initialized, suggesting that currents were extremely sensitive to the boundary forcing 

and less so to the initial forcing. 
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Figure 27. Ensemble mean and the 90% confidence interval of spatially-averaged 
RMS difference of targeted fields as a function of elapsed time. Targeted fields 
included (a) sea surface temperature (SST), (b) bottom temperature (BT), (c) 
surface along-shelf current (SV), (d) bottom along-shelf current (BV), (e) bottom 
cross-shelf current (BU) and (f) surface cross-shelf current (SU). RMS difference 
was between ensemble experiments and the control simulation. 
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The correlation of temperature (Figure 28a) between ensemble experiments and the 

control simulation showed that varying the initial forcing led to a broad range of correlation 

at the beginning of elapsed time, with worse correlation near the surface and near perfect 

correlation close to the topography bottom. As time continued to evolve, near the surface, 

the correlation improved greatly, whereas bottom temperature remained highly correlated. 

This indicated that the model initialization had a greater impact on the surface at the 

beginning of prediction, making the model trajectories start from a state with little 

similarity to the control simulation, whereas the bottom temperature was more robust and 

stable.  

When the boundary forcing changed, surface temperature started to diverge from 

the “perfect” trajectory, worsening the correlation as time elapsed. However, the bottom 

temperature remained highly correlated to the control simulation, suggesting that the 

influence of boundary forcing on the bottom temperature was very limited. A similar 

pattern was shown by the SBC experiments. Also, the level of correlation decrease under 

the influence of surface forcing was weaker than the impact from the boundary forcing.  

Overall, in terms of correlation, varying the forcings had little impact on the bottom 

temperature and growing impact from the bottom to the surface. Teng and Branstator (2011) 

also showed that the depth-integrated subsurface temperature had stronger and longer 

predictability than SST. Similar to the finding from the RMS difference analysis (Figure 

27), IC showed largest initial error which decreased over time, whereas BC and SBC 

showed growing error and variability with error magnitude of BC exceeding SBC. 
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The correlation of the principal current component (along-shelf current) between 

ensembles and the control simulation (Figure 28b) showed a similar pattern: IC had worse 

correlation at the beginning and the correlation improved as time elapsed; BC and SBC 

had the perfect correlation at the beginning and then the correlation decreased. The 

difference between currents and temperature was that there was a narrower range of 

correlation variability over depth. This indicated that there was less variation of correlation 

over depth for current. Moreover, this suggested that the bottom currents were strongly 

affected by the forcings compared with bottom temperature. 

 

 

 

Figure 28. Correlation of (a) temperature and (b) currents between ensemble 
experiments and the control simulation from the bottom to the surface. The shaded 
areas represent the range and limits of the correlation.  
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As mentioned in 4.2.3, relative entropy considers both the mean signal and 

spreading in measuring the difference between predicted distribution and the distribution 

of control simulation. Due to the computation limitation in calculating an extremely large 

covariance matrix of a variable, we used kernel EOF (Schölkopf et al., 1997) to decompose 

the variable into its principal components. Total variance explained by principal 

components suggested that using the largest principal component (1PC) explains 75% of 

the total variance, while adding the second largest component (2PC) increased the variance 

explained by 11%. In general, the spatial distribution of the variance reconstructed from 

1PC captured the total spatial pattern well (not shown). Thus, 1PC was considered 

sufficient for calculating the relative entropy.  

Relative entropy of SST between IC and the control simulation (Figure 29a) was 

decreasing monotonically, asymptotically and rapidly to zero, suggesting that the impact 

of initialization dominates the field on the first day. Afterwards, the ensemble distribution 

became identical to the “perfect” model in the statistical aspect, meaning the domination 

of initialization vanishes. As an example, Branstator and Teng (2010) also showed the 

monotonic decrease in the relative entropy caused by the model initialization. But they 

studied the decadal predictability and concluded that the predictability impact could be up 

to 9 years. However, our study showed that the predictability of initialization was only 

about 1 day in a fine resolution regional model.  

In the case of BC, the relative entropy was almost zero at the beginning of 

simulation period, suggesting that the ensemble distribution of BC began from being 

identical to the distribution of the “perfect” model. After that, relative entropy started to 

show fluctuation in diurnal frequency, indicating that SST started to react to the diurnal 
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signal continuously input to the system. Similarly, changing surface boundary forcing also 

led to zero relative entropy at the beginning and this entropy increased and fluctuated 

afterwards. According to relative entropy, BC and SBC shared a similar scale of 

predictability control of the system.  

Relative entropy of BT (Figure 29b) showed that the impact of the initialization 

dropped down monotonically with time but did not vanish until after 5 days of simulation, 

showing a longer persistence of the initial forcing. Besides, relative entropy from BC 

increased over time, suggesting that the impact of the boundary forcing became the most 

significant. Whereas surface boundary forcing had minimum effect on BT throughout the 

simulation period.  

Relative entropy of the currents (Figure 29c, d, e, f) showed that the surface forcing 

and the initial forcing had very limited impact, meaning the ensemble distribution of the 

SBC and IC was highly similar to the control simulation. Currents were strongly and 

potentially solely controlled by boundary forcing.  

Overall, for the surface temperature, initial forcing had the strongest predictability 

impact over the other two conditions at the beginning, surface boundary forcing and 

boundary forcing shared the similar importance of predictability control afterwards; for the 

bottom temperature, surface boundary forcing had the least impact on predictability; for 

the currents, boundary forcing dominated the process of current trajectory evolution.  
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Figure 29. Relative entropy of (a) SST, (b) BT, (c) SV, (d) BV, (e) SU and (f) BU as a 
function of elapsed time. 
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4.4.2 Spatial Control of Input Forcings 

In the previous analysis, spatially averaged and distribution integrated fields were 

analyzed to understand the temporal importance of initial, boundary and surface forcings. 

Here we quantified the spatial control to understand what area was more significantly 

affected by a specific type of forcing. We first calculated and showed the spatial 

distribution of RMS difference of SST between IC, BC, SBC and control simulation at 

different time stamps relative to the initialization (Figure 30). 

For the IC ensembles, the RMS difference was significant at the beginning of the 

prediction period and then the error decreased as the modeled trajectories progressed 

(Figure 30a, d, g, j, m, p). More specifically, at 0.5 days after the initialization, the error 

was overall large within the entire simulated region (Figure 30a). Afterwards, the error 

gradually decreased along the southern and western boundary of the simulated region, and 

that decrease along the boundary gradually extended to the inner region (Figure 30d, g, j, 

m, p). The decrease of error extending from the southern boundary to the inner region was 

more pronounced than the decrease along the western boundary, suggesting the simulated 

region was more significantly affected by current flowing in and out of the southern 

boundary.  

The BC ensembles showed patterns opposite to the IC ensembles (Figure 30b, e, h, 

k, n, q). At 0.5 days after the initialization, apparent RMS difference (>0.5 deg) started to 

appear along the southern and the western boundary (Figure 30b). And the error gradually 

propagated into the inner region (Figure 30e, h, k, n, q), especially through the southern 

boundary. Thus, this suggested that the flow from the south boundary had strong and large 
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variability and the impact penetrated to the very interior domain, making regions south of 

Point Sal under great influence from the south boundary forcing. Along the coastline north 

of Point Sal was protected from the influence of the boundary forcing possibly due to the 

“perfect” surface forcing.  

SBC experiments showed very limited RMS difference within the entire simulated 

region at 0.5 days (Figure 30c) and along the southern and the western boundary afterwards 

(Figure 30f, i, l, o, r) due to the impact of “perfect” initial forcing and boundary forcing. 

The surface boundary forcing was mainly affecting the interior domain, more pronounced 

along the coastline north of Point Sal, which was shielded from the influence of boundary 

forcing.  

Overall, initial forcing was only most pronounced within the entire simulated 

region for a short time after model initialization, whereas, afterwards, boundary forcing 

and surface boundary forcing shared the control of the simulation, with boundary forcing 

controlling large areas extending from the southern and the western boundaries and the 

surface forcing controlling the interior.  
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Figure 30. Spatial Distribution of Ensemble Averaged RMS difference of SST at 
each geographic location at different time steps from 0.5 days, 1.5 days, 2.5 days, 3.5 
days, 4.5 days to 5.5 days. RMS difference of SST is ensemble-averaged for each 
group of ensemble experiments.   
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To give a definite answer as to which forcing had the strongest influence at a 

specific place and time, we defined a cross-over time (Figure 31, Corti et al. (2015)) as the 

timing when the impact of initial forcing was exceeded by the impact of surface boundary 

forcing (i.e., when the RMS difference from SBC ensembles became larger than that from 

IC), denoted as 012
32

 and the timing when the impact of initial forcing was exceeded by the 

impact of boundary forcing, denoted as 12
32

. Calculating the cross-over time at each 

geographic location, we obtained a spatial map showing the relative importance of different 

forcings in the entire simulated region (Figure 32).  

For SBC experiments targeting SST (Figure 32a), the cross-over time was nearly 2 

days along the southern and the western boundary, and gradually increased to about 4 days 

near Point Sal and north of Point Sal. However, that short cross-over time along the 

boundary was not an indication of the influence of surface boundary forcing but the result 

of strong influence of boundary forcing, which we showed in Figure 30. From Figure 30 

we demonstrated that the surface boundary forcing mainly had its influence in the interior 

domain, especially along the coastline north of Point Sal. The cross-over time along that 

narrow region was about 2 days.  

For SBC experiments targeting BT (Figure 32c), the surface forcing influence was 

overall very limited, as the cross-over time in the interior domain was up to 8 days. Along 

the coastline, the cross-over time was about 2 to 4 days, potentially suggesting stronger 

influence from the surface forcing on shallow water depth.  

For BC experiments targeting SST (Figure 32b), cross-over time was less than 2 

days along the offshore boundary, especially along the southern boundary, indicating a 
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strong impact from the boundary forcing along the offshore boundary, consistent with 

Figure 30. The cross-over time gradually increased to up to 10 days from the offshore 

boundary to the interior, especially the coastline north of Point Sal. 

For BC experiments targeting BT (Figure 32d), the pattern of cross-over time was 

in general similar to the pattern of cross-over time targeting SST, as the cross-over time 

was as short as 1 day along the offshore boundary and up to 8 days along the coastline 

north of Point Sal. The difference was that the impact from boundary forcing on BT 

extended a further distance into the domain, suggesting the lack of influence from surface 

forcing resulted in more dominant influence from boundary forcing.  

Comparing the impact from SBC versus BC, and comparing the result on SST 

versus BT, we found that for SST, boundary forcing dominated the predictability along the 

offshore boundary and surface forcing dominated the impact in the interior domain, as the 

cross-over time of 45
65

 was shorter than the cross-over time of 745
65

 along the offshore 

boundary and longer in the interior domain. For BT, the surface forcing was more restricted 

and dominated only along the coastline, leaving the boundary forcing in control of the 

majority of simulated domain.  

Similar findings were seen regarding surface and bottom currents (Figure 32e, f, g, 

h, i, j, k, l): on the surface, boundary forcing had more control along the offshore boundary 

and surface forcing had dominant impact in the interior; on the bottom, boundary forcing 

had dominant control within almost the entire region, except a narrow band along the 

coastline controlled by the surface forcing. 
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Figure 31. Schematic representation of the RMSE caused by forcings and the 
definition of cross-over time. 
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Figure 32. Spatial Distribution of cross-over time calculated from RMSE between 
SBC and IC, between BC and IC for variables (a, b) SST, (c, d) BT, (e, f) SV, (g, h) 
BV, (i, j) SU, (k, l) BU. 𝐒𝐁𝐂

𝐈𝐂
 represents the timing when the impact of IC was 

exceeded by the impact of SBC; 𝐁𝐂
𝐈𝐂

 represents the timing when the impact of IC was 
exceeded by the impact of BC. 
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Next, we showed the spatial distribution of cross-over time calculated by relative 

entropy (Figure 33). This was done by treating each geographic location with the 100 

ensembles as an independent distribution, calculating the relative entropy of each group of 

ensembles, and lastly calculating the cross-over time between one forcing with the other. 

Results showed that the cross-over time calculated based on relative entropy was overall 

consistent with the cross-over time calculated based on RMS difference. One difference 

was that, based on relative entropy, boundary forcings and surface forcings were sooner 

for taking over the control from the initial forcing, or in another words, a shorter persistence 

of the initial forcing. 
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Figure 33. Spatial Distribution of cross-over time calculated from Relative Entropy 
between SBC and IC, between BC and IC for variables (a, b) SST, (c, d) BT, (e, f) 
SV, (g, h) BV, (i, j) SU, (k, l) BU. 
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4.5 Conclusion 

An automatic forecast system was developed to conduct the multiple downscaling 

regional ocean model (3km → 1km → 600m → 200m) near Point Sal and to implement a 

2-day forecast on a daily basis. We compared our forecast with the observed temperature 

and currents collected during the Fall 2017 Inner-shelf DRI field measurement campaign. 

Moreover, our real-time forecast was implemented on a daily basis in the Fall 2017, to 

assist the in-situ measurement. In general, the model prediction compared reasonably well 

to the observation. Furthermore, our forecast results were better than the persistence 2-day 

forecast, showing the validity of the developed forecast system. 

Uncertainty of the system could propagate from system bias in the atmospheric 

prediction COAMPS system, interpolation error from coarse resolution to fine resolution, 

modeling error from downscaling inside the forecast system, etc. In our predictability study, 

it was assumed that the prediction trajectories of the 200m layer forecast system was the 

perfect representative of the nature. Under this assumption, the predictability study 

neglected the above uncertainty sources and concentrated on the impact of forcing versus 

the intrinsic variability of the system. Thus, prediction skill was dependent on initializing 

a climate model in the correct state of internal climate variations, imposing accurate 

external forcing and correctly simulating the evolution of the ocean system. 

We studied the predictability of regional forecast near Point Sal by running 300 

ensemble simulations with different initial forcing, boundary forcing, and surface forcing. 

According to our analysis on the temporal control of forcings, initial forcing had the most 

dominant control within the first 24 hours after model initialization. Afterwards, boundary 
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forcing and surface forcing shared their control on the ocean surface, whereas the bottom 

of the ocean was more dominant by boundary forcing. Spatial control of forcings showed 

again that the initial forcing controlled the predictability of the entire domain within the 

beginning 24 hours. After the 24 hours, on the ocean surface, boundary forcing dominated 

the predictability mostly along the offshore boundary, whereas surface forcing controlled 

the interior, especially along the coastline north of Point Sal. On the bottom of the ocean, 

surface forcing had very limited impact except along the coastline where the water depth 

was much shallower.  

Now returning back to our 2-day multi-grid forecast system, our findings of the 

predictability from different forcings suggested that, on the first day, initial forcing was the 

most important, and on the second day, the source of predictability was contributed by 

boundary forcing along the offshore boundary and surface forcing within the interior 

domain. Also, although our predictability study focused on a fine resolution grid (~200m 

grid) near Point Sal, our findings may be general and applicable to other near-real time 

coastal forecast models of similar temporal and spatial scales.  
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CHAPTER 5. CONCLUSION 

This thesis work was motivated by the recurrent marine heatwaves and the ocean 

extremes in the North Pacific that have caused severe consequences to coastal ecosystems. 

This raised questions as to (0) how well we could model and represent the characteristics 

and statistical behaviors of North Pacific marine heatwaves, (0) how well we could forecast 

the coastal ocean conditions and understand the local versus remote control on the these 

coastal conditions, and (0) what the role of the fine-scale local coastal processes was on 

controlling the near-real time forecasts of a small area, continental-shelf coastal waters. To 

answer these questions, we developed multi-scales statistical and dynamical model 

frameworks, including the Linear Inverse Model (LIM) and the Regional Ocean Modeling 

System (ROMS). 

In 0, we analyzed the composite evolution of observed Northeast Pacific marine 

heatwaves and reproduced the statistics and evolution of the observed by a large LIM 

ensemble, where each ensemble member was considered an alternative trajectory to what 

had already happened in the historical records. These alternatives provided us a large 

sample pool of simulated North Pacific marine heatwaves, which were then used to 

understand the link to the tropical Pacific and the role of climate change. Our result 

suggested that the durations of the Northeast Pacific marine heatwaves were linked to the 

tropical Pacific and, thus, indicated that these marine heatwaves had a predictable 

component. The intensities of the Northeast Pacific marine heatwaves were linked to the 

North Pacific variability, which was intrinsically unpredictable. As the background 

climatology became warmer, these Northeast Pacific marine heatwaves were projected to 
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occur more frequently in the future. Whether the higher frequency of occurrence was 

statistically significant remained to be explored. 

In 0, we assessed the forecast skill of North Pacific coastal waters to understand how 

we predicted the ocean conditions relevant to the coastal ecosystem, if not just the ocean 

extremes. To that end, we constructed a LIM framework of the tropical Pacific and North 

Pacific SST and SSH, considering SSH as a proxy of subsurface ocean temperature. Our 

result showed that coastal waters of North Pacific eastern boundary had higher forecast 

skill than the coastal waters of western boundary. By retaining only the tropical forcing 

versus the North Pacific forcing in the LIM, we found that the high forecast skills along 

the North Pacific eastern boundary were dependent on both local dynamics and remote 

forcing by ocean and atmospheric tropical teleconnections. Specifically, local dynamic 

impact originated from the North Pacific SSH, i.e., memory from the subsurface ocean 

temperature, whereas the remote tropical Pacific forcing had equivalent control, or even 

slightly higher control along the lower latitude of North Pacific. 

In 0, we developed a multi-grid near-real time ROMS forecast system to predict 48-

hours ocean conditions near Pt. Sal, California. The multi-grid system included a grid with 

horizontal resolution of 3km, to 1km, 600m and 200m. The forecast system aimed to 

provide the future ocean conditions of the 200m grid on a daily basis and to help guide the 

in-situ measurement campaign at the time. Our forecast results compared well to the in-

situ collected observation. We then designed ensemble sensitivity experiments forced by 

various initial forcing, boundary forcing and surface boundary forcing. These experiments 

were designed to understand the role of the very fine-scale local processes, which we 

assumed were contained in the initial forcing, compared to the role of the remote processes, 
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i.e., the boundary forcing. Through these experiments, we found that initial forcings had 

dominant control on evolution of the trajectory for no more than 48-hours, whereas the 

boundary forcing became the dominant source of influence afterwards.  

In summary, this thesis had adopted both the statistical and dynamical modelling 

techniques from understanding large-scale phenomenon down to forecasting the ocean 

conditions of a fine-scale coastal region. These two techniques are the major and most 

important ocean modelling approaches (Jacox et al., 2020b). While the applications using 

these two techniques did not directly overlap in this thesis, they individually provided 

understanding of the involved dynamics. However, it is of interest to explore the 

consolidation of the two kinds for further improving multi-scale hybrid forecasting systems, 

Thus, in the follow-up studies, we plan to explore the statistical downscaling of the large-

scale North Pacific LIM forecast to obtain fine resolution coastal state variables, which 

serve as inputs to drive the regional dynamical model for conducting seasonal forecast of 

coastal waters. We plan to expand the studies focusing on ocean extremes and forecast of 

the North Pacific to the entire globe. We plan to evaluate and construct a benchmark case 

of the hybrid California coastal water forecast driven by the statistically downscaled 

boundary forcing and later expand to the U.S. coastal waters. 
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