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”At the heart of science is an essential balance between two seemingly contradictory

attitudes an openness to new ideas, no matter how bizarre or counterintuitive they may be,

and the most ruthless skeptical scrutiny of all ideas, old and new. This is how deep truths

are winnowed from deep nonsense.”

Carl Sagan
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SUMMARY

When individuals in a collective system are constrained in terms of sensing, memory,

computation, or power reserves, the design of algorithms to control them becomes chal-

lenging. These individual limitations can be due to multiple reasons like the shrinking

size of each agent for bulk manufacturing efficiency or enforced simplicity to attain cost

efficiency. Whereas, in some areas like nano-medicine, the nature of the task itself war-

rants such simplicity. This thesis presents algorithms inspired by biological and statistical

physics models to achieve useful collective behavior through simple local physical interac-

tions and, minimalist approaches to persistify tasks for long durations in collectives with

limited capabilities and energy reserves. The first part of the thesis presents a system of

vibration-driven robots that embodies the features of simplicity described above. A combi-

nation of theory, experiment, and simulation is used to study dynamic aggregation behav-

ior in these robots facilitated via short-range physical attraction potentials between agents.

Collectives in a dynamically aggregated state are shown to be capable of transporting ob-

jects over relatively long distances in a finite arena. In the rest of the thesis, two different,

yet complementary systems are studied and elaborated to highlight the usefulness of dis-

tributed inactivity and activity modulation in aiding persistification of tasks in collectives

incapable of implementing complicated algorithms to incorporate regular energy replenish-

ing cycles. To summarize, an approach to achieving dynamic aggregation and related tasks

like object transport in a constrained brushbot system is described. Two different artificial

and biological collective systems are explored to reveal strategies through which tasks can

be persistified without requiring complicated computations, sensing, and memory.
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CHAPTER 1

INTRODUCTION

Self-organizing collective behaviors are witnessed in nature at many scales and extents

of sophistication. Shoals of fish aggregating to intimidate predators [1], active versions of

gels[2], liquid crystals [3], fire ants forming rafts to survive floods [4], and bacteria forming

biofilms to share nutrients when they are metabolically stressed [5, 6] are a few examples.

Fully comprehending how these ensembles of driven entities cooperate and self organize

to form beautiful patterns and perform useful tasks, how they are controlled, how they

sense others and the environment, and what information is exchanged in between agents

to accomplish the collective goal, is a substantial challenge. Our knowledge about this

has, however, increased over the last couple of decades, owing to an increase in research

on collective behavior across several disciplines. This can be attributed to the availability

of tools for conducting laboratory experiments, better computational methods, resources,

and techniques for analyzing large data sets reflecting inter-agent interactions, etc. One

particular discipline that has benefited a lot from these studies and has numerous existing

and potential applications is swarm robotics.

Swarm robotics, as a discipline, aims at unraveling approaches for the control and coor-

dination of a large number of robots to accomplish useful collective behavior. Inspired by

natural systems, researchers have made strides in recent decades towards enabling ensem-

bles of simple, independent units to cooperatively accomplish complex tasks [7]. Owing to

their robustness, flexibility, and scalability, these swarms are particularly interesting when

compared to single, monolithic robots for dynamic and unpredictable task domains such

as space exploration or disaster management where risk minimization is paramount [8]. A

particular challenge in swarm robotics, however, is deciding the complexity surrounding

design and mass manufacturing of independent robot units without compromising the col-
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lective functionality. With continued progress in the semiconductor industry that enables

a large number of circuitry to fit in relatively small chips, combined with technological

advances in control theory, motorized machinery, etc., researchers have been successful in

overcoming this challenge by being able to produce highly functional computational units

at small scales that can accomplish complex collective tasks [9, 10, 11].

However, there is a limit to the computational capabilities attainable per unit area of a

robot chip and recent forecasts on the saturation of Moore’s law suggest that the per unit

area component density of a chip will plateau in a few years [12]. This poses a significant

challenge for approaches to collective robotics platforms that rely heavily on the sensing or

communication capabilities of individual robots to achieve their goals. This issue becomes

more pronounced as we consider the area of micro- and nano- robotics that has seen a

recent boost owing to numerous potent applications including bio-medicine [13]. These

small-scale systems are incapable of traditional computation and require new machinery to

implement distributed protocols for collective behavior [14].

Fortunately, we find many biological and physical collective systems in nature at vari-

ous scales (e.g. ants, termites, bacteria, colloids, etc.) that can guide further research in this

area. Owing to the phenomenon of emergence, some of these collectives can accomplish

complex behavior and dynamics despite of being composed of small units with low to no

computational capabilities. The term “emergence” was coined by the philosopher G.H.

Lewes in 1875 [15] and has since been used in various fields to refer to any observable

outcome that is greater than the sum of its parts [16, 17]. The collective intelligence in

natural swarm systems is usually, not proportional to the sum of the intelligence of individ-

ual entities. Instead, it is several orders of magnitude more, and an outcome of simple but

smart repetitive local rules or interactions. On a separate note, while centralized, connected

system functionality depends heavily on ensuring each component is sophisticated and ro-

bust, decentralized and distributed collectives can function well with simpler redundant

constituents [18]. Additionally, many of the natural decentralized collectives are adept at
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performing tasks persistently for long durations of time [19, 20, 21]. Keeping this in mind,

the proposed line of research is expected to provide us with simple, novel tools for swarm

manipulation and control while reducing the complexities of individual entities, and to do

so persistently.

The objective of this thesis is to develop a series of computational and experimental

studies for collective/modular robotic systems that are sensing and communication con-

strained, and probe the effect of distributed inactivity in such systems by leveraging ideas

and principles from statistical physics and active matter. Towards this goal, we explore

principles of achieving collective aggregation that can leverage fundamental physics of in-

teractions and thus, can be utilized across many scales. To develop these principles, we

take a three-pronged approach: a theoretical abstraction based on a self-organizing particle

system, an experimental robot system inspired by this, and a physical simulation platform

to support and extend the experimental results. We develop a system of minimalistic analog

robots that can utilize mechanics and physical dynamics to accomplish goals. This robotic

testbed is used as an experimental tool to study and analyze distributed stochastic algo-

rithms for collective aggregation behavior, which are in turn inspired by studies on statisti-

cal physics algorithms. We support our findings with grid-based particle and physics-based

simulations for higher population sizes which is unachievable with our robotic testbed.

We consider the problems of dynamic aggregation, dispersion, and collective transport.

Dynamic aggregation is defined as the collective behavior where entities aggregate without

the specificity of an aggregation site and remain motile in the aggregated form. Aggrega-

tion is a prerequisite for many other collective tasks like object transport and manipulation,

information transfer, etc., and constitutes a widely studied collective behavior. In biological

collectives, aggregation can aid more fundamental physiological processes like thermoreg-

ulation, collective food processing, etc. Hence, this particular collective behaviour is an

important one to study and serves as a good starting platform to explore our algorithms and

findings. Inspired by the phase transition in a statistical physics model called the ‘Fixed
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Magnetization Ising Model’[22], our theoretical algorithm predicts a sharp transition from

dispersed to aggregated states as attraction bias between neighboring agents increases. This

is mirrored in our robotic studies where a parameter representing local interparticle attrac-

tion is increased to transition the robots from a dispersed phase to a dense and compact

aggregated state. These results point to a fruitful interplay between algorithm design and

active matter physics that can result in new non-equilibrium physics and principles for

programming collectives without the need for complex algorithms or capabilities. This

study led to the following publication: S. Li*, B. Dutta*1, S. Cannon, J. J. Daymude, R.

Avinery, E. Aydin, A. W. Richa, D. I. Goldman, and D. Randall, “Programming active cohe-

sive granular matter with mechanically induced phase changes”, 2021. arXiv:2009.05710

[cond-mat.soft]. (Accepted by Science Advances)

The next goal of this thesis is to explore task persistification in constrained systems. We

probe the effects of selective inactivity on the long-term autonomy of tasks in robot simu-

lations. We assign fixed lifetimes to robots and study if we can achieve task persistification

through strategies where robots hibernate intermittently. In particular, we develop a strat-

egy of selective and periodic inactivity to achieve persistence of dynamic aggregation in the

above system where each individual hibernates periodically based on a bias. We show the

usefulness of prolonged dynamic aggregation achieved via this selective, periodic hiberna-

tion through a collective “debris removal” task where the robotic system is commissioned

with keeping a fixed area clean of debris. This approach of selective inactivity is inspired

by biophysical collective systems that exhibit the usefulness of distributed inactivity. The

findings from this study are reported in the following article: B. Dutta, D. Randall, M.

Egerstedt, “Task persistification with distributed inactivity in robot swarms” (submitted to

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021).

In the penultimate section of the thesis, we study one such biological system. We ex-

plore how fire ants distribute their workload while collectively excavating their nests, and

1* marked authors contributed equally
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show the benefits of distributed individual laziness while carrying out a collective task, like

excavation, in a confined environment. Fire ants are great excavators, often rebuilding their

nests several times in short periods due to heavy rainfalls and other environmental factors.

We present laboratory experiments with fire ants to show how they distribute workload

and implement other strategies like selective retreats, to efficiently excavate their nests.

We support our observations with statistical data analysis, simulations, and robotic exper-

iments. This research is published in the following article: J. Aguilar, D. Monaenkova, V.

Linevich, W. Savoie, B. Dutta, H. S. Kuan, M. Betterton, M. Goodisman, and D. Goldman,

“Collective clog control: Optimizing traffic flow in confined biological and robophysical

excavation,” Science, vol. 361, no. 6403, pp. 672677, 2018.

The outline of this thesis is as explained below. In chapter 2, we present a literature

review of research in the broader area of collective behavior from the perspective of three

distinct disciplines with a special focus on collective aggregation. We then, provide a com-

prehensive account of the task persistification literature in robotics. We highlight the need

for simpler algorithms for persistifying tasks as individual agents are forced to work with

limited capabilities in constrained environments. In chapter 3, we present our experiments,

theory, and simulations for collective dynamic aggregation. We elaborate on the designs

of the robots, simulation details, and theoretical findings and conclude with the demon-

stration of some application-specific tasks. Chapter 4 is dedicated to describing the effects

of distributed inactivity on the collective aggregation dynamics of robots and how it can

be selectively and periodically tuned to achieve task persistification. Chapter 5 extends

and complements the idea of task persistence mediated by selective distributed inactivity

by providing experimental data and analysis on fire ant excavation system. Chapter 6 con-

cludes the thesis by providing a summary of the main findings of the thesis and highlighting

some potential future directions.
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CHAPTER 2

LITERATURE REVIEW

Many approaches have addressed the challenging task of designing and controlling collec-

tive robotic behavior. As a result, several taxonomies have emerged from these approaches.

For the scope of this review, we classify these approaches into three categories: bio-inspired

approaches, multi-agent robotics, and active matter studies. Although there is some overlap

in the ideologies in these areas, we highlight the differences in these approaches, and how

studies have harnessed specific attributes from each of these to produce robust collective

behavior in artificial swarms.

2.1 A biologist’s bird’s eye view on collectives

Bio-inspired approaches in swarm robotics (see, e.g., [23] and the references therein)

mimic phenomena observed in nature. Biological swarming systems in various scales are

capable of harnessing simple local interaction rules into complex emergent tasks and be-

havior. Many algorithms of collective behavior have been derived from biological systems.

Some of these representative research studies pertinent to swarm self-aggregation are ex-

plained below. However, with notable exceptions, these studies tend to lack the backing

of formal analysis and proofs that yield a full understanding of the underlying dynamics.

Consequently, most bio-inspired collective robotics studies are phenomenological. A typi-

cal methodology for a bio-inspired collective robots study can be divided into the following

steps [23]:

• Laboratory experimentation with model biological systems to find key components

of collective behavior
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• Abstraction and analysis of the key components into mathematical models and sim-

ulation studies

• Construction of robotic setup and translation of the model into robotic algorithms

Aggregation in nature has several uses. For example: it is used for safety, foraging, in-

teractions, and information exchange in many biological systems like that of social insects.

It is often also fundamental for any collective to aggregate in order to accomplish other

tasks crucial to survival and existence like self-defense [24], thermo-regulation in bees

[25], and flood escape by the formation of rafts in fire ants [4]. Some model organisms

that have inspired aggregation algorithms are slime mold [26], bees [27], cockroaches [28],

c.elegans [29], etc. Some of these algorithms rely on long-range cues like light gradient

[30] or thermal gradient in addition to short-range attractions whereas some other methods

are based on probabilistic finite state machines (PFSM) which translate to robots randomly

exploring the domain until they meet neighbors and stochastically decide whether or not

to join the aggregate [31]. In each of these specified models, parameters like the proba-

bility of joining the aggregate are quantified by rigorous analysis of the biological system

that inspired the algorithm. For example, in [32], probabilistic estimation of individual

parameters of cockroaches like dynamics of motion, interaction time distribution, etc are

experimentally quantified. These parameters are then used for both simulation and robotic

experiments. Similarly, [33] proposes a population dynamics model, and a robot simu-

lator based on studies of social German cockroaches that qualitatively and quantitatively

show that single aggregate formation requires a minimal mobility or sensing threshold.

These studies thus pave the way for bio-inspired collective behavior algorithms, which

form a subset of multi-agent algorithms. However, these studies have a distinct flavor: the

phenomenological methodology described above, that distinguishes them from the other

multi-agent studies.
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2.2 Multi-agent swarm engineering: A control perspective

Multi-agent swarm engineering comprises of a broad umbrella of approaches that relies on

tools from control theory, graph theory, probabilistic methods, etc. In some studies, swarms

are modeled using networks with robots as nodes that communicate over the network’s

edges (see [34] for a comprehensive review). Such approaches can leverage the wealth

of graph theory literature to map convergence of collective outcomes onto various graph

measures, often yielding strong algorithmic guarantees. In [35], the authors present a good

review of structural taxonomies for multi-agent algorithms and tabulated the reach and ma-

turity of these algorithms in terms of applications. They identify 10 branches based on

mathematical structures of the algorithm, namely artificial potential functions, distributed

feedback control, geometric algorithms, state machines and behavior composition, bio-

inspired algorithms, density-based control, distributed optimization algorithms, local opti-

mization algorithms for global behavior, and centralized optimization algorithms. These

algorithms were further classified to link studies that have utilized these mathematical ap-

proaches to applications like pattern formation, area coverage, collective transport, etc. A

few of these algorithms have been used in the context of aggregation. We covered a sub-

set of these studies (the bio-inspired algorithms) in the previous section. Among the rest,

consensus algorithms are the most widely used distributed algorithms where each agent

acquires its neighbor’s state (position for aggregation) and averages its state with neighbors

[36]. Numerous studies look into the convergence of consensus algorithms under various

graph structures and constraints[37, 38, 39].

Several other review papers outline this relatively broad field of swarm engineering with

the help of relevant taxonomies, for example: [40] reviews the field in terms of methods and

collective behavior, [41] classifies the literature by swarm and communication properties,

and [42] presents a review of swarm tasks.

Highly analogous to approaches above, distributed computing models robots as simple,
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homogeneous units in an effort to understand which behaviors are theoretically possible

under a given set of limitations on sensing, communication, or computational power [43,

44, 45]. Both of these approaches often rely critically on robots computing and commu-

nicating complex state information, requiring relatively sophisticated hardware that can be

prohibitive at small scales.

A variety of terrestrial swarm robotic testbeds have tested one or more of the aforemen-

tioned methodologies in achieving collective tasks. A few of those are tabulated below in

Table 2.1 showing their cost, hardware requirements, and power reserves. While this list

is not exhaustive, it provides a good sample set to highlight the cost, sensing and power

resources, and scalability of the state-of-the-art robotic testbeds. Almost all of these robots

depend on one or more sensors for task execution and have a finite battery life.

Table 2.1: Comparisons of swarm robotics test-beds

Robot Cost
($)

Scalable
operation

Sensing Locomotion Size
(cm)

Battery(h)

Alice [46] 30 None Distance Wheel, 1cm/s 2 3.5-10

Kilobot [9] 10 Charge, power,
program

Distance, ambient light Vibration, 1 cm/s 3 3-24

Formica [47] 15 None Ambient light Wheel 3 1.5

Jasmine [48] 90 Charge Distance, bearing, light colour Wheel 3 1-2

E-puck [11] 450 None Camera, distance, bearing, IR
proximity, acc, encoders

Wheel, 13 cm/s 7.5 110

R-one [49] 150 None Visible light, accel/gyro, IR
sensors, encoders

Wheel, 30 cm/s 10 6

Droplets [50] 25 Charge Distance, bearing, ambient light,
RGB colour

Vibration 4.4 −

iRobot [51] − Charge, power,
program

Camera, distance, bearing, bump Wheel, 50cm/s 12.7 3

Swarm-Bot [52] − None Camera, distance, bearing,
proximity, accel/gyro

Treel 17 4-7

GRITSBot [53] 50 Charge, power,
program

Range, Bearing, Wi-Fi, GPS Wheel, 25cm/s 3 1-5

Khepra-III 2750 none Distance, Bearing, IR Wheel, 50cm/s 13 1-8
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2.3 Active matter to programmable matter

As individuals are simplified to maximize cost efficiency and are miniaturized [54] to over-

come thermodynamic limits of computing [55], each of the above methodologies comes

with some inherent tradeoffs that make it less suitable for useful applications. Traditional

robotic functions of movement, communication, and computation become very limited, as

do the power reserves used to drive these functions [14]. Thus, the protocols used to control

these systems must both respect these strict limitations and scale with the size of the swarm

while achieving the desired task, motivating a search for highly simplified, distributed al-

gorithms.

Fueled by this quest, researchers have started looking into fundamental physical sys-

tems driven out of equilibrium using statistical physics tools to facilitate collective robotics

research. Dynamic self-assembly into complex architectures is one of the key attributes of

these systems and forms a major area of ongoing active matter research. This is a relatively

new way to look at macroscopic swarm robotics problems under constraints. However,

these tools have been used for nearly a decade to study collective behavior in both natural

and man-made micro/nanoscale active matter systems.

One can find a plethora of comprehensive review articles in this domain. Based on the

propulsion mechanisms, active matter is broadly classified into two subgroups: active col-

loids and microswimmers. Active colloids utilize self phoretic mechanism to propel them-

selves whereas swimmers depend on molecular rotational machineries like helical flagella

for propulsion. An extensive list of experimentally realized active matter systems is pro-

vided in [56] along with propulsion mechanism and speed. This information is summarized

in Figure 2.1 and helps us identify the mechanism, scales, and ranges at which these sys-

tems work.
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Figure 2.1: Examples of experimentally realized artificial active matter

Regardless of the propulsion mechanism, these systems exhibit an array of interesting

emergent collective behavior ranging from steady-state patterns like bands/lanes [57, 58] to

dynamic structures like pulsating rings/ rotating vortices [59]. For an extensive review of

such behavior in active colloids, we refer to [60] where the authors formally review single

particle to collective dynamics highlighting avenues for further research. A similar review

[61] elaborates the physics behind the individual and collective dynamics of swimmers.

Microswimmer collective dynamics are more evolved and complex than their active col-

loidal counterparts and in this study, we will limit ourselves to drawing formal connections

between macroscopic swarm robotics systems and the latter.

It is important to understand that while the motion of passive colloidal particles is a

result of thermal fluctuations alone, active colloids exhibit active swimming in addition

to thermal fluctuations. Thus, most equilibrium theoretical tools based on energy mini-

mization and entropy maximization cannot be directly applied to these systems. Direct nu-

merical modeling is thus the preferred research approach, along with a few lesser popular

continuum and kinetic approaches [62]. However, recently, connections between collec-

tive features of such self-propelled systems and well-studied equilibrium models are being

drawn [63, 64, 65]. A great formal insight into such connections and their shortcomings

can be found in [66].
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A minimalistic model for active particle dynamics is an active brownian particle [56,

60] whose stochastic equations of motion are as follows:


ẋ = v cosϕ+

√
2DT ξx

ẏ = v sinϕ+
√

2DT ξy

ϕ̇ =
√

2DR ξϕ

(2.1)

where (x, y, φ) represent the positional state, v is the self-propulsion speed, ξx,y denote

the noise components, and DR;DT are the thermal rotational and diffusional coefficients

respectively.

In Chapter 3, we study a robotic system whose dynamics can be explained by an ex-

tension of active brownian particles called chiral active brownian particles. The dynamical

equations of such a system is represented by an additional rotational drive term as shown

below: 
ẋ = v cosϕ+

√
2DT ξx

ẏ = v sinϕ+
√

2DT ξy

ϕ̇ = ω +
√

2DR ξϕ

(2.2)

This robotic system with inter-particle attraction is critically analyzed for aggregation dy-

namics theoretically, computationally and experimentally, and the findings are reported in

Chapter 3. Therein, we explore the problem of dynamic free aggregation, where robots

gather together without preference for a specific aggregation site and are motile in aggre-

gate form.

In summary, some approaches to aggregation problems in the literature rely on exter-

nal fields to actuate robot collectives, using global, coordinated guidance to achieve their

goals [67, 68, 69]. Some works take inspiration from emergent behavior in biological sys-

tems but lack rigorous mathematical foundations explaining the generality and limitations

of the resulting algorithms. Other approaches rely on some form of long-range sensing. For
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example, the authors equip robots with speakers and microphones that can be used to infer

relative position and distance between members of the swarm in [31]. In another study,

the authors mimic biological stigmergy which is indirect communication through an active

environment by allowing robots to emit signals that propagate throughout their surround-

ings to attract other robots [70, 71]. More recent results indicate that robots can aggregate

reliably [72], achieve distributed consensus [73], and perform spatial coverage [74] with-

out computation or communication, using only a binary line-of-sight sensor. Our focus,

instead, is on self-actuated systems that are highly resource-limited and utilize strictly lo-

cal interactions between robots to induce macroscale behaviors. This thesis takes a stab at

approaching this by offloading emergent computation on mechanics.

2.4 Task persistification

Energy-aware swarm robotics policies are designed to aid long-term autonomous appli-

cations. Most of these approaches typically rely on designing smart algorithms to incor-

porate repeated charging routines to recharge robot batteries without affecting the overall

system trajectories and outcomes. For example, in [75] the authors work toward a heuris-

tic algorithm to help a multi-robot system cover targets or tasks persistently by adjusting

target-specific costs based on detours to charging stations. Another study divides a team

of robots into “task” and “delivery” robots, where delivery robots are routed to provide en-

ergy resources to task robots based on delivery requests. The authors pose this as a vehicle

routing problem with time windows and solve the scheduling problem using mixed inte-

ger quadratic programs [76]. Similarly, [77] formulate an optimization problem leveraging

control barrier functions with energy constraints over persistified tasks, and demonstrate the

application of the devised algorithm on a set of wheeled, mobile robots in the Robotarium,

which is an open-source experimental platform [10].

Although these studies are significant milestones towards energy aware swarming poli-

cies, we wish to focus on systems that lack the basic intelligence necessary to perform any

13



of the above-discussed algorithms. Here we take inspiration from some studies on biophys-

ical systems for simpler strategies of efficient long-term behavior. For example, [78] illus-

trates the usefulness of uneven workload distribution in the foraging behavior of bees. This

disproportionate share of workload in eusocial insect societies is associated with the term

“elitism” and is prevalent across other organisms [78, 19]. Similarly, some recent work on

monodisperse mixtures of isometric active and passive colloidal particles show that binary

mixtures can phase separate from an initial disorganized configuration with minimal pres-

ence of active particles [79]. With these relevant findings in place, we propose to explore

the effects of distributed inactivity in collective systems under constraints. We hypothe-

size that bouts of lazziness in collective systems may be quintessential to enhancing task

efficiencies and persistence.

14



CHAPTER 3

DYNAMIC COLLECTIVE AGGREGATION

We first develop a distributed stochastic algorithm for a self-organizing particle system

(SOPS) on a discrete lattice to achieve aggregation. We show that there is a phase change

in the system from dispersed (behaving like a gas) to aggregated (behaving like a solid) as

a parameter representing attractive pairwise interactions is varied. Next, we design physi-

cal robots to replicate features of the SOPS algorithm to test whether simple relaxations of

the theoretical model retain the dominant collective behavior. These BOBbots (or behav-

ing, organizing, buzzing robots) use physical ferromagnetic attraction to implement a close

variant of the algorithm without any computation, communication, proximity sensing, or

persistent memory whatsoever. Finally, we use physical simulations of the robotic system

to explore whether the predicted behavior persists in significantly larger collectives. We

conclude with some tasks and other relevant findings related to this phase change.

3.1 Simulations of SOPS showing phase change

The SOPS consists of particles that exist on the nodes of a triangular lattice, with at most

one particle per node. The original algorithm for aggregation is inspired by the “Fixed

magnetization Ising model for ferromagnetism”[22] and the moves can be described as

follows. Particles on the lattice can move stochastically on a bounded region along lattice

edges favoring positions with more particle neighbors according to a bias parameter λ > 1

(Fig. 3.1 A). Each particle can only assess the number of particles occupying adjacent

lattice nodes (when required) and does not have access to any global information such as

a coordinate system or the total number of particles. The pseudocode for this theoretical

SOPS algorithm for aggregation and dispersion is presented in Algorithm 1.

One can express this sequence of random particle activations and the resulting random

15



Algorithm 1 Markov chainM for aggregation and dispersion in SOPS
Beginning at any configuration of N particles, fix a λ > 1 and repeat:

1: Choose a particle P uniformly at random; let ` be its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: Let n be the number of neighbors P has in location `, and let n′ be the number of

neighbors it would have in location `′.
5: if q < λn

′−n then P moves to `′.
6: else P remains at `.

particle moves as a Markov chain. This Markov chain can be carefully analyzed to provide

bounds on λ that proves a transition from dispersed states to aggregated states when λ is

increased. A previous study looked at the same problem in the SOPS but with the difference

that particle configurations were restricted to be connected components and proved bounds

on λ that separated dispersed and aggregated states.[80, 81] Following similar techniques

our explorations proved a transition point λ > 5.566 above which the system evolves to

aggregated states[82].1 The theoretical analysis also suggested that compact connected

components are formed in the aggregated states where the perimeter(PMC) of the largest

component should scale as O(
√
NMC) where NMC is the size of the component.

We ran discrete particle simulations for the algorithm defined in algorithm 1 for dif-

ferent numbers of particles and different values of λ. The plots from these simulations

give a strong indication that this aggregation algorithm indeed undergoes a phase transition

around the theoretical transition point of λ ∼ 5.566 where the macroscopic behavior of the

system suddenly changes from dispersion to aggregation. (Fig. 3.1 C–D).

1The theoretical analysis were done in collaboration with former graduate student, Sarah Cannon.
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Figure 3.1: The theoretical self-organizing particle system (SOPS). (A) A particle moves
from a node where it has n neighbors to a node where it would have n′ with probability
min{λn′−n, 1}, where λ > 1. Thus, moves that decrease the number of neighbors are made
with proportionately smaller probability (e.g., in the left insets, p1 = λ−3 < λ−2 = p2),
while moves that increase or maintain the number of neighbors are made with probability 1
(e.g., in the right inset, p3 = 1). (B) Time evolution of a sample simulated SOPS with 1377
particles for λ = 7.5 showing progressive aggregation. The bulk of the largest connected
component is shown in green and its periphery is shown in black. (C) Time evolution
of NMC , the size of the largest connected component, showing dispersion for λ = 1.5
and aggregation for λ = 12. (D) Phase change in λ-space for the aggregation metric
AMC = NMC/(k0PMC

√
N), where k0 is a scaling constant, PMC is the number of robots

on the periphery of the largest component, and N is the total number of robots. This phase
change is qualitatively invariant to the system’s size.
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3.2 Theory to practice: a physical embodiment of aggregation and dispersion

The SOPS model demonstrates that agents can achieve self-organizing aggregation merely

by moving randomly, preferring positions with more neighbors. Although this simple dis-

tributed, stochastic algorithm requires minimal computational capabilities compared to oth-

ers in the literature, physical robots would seemingly still need to perform computation and

sensing to implement its rules. Here, we introduce a slight variant of the SOPS algorithm

that maintains the same provable behavior, but can be implemented by a system of robots

lacking any computation, communication, sensing, and persistent memory.

First, we modify the transition probabilities of the SOPS algorithm so that particles

no longer explore potential moves before taking them, as this is physically difficult for

rudimentary robots to achieve. The original transition probabilities are expressed as a ra-

tio between the weights of the current and proposed system configurations, as required by

the celebrated Metropolis-Hastings algorithm [83]. Instead of moving from a node with n

neighbors to one with n′ neighbors with the original probability min{λn′−n, 1}, the mod-

ified algorithm makes such a move with probability λ−n. This potentially reduces the

probabilities of some moves by a constant (at most λ5), but importantly does not change

the algorithm’s stationary distribution.
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Figure 3.2: BOBbot and experimental arena design. (A) Oblique view of a BOBbot
showing the main electro-mechanical components. Inset: Layered view. (B) Horizontal
cross-section of the BOBbot showing the loose magnets (red circles) in four alternating
slots, the configuration used in this study. (C) Schematic of experimental setup. Inset:
Diagram representation of three BOBbots interacting. (D) The experimental platform, with
white track lines showing a sample BOBbot trajectory.

Next, we introduce a collective of BOBbots (Fig 3.2 A) whose design physically em-

bodies the modified aggregation algorithm, capturing its salient features while replacing

all sensing, communication, and probabilistic computation with physical morphology and
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interactions. Each BOBbot has a cylindrical chassis with a base of elastic “brushes” that

are physically coupled to an off-center eccentric rotating mass vibration motor (ERM).

The vibrations caused by the rotation of the ERM are converted into locomotion by the

brushes. Due to asymmetry in this propulsion mechanism, the BOBbots traverse predomi-

nantly circular trajectories that are randomized through their initial conditions but — unlike

the SOPS particles — are inherently deterministic with some noise.

Analogous to the modified transition probabilities in the aggregation algorithm that

discourage particles from moving away from positions where they have many neighbors,

each BOBbot has loose magnets housed in shells around its periphery that always reorient

to be attractive to nearby BOBbots (Fig 3.2 B). The probability that a BOBbot detaches

from its neighbors is negatively correlated with the attractive force from the number of

engaged magnets, suggesting it should approximate the movement probabilities given by

the algorithm which scales inversely and geometrically with the number of neighbors. We

subsequently verify this assertion experimentally. The strength of the magnets determines

whether the system aggregates or disperses at long times (analogous to λ in the algorithm),

though the magnets must always be weak enough to allow the BOBbots some probability

of detachment.

3.3 Experiments and simulations

We investigate the degree to which collectives of BOBbots aggregate as a function of their

peripheral magnet strength FM
2 in both robotic experiments and physics-based discrete el-

ement method (DEM) simulations. The experimental protocol begins with placing magnets

of a particular strength FM into the BOBbots’ peripheral slots. The BOBbots are positioned

randomly in a rectangular arena (Fig. 3.2 C–D) and are then actuated uniformly for a fixed

time during which several aggregation metrics are tracked . These trials are conducted for

several FM values with repetition.

2For convenience, FM is normalized by the gravity of Earth g = 9.81 m/s2 when using the unit of gram.
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Figure 3.3: Discrete element method simulation setup. (A) Illustration of the simulation
platform with a sample simulated trajectory in green. (B) Simulated and experimental
individual trajectories. A freely moving BOBbot is driven by a translational drive FDû
and dragged by a damping −ηv. (C) The inter-BOBbot interactions: attraction between
magnetic beads FM , inter-BOBbot friction fBB, and sterical exclusion FBB,n. (D) The
airflow profile near the boundary, pushing with a maximum strength of fA = 3FD when
the BOBbot is touching the boundary and decaying exponentially such that fA = FD when
the BOBbot is distance RA away. (E) BOBbot-boundary interactions: airflow repulsion
fA, BOBbot-boundary friction fBW , and normal force FBW,n.

Mitigating the effects of the fixed boundary in both experiments and simulations is
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a significant design challenge. Often, robots will crawl along the boundary or persist in

corners, affecting the overall analysis of system dynamics. To address these issues, uniform

airflow is employed to gently repel BOBbots away from the boundary (Fig. 3.2 C), and

similar effects are implemented in simulation.

We complement our robotic experiments with physics-based DEM simulations (Fig.

3.3) to study BOBbot system dynamics with larger numbers of robots and a more compre-

hensive sweep of the FM -parameter space. The motion of an individual BOBbot is modeled

as a set of over-damped Langevin-type equations governing both its translation and rotation

subject to diffusion and drift, as seen in [84]. The dynamical equations are:

 m~̈r = FDû− η~̇r + ~Fenv(~r, ϕ) + ~ξ(t)

Iϕ̈ = τD − ηϕϕ̇+ τenv(~r, ϕ) + ξϕ(t)
(3.1)

where ~r is the BOBbot’s position vector and ϕ is its orientation vector. The BOBbot’s

drive has magnitude FD and is assumed to align with the heading û = (cosϕ, sinϕ)T . The

drag force −η~̇r is antiparallel to the velocity, balancing the drive when no other BOBbots

are around (Fig. 3.3 B). When a BOBbot is in contact with other BOBbots, the environ-

mental forces ~Fenv include the magnetic attraction FM , inter-BOBbot friction fBB, and

sterical exclusion FBB,n (Fig. 3.3 C). When a BOBbot is near or in contact with the bound-

ary, these environmental forces also include the airflow repulsion fA, BOBbot-boundary

friction fBW , and normal force FBW,n (Fig. 3.3 D–E). Noise is added to the translational

motion as ~ξ(t), where t represents time. The rotational motion and torques are modeled

analogously.3

3The simulation code was written and calibrated in collaboration with CRAB Lab member, Shengkai Li

22



Figure 3.4: Dispersion and aggregation in experiment and simulation. Time evolution
snapshots of both experiment and simulation for a system of 30 BOBbots with different
magnet strengths: (A) FM = 5 g, where we see dispersion, and (B) FM = 19 g, where we
see aggregation.

To model the attractive force between two BOBbots, recall that a physical BOBbot

houses its loose magnets in four orthogonal slots in its periphery, resulting in a patchy

magnetic interaction as the magnets move freely in their slots. The simulated BOBbots

have these same slots, each housing a uniformly magnetized sphere with exponential de-

cay. Attraction between two simulated BOBbots is calculated based on the strength of

these magnetic spheres and the minimum physical separation between any interacting pair,

which depends on the relative position and orientation of the two BOBbots. We validate
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our simulations using experiments with physical BOBbots designed to isolate individual

physical parameters.

As predicted by the SOPS theory, the BOBbot collectives remain dispersed with weaker

magnets and aggregate when the magnets are sufficiently strong in both experiment and

simulation (Fig. 3.4). As a first characterization of collective aggregation, we consider

the number of BOBbots in the largest connected component, denoted by NMC . Tracking

NMC in systems of 30 BOBbots indicates, both in experiment and simulation, that the

largest connected component grows in size over time when equipped with stronger magnets

(FM = 19 g), while those with weak magnets (FM = 5 g) never form sizable components

(Fig. 3.5 A–B).
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Figure 3.5: The aggregation-dispersion phase change. (A) Time evolutions of the size
of the largest component NMC in experiment and DEM simulation for a system of 30
BOBbots with FM = 5 g (magenta) and FM = 19 g (cyan). (B) Phase plot for a system
of 30 BOBbots showing an increase in NMC as the magnet strength FM increases. The
yellow plotline shows the mean and standard deviation of NMC in the 150 simulation runs
for each magnetic strength FM between 1–35 g, with a step size of 1 g. Experimental
data is shown in red with error bars showing the variation of the largest cluster size NMC
and the uncertainty of FM due to empirical measurement. Inset: Phase plot showing the
aggregation metric AMC for the same BOBbot systems. A sharp phase change is apparent
just after FM = 10 g.

The SOPS theory further predicts that the largest connected component should not only

be large but also compact, occupying a densely packed region. To capture both component
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size and density, we track AMC = NMC/(k0PMC

√
N), where k0 is a scaling constant,

PMC is the number of BOBbots on the periphery of the largest component, and N is the

total number of BOBbots. The scaling constant k0 is defined such that AMC = 1 when the

system is optimally aggregated, as in the hexagonal packing. Using the DEM simulation,

we sweep the space of magnetic strengths FM with fine resolution in the range 0–35 g. We

observe a phase change in both NMC and AMC that match well with the experimental data

(Fig. 3.5 C).
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Figure 3.6: Perimeter scaling. Steady-state snapshots for a simulated system of 400 BOB-
bots showing (A) dispersion when FM = 5 g and (B) aggregation when FM = 19 g; BOB-
bots shown in black belong to the largest connected component; those outlined in red are on
its periphery. (C) Log-log plot showing the scaling relationship between the largest com-
ponent’s size NMC and perimeter PMC is the number of BOBbots for simulated systems
of 100–400 BOBbots with FM = 5 g (magenta) and 19 g (cyan). Each data point uses an
average over 20 simulations. Inset: Phase plot showing the aggregation metric AMC for the
same BOBbot system. A sharp phase change is apparent just after FM = 10g.

The results from [81] that we apply to the SOPS algorithm for aggregation also sug-

gest the following relationship between the largest component’s size NMC and perimeter

27



PMC . In dispersed configurations, PMC should scale linearly withNMC , meaning that most

BOBbots lie on the periphery of their components (Fig. 3.6 A). In aggregated configura-

tions, however, PMC should scale asO(
√
NMC), approximating the optimal circle packing

where the majority of BOBbots lie in the interior of the component (Fig.3.6 B). We validate

these scaling relationships in simulation for a variety of system sizes ranging from 100–400

BOBbots (Fig. 3.6C) and find that the theory’s predictions hold.

3.4 Object transport in the aggregated phase

Collective transport can be viewed under several lenses spanning equilibrium phenomena,

like collective charge transport in metals, and non-equilibrium phenomena, like trickling

water droplets on an irregular surface carrying surface matter it interacts with [85, 86].

In most cases, transport manifests from an order-disorder transition as seen in cases like

cooperative transport of food by ants [87]. Although fundamentally different than the above

systems, we now show how the above phase change from disordered (dispersed) to ordered

(aggregated) states can be harnessed for transport.

Collective transport relies heavily on conformism between carriers for concerted effort

and alignment of forces. In our robotic system, by maintaining high FM value, we ensure

the attainment of aggregated states where robots connect physically and cumulatively rein-

force forces on untethered random objects (e.g., a box or disk) placed in the arena (Fig. 3.7

A). While the additive effects of robotic forces can collectively overcome the static friction

of the objects, their ability to stochastically attach and detach gives the collective an added

functionality of reconfiguring around the object and achieving a good grasp on it. This

reconfigurability also aids reorientation and the magnification of forces that lead to various

types of superdiffusive transport4 (Fig. 3.7 B, blue). On the contrary, systems with weak

magnets collectively disperse, typically leading to diffusive and subdiffusive transport, with

some slightly superdiffusive fringe cases (Fig. 3.7 B, magenta).
4Object transport over time t is diffusive if the mean-squared displacement 〈r2(t)〉 ∝ ct, for some constant

c > 0. Transport is subdiffusive (resp., superdiffusive) if 〈r2(t)〉 ∝ tα, for some α < 1 (resp., α > 1).
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The kinds of superdiffusive object transport observed in the BOBbot systems seem to

be affected significantly by the preferential circular bias in each BOBbot’s noisy motion.

Compared to collective transport by more capable entities, our strictly limited and stochas-

tic paradigm causes the orientation and position of each BOBbot relative to the object to

have great influence over the resulting transport. These effects are an interesting area for

further study. Moreover, while our system does not aim to achieve directed (destination-

oriented) object transport due to the stochastic dynamics associated with each BOBbot, this

could be achieved by adding some rudimentary control mechanism exploiting morphology

and mechanics.
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Figure 3.7: Object transport using aggregation. Time evolution snapshots of object
transport by a system of 30 BOBbots magnet strength (A) FM = 5g and (B) FM = 19g.
The outsets shows the object’s complete trajectory (in red). (C) The probability density
of trajectory lengths DS for box transport over 10 trials for each of FM = 3g (magenta)
and FM = 19g (blue) shows that dispersed collectives rarely move the object a significant
distance. (D) Mean-squared displacement plot showing a mix of sub-diffusive to diffusive
object movement with some superdiffusive outliers when FM = 5g (magenta) and various
types of superdiffusive transport for FM = 19g (cyan). Each experimental trial (dotted
line) was run for 15 minutes. Solid lines denote characteristic subdiffusive (magenta) and
superdiffusive (cyan) trajectories.
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3.5 Trade-off between velocity and magnetization

Similar to the Fixed magnetization Ising model that inspired our theoretical undertakings,

we hypothesize that two parameters modulate the phase space of the robotic system, namely

the velocity of each robot(v0) and the inter-robot attractive forces (FM ). We posit that they

have similar counteracting effects as the temperature and interaction energy of an Ising

model respectively. To shine some light on this conjecture, we explore the entire phase

space of the BOBbot system defined by these two parameters. This is experimentally done

by using a display projector that projects slides with different gray intensities. The motor

speed of each robot is proportional to the amount of light shone on the phototransistor on

board. A detailed analysis of the relationship between the gray scale images to luminous

intensity to velocity is provided in figure 3.8

Figure 3.8: Conversion of light to velocity. (A) Example trajectories at two different
saturated velocities (v0 = 0.14cm/s and v0 = 0.008cm/s). (B) Luminous intensities
as a function of grayscale values of an image with intensities scaled to the range 0 to
1(inset shows a light meter reading lumens. (C)Relationship between BOBbot saturated
velocities(v0) and Luminous intensities.

We run robotic aggregation experiments with different average saturated velocities (v0)

at different inter-particle magnetization (FM ). The results from these experiments are dis-

played in 3.9. Partially in unison with our hypothesis, we see a decrease in cluster sizes

with an increase in average velocity as seen in 3.9A for the same magnetization value(FM ).
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The relationship between velocity and max cluster size is, however non-monotonic (3.9B)

and we observe a decrease in cluster sizes for a range of velocities both higher and lower

than a threshold (vt). We conjecture the decrease in cluster sizes below (vt) to the fact that

the chiral trajectories of the bots are bounded in space and thus statistically, the likelihood

of each robot finding another is extremely low at velocities below a threshold in a finite

time period. On the other hand, for high enough velocities, the clusters break more easily

as they form at a given magnetization, thus explaining the downward trend for velocities

higher than the threshold(vt). Based on our experimental heuristics, the value of (vt) is in

the range 0.03 − 0.04cm/s. We note that this value and the relationship observed is also

a function of the saturated radius of curvatures of the trajectories made by the robots. In

any case, further explorations need to be done to justify the observations of these systems.

For the scope of this thesis, we limit our undertakings to a qualitative utilization of these

findings in the following sections.
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Figure 3.9: Effects of changing average saturated velocities (v0). (A) Phase space of
steady states at different velocity(v0) and magnetization(FM ). (B) Max Cluster size at
steady state is a non-monotonic function of BOBbot velocity (v0).

3.6 Mechanical stress sensing to enhance aggregation

The span of this work has focused on collective behaviors that can be achieved without any

robot computation, communication, proximity sensing, or persistent memory. Here, we

study the effects of granting each BOBbot a very minimal sensing capability as a means to

achieve aggregation even in the regime of weak magnet strengths.
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Figure 3.10: Force sensing in simulation. (A) Strategies for modulating simulated BOB-
bot velocities based on force sensing. The controlled speed v/v0 is given by the BOBbot’s
current velocity v normalized by its initial velocity v0. The normalized total stress on BOB-
bot j is S0(j) =

∑
i∈I(j) si/FM , where I(j) is the set of BOBbots interacting with BOBbot

j and si is the stress of BOBbot i on BOBbot j. (B) The size of the largest componentNMC
over time for each of the force sensing strategies, averaged over 10 simulation runs of a 400
BOBbot system with FM = 7 g. All force adaptive strategies significantly outperform the
non-adaptive one, managing to aggregate even with weak magnets. (C–D) Time evolution
snapshots for a simulated 30 BOBbot system using FM = 7 g with no strategy and the
convex strategy, respectively.

In simulations, we enable each BOBbot to reduce its driving velocity in proportion to

the amount of mechanical stress it senses from its neighbors. Thus, as increasing numbers

of neighbors aggregate around a given BOBbot, it experiences higher mechanical stress

and slows its movement, making it less likely to escape from its current attachments.

Among the four functional relations between velocity and mechanical stress as shown
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in Fig. 3.10 A, we observe that those utilizing this additional sensing capability produce

significantly enhanced aggregation, even in the regime of weak magnets (Fig. 3.10 B–D).

The simulation results suggest a promising future for controlling collectives of relatively

incapable robots through minimal additional sensing.

To recapitulate, we build a theoretical and experimental model for dynamic aggregation

with a foundation of principles from a statistical physics model. We see a phase change

from dispersed to aggregated state across a single system parameter (FM ) which can act as

a potential control knob for future explorations. We show a preliminary study to exhibit

this potential in carrying out a collective task of object transport. We end the chapter

with a slightly elaborate exploration of the phase space of the steady states produced by

two competing system parameters v0 and FM and highlight how the trade-off between the

two can produce interesting results with some additional rudimentary sensing. In the next

chapter, we intend to study a similar system to figure out how the aggregation behavior and

related tasks can be persistified over long time horizons.
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CHAPTER 4

LAZY ROBOT COLLECTIVES

Robots are limited in their ability to persistently perform tasks based on the depletion times

of their power reserves. Thus, any task that they perform is constrained in time or depends

on the incorporation of functionally complex algorithms for energy management such as

recharging cycles. The energy requirement of the collectives scales with the complexity of

the task and environment, and centralized charging hardware such as solar cells often be-

comes impractical outside of controlled laboratory settings. Task persistification in robotic

swarms is the ability of the collective to perform a task for a duration longer than the ex-

pected battery life of an individual in the swarm. In this chapter, we suggest an approach to

persistification of tasks through distributed inactivity. Inspired by biological and physical

counterparts that succeed in subverting this energy depletion challenge by utilizing dis-

tributed inactivity, we propose that individuals in artificial collective systems intermittently

hibernate i.e., turn off their batteries to preserve energy. We benchmark the effectiveness

using simulation studies of a modified brush-bot system, where individuals lack any com-

putationally intensive sensing and processing capabilities as seen in the previous chapter.

To illustrate the efficacy of the proposed framework, we demonstrate improvement in a de-

bris clearing task with collectives incorporating activity modulation, in contrast to systems

without hibernation.

Natural active matter systems such as insect swarms, birds, and fish can perform coordi-

nated tasks continually for days, often building remarkable landmarks like gigantic termite

mounds encompassing 30 meters in diameter [20] and deep subterranean fire ant nests [21].

Robotic swarms, on the other hand, are typically limited by their ability to perform long-

duration tasks, as their run time is bounded by the batteries used to power them. Long-term

autonomy in robotic swarms can help various applications such as environmental monitor-
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ing and exploration, intra-warehouse transportation, and debris or rubble management, etc.

As robots step out of conventional laboratory settings for such tasks, research to develop

energy aware task driven algorithms have gained substantial interest in the recent decade

[77, 75, 88, 89, 90, 76]. This line of inquiry has led to some advancements in developing

energy aware control policies that account for the limited energy reserve of each robot and

incorporate that information in the algorithm development process.

Most of these approaches, however, require some non trivial, memory intensive digital

computation to be carried out by each robot that is dependent on microcontrollers or central

processing units [77, 75, 88, 89, 90, 76]. We are interested in achieving task persistification

in robots that are constrained in terms of memory and computation power with bounded

energy reserves. This aligns with an area of multi-agent robotics that utilizes systems of

individual robots inspired by rudimentary physical systems. These systems provide a major

advantage in terms of scalability. This can be useful in micro-scale and high risk applica-

tions that require constant throughput; where bulkier, costlier, and smarter robots requiring

the computation of complex state and environment information may be impractical [91, 92,

93].

Our objective is to explore methods by which a constrained system can attain long du-

ration autonomy to fulfill tasks persistently where each robot has a fixed energy reserve. In

particular, we are interested in testing distributed inactivity as a mechanism to attain long-

term dynamic aggregation behavior in systems similar to the robotic system introduced in

Chapter 3. As previously defined, dynamic aggregation is defined as the process by which

robots accumulate and move together as one unit. This collective behavior has potential

applications in area coverage, collective transport, and related tasks which utilize the col-

lective strength of the cohort in motile form. We envision one such task, clearing debris in

a confined arena, and we develop approaches to continuously sweep the arena clean of the

debris through persistent dynamic aggregation.

A variety of natural systems exhibit heterogeneous activity levels and dynamic activity
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modulation between agents [19, 78]. In the next chapter, we will study fire ants swarms

that exhibit heterogeneity in activity during tunnel excavation for clog control and im-

proved efficiency of transport of excavated materials. Additionally, lazy ants can increase

their activity level when active nest mates are removed, to maintain a tunnel density that

is optimal and leads to maximum excavation efficiency under the given constraints [19].

A complementary perspective is obtained from studies of mixtures of active and passive

colloids which suggest that concentrations as low as 15% of active colloids can lead to

phase separation in these mixtures [79]. Inspired by these findings, we investigate whether

a small fraction of active individuals can sustain the task of dynamic aggregation in the

system described in Chapter 3.

Figure 4.1: Fixed inactive simulation setup for pA = 10%, N = 100 robots. Green:
active robots (trajectories are shown in upper panel); yellow: inactive robots)

We formalize the problem setup by presenting our experimental details and hypothesis.

We wish to solve the problem of persistent dynamic aggregation for time periods of several

orders of magnitude longer than the lifetimes of each individual robot. Towards this goal,
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Figure 4.2: Steady state aggregation efficiency as functions of activity percentage (pA)
for N = 100 robots. A) Max cluster size (NMC) B) Aggregation metric (AM ). Two
different values of inter-robot interactions strengths are depicted: FM = 20g of force (blue)
and FM = 40g of force (red). The central tendency plotted here is the mean value and the
error bars depict one standard deviation.

we study a class of vibration-driven robots whose dynamics and features are similar to

the system introduced in the previous chapter. We gather data on the simulation platform

modeled after these types of robots to support our ideas of using distributed inactivity as a

means to prolonging aggregation behavior in the robot swarms.

The overall dynamics of an active robot are described by the same set of equations as

in Chapter 3

 m~̈r = FDû− η~̇r + ~Fenv(~r, ϕ) + ~ξ(t)

Iϕ̈ = τD − ηϕϕ̇+ τenv(~r, ϕ) + ξϕ(t)
(4.1)

where ~r is the robot’s position vector and ϕ is its orientation vector. FD is the translational

drive, η is the translational drag coefficient. The environmental forces are represented by

~Fenv, which is a combination of the inter-robot attractive force FM , the inter-robot frictional

force fBB, and the sterical exclusion force FBB,n. ~ξ(t) is the translational noise term. The

rotational motion and torques are modeled similarly. The translational drive direction and

orientation are coupled.

An inactive robot is subject to only short range environmental forces, namely, attractive
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Figure 4.3: Steady-state aggregation efficiency as functions of activity percentage (pA)
in the case of temporal modulation of active identities for N = 100 robots. A) Max
cluster size (NMC) B) Aggregation metric (AM ) C) Time evolution to steady states for
different activity percentages. (black: pA = 2.5%; white: pA = 100%; magenta: pA =
10−20% and the shaded regions depict one standard deviation of variation). For Subfigures
A) and B), the values of inter-robot interactions strengths as well as the error-bar scheme is
the same as those in Figure 4.2. The system used here has the following attributes: L=20
minutes, T=200 minutes; t=1.67 minutes

forces exerted by other robots, boundary forces, and friction. The equations of motion for

an inactive robot do not include drive and stochastic noise terms described in Equation 4.1
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Description Value
m Mass of the robot 0.060 kg
R0 Radius of the robot 0.030 m
I Moment of inertia 2.7e-5 kg·m2

v0 Saturated speed 60.0 mm/s
ω0 Saturated angular velocity 2.40 rad/s
FD translational drive 0.06 N
τD rotational drive (torque) 5.5e-4 N·m
η translational drag coefficient 1.0 kg/s
ηϕ rotational drag coefficient 2.3e-4 N·m·s
FM0 magnetic force on contact 20, 40 gf
d0 magnetic force decay length 1.5 mm
µ bot-bot friction coefficient 0.143
µW bot-wall friction coefficient 0.143

Table 4.1: List of parameters used in simulations.

and reduce to:

 m~̈r = ~Fenv(~r, ϕ)− η~̇r

Iϕ̈ = τenv(~r, ϕ)− ηϕϕ̇
(4.2)

An inactive robot at rest will, therefore, not move and not rotate in the absence of other

active neighbors and environmental factors.

Arena A is defined by a continuous 2D square space ∈ x. Any robots in close proximity

to the boundary experience an inward exponentially decaying force which is highest at the

boundary and reduces with distance away from the boundary as described before.

More details about the simulation parameters and constants are tabulated in Table 4.1.

All simulations are performed with the help of high throughput computing clusters of the

open science grid (OSG) [94, 95].

Similar to the previous chapter, the efficiency of aggregation is measured with two

quantities at steady state: (a) “Max Cluster Size”NMC , which is the number of robots in the

biggest aggregate, and (b) “Aggregation Metric”AM , which is defined asNMC/(k0PMC

√
N),

where PMC is the number of robots in the perimeter of the aggregate and k0 is a scaling con-

stant measured from the optimally compacted system configuration possible for the given
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Figure 4.4: Heat maps of area coverage at stationarity for N = 100 robots. A)
pA = 100% system without temporal modulation B) pA = 10% system without tempo-
ral modulation C) pA = 10% system with temporal modulation. The value of pixels is
scaled between 0 to 1 with 1 being the most visited pixel in the experiment shown. The
inter-robot interaction magnet strength is FM = 20g of force.

system size N . While NMC gives a measure of how much the collective aggregates, AM

gives a sense of how compact the aggregated clusters are. The compactness of aggregates

is a useful quantity while considering tasks that require the collective physical strength of

the cohort such as transporting objects, and hence is an important quantity to consider.

The purpose of the simulations reported in the following sections is three-fold. In the

first set of simulations, we wish to explore how the system’s aggregation behavior changes

with different fractions of inactive robots. Our first hypothesis is as follows:

Hypothesis 1: Let us consider a system of N vibration-driven robots with unbounded

energy, where the robot dynamics and features are as described above. For such a system

confined in arena A at a fixed density ρ, and where pA represents the percentage of active

robots, the ability to dynamically aggregate at steady states is unaltered when the proportion

of active robots pA ≥ ε where ε is a very small quantity specific to the system.

In the second set of simulations, we want to quantify and compare the effect of tempo-

rally modulating the identity of active individuals on dynamic aggregation efficiency. This

leads us to our second hypothesis.

Hypothesis 2: For a system of N robots with a fixed energy reserve rendering a lifetime

of L, confined in arena A at a fixed density ρ, we claim that for a given fraction of active
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robots pA, the ability to dynamically aggregate persistently is enhanced through temporal

modulation of the identity of active individuals. We also claim that this holds if robots

hibernate periodically in time such that the overall activity of the system on an average

is ∼pA at any given time point.

Finally, we wish to test the efficacy of our approaches with a debris clearing task.

Hypothesis 3: For a system of N robots with a fixed energy reserve rendering a lifetime

of L, confined in arena A at a fixed density ρ, we hypothesize that a system that maintains

distributed inactivity fraction pA ≥ ε, where ε is as defined in Hypothesis 1, and performs

periodic activity modulation can clear debris more efficiently and persistently than a system

where every robot is active at all times i.e., pA = 1.

4.1 Fixed Inactivity effects

In this section, we present results from simulations with fixed percentages of active robots.

These simulations are performed in arena A with a fixed population size (N ), and each

simulation is instantiated with a fixed percentage of active individuals pA, where pA is cho-

sen to be between 0 to 100%. The active individuals are initialized at uniformly distributed

random positions in the arena. The simulated robots are given an unlimited lifetime in this

series of experimentation. The experiments at each pA are carried out 10 times to get statis-

tically significant results. Figure 4.1 shows a cartoon representation of the fixed inactivity

setup.

In support of our posited Hypothesis 1, we find that a very small fraction of active

individuals (pA & 10%) can lead to efficient aggregation of the cohort, and the size of the

biggest cluster at steady state (NMC) saturates for the range (pA & 10% − 100%). This

is shown in Figure 4.2 which shows the variation of NMC and AM as a function of pA. In

other words, its apparent that increasing the number of active robots beyond (pA & 10%)

in this particular system is redundant, and does not add any value in terms of the expected

aggregation behavior of the collective. This validates our first hypothesis.
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However, we also notice that the aggregation metric, which is a measure of how com-

pact the aggregates are, increases by a small amount with more active robots. This is

intuitive, as the inactive robots do not have the ability to rearrange and reshuffle actively to

find the compact configurations. Therefore, the higher the number of inactive robots, the

more likely it is that the clusters are stuck in non-compact local neighborhoods around the

inactive robots.

For these findings to be useful in both achieving long-term aggregation dynamics and

also to be able to form compact clusters, we hypothesize that modulation of the identity

of the active individuals temporally will establish escape routes from unfavorable local

minima, while also conserving the energy of the system globally.

4.2 Spatio-Temporal activity modulation

We test our second hypothesis which states that if robots hibernate periodically in time

while keeping a fixed percentage of active robots alive at all times, long-term autonomy

can be achieved in specific collective tasks in the described system. We design another set

of experiments in which N robots with a fixed lifetime L are instantiated at randomized

positions and orientations in the arena A. A random number generator is used to choose

the identity of the active robots for a given pA and the identities are altered every t time

units for a duration T = f ∗ t where f is chosen to be large enough to ensure T >> L.

As shown in Figure 4.3, we observe continued dynamic aggregation for longer du-

rations, i.e., time frames much larger than each individual lifetime ( L), with temporal

activity modulation of a small pA. In fact, we observe that the best performance is ob-

tained in the pA ∼ 10% − 20% range. This can be partially attributed to the fact that

pA ∼ 10% − 20% systems have lower effective average velocities and thus, form larger

clusters than a pA = 100% system for a given attractive force Fm as shown in chapter 3.

Additionally, such a temporal modulation of the activity of a small proportion of robots also

helps the system escape local minima caused by the inherent idiosyncrasies of the robots
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[A]

[B]

Figure 4.5: Debris removal as a function of time for N = 100 robots. pA = 100% sys-
tem without temporal modulation (cyan) and pA = 10% system with temporal modulation
(magenta). A) with fixed debris concentration B) with recurring debris at every tR=100
seconds. The inter-robot interaction magnet strength is FM = 20g of force. The repre-
sentative systems used here has the following attributes: L=20 minutes, T=200 minutes;
t=1.67 minutes

such as the chiral trajectories. Thus, not only do the pA ∼ 10% − 20% systems perform

better in terms of persistence, but these systems also traversed larger areas with larger ag-

gregates compared to other values of pA. This is shown in Figure 4.4 with the help of heat

maps of area coverage at stationarity.

For a team of robots to be able to utilize the benefits of temporal activity modulation

in a decentralized fashion, each robot would need to choose its inactivity without any user

input. We chose a simple tweak to our algorithm to make our experiments decentralized.

At every active identity alteration event at t time units, each robot makes a probabilistic
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determination of its activity state with pA being the probability that it is active, all the while

keeping all other experimental details consistent with the discussions above. The analysis

of the data from this distributed algorithm shows results similar to the ones obtained without

the decentralized setting.

The above results support our second hypothesis and show that under the constraints of

limited energy, we can persistify dynamic aggregation by periodically switching robots to

be inactive while maintaining a small population of active robots at all times.

4.3 Improved area coverage with activity modulation

We can demonstrate the practical usability of the above findings in this section by empir-

ically showing the efficacy of distributed activity modulation in a task that would benefit

from long-term autonomy. Towards this end, we chose a debris clearing task that would

require persistence, specifically in the presence of evolving debris count. We compare the

efficiency of two separate setups: a) temporal activity modulation, and b) no-inactivity i.e.,

all robots are active. Finite sized particles are randomly distributed all around the arena

at initiation. The goal of each robotic system is to remove as many particles as it can by

hovering over the particles like a collective robotic vacuum cleaning system. The particles

are then removed based on the number of times a particular area is visited by any robot.

We observe, once again, that the pA ∼ 10% − 20% system with temporal modulation

outperforms an all-active system (pA = 100%) in terms of debris removal efficiency and

magnitude as shown in Figure 4.5A. The experiments are repeated in a variation of the same

setup where debris particles are introduced randomly in the arena at regular time intervals

while the initial conditions are maintained to be the same. In this setup, we obtain similar

results and the pA ∼ 10%− 20% systems are able to keep up with evolving debris content

and maintain a clean arena uniformly, and for longer durations of time in comparison to the

pA = 100% system. These results are depicted in Figure 4.5B which shows the amount of

debris “cleaned” by the robots as a function of time.
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In summary, these explorations show that under the constraints of limited energy, long-

term autonomy is attained for a task that requires surveying large spatial areas persistently.

This is achieved through distributed inactivity in the system coupled with periodic mod-

ulation of the identity of the active individuals. This works for instantaneous active per-

centages of as small as p ∼ 10% − 20% and these systems outperform systems where the

entire population of robots are tasked to clean at once (pA = 100%), even when debris gets

re-introduced in the arena periodically.
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CHAPTER 5

LAZY ANT COLLECTIVES

The approach we took for persistification of tasks in lazy robots was inspired by biophysi-

cal collectives. We complement that study with a similar quest on how biological collective

systems conserve energy and optimize efforts. We present studies on a collective fire ant

system that provides a different insight into how heterogeneity in activity levels of individ-

uals can be beneficial to the collective outcome. Sometimes, groups of interacting active

particles, insects, or humans can form clusters that instead hinder the goals of the collective

unlike the situations described in the previous chapters. In these cases, the development of

robust strategies for the control of such clogs is essential, particularly in physically confined

environments.

There are diverse examples in both living [96] and artificial [40, 97] active materials that

spontaneously form clusters that persist for long time durations. But, there are certain tasks

that demand a steady flow of agents, where such formations can be disadvantageous: Con-

fined active systems such as pedestrian or vehicular traffic jams [98], competing bacterial

biofilms [99], high-density migrating cells [100], jammed herds [101], and robot swarms

[102] can produce high-density clogs that readily form glasslike arrests of flow [103]. In

such systems, the ability to dissolve clusters and prevent their formation [103], particularly

in the absence of global knowledge of the state of all elements, is crucial for uninterrupted

flow.

Social insects perform many tasks that demand clog minimization and mitigation[104].

Substrate excavation specialists such as fire ants (Solenopsis Invicta sp.) cooperatively cre-

ate nests of complex subterranean networks (Fig.5.1 A) consisting of tunnels in soil that

support bidirectional traffic without lanes [105]. Laboratory experiments in [106] revealed

that, in the early stages of nest construction, the few-millimeter-long ants construct vertical
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tunnels approximately one body length in diameter [106]. These narrow tunnels benefit the

climbing ants as they transport bulky pellets because close proximity to walls allows limbs,

body parts, and antennae to aid slip recovery [107]. In addition to the benefits narrow tun-

nels provide for climbing and pellet transport [107, 106], we also claim that the ants benefit

from narrow tunnels by expending less energy to dig wider tunnels to the same depth. Such

benefits would be useful in the early stages of new nest construction (e.g., after the colony is

flooded out) during which establishing the colony underground is critical. But although the

structure of the tunnels seems to benefit individuals, physical-model experiments make it

clear that excavation can suffer as a result of clogging during high-traffic conditions [108].

So, in this chapter, we explore how such high traffic situations are avoided in these col-

lectives. For this, we present a series of experimental, computational, and robotic studies

to show how counterintuitive behaviors like individual idleness and retreating help opti-

mize tunnel density by limiting the severity and prevalence of clogs, thereby enabling rapid

excavation by the collective.

Figure 5.1: Confined and crowded biological excavators. (A) X-ray reconstruction of
S. Invicta fire ant excavation in a large container (25 cm wide) filled with 240- to 270-m-
diameter glass particles (supplementary materials). (B) Painted S. Invicta workers excavat-
ing a single tunnel along the wall of a transparent container with 0.25-mm-diameter wet
glass particles.
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5.1 Ant Experiments show inequality in workload distribution

Ten S. Invicta nests were collected during the spring, summer, and autumn of 2014, 2015,

and 2016 at the Research and Education Garden of the University of Georgia, GA, USA,

and the Chattahoochee-Oconee National Forest, GA, USA. Nest collection and colony ex-

traction were performed according to methods found in [109]. Ants were housed in plastic

bins for 23 months at an ambient room temperature of 23± 3◦C with a relative humidity of

30± 2, and fed Vespula larvae and supplied with tap water twice a week.

1In laboratory settings, we monitored the activity of fire ants as they excavated a cohe-

sive granular medium. Small groups of 30 ant workers from the laboratory-housed colonies

were isolated in transparent containers containing particle-water mixtures (5.1B) with a soil

moisture content, defined as the ratio of total water weight to total solid weight. The exper-

iments were conducted for 48 hours in W=0.01 and W=0.1 wet soils (3 trials for each soil

moisture). All the experiments were repeated for 3 different colonies. The abdomens of

the workers were marked in different colors. A plastic insert separated ants from cohesive

soil and featured a single entry point next to the transparent wall of the container. A small

(∼ 5mm) indentation was made next to the transparent wall of the container to prompt ex-

cavation. Ants excavated for 48 hours, with individual ants entering and exiting the tunnel

hundreds of times. Similar to the previous study [107], ants constructed narrow vertical

tunnels through a stereotyped process of grain and multigrain (pellet) removal and trans-

port, followed by tunnel ascent and substrate deposition upon exit [106]. The top portion

of the container was used by the ants for excavated soil deposition. A camera mounted to a

motorized linear stage tracked a small region of the tunnel face (Fig. 5.2A).

The container was fixed on the motorized stage with the camera precisely focused on

the first 2 cm of the tunnel at a distance of approximately 3 ant body lengths. As the tunnel

grew in length, the relative positions of the tunnel and the camera were adjusted such that

the tip of the tunnel was always visible. The camera was streamed, during which real-time

1Experiments and simulations were done in collaboration with CRAB Lab member Daria Monaenkova
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Figure 5.2: Unequal workload distribution in fire ant nest excavation Biological ob-
servations reveal workload inequality and reversal behaviors in ants. (A) Experimental
apparatus to track ant excavation; container inner diameter is 5.21cm. (B) Visitation map
derived from experimental data. Each point in the map indicates the presence of a partic-
ular ant (out of 30 ants) ordered from most active to least active (y-axis) in the tunnel at a
time t. (moisture content of W = 0.1).

processing detected the presence of ants based on pixel intensity. Based on this detection

of an ant in the camera’s field of view, the camera was triggered to record 60 seconds

of video at 15 fps. Work among excavators was characterized by manually counting the

number of occurrences in which an ant visited the tunnel. Ants were classified as visitors

if they appeared within the camera’s view of the tunnel at any point within the duration

of the experiment. Non-visitors were those ants that were never detected by the camera.

Ants exhibited a variety of behavioral tasks during collective excavation. A large fraction

(0.22 ± 0.1 for soil moisture content of 0.01 and 0.31 ± 0.13 for soil moisture content of

0.1) of ants never entered the tunnel to excavate during the 48-hour period of observation.

As seen in Fig. 5.2B, ants that visited the tunnel face (“visiting” ants) varied in activity

level.

We quantified this activity inequality among visitor ants using Lorenz curves[78]. Points

on the Lorenz curves in Fig. 5.3B link the cumulative fraction of workers in the popula-

tion to the cumulative share of activity by that fraction. The Gini coefficient (a measure

of statistics dispersion) [78] derived from the shape of the curve reflects the inequality in

the workload distribution within visiting group. In general, when the Gini coefficient is
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Figure 5.3: Distribution of inequality and tunnel excavation efficiency. (A) The growth
of tunnel length over time. Shown are average experimental results ± standard deviation
(SD)/2 for S. Invicta workers (black) and simulations for groups with equal (purple) and
unequal (green) workload distribution. Error bars denote 1 SD in each direction. (B) Lorenz
curves for workload distributions obtained in wet 0.25-mm-diameter glass particles with
soil moisture content of 0.1 (blue) and 0.01 (red) and a CA model (green) whose excavation
rate was optimized with a GA. Shaded areas correspond to the standard deviation from three
experiments.

close to 0, the effort of the ants during the excavation is nearly equal. In contrast, a Gini

coefficient close to 1 indicates highly unequal workload distribution with a few active dig-

gers in the visiting group carrying out the bulk of the workload. To calculate the Lorenz

curves and Gini coefficients of the 48-hour experiments, the only ants that were included

were those that were detected as having visited at least once during those 48 hours. In all

the experiments combined, Lorenz curves were characterized by a Gini coefficient, G =

0.75 ± 0.10 and displayed similar functional forms across a variety of experimental con-

ditions (see Fig. 5.3B and 5.4A). We also recorded tunnel length over time (Fig. 5.3A)

and compared it with simulations(explained in the next section) to highlight the efficacy of

unequal workload distribution.

In the presence of competing tasks, like foraging or brood care, task allocation in

ants can change depending on colony needs [110]. To investigate temporal variation in

ant excavation workload, we divided 48-hour experiments into 12-hour epochs (time pe-

riods). To calculate the Lorenz curves and Gini coefficients for 12-hour epochs within
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those 48-hour experiments, we only considered the ants that visited within those 12-hour

time-frames. This ensured that the calculated workload distributions only ever considered

the working population of that measured time-period. Please note again that visitors, who

did not successfully dig and reversed without a pellet were also counted in the excava-

tion effort because non-excavating visitors still expend energy in an excavation attempt and

contribute to tunnel traffic. Although individual activity varied among epochs 5.4A and

B, the cumulative workload distribution was independent of epoch [one-way analysis of

variance (ANOVA) F3,20 = 0.85, P = 0.48] and soil moisture content (one-way ANOVA,

F1,23 = 2.54, P = 0.13).

Similar workload inequality characteristics are observed from the first 3 hours, by

which point the tunnel length has typically not yet exceeded 2 cm in length.

Figure 5.4: Distribution of inequality across 12-hour epochs. (A) Experimental Lorenz
curves of ant workload distribution for individual 12-hour epochs of 48-hour trials. Error
bars indicate standard deviation from multiple trials averaged over 6 trials (3 trials in 0.25
mm diameter glass particles at W=0.1 moisture content and 3 trials in W=0.01). (B) Dy-
namic activity pattern of individual ants over different time epochs. The ants are arranged
by their overall activity for 48-hours ascending from the bottom upwards. Excavation ac-
tivity, a(i,t) is the number of tunnel visits per 12-hour epochs for an ant i divided by the
total number of tunnel visits within that epoch.

5.2 Unchanged workload distribution with removal of active diggers

To determine how the removal of the top 5 most active diggers from the colony affects

the workload distribution and efficiency of tunnel construction, groups of 30 ants were set
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to excavate the same cohesive granular media. The excavation process was recorded for

3 hours. The ants were removed from the container and set to rest for at least 12 hours.

During this time, the recorded data was analyzed to determine the 5 excavators that most

contributed to tunnel construction. These active excavators were removed from the group

and the experiment was repeated for an additional 3 hours. Interestingly, a different set of

excavators were activated during the second phase of the experiment and contributed to the

bulk of the work (5.5A). The rates of tunnel construction and the Gini coefficients were

measured and found to be comparable between the first (before removal) and the second

(after removal) parts of the experiment (5.5B). The results were obtained in the experiments

with three different colonies and averaged. Tunnel construction rates varied little between

the two phases of the experiment. In fact, the individual growth rate increased slightly:

0.58 ± 0.2 mm/ant within the first part of the experiment versus 0.67 ± 0.3 mm/ant in

the second part. The workload distribution also did not change and the Gini coefficient was

0.73±0.15 for control (first phase of experiment) and 0.62±0.06 for active removal (second

phase). After the most active excavators from the first part were removed, several idle

diggers increased their contribution to the excavation task. The contribution of the 5 most

active excavators within the first and the second parts of the experiment was comparable:

74±21 versus 74±5 of all observations in the tunnel. The most active diggers of the second

part of the experiment had contributed to only 10± 11.4 of total observations (546± 65.8)

during the first part of the experiment. Thus, we show that individual ants were able to

modify their behavior in response to the changing traffic dynamics of the tunnel.

5.3 Voluntary modulation of activity

Similar to the experiment above, we conducted another series of 2-day experiments where

we again took a group of 30 ants and set them to excavate the same cohesive glass media.

Experiments were recorded for 3 hours and then, the ants were removed from the container

and set to rest for at least 12 hours. The top 5 excavators who contributed the most to
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Figure 5.5: Active Removal experiment(A) Bar graph showing the number of trips made
by each ant to the tunnel in the first half of the active removal series of experiments (blue)
and second half of the experiments (red) after removal of the top 5 active diggers. (B)
Lorenz curves displaying similarity in distribution of inequality in workload in both half of
the experiments.

tunnel excavation were again noted and the experiment was repeated with the same set

of 30 excavators the next day. Please note that the top excavators were not removed in

these runs. The experiments were repeated over 3 colonies and the relevant metrics were

averaged over the 3 experiments. Similar to the previous observations, both halves of the
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experiments exhibited a Lorenz workload distribution (5.6B) and the Gini coefficient did

not change significantly with 0.66± 0.1 for the first half of the experiment and 0.69± 0.15

for the repeat second half. However, the identity of the top 5 excavators changed and this

change is again shown with the help of bar graphs in figure 5.6A. The tunnel construction

rate was nearly identical in both parts of the experiments with 0.89 ± 0.1 mm/ant growth

within the first part of the experiment and 0.78 ± 0.25 mm/ant in the second part of the

experiment.

This highlights the fact that the inactivity in the ants is not genotypic, meaning every

ant is capable of doing the maximum excavation per ant observed. They however, choose

to modulate their activity to maintain a Lorenzian workload distribution similar to the kind

seen in previous sections. We would like to note here that activity modulation was observed

in the 12 hour distributions of workload as seen in 5.4A and B as well. The mechanisms

behind the modulation remain unclear.

Given the consistency of the inequality in workload distribution in all these experi-

ments, we hypothesize that variations in idleness (low activity levels) within a population

may play an adaptive role in modulating the crowded conditions of confined tunnel traffic

and aiding maximum traffic flow in tunnels and in turn, improve excavation efficiency.

5.4 Reversal Behavior in ants

Another useful behavior exhibited by the ants during tunnel excavation was reversal/retreat.

Reversal behaviors were characterized by ants entering the tunnel and returning to the exit

without carrying soil pellets. During the first 3 hours of the excavation, reversals occurred

for 26±13% of trips for soil moisture content of 0.01 and 18±3% of trips for soil moisture

content of 0.1. These events were often associated with local crowding at the excavation

face (Fig. 5.7A) (16 ± 12% of trips for soil moisture content of 0.01 and 10 ± 2% of

observations for soil moisture content of 0.1). Reversal behaviors in crowded conditions

also occur on foraging trails as seen in (18), and similar phenomena have been observed in
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Figure 5.6: Active Repeat experiment(A) Bar graph showing the number of trips made
by each ant to the tunnel in the first half (blue) and second half (red) of the active repeat ex-
periments. (B) Lorenz curves displaying similarity in distribution of inequality in workload
in both half of the experiments.

swarming bacteria [99]. The incidence of this seemingly unproductive behavior increased

with increasing overall activity of ants (Fig. 5.7F), suggesting that this behavior serves as

a feedback mechanism for mitigating clogs during excavation.
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Figure 5.7: Ant retreat with higher tunnel densities. (A) Illustration of observed reversal
behavior. (I) Ant Ys path to excavate is blocked by ant Z. (II) After Z collects a pellet,
it reverses, (III) forcing Y to reverse without excavating. (B) Total number of reversal
events vs total ant visitors for the first 3 hours of ant excavation. (moisture content of W
= 0.1) Each data point represents total reversal events and total entries counted for 30 min
segments collected from 3 experiments. Linear fit (blue line) with R2=0.69.

5.5 Optimal ant density in tunnels maximize excavation efficiency

To systematically examine the effects of idleness and individual retreating behaviors on

excavation performance, a cellular automata (CA) excavation model (Fig. ??A) was devel-

oped in collaboration with other members of the Goldman Lab. Such models are useful in

elucidating the dynamics of biological and vehicular traffic [103, 111]. The model consists

of a lattice (the tunnel) with a width of two cells [similar to S. Invicta tunnel widths (20)]

where each lattice site can be occupied by soil, empty space, an ascending CA ant, and/or

a descending CA ant as shown in Fig. 5.8. The CA ants can move, change directions,

excavate, deposit a pellet, or rest. As seen in the biological experiments, activity for the

workload distribution in the CA model was measured by counting instances when CA ants

visited the tunnel within three body lengths (cells) of the excavation site.

We simulated the behavior of CA ants using both equal workload distributions (which

we refer to as active CA ants) and unequal workload distributions (which we refer to as

Lorenz CA ants) with identical reversal probabilities. In unequal workload distributions,

individual CA ants were assigned individual entrance probabilities defined as the probabil-
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ity that a CA ant will enter the tunnel. The initial entrance probability distribution for the

30 CA ants was taken from the biological distribution.

Figure 5.8: Optimal traffic flow in narrow tunnels through workload inequality. (A)
Schematic showing the main components of the CA model. Cell colors denote soil (light
gray), tunnel (white), ants moving toward the excavation site (orange), and ants exiting the
tunnel (dark gray); T is the simulation time-step. (B) Excavated tunnel length after 24-
hour simulation time versus reversal probability for equal and unequal (optimized for 30
CA ants) workload distributions. (C) Simulated traffic flow versus CA ant occupancy for
groups of equally (squares) and unequally (circles) active ants. The color bar indicates the
size, n, of the excavating group. Embedded shaded bar shows number of ants divided by
time in seconds times tunnel width v/s number of ants divided by tunnel width, measured in
excavator body widths from experiments. Experimental ant observations reveal an average
occurrence around the density (orange-shaded region, where the orange centerline is the
mean and the extents are one standard deviation away from the mean) that maximizes
traffic flow.

During a time-step, if its path toward the excavation area was blocked, a CA ant would

reverse direction toward the exit with a probability, R, of 0.34; R was set by the proportion

of total reversal events observed for 0.01 soil moisture in the biological experiments. The

CA model that used unequal workload distribution and reversals reproduced experimentally

observed biological ant digging rates (5.3A).
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We claim that the unequal workload distribution and reversals were linked to the uni-

form flow of CA ants in the tunnel. To clarify this, we measured the average flow rate of

successful excavators, q, versus the average tunnel-width normalized occupancy of exca-

vators, l (the ratio of average number of ants in the tunnel to tunnel width measured in ant

body widths). To generate a wide range of average occupancies, we varied the population

size of the CA system. The flow rate was optimal at an intermediate occupancy (5.8C).

This nonmonotonic trend in q versus l is characteristic of traffic flow in various multiagent

systems, including bridge-building army ants[112] and vehicle traffic [113, 114], and is

referred to in traffic literature as the fundamental diagram [115]. Active ants, which do

not modulate their workload distribution, increase tunnel occupancy with increasing pop-

ulation and thus exhibit optimal flow rates for only a few population sizes. By contrast,

simulated ants that uses Lorenzian distribution of workload produced tunnel occupancies

in the ideal range by generating increasingly unequal workload distributions for increasing

CA ant population sizes. The CA model also revealed the importance of the reversal be-

havior in conjunction with unequal workload distributions. Although the active excavation

could be improved by sufficient reversal probability, only a small amount of reversal was

needed to increase the excavation performance in the unequal distribution as seen in 5.8B.

Of particular importance is the observation that fire ants produced tunnel densities in the

ideal range shown by the simulations (Fig. 5.8C, orange-shaded region). The calculation

of these densities from experiments is explained in the next section.

5.6 Calculation of tunnel-width normalized ant occupancy

The control experiments from the active removal experiments were used for calculating

tunnel-width normalized ant occupancy, λ̄ (average number of ants in the tunnel/tunnel

width). Each frame in the video (15fps ∗ (60 ∗ 60 ∗ 3s) = 162000 frames) was analyzed

in MATLAB to identify each colored ant using image processing techniques as shown in

5.9B. The number of color blobs identified in each frame was representative of the number
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Figure 5.9: Calculation of ant tunnel density and heatmap of traffic flow. (A) Sample
tunnel face created through excavation with defined region of interest (ROI) for density and
flow analysis. (B) Image processing steps showing the color blob extraction for density
estimates. (C) Heatmap of ant flow in the tunnel illustrating seamless flow and tunnel
growth.

of visiting ants in that particular frame. The tunnel width was approximated to be 2 ant

body widths (BW) following results from a previous study ([116]). The occupancy was

then temporally averaged over 3 minute chunks (15fps ∗ (60 ∗ 3s) = 2700 frames) at

3 different time points in the experiment. This was repeated for 3 different experiments

and the average experimental ant occupancy across these experiments is projected on the

fundamental traffic diagram in Fig. 5.8C with shaded areas representing standard deviation

from the 3 experiments.

Cluster Dissolution times show the importance of laziness and retreats

We characterized how cluster severity was affected by reversals and unequal workload

distributions through an analysis of cluster formation. Clusters in 30-ant simulations were
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identified at each simulation time point and categorized by the number of CA ants that com-

prised the cluster. Any group of ants that blocked the entire tunnel width was considered

a cluster. We found a prevalence of large clusters for extremely low reversal probabilities

in both equal (Fig. 5.10A) and unequal (Fig. 5.10B) workload distributions. A minimal

increase in reversal probability reduced the prevalence of the largest clusters from forming.

However, even accounting for higher reversal probabilities, equal workload distributions

resulted in wider distribution of cluster sizes, whereas the optimized workload distribu-

tion produced a sharper concentration of small clusters, which were more easily dispersed

(5.10C). Thus, cluster mitigation is most effective using both reversals and unequal work

probabilities in combination.

Figure 5.10: Cluster size and frequency dynamics. Proportional number of CA ant clus-
ters Ĩc = Ic/Itotal, of different sizes, C, measured over 24 hours for (A) equal and (B)
unequal (optimized for 30 CA ants) workload distributions at different reversal probabil-
ities (blue: 0.01, red: 0.2, yellow: 0.4, purple: 0.6, green: 0.8). (C) Cluster dissolution
times as a function of cluster size overlaid on cluster frequency distribution plots. Sample
illustrations for different cluster sizes in (A) inset.
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5.7 Robotic explorations

We next used a system of excavating robots to test if the above theoretical strategies could

improve traffic in confined experimental situations with more complex, unpredictable in-

teractions. Because, presently, robot mobility in real-world environments is poor relative

to biological systems and because real collisional interactions not modeled in CA are typ-

ically neglected in swarming robot studies [40], such robophysical [117] studies can aid

robot design and control for real-world robot swarms, as well as suggest hypotheses for

studies of ant traffic (18), adaptive behaviors, and morphological features for crowded ex-

cavation and movement. 2Groups of roughly elliptical robots with similar aspect ratios

to the biological ants were tasked with excavating a model cohesive granular medium of

hollow plastic spheres containing loose magnets; this design allows clumps of media to be

formed, analogous to the pellets of cohesive soil formed by the biological ants (13). The

robots followed simple instructions triggered by onboard sensory feedback of the surround-

ing environment [108]. Previous work in swarm robotics [118] used similar decentralized

strategies in conjunction with collision-avoidance schemes [40, 119] to produce emergent

flocking behavior. By contrast, our robots detected collisions with push switches on their

outer shell, which triggered navigation strategies such as steering away and readjusting to

promote clog resolution. To challenge the robots, a tunnel (Fig. 5.11A) with a width of

three robot widths (or 1.5 robot lengths) was constructed, which, combined with the ob-

long robot shape, forced a challenge of turning around in confined spaces. We tracked the

positions of the robots in the main tunnel area (i.e., excluding the excavation site) to gen-

erate space-time overlap maps of robot positions (see Fig. 5.11, B to D), which give visual

insight into robot flow during excavation. We first examined systematically how excava-

tion performance changed as numbers of robots increased for our active protocol, which

assigned equal work desire to all diggers: After soil deposition, each robot immediately

returned to the tunnel to excavate. Despite constraints on maneuverability, sensing, and

2The alpha version of the robots was built by CRAB Lab member Vadim Linevich
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morphology, the robophysical experiments demonstrated qualitatively similar performance

to the ants and the computational and theoretical models. For example, measurement of

the average flow rate, q, of successful excavators (which we quantify here as the number

of deposits per minute) revealed that excavation performance increased with an increasing

number of robots in the trial (N) until the system became sufficiently crowded (Fig. 5.11E).

Figure 5.11: Traffic flow and local dynamics during robot excavation (A) Schematic of
the excavation arena indicating the tunnel length excluding the excavation area (LT); robot
width, (WR); robot length, (LR); and tunnel width, (WT). A pink centerline along the
tunnel was monitored by the robots onboard cameras, enabling them to follow the tunnel
path. (B to D) Experimental space-time overlap heat maps of robot positions (x-axis) for
four-robot trials of (B) active digging, (C) Lorenz digging, and (D) reversal digging. Color
indicates the number of robots occupying a particular space and time: one (purple), two
(orange), three (yellow), and four (white) robots. Histograms above the graphs show the
frequency of occurrence of clusters with two or more robots at different lateral positions.
(E) Average flow rate, q̄, SD measured in deposits per minute versus number of robots in
the experiment, N, for active (green), Lorenz (light blue), and reversal (maroon) strategies.

To characterize how clustering led to performance degradation in the active protocol,

we measured the frequency of cluster occurrences, denoted Ic. Here we defined clusters
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as groups of robots of number Nc, whose center positions were within a robot length of

each other (supplementary materials). Such clusters occurred most frequently at the ex-

cavation site (histograms in Fig. 5.11, B to D), yielding phase separation [120] in the

system, whereby a portion of robots were jammed at high density, whereas others moved

smoothly through the tunnel at low density. To discover how the strategies of idleness

distributions and reversals affected clustering and traffic dynamics in the robots, we im-

plemented two protocols inspired by the biological observations and theoretical models.

Like the CA model, in the Lorenz protocol, we implemented an unequal probability to en-

ter the tunnel derived from experimental ant workload inequalities. We also implemented

a separate robot reversal protocol, which produced selective retreats, whereby the robots

were programmed to immediately resume excavation after deposition but reversed after

not successfully reaching the excavation site within a given time. These strategies led to

different excavation performances as N increased; but most importantly, both strategies

outperformed the active protocol at N = 4 (Fig. 5.11E).

In summary, this chapter elucidates a slightly contrasting scenario that benefits from in-

dividual activity differences. This scenario warrants that persistent clusters do not form and

that a steady, persistent flow of agents is obtained. We show that one way to achieve per-

sistification in this task-oriented active matter system is grounded in distributed inactivity,

which in turn, is attained through probabilistic laziness and selective retreats.
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CHAPTER 6

HIGH THROUGHPUT IMPLEMENTATION

Statistical physics-based simulations like the ones used in this thesis are useful in making

accurate predictions only when done in large numbers. This is due to the presence of

noise terms in the dynamics. This requirement of repeating simulations a large number

of times often limits its applications in several fields. DEM simulations, in particular,

model each and every interaction between particles, and the computational requirements

grow exponentially with the number of particles. Ever since its inception in 1979 by Peter

A. Cundall [121], these simulations have benefited several areas of fluid and molecular

dynamics, but it’s only now that we are starting to exploit the most out of these approaches

because of accessible high throughput and high performance computational resources.

Regardless of the approaches discussed in Chapter 2, computational analysis and mod-

eling play an integral part in most multi-agent robotics studies. The rapid production of

cheaper processing units, GPUs specifically, has helped researchers make giant leaps in

computational studies. However, there is still a non-uniform distribution of these resources

across the globe due to a variety of reasons including cost and expertise.

As part of this thesis, we created a high throughput workflow for managing and running

our simulations and post processing algorithms on the Open Science Grid (OSG) clusters

[94, 95]. The Open Science Grid (OSG) is an NSF funded, open source platform of shared

computational resources available for scholars of research and academic institutions of the

United States at no cost. It has over 100 sites with computing and data storage resources

across the country. Some remarkable scientific discoveries of the past decade like the 2017

Nobel Prize winning Laser Interferometer Gravitational-Wave Observatory (LIGO) project

[122] leveraged OSG to estimate the statistical significance of gravitational wave candidate

events.
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This shared resource, however, is still used sparsely in the field of collective robotics.

This thesis is an example of how the field of statistical explorations of collective behavior

can benefit from the power of parallel execution of computational physics simulations over

shared resources. The studies reported in this thesis consist of several thousand simulations

each with a runtime averaging a day on a four core CPU. At the beginning of our project,

we had a few desktop computers at our disposal, but using just those, our study would have

taken 5+ years to finish. Fortunately, we were able to reduce the execution time of these

simulations significantly by running large batches in parallel on the OSG clusters which had

1000x more cores than what we possessed. The OSG uses a job management tool named

HTCondor [123]. It uses concepts like Directed acyclic graphs (DAG) to manage sequential

computational workflows where sets of jobs are connected by completion dependencies.

These DAGs make the entire workflow seamless and automated, simplify parameter sweeps

and post processing analyses. Using the OSG, we managed to run simulation jobs totaling

approximately 2.6 million hours of wall time in less than 1 year, reducing our initial time

estimate by several orders of magnitude. More details about our workflows can be found

in the Appendix section. A simple flowchart of the steps of execution is as shown below:
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Start

Compile the simulation code

and create binaries

Transfer binaries and relevant files

to the home directory of your osg profile

Design workflows and create

submit files and wrapper scripts

Submit jobs with HT Condor

grid site 3grid site 2grid site 1 . . . grid site n

Transfer results back to the main server

Download Result files

Run post processing scripts

Stop
;

The above flowchart represents how any typical high throughput implementation looks

like. However, due to the nature and scale of the OSG, there were a few checks that we
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added to our workflows to make sure they ran seamlessly. First, since the OSG is a shared,

distributed platform, the priority of execution for every user is unbiased, and changes over

time in proportion to usage. The priority decreases with increased usage. Additionally,

since the computing sites volunteer their computing resources, the host organizations are

free to set the policy of job executions. Most sites assign higher priority to jobs of local

users present at those sites, and therefore reserve the right to evict jobs of external users

in a scenario that a local users requests computational resources. An eviction puts the

job in a paused state and returns it to a running state once the queue clears, but due to

the technicalities of the execution, all progress is lost and the job restarts from the initial

iteration. Keeping this in mind, we took some extra measures to ensure we extracted the

maximum successful execution out of our submissions.

While a job runs on the remote site, the output files are created locally and are transmit-

ted back to the job submit site only when the job completes successfully. Another caveat

of evictions in our case was that the execution of the post processing scripts required all

jobs from the simulations to finish. Therefore, we often encountered situations where 99%

of the jobs were completed but the post processing script was waiting for the unlucky 1%

jobs to finish. These 1% jobs were usually the ones that had to restart due to evictions. We

implemented a fairly common technique in the high throughput computation domain called

“checkpointing” to overcome this challenge. Checkpointing periodically saves the progress

of a job to the disk in a preset format. If a job is interrupted and restarted, it first checks

for the presence of checkpoint files. On finding a checkpoint file, it resumes progress from

that checkpoint. A snippet of the checkpointing code is added to the appendix to provide

more clarity. This implementation helped us save significant time that would have been

otherwise lost to failed jobs.

We also implemented a non-trivial approach to run our post processing codes which

were written in MATLAB. Since MATLAB is a paid proprietary software, not all sites

on OSG had them installed. In fact, the submit site that we were assigned by the OSG
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administrators did not have MATLAB on it. The OSG team organizes a summer school

every year, and I was selected to join the 2020 cohort. I was actively doing my simulations

on the OSG by then and had the privilege to discuss some of my issues, specifically with

regards to MATLAB, with one of the OSG core team members, Dr Tim Cartwright. I

was given special access to the Centre of High Throughput Computation clusters of the

University of Wisconsin-Madison for a year. We used those clusters to pre-package our

MATLAB binaries and executables and transferred them to our OSG submit host for further

execution. Technically, any system with MATLAB Runtime would work for compiling

the binaries and executables. The ability to run the post processing scripts on the submit

host where the result files were being collected saved us time and resources that would be

otherwise spent on costly file transfer operations.

There is more room for improvement in enhancing the run times of the simulations.

The immediate next step to optimizing the code is making it ready for high performance

executions using libraries such as MPI to exploit the large-scale availability of multi-core

CPUs at execution sites. Another potential direction of improvement is exploiting some

of the more advanced features provided by HTCondor to generate sophisticated workflows

that reduce the requirement of human intervention and are robust to events such as holds,

evictions, or failures.
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CHAPTER 7

CONCLUSIONS

Programming a group of robots for useful collective behavior is a research endeavor that

has been a focus of researchers from various fields spanning control engineering to physics.

Recently, a significant amount of effort has been invested in developing algorithms and

schemes to control robot collectives. However, the scalability and feasibility of these algo-

rithms are often impractical outside laboratory settings. Unpredictable natural settings out-

side the laboratory warrants sophisticated algorithms. Implementing such algorithms come

with both hardware and software challenges which drive up the cost of building robotic

systems that can work in natural settings. Nature is filled with examples of physical and

biological systems that accomplish complex collective tasks in uncertain and unpredictable

situations at ease and these systems can be used as inspiration to simplify such challenges

and costs. These systems fall under the broad umbrella of active matter systems, and some

of them have been rigorously studied and understood. Although the scale and reach of

these systems are not always comparable to actual robotic systems, we argued and showed

that the underlying governing principles can be translated into useful collective algorithms.

In this thesis, we developed and studied a dynamic collective aggregation algorithm

where local robotic moves mimic the moves of a well studied SOPS algorithm which is in-

turn, inspired by a physical model of ferromagnetism called the Ising Model. We analyzed

the resulting algorithm via discrete particle simulations, and translated the theoretical rules

of movement on a robot via mechanics of an attractive exoskeleton housing loose magnets.

We were interested in exploring the occurrence of phase change from “dispersed” to “ag-

gregated” states as we changed one single parameter: the local attraction between robots

a.k.a magnetization (FM ) (or λ in the theoretical setting). Our work led to the following

results. We considered all λ > 1 and revealed bounds on the λ axis separating aggregated
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and dispersed regimes in the SOPS through our theoretical analysis. This result highlights

that the SOPS undergoes a phase change from dispersed to aggregated configurations when

λ is increased above a threshold, even though all λ > 1 represent a system that has a bias to-

wards gaining more neighbors. This finding thus, suggests that a distributed particle system

can aggregate by having a sufficient bias towards moving to places with more neighbors.

We predicted the formal relationship between size and perimeter of configurations in the

aggregated and dispersed regimes which is that the aggregated configurations are densely

and compactly packed. With the help of robotic experiments and simulations, we showed

that there indeed is a phase change from “dispersed” to aggregated states as we increased

the peripheral magnet strength (FM ), where FM is a monotonic function of λ. The theory

predicted PMC should scale linearly with NMC in dispersed steady states whereas PMC

should scale as O(
√
NMC) in aggregated steady states. Through experiments, we vali-

dated the theoretical predictions about this relationship between size and perimeter of the

largest component to show that aggregated configurations are both large and compact. The

experimental findings prove that a rudimentary approach of using a parameter that repre-

sents pairwise attractions between robots as a control knob can help shuffle between two

functionally useful robotic configurations. Subsequent physical simulations showed that

this phase change was scalable and observable in systems with different population sizes

(N ) of robots. Through robotic experiments, we were also able to show the utility of such

a phase change in being able to accomplish a collective task of object clearing by sim-

ply increasing magnetization (FM ). Furthermore, with the help of physical simulations, we

showed that an additional local input like “stress sensing” can be used to steer the collective

across this phase change. Overall, this study provides an example of how algorithms based

on the physical system model can be used for programming collective behavior in robots.

We used one of many well studied physical models to guide our explorations. We hope

that similar studies based on fundamental physics-based algorithms will benefit further this

line of questioning. We next showed that for a simple and constrained artificial collective
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system incapable of implementing complicated energy aware policies, distributed temporal

inactivity can serve as a mechanism for energy conservation and task persistification. The

simplicity of this finding makes it a great candidate for applications in systems where each

individual is constrained in computation, memory, and energy. We demonstrated the appli-

cability through simulations of a debris removal task performed by rudimentary simulated

robots. In summary,

• We showed that for a system of fixed population size, a small percentage of active

individuals can lead to a majority of the population to aggregate dynamically in the

presence of stochastic chiral movement dynamics and short-range inter-particle at-

traction forces. This overall, suggests that some of the activity in a system where

all individuals are active is redundant and strategies can be developed to exploit this

redundancy for task persistification through activity modulation.

• We demonstrated that selective periodic hibernation of a fixed percentage of agents

can lead to dynamically aggregated states for longer times. This demonstrates that a

collective system with finite energy reserves can function for longer periods of time

in comparison to run times provided by individual batteries by merely switching

some robots to be inactive periodically to conserve energy.

• We reported the effectiveness of periodic hibernation of activity in carrying out a de-

bris clearing task persistently and efficiently. These experiments show that by persis-

tifying dynamic aggregation in robots through selective periodic activity modulation,

one can fulfill tasks that depend on this behavior for long periods of time.

In a nutshell, this study suggests an approach to task persistification that doesn’t require

robots to utilize any sensing and communication protocol and shows the applicability of this

finding with a relevant robotic task.

Finally, we studied the nest excavation behavior of fire ants and the usefulness of lazi-

ness and selective retreats in maintaining optimal flow of excavated materials in their nest
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tunnels. To summarize:

• We showed that ants distribute workload unequally amongst excavators, and give up

and retreat to avoid traffic jams while excavating their incipient nests. We represent

this inequality in workload distribution by a popular tool from economics called the

“Lorenz distribution” which is usually used to represent inequality in wealth distri-

bution. This finding suggests that most of the work that goes into tunnel excavation

is carried out by a few ants.

• We observed that the ant system evolves to a state of unequal workload distribution

as an emergent process and that some ants are not biologically hardwired to be lazy

through our 2-day experiments with a) active diggers removed and b) repeats where

active diggers got swapped. This suggests that the few ants that do most of the work

while excavating tunnels are not chosen based on their capabilities, but tasked based

on some emergent mechanism to conserve energy and maximize throughput.

• We found that ants maintain the optimal tunnel density and traffic flow achievable

for the width of the tunnel that they build. This was shown via a combination of

experimental analysis and simulations. This shows the significance of the unequal

distribution of workload that the ant system evolves towards. By evolving towards

this distribution, ants can maintain the optimal density in tunnels that lead to maxi-

mum flow of excavated materials.

• We demonstrated the usefulness of laziness and retreats in mitigating jams through

cluster analysis in simulations under various conditions. These analyses provide a

more fundamental understanding of how the strategies implemented by the ant sys-

tem help optimize traffic flow in the tunnels.

This study provides a good example of how natural systems tackle practical challenges

to collective tasks under constraints. Task persistification through laziness and selective
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retreat is a previously unexplored idea and we show the potential of using this in robotic

task persistification through our other study. To conclude, although seemingly very differ-

ent, both our robotic system and ants show that distributed inactivity is a straightforward

and robust way to persistify tasks in collective systems where individuals have limited ca-

pabilities, or are constrained by other environmental conditions that limit their individual

capabilities.

A few potential directions for further research and exploration would entail incorporat-

ing the activity modulation in other practical distributed settings on robots. For example,

we could consider robots that turn off activity based on environmental cues instead of a

timed alteration of activity. It will also be interesting to implement the findings in experi-

ments with physical robots to complement the simulation findings, where we would surely

gather more insight into which modulation policies are the most effective. Moreover, on

a comparative scale, the overall reduction in average velocity of the system due to hiber-

nation may have some similar characteristics with systems that utilize higher attraction

forces between agents. There have been some preliminary discussions of the relationship

between velocity and magnetization in Chapter 4, and this might be interesting to further

explore with energy constraints in mind. For the fire ant studies, it will be interesting to

further understand how the system emerges to the Lorenz workload distribution. There is

some preliminary work currently in progress that is exploring this area.

On a broad level, this thesis conveyed the idea that a simple amalgamation of principles

from biology, statistical physics, distributed computing, and robotics can give rise to the

development of useful programming techniques for robot collectives. Such a principled

approach can help develop simplified algorithms, tools, and analysis techniques that can

be easily implemented, and are cost-effective. This is specifically relevant for new robotic

systems where component capabilities are saturating, or components are microscopic and

incapable of traditional computation. We show that interdisciplinary approaches can har-

ness the full extent of useful features and weed out the unnecessary complexities of col-
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lective algorithms to produce robust and persistent self organized behavior in a swarm of

robots and hope this thesis will guide future studies governed by this idea of minimalism.
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APPENDIX A

BOBBOT DESIGN AND MANUFACTURING

Fig. A.1 depicts various cross-sectional views of a BOBbot’s design and corresponding

skeletal structure. Fig. A.2 shows the Printer Circuit Board (PCB) design and assembly.

The force sensing circuitry shown in Fig. A.2 is present in the BOBbot hardware but was

not used in this study. Table A.1 lists all components used in BOBbot manufacturing.

Figure A.1: Cross-sectional views of the BOBbot mechanical design. SolidWorks de-
signs and assembled versions of (A) the BOBbot shell and magnet slots, (B) the battery
slot, and (C) the brush slots and wireless QR charge receiver.
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Figure A.2: BOBbot circuitry. (A) The analog PCB design, made in EagleCAD. (B) The
printed PCB. (C) The force sensing circuitry, implemented in the PCB but unused in the
present study.
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Component Manufacturer Product Name

ERM Motor BestTong DC 3.7V 9500RPM Vibrating Coreless Brushed Motor

Brushes Pienoy Double-Headed Pet Toothbrush

Magnets K&J Magnetics S2 and S3

Battery Adafruit Industries Lithium Ion Polymer Battery 3.7V 500mAh

Battery Module Adafruit Industries Micro-Lipo Charger

Qi Transmitter Adafruit Industries Universal Qi Wireless Charging Transmitter

Qi Receiver Adafruit Industries Universal Qi Wireless Receiver Module

Red/Black Wiring Adafruit Industries Solid-Core Wire Spool

LED KingSo 500pcs LED Diode Lights

Phototransistor Adafruit Industries Photo Transistor Light Sensor

Resistors Vishay/Dale Metal Film Resistor 1/10 Watt 50 Ohm 0.1% 50ppm

Transistors ON Semiconductor General Purpose Bipolar Transistor

Switches Pololu Mini Slide Switch 3-Pin, SPDT, 0.3A

Terminal Block Pololu Screwless Terminal Block: 2-Pin, 0.1” Pitch

Button Snaps Adafruit Industries Sewable Snaps, 5mm Diameter

Masking Tape Daigger DAI-T34-27-C Assorted Label Tape Pack

Jumper Cables Anezus 700pcs Jumper Wire Kit Breadboard Wires

Table A.1: List of BOBbot components.
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APPENDIX B

EXPERIMENTAL ARENA DESIGN

Fig. B.1 shows the design and details of the experimental platform.

Figure B.1: Experimental platform design and details. (A) The experimental platform is
composed of a T-slot base supporting a foam board, aluminum, and particle board layers.
(B) Levelling screws in the T-slot framing allow for incline adjustment. (C) A leaf blower
with a multi-pronged tygon tubing attachment provide airflow to the PVC pipe boundary
to mitigate boundary effects.
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APPENDIX C

CALIBRATION OF SIMULATIONS WITH EXPERIMENTS

The DEM simulation parameters (Table B.1) are calibrated to match the physical BOBbot

experiments. Many parameters such as the mass and dimensions of each BOBbot are easily

measured. However, other parameters are better calculated by conducting simple experi-

ments. The first such experiment (Fig. B.2) calculates the magnetic force FM0 between two

magnets when their BOBbots’ shells are touching. The first magnet is placed in a BOBbot

shell attached to a rigid stand; a second shell is then tethered beneath the first by placing

the second magnet inside it. Thus, the second shell falls once its weight exceeds FM . To

leverage this insight, a cup is tethered to the second shell and BBs are added to the cup

one-by-one until the second shell falls (Fig. B.2A). The weight of the shell, cup, and BBs

are then measured to obtain a value of FM that is precise up to 0.1 g, the weight of a single

BB (Fig. B.2C).
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Figure C.1: Calibration experiment for calculating magnet force FM . (A) The experi-
mental setup for calculating FM . (B) Measuring the weight of the tethered apparatus once
it falls gives a close approximation of FM0. (C) The magnetic force’s decay with the sepa-
ration d between two magnetic beads.

Each BOBbot’s position ~r and orientation ϕ change at a constant rate subject to noise. A

BOBbot’s constant translational speed v0 comes from the competing driving force FDû and

the translational drag −η~̇r. Similarly, each BOBbot’s constant rotational speed ω0 comes

from the competing driving torque τD and the rotational drag −ηϕϕ̇. The steady-state

speeds therefore follow v0 = FD/η and ω0 = τD/ηϕ. We again use simple experiments to

determine the drive and drag. To measure the translational drag η, we compare a BOBbot’s

trajectory when it is on a 0◦ incline versus a tilted incline. In the former, the BOBbot

circles regularly with some noise; in the latter, this regular circling is stretched towards the

direction of gravity on the incline (Fig. S5, top). Using the known gravitational force on the

BOBbot, we can calculate the translational drag force and coefficient η. We then simulate

a BOBbot’s motion using different translational drag coefficients; the one that produces

the trajectory most closely matching those in the experiments is chosen as the simulation η

(Fig. B.3).

83



𝜼 = 𝟖 𝒌𝒈 ⋅ 𝒔−𝟏

𝑣0 = 0.01 𝑚 ⋅ 𝑠−1

5 cm

𝜂 = 4 𝑘𝑔 ⋅ 𝑠−1

𝑔∥

Experiment

Simulations

Ti
m

e 
(s

)
0

   
   

   
   

   
   

   
   

   
6

0

𝜂 = 16 𝑘𝑔 ⋅ 𝑠−1

𝐹𝐷 = 𝜂𝑣0 = 0.08 𝑁

5 cm

𝑣0 = 0.08 𝑚 ⋅ 𝑠−1

𝐹𝐷 = 𝜂𝑣0 = 0.08 𝑁

𝜂 = 1 𝑘𝑔 ⋅ 𝑠−1

sl
o

w
 B

O
B

b
o

t
fa

st
 B

O
B

b
o

t

𝑔∥
𝜃

Figure C.2: Calibration experiment for calculating translational drag coefficient η.
When a BOBbot is driven on a level plane, it circles regularly with some noise. When
placed on a tilted incline, its trajectory is stretched towards the direction of gravity on
the incline. Using this known force, we measure the drag force by simulating BOBbot
trajectories on a tilted incline using different drag coefficients, comparing each trajectory’s
stretch to that of the experiment. The correct drag produces a close approximate of the
experimental trajectory. We find that viscosity varies between BOBbots, implying that
their speeds also vary. The first three trajectories are from a BOBbot with relatively slow
velocity v0; the last is from a fast BOBbot.

The measurement of the rotational drag ηϕ exploits its balance with the driving torque.

To measure the rotational torque exerted on a BOBbot, a very light rigid straw is attached

across the diameter of a BOBbot (Fig. B.4). We then let the BOBbot use the straw to

push objects at various arm lengths. For a given obstacle to push, the rotational torque is

obtained by finding the largest torque of friction on an obstacle to balance. We decrease the
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arm length from a large value to a point the BOBbots can just push the obstacle. Given the

measured saturated angular velocity ω0, the rotational drag can be inferred as ηϕ = τD/ω0.

6 cm

𝑓𝑚𝑎𝑥 = 8.6 𝑚𝑁

𝜏𝐷

A B

Figure C.3: Calibration experiment for calculating rotational drag coefficient ηϕ. (A)
The experimental setup and (B) the corresponding force diagram, where fmax denotes the
largest frictional torque that the driving torque τD can balance.

Many of our preliminary experiments were adulterated by boundary effects that caused

small groups of BOBbots to collect at the edges and corners of the arena, affecting steady

state properties. We mitigate these affects using airflow-based boundary repulsion (Fig.

B.5). To characterize these airflow effects, a BOBbot is placed close to the boundary and

its trajectory is tracked with and without airflow. The corresponding simulation parameters

are then chosen to match the average characteristics of these experimental trajectories.

The airflow force profile is chosen to match the decay length observed in the example

experiment (which is RA ≈ 6 ∗ R0). The resting speed of the bot used in this experiment

is v0 = 3 cm/s. Please note that the decay length chosen in the simulation runs throughout

our study is ∼ 2 ∗R0.
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Figure C.4: Boundary airflow effects in experiment and simulation.

Table B.1 shows all the parameters used in the physical model, along with their experi-

mental and calibrated simulation values.
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Symbol Description Experiment Simulation Note

m BOBbot mass 0.060 kg 0.060 kg

R0 BOBbot radius 0.030 m 0.030 m

I BOBbot moment of inertia 2.7e-5 kg·m2 2.7e-5 kg·m2 = mR2
0/2

RC radius of the regular circular motion 0.025 ± 0.005 m 0.025 ± 0.005 m

RB0
radius of the magnetic bead 2.3e-3 m 2.0e-3 m

RS thickness of the magnet cavity shell 2.0e-3 m 2.0e-3 m

RB effective radius of the magnetic bead 4.3e-3 m 4.0e-3 m = RB0
+RS

v0 Saturated speed 48.43± 20.16 mm/s 60.00 mm/s 1 ≤ v0 ≤ 70 mm/s

ω0 saturated angular velocity of the orbit 1.94± 0.81 rad/s 2.40 rad/s = v0/RC

FD Translational drive 0.07 N 0.06 N = ηv0

τD rotational drive (torque) 0.0005 N·m 0.0007 N·m = ηϕω0

η translational drag coefficient ∼1 kg/s 1.0 kg/s

ηϕ [l]rotational drag coefficient ≤3e-4 N·m·s 3e-4 N·m·s

FM0 magnetic force on contact 0.003-0.035 kgf 0.003-0.035 kgf

d0 magnetic force decay length 0.0015 m 0.0015 m FM (d) = FM0 · e−d/d0

µ bot-bot friction coefficient 0.143 0.143

µW bot-wall friction coefficient 0.143

Table C.1: List of parameters used in physical simulations.

87



APPENDIX D

OSG SUBMIT FILES AND CODE SNIPPETS

The OSG implementation of simulations were executed with the aid of a number of helper

scripts as discussed below.

Main Implementation The main implementation of the workflow for simulations are

done in a 3 step process starting with a iterative script that iterates over the parameters we

want changed and creates a ‘dag’ file. Each line of a ‘dag’ file represented one instantiation

of the simulation and is used by the condor submit file to process the workflow. An example

code snippet of each of these file is shown below:

Compilation and execution file to be called by the iterative script

# ! / b i n / bash

# Compile t h e code

compi l e s i m u l a t i o n . cpp

#Run and s p e c i f y t h e arguments

. / s i m u l a t i o n $a rgumen t s$

An example iterative script

# ! / b i n / bash

f o r ( l oop ove r p a r a m e t e r 1 eg : fm )

do

f o r ( l oop ove r p a r a m e t e r 2 eg : v e l )

do

. . .

do

. . .
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do

. . .

do

# S p e c i f y a u n i qu e run name f o r t h e s p e c i f i c s e t o f

# p a r a m e t e r s i n a g i v e n run

run name=” r e s u l t F M $ {fm} VEL ${ v e l } N ${n } . . . Exp ${ i }”

# Append a l i n e t o t h e dag f i l e w i t h t h a t un iqu e

# run name and a s s o c i a t e t h e s u b m i t f i l e w i t h i t

echo ”JOB ${ run name } s i m u l a t i o n . sub ” >> s i m u l a t i o n . dag

# S p e c i f y r e t r y a t t e m p t s i f any

echo ”RETRY ${ run name } 1 ” >> s i m u l a t i o n . dag

#Add argument s t o t h e s u b m i t l i n e i n dag f i l e

echo ”VARS ${ run name } macromag=\” ${FM}\ ” macrove l =\”

${ v e l }\ ” . . . macrojobname =\” ${ run name }\ ” ”>>

s i m u l a t i o n . dag

done

done

done

done

done

An example submit file

# S p e c i f y OSG u n i v e r s e i n which your s u b m i s s i o n w i l l

# run

U n i v e r s e = v a n i l l a

#Add t h e f i l e w i t h c o m p i l a t i o n and e x e c u t i o n l i n e here

e x e c u t a b l e = s i m u l a t i o n . sh

# S p e c i f y o u t p u t , e r r o r and l o g f i l e s
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o u t p u t = l o g / s i m u l a t i o n−$ ( macrojobname ) . o u t

e r r = l o g / s i m u l a t i o n−$ ( macrojobname ) . e r r

l o g = l o g / s i m u l a t i o n−$ ( macrojobname ) . l o g

# S p e c i f y argument s

a rgumen t s =” $ ( macromag ) $ ( macrove l ) $ ( m a c r o i t e r ) $ ( macro t ime )

$ ( macrosample ) $ ( macroN ) $ ( macroA ) $ ( macroAP ) ”

#OSG s p e c i f i c o u t p u t and i n p u t commands

t r a n s f e r o u t p u t f i l e s = r e s u l t F M $ ( macromag ) VEL $ ( macrove l )

. . . Exp $ ( m a c r o i t e r ) . d a t

t r a n s f e r i n p u t f i l e s = / home / s i m u l a t i o n . cpp

s h o u l d t r a n s f e r f i l e s =YES

w h e n t o t r a n s f e r o u t p u t =ON EXIT OR EVICT

# S p e c i f y s y s t e m r e q u i r e m e n t s , s t o r a g e and memory

R e q u i r e m e n t s =(HAS MODULES =?= t rue ) &&

( OSGVO OS STRING == ”RHEL 7 ” ) && ( OpSys == ”LINUX” )

+ Pro jec tName = ” osg . bobbo t ”

reques t memory =2GB

r e q u e s t d i s k =1GB

r e q u e s t c p u s =1

queue 1

MATLAB implementation MATLAB is a licensed software and is not readily avail-

able everywhere. We use the MATLAB compiler to compile our MATLAB programs as ex-

ecutables and pre package MATLAB binaries with our submission. Example pseudocodes

are provided below to explain the workflow:

Setup environment for execution

# ! / b i n / sh

# S c r i p t f o r e x e c u t i o n o f d e p l o y e d a p p l i c a t i o n s
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# S e t s up t h e MATLAB Runt ime e n v i r o n m e n t f o r t h e

# c u r r e n t $ARCH and e x e c u t e s

# t h e s p e c i f i e d command .

# Unzip t h e MATLAB b i n a r y

t a r −x z f r2015b . t a r . gz

mkdir cache

export MCR CACHE ROOT=$PWD/ cache

# S e t up t h e e n v i r o n m e n t and c a l l t h e e x e c u t a b l e

# MATLABPostProcessing

exe name=$0

e x e d i r = ‘ d i rname ” $0 ” ‘

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

i f [ ” x$1 ” = ” x ” ] ; then

echo Usage :

echo $0 \<deployedMCRroot\> a r g s

e l s e

echo S e t t i n g up e n v i r o n m e n t v a r i a b l e s

MCRROOT=” $1 ”

echo −−−

LD LIBRARY PATH = . : ${MCRROOT} / r u n t i m e / g lnxa64 ;

LD LIBRARY PATH=${LD LIBRARY PATH} : ${MCRROOT} / b i n / g lnxa64 ;

LD LIBRARY PATH=${LD LIBRARY PATH} : ${MCRROOT} / s y s / os / g lnxa64 ;

LD LIBRARY PATH=${LD LIBRARY PATH} : ${MCRROOT}

/ s y s / o pe ng l / l i b / g lnxa64 ;

export LD LIBRARY PATH ;

echo LD LIBRARY PATH i s ${LD LIBRARY PATH} ;

s h i f t 1
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a r g s =

whi le [ $# −g t 0 ] ; do

t o k e n =$1

a r g s =” ${ a r g s } \” ${ t o k e n }\ ” ”

s h i f t

done

e v a l ”\” ${ e x e d i r } / MATLABPostProcessing\” ” $ a r g s

f i

e x i t

Submit File

# S p e c i f y OSG u n i v e r s e i n which your s u b m i s s i o n w i l l

# run

U n i v e r s e = v a n i l l a

# S p e c i f y e x e c u t a b l e , i n p u t f i l e s and t h e r e s u l t f i l e

# which needs t o be p r o c e s s e d as arguments

e x e c u t a b l e = wrapper run MATLABPostProcess ing . sh

t r a n s f e r i n p u t f i l e s = MATLABPostProcessing ,

wrapper MATLAB . sh , $ ( i n p u t f i l e ) , r2015b . t a r . gz

a rgumen t s = $ ( i n p u t f i l e )

# S p e c i f y o u t p u t , e r r o r and l o g f i l e s

Outpu t = Log / j o b . $ ( i n p u t f i l e ) . o u t

E r r o r = Log / j o b . $ ( i n p u t f i l e ) . e r r

Log = Log / j o b . $ ( i n p u t f i l e ) . l o g

# S p e c i f y s y s t e m r e q u i r e m e n t s , s t o r a g e and memory

r e q u i r e m e n t s = OSGVO OS STRING == ”RHEL 7 ” &&

Arch == ” X86 64 ” && HAS MODULES == True

r e q u e s t c p u s = 1
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r e q u e s t d i s k = 4GB

reques t memory = 3GB

#Queue a l l t h e r e s u l t f i l e s t h a t was produced by

# s i m u l a t i o n s

queue i n p u t f i l e ma tch ing r e s u l t ∗

Wrapper script

. / run MATLABPostProcessing . sh v90 $1

Checkpointing As elucidated in Chapter 6, Checkpointing is a useful technique to

ensure efficient utilization of resources in cases of job evictions. The following example

code snippets show how this is done by modifying the C++ simulation program and our

submit files.

Changes in the Simulation C++ file

/ / Check f o r f i l e and f i n d i t e r a t i o n number t o resume from

i f ( e x i s t s f i l e ( F i le Name )==1) {

/ / s t r e am t h e f i l e

i f s t r e a m S t a t e F i l e ( Fi le Name ) ;

i f ( S t a t e F i l e . i s o p e n ( ) ) {

/ / E x t r a c t t h e c u r r e n t s t a t e and l i n e number

/ / from where t o resume

}

S t a t e F i l e . c l o s e ( ) ;

} e l s e {

/ / I n i t i a l i z e s t a t e f i l e s f o r s t a r t i n g anew

}

/ / c h e c k p o i n t and e x i t

i f ( ( S i m u l a t i o n I t e r a t i o n % C h e c k p o i n t F l a g == 0) &&
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( S i m u l a t i o n I t e r a t i o n >0)) {

S t a t e F i l e . c l o s e ( ) ;

e x i t ( 3 3 ) ;

}

Changes in submit file

# S p e c i f y OSG u n i v e r s e i n which your s u b m i s s i o n w i l l

# run

U n i v e r s e = v a n i l l a

#Add t h e f i l e w i t h c o m p i l a t i o n and e x e c u t i o n l i n e here

e x e c u t a b l e = s i m u l a t i o n . sh

# S p e c i f y o u t p u t , e r r o r and l o g f i l e s

o u t p u t = l o g / s i m u l a t i o n−$ ( macrojobname ) . o u t

e r r = l o g / s i m u l a t i o n−$ ( macrojobname ) . e r r

l o g = l o g / s i m u l a t i o n−$ ( macrojobname ) . l o g

# S p e c i f y argument s

a rgumen t s =” $ ( macromag ) $ ( macrove l ) $ ( m a c r o i t e r ) $ ( macro t ime )

$ ( macrosample ) $ ( macroN ) $ ( macroA ) $ ( macroAP ) ”

#OSG s p e c i f i c o u t p u t and i n p u t commands

t r a n s f e r o u t p u t f i l e s = r e s u l t F M $ ( macromag ) VEL $ ( macrove l )

. . . Exp $ ( m a c r o i t e r ) . d a t

t r a n s f e r i n p u t f i l e s = / home / s i m u l a t i o n . cpp

s h o u l d t r a n s f e r f i l e s =YES

c h e c k p o i n t e x i t c o d e =33

# S p e c i f y s y s t e m r e q u i r e m e n t s , s t o r a g e and memory

R e q u i r e m e n t s =(HAS MODULES =?= t rue ) &&

( OSGVO OS STRING == ”RHEL 7 ” ) && ( OpSys == ”LINUX” )

+ Pro jec tName = ” osg . bobbo t ”
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r eques t memory =2GB

r e q u e s t d i s k =1GB

r e q u e s t c p u s =1

queue 1
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[84] S. Jahanshahi, H. Löwen, and B. Ten Hagen, “Brownian motion of a circle swim-
mer in a harmonic trap,” Physical Review E, vol. 95, no. 2, p. 022 606, 2017.

[85] A. A. Middleton and N. S. Wingreen, “Collective transport in arrays of small metal-
lic dots,” Physical Review Letters, vol. 71, no. 19, 3198–? 1993.

[86] D. S. Fisher, “Collective transport in random media: From superconductors to
earthquakes,” Physics Reports, vol. 301, no. 1–3, pp. 113–150, 1998.

[87] O. Feinerman, I. Pinkoviezky, A. Gelblum, E. Fonio, and N. S. Gov, “The physics
of cooperative transport in groups of ants,” Nature Physics, vol. 14, pp. 683–693,
2018.

[88] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and
sweeping in changing environments,” IEEE Transactions on Robotics, vol. 28, no.
2, pp. 410–426, 2011.

[89] L. Liu and N. Michael, “Energy-aware aerial vehicle deployment via bipartite graph
matching,” in 2014 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, 2014, pp. 189–194.

[90] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot rendezvous planning
for recharging in persistent tasks,” IEEE Transactions on Robotics, vol. 31, no. 1,
pp. 128–142, 2015.

[91] S. Mayya, G. Notomista, D. Shell, S. Hutchinson, and M. Egerstedt, “Non-uniform
robot densities in vibration driven swarms using phase separation theory,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 4106–4112.

[92] S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan, C. Hoberman, D. Rus,
and H. Lipson, “Particle robotics based on statistical mechanics of loosely coupled
components,” Nature, vol. 567, no. 7748, pp. 361–365, 2019.

[93] B. Yigit, Y. Alapan, and M. Sitti, “Programmable collective behavior in dynami-
cally self-assembled mobile microrobotic swarms,” Advanced Science, vol. 6, no.
6, p. 1 801 837, 2019.

[94] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K.
Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky,

103



J. McGee, and R. Quick, “The open science grid,” in J. Phys. Conf. Ser., ser. 78,
vol. 78, 2007, p. 012 057.

[95] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwein,
“The pilot way to grid resources using glideinwms,” in 2009 WRI World Congress
on Computer Science and Information Engineering, ser. 2, vol. 2, 2009, pp. 428–
432.

[96] A. Okubo, “Dynamical aspects of animal grouping: Swarms, schools, flocks, and
herds,” Advances in biophysics, vol. 22, pp. 1–94, 1986.

[97] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,
and R. A. Simha, “Hydrodynamics of soft active matter,” Reviews of Modern Physics,
vol. 85, no. 3, p. 1143, 2013.

[98] D. Helbing, “Traffic and related self-driven many-particle systems,” Reviews of
modern physics, vol. 73, no. 4, p. 1067, 2001.

[99] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, “Dynamics of bacterial
swarming,” Biophysical journal, vol. 98, no. 10, pp. 2082–2090, 2010.
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