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SUMMARY

Over the past decade, there have been constant efforts to induct unmanned aerial ve-

hicles (UAVs) into military engagements, disaster management, weather monitoring, and

package delivery, among various other applications. With UAVs starting to come out of

controlled environments into real-world scenarios, uncertainties that can be either exoge-

nous or endogenous play an important role in the planning and decision-making aspects

of deploying UAVs. At the same time, while the demand for UAVs is steadily increas-

ing, major governments are working on their regulations. There is an urgency to design

surveillance and security systems that can efficiently regulate the traffic and usage of these

UAVs, especially in secured airspaces. With this motivation, the thesis primarily focuses

on airspace security, providing solutions for safe planning under uncertainties while ad-

dressing aspects concerning target acquisition and collision avoidance.

In this thesis, we first present our work on solutions developed for airspace security

that employ multiple agents to capture multiple targets in an efficient manner. Since multi-

pursuer multi-evader problems are known to be intractable, heuristics based on the geome-

try of the game are employed to obtain task-allocation algorithms that are computationally

efficient. This is achieved by first analyzing pursuit-evasion problems involving two pur-

suers and one evader. Using the insights obtained from this analysis, a dynamic allocation

algorithm for the pursuers, which is independent of the evader’s strategy, is proposed. The

algorithm is further extended to solve multi-pursuer multi-evader problems for any number

of pursuers and evaders, assuming both sets of agents to be heterogeneous in terms of speed

capabilities.

Next, we consider stochastic disturbances, analyzing pursuit-evasion problems under

stochastic flow fields using forward reachability analysis, and covariance steering. The

problem of steering a Gaussian in adversarial scenarios is first analyzed under the frame-

work of general constrained games. The resulting covariance steering problem is solved

xvii



numerically using iterative techniques. The proposed approach is applied to the missile

endgame guidance problem. Subsequently, using the theory of covariance steering, an ap-

proach to solve pursuit-evasion problems under external stochastic flow fields is discussed.

Assuming a linear feedback control strategy, a chance-constrained covariance game is con-

structed around the nominal solution of the players. The proposed approach is tested on

realistic linear and nonlinear flow fields. Numerical simulations suggest that the pursuer

can effectively steer the game towards capture.

Finally, the uncertainties are assumed to be parametric in nature. To this end, we

first formalize optimal control under parametric uncertainties while introducing sensitiv-

ity functions and costates based techniques to address robustness under parametric varia-

tions. Utilizing the sensitivity functions, we address the problem of safe path planning in

environments containing dynamic obstacles with an uncertain motion model. The sensitiv-

ity function based-approach is then extended to address game-theoretic formulations that

resemble a “fog of war” situation.

xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Coordination strategies for unmanned aerial vehicles (UAVs) has been an active area of

research especially in the realm of multi-agent systems over the past decade [1, 2, 3, 4,

5], having numerous applications, including agriculture, aerial surveying, fire detection,

disaster management, weather monitoring, and commercial product delivery (eg: Amazon

Prime Air in Figure 1.1(a)). UAVs already play a major role in military engagement sce-

narios, and their use as part of swarm tactics (encirclement, coordinated attack, search and

rescue, perimeter defense) promises to change future battlefield operations. However, the

deployment of small UAVs for various missions is currently facing endurance limitations.

To this end, some of the solution techniques that are currently under investigation include

extending their range capabilities and reducing their fuel consumption by leveraging envi-

ronmental winds, landing on and riding along with ground vehicles. The latter technique

involves rendezvous with a moving target that can improve the functionality of these UAVs.

(a) © Amazon.com, Inc. (b) © 2018 Government of Singapore

Figure 1.1: (a) Prime Air is a future delivery system from Amazon designed to safely get
packages to customers in 30 minutes or less using UAVs (b) A drone-catcher pursues drones
that enter secured airspaces and captures them using a net. Counter-drone technologies
involving multiple UAVs are among the solutions for smart airbases for future.

1



More recently, an analysis on the current commercial UAV market suggests that their

use is expected to grow manyfold over the coming years, as aerial drones are becoming

a household product, used for recreational and industrial purposes alike1. These advance-

ments suggest an urgent need to explore designs for airspace safety systems that can reg-

ulate the traffic and usage of UAVs in a large scale (eg: Drone Catcher2 in Figure 1.1(b)).

Similarly, we are slowly but surely inching towards the world of fully autonomous self-

driving vehicles, and before these vehicles become a reality, they will have to interact with

human-driven vehicles in traffic, as well as pedestrians. Since human drivers can be ex-

tremely unpredictable, such autonomous vehicles have to plan for worst case scenarios to

guarantee safety.

In all the above mentioned problems, which involve multi-agent systems, coordination

strategies obtained by formulating them as a multi-player pursuit-evasion (PE) game offer

solutions that address collision avoidance, surveillance and target acquisition [6, 7, 8, 9].

However, obtaining solutions to such multi-player differential games still remains a chal-

lenge. Additionally, all of the above instances require the autonomous agents to operate in

an environment that is uncertain and adversarial. In the case of UAVs, environmental dis-

turbances (such as winds) can greatly affect the system’s performance, and in turn decide

the fate of a mission.

The major goal of this research is to develop novel solutions for controlling multiple

unmanned vehicles having a common goal under the influence of external disturbances

and uncertainties. The external disturbances can include winds (in the case of aerial ve-

hicles), water currents (in the case of marine vehicles), or traffic flow (in the case of self-

driving cars). The difference in the actual and perceived behavior of other adversarial

agents (asymmetric information) in the environment account to the uncertainties part of the

research. More specifically, the thesis presents decentralized strategies for the players in

pursuit-evasion games involving multiple agents and uncertainties.

1http://www.businessinsider.com/commercial-uav-market-analysis-2017-8
2https://www.straitstimes.com/singapore/saf-announces-plans-to-tap-tech-consolidate-bmt
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1.2 Literature Survey

The seminal work of Rufus Isaacs on differential games paved the way for the study of

pursuit-evasion (PE) problems [10]. In [10], some techniques to study multi-player PE

games were briefly discussed. Following Isaacs, various formulations of the PE game were

analyzed. An extensive amount of literature is now available, and a recent survey on zero-

sum PE games with multiple agents is available in Ref. [11].

The two-pursuer/one-evader problem has been previously discussed by H. Kelley in [12],

where some aspects of two-on-one team tactics were identified. Bhattacharya and Hutchin-

son analyzed the problem subject to visibility constraints, and provided approximate schemes

to construct the set of initial pursuer configurations from which capture is guaranteed [13].

The differential game involving two pursuers and one evader with linear dynamics and

quadratic cost was investigated for Nash equilibrium solutions in Ref. [14]. Partitions of

the state-space were identified and categorized, which are similar to the degenerate and

the non-degenerate regions discussed later on in this paper. A linear differential game

formulation restricting the motion of the players to a straight line with the two pursuers co-

ordinating to reduce the miss distance was extensively studied by several researchers [15,

16]. An algorithm to numerically construct level sets of the value function with fixed final

time was also discussed in Ref. [17]. A case of two identical inertial pursuers (second order

dynamics) pursuing a non-inertial evader (first order dynamics) was studied by Levchenkov

and Pashkov [18]. Hagedorn and Breakwell considered the problem of a faster evader that

must pass between two pursuers [19]. Finally, a version of the relay pursuit problem dis-

cussed in this paper was previously presented by Sun and Tsiotras, along with a suboptimal

strategy [20].

Evasion from a group of pursuers is a subset of the class of multi-player PE games.

Classical results include those of Pshenichnyi, who provided a sufficient condition for

successful evasion from a group of homogeneous pursuers [21], Blagodatskikh [22] and
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Chernous’ko [23], among many others. Specifically, Chernous’ko showed that an evader

can avoid point capture from any number of pursuers having a lower speed. The PE differ-

ential game involving many pursuers and one evader has also been investigated subject to

fixed terminal time, integral constraints and different pay-off models [24, 25].

Obtaining closed-form optimal strategies for the players in general multi-agent PE

games using Hamilton-Jacobi-Isaacs (HJI) equation formulations is elusive, owing to the

curse of dimensionality. Jang and Tomlin proposed some control strategies obtained from

direct differentiation of a given value function, but these strategies are sub-optimal [26].

An extension to this problem, which assumes that the evader is more agile than the pur-

suers, was studied by Zak [27]. Oyler et al. [28] studied planar PE games in the presence of

obstacles by constructing dominant regions for each player. Some limitations of capturing

a faster evader were proposed, and heuristic group pursuit strategies were presented in [29,

30, 31, 32, 33]. In another version of the group pursuit problem, a group of faster, yet less

agile, pursuers against a slower, but more agile evader, was solved by Bopardikar et al. [34].

Group pursuit problems involving general dynamics were studied in [35, 36, 37]. A prob-

abilistic variant of group pursuit problems was investigated in [38] using a greedy policy.

Lastly, relay group pursuit using dynamic Voronoi diagrams was studied in [39, 40].

The literature for multi-pursuer multi-evader (MPME) problems, where there are play-

ers from two teams encountering each other with conflicting motives [41], is rather limited

compared to its multi-pursuer single-evader (MPSE) problems. In most cases, some form

of heuristic is introduced in order to make the problem tractable. Ge et al. [42] proposed

three approaches, which include hierarchical decomposition, moving horizon hierarchical

decomposition, and cooperative control. Li et al. [43] also explored a hierarchical ap-

proach, while Jin and Qu [44] proposed a heuristic task allocation algorithm. Extensions

to the MPME problem includes problems with incomplete information [45], nonlinear dy-

namics [46], and a mix of continuous and discrete observations [47]. However, finding

scalable algorithms which can be implemented in real-life MPME scenarios is still an open
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problem [48, 49, 50, 51].

Most of the aforementioned solution approaches can be categorized into formal meth-

ods that provide optimal (or sub-optimal) strategies for the players. The learning paradigm

propelled alternate approaches to obtain model-free solutions for some of the aforemen-

tioned pursuit-evasion formulations using deep neural networks [52, 53]. In the recent

past, techniques based on Q-learning [54, 55], policy gradients [56, 57], and actor-critic

methods [58] were explored to analyze multi-agent pursuit-evasion problems. In [56] and

[59], formulations with closed domains were proposed to solve the game with a superior

evader using deep reinforcement learning. A survey of the reinforcement learning based

techniques for multi-agent systems can be found in Ref. [60], that discusses the associated

challenges. Some of the challenges include defining a “good” learning goal, lack of theo-

retical and convergence guarantees, scalability, and the exploration-exploitation trade-off.

Planning under environmental disturbances, such as wind fields and uncertain cur-

rents, is a necessity for technological solutions employing many aerial and underwater

autonomous vehicles. Traditionally, such disturbances are assumed to be stochastic, and

there is a vast amount of work available for planning under stochastic uncertainties, both

endogenous and exogenous. To this end, stochastic pursuit-evasion games have received

a great deal of attention by many researchers over the years, who have proposed various

formulations and numerical techniques [61, 62, 63, 64].

One of the most promising approaches for solving deterministic pursuit-evasion (PE)

games involves reachability and level set based analysis [65, 66]. These have been applied

in aerospace applications such as for the construction of safety envelope [67]. Sun et al.

derived capture conditions and open-loop strategies for agents in multi-player PE problems

with dynamic flow fields using a reachability based approach [66]. The work by Sun et al.

employs forward reachable sets by solving the level set equations. Under the assumption

that the evader is slower than the pursuer in the one-pursuer-one-evader game, the approach

led to a simplified capture condition, stating that the optimal capture time is the minimum
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time taken by the pursuer’s reachability set to contain the evader’s reachability set. In the

stochastic realm, forward reachability based analysis is a relatively new idea with limited

previous work, and the system dynamics was mostly assumed to be linear [68, 69, 70, 71].

Prior work on stochastic dynamic games considered continuous-time linear systems

with players having noisy measurements. In one of the early works, Speyer discussed the

outcomes of a linear stochastic differential game in a defense setting with a missile and

a radar [72]. The radar’s objective is to minimize the uncertainty in the current state of

the missile using a filter, and the missile strives to maximize the same, while also trying

to arrive at a target point with certain accuracy. Further, the missile has linear dynam-

ics and adds additive noise to its control in order to confuse its adversary. Subsequently,

zero-sum LQ differential game theory with noise-corrupted measurements was applied to

study the pursuit-evasion setting involving a homing missile and an evading aircraft [73].

Quasi-linearization was used to solve the nonlinear two-point boundary-value problem with

closed-form solutions. At the same time, Castañón and Athans derived feedback strategies

for a two-person Stackelberg game with quadratic performance cost and linear dynamics

[74]. Kumar and van Schuppen considered different observations and costs for the two

players [75]. They obtained strategies for the players assuming that one of the players had

a “spy” creating an instance of asymmetric information. Bley and Stear studied discrete

stochastic dynamic games in R [76]. Yavin analyzed various pursuit-evasion problems in

the stochastic setting and provided sufficient conditions for the players’ optimal strategies

[77, 78]. Bernhard and Colomb provided a solution for the rabbit and the hunter game in a

partial information setting, using dynamic programming [79].

In recent years, stochastic games with different information structures, where the state

transition and observation equations are linear, have been extensively studied [80, 81, 82,

83, 84, 85]. Rajpurohit et al. studied a two-player stochastic differential game with a

nonlinear dynamical model over an infinite time horizon [86].

Owing to the fact that a Gaussian distribution can be fully defined using its first two mo-
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ments, a class of stochastic optimization problems were decomposed into their respective

mean and covariance steering problems [87, 88]. The mean steering problem is essentially

a deterministic dynamic game. The necessary and sufficient conditions for the existence of

a solution to the discrete-time LQ dynamic game was provided by Pachter and Pham, along

with a closed-form solution [89].

The problem of steering the state of a stochastic dynamic system from a given initial

Gaussian distribution to a desired one is referred to as the covariance steering problem. The

idea of covariance control has its genesis in the 1980s [90]. The problem of finite-horizon

covariance control in continuous time was however analyzed only recently by Chen et al.

[91, 92, 93]. In Ref. [88], state chance constraints were introduced to the covariance control

problem in the context of path planning with static obstacles and system uncertainties. The

approach was subsequently modified to deal with general nonlinear dynamics [94], and was

applied to spacecraft control [95, 96, 97]. Previous works have shown that these solutions

can be seen in the context of LQG with a particular set of weights which can be solved in

terms of LMIs [98, 99, 100].

Optimal trajectory planning and feedback control are two critical and interrelated com-

ponents required to achieve autonomous flight. Traditionally, a nominal trajectory is com-

puted preflight by solving an optimization problem constrained by the vehicle’s dynamical

model, containing estimated atmospheric and aerodynamic parameters. The guidance law

is then given as the sum of this nominal input with a feedback term, which is added so that

the trajectory is robust to parametric uncertainties and random disturbances. It follows that,

in a clear division of labor, the open-loop nominal control defines the nominal trajectory

and the feedback control reduces sensitivity to uncertainty. Take for example the Apollo

direct entry guidance, which was designed as part of the Apollo program and later adapted

for the Mars Science Laboratory (MSL) and Mars 2020 entry guidance [101, 102, 103].

A nominal profile of bank angle commands are first set to determine the nominal entry

path, and then feedback gains are computed as a function of the adjoint system integrated
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backwards along the nominal trajectory.

In this thesis, we propose, instead, to reduce trajectory dispersion due to parametric

uncertainties by selection of the nominal trajectory. The nominal control then serves a

dual role of optimizing the given performance metric and reducing dispersion. Early work

on trajectory sensitivity design include those of Winsor and Roy [104], who developed a

technique to design controllers that provide assurance for system performance under math-

ematical modeling inaccuracy. The feasibility of the technique was established with ap-

propriate simulation results. Following that work, several approaches including sensitivity-

reduction for linear regulators, using increased-order augmented system [105], modifica-

tion of weighting matrix [106], feedback [107, 108], and an augmented cost function [109,

110], were all thoroughly analyzed. The approach of using an augmented cost function was

further tested on the linear quadratic regulator (LQR) problem, which was later applied for

active suspension control in passenger cars [110].

With the work on trajectory sensitivity design mostly restricted to analyzing linear sys-

tems, more recent approaches under the title desensitized optimal control (DOC) consid-

ered sensitivities to address dispersion under modeling uncertainties in general nonlinear

optimal control problems. The work by Seywald et al. makes use of sensitivity analysis

to obtain an optimal open-loop trajectory that is insensitive to first-order parametric vari-

ations for general optimal control problems [111, 112]. The proposed approach elevates

the parameters of interest to system states, and defines a binary sensitivity function that

provides the first-order variation in the states at time t, given the variation in the states at

some time t′ (t′ ≤ t). An appropriate sensitivity cost is added to the existing cost function,

and the dynamics of the binary sensitivity function is augmented in the system dynamics

to solve the resulting optimal control problem. The approach was later extended to op-

timal control problems with control constraints [113], and it was used to solve the Mars

pinpoint landing problem [114]. Some extensions to the landing problem include consid-

ering uncertainties in atmospheric density and aerodynamic characteristics [115], and the
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use of direct collocation and nonlinear programming [116]. The process of constructing

desensitized trajectories can be also understood as a way to impose smoothness through

the regularization of the sensitivities [117].

Probabilistic methods are a popular choice to address planning in uncertain dynamic

environments [118]. In the past, Gaussian processes have been employed to model uncer-

tainty and to obtain safe trajectories [119, 120, 121, 122]. Techniques involving POMDPs

[123, 124], occupancy grids [125], intent-based threat estimation [126], replanning [127,

128], and feedback coupled with estimation [129] are many variants in the class of proba-

bilistic methods. Alternatively, reachability analysis [130], artificial potential fields (APFs)

[131], and barrier functions [132] have also been utilized. Our approach fundamentally

differs from the above techniques in its formulation; while prior work widely employed

probabilistic techniques, the proposed formulation in this paper is deterministic. In or-

der to address planning under limited sensing and feedback capabilities, we provide safe

open-loop trajectories that have guarantees on optimality by treating the uncertainty to be

parametric in nature, and by examining sensitivities with respect to parameter variations.

Lastly, we address planning in adversarial scenarios with asymmetric information us-

ing sensitivity based techniques. This is a game-theoretic extension to the aforementioned

safe optimal planning under parametric uncertainties. Games with asymmetric/incomplete

information have been the subject of interest with probabilistic methods being the most

popular choice for analysis [133]. In Bayesian games, for instance, each player assumes

probability distributions over the random variable denoting the uncertain information and

the beliefs of the other players to arrive at an equilibrium solution that maximizes its ex-

pected rewards [134]. It has been shown that lack of common knowledge would result in a

non-zero-sum game even when the original reward structure of the players corresponds to a

zero-sum game [135]. In order to characterize Nash equilibria in a game with asymmetric

information, Nayyar et al. constructed an equivalent symmetric game using the common

information among the players [136]. Subsequently, an algorithm to compute such Nash
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equilibria by solving a sequence of linear equations was proposed in [137]. The approach

was later applied to address security of cyber-physical systems under resource constraints

on the players [138]. An algorithm to obtain fixed points for the infinite-horizon version of

the game was proposed by Vasal et al. [139].

In the realm of pursuit-evasion problems, the notion of detectability was considered to

be an outcome of lack of information [140, 141]. Antoniades et al. used heuristics to inves-

tigate multi-agent games in which a team of pursuers detect and capture a team of evaders

[45]. Estimation-based approaches to address pursuit-evasion with information uncertainty

were first put forth by Mizukami and Tews [142]. The approach was extensively analyzed

to obtain solutions for various types of orbital pursuit-evasion games [143, 144, 145, 146].

Furthermore, linear pursuit-evasion games with bounded controls and information delay

was analyzed by Shinar and Glizer [147]. A control estimation technique to solve linear

pursuit-evasion with uncertain relative dynamics is presented by Cavalieri et al. [148].

A particular formulation where the evader observes just the initial conditions while the

pursuer observes the instantaneous relative distance with additive noise was analyzed by

Hexner et al. [149]. A discrete-time version of the pursuit-evasion game with incomplete

information was analyzed by Gurel-Gurevich [150]. Finally, Huang et al. provided some

epistemic models to examine pursuit-evasion games with incomplete information [151].

1.3 Contributions and Thesis Outline

In this thesis, pursuit-evasion scenarios involving multiple pursuers and multiple evaders

are first analyzed using geometric methods, and in these problems, the players’ dynamics

are assumed to be deterministic. Next, we analyze a class of linear quadratic stochastic dy-

namic games using the theory of general constrained games and covariance steering. Sub-

sequently, we analyze pursuit-evasion under uncertainties by considering single-pursuer

single-evader problems in stochastic flow fields. The proposed solution approach utilizes

forward reachable sets and covariance control approaches. Finally, the uncertainties are
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assumed to be parametric in nature and to this end, we initially develop sensitivity-based

solutions for optimal control problems, which are then extended to differential games with

asymmetric information. Thus, the work in this thesis can be broadly organized into three

sections, and the contributions in each section are discussed below.

1.3.1 Geometric Methods for Multi-Pursuer Multi-Evader Problems

Solving exactly a multi-player dynamic game necessitates the solution of a complicated

partial differential equation, whose dimensionality increases with the number of players.

The problem is simplified by following a dynamic “divide and conquer” approach, where

at every time instant each evader is assigned to a set of pursuers based on the instantaneous

positions of all the players. This means that instead of solving the full multi-agent pursuit-

evasion game involving n pursuers andm evaders, we solve a series ofmmany/against-one

pursuit-evasion games. This leads to decentralized, although likely suboptimal, solutions.

In this work we assume that the pursuers are faster compared to the evaders and they follow

simple navigation laws (pure pursuit or constant bearing).

In chapter 2, the simplest case of multi-pursuer single-evader (MPSE) problem that

involves two pursuers and one evader is discussed. The basic idea of the proposed method-

ology is to determine which of the pursuers is the most critical one and which pursuer

does not affect the outcome of the game and thus may be eliminated from the analysis

of the problem. This leads to the notions of degenerate and non-degenerate regions for

each PE game. The determination of these regions is a key aspect towards the solution of

multi-player games, since they delineate the regions in which one pursuer acting alone can

capture the evader without the help of its team-mates, from the regions in which some form

of cooperation/coordination between the pursuers is necessary for optimal capture. Also,

we extend our work to cases where one of the two pursuers is stationary, motivated by

relay-pursuit scenarios [40, 20]. From an application point of view, these strategies result

in a trade-off between time and resources. For instance, employing more than one pursuer
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may reduce capture time, but the deployment of more pursuers require additional resources

(e.g., fuel, communication bandwidth, etc). The main contributions of chapter 2 are listed

below.

1. The regions of non-degeneracy are identified in two-pursuer one-evader problems for

cases where the pursuers follow either a constant bearing strategy, or a pure pursuit

strategy, or a relay pursuit strategy.

2. The optimal evading strategies for the case of constant bearing and pure pursuit are

identified and it is established, for the first time, that in both cases, when the problem

is non-degenerate, the solution involves simultaneous capture.

3. A competitive sub-optimal strategy is suggested for pure pursuit and a comparative

study is provided for the case of identical pursuers to demonstrate this claim.

4. An optimal evading strategy is derived for relay-pursuit scenarios, along with the

corresponding switching condition.

In chapter 3, the concept of regions of non-degeneracy is generalized to MPSE prob-

lems using the concept of active/redundant pursuers. In the case of constant bearing, and

assuming that the evader can follow any strategy, a dynamic task allocation algorithm is

proposed for the pursuers. The algorithm is based on the well-known Apollonius circle and

allows the pursuers to allocate their resources in an intelligent manner while guaranteeing

the capture of the evader in minimum time. For the case of pure pursuit, the algorithm

is modified using the counterpart of the Apollonius circle leading to an Apollonius closed

curve. The main contributions of chapter 3 are listed below.

1. In the MPSE settings, the characteristics of the optimal evading strategies in both

cases (constant bearing and pure pursuit) are derived, and it is established that the

optimal evading strategy depends only on the initial conditions of those pursuers that

finally capture (simultaneously) the evader.
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2. A framework to characterize the pursuers into active and redundant in MPSE set-

tings using Apollonius circles (for constant bearing) and Apollonius curves (for pure

pursuit) is provided.

3. An algorithm to identify the status of a pursuer, given the instantaneous positions of

all the players in an MPSE setting is presented. This algorithm allows us to perform a

dynamic task allocation of the pursuers that ensures the evader’s capture in minimum

time, under any evading strategy.

4. Assuming both teams (pursuers and evaders) are homogeneous, a task allocation al-

gorithm is proposed for the pursuers in multi-pursuer multi-evader (MPME) settings.

The algorithm is scalable for any number of pursuers and evaders.

5. Finally, the task allocation algorithm for MPME problems with pursuers following a

constant bearing is extended to scenarios with heterogeneous teams.

1.3.2 Covariance Control and Reachability Based Approaches for Pursuit-Evasion Games

with Stochastic Disturbances

Stochastic games, introduced by Shapley in 1953, deal with instances where a stochastic

process is jointly controlled by two players, a controller and a stopper, along with an

underlying payoff function that is common to both players [152]. The stopper tries to

maximize the payoff function, while the controller strives to minimize it. In chapter 4, we

address a class of linear-quadratic (LQ) stochastic dynamic games in discrete-time with

finite-time horizon. It is assumed that the players have perfect measurement of the state at

each time instant and that the initial state is sampled from a given Gaussian distribution.

First, the problem of steering the covariance in an LQ game setting without any constraints

is analyzed, and the associated saddle point equilibrium is identified. Subsequently, the

problem of steering the initial distribution to a specified terminal distribution (which is also

Gaussian) under adversarial situations, which can be categorized as a general constrained
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game (GCG) [153], is considered. This constrained covariance steering game is relevant

in the context of stochastic pursuit-evasion and has applications in spacecraft rendezvous

[154], collision avoidance[155], and understanding behavioral patterns in nature [156].

It is important to note that the attitude of a player towards its opponent’s constraint

influences the outcome of the GCG [153]. Instances where the players are indifferent to

couple constraints of their opponents can be found in mobile networks and finance [153,

157]. For example, in the situation where there are multiple mobile carriers competing to

maximize the received power in a series of time slots, the networks are also subjected to a

minimum expected throughput. Note that in a given time slot, only one carrier is successful,

and the overall success of a network depends on the actions of all other mobiles, indicating

coupled constraints with players being indifferent to their opponents’ constraints. In the

case where a player’s main goal is to prevent the opponent from meeting its constraint, his

attitude is to be understood as being aggressive. Analyzing the scenario where the stopper

has an aggressive attitude towards the controller’s constraint is beyond the scope of this

thesis. The main contributions of chapter 4 are listed below.

1. A novel LQ formulation for driving a Gaussian to a given terminal distribution under

an adversarial setting is introduced. The adversary is assumed to be indifferent to

the controller’s terminal constraint which is unique to the literature on covariance

steering.

2. It is shown that the proposed game theoretic formulation can be decomposed into

two independent games, mean steering and covariance steering games, which makes

the problem tractable.

3. The existence of equilibrium solutions is discussed for both unconstrained and con-

strained versions of the games.

4. A condition in terms of relative controllability is identified in the mean steering game

with controller constraints for discrete systems. A simple Jacobi procedure for find-
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ing saddle points is introduced to solve the one-sided constrained covariance steering

game, assuming a linear feedback control structure.

5. The missile endgame guidance scenario is revisited, while assuming a process noise

in the system, to demonstrate the proposed approach for one-sided constrained co-

variance steering game.

In chapter 5, we consider two-agent PE problems with both agents traversing a stochas-

tic flow field. It is assumed that both agents have speed constraints, and the pursuer is

superior to the evader in terms of its speed capabilities. Initially, a forward reachabil-

ity analysis is performed while considering only the drift term in the flow field to obtain

the nominal trajectories for the agents. Assuming a linear feedback control architecture,

we then formulate a discrete-time chance-constrained covariance game about the players’

nominal trajectories, which is solved using the standard Gauss-Seidel method, to obtain

closed-loop controls for both players. The main contributions of chapter 5 are listed below.

1. A chance-constrained covariance steering game is formulated to solve single-pursuer

single-evader games in general non-linear stochastic flow fields.

2. Assuming a linear feedback control law, Gauss-Seidel iteration technique is em-

ployed to obtain the closed-loop gains of the players.

3. The approach is demonstrated on realistic flow fields, including an approximate wind

field model for Hurricane Hugo [158].

1.3.3 Sensitivity Regularization Techniques for Planning under Parametric Uncertainties

The tension between optimality and safety is often evident in robotics—particularly for

applications that have stringent performance requirements—under conditions for which

uncertainties in sensing, environment models, and control effectiveness are unavoidable

[159, 160, 161, 162]. For all but the simplest applications, optimal solutions tend to bring
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the robot dangerously close to the operational safety margins. For example, it is well known

that the shortest path for a mobile robot in a polygonal environment lies in the visibility

graph which implies that the optimal path would contact the obstacles while traversing the

path [163]. While in practice it is typical to perturb paths slightly such that they do not reach

the constraint boundaries, this safety strategy raises a number of significant questions: How

should one perform these perturbations? How should one balance the cost of violating

constraints against reduced performance? And, perhaps most importantly, how can one

provide a principled evaluation of the effects of uncertainty with respect to the trade-offs

between optimality and safety, and adjust the path to optimally balance between the two?

It is this latter question that we address in chapter 6.

In chapter 6, we consider uncertainties to be parametric in nature, where the nominal

value of the uncertain parameter is available. Using sensitivity functions [164], we first

capture the variations in the constraint function under parametric variations, defined as

constraint sensitivity. The variations are then weighted using a relevance function to obtain

the relevant constraint sensitivity (RCS), and construct a regularizer that captures the risk

of constraint violation. The characteristics of the regularizer are discussed by analyzing its

performance in simple path planning problems. We then evaluate the proposed technique

on path planning problems in environments containing up to ten dynamic obstacles having

uncertain velocities.

Furthermore, an approach to desensitize the cost for an optimal control problem with

fixed final time is presented in chapter 6. To this end, we recall that the co-states in an op-

timal control problem are a measure of the sensitivity of the value function with respect to

the states along the optimal trajectory [165, 166]. It is proven that the co-states indeed cap-

ture sensitivity of the cost-to-go function with respect to perturbations in the state given any

prescribed control law u(t), not just the optimal one. The main contributions of chapter 6

are listed below.

1. A sensitivity function based regularizer is proposed to minimize dispersion in the
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trajectory or state at a particular time under open-loop control with parametric uncer-

tainties.

2. Relevance functions and employed to efficiently construct a sensitivity function based

risk measure, which when penalized provides “safe” trajectories with a lower chance

for constraint violations under parametric uncertainties.

3. It is proven that for any given control law, the co-states of an optimal control problem

capture the first-order variations of the cost-to-go function given the variations in the

system states.

4. An approach to desensitize (reduce the variations of) the cost with respect to para-

metric variations is presented. Also, it is shown that the co-states and the sensitivity

matrices (in Ref. [112]) are indeed related.

In chapter 7, we consider two-player zero-sum differential games with orthogonal con-

straints, which are specific to a player and do not depend on the control inputs of the

player’s adversaries [153]. In the proposed game with asymmetric information, it is as-

sumed that the minimizing player is at an information disadvantage, which corresponds

to the lack of exact information about a set of model parameters. It is assumed that the

minimizing player knows the nominal values of those parameters. The maximizing player

is assumed to be completely aware of the environment, representing a form of “home-field

advantage”, manifested as having the exact values of the model (environment) parameters.

In this paper, sensitivity functions are used to construct a regularizer that captures the risk

of constraint violation for the minimizing player. The proposed approach is demonstrated

on two-player pursuit-evasion games with an uncertain dynamic obstacle. The pursuer is

assumed to be the player with incomplete information about the motion of the obstacle in

the environment, while the evader is fully aware of the obstacle’s motion model. The main

contributions of chapter 7 are listed below.
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1. The theory of desensitized optimal control is extended to address differential games

with asymmetric information.

2. A sensitivity function based approach is presented to generate conservative trajecto-

ries for the player which has an information disadvantage in two-player differential

games with asymmetric information.

3. The proposed approach is demonstrated on pursuit-evasion games with an uncertain

dynamic obstacle.

Finally, chapter 8 presents some future directions for the research presented in this

thesis along with concluding remarks.
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CHAPTER 2

PURSUIT-EVASION SCENARIOS INVOLVING TWO PURSUERS AND ONE

EVADER

2.1 Background

Consider a group of n agents (pursuers) guarding a given area of interest. The objective of

the agents is to pursue and intercept m (where typically m ≤ n) intruders (or evaders) that

may be detected in this area. Some of the relevant questions that arise while solving this

problem include:

1. Which pursuer(s) should go after which evader(s)?

2. How many pursuers should chase each intruder (evader) in order to capture it in the

shortest time possible?

3. What is the shortest time-to-capture, given the fact that the evaders are intelligent and

will try to postpone capture indefinitely?

Obtaining the answers to the previous questions in their most general form is elusive at

this point. Solving exactly a multi-player dynamic game such as the one considered above

will necessitate the solution of a high-dimensional partial differential equation, whose di-

mensionality increases with the number of players (n+m). In order to proceed and mitigate

this problem, the following assumptions are made in this work.

A1: The pursuers are faster compared to the evaders.

A2: The pursuers follow simple navigation laws (pure pursuit or constant bearing strate-

gies).
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The rationale behind these assumptions is as follows. Under assumption A1, a pure

pursuit or a constant bearing strategy guarantees capture. Also, these two pursuit strategies

highlight the available information to the pursuer in order to capture the evader. A constant

bearing (CB) strategy is known to be efficient when the pursuer knows the instantaneous

position and velocity of the evader [167]. On the other hand, an individual pursuer that has

access only to the evader’s instantaneous position can, at best, employ a pure pursuit (PP)

strategy [167]. Furthermore, both of these strategies are easy to execute, and they have been

implemented successfully in various aerial defense systems. A more detailed discussion on

navigation laws for different information structures can be found in Ref. [168].

P1

P2

E1

P3

Pn

...

P4

E2

Em

...

P5

Territory

Figure 2.1: Divide and conquer in multi-pursuer multi-evader problems: Pi denotes the ith

pursuer, and Ej denotes the jth evader

A potential approach to solve complicated multi-pursuer multi-evader (MPME) prob-

lems is a dynamic “divide and conquer” approach (see Figure 2.1), where the pursuers are

divided into several groups corresponding to the evader they pursue at each instant of time.

In essence, such divide and conquer strategies formulate the original MPME problem as

a sequence of several (simpler) multi-pursuer single-evader (MPSE) problems [169, 42].

This approach leads to decentralized, although likely suboptimal, solutions. By analyzing

the associated MPSE problems for the cases of CB and PP, one may arrive at an efficient
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dynamic task-allocation algorithm of pursuers to evaders. The simplest case of problems

involving MPSE scenarios is the case of two pursuers against one evader, which is the focus

of this chapter.

2.2 Problem Formulation

Consider a pursuit-evasion (PE) problem with two pursuers and one evader in the plane.

The objective of the pursuers is that at least one of them enters the evader’s capture zone,

assumed here to be a disk of radius ε > 0 centered at the current position of the evader,

while the objective of the evader is to avoid or delay capture as long as possible. The

subscripts 1 and 2 will be used for the two pursuers (P1 and P2), while the subscript E will

be used for the evader. The equations of motion for all the players involved in the game are

given below.

ẋ1 = u1 cos θ1, ẏ1 = u1 sin θ1, (2.1a)

ẋ2 = u2 cos θ2, ẏ2 = u2 sin θ2, (2.1b)

ẋE = v cos θE, ẏE = v sin θE, (2.1c)

where p1 = (x1, y1), p2 = (x2, y2), and pE = (xE, yE) denote the positions of pursuer

P1, pursuer P2, and the evader E, respectively. Similarly, θ1, θ2, θE ∈ (−π, π] denote

the control inputs of the players, u1, u2 and v are the speeds (constant) of P1, P2, and E,

respectively, with min{u1, u2} > v. The game evolves in the six-dimensional state-space,

[x1, y1, x2, y2, xE, yE]> ∈ R6.

Problem: Find the optimal control input for the evader, θE ∈ (−π, π] that maximizes the

time of capture tc in the following cases:

CB: The two pursuers follow a constant bearing strategy;

PP: The two pursuers follow a pure pursuit strategy;
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R-CB: Two identical (u1 = u2) pursuers follow a relay pursuit strategy with the active

pursuer employing constant bearing;

R-PP: Two identical (u1 = u2) pursuers follow a relay pursuit strategy with the active

pursuer employing pure pursuit.

In all these cases, note that the control inputs of the pursuers, θ1 and θ2, depend solely

on the instantaneous states of the players.

2.3 The Regions of Non-degeneracy

Assuming each of the pursuers follows either a constant bearing strategy or a pure pursuit

strategy, the two-pursuer one-evader problem may result in a degenerate case. A degenerate

case is one in which only one of the pursuers is sufficient to capture the evader in minimum

time. In degenerate problems, the presence of one of the two pursuers is inconsequential

and the problem can be treated as a one-against-one PE problem. For instance, if one of

the pursuers (say P2) is very far away from the evader (E), then P2 does not play a role

in the solution of the problem and the evader’s optimal strategy is a pure evasion from P1.

Similarly, if P2 is very close to E then P2 dominates, and the optimal evading strategy in

this case will be a pure evasion from P2. However, there exists a region of initial positions

for P2 for which a form of coordination with P1 ensues, and an optimal evading strategy

(other than pure evasion from P1 or P2) needs to take into consideration the presence of

both pursuers.

Since we are interested in studying the effects of adding a second pursuer (P2) to the

problem, it follows from the preceding discussion that given the initial positions of the first

pursuer (P1) and the evader (E) along with the speed capabilities of all the three players,

it is important to find the set of initial positions of P2 for which: 1) the optimal evading

strategy is a pure evasion from P1, and P2 plays no role in the solution of the problem (D2 -

Degenerate region with respect to P2); 2) the optimal evading strategy if the evader follows
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pure evasion from P2, and P1 plays no role in the solution (D1 - Degenerate region with

respect to P1); 3) the optimal evading strategy is not a pure evasion from any of the two

pursuers, and both P1 and P2 play a role in the problem (N - Non-degenerate region). We

can compute these regions for the cases CB and PP as follows.

2.3.1 Constant Bearing Strategy

Without of loss of generality, assume that the initial positions of P1 and E are such that

p1(0) = (0, 0) and pE(0) = (d, 0), respectively (d 6= 0). The capture time, assuming that

the evader follows a pure evasion strategy from P1, is given by

tf =
d

u1 − v
. (2.2)

The point of capture is C = (u1tf , 0). Define now the circle C1 = {x ∈ R2 : ‖x − C‖ =

u2tf}. The circle C1 is an isochrone that contains the set of initial positions for P2 that

guarantees capture exactly at time tf (at location C) under a constant bearing strategy for

the given initial position of the evader and its heading, assuming that the evader is non-

maneuvering. The center of this circle is the capture point C and its radius is u2tf . If

the initial position of P2 (following a constant bearing strategy) lies inside C1, then P2 can

capture the evader in a time less than tf for the given initial position of the evader and its

heading. If the initial position of P2 lies outside C1, then it cannot capture the evader in

a time less than or equal to tf , which means that the presence of P2 is inconsequential to

the solution of the problem, and the optimal evading strategy is pure evasion from P1. As

a result, in the case of CB, the circle C1 and its exterior constitutes the degenerate region

with respect to P2, and C1 is the boundary between D2 and N .

Next, the degenerate region with respect to P1 can be obtained by looking at the locus

of the initial points of P2 such that a pure evasion from P2 would result in simultaneous

capture of the evader by both P1 and P2. In this regard, consider the Apollonius circle
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P1(0,0) X
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E(d,0)

P2(x,y)

T'
P'2

Apollonius Circle

u1t vt

(u2-v)t

Figure 2.2: A limiting case scenario of the degeneracy with respect to P1 for the case of
CB

(A) corresponding to P1 and E, whose center is at (xa, ya) = (u2
1d/(u

2
1 − v2), 0), and its

radius is ra = u1vd/(u
2
1 − v2) [10]. The circle constitutes capture points for P1 for a given

constant heading of the evader. Clearly, finding the set of initial points of P2 such that

the evader hits a point on the Apollonius circle under pure evasion from P2 provides the

locus of interest; see Figure 2.2. This can be achieved in the following manner. Consider

a point T on A in its parametric form T = (xa + ra cosφ, ra sinφ) (note that ya = 0) and

let (x, y) be the initial position of P2 such that it hits the evader at T . From the geometry

of the problem, as defined in Figure 2.2, and since the triangles4ETT ′ and4EP2P
′
2 are

similar, it follows that

x− d
d− xa − ra cosφ

=
y

ra sinφ
=
u2 − v
v

. (2.3)

The coordinates x, y can then be given as

x =

(
d+

(u2 − v)(d− xa)
v

)
− ra

(
u2 − v
v

)
cosφ, y = ra

(
u2 − v
v

)
sinφ. (2.4)
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(a) u2 = 1.5 (b) u2 = 1 (c) u2 = 0.5

Figure 2.3: Regions of degeneracy and non-degeneracy for the case of CB: u1 = 1, v = 0.5,
and ε = 0 (point capture).

Under this parametric representation, it can be realized that the set of points (x, y) form a

circle (call it C2) with its center at (d + (u2 − v)(d− xa)/v, 0) and radius ra(u2 − v)/v.

It is understood that if P2 lies inside C2, then the evader will get captured by P2 under

pure evasion, before it hits the Apollonius circle A, i.e., P1 does not play a role in the

solution of the problem. Hence, in the CB case the circle C2 and its interior constitutes

the degenerate region with respect to P1, and C2 acts as the boundary between D1 and N .

Finally, R2\(D1 ∪ D2) constitutes the region of non-degeneracy.

The geometry of these regions can be visualized in Figure 2.3 which shows the regions

of degeneracy and non-degeneracy for three different cases, where u2 = 1.5, 1, 0.5. As can

be seen in this figure, the evader’s initial position is at (1, 0) with P1 located at (0, 0). The

speeds of E and P1 are v = 0.5 and u1 = 1, respectively. In Figure 2.3(a), P2 is faster

compared to P1, and P1 is inside circle C2. The converse is observed in Figure 2.3(c) when

P2 is slower than P1. It can be observed that the region of non-degeneracy increases with

the speed of P2, which suggests that given the speeds of P1 and E, adding a second pursuer

which has higher speed would enable cooperation among the pursuers in a larger region,

and vice versa.
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Figure 2.4: A limiting case scenario of the degeneracy with respect to P1 for the case of PP.

2.3.2 Pure Pursuit Strategy

To compute the non-degenerate region in this case, first define the ellipse, E = {x ∈ R2 :

‖x − pE(0)‖ + ‖x − p′E‖ = 2u2tf}, where p′E =

([
u1 + v

u1 − v

]
d, 0

)
. The ellipse E is an

isochrone that contains the set of initial positions for a pursuer that guarantees capture at

time tf (at location C) under a pure pursuit strategy for a given initial position of the evader

and its heading, assuming that the evader is non-maneuvering. In the literature, C1 and E are

called tf -isochrones [167]. It can be seen that E is an ellipse centered at C having the initial

position of the evader at one of its foci. For any initial position of a pursuer (following a

pure pursuit strategy) inside E , the capture time is less than tf . If the initial position of P2

(following a constant bearing strategy) lies inside C1, then it can capture the evader in a time

less than tf . Therefore, if the initial position of P2 lies outside E , then P2 cannot capture

the evader in a time less than or equal to tf i.e., P2’s presence has no strategic significance

and the optimal evading strategy is a pure evasion from P1. Consequently, in the case of

PP, the ellipse E and its exterior constitutes the degenerate region with respect to P2, and E

is the boundary between D2 and N .
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(a) u2 = 1.5 (b) u2 = 1 (c) u2 = 0.5

Figure 2.5: Regions of degeneracy and non-degeneracy for the case of PP: u1 = 1, v = 0.5,
and ε = 0 (point capture).

The degenerate region with respect to P1 in this case can be obtained from the relation

tp =
ro(u+ v cos θ)

u2
1 − v2

, u1 6= v, (2.5)

that provides the capture time for a pursuer that follows a pure pursuit strategy, assuming

that the evader is non-maneuvering (constant heading) [167]. Here ro is the initial distance

between the pursuer and the evader (= d for P1 and E), and θ is the evader’s heading mea-

sured with respect to the line-of-sight from the pursuer to the evader. Using this relation,

and following an approach similar to the one in subsection 2.3.1, the locus of the initial

points of P2 such that a pure evasion from P2 would result in simultaneous capture of the

evader by both P1 and P2 can be obtained. Consider now the case of an evader following a

pure evasion strategy from P2 with the heading θ, as shown in Figure 2.4.

Let the initial position of P2 be (x, y). Assuming that the evader gets captured by both

P1 and P2 at T (see Figure 2.4), it follows from Equation 2.5 that

x = d− (u2 − v)d cos θ

(
u1 + v cos θ

u2
1 − v2

)
, y = −(u2 − v)d sin θ

(
u1 + v cos θ

u2
1 − v2

)
.

(2.6)

Under this parametric representation, the locus of interest can be obtained, which is a closed
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curve (F) around the initial position of the evader. If P2 lies inside F , then the evader will

get captured by P2 under pure evasion, before E is captured by P1. And hence, in the case

of PP, the closed curve F and its interior constitutes the degenerate region with respect

to P1, and F acts as the boundary between D1 and N . Finally, in the case of PP, the set

R2\(E ∪ F) constitutes the region of non-degeneracy.

The regions of degeneracy and non-degeneracy observed in this case are depicted using

the previous example in subsection 2.3.1. Note that the ellipse E is contained in the circle

C1, and on the other hand, the closed curve F contains C2. This is a consequence of the

fact that the pursuers use pure pursuit, as they lack information about the evader’s speed.

As a result, the regions of non-degeneracy are smaller compared to their counterparts in

subsection 2.3.1. This observation further supports the fact that the information structure

plays a crucial role in problems involving cooperation among agents.

2.4 Optimal Evading Strategies Against Two Pursuers

2.4.1 Constant Bearing Strategy

As per the formulation in section 2.2, it can be seen that the game evolves in the six-

dimensional state-space. However, the problem formulation can be reduced to the two-

dimensional state-space in the following manner. Consider the relative distances between

the evader and each of the pursuers (r1−p1, r2−p2), and the corresponding LoS angles (ϕ1,

ϕ2), are shown in Figure 2.6. Using Equation 2.1, the dynamics of the relative distances

and the LoS angles can be expressed as

ṙ1 = v cos(θE − ϕ1)− u1 cos(θ1 − ϕ1), ϕ̇1 =
1

r1

[v sin(θE − ϕ1)− u1 sin(θ1 − ϕ1)] ,

(2.7a)

ṙ2 = v cos(θE − ϕ2)− u2 cos(θ2 − ϕ2), ϕ̇2 =
1

r2

[v sin(θE − ϕ2)− u2 sin(θ2 − ϕ2)] .

(2.7b)
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Furthermore, it is assumed that the pursuers follow a constant bearing strategy and hence

the LoS for a given pursuer does not rotate, i.e., ϕ̇1 = 0 and ϕ̇2 = 0. That is, ϕ1(t) = ϕ10,

ϕ2(t) = ϕ20, for all t ≥ 0, where ϕ10 and ϕ20 are the LoS angles at the initial time t = 0.

Therefore, r1 and r2 are the only states that have to be taken into consideration to solve for

the optimal evading strategy.

O i1

i2

P1

P2

E

r1

r2

θΕ

ϕ1

ϕ2

θ1

θ2

Q1

Q2

Collision
triangle for P1

Collision
triangle for P2

Inertial
Frame

Figure 2.6: Schematics of the proposed pursuit-evasion problem with pursuers following a
constant bearing strategy

We are dealing with a time maximization problem subject to the dynamics

ṙ1 = v cos(θE − ϕ10)− u1 cos(θ1 − ϕ10), (2.8a)

ṙ2 = v cos(θE − ϕ20)− u2 cos(θ2 − ϕ20). (2.8b)

Note that θ1, θ2 are functions of θE. Given θE, they can be determined at each instant of

time, using Equation 2.7, and the relation ϕ̇1 = ϕ̇2 = 0. Therefore,

v sin(θE − ϕ10) = u1 sin(θ1 − ϕ10), v sin(θE − ϕ20) = u2 sin(θ2 − ϕ20). (2.9)

Each of the above relations have two possible solutions for θ1 or θ2, given θE, and each
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pursuer chooses the solution for which ṙ1 < 0 or ṙ2 < 0, respectively. The initial conditions

are r1(0) = r10 = ‖pE(0) − p1(0)‖ and r2(0) = r20 = ‖pE(0) − p2(0)‖. The terminal

condition for capture is

Ψ(r1(tc), r2(tc)) = min{r1(tc), r2(tc)} − ε = 0. (2.10)

The Hamiltonian for this problem can be expressed as

H(r1, r2, λ1, λ2, θE) = −1 + λ1 [v cos(θE − ϕ10)− u1 cos(θ1 − ϕ10)]

+ λ2 [v cos(θE − ϕ20)− u2 cos(θ2 − ϕ20)] , (2.11)

where λ1 and λ2 are the co-states. The corresponding adjoint equations are given by

λ̇1 = 0, λ̇2 = 0, (2.12)

and therefore λ1(t) = c1, λ2(t) = c2, for t ∈ [0, tc], where c1 and c2 are constants. The

transversality conditions are given by

λ1(tc) = ν
∂Ψ

∂r1

∣∣∣
t=tc

, λ2(tc) = ν
∂Ψ

∂r2

∣∣∣
t=tc

, H(tc) = 0, (2.13)

where ν ∈ R. Since the Hamiltonian has no explicit dependency on time, it follows that

H(t) = 0 for all t ∈ [0, tc]. Note that the terminal condition is not fully differentiable and

it can be written as

∂Ψ

∂r1

∣∣∣
t=tc

=
r2 −min{r1, r2}

r2 − r1

,
∂Ψ

∂r2

∣∣∣
t=tc

=
r1 −min{r1, r2}

r1 − r2

. (2.14)

At r1(tc) = r2(tc) = ε, the partial derivatives are undefined. Using Pontryagin’s minimum
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principle, the following expression is obtained,

λ1

[
−v sin(θE − ϕ10) + u1 sin(θ1 − ϕ10)

∂θ1

∂θE

]
+ λ2

[
−v sin(θE − ϕ20) + u2 sin(θ2 − ϕ20)

∂θ2

∂θE

]
= 0, (2.15)

where from Equation 2.9,

∂θ1

∂θE
=

v cos(θE − ϕ10)

u1 cos(θ1 − ϕ10)
, cos(θ1 − ϕ10) 6= 0, (2.16a)

∂θ2

∂θE
=

v cos(θE − ϕ20)

u2 cos(θ2 − ϕ20)
, cos(θ2 − ϕ20) 6= 0. (2.16b)

Since λ1, λ2 are constants, θ1, θ2 and their partials from Equation 2.16 are dependent

only on θE, we can conclude from Equation 2.15 that the optimal heading of the evader θE

is constant in time, and hence the headings of the pursuers are constant as well.

Theorem 1. For the CB time-optimal control problem, given the initial positions of P1 and

E, if P2 initially lies in the non-degenerate region (N ), then the optimal control strategy of

the evader involves simultaneous capture by P1 and P2.

Proof. First, consider the case when r1(tc) = ε < r2(tc), i.e, only P1 captures the evader at

the final time. In this case, from Equation 2.13 and Equation 2.14, it follows that λ2(tc) = 0.

Subsequently, Equation 2.12 implies that c2 = 0. Then from Equation 2.11 and Equa-

tion 2.15, we have

−1 + c1 [v cos(θE − ϕ10)− u1 cos(θ1 − ϕ10)] = 0, (2.17)

c1

[
−v sin(θE − ϕ10) + u1 sin(θ1 − ϕ10)

∂θ1

∂θE

]
= 0, (2.18)

If c1 6= 0, it leads to a contradiction in Equation 2.17. Therefore,

−v sin(θE − ϕ10) + u1 sin(θ1 − ϕ10)
∂θ1

∂θE
= 0. (2.19)
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From Equation 2.16a, sin(θ1−ϕ10) cos(θE−ϕ10)−sin(θE−ϕ10) cos(θ1−ϕ10) = 0, which

implies that sin(θE−θ1) = 0. Further analysis leads to θ∗E = ϕ10, i.e, the optimal strategy is

a pure evasion from P1. This is the solution for a degenerate case of the problem. It has been

proven that in the non-degenerate case, with this evasion strategy, P2 will capture the evader

prior to P1, leading to a contradiction. Similarly, the strategy when r2(tc) = ε < r1(tc)

turns out to be a pure evasion from P2. But since P1 is closer to the evader, it lies inside the

circle of equal time-to-capture corresponding to P2, and therefore P1 reaches the evader

before P2, again leading to a contradiction. Hence, the optimal evading strategy in the

non-degenerate case should involve r1(tc) = r2(tc) = ε namely, simultaneous capture.

P1

P2

E θΕ

θ1

θ2

Q

Apollonius circle of (E, P2)

Apollonius circle of (E, P1)

*

*

*

Q'

Figure 2.7: A schematic of finding the optimal heading of the evader using Apollonius
circles.

Since the optimal heading θ∗E is constant, and involves simultaneous capture in the

non-degenerate case, it is easy to obtain the heading using the well-known Apollonius

circles [10]; see Figure 2.7. The Apollonius circles of the pairs (E, P1) and (E, P2) at

the initial time can be constructed from the players’ initial positions. If the problem is

non-degenerate, then there always exist two intersection points, Q and Q’ as shown in
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Figure 2.7. During optimal play, the evader should head towards one of the intersection

points, namely, the one that is farther away. If both the points are equidistant, then the

evader can choose either point. This completes the analysis on the optimal evading strategy

for CB.

2.4.2 Pure Pursuit Strategy
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θ
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Figure 2.8: Schematics of the proposed pursuit-evasion problem with pursuers following a
pure pursuit strategy

In this case, the problem can be examined in the three-dimensional state-space that

makes the analysis simpler. A schematic of the geometry of the proposed pursuit-evasion

problem is shown in Figure 2.8. First, we translate the problem into a rotating/non-inertial

frame with the origin fixed on the evader (E) and with the x-axis along the line joining P1

and E. The velocity vector of P1 is along the x-axis, as it follows a pure pursuit strategy.

In this frame P1 is restricted to move only along the x-axis. The positions of the players

expressed in polar coordinates are given by p1 = (r1, π), p2 = (r2, ψ), and pE = (0, 0),

−π < ψ ≤ π. Since the pursuers follow a pure pursuit strategy, their headings are along

their corresponding LoS directions, i.e., θ1 = ϕ1, θ2 = ϕ2; see Figure 2.8. The angle

between the velocity vectors of P1 and E is θ = θE − ϕ1. The rotation rate of the non-
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inertial frame is given by

ϕ̇1 =
v sin θ

‖pE − p1‖
=
v sin θ

r1

. (2.20)

In the reduced state-space, the number of states is only three, and the corresponding

equations of motion are given by

ṙ1 = −u1 + v cos θ, (2.21a)

ṙ2 = −u2 − v cos(ψ − θ), (2.21b)

ψ̇ =
v

r2

sin(ψ − θ)− v

r1

sin θ. (2.21c)

The initial conditions for the states are r1(0) = ‖pE(0) − p1(0)‖, r2(0) = ‖pE(0) −

p2(0)‖, ψ(0) = π−ϕ10 +ϕ20, where ϕ10 and ϕ20 are now the initial headings of P1 and P2,

respectively, which can be obtained from the initial positions of the players. The terminal

condition remains the same as in Equation 2.10.

The problem statement is then to find the optimal control θ∗(t) that maximizes the cap-

ture time tc given the equations of motion in Equation 2.21, and the given initial conditions

and terminal conditions. It is assumed that the initial conditions are such that the problem

is non-degenerate for the given speeds of the players. Otherwise, the pursuit strategy for

the evader is pure evasion from either pursuer.

The Hamiltonian for this problem can be written as

H(r1, r2, ψ, λ1, λ2, λ3, θ) =

− 1 + λ1(−u1 + v cos θ) + λ2[−u2 − v cos(ψ − θ)] + λ3

[
v

r2

sin(ψ − θ)− v

r1

sin θ

]
,

(2.22)

where λ1, λ2, and λ3 are the co-states, and satisfy the adjoint equations (dropped for

brevity). Since ψ(tc) is not specified and is free, the transversality conditions are given
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by

λ1(tc) = ν
∂Ψ

∂r1

∣∣∣
t=tc

, λ2(tc) = ν
∂Ψ

∂r2

∣∣∣
t=tc

, λ3(tc) = 0, H(tc) = 0, (2.23)

where ν ∈ R. Since the Hamiltonian has no explicit dependency on time, it follows that

H(t) = 0 for all t ∈ [0, tc]. Note that since the terminal condition is the same as in

Equation 2.10, its derivatives are implicit from Equation 2.14. From Pontryagin’s minimum

principle, it follows that

−λ1v sin θ − λ2v sin(ψ − θ)− λ3

[
v

r2

cos(ψ − θ) +
v

r1

cos θ

]
= 0. (2.24)

Theorem 2. For the PP time-optimal control problem, given the initial positions of P1 and

E, if P2 initially lies in the non-degenerate region (N ), then the optimal control strategy of

the evader involves simultaneous capture.

Proof. Consider the case when r1(tc) = ε < r2(tc). This implies λ1(tc) = ν, and λ2(tc) =

0. Note that the adjoint equations are linear in the co-states λ2, λ3, and since λ2(tc) = 0, the

co-states are constant in time, i.e., λ1(t) = ν, λ2(t) = 0, λ3(t) = 0. From Equation 2.22

and Equation 2.24, it follows that −1 + ν(−u1 + v cos θ) = 0 and νv sin θ = 0. If ν = 0,

the two equations will lead to a contradiction. Therefore, sin θ = 0. Thus θ∗(t) = 0,

which means that the optimal strategy is pure evasion from P1. However, this is true only

when the problem is degenerate. In a non-degenerate case, this would lead to an early

capture by P2. In this case, when r2(tc) = ε < r1(tc), we have λ1(tc) = 0 and λ2(tc) = ν.

Furthermore, from Equation 2.22 and Equation 2.24, at t = tc it follows that−1+ν(−u1−

v cos(ψ(tc) − θ(tc))) = 0, and νv sin(ψ(tc) − θ(tc)) = 0. Since ν 6= 0, it follows that

sin(ψ(tc) − θ(tc)) = 0. With this terminal condition, it can be seen that the co-states are

constant and so is the optimal heading, which in this case is given by θ∗(t) = π + ψ.

This means that the optimal evading strategy is a pure evasion from P2. However, this

strategy is infeasible in the non-degenerate case. Hence, the optimal evading strategy in a
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non-degenerate case would result in r1(tc) = r2(tc) = ε, i.e., a simultaneous capture.

Proposition 1. Given the initial positions of P1 and E, the optimal control strategy of the

evader in the case of PP can be summarized as follows:

tan θ∗ =


0, (x2(0), y2(0)) ∈ D2,

Θ(r1, r2, ψ, λ1, λ2, λ3), (x2(0), y2(0)) ∈ N ,

π + ψ, (x2(0), y2(0)) ∈ D1,

(2.25)

where (x2(0), y2(0)) is the initial position of P2 in inertial frame, and

Θ(r1, r2, ψ, λ1, λ2, λ3) = −λ2 sinψ + (λ3/r1) + (λ3 cosψ/r2)

λ1 − λ2 cosψ + (λ3 sinψ/r2)
. (2.26)

Proof. The proof is a direct consequence of defining the degenerate and non-degenerate

regions for PP (see subsection 2.3.2).

With this analysis, the optimal control problem for the case PP can be solved numeri-

cally. An analytical solution to the equations of optimality subject to arbitrary initial con-

ditions is at this point elusive. Numerical results for the cases CB and PP are shown in

subsection 2.4.4. Next, we present a suboptimal strategy for PP that is easy to implement

in practice. This suboptimal strategy of the evader is based on geometric arguments and is

discussed in the next subsection.

2.4.3 A Suboptimal Strategy for Pure Pursuit

The optimal strategy for PP can be intuitively understood as one where the evader chooses

its heading so that it does not favor any one of the two pursuers, finally resulting in simulta-

neous capture by both pursuers. With this motivation, a suboptimal strategy is constructed

and its performance is compared with the optimal one in the case of identical pursuers.

In this regard, the time-to-capture relation given in Equation 2.5 is exercised. For a non-
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degenerate problem, the evader’s heading for which both P1 and P2 take equal time to reach

the evader can be found from their initial positions using the expression

r1(0)(u1 + v cos θ)

u2
1 − v2

=
r2(0)(u2 + v cos θ)

u2
2 − v2

. (2.27)

In general, Equation 2.27 has two solutions resulting in simultaneous capture, assuming

the evader follows a constant heading. For the given initial conditions, the solution to

Equation 2.27 that provides maximum capture time is chosen as the suboptimal strategy. If

the problem is degenerate (with respect to P1 or P2), then Equation 2.27 has no solution.

2.4.4 Numerical Simulations

This subsection demonstrates the aforementioned optimal evading strategies using simula-

tions performed for the cases CB and PP with different initial conditions. For simplicity,

we assume that the speeds of the pursuers are the same and set to u1 = u2 = 1, whereas

the speed of the evader is set to v = 0.5, unless specified otherwise. The radius of capture

is chosen as ε = 0.001.

The optimal strategy for CB is straightforward. The software package GPOPS-II [170]

was used to simulate the test cases and validate the presented theory. Figure 2.9(a) presents

the trajectories of the players for the initial conditions, p1 = (0, 0), p2 = (3.427,−1.763),

pE = (1, 0), that makes the problem degenerate. Clearly, the optimal strategy is a pure

evasion from P1, and P2 does not affect the evader’s trajectory. An example for the non-

degenerate case is presented in Figure 2.9(a) for the initial conditions, p1 = (0, 0), p2 =

(2.732,−1), pE = (1, 0). It can be observed that the optimal evading strategy involves

simultaneous capture with constant heading.

The simulation results for a non-degenerate case of PP, obtained using GPOPS-II, can

be seen in Figure 2.10. Figure 2.10(a) presents the trajectories of the players for initial

conditions p1 = (0, 0), p2 = (2.516,−0.875), pE = (1, 0). In the reduced state-space,
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(a) A degenerate case (b) A non-degenerate case

Figure 2.9: Trajectories of the players for optimal control inputs in the case of CB: black -
evader, blue - P1, red - P2.

these positions correspond to r1(0) = 1, r2(0) = 1.75, and ψ(0) = −π/6. The optimal

capture time is tc = 1.874. The difference between the relative distances (r1−r2) is shown

in Figure 2.10(b).

As expected, simultaneous capture is observed in these figures. Also, the difference in

the relative distances, (r1 − r2), becomes zero only at the final time. This suggests that

the evader is equidistant from both the pursuers just before it gets captured. The same

behavior has been observed in all the simulations that were carried out. The suboptimal

strategy is also compared against the optimal strategy in Figure 2.10. The (constant) head-

ing obtained from the suboptimal strategy is θ = 0.6378 (36.54o) with a capture time of

tc = 1.868. Note that the capture time and the variation in (r1 − r2) are comparable to the

corresponding results obtained using the optimal strategy, see Figure 2.10(b). Furthermore,

a comparative study was carried out to gauge the performance of this suboptimal strategy.

For this purpose, the following parameters were chosen: r1(0) = 1, u1 = u2 = u = 1. The

speed of the evader v was varied from 0.3 to 0.7. For each v, 140 different initial conditions

(r2(0), ψ(0)) were considered spanning the non-degenerate area for the chosen r1(0) and

u. Table 2.1 presents the results of this comparative study. Though the average percentage

variation of the time-to-capture increases with the evader’s speed v, the variation is less
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Optimal

Suboptimal

(a) Trajectories

Optimal

Suboptimal

(b) Difference between the relative distances

Figure 2.10: Performance of the optimal and suboptimal strategies for a non-degenerate
case of PP: black - evader, blue - P1, red - P2.

Table 2.1: Comparison table for optimal and suboptimal strategies for the case of PP

v Average percentage variation in tc Maximum percentage variation in tc
0.3 0.0337 % 0.4451 %
0.4 0.0727 % 0.7653 %
0.5 0.1277 % 1.2182 %
0.6 0.1704 % 1.6883 %
0.7 0.2343 % 2.2487 %

than 1% for all the evader speeds considered. The maximum percentage variation is only

2%. It can be observed that the suboptimal strategy is easily implementable and its perfor-

mance is similar to the optimal one. Hence, the suboptimal strategy can be considered for

all practical purposes.

2.5 Optimal Evading Strategies with a Stationary Pursuer

In this section, and without loss of generality, both pursuers are assumed to be identical,

and one of the pursuers remains stationary during the game. This scenario may result, for

instance, from the implementation of a relay-pursuit strategy, according to which only one

pursuer is assigned to go after the evader at every instant of time [20, 40]. The pursuer

whose Voronoi cell contains the evader is assigned to be the active pursuer to chase the

evader. The other pursuer, designated as the inactive pursuer, stays at its original location
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and plays the role of a guard. The active pursuer switches when the evader enters the

interior of the Voronoi cell of another pursuer. Due to the symmetry of the problem, when

the evader resides on the Voronoi boundary, we can assign any one of the two pursuers

to be the active pursuer. Therefore, throughout the pursuit process, we can fix one of the

pursuers to be the active pursuer, while the other pursuer remains stationary whose mere

presence imposes a state restriction, namely that the evader does not enter the interior of its

corresponding Voronoi cell.

Without loss of generality, we choose P1 to be the active pursuer having velocity

u1 = u, and P2 to be the inactive pursuer with velocity u2 = 0, assumed to be located

at the origin, i.e., p2(0) = (0, 0). The equations of motion can be obtained from Equa-

tion 2.1 with u1 = u and u2 = 0. The game evolves in the four-dimensional state space,

[x1, y1, xE, yE]> ∈ R4. We consider scenarios differing in the information structure and

pursuit strategies used, subject to the state constraint

‖p1 − pE‖ ≤ ‖p2 − pE‖ = ‖pE‖. (2.28)

This constraint restricts the evader from entering the Voronoi cell of the inactive pursuer.

First, the region of non-degeneracy and the value of employing two pursuers in a relay

pursuit mode is examined based on the set of initial conditions.

2.5.1 Region of Non-degeneracy

The problem is non-degenerate for a given set of initial conditions if the inactive pursuer

affects the outcome of the game, i.e., if the optimal evading strategy is not pure evasion

from the active pursuer. Therefore, for a given set of initial conditions, and with the evader

following a pure evasion strategy from the active pursuer, if the evader enters the Voronoi

section of the inactive pursuer before it gets captured, then the problem is non-degenerate

and vice versa. Since the position of the inactive pursuer is fixed at the origin, given the
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initial position of the active pursuer, the region of non-degeneracy is defined as the set of

evader’s initial positions for which the problem is non-degenerate. Note that the region of

non-degeneracy is the same for both R-CB and R-PP, given the active pursuer’s initial po-

sition, unlike for the case of two active pursuers analyzed in section 2.3. This is because of

the fact that P1 and P2 are identical in terms of their speed capabilities and P2 is stationary

in a relay pursuit problem.

Proposition 2. [20] In the two-pursuer one-evader problem with one inactive pursuer, the

evader will be captured before entering the Voronoi cell of the inactive pursuer while mov-

ing along the LoS and away from the active pursuer, if and only if the quadratic equation

at2 + bt+ c = 0, (2.29)

where a = u2 − 2uv, b = 2[(ux1(0) − vx1(0) − uxE(0)) cos θE(0) + (uy1(0) − vy1(0) −

uyE(0)) sin θ(0)] and c = x1(0)2 + y1(0)2 − 2(xE(0)x1(0) + yE(0)y1(0)), does not have

a solution inside the interval [0, tf ], where tf is obtained from Equation 2.2, and θE(0) is

determined by the equations:

cos θE(0) =
xE(0)− x1(0)

‖pE(0)− p1(0)‖
, sin θE(0) =

yE(0)− y1(0)

‖pE(0)− p1(0)‖
. (2.30)

Notice that when v < u/2, there exists no initial position for the evader such that the

condition in Proposition 2 is satisfied. Therefore, the optimal control for the evader is

always to move along the LoS of P1 when v < u/2. Henceforth, we assume that v > u/2.

In order to find the explicit expression for the region satisfying the condition in Propo-

sition 2, without loss of generality, let the initial position of the active pursuer be p1 =

(x1(0), 0). A schematic for the non-degenerate region with p1 = (−2, 0), v = 0.8, u = 1

is shown in Figure 2.11. The green region depicts the evader’s initial positions for which

the condition in Proposition 2 is not satisfied. That is, if the evader starts from a position

inside the shaded region, it will not be able to move along the LoS of P1 throughout the
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Figure 2.11: Region of non-degeneracy

pursuit without violating the state constraint. We denote the three vertices of the shaded

region by A,B and C, where A resides on the line segment between the active pursuer and

the inactive pursuer, and B,C are on the Voronoi boundary.

If the evader starts on the line segment P1P2 at an initial position (xE(0), 0) that does not

violate the state constraint, while moving along the LoS of P1, it must be captured by the

P1 before it reaches the boundary of the Voronoi cell. Thus, (|x1(0)| − |xE(0)|)/(u− v) ≤

(|xE(0)|−|x1(0)|/2)/(v−u/2). After simplification, we have |xE(0)| ≥ |x1(0)|v/u. Since

A is at the boundary of the region and the previous inequality is linear with respect to xE(0),

we obtain A = (x1(0)v/u, 0).

Since B is the uppermost point of the shaded region that is also on the Voronoi bound-

ary, when the evader starts at B, its velocity for staying on the Voronoi boundary should

coincide with its velocity for moving along the LoS. On the boundary, we have x1(x1 −

2xE) + y1(y1 − 2yE) = 0. Hence, by taking a time derivative, we obtain −2(u‖pE − p1‖ −

vx1 cos θE − vy1 sin θE) = 0. By plugging in xE(0) = x1(0)/2, yE(0) = β, y1(0) = 0 in
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the previous equations, one obtains

cos θE(0) = −u(x1(0)2/4 + β2)1/2

vx1(0)
. (2.31)

On the other hand, for the evader to move along the LoS of P1, θE(0) satisfies

cos θE(0) =
−x1(0)/2

(x1(0)2/4 + β2)1/2
. (2.32)

Solving for β using the expressions in Equation 2.31 and Equation 2.32, we obtain B =(
x1(0)/2,

√
v/(2u)− 1/4 |x1(0)|

)
. And,C =

(
x1(0)/2,−

√
v/(2u)− 1/4 |x1(0)|

)
, which

by the nature of symmetry is the reflection of B about the x-axis.

The curves AB and AC are arcs of circles and satisfy the equation

0 = (((v−u)x1(0)+ux)(x−x1(0))+uy2)2−u(2v−u)x1(0)(2x−x1(0))((x−x1(0))2+y2),

(2.33)

which is derived from 0 = b2 − 4ac, where a, b and c are defined in Proposition 2. The

optimal evading strategies can now be analyzed in the non-degenerate regions for R-CB

and R-PP.

2.5.2 Constant Bearing Strategy

In the case of R-CB, it is assumed that the active pursuer (P1) follows a constant bearing

strategy. The reduced state space dynamics are given by

ṙ1 = v cos(θE − ϕ10)− u cos(θ1 − ϕ10), (2.34a)

ṙ2 = v cos(θE − ϕ2), (2.34b)

ϕ̇2 =
v

r2

sin(θE − ϕ2), (2.34c)
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Figure 2.12: Schematic of the proposed relay pursuit problem with the active pursuer fol-
lowing a constant bearing strategy (R-CB)

where ϕ10 is the initial LoS angle of P1. Since P1 follows a constant bearing strategy, θ1 is

determined from the equation

ϕ̇1 =
1

r1

[v sin(θE − ϕ10)− u sin(θ1 − ϕ10)] = 0. (2.35)

These equations are similar to the ones presented in subsection 2.4.1, but they differ in the

sense that the second pursuer is stationary.

A schematic of the proposed pursuit-evasion problem can be seen in Figure 2.12. The

boundary conditions are given by r1(0) = ‖pE(0)−p1(0)‖, r2(0) = ‖pE(0)−p2(0)‖, ϕ2(0) =

ϕ20, r1(tc) = ε, r2(tc) and ϕ2(tc) are free, where ϕ20 is the initial LoS angle of the inactive

pursuer (P2). The state constraint in Equation 2.28, imposed on the relay pursuit problem,

can be expressed as

S =
1

2
(r2

1 − r2
2) ≤ 0. (2.36)

Note that the inequality constraint in Equation 2.36 involves only the state variables.

Therefore, we have to take the time derivative for the constraint S and substitute the equa-
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tions of motion until an explicit dependence on the control variable occurs. The qth-order

time derivative in which this first happens plays a role in the Hamiltonian [165]. To this

end, we first have

Ṡ = r1ṙ1 − r2ṙ2 = r1(v cos(θE − ϕ10)− u cos(θ1 − ϕ10)) − vr2 cos(θE − ϕ2). (2.37)

It can be seen that the control variable θ appears explicitly in the first time derivative. The

Hamiltonian can then be expressed as

H(r1, r2, ψ2, λ1, λ2, λ3, µ) = −1 + λ1ṙ1 + λ2ṙ2 + λ3ϕ̇2 + µṠ

= −1 + (λ1 + µr1)(v cos(θE − ϕ10)− u cos(θ1 − ϕ10))

+ (λ2 − µr2)v cos(θE − ϕ2) +
λ3v

r2

sin(θE − ϕ2), (2.38)

where λ1, λ2, λ3, and µ are the co-states, µ satisfies the Kuhn-Tucker and complementary

slackness conditions i.e., for S 6= 0, µ = 0, and S = 0, µ ≥ 0. The transversality condi-

tions are given by λ2(tc) = 0, λ3(tc) = 0, H(tc) = 0. Furthermore, since the Hamiltonian

has no explicit dependency on time, H(t) = 0 for all t ∈ [0, tc]. The optimal control can

be obtained from Pontryagin’s minimum principle, using the expression

(λ1+µr1) sin(θ1−θE)−(λ2−µr2) sin(θE−ϕ2) cos(θ1−ϕ10)+
λ3

r2

cos(θE−ϕ2) = 0. (2.39)

Proposition 3. In the case of R-CB, if the initial conditions are such that the problem is
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non-degenerate with u > v > u/2, then the optimal control of the evader θ∗E(t) satisfies



λ1 sin(θ1(t)− θ∗E(t))− λ2 sin(θ∗E(t)− ϕ2) cos(θ1(t)− ϕ10)

+λ3 cos(θ∗E(t)− ϕ2)/r2 = 0, t ∈ [0, τ1],

r1(v cos(θ∗E(t)− ϕ10)− u cos(θ1(t)− ϕ10))

−vr2 cos(θ∗E(t)− ϕ2) = 0, t ∈ [τ1, τ2],

θ∗E(t) = ϕ10, t ∈ [τ2, tc],

where θ1(t) is obtained using the expression

v sin(θ∗E(t)− ϕ10) = u sin(θ1(t)− ϕ10), t ∈ [0, τ2] (2.40)

Furthermore, τ2 satisfies the switching condition:

(v − u)r1(τ2)− vr2(τ2) cos(ϕ10 − ϕ2(τ2)) = 0. (2.41)

2.5.3 Pure Pursuit Strategy

In this case, P1 follows a pure pursuit strategy. A schematic of the proposed relay pursuit

problem is shown in Figure 2.13. This problem is similar to the one presented in subsec-

tion 2.4.2, and can be analyzed in the three-dimensional reduced state space, but it differs

from it by the fact that P2 is now stationary. It can be solved with the use of states and the

control input θ in the reduced state space presented in subsection 2.4.2.
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Figure 2.13: Schematic of the proposed relay pursuit problem with the active pursuer fol-
lowing a pure pursuit strategy (R-PP)

The equations of motion are now given by

ṙ1 = −u+ v cos θ, (2.42a)

ṙ2 = −v cos(ψ − θ), (2.42b)

ψ̇ =
v

r2

sin(ψ − θ)− v

r1

sin θ, (2.42c)

while the constraint given in Equation 2.36, and the boundary conditions for r1 and r2 are

the same as in the R-CB case. Note that ψ(0) = ψ0 and ψ(tc) is free. Also, a time derivative

of the constraint S has to be taken in order to write the Hamiltonian for this optimal control

problem and

Ṡ = r1ṙ1 − r2ṙ2 = r1(−u+ v cos θ) + vr2 cos(ψ − θ). (2.43)
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Therefore, the Hamiltonian is

H(r1, r2, ψ, λ1, λ2, λ3, µ) = −1 + (λ1 + µr1)(−u+ v cos θ) + (−λ2 + µr2)v cos(ψ − θ)

+ λ3(
v

r2

sin(ψ − θ)− v

r1

sin θ), (2.44)

where λ1, λ2, λ3, and µ are the co-states, µ satisfies the Kuhn-Tucker and complementary

slackness conditions i.e., for S 6= 0, µ = 0, and S = 0, µ ≥ 0. The transversality

conditions are given by λ2(tc) = 0, λ3(tc) = 0 and H(tc) = 0. Again, the Hamiltonian has

no explicit dependency on time and therefore, the optimal Hamiltonian is zero for all time.

The optimal control can be obtained from the Pontryagin’s minimum principle, using the

expression

tan θ∗ = −(λ2 − µr2) sinψ + (λ3/r1) + (λ3 cosψ/r2)

λ1 − (λ2 − µr2) cosψ + (λ3 sinψ/r2)
. (2.45)

Proposition 4. [20] In the case of R-PP, if the initial conditions are such that the problem

is non-degenerate with u > v > u/2, then the optimal control of the evader θ∗(t) satisfies

tan θ∗(t) =



−λ2 sinψ + (λ3/r1) + (λ3 cosψ/r2)

λ1 − λ2 cosψ + (λ3 sinψ/r2)
, t ∈ [0, τ1],

q − σp
√
p2 + q2 − 1

p+ σq
√
p2 + q2 − 1

, t ∈ [τ1, τ2],

0, t ∈ [τ2, tc],

where p = (vr1 + vr2 cosψ)/(ur1), q = (vr2 sinψ)/(ur1), σ = sgn(q). Furthermore, τ2

satisfies the switching condition:

(v − u)r1(τ2) + vr2(τ2) cosψ(τ2) = 0. (2.46)
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Figure 2.14: Performance of the optimal strategies for a non-degenerate cases in R-CB and
R-PP: black - evader, blue - P1, red - P2

Summarizing the previous analyses, we conclude that in both cases R-CB and R-PP, the

optimal trajectory of the evader involves three periods. First the evader moves inside the

Voronoi cell of the active pursuer in a way such that the optimal conditions (corresponding

transversality conditions, Erdmann corner conditions, etc.) are satisfied before it hits the

Voronoi boundary. The evader then moves along the boundary until the switching con-

dition: Equation 2.41 for R-CB; Equation 2.46 for R-PP; is satisfied. Finally, the evader

moves along the LoS of P1 till capture occurs.

2.5.4 Numerical Simulations

In this subsection the optimal strategies for R-CB and R-PP are demonstrated using an

example with non-degenerate initial conditions. The speed of active pursuer (P1) is u = 1

and that of evader is v = 0.8. The initial position of P1 is (−2, 0) and evader’s initial

position is at (−1.1, 0) which is in the non-degenerate region, see Figure 2.11. Since the

non-degenerate region is the same in both cases, their corresponding optimal strategies can

be compared in this example. The problem is solved using GPOPS-II.

The simulated results are presented in Figure 2.14. The time-to-capture in the case

of R-PP is tc = 4.172, while in R-CB, tc = 4.125. The R-CB case has a lower capture
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time when compared to R-PP because in the latter, the pursuers have an advantage as they

have information of both the evader’s position and velocity. The trajectories of the players

can be seen in Figure 2.14(a). Since P1 follows a constant bearing strategy, its LoS angle

is constant throughout the time (ϕ10 = 0). The state constraint can be analyzed using

Figure 2.14(b). The three periods in both optimal strategies can be observed in that plot.

The interesting observation here is that in R-CB the evader hits the Voronoi boundary earlier

compared to R-PP, but the evader stays on the boundary for longer time and eventually

follows pure evasion from P1. This is because of the difference in P1’s strategy, which also

affects the dynamics of the Voronoi boundary, and the switching condition.
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CHAPTER 3

TASK ALLOCATION IN MULTI-PLAYER PURSUIT-EVASION PROBLEMS

This chapter addresses multi-pursuer multi-evader (MPME) problems by developing scal-

able solutions based on a decomposition of the original MPME problem to a sequence of

simpler multi-pursuer single-evader (MPSE) problems. A major enabler for this decompo-

sition is a new result that allows us to characterize each pursuer as relevant or redundant

for each evader. Only the relevant pursuers participate in the MPSE pursuit of each evader.

The identification and classification of each pursuer as relevant or redundant makes use of

the classical tool of the Apollonius circle (in the case when the pursuers follows a constant

bearing strategy) or its extension, termed herein as Apollonius curve, (in the case when

the pursuers follows a pure pursuit strategy). The efficacy of the approach is demonstrated

using an illustrative example involving 10 pursuers and 5 evaders.

3.1 Problem Formulation

In this chapter, we consider a pursuit-evasion problem in the Euclidean plane that involves

n identical pursuers and m identical evaders. The pursuers’ objective is to capture all the

evaders. Capture occurs when one or more pursuers enter the capture zone of an evader

(assumed here to be a disk of radius ε > 0 centered at the instantaneous position of the

evader). At the same time, each evader aims at avoiding capture indefinitely. Let Pi denote

the ith pursuer and let Ej denote the jth evader. Let also P = {P1, P2, . . . , Pn} denote the

set of pursuers and, similarly, let E = {E1, E2, . . . , Em} denote the set of evaders. With a

slight abuse of notation, in the sequel we will also use the subscript indices to denote the

corresponding evader or pursuer.

51



The equations of motion of all the agents are given below

ẋi = u cos θi, ẏi = u sin θi, i ∈ P , (3.1a)

ẋj = v cos θj, ẏj = v sin θj, j ∈ E , (3.1b)

where pi = (xi, yi) ∈ R2, and ej = (xj, yj) ∈ R2 denote the positions of pursuer Pi,

and evader Ej , respectively, and θi and θj denote the heading angles (control inputs) for

the pursuers and the evaders, respectively. In Equation 3.1, u and v are the speeds of the

pursuers and the evaders, which are assumed constant with u > v. The number of states

is 2(n + m), and it increases linearly with the number of players. It is assumed that the

pursuers follow a given, known pursuit strategy. As discussed in chapter 2, in this chapter

too, two distinct pursuit strategies are investigated: CB - the pursuers follow a constant

bearing strategy; and PP - the pursuers follow a pure pursuit strategy.

The three problems to be addressed in this chapter are listed below.

Problem 1: For both cases CB and PP with m = 1 (MPSE problem), and assuming that the

pursuers are unaware of the evader’s strategy, which pursuers should go after the evader to

minimize capture time?

Problem 2: For both cases CB and PP with m = 1 (MPSE problem), and assuming that

the evader has complete information of the pursuers’ whereabouts and their strategy, what

is the time-optimal evading strategy?

Problem 3: For both cases CB and PP with m ≥ 1, and assuming that the pursuers are

unaware of the evaders’ strategy, which pursuer(s) should go after which evader(s)?

3.2 Optimal Evading Strategies in Multi-Pursuer Single-Evader Problems

3.2.1 Constant Bearing Strategy

A schematic of the problem geometry with one evader and n pursuers (henceforth referred

to as the MPSE problem) following a constant bearing strategy is shown in Figure 3.1.
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Since the pursuers are assumed to be following a constant bearing (CB) strategy, the prob-

lem can be analyzed by tracking the relative distances between the pursuers and the evader,

effectively reducing the number of states from 2(n + 1) to just n. In this regard, the dy-

namics can be written in the form

ṙi = v cos(θE − ϕi)− u cos(θi − ϕi), i ∈ P , (3.2)

where ri is the relative distance between pursuer Pi and the evader, and ϕi = atan2(yE −

yi, xE − xi) is the corresponding line of sight (LoS) angle. From now on we will drop the

subscripts for the evader and will use E instead of j to denote the single evader in MPSE

settings (i.e., in section 3.2 and section 3.3). Furthermore, we indicate the pursuers using

the subscripts directly and the set P = {1, 2, . . . , n}. Note that in the case of a constant

bearing strategy, the bearing angle between a pursuer and the evader remains constant until

the time of capture. Using this fact, the instantaneous heading of pursuer Pi (θi, i ∈ P) can

be obtained from the relation,

u sin(θi − ϕi) = v sin(θE − ϕi), (3.3)

which is a function of the instantaneous heading of the evader θE. The above relation has

two possible solutions for each θi, given θE, and the solution for which ṙi < 0 is chosen.

The initial conditions of the problem are

ri(0) = ‖e(0)− pi(0)‖, i ∈ P , (3.4)

and the terminal condition is

Ψ(r1(tc), r2(tc), . . . , rn(tc)) = min
i∈P

ri(tc)− ε = 0, (3.5)
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Figure 3.1: Schematic of the proposed MPSE problem with pursuers following a constant
bearing strategy

where tc is the time-of-capture. A formal definition for the time-of-capture is given below.

Definition 1. Given the initial positions of the players (at t = 0) in an n-pursuer single-

evader problem, and assuming that the pursuers follow either a constant bearing or a pure

pursuit strategy, and for any evading strategy, the time-to-capture tc (≥ 0) is the minimum

time so that there is at least one pursuer in the capture zone of the evader.

Since θi is a function of θE, and by the nature of Assumption A1 (v < u), ri decreases

monotonically for all time, and lies in the set [ε, ri(0)], i ∈ P . Also, the time of capture

is finite for all evader strategies, and is bounded by tmax
c , which is the capture time for the

farthest pursuer (at the initial time among the n pursuers), assuming the evader follows a

pure evasion strategy and none of the pursuers move. Note that the dynamics of the evader

is a function of just the control θE ∈ [0, 2π], and therefore ṙi ∈ [−(v + u), v − u], for all

i ∈ P , at any time and state, which is a convex set. Therefore, from Filippov’s theorem

[171], there exists a time-optimal evading strategy. This fact and the necessary conditions

given below together ensure that the proposed evading strategy is indeed optimal.

To continue with our analysis, note that since the evader strives to maximize tc using its
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control input θE, the Hamiltonian of the underlying optimal control problem can be written

as

H = −1 +
∑
i∈P

λi [v cos(θE − ϕi)− u cos(θi − ϕi)] , (3.6)

where λi (i ∈ P) are the costates. The corresponding adjoint equations are obtained as

λ̇i = −∂H
∂ri

= 0, i ∈ P , (3.7)

and hence the costates are constants, λi(t) = ci, t ∈ [0, tc], for all i ∈ P . The transversality

conditions are

λi(tc) = ν
∂Ψ

∂ri

∣∣∣∣∣
t=tc

, i ∈ P , and H(tc) = 0. (3.8)

Since the Hamiltonian has no explicit dependency on time, it follows that

H(t) = 0, t ∈ [0, tc]. (3.9)

Note that the terminal condition is not differentiable and its partial with respect to each

component ri(tc) can be expressed as

∂Ψ

∂ri

∣∣∣
t=tc

= 0, if ri(tc) > ε,

∂Ψ

∂ri

∣∣∣
t=tc

= 1, if ri(tc) = ε and rj(tc) 6= ε, j 6= i, (3.10)

∂Ψ

∂ri

∣∣∣
t=tc

is undefined, if ri(tc) = ε and rj(tc) = ε, for some j 6= i.
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Applying the Potryagin’s Minimum Principle, with
∂H

∂θE
= 0, yields

∑
i∈P

λi

[
−v sin(θE − ϕi) + u sin(θi − ϕi)

∂θi
∂θE

]
= 0, (3.11)

where from Equation 3.3,

∂θi
∂θE

=
v cos(θE − ϕi)
u cos(θi − ϕi)

, cos(θi − ϕi) 6= 0. (3.12)

Now, the following definition is used to establish the characteristics of the optimal

evading strategy.

Definition 2. Consider an MPSE problem and assume that the pursuers follow either a

constant bearing or a pure pursuit strategy. For a given strategy of the evader, the capturing

pursuer set Pc ⊂ P is the set of pursuers that are in the capture zone of the evader at tc.

Refer to Definition 1 for tc (time-to-capture), which is always finite since the pursuers

follow either a constant bearing or a pure pursuit strategy. Note that at the time of capture,

one or more pursuers can be in the capture zone of the evader. Therefore, 1 ≤ card[P ] ≤

n, where card[·] represents the cardinality of the set. The capturing pursuer set for the

optimal evading strategy, given the pursuers follow either a constant bearing or a pure

pursuit strategy, is denoted by P∗

Proposition 5. In the case of an MPSE problem with all the pursuers following a con-

stant bearing strategy, the time-optimal evading strategy is dependent only on the initial

positions of those pursuers that are in the corresponding capturing pursuer set P∗.

Proof. Let card[P∗] = k, 1 ≤ k ≤ n and, without loss of generality, assume that pursuers

P1, P2, . . . , Pk, capture the evader simultaneously at time tc. Therefore, r1(tc) = · · · =

rk(tc) = ε. Then, from Equation 3.10, λi(t) = ci = 0, for i ∈ P\P∗, and Equation 3.11
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can be written as

∑
i∈P∗

λi

[
−v sin(θE − ϕi) + u sin(θi − ϕi)

∂θi
∂θE

]
= 0. (3.13)

Since θi (i ∈ P∗) is a function of θE, and the LoS angles ϕi are dependent only on the

initial positions of the players, from Equation 3.13, it is evident that the optimal control

input of the evader is only dependent on the initial positions of those pursuers that capture

it at the final time tc.

Substituting Equation 3.12 in Equation 3.13, the later can be simplified to

∑
i∈P∗

λi

[
sin(θi − θE)

cos(θi − ϕi)

]
= 0. (3.14)

The above equation cannot be simplified any further to obtain a closed form optimal strat-

egy for the evader and hence, the information about the set of pursuers that capture the

evader at the time-of-capture i.e., the set P∗, cannot be obtained in an analytic fashion. Nu-

merical examples indicate that the problem may contain multiple local minima. To tackle

this problem and to address the issue of pursuer allocation, the idea of active/redundant

pursuers is introduced in the next section. Following the discussion on optimal strategies,

its characteristics for the case of pure pursuit is discussed in the following subsection.

3.2.2 Pure Pursuit Strategy

In the case of a pure pursuit strategy, the velocity vector of the pursuer is aligned along

the LoS, as shown in Figure 3.2 i.e., the LoS angles (ϕi) do not remain constant anymore.

Therefore, the dynamics has to include the evolution of both relative distances and the
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corresponding LoS angles, which can be written as

ṙi = −u+ v cos(θE − ϕi), (3.15)

ϕ̇i =
v

ri
sin(θE − ϕi), i ∈ P . (3.16)

The initial conditions include Equation 3.4 and

ϕi(0) = atan2(yE(0)− yi(0), xE(0)− xi(0)), i ∈ P , (3.17)

with the terminal condition being the same as in Equation 3.5.
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Figure 3.2: Schematic of the proposed MPSE problem with pursuers following a pure
pursuit strategy

For the case of an MPSE problem where all pursuers follow a pure pursuit strategy,

contrary to the constant bearing case of subsection 3.2.1, it is not easy to show existence of

an optimal evading strategy using Filippov’s theorem (although a feasible evading strategy

always exists trivially). Hence, in the following discussion we make the implicit assump-

tion that a time-optimal evading strategy exists, and we proceed to characterize this strategy

using the necessary conditions for optimality.
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The Hamiltonian of the time-optimal control problem in the case of PP can be written

as

H = −1 +
∑
i∈P

[
λi (−u+ v cos(θE − ϕi)) + µi

v

ri
sin(θE − ϕi)

]
, (3.18)

and the adjoint equations are

λ̇i = −∂H
∂ri

= −µi
v

r2
i

sin(θE − θi), (3.19)

µ̇i = −∂H
∂ϕi

= λiv sin(θE − θi)− µi
v

r2
i

cos(θE − θi), i ∈ P . (3.20)

The transversality conditions include Equation 3.8 and

µi(tc) = ν
∂Ψ

∂ϕi

∣∣∣∣∣
t=tc

= 0, i ∈ P . (3.21)

Furthermore, since the Hamiltonian has no explicit dependence on time, it is zero for the

entire time interval and Equation 3.9 holds for this case as well. The partials with respect

to ri are given in Equation 3.10. Finally, we have

∑
i∈P

[
−λi sin(θE − ϕi) +

µi
ri

cos(θE − ϕi)
]

= 0. (3.22)

Proposition 6. In the case of an MPSE problem with all the pursuers following a pure

pursuit strategy, the time-optimal evading strategy is dependent only on the initial positions

of those pursuers that are in the corresponding capturing pursuer set P∗.

Proof. Let card[P∗] = k, 1 ≤ k ≤ n, without loss of generality, assume that pursuers

P1, P2, . . . , Pk capture the evader simultaneously at time tc. Therefore, r1(tc) = · · · =

rk(tc) = ε. Then, from Equation 3.10, λi(t) = ci = 0, for i ∈ P\P∗. Furthermore,

from Equation 3.10, λi(tc) = 0, for i ∈ P\P∗, and from Equation 3.21, µi(tc) = 0,

for i ∈ P\P∗. Note that the adjoint equations, Equation 3.19 and Equation 3.20, for
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all i ∈ P are affine in their respective costates. Therefore, for i ∈ P\P∗, λi(t) = 0,

µi(t) = 0, t ∈ [0, tc]. Hence, Equation 3.22 can be rewritten as

∑
i∈P∗

[
−λi sin(θE − ϕi) +

µi
ri

cos(θE − ϕi)
]

= 0. (3.23)

In Equation 3.23, ϕi is dependent only on its initial conditions and the strategy of the evader.

Clearly, the optimal control input of the evader is only dependent on the initial positions of

those pursuers that capture it at the final time tc.

The pure pursuit case does not allow for a closed-form solution of the optimal evading

strategy, and as a result, it is difficult to the obtain the set P∗ analytically. In this regard, the

following section presents suboptimal solutions for allocating the pursuers for the MPSE

problem that can be employed under any evading strategy, while guaranteeing capture.

3.3 Active/Redundant Pursuers

This section presents strategies for the task allocation problem using the tool of Apollonius

circles [10]. The Apollonius circle for a pursuer-evader pair is the locus of points where

capture occurs, for all possible initial headings of a non-maneuvering evader, given the

initial positions of the pursuer-evader pair and assuming that the pursuer follows a constant

bearing strategy, see Figure 3.3. For the MPSE problem, the Apollonius circle of the pair

Pi-E is denoted as Ai. It has its center at Oi

(
xE − ρxi
1− ρ2

,
yE − ρyi
1− ρ2

)
and radius di =

ρ

1− ρ2
‖pi − e‖, where ρ = v/u (speed ratio) [32]. The Apollonius circles evolve in time

as the players move, but the time dependencies will be dropped for the sake of brevity. Let

Ti be the closest point to the evader on the Apollonius circle where collision occurs when

the evader goes head-on with the pursuer, as shown in Figure 3.3. Therefore the distance

of Ti from the evader is v‖pi − e‖/(u+ v).

When the pursuer employs a pure pursuit strategy, the locus of all points where cap-

ture occurs is a closed curve, represented using Ci (see Figure 3.3), and designated as an
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Figure 3.3: The locus of capture points for a non-maneuvering evader in the cases CB and
PP (simulation parameters: u = 1, v = 0.6, pi(0) = (0, 0), pE = (1, 0))

Apollonius curve. This Apollonius curve can be obtained from the time taken to capture a

non-maneuvering evader

tf =
ro(u+ v cosφi)

u2 − v2
, v 6= u, (3.24)

where ro is the initial distance between the pursuer-evader pair, and φ is the evader’s head-

ing measured with respect to the line-of-sight from the pursuer to the evader at the initial

time (see Figure 3.2) [167]. Furthermore, given the heading of a non-maneuvering evader,

the tf -isochrone in the case of a pure pursuit strategy always contains the tf -isochrone of

a constant bearing strategy [167, 172]. Therefore, the time-to-capture in the later case is

either higher than or equal to the former case. This gives rise to the following lemma.

Lemma 1. Given the positions of the pursuer Pi and the evader E, the corresponding

Apollonius circle Ai is always contained in the area enclosed by the Apollonius curve Ci.

The Apollonius curve is the locus of capture points for a non-maneuvering evader when

the pursuer uses a pure pursuit strategy. The Apollonius curve thus generalizes the notion of

the Apollonius circle for the case of pure pursuit. Note that the area enclosed by the curve
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Ci forms a non-convex set and hence, Ci is a non-convex curve [173]. Next, the Apollonius

circle Ai and the Apollonius curve Ci will be used to identify the active and redundant

pursuers. The following definitions establish the notions of active and redundant pursuers.

Please refer to Definition 2 for Pc (capturing pursuer set).

Definition 3. Consider an MPSE problem and assume that all pursuers follow either a

constant bearing or a pure pursuit strategy. If Pi ∈ Pc for some evading strategy, then Pi

is an active pursuer. Otherwise, Pi is a redundant pursuer.

Given the instantaneous positions of the pursuers and the evader, it is of interest to find

a condition to verify whether a pursuer is active or redundant. In this regard, we first define

the instantaneous Apollonius boundary.

Definition 4. Given the positions of the players in an n-pursuer single-evader problem

at time 0 ≤ t < tc, and assuming that the pursuers follow a constant bearing strategy,

the Apollonius boundary at time t is the set of points Bt = {X ∈
n⋃
i=1

Ai | M(e,X) ∩(
n⋃
i=1

Ai
)

= {X}}, where M(e,X) denotes the set of points on the line segment with

endpoints e (position of the evader) and X at time t.

In other words, the Apollonius boundary is the set of points that belong to the union

of all the instantaneous Apollonius circles, and in addition, each such point is the closest

to the evader along its respective line-of-sight originating from the evader. The following

lemma establishes an important property of the Apollonius boundary, which will be used

in section 3.4.

Lemma 2. Given the positions of the players in an n-pursuer single-evader problem at

time 0 ≤ t < tc, and assuming that the pursuers follow a constant bearing strategy, the

Apollonius circle of the closest pursuer is always a part of the Apollonius boundary Bt.

Proof. Without loss of generality, assume P1 is the closest pursuer. It follows that argmin
i∈P

‖pi − e‖ = 1, and point T1 (the point closest to the evader on the Apollonius circle A1, see
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(a) CB (b) PP

Figure 3.4: Apollonius circles, curves and boundaries for CB and PP cases (Simulation
parameters: u = 1, v = 0.6)

Figure 3.3) is the closest point to the evader along the corresponding line-of-sight originat-

ing from the evader. Therefore, the point T1 satisfies the conditionM(e, T1)∩
(

n⋃
i=1

Ai
)

=

{T1}. Hence, the Apollonius circle of the closest pursuer is always a part of the Apollonius

boundary.

Similarly, the Apollonius boundary in the case of pursuers following a pure pursuit

strategy can be defined with Ci replacing Ai in Definition 4. The Apollonius boundaries

in both cases can be visualized in Figure 3.4. It can be observed that the region enclosed

by the Apollonius boundary in the case of CB is always convex but it may not be the case

for PP. Note that the Apollonius boundary evolves with time as the Apollonius circles or

curves evolve with time as well.

3.3.1 Identifying Active/Redundant Pursuers

An algorithm to identify active/redundant pursuers in the case of CB is discussed first,

which is based on the following conjecture.
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Conjecture 1. Given the positions of all the players in an MPSE problem at time 0 ≤ t <

tc, and assuming that the pursuers follow a constant bearing strategy, pursuer Pi is active

at time t if Bt ∩ Ai 6= ∅, and is redundant otherwise.

The conjecture implies that in the case of CB, a pursuer is active at time 0 ≤ t < tc, if

and only if its corresponding Apollonius circle is part of the Apollonius boundary at that

instant. The conjecture is inspired from the fact that the region in which the capture point

lies in is bounded by the instantaneous Apollonius circle for any strategy of the evader.

Note that if a pursuer is active at time t′, it need not remain active for all t > t′. But if

a pursuer is redundant at time t′, it will remain redundant for all t > t′. The following

lemmas based on Conjecture 1 provide simple checks to determine whether a pursuer is

active or redundant.

Lemma 3. Given the positions of the players in an n-pursuer single-evader problem at

time 0 ≤ t < tc, assume that the pursuers follow a constant bearing strategy. Then pursuer

Pi is the only active pursuer if and only if the conditions

Ai
⋂(

n⋃
j=1, j 6=i

Aj

)
= ∅, (3.25)

M(e, Ti)
⋂(

n⋃
j=1, j 6=i

Aj

)
= ∅, (3.26)

are satisfied, where Ti is the closest point to the evader on the Apollonius circle Ai. Fur-

thermore, if conditions in Equation 3.25 and Equation 3.26 are not satisfied, then Pi is a

redundant pursuer.

Proof. The necessity of the conditions in Equation 3.25 and Equation 3.26 for Pi to be the

only active pursuer is established first. From Equation 3.25, it can be seen that Ai does

not intersect any other Apollonius circle. Therefore, it is either the case that Ai contains

all other Apollonius circles, or Ai is contained in every other Apollonius circle. Note that

both cases are mutually exclusive. In the later case, the Apollonius boundary is Ai itself,
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and Pi is the only active pursuer. Now, if

M(e,X)
⋂(

n⋃
j=1, j 6=i

Aj

)
= ∅, (3.27)

where X is any point on Ai, then Ai is contained in every other Apollonius circle, that

is, Pi is the only active pursuer. Since X can be any point on the Apollonius circle Ai,

a convenient way to check the condition in Equation 3.27 is to choose the closest point

to the evader on the Apollonius circle Ai. This point has the closed form expression

Ti

(
xE + ρxi

1 + ρ
,
yE + ρyi

1 + ρ

)
, see Figure 3.3. Conversely, if Pi is the only active pursuer, then

from Conjecture 1, the Apollonius boundary is Ai itself. In such a case, Ai does not inter-

sect any other Apollonius circle and it is contained in every other Apollonius circle, which

implies Equation 3.25 and Equation 3.26 hold. Thus, Equation 3.25 and Equation 3.26

become necessary and sufficient conditions for Pi to be the only active pursuer.

Lemma 4. Given the positions of the players in an MPSE problem at time 0 ≤ t < tc,

assume that the pursuers follow a constant bearing strategy, and that the Apollonius circle

Ai intersects at least one of the other Apollonius circles. Then, pursuer Pi is an active

pursuer if and only if there exists X ∈ Ii such that

M(e,X)
⋂(

n⋃
j=1

Aj

)
= {X}, (3.28)

where Ii is the set of intersection points between Ai and the rest of the Apollonius circles.

Proof. The necessity of condition Equation 3.28 for Pi to be an active pursuer is proven

first. Note that X ∈ Ii ⊂ Ai. Since X ∈ Bt, and from Conjecture 1, it follows that Pi is an

active pursuer at time t. Conversely, if Pi is an active pursuer at time t, from Lemma 4, and

since Ai intersects one or more Apollonius circles, Ai alone cannot form the Apollonius

boundary (see Lemma 3). Therefore, only portion(s) of Ai (i.e., arc(s) of the circle) can

be a part of the Apollonius boundary. The arc(s) which could possibly be a part of Bt
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will have one or more of the intersection points as its endpoints. Hence, if Pi is an active

pursuer, then there is at least one intersection point X ∈ Ii that satisfies the condition in

Equation 3.28.

The set of intersection points Ii can be obtained analytically given the instantaneous

positions of all the players [174]. The above two lemmas can be used to verify if a pursuer

is active or redundant. In this regard, Algorithm 1 below, named Apollonius circle based

Active Pursuer Check (AAPC), can be employed to check the status of each pursuer. The

time complexity of the algorithm is of order O(n2), since the maximum number of inter-

sections between any two circles is two. Note that by dynamically allocating the task of

capturing the evader using AAPC (where at every instant the active pursuers keep pursuing

the evader while the redundant pursuers do not react), the pursuers as a group will be able

to capture the evader in minimum time. Furthermore, if a pursuer becomes redundant at

any point of time 0 ≤ t < tc, it remains redundant after that (i.e., till capture occurs).

The case of PP is more involved because the corresponding Apollonius curve is non-

convex. A claim similar to the one given in Conjecture 1 cannot be made and hence, it is

difficult to determine the status of a pursuer in this case. In this regard, the convex hull

of the area surrounded by the Apollonius curve can be considered. The boundary of this

convex hull is used to obtain a refined Apollonius curve, and the active/redundant pursuers

can be identified by having checks similar to the ones given in the case of CB. In this

case, the active pursuers are simply the ones that keep pursuing the evader. The redundant

ones are the ones that remain at rest. At the same time, and since the refined Apollonius

curve in the case of PP does not have any closed form expression, obtaining the intersection

points between the refined curves or between the refined curves and a given line segment

is computationally more involved. Using an algorithm analogous to AAPC with refined

Apollonius curves, numerical simulations obtained in the case of PP are presented in the

following subsection. Note that the refined Apollonius curve is a convex curve [173].

Remark 1. The notion of regions of non-degeneracy (RND), discussed in chapter 2, is taken
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Algorithm 1 Apollonius circle based Active Pursuer Check (AAPC)
Require: Positions of all the players (p1,. . . ,pn,e,i)
Ensure: Status of pursuer Pi

1: procedure OBTAIN STATUS(p1,. . . ,pn,e,i)
2: flag1 = 0 (To check if Ai intersects any other Apollonius circle)
3: status = redundant
4: for j = 1 to n and j 6= i do
5: Obtain Iij (set of intersection points (X`) for Ai and Aj)
6: if Iij 6= ∅ then
7: flag1 = 1
8: for ` = 1 to card[Iij] do
9: flag2 = 0. (To check ifM(e,X`) intersects any other Apollonius circle)

10: for k = 1 to n and k 6= i, j do
11: ifM(e,X`) intersects Ak then
12: flag2 = 1
13: end if
14: end for
15: if flag2 = 0 then
16: status = active
17: break from outermost loop.
18: end if
19: end for
20: end if
21: end for
22: if flag1 = 0 then
23: status = active
24: for j = 1 to n and j 6= i do
25: ifM(e, Ti) intersects Aj then
26: status = redundant
27: break
28: end if
29: end for
30: end if
31: return status
32: end procedure
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Figure 3.5: Results obtained using AAPC for task allocation in the case of CB

care of implicitly in the proposed approach using the notion of active/redundant pursuers.

In chapter 2, RND were used to check whether a pursuer is active/redundant in two-pursuer

one-evader problems. These were based on the location of the farther pursuer compared to

the closer pursuer. However, when there are more than two pursuers RND as an approach

no longer works.

3.3.2 Numerical Simulations

In this section, simulations of pursuer allocation using AAPC for both CB and PP cases,

involving five pursuers and one evader, are presented. The speeds of the pursuers are set to

u = 1, whereas the speed of the evader is set to v = 0.6. The radius of capture is chosen

as ε = 0.1. The evader follows a form of blind evasion strategy with switching times that

are predefined [175]. At each switching time, the evader randomly chooses a heading from

a set of allowable headings. The allowable headings set that is specific to the example

showcased in this paper is {−π/4, π/2, 3π/4}.

Figure 3.5 presents the results obtained for the case of CB. Figure 3.5(a) shows the
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Figure 3.6: Results obtained using AAPC with refined Apollonius curves for task allocation
in the case of PP

initial positions of all the players along with the corresponding Apollonius circles. The

triangle denotes the initial position of the evader and the square markers denote the initial

positions of the pursuers. It can be observed that at the initial time, the pursuers identified

with the colors red, magenta, green, and blue are the active pursuers, as their corresponding

Apollonius circles are part of the Apollonius boundary. Figure 3.5(b) shows the trajectories

of all the players. It can be seen that the green pursuer finally captures the evader, and the

rest of the three pursuers, which are initially active, become redundant as time progresses.

The cyan pursuer, which is redundant at the initial time, does not move at all. Figure 3.6

presents the results obtained for the PP case using the refined Apollonius curves. An analy-

sis similar to its CB counterpart can be made by observing Figure 3.6(a) and Figure 3.6(b),

where the cyan pursuer is again redundant at the initial time. The rest of the pursuers,

though initially active, eventually become redundant except for the green pursuer, which

finally captures the evader, see Figure 3.6(b).
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3.4 Extension to Multi-Pursuer Multi-Evader Problems

In this section, the AAPC is extended to solve MPME problems. Given the positions of

all the players at some instant of time, the set of evaders for which a pursuer is active can

be obtained using AAPC. Note that at a given time instant, a pursuer can be classified as

active by more than one evader or no evader whatsoever. In the case where a pursuer is

classified as active for more than one evader, one can break the tie by assigning the pursuer

to the nearest evader among the ones for which this pursuer is active. Using this idea, the

following algorithm can be used for pursuer allocation in MPME problems. Note that the

pursuers are assumed to be following a constant bearing strategy.

Apollonius-Voronoi Allocation Algorithm (AVAA): At a given time instant 0 ≤ t ≤ tc,

let Ef be the set of evaders that are yet to be captured, and let Ec be the set of evaders that

have already been captured. Note that E = Ef ∪ Ec. Given the current positions of all the

players, let I : Ef → 2P be the initial allocation function that maps each evader Ej (in Ef )

to its set of active pursuers obtained by considering the positions of all the pursuers. That

is, for a given j ∈ Ef , I (j) is a subset of P . Furthermore, Pa =
⋃
j∈Ef

I (j) denotes the

set of all the active (or assigned) pursuers according to the initial allocation function I .

Given the initial allocation function I , let now J : P → 2Ef be the dual function defined

by J (i) = {j ∈ Ef : I (j) = i}. In other words, J maps each pursuer to the set of the

evaders to which it is allotted as per I . Next, we define the final allocation function F

and the intermediate allocation function G as follows.

(a) If card[J (i)] ≤ 1, for all i ∈ P , then let F = I . Otherwise, let G : E → 2P

be defined as G (j) =
{
i ∈ I (j) : j = argmin

k∈J (i)

‖pi − pk‖
}

. The function G maps

each evader to a set of pursuers in accordance to the mapping I , such that each active

pursuer is assigned to the nearest evader among its assigned ones. Note that G (j) can

be an empty set for some j, i.e., an evader can end up be unassigned as per G .

(b) Let Pu = P\Pa be the set of unassigned pursuers. Now for each evader Ej , find
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the active pursuers considering the positions of the pursuers that are only in the set

G (j) ∪ Pu, and obtain an updated allocation function I ′ and its corresponding dual

J ′.

(c) Repeat steps (a) and (b), by replacing I and J with I ′ and J ′, respectively, until

F is obtained.

Note that in step (a) of the algorithm, ties with multiple assignments of the same pursuer

are broken using distance as the metric. Furthermore, if each pursuer is assigned to only

one evader or if it remains unassigned, then the initial allocation function I is also the

final one. In any other case, once the intermediate allocation function G is obtained in

step (b) of the algorithm, the set of unassigned pursuers according to I is obtained. In

step (b), an updated allocation function I ′ is obtained by checking for active pursuers

among the set of unassigned pursuers coupled with the pursuers assigned as per G , for

each evader. Because one of the unassigned pursuers (in the set Pu) can become active to

the evaders that have lost one or more pursuers during the tie break in step (a). With I ′

and its corresponding dual J ′, steps (a) and (b) are repeated until each pursuer has only

one (or none) assignment. Once an evader is captured, it is removed from the set Ef and

added to the set Ec.

The above algorithm is run at every time instant to obtain the allocation function F ,

given the players’ current positions, until all the evaders are captured, i.e., until Ef is empty.

The algorithm provides a potentially sub-optimal solution, but it is scalable for any number

of pursuers and evaders. The algorithm guarantees capture of all m evaders as is shown in

Theorem 3 below. In order to prove this theorem, several preparatory results are needed.

Definition 5. Given the positions of the players in an MPME problem at time t ≥ 0, the

current shortest reach (CSR) is defined by min
(i,j)∈P×Ef

‖pi − ej‖.

Lemma 5. At a given time instant t ≥ 0, i∗ ⊆ F (j∗), where (i∗, j∗) = argmin
(i,j)∈P×Ef

‖pi−ej‖,

and F is the final allocation function of AVAA.
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Proof. From Lemma 2, since i∗ is the closest pursuer to j∗, the Apollonius boundary for j∗

contains i∗, while considering the positions of all the pursuers (in P). Therefore, i∗ will be

assigned to j∗, as per the initial allocation function I . When i∗ has multiple assignments

as per I , the intermediate allocation function G still assigns i∗ to j∗, as the pursuer is

assigned to the closest evader in the case of multiple assignments (as per G ). Furthermore,

i∗ is assigned to j∗, as per all the subsequent updated allocation functions I ′, owing to the

fact i∗ is the closest pursuer to j∗, and hence as per the final allocation function F .

Lemma 6. Assuming the pursuers are assigned to the evaders using AVAA, at any given

time t ≥ 0, CSR will converge to zero in finite time, and hence at least one evader will be

captured in finite time.

Proof. From Lemma 5, pursuer i∗ (corresponding to the CSR) is always assigned to evader

j∗. Since all the pursuers are faster compared to the evaders, and since they follow a

constant bearing strategy, d(‖pi∗ − ej∗‖)/dt < 0, for all t ≥ 0 [167]. Furthermore, as the

initial CSR is finite, the CSR converges to zero in finite time. Hence, capture of one evader

is guaranteed in finite time.

Theorem 3. The AVAA algorithm guarantees capture of all the evaders in finite time.

Proof. The result immediately follows from Lemma 5 and Lemma 6. Note that the CSR is

updated (from zero) every time a capture occurs, and the captured evader is removed from

the list of participating players. Also, the number of evaders are finite.

Figure 3.7 demonstrates the performance of AVAA for 10 pursuers and 5 evaders. The

simulation parameters remain the same as in subsection 3.3.2. In Figure 3.7, the red tri-

angles indicate the current positions of the evaders that are not captured and the magenta

ones are the evaders that are captured. The blue squares indicate the current positions of

the active pursuers and the cyan ones indicate the redundant pursuers. In all three plots, the
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Figure 3.7: Plots showing the positions and trajectories of the players in a multi-pursuer
(squares) multi-evader (triangles) problem at different time instants
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Voronoi partition of the domain with the pursuers as generators is also included for refer-

ence. The animation corresponding to the simulation shown in Figure 3.7, can be found on

the web1.

3.5 Pursuit-Evasion with Heterogeneous Teams

In the previous section, the proposed MPME formulation was analyzed with the pursuit and

the evading teams being homogeneous i.e., all the pursuers are identical with equal speed

capabilities, and so is the case with the evaders. In this section, assuming the pursuers

follow a constant bearing strategy, we extend the results in section 3.4 to include heteroge-

neous teams of agents with guarantees on finite-time capture. To this end, ui and vj are the

speeds of Pi, i ∈ P , and Ej , j ∈ E , which are assumed to be constant with

min
i∈P

ui > max
j∈E

vj. (3.29)

The definition of the Apollonius circle The definitions for active and redundant pursuers

in the case of homogeneous agent groups (Definition 3) can be directly adopted in the case

of heterogeneous agent groups.

In the case where a pursuer is classified as active for more than one evader, one can

break the tie by assigning the pursuer to the evader that can be captured in minimum possi-

ble time i.e., argminj‖pi−ej‖/(ui+vj). The aforementioned criterion for breaking a tie is

equivalent to choosing the nearest evader when the teams are assumed to be homogeneous.

The resulting Apollonius allocation (A2) algorithm, obtained by updating the tie-breaking

criterion in the AVAA, can be used for pursuer allocation in MPME problems involving

heterogeneous teams. The proof for finite-time capture of all evaders is presented below.

Definition 6. Given the instantaneous positions of the players in the MPME problem at

time t ≥ 0, the current shortest time (CST) is defined by ts = min
(i,j)∈P×Ef

‖pi − ej‖
ui + vj

.

1https://youtu.be/H05SUfotwPc
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Lemma 7. At a given time instant t ≥ 0, i∗ ⊆ F (j∗), where (i∗, j∗) = argmin
(i,j)∈P×Ef

‖pi − ej‖
ui + vj

,

and F is the final allocation function of A2 algorithm.

Proof. From Definition 6 it is understood that ts represents the minimum possible time

taken to capture an agent in the evading team by an agent in the pursuing team, when the

corresponding evader goes head-on with the pursuer. Therefore, if it can be shown that the

Apollonius boundary around the evader j∗ contains part of the Apollonius circleAi∗j∗ (i.e.,

Btj∗ ∩Ai∗j∗ 6= ∅, ∀ t ≥ 0), then the pursuer i∗ will be assigned to the evader j∗, even when

there is a tie. Since the Apollonius circle denotes the capture points for a non-maneuvering

evader, the point Ti∗j∗ , with the length of the line segment Ej∗Ti∗j∗ = vj∗ts, is the closest

capture point to evader j∗ along the corresponding line of sight. Therefore Ti∗j∗ ∈ Btj∗ , and

hence, Btj∗ ∩ Ai∗j∗ 6= ∅, ∀ t ≥ 0.

Lemma 8. Assuming the pursuers are assigned to the evaders using A2, at any given time

t ≥ 0, CST will converge to zero in finite time, and hence at least one evader will be

captured in finite time.

Proof. From Lemma 7, pursuer i∗ (corresponding to the CST) is always assigned to evader

j∗. Since all the pursuers are faster compared to the evaders, and since they follow a

constant bearing strategy, dts/dt ≤ (vj∗ − ui∗)/(vj∗ + ui∗) < 0, for all t ≥ 0 [167].

Furthermore, as the initial CST is finite, the CST converges to zero in finite time. Hence,

capture of one evader is guaranteed in finite time.

Theorem 4. The A2 algorithm guarantees capture of all the evaders in finite time.

Proof. The result immediately follows from Lemma 7 and Lemma 8. Note that the CST is

updated (from zero) every time a capture occurs, and the captured evader is removed from

the list of participating players. Also, the number of evaders are finite.
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CHAPTER 4

COVARIANCE STEERING FOR A CLASS OF LINEAR QUADRATIC

STOCHASTIC DYNAMIC GAMES

In this chapter, we address the problem of steering a discrete-time linear dynamical system

from an initial Gaussian distribution to a final distribution in a game-theoretic setting. One

of the two players strives to minimize a quadratic payoff, while at the same time tries

to meet a given mean and covariance constraint at the final time-step. The other player

maximizes the same payoff, but it is assumed to be indifferent to the terminal constraint. At

first, the unconstrained version of the game is examined, and the necessary conditions for

the existence of a saddle point are obtained. It is then shown that obtaining a solution for

the one-sided constrained dynamic game is not guaranteed, and subsequently the players’

best responses are analyzed. The constrained covariance steering game is proposed to be

solved numerically using the well-known Jacobi procedure. The problem of guiding a

missile during the endgame is chosen to analyze the proposed approach. A test example

corresponding to the case where the terminal distribution is not achieved is also included

while discussing the necessary conditions to meet a given terminal constraint.

4.1 Mathematical Preliminaries

Consider the following discrete-time linear stochastic system

xk+1 = Akxk +Bkuk + Ckvk +Dkwk, (4.1)

where k = 0, 1, . . . , N−1 is the time-step. At the kth time-step, xk ∈ Rn denotes the state,

uk ∈ Rm is the controller input, vk ∈ R` is the stopper input, and wk ∈ Rr is a zero-mean
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white Gaussian noise with unit covariance, i.e.

E[wk] = 0, E[wk1w
>
k2

] =


Ir, if k1 = k2,

0, otherwise.
(4.2)

In addition, it is assumed that

E[xk1w
>
k2

] = 0, 0 ≤ k1 ≤ k2 ≤ N. (4.3)

The initial state x0 is distributed according to x0 ∼ N (µ0,Σ0), where µ0 ∈ Rn is the initial

state mean, and Σ0 ∈ Rn×n is the initial state covariance, with Σ0 � 0. The payoff function

is

J(u0, . . . , uN−1, v0, . . . , vN−1) = E

[
N−1∑
k=0

(
x>kQkxk + u>k Rkuk − v>k Skvk

)]
. (4.4)

It is assumed that Qk � 0 for all k = 0, . . . , N , and Rk, Sk � 0 for all k = 0, . . . , N − 1.

The set of control inputs {u0, . . . , uN−1} is chosen by one player to minimize the payoff

function (Equation 4.4), and the control inputs {v0, . . . , vN−1}, are chosen by the adversary

to maximize the payoff.

Using the notation introduced in [99], the system dynamics in Equation 4.1 can be

alternatively expressed as

xk = Ākx0 + B̄kUk + C̄kVk + D̄kWk, (4.5)

where Uk = [u0, u1, . . . , uk−1]>, Vk = [v0, v1, . . . , vk−1]>, Wk = [w0, w1, . . . , wk−1]> are

the augmented control and noise profiles. Furthermore, with the augmented state vector
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X = [x1, x2, . . . , xN ]>, the system dynamics (Equation 4.1) can be rewritten as

X = Ax0 + BU + CV +DW, (4.6)

where U = UN−1, V = VN−1, and W = WN−1. The definitions of the big matrices

(Ak, A, . . . ) can be found in [99]. Note that E[x0x
>
0 ] = Σ0 + µ0µ

>
0 , E[x0W

>] = 0,

E[WW>] = I. Consequently, the payoff function in Equation 4.4 can be expressed as

J(U, V ) = E[X>Q̄X + U>R̄U − V >S̄V ], (4.7)

where Q̄ = blkdiag(Q0, . . . , QN−1, 0) ∈ R(N+1)n×(N+1)n, R̄ = blkdiag(R0, R1, . . . , RN−1) ∈

RNm×Nm, and S̄ = blkdiag(S0, S1, . . . , SN−1) ∈ RN`×N`. Also, since Qk � 0 for all

k = 0, . . . , N , and Rk, Sk � 0 for all k = 0, . . . , N − 1, it follows that Q̄ � 0 and

R̄, S̄ � 0. The mean and the covariance of the initial state x0 can be written in terms of X

as

µ0 = E0E[X], (4.8a)

Σ0 = E0(E[XX>]− E[X]E[X]>)E>0 , (4.8b)

where E0 , [In, 0, . . . , 0] ∈ Rn×(N+1)n.

Definition 7. The upper game is a scheme in which the stopper chooses V based on the

information it has on the control U , and the upper value is defined by

V+ = inf
U∈RNm

sup
V ∈RN`

J(U, V ). (4.9)

Similarly, the lower game is a scheme in which the controller chooses U based on the

78



information it has on the control V , and the lower value is defined by

V− = sup
V ∈RN`

inf
U∈RNm

J(U, V ). (4.10)

It is well known that, in general V− ≤ V+. If the Isaacs minimax condition holds,

then V− = V+, and the corresponding set of control actions (U∗, V ∗) is called the equilib-

rium solution or saddle point [176]. The unconstrained Gaussian steering problems to be

addressed in this paper can now be stated as follows.

Problem 1. Find the saddle point (U∗, V ∗) for the unconstrained dynamic game (UDG),

described by the payoff function in Equation 4.7, the system in Equation 4.6, and the initial

conditions in Equation 4.8.

In this paper, as mentioned earlier, we propose to analyze the one-sided constrained

dynamic game. To this end, let

ENX = xN ∼ N (µN ,ΣN), (4.11)

where EN , [0, . . . , 0, In] ∈ Rn×(N+1)n, be terminal state that the controller strives to

achieve at the final time-step. Note that it is only the controller who is concerned about

meeting the terminal condition in Equation 4.11, and hence Equation 4.11 is a one-sided

constraint. It is assumed that the stopper is aware of the controller’s terminal constraint

however, it is indifferent to this constraint, and it is solely interested in maximizing the

payoff (Equation 4.7). Furthermore, since the terminal constraint (Equation 4.11) is depen-

dent on the control inputs of both players, and it is a one-sided constraint, the problem of

interest can be categorized as a GCG [153].

Remark 2. The terminal condition (Equation 4.11) can be used to enforce probabilistic

capture in the case of a two-player pursuit-evasion game with µN = 0, when Equation 4.1

represents the relative motion between the pursuer and the evader.
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We will now formally define the saddle point in the one-sided constrained dynamic

game using the corresponding upper and lower values. For a given stopper action V , let

U(V ) denotes the set of controllers U ∈ RNm that drive the system to terminal Gaussian

distribution in Equation 4.11, and letR ,
⋃
V ∈RN` U(V ) ⊆ RNm.

Definition 8. The constrained upper value is defined by

V+
c = inf

U∈RNm
sup
V ∈RN`

J(U, V ), (4.12)

and the constrained lower value is defined by

V−c = sup
V ∈RN`

inf
U∈R

J(U, V ). (4.13)

The existence of the constrained upper and lower values requires that the controller

meets the terminal constraint in Equation 4.11 in the corresponding upper and lower games.

Given the system dynamics in Equation 4.6 and the initial conditions in Equation 4.8,

note that for some V , there may not exist a controller such that the terminal condition

(Equation 4.11) can be met i.e., U(V ) = ∅. Consequently, there may not exist a constrained

upper (or lower) value for the constrained game. Finally, a saddle point in the constrained

game can be defined as (U∗c , V
∗
c ) for which the V+

c and V−c exist, and are equal.

Problem 2. Find the necessary conditions such that the controller can drive the system to

the final state, while the stopper tries to maximize the payoff function (Equation 4.7), given

the system dynamics (Equation 4.6) and the initial conditions (Equation 4.8). Furthermore,

find the optimal control inputs for both players. Hereafter, this problem will be referred to

as the constrained dynamic game (CDG).
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4.2 Separation of Mean and Covariance Control Problems

In Ref. [87], it was demonstrated that the mean and the covariance evolution of the system

can be separated. Subsequently, by separating the cost, independent controllers that drive

the mean and the covariance were derived. A similar approach is followed here by first

observing the fact that

µk , E[xk] = Ākµ0 + B̄kŪk + C̄kV̄k, (4.14)

where Ūk = E[Uk] and V̄k = E[Vk]. By defining

x̃k , xk − µk, Ũk , Uk − Ūk, Ṽk , Vk − V̄k, (4.15)

and using Equation 4.5, the following equation holds for x̃k.

x̃k = Ākx̃0 + B̄kŨk + C̄kṼk + D̄kWk. (4.16)

Subsequently,

Σk , E[x̃kx̃
>
k ]

= E
[(
Ākx̃0 + B̄kŨk + C̄kṼk + D̄kWk

)(
Ākx̃0 + B̄kŨk + C̄kṼk + D̄kWk

)>]
.

(4.17)

It can be observed that the mean evolution in Equation 4.14 depends only on Ūk, V̄k, while

the evolution of x̃ in Equation 4.16, and the covariance evolution in Equation 4.17 depend

only on Ũk, Ṽk, and the noise profile Wk. Consequently, from Equation 4.6 and Equa-

tion 4.14, it follows that

X̄ , E[X] = Aµ0 + BŪ + CV̄ , (4.18)
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and from Equation 4.16,

X̃ , X − E[X] = Ax̃0 + BŨ + CṼ +DW. (4.19)

The objective function (Equation 4.7) can be further rewritten as

J(U, V ) = E[X>Q̄X + U>R̄U − V >S̄V ]

= tr(Q̄E[X̃X̃>]) + X̄>Q̄X̄ + tr(R̄E[Ũ Ũ>]) + Ū>R̄Ū − tr(S̄E[Ṽ Ṽ >])− V̄ >S̄V̄

= Jµ(Ū , V̄ ) + JΣ(Ũ , Ṽ ), (4.20)

where

Jµ(Ū , V̄ ) = X̄>Q̄X̄ + Ū>R̄Ū − V̄ >S̄V̄ , (4.21)

and

JΣ(Ũ , Ṽ ) = tr(Q̄E[X̃X̃>]) + tr(R̄E[Ũ Ũ>])− tr(S̄E[Ṽ Ṽ >]). (4.22)

Proposition 7. For the UDG, the saddle point controls (U∗, V ∗) that solve the problem (if

they exist) are given by U∗ = Ū∗ + Ũ∗ and V ∗ = V̄ ∗ + Ṽ ∗, where (Ū∗, V̄ ∗) solves the

unconstrained mean steering game

(UMSG)


Payoff function: Jµ(Ū , V̄ ),

where X̄ = Aµ0 + BŪ + CV̄ ,
(4.23)
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and (Ũ∗, Ṽ ∗) solves the unconstrained covariance steering game

(UCSG)


Payoff function: JΣ(Ũ , Ṽ ),

where X̃ = Ax̃0 + BŨ + CṼ +DW.
(4.24)

Proof. From Equation 4.15 and Equation 4.20, it can observed that the mean payoff func-

tion Jµ(Ū , V̄ ) in Equation 4.21 is driven by the mean control actions Ū and V̄ indepen-

dently while the covariance payoff JΣ(Ũ , Ṽ ) in Equation 4.21 is driven by the covariance

control actions Ũ and Ṽ . As a result, the UDG in terms of (U, V ) is equivalent to two sep-

arate dynamic games in terms of (Ū , V̄ ) and (Ũ , Ṽ ) with payoff functions in Equation 4.21

and Equation 4.22, respectively, leading to the result.

Proposition 8. Proposition 7 applies to the CDG as well, with U∗c = Ū∗c + Ũ∗c , V ∗c =

V̄ ∗c + Ṽ ∗c , where (Ū∗c , V̄
∗
c ) solves the constrained mean steering game (CMSG)


Payoff function: Jµ(Ū , V̄ ), (4.25a)

where X̄ = Aµ0 + BŪ + CV̄ ,

Controller constraint:µN = ENX̄ = ĀNµ0 + B̄N Ū + C̄N V̄ , (4.25b)

and (Ũ∗c , Ṽ
∗
c ) solves the constrained covariance steering game (CCSG) with


Payoff function: JΣ(Ũ , Ṽ ), (4.26a)

where X̃ = Ax̃0 + BŨ + CṼ +DW,

Controller constraint: ΣN = EN
(
E[XX>]− E[X]E[X]>

)
E>N , (4.26b)

where the constraints (Equation 4.25b and Equation 4.26b), as stated earlier, are of con-

cern only for the controller.

Proof. The proof is similar to the one given for Proposition 7. From Equation 4.15 and

Equation 4.20, it can observed that the mean payoff Jµ(Ū , V̄ ) in Equation 4.21 is driven by

mean control actions Ū and V̄ , while the covariance payoff JΣ(Ũ , Ṽ ) in Equation 4.21 is
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driven by covariance control actions Ũ and Ṽ , independently. Furthermore, the mean and

the covariance control actions address the constraints (Equation 4.25b and Equation 4.26b)

too in an independent fashion. As a result, the CDG in terms of (U, V ) is equivalent to

two separate dynamic games in Equation 4.25 and Equation 4.26 in terms of (Ū , V̄ ) and

(Ũ , Ṽ ), respectively, leading to the result.

Note that non-existence of saddle point in either CMSG or CCSG or both, implies non-

existence of saddle point in CDG. For the analysis of mean steering game in the following

section, we introduce the set R̄. For a given stopper action V̄ in CMSG, let Ū(V̄ ) denotes

the set of mean controllers Ū ∈ RNm that satisfies the constraint in Equation 4.25b, and let

R̄ ,
⋃
V̄ ∈RN` Ū(V̄ ) ⊆ RNm.

4.3 Mean Steering Game

The solution to the UMSG is given in the following proposition.

Proposition 9. Assume that

S̄ − C>Q̄C � 0, (4.27)

then the saddle point (Ū∗, V̄ ∗) that solves the UMSG (Equation 4.23) is given by

 Ū∗

V̄ ∗

 = −

 B>Q̄B + R̄ B>Q̄C

C>Q̄B C>Q̄C − S̄


−1  B>Q̄A

C>Q̄A

µ0 (4.28)

and this solution is unique.

Proof. The payoff function in Equation 4.21 can be expressed as

Jµ(Ū , V̄ ) = (Aµ0 + BŪ + CV̄ )>Q̄(Aµ0 + BŪ + CV̄ ) + Ū>R̄Ū − V̄ >S̄V̄ . (4.29)
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The first-order necessary conditions [177] for a saddle point yield

∇ŪJµ = (B>Q̄B + R̄)Ū + B>Q̄CV̄ + B>Q̄Aµ0 = 0, (4.30a)

∇V̄ Jµ = (C>Q̄C − S̄)V̄ + C>Q̄BŪ + C>Q̄Aµ0 = 0. (4.30b)

The above two equations can be expressed as

 B>Q̄B + R̄ B>Q̄C

C>Q̄B C>Q̄C − S̄


 Ū∗

V̄ ∗

 = −

 B>Q̄A
C>Q̄A

µ0, (4.31)

Let

Tm =

 B>Q̄B + R̄ B>Q̄C

C>Q̄B C>Q̄C − S̄

 , (4.32)

and from Equation 4.27, B>Q̄C(C>Q̄C − S̄)−1C>Q̄B ≺ 0. As a result, B>Q̄B + R̄ −

B>Q̄C(C>Q̄C − S̄)−1C>Q̄B � 0. Therefore, det(Tm) = det(C>Q̄C − S̄)det(B>Q̄B +

R̄ − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B) 6= 0, and Tm is invertible. Equation 4.28 then follows

immediately from Equation 4.31. From Equation 4.27, the second order derivatives yield

∇ŪŪJµ = B>Q̄B + R̄ � 0, (4.33a)

∇V̄ V̄ Jµ = C>Q̄C − S̄ ≺ 0. (4.33b)

Therefore, the payoff function is convex in Ū , and concave in V̄ . Hence (Ū∗, V̄ ∗) is the

only saddle point that solves the given dynamic game [177].

Next, we analyze the CMSG. As this is a constrained zero-sum game, we obtain the

following inequality. A similar result can be found in Ref. [153] (Theorem III.1).

Lemma 9. Assuming that the UMSG (Equation 4.23) has a saddle point equilibrium (Propo-
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sition 9), the CMSG (Equation 4.25) satisfies

inf
Ū∈RNm

sup
V̄ ∈RN`

Jµ(Ū , V̄ ) ≤ sup
V̄ ∈RN`

inf
Ū∈R̄

Jµ(Ū , V̄ ). (4.34)

Proof. Given that the UMSG has a saddle point equilibrium, it follows that

inf
Ū∈RNm

sup
V̄ ∈RN`

Jµ(Ū , V̄ ) = sup
V̄ ∈RN`

inf
Ū∈RNm

Jµ(Ū , V̄ ). (4.35)

Since R̄ ⊆ RNm,

inf
Ū∈RNm

Jµ(Ū , V̄ ) ≤ inf
Ū∈R̄

Jµ(Ū , V̄ ). (4.36)

Hence,

sup
V̄ ∈RN`

inf
Ū∈RNm

Jµ(Ū , V̄ ) ≤ sup
V̄ ∈RN`

inf
Ū∈R̄

Jµ(Ū , V̄ ), (4.37)

and from Equation 4.35, the result follows.

As a result, a pure-strategy equilibrium might not exist for the CMSG, and only players’

best responses can be obtained [153]. To this end, the constrained upper and lower games

for the CMSG problem can be examined. As stated in Definition 8, in the constrained

lower game, the stopper has to choose its input first, while the controller has the advantage

of obtaining the stopper input, and then choosing his best response accordingly.

Lemma 10. Assuming that the discrete-time linear dynamical system in Equation 4.1 is

controllable for Ck = 0 and Dk = 0 (i.e., rank[B̄N ] = n), the controller’s feasible set (the

set of controllers for which the constraint in Equation 4.25b is met given the stopper input)

is non-empty for any V̄ ∈ RN`.
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Proof. For a given V̄ ∈ RN`, the mean constraint (Equation 4.25b) can be rewritten as

B̄N Ū = µN − ĀNµ0 − C̄N V̄ . (4.38)

Since µ0 and µN are known, and since rank[B̄N ] = n, there exists a solution for Ū for every

V̄ ∈ RN`. Hence, the controller’s feasible set is non-empty.

From the above lemma, it is obvious that the controller can meet the mean constraint

(Equation 4.25b), if the condition rank[B̄N ] = n is satisfied. In the upper game, the con-

troller input is obtained first and the stopper best responds accordingly. The terminal con-

dition in Equation 4.25b depends on the stopper input. Note that it is assumed that the

stopper is indifferent to this constraint, and in this regard, the sufficient condition for which

the controller’s terminal constraint is met is derived in Lemma 11 below.

From Equation 4.30a and Equation 4.30b, the players’ best responses as a function of

their opponent response can be obtained as

Ū = −(B>Q̄B + R̄)−1(B>Q̄CV̄ + B>Q̄Aµ0), (4.39a)

V̄ = −(C>Q̄C − S̄)−1(C>Q̄BŪ + C>Q̄Aµ0). (4.39b)

In the upper game, where the controller plays first, the stopper input as a function of Ū

is given by Equation 4.39b. Given the stopper input (as per Equation 4.39b), from the

constraint in Equation 4.25b, it follows that

µN = ĀNµ0 + B̄N Ū + C̄N
(
− (C>Q̄C − S̄)−1(C>Q̄BŪ + C>Q̄Aµ0)

)
=
(
ĀN − C̄N(C>Q̄C − S̄)−1C>Q̄A

)
µ0 +

(
B̄N − C̄N(C>Q̄C − S̄)−1C>Q̄B

)
Ū .

(4.40)

For the sake of brevity, let G = B̄N − C̄N(C>Q̄C − S̄)−1C>Q̄B.
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Lemma 11. Given the CMSG (Equation 4.25), in the associated upper game, the constraint

in Equation 4.25b is satisfied if and only if

rank
[
G µN −

(
ĀN − C̄N(C>Q̄C − S̄)−1C>Q̄A

)
µ0

]
= rank [G] . (4.41)

Proof. The condition in Equation 4.41 suggests that the system of linear equations, ob-

tained from Equation 4.40,

GŪ = µN −
(
ĀN − C̄N(C>Q̄C − S̄)−1C>Q̄A

)
µ0, (4.42)

has a solution for Ū . Therefore, there always exists a constrained upper value for the

CMSG, and the controller can drive the state to a given µN at the N th time-step.

Note that the matrix G can be treated as a relative controllability matrix, similar to the

one introduced in Ref. [178] for continuous systems. The optimal control sequences Ū∗

and V̄∗ that solve the upper game can be found as follows. From Equation 4.39b, the upper

game can be expressed in terms of the following minimization problem.


min

Ū∈RNm
X̄>Q̄X̄ + Ū>R̄Ū − V̄ >S̄V̄ ,

subject to µN = ĀNµ0 + B̄N Ū + C̄N V̄ ,

(4.43)

where X̄ = Aµ0 + BŪ + CV̄ , and V̄ = −(C>Q̄C − S̄)−1(C>Q̄BŪ + C>Q̄Aµ0).

Proposition 10. Under the assumption

rank G = n, (4.44)

the optimal control sequence Ū∗ that solves the minimization problem in Equation 4.43 is
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given by

Ū∗ = R−1
(
M+ G>λ/2

)
, (4.45)

where

R = R̄ + B>Q̄B − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B, (4.46a)

M =
(
B>Q̄C(C>Q̄C − S̄)−1C> − B>

)
Q̄Aµ0, (4.46b)

λ = 2
(
GR−1G>

)−1(
µN − ĀNµ0 + C̄N(C>Q̄C − S̄)−1C>Q̄Aµ0 − GR−1M

)
. (4.46c)

Proof. The Lagrangian for the constrained minimization problem (Equation 4.43) can be

written as

L(Ū , λ) = X̄>Q̄X̄ + Ū>R̄Ū − V̄ >S̄V̄ + λ>(µN − ĀNµ0 − B̄N Ū − C̄N V̄ )

= (Aµ0 + BŪ + CV̄ )>Q̄(Aµ0 + BŪ + CV̄ ) + Ū>R̄Ū − V̄ >S̄V̄

+ λ>(µN − ĀNµ0 − B̄N Ū − C̄N V̄ ), (4.47)

where λ ∈ Rn. The first-order optimality condition yields

∇ŪL = 2(Aµ0 + BŪ + CV̄ )>Q̄

(
B + C ∂V̄

∂Ū

)
+ 2Ū>R̄− 2V̄ >S̄

∂V̄

∂Ū

+ λ>
(
−B̄N − C̄N

∂V̄

∂Ū

)
= 0, (4.48)

and Equation 4.45 follows from the fact that
∂V̄

∂Ū
= −(C>Q̄C− S̄)−1C>Q̄B, obtained using
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(Equation 4.39b), and from the second-order optimality condition

∇ŪŪL
2

=

(
B + C ∂V̄

∂Ū

)>
Q̄

(
B + C ∂V̄

∂Ū

)
+ R̄− ∂V̄

∂Ū

>

S̄
∂V̄

∂Ū

=
(
R̄ + B>Q̄B − B>Q̄C(C>Q̄C − S̄)−1C>Q̄B

)
= R � 0 (4.49)

The Lagrange multiplier λ can be found by substituting Equation 4.45 along with Equa-

tion 4.46a and Equation 4.46b into the terminal constraint, obtaining

(
GR−1G>

)
λ = 2

(
µN − ĀNµ0 + C̄N(C>Q̄C − S̄)−1C>Q̄Aµ0 − GR−1M

)
(4.50)

Note that sinceR is invertible and G has full row rank, GR−1G> is invertible.

4.4 Covariance Steering Game

The methodology to solve the UCSG and the CCSG is presented in this section. Assuming

a linear feedback control structure for steering the covariance, we express Ũ and Ṽ as

ũk = Kkyk, ṽk = Lkyk, (4.51)

where Kk ∈ Rm×n, Lk ∈ R`×n,

yk+1 = Akyk +Dkwk, (4.52a)

y0 = x0 − µ0, (4.52b)

and yk ∈ Rn. Note that E[y0] = 0 and E[y0y
>
0 ] = Σ0. Further, it can be obtained that

Y = Ay0 +DW, (4.53)
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where Y = [y>0 , . . . , y
>
N ]> ∈ R(N+1)n, using the matrices introduced in section 4.1. There-

fore, X̃ in Equation 4.19 can be rewritten as

X̃ = (I + BK + CL)(Ay0 +DW ). (4.54)

where,

K =



K0 0 . . . 0 0

0 K1 . . . 0 0

...
... . . . ...

...

0 0 . . . KN−1 0


, (4.55a)

L =



L0 0 . . . 0 0

0 L1 . . . 0 0

...
... . . . ...

...

0 0 . . . LN−1 0


, (4.55b)

are the controller and the stopper gain matrices, respectively. Here K ∈ K and L ∈ L,

where K is the set of Nm × (N + 1)n matrices that have the structure shown in Equa-

tion 4.55a, and similarly, L is the set of N` × (N + 1)n matrices that have the structure

shown in Equation 4.55b. From Equation 4.51, Equation 4.53, and Equation 4.54, we have

E[X̃X̃>] = (I +BK+CL)Σs(I +BK+CL)>, E[Ũ Ũ>] = KΣsK
>, E[Ṽ Ṽ >] = LΣsL

>,

where Σs = AΣ0A> +DD>. Therefore, the cost function Equation 4.22 can be converted

to the following quadratic form in terms of K and L:

JΣ(K,L) = tr(((I + BK + CL)>Q̄(I + BK + CL) +K>R̄K − L>S̄L)Σs), (4.56)
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and the terminal constraint (Equation 4.26b) can be rewritten as

ΣN = EN(I + BK + CL)Σs(I + BK + CL)>E>N . (4.57)

For the sake of analysis, we introduce the set R̃. Given stopper gain L in CCSG, let

K(L) denotes the set of gains K ∈ K for which the controller satisfies the constraint in

Equation 4.57, and let R̃ ,
⋃
L∈L K(L) ⊆ K.

We first analyze the UCSG. Since the gain matrices K and L have constraints on their

structure with zeros, as shown in Equation 4.55, with a slight abuse of notation, the La-

grangian can be written as

L(K,L,Θ,Ξ) = tr(((I + BK + CL)>Q̄(I + BK + CL) +K>R̄K − L>S̄L)Σs)/2

+
Nm∑
i=1

∑
j∈Jk(i)

θije
>
i Kej +

N∑̀
i=1

∑
j∈Jl(i)

ξije
>
i Lej, (4.58)

where the functions Jk(.) and Jl(.) map each row number to the set of columns in which

the gains K and L, respectively, have zero elements. The matrices Θ ∈ RNm×(N+1)n and

Ξ ∈ RN`×(N+1)n are Lagrange multipliers of sizes equal to K and L, respectively. Note

that the blocks in Θ and Ξ (corresponding to Kk and Lk) are zeros, and θij and ξij are the

non-zero elements of these matrices. The first-order necessary conditions for the existence

of a saddle point can be obtained by taking derivatives of the Lagrangian in Equation 4.58

with respect to K and L as

∇KL =
[
B>Q̄+ R̄K + B>Q̄BK + B>Q̄CL

]
Σs + Θ = 0, (4.59a)

∇LL =
[
C>Q̄− S̄L+ C>Q̄BK + C>Q̄CL

]
Σs + Ξ = 0. (4.59b)

The candidate solutions for the UCSG can be obtained by solving the linear system of

equations given in Equation 4.59. Since the gradients are linear, the second-order sufficient
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conditions, using the bordered Hessians, can be invoked to find the saddle points among

the candidate solutions numerically [179].

Next, we analyze the CCSG. A result similar to the one proposed for the CMSG

(Lemma 9) follows for the CCSG and is given below. The proof is omitted as it is sim-

ilar to the one given for Lemma 9.

Lemma 12. Assuming that the UCSG with payoff function in Equation 4.56 has a sad-

dle point equilibrium, then the CCSG (Equation 4.26), with the terminal constraint Equa-

tion 4.57 imposed only for the controller, satisfies

inf
K∈K

sup
L∈L

JΣ(K,L) ≤ sup
L∈L

inf
K∈R̃

JΣ(K,L). (4.60)

Similarly, in the CCSG, a pure-strategy equilibrium need not exist. To this end, con-

sider a simple Jacobi procedure given in Algorithm 2 to arrive at an equilibrium solution,

assuming one exists. For Algorithm 2 to converge to an equilibrium solution for any K0,

L0, the solution has to be a stable one [180]. The conditions for the existence of a stable

equilibrium for the case where the cost is convex in K and concave in L can be found in

Ref. [180].

Algorithm 2 Jacobi procedure to obtain saddle points
1: procedure JACOBI(K0,L0)
2: for i = 0,1,2,. . . do
3: Li+1 := arg max

L∈L
JΣ(Ki, L)

4: Ki+1 := arg min
K∈K(Li)

JΣ(K,Li)

5: end for
6: return Ki+1, Li+1

7: end procedure

Subsequently, under the assumptions that Σs ⊗ (B>Q̄B + R̄) � 0 (convex in K) and

Σs ⊗ (C>Q̄C − S̄) ≺ 0 (concave in L), we can formulate the successive minimization

and maximization problems as convex programming problems by relaxing the equality
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constraint in Equation 4.57 to an inequality constraint,

ΣN � EN(I + BK + CL)Σs(I + BK + CL)>E>N . (4.61)

Lemma 13. Assuming ΣN � 0, the inequality constraint in Equation 4.61 can be expressed

as

‖Σ−1/2
N EN(I + BK + CL)Σ1/2

s ‖2 − 1 ≤ 0. (4.62)

Proof. Since assumption ΣN � 0, Equation 4.61 can be rewritten as

I − Σ
−1/2
N EN(I + BK + CL)Σs(I + BK + CL)>E>NΣ

−1/2
N � 0.

As it is symmetric, the matrix Σ
−1/2
N EN(I + BK + CL)Σs(I + BK + CL)>E>NΣ

−1/2
N is

diagonalizable via an orthogonal matrix T ∈ Rn×n as

T (In − diag(λ1, . . . , λn))S> � 0, (4.63)

where λ1, . . . , λn are its eigenvalues. From Equation 4.63, we have

1− λmax
(
Σ
−1/2
N EN(I + BK + CL)Σs(I + BK + CL)>E>NΣ

−1/2
N

)
≥ 0. (4.64)

=⇒ 1− ‖Σ−1/2
N EN(I + BK + CL)Σ1/2

s ‖2 ≥ 0. (4.65)

Hence proved.

4.5 Numerical Simulations

As mentioned earlier, in the lower game of the mean steering case, the controller has an

advantage to drive the distribution to a given terminal Gaussian, assuming the system is
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controllable. A more challenging case is that of the upper game, where the controller

has to ensure that the terminal constraint (Equation 4.25b) is met while choosing its input

first. In this section, we first present test examples for the upper game of the CMSG with

linear time-invariant systems, and then analyze the missile end-game guidance problem.

For the covariance steering part, YALMIP [181] in conjunction with MOSEK [182] was

used to solve the successive convex optimization problems in the Jacobi procedure. The

convergence criterion for the iterative method is εk, ε` ≤ ε, where εk = ‖Ki+1 −Ki‖ and

ε` = ‖Li+1 − Li‖.

Figure 4.1: Unconstrained mean and covariance steering

4.5.1 Test Example

Consider the linear system

zk+1 = Azk +Buk + Cvk +Dwk (4.66)
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where zk = [x1, x2, x3, x4]> ∈ R4, uk, vk ∈ R2, wk ∈ R4,

A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


, B =



∆t2 0

0 ∆t2

∆t 0

0 ∆t


, (4.67)

C = −B, and D = 0.01I4. Note that x1, x2 can be understood as relative coordinates,

and x3, x4 are the relative velocities along the x1 and x2 axes, respectively, with ∆t = 0.2

being the time-step size. Finally, uk and vk are the accelerations of the pursuer (controller)

and the evader (stopper), respectively.

The initial condition is chosen to be µ0 = [−10, 6, 0, 0]>, Σ0 = blkdiag(0.05, 0.05,

0.01, 0.01), and the terminal constraint is µN = [0, 0, 0, 0]>, ΣN = blkdiag(0.005, 0.005,

0.001, 0.001). The time horizon is fixed at N = 10, and the cost matrices are Qk = I4,

and Rk = I2 Sk = 100I2, for all k ≥ 1. The instance is first analyzed without the

terminal constraint, and the solution to the unconstrained game is obtained. The UCSG is

solved using the Jacobi procedure illustrated in Ref. [180]. Figure 4.1 presents the solution

to the unconstrained game for the given initial condition. The red ellipses in Figure 4.1

denote the 3σ error of the initial and the desired terminal state distributions of x1 and

x2 coordinates. The blue solid line illustrates the mean trajectory, and the blue ellipses

illustrate the covariance evolution over the time horizon. The gray lines are the trajectories

simulated for 100 different initial conditions that are sampled from N (µ0,Σ0). It can be

observed that the mean and the covariance trajectories do not meet the controller’s terminal

conditions. For the CDG, the relative controllability matrix is found to have full row rank,

and therefore the mean can be driven to the specified terminal value. Also, the covariance

steering problem is feasible with ε = 10−5, and the result is illustrated in Figure 4.2. The

convergence of the Jacobi procedure (Algorithm 2) can be observed in Figure 4.2(b). From

Figure 4.2(a), it can be observed that the covariance constraint is satisfied.
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(a) Sampled Trajectories
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(b) Convergence of the Jacobi procedure

Figure 4.2: Constrained mean and covariance steering: A case where the covariance con-
dition is met by the controller
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Figure 4.3: A case where the terminal covariance constraint is not met.

Figure 4.3 illustrates the case where D = 0.1I4, while the rest of the values are kept

unchanged. Since changing the matrix D does not change the behavior of the mean, in

this case, the mean converges to the specified terminal value. However, the covariance

constraint cannot be achieved in this case and from Figure 4.3, it can be observed that the

covariance ellipse grows with time. The result in Figure 4.3 is for the set of optimal gains

(K∗, L∗), obtained by minimizing the cost in Equation 4.22 subject to the constraint in

Equation 4.59b, since the constraint in Equation 4.62 cannot be met.

4.5.2 Missile Endgame Guidance

Figure 4.4 presents a schematic of the interception geometry during a missile engagement

scenario. During the endgame, the relative dynamics can be linearized along the initial line

of sight while assuming a constant closing speed Vc = Vp + Ve, where Vp and Ve are the

constant speeds of the missile and of the target, respectively. Trajectory linearization is

well established for ballistic missile defense where the endgame is over a short duration,

and begins with near “head-on” initial conditions. Now, consider the linearized dynamics
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of a missile during the end-game in continuous time [183],

ż = Acz +Bcu+ Ccv, (4.68)

where z = [y, ẏ, ae, ap]
>, y is the target’s relative distance to the missile normal to the

reference line (initial line-of-sight), ẏ is the relative speed, ae and ap are the lateral forces

acting on the target and on the missile, respectively. In Equation 4.68, u and v are the

commanded lateral accelerations of the missile and of the target, respectively. The matrices

in Equation 4.68 are given by

Ac =



0 1 0 0

0 0 1 −1

0 0 −1/τe 0

0 0 0 −1/τp


, Bc =



0

0

0

1/τp


, Cc =



0

0

1/τe

0


, (4.69a)

where τp, and τe are model parameters [183]. The corresponding discrete matrices can

be obtained from a given time-step size ∆t, and the system evolution is expressed us-

ing (Equation 4.66) by assuming process noise in the system entering through the con-

trol channels. The system matrices for this example are given by A = exp(Ac∆t), B =∫ ∆t

0
exp(Acτ)Bcdτ , C =

∫ ∆t

0
exp(Acτ)Ccdτ ,

D = α

∫ ∆t

0

exp(Acτ)dτ



0 0

0 0

0 1

1 0


, (4.70)

where α is a constant.

For simulation purposes, the following parameters are chosen: ∆t = 0.1, the initial

separation along the line of sight x0 = 3500, τe = 0.02, τp = 0.01. We choose Vp = 3000,
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Figure 4.4: Planar end-game scenario

Ve = 2000, and therefore tf = x0/(Vp +Ve) = 0.7, N = tf/∆t = 7. The initial conditions

are µ0 = [0, 350, 0, 0]>, Σ0 = blkdiag(0.2, 0.2, 0.2, 0.2), and the terminal constraint is

µN = [0, 0, 0.1, 0.1]>, ΣN = blkdiag(0.1, 10, 1, 1). Furthermore, Qk = 10−6I4, Rk = 102,

Sk = 3× 108, for all k ≥ 1. For this example, the relative controllability matrix is found to

have full row rank, and the covariance steering problem is feasible. The result is illustrated

in Figure 4.5, which shows the relative distance y versus the time-step. The errorbars (in

red) indicate the 3σ error in y at the initial and the final time-steps. From Figure 4.5, it can

be observed that the mean and covariance constraints are satisfied to successfully intercept

the target during the end-game.

Figure 4.6 shows one of the many missile trajectories (generated for Figure 4.5) relative

to the target (red cross) in the x−y plane. Note that the motion along the y-axis is negligible

compared to the missile’s motion along the x-axis and consequently, a skewed aspect ratio

has to be considered for Figure 4.5.
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Figure 4.5: Mean and covariance steering for a missile engagement during the end-game
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Figure 4.6: Missile’s trajectory relative to the target
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CHAPTER 5

PURSUIT-EVASION IN STOCHASTIC FLOW FIELDS

In this chapter, we consider two-agent pursuit-evasion problems with both agents traversing

a stochastic flow field. It is assumed that both agents have speed constraints, and the pursuer

is superior to the evader in terms of its speed capabilities. Initially, a forward reachability

analysis is performed while considering only the drift term in the flow field to obtain the

nominal trajectories for the agents. We then formulate a discrete-time chance-constrained

covariance game about the players’ nominal trajectories, which is solved using the standard

Gauss-Seidel method to obtain closed-loop control inputs for both players.

5.1 Problem Formulation

Consider a two agent pursuit-evasion scenario in an external stochastic flow field. The

dynamics of each agent are given by

dxi(t) = ui(t)dt+G(xi(t), dt, dwi), xi(0) = xi0, (5.1)

where xi ∈ R2, for i ∈ {p, e}, denotes the position of an agent (p - pursuer, e - evader)

with xi0 being the ith agent’s fixed initial position, known to both players. Here, ui is the

ith agent’s control input (velocity) such that ui(t) ∈ R2, and

‖ui(t)‖2 ≤ vimax. (5.2)

It is assumed that the pursuer is strictly superior in terms of its speed capabilities compared

to the evader, i.e., vpmax > vemax. The instantaneous dynamic flow field D(x, dt, dw) is
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assumed to have the form

G(x, dt, dw) = f(x)dt+ g(x)dw, (5.3)

where f : R2 → R2 is a position-dependent function, and g : R2 → R2×2. Here, w =

[w1 w2]> where w1 and w2 are two independent standard Wiener processes. Also, wp and

we are assumed to be independent.

In a general pursuit-evasion scenario, the aim of the pursuer is to capture the evader

in the shortest time possible, while the evader tries to postpone capture indefinitely. In a

deterministic pursuit-evasion game, capture occurs when the Euclidean distance between

the agents is less than the capture radius ε > 0. In the proposed formulation, and since the

positions of the agents are driven by stochastic processes, capture can only be defined in

probabilistic terms. The capture probability at time t is given by

C(t) = P{‖xp(t)− xe(t)‖ ≤ ε}. (5.4)

The goal of this work is to arrive at the control inputs ui, i ∈ {p, e}, that achieve the

players’ objectives: the pursuer wants to capture the evader in the shortest time possible

with high certainty (capture probability); and the evader wants to ensure that the capture

probability is as low as possible for all times. To this end, we first obtain the players’

nominal trajectories using reachability set analysis while ignoring the disturbance term in

the players’ dynamics. The system is subsequently linearized along this nominal solution.

Then, using the theory of discrete-time linear-quadratic stochastic games, feedback control

inputs are constructed that track the trajectory under flow uncertainties while optimizing

for the capture probability.

Let (x̂i(t), ûi(t)), i ∈ {p, e}, for t ∈ [0, T̂ ] be the ith player’s nominal solution. Here,

T̂ is the final time of the nominal solution when capture occurs, and T̂ = ∞ indicate that

capture is not possible. The linearized dynamics along the nominal trajectory is given in an

103



augmented fashion as

dx(t) ≈ (u(t) + r(t) + A(t)x(t)) dt+D(t)dw, (5.5)

where x(t) = [xp>(t), xe>(t)]>, u(t) = [up>(t), ue>(t)]>, w = [wp>, we>]>. Here, D(t) =

blkdiag(g(xp(t)), g(xe(t))), A(t) = blkdiag(Ap(t), Ae(t)), where

Ai(t) =
∂f

∂x
(x̂i(t)), (5.6)

and r(t) = [rp>(t), re>(t)]>, where ri(t) = f(x̂i(t))− Ai(t)x̂i(t).

A discrete-time representation of the dynamics in Equation 5.5 can be expressed as

xk+1 = Akxk +Bkuk + rk +Dkwk, (5.7)

where xk = x(τk), uk = u(τk), for all τk = kT̂ /N , k = {0, 1, . . . , N}. Assuming a

zero-order-hold discretization, we obtain

Ak = Φ(τk+1, τk), (5.8a)

Bk =

∫ τk+1

τk

Φ(τk+1, τ)dτ, (5.8b)

rk =

∫ τk+1

τk

Φ(τk+1, τ)r(τ)dτ, (5.8c)

DkD
>
k =

∫ τk+1

τk

Φ(τk+1, τ)D(τ)D>(τ)Φ>(τk+1, τ)dτ, (5.8d)

where Φ(τ, s) is the state transition matrix for the system in Equation 5.7. Using the nota-

tion introduced in [94], the system dynamics in Equation 5.7 can be alternatively expressed

as

X = Ax0 + BU +R+DW, (5.9)
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where X = [x>1 , x
>
2 , . . . , x

>
N ]>, U = [u>0 , u

>
1 , . . . , u

>
N−1]>, W = [w>0 , w

>
1 , . . . , w

>
N−1]>,

and

A =



A0

A1A0

...

AN−1 . . . A1A0


, (5.10a)

B =



B0 0 . . . 0

A1B0 B1 . . . 0

...
... . . . ...

AN−1 . . . A1B0 AN−1 . . . A2B1 . . . BN−1


, (5.10b)

R =



r0

A1r0 + r1

...

AN−1 . . . A1r0 + · · ·+ rN−1


, (5.10c)

D =



D0 0 . . . 0

A1D0 D1 . . . 0

...
... . . . ...

AN−1 . . . A1D0 AN−1 . . . A2D1 . . . DN−1


. (5.10d)

The mean and error terms of the augmented position vector are defined as X̄ = E[X] and

X̃ = X − X̄ , respectively.

In order to retrieve the coordinates, and the controls of the agents at each time-step indi-

vidually from the augmented vectors (X , U ), the matrices Ek = [02×2(k−1), I2, 02×2(N−k)],

105



Ep =



I2 02 02 . . . 02 02

02 02 I2 . . . 02 02

...
...

... . . . ...
...

02 02 02 . . . I2 02


2N×4N

, (5.11a)

Ee =



02 I2 02 02 . . . 02

02 02 02 I2 . . . 02

...
...

...
... . . . ...

02 02 02 02 . . . I2


2N×4N

, (5.11b)

are introduced. Note that Ei
k = EkE

i, for i = {p, e}, 1 ≤ k ≤ N . Consequently,

EiX = [xi1, . . . , x
i
N ], and Ei

kX = xik.

The relative position vector at time-step k is defined as xrk = xpk − xek = Ep
kX − Ee

kX .

The mean and error terms of the relative position vector can be obtained as

E[xrk] = E[Ep
kX − E

e
kX] = (Ep

k − E
e
k)E[X]

= (Ep
k − E

e
k)X̄, (5.12)

xrk − E[xrk] = (Ep
k − E

e
k)X − (Ep

k − E
e
k)X̄ = (Ep

k − E
e
k)(X − X̄)

= (Ep
k − E

e
k)X̃. (5.13)

As a result, the covariance of the relative position vector is given by

Σr
k = E[(Ep

k − E
e
k)X̃X̃

>(Ep
k − E

e
k)
>]. (5.14)

The capture probability at the kth time-step is given by P{‖xrk‖ ≤ ε}. The capture

probability can be considered as the payoff function at each time-step, which the pursuer

tries to minimize while the evader tries to maximize. An alternative formulation involves
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the players optimizing over the minimum value within which the relative distance of the

players lie with high probability, given by

ε̄k = inf{ε > 0 : P{‖xrk‖ ≤ ε} ≥ 1− β}, (5.15)

1 > β > 0, 1 ≤ k ≤ N . The following result provides a lower bound for such an ε̄k in

terms of the mean and the covariance of the relative distance vector xrk at the kth time-step.

Theorem 5. ([96]) Let z ∈ N (µ,Σ) be an m-dimensional random vector, where m = 1

or m = 2, let σ =
√
λmax(Σ), let ρ > 0, and let 1 > β > 0. Then,

‖µ‖+ σ

√
2 log

1

β
≤ ρ =⇒ P(‖z‖ ≤ ρ) ≥ 1− β. (5.16)

Note that the above result provides a lower bound for any ε > 0 that satisfies the

condition P{‖xrk‖ ≤ ε} ≥ 1 − β. In this paper, we consider the lower bound of ε̄k, as

per Equation 5.16, to be the payoff function that the players try to optimize. To this end,

using the result in Theorem 5, we choose to optimize over the mean and covariance of

the relative distance vector. From Equation 5.16, it can be observed that by increasing the

norm of the mean and/or covariance, the lower bound of ε̄k can be increased. As a result,

the maximizing player can establish guarantees on the minimum relative distance that can

be achieved with high probability at every time-step. However, the minimizing player can

only hope to minimize ε̄k by reducing its lower bound, and in this case guarantees on ε̄k

cannot be established.

In the proposed formulation, the mean trajectory is assumed to be essentially driven

by the players’ controls obtained from the reachability analysis, i.e., the nominal control

inputs. Therefore, for the chance-constrained covariance game, the players optimize pri-

marily over the covariance of the relative position vector alone. To this end, we consider
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the payoff function, which the pursuer tries to minimize while the evader tries to maximize,

J(U) = ‖Σr‖2
F = ‖E[(Ep − Ee)X̃X̃>(Ep − Ee)>]‖2

F , (5.17)

subject to the deterministic constraints

‖Ei
k(X̄ − X̂)‖2 ≤ δix, (5.18a)

‖Ei
k(Ū − Û)‖2 ≤ δiu, (5.18b)

for i = {p, e}. Here, X̂ and Û are concatenated vectors for the nominal solution that are

obtained similar to X and U , respectively. In Equation 5.17, it is understood that in the

case of the pursuer, by minimizing the norm of the covariance of the augmented relative

distance vector, it is minimizing the uncertainty in the relative position at every time-step

1 ≤ k ≤ N , and vice versa for the evader. Note that the norm in Equation 5.17 is the

Forbenius norm that captures the sum of the squares of the eigenvalues, as opposed to the

maximum eigenvalue, suggested by Theorem 5. This is done for the sake of numerical

implementation. The constraints in Equation 5.18 ensure that the linearized dynamics in

Equation 5.5 remains valid. To account for the control bounds in Equation 5.2, and since a

feedback control structure is considered, we also enforce chance constraints at each time-

step k of the form

P{‖Ei
kU‖2 ≤ vimax} ≥ 1− βi, i = {p, e}. (5.19)

A reachable set based approach to obtain the nominal trajectories for the players is

presented in the next section.
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5.2 Reachability Analysis

In this section, the concept of a reachable set is first introduced. To this end, we present

some definitions and discuss existing results in the area of reachability set based pursuit-

evasion under deterministic flow fields. Finally, a scheme to obtain nominal control inputs

of the players using level set methods is presented. In order to obtain the nominal trajecto-

ries using reachability analysis, we ignore the disturbance term in Equation 5.3 so that the

flow field is deterministic.

The following definitions hold for the case where the agents’ dynamics are determinis-

tic.

Definition 9. An agent’s reachable set at time t with the initial state at xi0,Ri(xi0, t), t ≥ 0,

is the set of all points that can be reached in time t. The boundary of the reachable set is

the reachability front, denoted by ∂Ri(xi0, t).

Definition 10. The usable reachable set of the evader Re
∗(x

e
0, t) is the set of all terminal

points of the evader at time t, for which the trajectories do not pass through the reachable

set of the pursuer at any time in the interval [0, t]. Formally,

Re
∗(x

e
0, t) = {x ∈ R2 : x = xe(t) and xe(τ) /∈ Rp(xp0, τ), ∀ τ ∈ [0, t]}. (5.20)

From Definition Definition 10, it can be observed that the usable reachable set of the

evader contains the set of terminal points of the evader’s trajectories that are deemed safe. If

for some time tc > 0,Re(xe0, tc) ⊆ Rp(xp0, tc), then it follows that for every ue, there exists

up such that xp(tc) = xe(tc). In other words, in the deterministic pursuit-evasion scenario,

if Re
∗(X

e
0 , tc) = ∅, then the capture of the evader is guaranteed at time tc and vice versa.

Consequently, the optimal capture time for pursuit-evasion problems with deterministic

flow fields can be established from the following result.

Theorem 6. ([66]) Let T = inf{t ≥ 0 : Re
∗(x

e
0, t) = ∅}. If T < ∞, then capture
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is guaranteed for any time greater than T , whereas the evader can always escape within

a time smaller than T . Hence, T is the time to capture if both players play optimally.

Furthermore, let xf denote the location where the evader is captured. Then, we have that

xf ∈ X = {x ∈ R2 : x = xe(T ) and xe(t) /∈ Rp(xp0, τ), ∀ τ ∈ [0, T )}

While the above result provides a criterion for the evader’s capture based on its us-

able reachable set, an instantaneous condition that is easier to implement can be stated

as follows. For vpmax > vemax, and assuming the magnitude of the flow field is bounded

from above by some suitable constant, we have Re
∗(x

e
0, t) = Re(xe0, t) \ Rp(xp0, t), for

all t ≥ 0. In such cases, the condition Re
∗(x

e
0, t) = ∅ is equivalent to the condition

Re(xe0, t) ⊆ Rp(xp0, t) [66].

The above definitions and results form the crux of the theory related to the reachable set

based pursuit-evasion with deterministic equations of motion. The evolution of the reacha-

bility front can be traced using, for instance, the level set methods [184]. The reachability

front is embedded as a hypersurface in a higher dimension with time as the additional di-

mension. An implicit representation of the front using the signed distance function is con-

sidered in this paper. The signed distance function ϕ(x) with respect to a set S is defined

as

ϕ(x) =


min
y∈∂S
|x− y|, if x /∈ S,

−min
y∈∂S
|x− y|, if x ∈ S.

(5.21)

For any c ∈ R, the c-level set of a ϕ is the set {x : ϕ(x) = c}. The zero-level set of

the signed distance function with respect to an agent’s reachable set is expressed as the

corresponding reachability front.

Given the signed distance function of an agent’s reachable set Ri(xi0, t) as φi(x, t),

i ∈ {p, e}, the evolution of the corresponding reachability front is governed by the viscosity
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solution of the Hamilton-Jacobi equation

∂φi(x, t)

∂t
+ ūi|∇φi(x, t)|+∇φi(x, t)f(x) = 0, (5.22)

with initial condition φi(x, 0) = |x−xi0| [185]. Note thatRi(xi0, t) = {x ∈ R2 : φi(x, t) ≤

0}, and ∂Ri(xi0, t) = {x ∈ R2 : φi(x, t) = 0}. Once the reachable set of the evader is

contained in the pursuer’s reachable set at time T̂ , the nominal trajectories of the players

can be obtained in the following manner [185, 66].

From Theorem 6, it can be observed that the terminal point of the evader’s nominal

trajectory x̂f is the point in its reachable set that is not covered by the pursuer’s reachable

set until time T̂ . Consequently, x̂f is the point to which the pursuer can drive its nominal

trajectory at T̂ using its control input ûp. This point resides on the pursuer’s reachability

front. When φi is differentiable, the nominal trajectory of the pursuer can be obtained from

the differential equation

dx̂p

dt
= v̂pmax

∇φp

|∇φp|
+ f(x̂p), (5.23)

and the corresponding optimal control is given by

ûp = v̂pmax

∇φp

|∇φp|
. (5.24)

Here, v̂pmax ≤ vpmax is the bound on the nominal control input of the pursuer.

Similarly, the evader’s nominal trajectory is obtained from the differential equation

dx̂e

dt
= v̂emax

∇φe

|∇φe|
+ f(x̂e), (5.25)
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and the corresponding optimal control is given by

ûe = v̂emax

∇φe

|∇φe|
, (5.26)

where v̂emax ≤ vemax is the bound on the nominal control input of the evader. The chance-

constrained covariance control problem, introduced in section 5.1, is analyzed and solved

using an iterative numerical technique in the following section.

5.3 Covariance Control Game

A linear feedback control structure for the players’ control inputs is considered in order to

solve the covariance control problem, formulated in section 5.1. Subsequently, the players’

inputs are assumed to take the form

uk = vk +Kkyk, (5.27)

where Kk ∈ R4×4, and yk ∈ R4 is obtained from the difference equation

yk+1 = Akyk +Dkwk, y0 = 0. (5.28)

In order to calculate yk, 1 ≤ k ≤ N − 1, as per Equation 5.28, we assume that each

player can observe the instantaneous positions of the players and the control input of their

adversary at the previous time-step to evaluate the noise term Dkwk experienced by the

players at an earlier time-step in Equation 5.28. Note that uk = [up>k , ue>k ]> contains the

control inputs of both the pursuer and the evader at time-step k.

Using the matrices introduced in section 5.1, we obtain

Y = DW, (5.29)
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where Y = [y>0 , . . . , y
>
N−1]> ∈ R4N . Therefore,

U = V +KY, (5.30)

where V = [v>0 , v
>
1 , . . . , v

>
N−1]> and K = blkdiag (K0, K1, . . . , KN−1). Substituting

Equation 5.30 in Equation 5.9, the mean and the error terms of the augmented state vector

X can be obtained as

X̄ = Ax0 + BV +R, (5.31a)

X̃ = X − X̄ = BKDW +DW

= (I + BK)DW, (5.31b)

and for the augmented control vector U , we obtain

Ū = E[U ] = V, Ũ = U − Ū = KDW. (5.32)

Subsequently, the covariance matrices are given by

Σy = E[Y Y >] = DD> (5.33a)

Σx = E[X̃X̃>] = (I + BK)Σy(I + BK)> (5.33b)

Σr = E[(EpX̃ − EeX̃)(EpX̃ − EeX̃)>]

= (Ep − Ee)Σx(Ep − Ee)> (5.33c)

Σu = E[Ũ Ũ>] = KΣyK> (5.33d)

The payoff function in Equation 5.17 can be rewritten in the form

J (V,K) = ‖Σr‖2
F = tr{(Ep − Ee)>(Ep − Ee)Σx}. (5.34)
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The deterministic constraints in Equation 5.18 can be expressed as

‖Ei
k(Ax0 + BV +R− X̂)‖2 ≤ δix, (5.35a)

‖Ei
k(V − Û)‖2 ≤ δiu, (5.35b)

for i = {p, e}. Finally, consider the chance constraints on the control inputs of the players

given in Equation 5.19. Using Theorem 5, the control chance constraint in Equation 5.19

can be captured using the expression

‖Ei
kV ‖+ ‖Σy1/2K>Ei>

k ‖
√

2 log
1

βi
≤ vimax, i = {p, e}. (5.36)

The augmented vector V and the matrix K contains the control inputs of both the pur-

suer and the evader. The pursuer tries to minimize the payoff function in Equation 5.34

by choosing its control inputs (EpV,EpK) ∈ P , while the evader tries to maximize the

payoff function by choosing its control inputs (EeV,EeK) ∈ E . the set P contains all

possible tuples (EpV,EpK) ∈ R2N × R2N×4N such that the constraints in Equation 5.35

and Equation 5.36 are satisfied for i = p and for all possible k ∈ {0, . . . , N − 1}. Sim-

ilarly, the set E contains all possible tuples (EeV,EeK) ∈ R2N × R2N×4N such that the

constraints in Equation 5.35 and Equation 5.36 are satisfied for i = e and for all possible

k ∈ {0, . . . , N − 1}. Therefore, the proposed stochastic game in section 5.1, given by

Equation 5.17-Equation 5.19, is transformed by considering an equivalent payoff function

in Equation 5.34, and constraints in Equation 5.35, Equation 5.36. Note that the constraints

in Equation 5.35 and Equation 5.36 are orthogonal constraints [153], which are player-

specific and are not coupled.

In order to arrive at a saddle point equilibrium for the aforementioned game, assum-

ing one exists, a simple Gauss-Seidel procedure given in Algorithm 3 is considered. For

Algorithm 3 to converge to an equilibrium solution for any V (0), K(0), the solution must

be stable [180]. The necessary conditions for the existence of a stable equilibrium can be
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found in Ref. [180].

Algorithm 3 Gauss–Seidel procedure to obtain saddle points

1: procedure G-S(V (0),K(0))
2: for i = 0,1,2,. . . do
3: [EpV (i+1), EpK(i+1)] ← arg min

(EpV,EpK)∈P
J (V,K) such that EeV = EeV (i),

EeK = EeK(i)

4: [EeV (i+1), EeK(i+1)] ← arg max
(EeV,EeK)∈E

J (V,K) such that EpV = EpV (i+1),

EpK = EpK(i+1)

5: end for
6: return V (i+1), K(i+1)

7: end procedure

5.4 Simulations

In this section, we present simulation results for pursuit-evasion scenarios in realistic flow

fields with disturbances. The chance constrained covariance steering game is implemented

in MATLAB using its in-built function fmincon in conjunction with YALMIP [181].

The convergence criterion for the iterative method is ‖V (i+1) − V (i)‖ ≤ εv, and ‖K(i+1) −

K(i)‖ ≤ εk. First, a generalized Rankine vortex model is used to generate state-dependent

wind field approximations to analyze the performance of the proposed approach on linear

flow fields [186]. We then consider a third-order nonlinear flow field that is constructed

using orthogonal polynomials [158].

For linear flow fields, the drift part of the wind field is assumed to be of the form

f(x) = A(x− xs), (5.37)

and the diffusion part is a constant matrix g(x) = G. The simulation parameters are

A =

 0.2 0.3

−0.15 0.1

 , xs =

 10

10

 , (5.38)
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xp0 = [12 12]>, xe0 = [14 14]>, T̂ /N = 0.1, ε = 0.09, vpmax = 3, vemax = 1, v̂imax = 0.8vimax,

δiu = 0.2vimax, δix = 0.1, βi = 0.01, i ∈ {p, e}, and finally εv = εk = 5 × 10−3. The

diffusion matrix of the flow field is assumed to be of the form D = α0.25I2.
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Figure 5.1: Nominal trajectories in the case of a linear flow field
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Figure 5.2: Capture probabilities at T̂ for different values of α under open-loop and closed-
loop control inputs

As explained earlier, the forward reachable sets of the players are first propagated until

the pursuer’s reachable set fully engulfs the evader’s reachable set. The closed curves in the

Figure 5.1 are the reachable sets of the players at the final time T̂ for the aforementioned
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Figure 5.3: Trajectory dispersion of the players in the linear flow field for different α values:
Red - pursuer; Blue - evader

simulation parameters. The differential equations in Equation 5.23 and Equation 5.26 are

solved backwards in time from the capture point to obtain the nominal trajectories in Fig-

ure 5.1 (red - pursuer, blue - evader). Subsequently, the closed-loop trajectories (solid

line) are obtained by solving the associated covariance steering game along the nominal

(or open-loop) trajectories.

Along the trajectory, the capture probability at each time-step can be obtained by nu-

merically evaluating the integral

Ck =

∫
‖x‖≤ε

1

2π
√
|Σr

k|
exp

(
−(x− µrk)>Σ−1

k (x− µrk)
2

)
dx, (5.39)

where µrk = Ek(E
p − Ee)X̄ . Figure 5.2 presents the capture probabilities at the final

time (T̂ ) under nominal and optimized control inputs for α = {0.05, 0.1, 0.2}. Figure 5.3

presents the trajectory dispersion experienced by the players under the closed-loop control

for the three α values. It can be observed as α becomes lower, the trajectory dispersion

reduces, leading to higher capture probability.

The drift part of the nonlinear flow field, for x = [x1, x2]> ∈ R2 is assumed to be of

the form

f(x) =

 a>φ(x1, x2)

b>φ(x1, x2)

 , (5.40)
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where φ(y, z) = [1, y, z, y2, yz, z2, y3, y2z, yz2, z3]> is the basis of the third-order

polynomial vector space. The coefficients are set to

a> = (1/25)× [10.8,−0.421,−1.46,−1.78× 10−3, 2.42× 10−3, 1.07× 10−4,

− 8.61× 10−7, 1.17× 10−7,−3.03× 10−5,−3.32× 10−8], (5.41)

b> = (1/25)× [8.67, 0.689,−3.88× 10−2, 2.41× 10−4, 2.26× 10−3,

9.96× 10−4, 1.26× 10−6,−2.23× 10−5,−3.55× 10−5,−4.29× 10−5]. (5.42)

The above nonlinear function represents a single critical point model that was employed

to approximate the wind field during Hurricane Hugo [158]. The diffusion part of the

nonlinear flow field is consider to be a constant matrix D = 0.033I2. The initial points of

the players are chosen to be xp0 = [15 14]>, xe0 = [11 11]>, and T̂ /N = 0.15. The rest of

the simulation parameters are same as the ones used for the case of linear flow fields.

The nominal trajectories of the players along with the reachable sets at the final time

T̂ are shown in Figure 5.4(a). The trajectory dispersion of the players under closed loop

control can be seen in Figure 5.4(b). For this simulation, the capture probability at the final

time is found to be 46.29% under open-loop control, while it is 82.78% under the closed-

loop control. From the simulation results, it can be observed that the proposed closed-

loop control strategy for the pursuer is effective in maximizing the capture probability in

stochastic flow fields.
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Figure 5.4: Simulation results in the case of a nonlinear flow field: Red - pursuer; Blue -
evader
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CHAPTER 6

DESENSITIZED OPTIMAL CONTROL

6.1 Preliminaries

Consider the standard optimal control problem of minimizing the cost

J (u) = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), t) dt, (6.1)

subject to

ẋ(t) = f(x(t), ρ, u(t), t), x(t0) = x0, (6.2a)

g(x(t), p, t) ≤ 0, (6.2b)

ψ(x(tf ), tf ) = 0, (6.2c)

where t ∈ [t0, tf ] denotes time, with t0 being the fixed initial time and tf being the final

time, x(t) ∈ Rn denotes the state, with x0 being the fixed state at t0, and ρ ∈ D ⊂ R` are

model parameters. The control

u ∈ U = {u : [t0, tf ]→ U is Piecewise Continuous, u(t) ∈ U, t ∈ [t0, tf ]} (6.3)

with U ⊆ Rm, the set of allowable values of u(t), φ : Rn× [t0, tf ]→ R is the terminal cost

function, and L : Rn×Rm× [t0, tf ]→ R is the running cost. Here g : Rn×R`× [t0, tf ]→

Rk is a function denoting k state inequality constraints. Finally, ψ(x(tf ), tf ) = 0 denotes

the terminal condition at time t = tf .

The aforementioned optimal control problem (Equation 6.1 and Equation 6.2) is to be

solved by finding the optimal control u∗ ∈ U that minimizes the cost function in Equa-
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tion 6.1, given the constraints in Equation 6.2. The solution defines the optimal state trajec-

tory x∗(t), t ∈ [t0, tf ], satisfying ẋ∗(t) = f(x∗(t), ρ, u∗(t), t) subject to x∗(t0) = x0. The

system dynamics f(x, ρ, u, t) contains the model parameters, ρ ∈ D, which are assumed to

be constant. In general, the optimal solution (x∗(t), u∗(t)) is sensitive to modeling errors

and, if changes in the parameter vector ρ occur at any time t ∈ [t0, tf ], satisfaction of the

constraints in Equation 6.2b or Equation 6.2c is not guaranteed.

In the case of path planning with dynamic obstacles, collision avoidance is of paramount

importance. Obtaining safe trajectories under parametric uncertainties in the obstacles’

motion is therefore a necessity. In the optimal control framework discussed above, the con-

straint function in Equation 6.2b can be used to enforce collision avoidance for the path

planning problem. Consequently, penalizing a risk measure that captures the possibility of

constraint violation under parametric variations may provide the desired safe (e.g., lower

chance of constraint violation) trajectories.

With a motivation to minimize the dispersion of the final state of the optimal solu-

tion, under parameter uncertainties, Seywald and Kumar constructed an augmented cost

function using sensitivity matrices [111]. It should be noted that the sensitivity matrix,

from Refs. [111, 113], differs from the standard sensitivity functions that are defined in

Ref. [164].

The approach goes as follows. First, the parameters of interest and the corresponding

entries in sensitivity matrix are elevated to states, and the augmented state [x̃> (vec Λ)>]>,

where x̃ = [x ρ]>, along with the corresponding dynamics and initial conditions are de-

rived as follows

˙̃x = f̃(x̃, u, t) = [f>(x, ρ, u, t) 01×`]
>, x̃(t0) = [x>0 ρ̂>]>, (6.4)
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and

Λ̇(t|t0, x̃0) =
∂f̃

∂x̃
(x, ρ, u, t), Λ(t0|t0, x̃0) = I(n+`), (6.5)

where ρ(t) ∈ D denotes the ` parameters of interest and ρ̂ is the nominal value of these

parameters, and Λ(t|t0, x0) represents the sensitivity of the vector x̃(t) at time twith respect

to perturbations in the initial state vector x̃(t0). That is,

Λ(t|t0, x0) =
∂x̃(t)

∂x̃(t0)
. (6.6)

The augmented cost function, given in Equation 6.7 below, is then minimized to obtain an

optimal solution with final state being “desensitized” with respect to the parameter varia-

tions.

Ja(u) = J (u) +

∫ tf

t0

‖vec
(
Λ(tf |t0, x̃0)Λ(t|t0, x̃0)−1

)
‖2
Q(t) dt, (6.7)

with Q(t) ≥ 0, for all t ≥ 0. Note that the sensitivity matrix of Seywald in Equation 6.6

is a state transition matrix and its properties are exploited to construct the sensitivity of the

final state with respect to the variations in the state at time t ∈ [0, tf ], which is then plugged

into the running cost. This is elaborated upon in [111]. However, this approach requires

propagating the original states, the targeted parameters, and the elements in the sensitivity

matrix, resulting to a total of (n+ `)2 + n+ ` number of states.

In this chapter, we first employ the traditional sensitivity functions to develop an alter-

native scheme for optimal trajectory/state desensitization with respect to parameter varia-

tions with improved computational efficiency. Two versions of the Zermelo’s navigation

problem are employed to demonstrate the efficacy of the proposed schemes for trajectory

and final state desensitization. We then develop a scheme to generate constraint desensi-

tized trajectories by penalizing a risk measure that is defined using sensitivity functions.

Finally, we prove that the co-states indeed capture sensitivity of the cost-to-go function
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with respect to perturbations in the state given any prescribed control law u(t), not just

the optimal one. Using this fact, a new approach to solve the desensitized optimal control

problem is presented.

6.2 Sensitivity Functions

Consider the dynamics in Equation 6.2a, and assume variations in the model parameters

ρ ∈ P , with ρ = ρ̂ being the nominal value of the parameter vector. Furthermore, assume

that f(x, ρ, u, t) is continuous in (x, ρ, u, t), and continuously differentiable with respect to

x and ρ for all (x, ρ, u, t) ∈ Rn×D×U × [t0, tf ]. The solution to the differential equation

from the initial condition x0 with control input u ∈ U is given by

x(ρ, t) = x0 +

∫ t

t0

f(x(ρ, τ), ρ, u(τ), τ) dτ. (6.8)

Since f(x, ρ, u, t) is differentiable with respect to ρ, it follows that

∂x(ρ, t)

∂ρ
=

∫ t

t0

[
∂f(x(ρ, τ), ρ, u(τ), τ)

∂x

∂x(ρ, τ)

∂ρ
+
∂f(x(ρ, τ), ρ, u(τ), τ)

∂ρ

]
dτ. (6.9)

Taking the derivative with respect to t, we obtain

d

dt

[
∂x(ρ, t)

∂ρ

]
=
∂f(x, ρ, u(t), t)

∂x

∂x(ρ, t)

∂ρ
+
∂f(x, ρ, u(t), t)

∂ρ
. (6.10)

Evaluating Equation 6.10 at the nominal conditions (ρ = ρ̂), the dynamics for the parame-

ter sensitivity function S : [0,∞)→ Rn×`

S(t) =
∂x(ρ, t)

∂ρ

∣∣∣∣
x=x(ρ̂,t)

(6.11)

123



can be obtained as

Ṡ(t) = A(t)S(t) +B(t), S(t0) = 0n×`, (6.12)

where

A(t) =
∂f(x, ρ, u(t), t)

∂x

∣∣∣∣
x=x(ρ̂,t), ρ=ρ̂

, (6.13a)

B(t) =
∂f(x, ρ, u(t), t)

∂ρ

∣∣∣∣
x=x(ρ̂,t), ρ=ρ̂

. (6.13b)

Since the initial state is given (fixed), the initial condition for the sensitivity function is

the zero matrix, and Equation 6.12 is called the sensitivity equation in the literature [164].

To compute the sensitivity function over time, the state x has to be propagated using the

dynamics in Equation 6.2a under nominal conditions,

ẋ = f(x, ρ̂, u, t), x(t0) = x0. (6.14)

From the properties of continuous dependence with respect to the parameters and the dif-

ferentiability of solutions of ordinary differential equations, and for sufficiently small vari-

ations in ρ̂, the solution x(ρ, t) can be approximated by

x(p, t) ≈ x(ρ̂, t) + S(t)(ρ− ρ̂). (6.15)

This is a first-order approximation of x(ρ, t) about the nominal solution x(ρ̂, t).

Remark 3. The difference between the sensitivity function and the sensitivity matrix lies

in the fact that the former cannot accommodate time-varying parameters which is evident

in (Equation 6.15). On the other hand, sensitivity matrices can be used to investigate

variation in the state x(t) (at time t) with respect to a variation in the parameter ρ(t′) (at

any other time t0 ≤ t′ ≤ t) i.e., the variations can be different along the trajectory and the
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parameter can be time-varying. In this regard, though sensitivity matrices can handle more

complexity, this comes with an added cost in terms of computation. In addition, for most

problems, the model parameters are some constants whose values are prone to changes

from the nominal.

6.3 Optimal Trajectory Desensitization

Trajectory desensitization allows one to find a robust path that is relatively immune to

parameter variations, thereby mitigating the requirements on the feedback controller that

may be used to track the obtained optimal trajectory. Revisiting the standard optimal con-

trol problem discussed in section 6.1 (Equation 6.1 and Equation 6.2), consider minimizing

the augmented cost

Ja(u) = φ(x(tf ), tf ) +

∫ tf

t0

(
L(x(t), u(t), t) + ‖vec S(t)‖2

Q(t)

)
dt, (6.16)

with an augmented state [x> (vec S)>]>, whose dynamics is obtained from Equation 6.14

and (Equation 6.12), while imposing the terminal condition (Equation 6.2c). The aug-

mented cost function in Equation 6.16 minimizes the original cost function in Equation 6.1,

while penalizing the sensitivity of the state with respect to the parameters along the opti-

mal trajectory. The weighting factor for the sensitivity cost, Q(t), can be tuned to balance

between minimizing the original cost and the sensitivity cost.

If one is interested only in the variation of the final state (or state at a particular time

instant t > t0) with respect to parameter variations, then the corresponding sensitivity

terms alone can be penalized by adding an extra term to the terminal cost of the original

cost function as follows.

Ja(u) = φ(x(tf ), tf ) + ‖vec S(tf )‖2
Q +

∫ tf

t0

L(x(t), u(t), t) dt, (6.17)

where Q ≥ 0 is the weighing factor for the terminal sensitivity cost. Final state desensiti-
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zation is critical especially among problems involving unmanned vehicles where the goal

state has to be reached precisely under external disturbances. An alternative to this ap-

proach is to directly constrain the sensitivity function at the final time by adding additional

state constraints of the form

ψ̃(S(tf ), tf ) = 0. (6.18)

6.3.1 Numerical Simulations

Consider the Zermelo’s problem [111] with currents parallel to the shore (assumed to be

the x1-axis) as a function of x2 such that

vcurrent = ρx2, (6.19)

where ρ is a parameter which is uncertain and its nominal value is ρ̂. The dynamics for a

boat traveling in the currents can be written as

ẋ1 = cos(u) + ρx2, (6.20)

ẋ2 = sin(u), (6.21)

where u is its heading control, u ∈ U = {PWC, u(t) ∈ (−π, π], ∀ t ∈ [0, tf ]}, for some

tf > 0. In this example, the cost function that has to be minimized is expressed in Mayer

form as

J (u) = −x1(tf ), (6.22)

and the boundary conditions are

x1(0) = 0, x2(0) = 0, x2(tf ) = 0. (6.23)
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For this example, we let tf = 1, and ρ̂ = 10. Apart from maximizing the length that the boat

can traverse along the shore while meeting the boundary conditions, the optimal trajectory

has to be desensitized with respect to the variations in ρ. The goal can be facilitated by

obtaining the sensitivity equation under nominal conditions (ρ̂ = 10), using Equation 6.12,

Ṡ =

Ṡ1

Ṡ2

 =

ρ̂S2 + x2

0

 , S(0) =

0

0

 , (6.24)

where

Si(t) =
∂xi(ρ, t)

∂ρ

∣∣∣∣
x=x(ρ̂,t)

, i = 1, 2, (6.25)

and then by penalizing the terms S1 and S2 in an augmented cost function, as shown in

Equation 6.16. Note that S2(t) = 0, for all t ≥ 0, which means that the state x2 is not

affected by the uncertainty of the currents along a nominal trajectory. Therefore, in this

particular example, just penalizing S1 is sufficient. The augmented cost function can then

be written as

Ja(u) = −x1(tf ) +

∫ tf

t0

αS2
1(t) dt. (6.26)

The weighting factor α (which is a constant in this case) is chosen by the designer. For

α = 0, the optimal solution for the original cost function (Equation 6.22) is obtained.

Several test cases were run for α = {0, 75, 200, 500, 5000}, using GPOPS-II [170], and the

results are shown in Figure 6.1 and Figure 6.2.

The levels of desensitization can be clearly observed in Figure 6.1. As the value of α

increases, the trajectory becomes more conservative by staying closer to the shore, while

trying to maximize x1(tf ); see Figure 6.1(a). At the same time, the magnitude of the sen-

sitivity of x1 with respect to ρ (that is, S1) also decreases along the trajectory which is

observed in Figure 6.1(b). Monte-Carlo simulations, shown in Figure 6.1(c), illustrate the

idea of trajectory desensitization. It can be seen that with high weight on α, the trajectories
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Figure 6.1: Results obtained for the Zermelo’s path optimization problem with trajectory
desensitization
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obtained using open-loop control under parameter variations stay closer to the correspond-

ing optimal trajectory. For the Monte-Carlo simulations that are shown in Figure 6.1(c)

and in the rest of the paper, the corresponding parameter ρ was chosen randomly between

±10% about its nominal value and it is kept constant for one Monte-Carlo run.

For the simulations with feedback controller in Figure 6.2, a linear quadratic regulator

is constructed by minimizing the cost

Jf =
1

2
‖∆x(tf )‖2 +

∫ tf

0

∆u2(t) dt, (6.27)

where ∆x(t) = x(t)−x∗(t), ∆u(t) = u(t)−u∗(t), and by linearizing the dynamics along

the reference trajectory as

∆ẋ = A(t)∆x+ B(t)∆u, ∆x(t0) = 0n×1, (6.28)

where

A(t) =
∂f(x, ρ̂, u, t)

∂x

∣∣∣∣
x=x∗(t), u=u∗(t)

, (6.29a)

B(t) =
∂f(x, ρ̂, u, t)

∂u

∣∣∣∣
x=x∗(t), u=u∗(t)

. (6.29b)

Consequently, the control effort required to track the optimal trajectory (for some α) under

parameter variations, using the feedback controller, reduces as the value of α increases, as

can be observed in Figure 6.2(b). These results further corroborate the proposed approach

for desensitized optimal control that deals with the trade-off between optimality and track-

ing effort using a feedback controller.

Next, we consider the time-optimal Zermelo’s problem. The dynamics presented in

the previous subsection (Equation 6.21), and the initial conditions (Equation 6.23) are re-

tained. The vehicle, starting from the origin, has to reach a point along the shore (2, 0) in

minimum time. However, the parameter ρ is uncertain, and the goal state (2, 0) has to be
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Figure 6.2: Results for trajectory desensitization with feedback control

reached as accurately as possible i.e., the sensitivity of final state with respect to the pa-

rameter variation is of concern. For this purpose, the augmented cost function, equivalent

to Equation 6.17, can be constructed as

Ja(u) = tf + αS2
1(tf ). (6.30)

The sensitivity equation (Equation 6.24) too remains the same for this example, as it only

depends on the dynamics of the problem and the targeted parameters, but not on the original

cost function. The results obtained from the simulations for α = {0, 25, 75, 1000} while

minimizing the cost function in Equation 6.30 are presented in Figure 6.3.

All optimal trajectories meet the boundary conditions at the initial and final times,

but they differ in their final state sensitivity with respect to the uncertain parameter. A

clear trade-off between the time taken to reach the goal state (tf ) and final state sensitivity

(S1(tf )) can be observed from Figure 6.3(b) and Figure 6.3(c). A Pareto frontier can be

drawn to quantitatively establish the trade-off between S1(tf ) and tf , which is also shown
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Figure 6.3: Results obtained for the Zermelo’s path optimization problem with final state
desensitization
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in Figure 6.3(b). The Monte-Carlo simulations, in which the parameter is again randomly

varied between±10% about the nominal value, further strengthen the claim that the disper-

sion in the final state can be reduced at the cost of the time it takes to reach the goal state.

Note the similarity in the trends of the sensitivity term S1 with the trajectory desensitization

by comparing Figure 6.1(b) and Figure 6.3(b). The reason behind the similarity could be

because of the fact that since S2(t) = 0, for all t ≥ 0, Ṡ1 = x2. This implies that S1 is

almost always increasing along the trajectory, as the slope is mostly positive, and penaliz-

ing S1 at the final state indirectly penalizes its slope at every point along the trajectory, thus

desensitizing the entire trajectory in this example. The results can also be compared with

Seywald’s in Ref. [111]. The effect of desensitization remains the same, while achieving

the goal with fewer number of states in our approach. The number of states in the aug-

mented model is 4 with the proposed approach, whereas it is 21 in the case of Seywald’s

approach.
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Figure 6.4: Monte-Carlo simulations for non-desensitized trajectory with feedback con-
troller and desensitized trajectory with open-loop

In Figure 6.4, a comparison between the non-desensitized trajectory with feedback con-

troller and a desensitized trajectory (α = 75, the color code remains the same as in Fig-

ure 6.3) with open-loop control is made again Monte-Carlo simulations. The feedback
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Figure 6.5: Results obtained for the Zermelo’s path optimization problem - Sensitivity of
the final state with respect to the uncertain parameter is fixed

controller design remains the same as expressed in Equation 6.27-Equation 6.29. It can be

observed that the dispersion in x1 at final time (x1(tf )) is almost the same in both cases.

However, the energy of the overall control signal,
∫ tf
t0

(u(t) + ∆u(t))2dt = 0.08, on an

average is significantly higher in the non-desensitized case, as opposed to 0.02 in the case

of desensitization (open-loop). This indicates that by employing desensitization to work,

the dispersion in the final state can be reduced with lesser control effort by compromising

on the original cost, which is travel time in this example.

The results obtained for Zermelo’s problem while directly fixing the value of S1 at

final time for different cases, S1(tf ) = {not fixed, 0.12, 0.08, 0.04, 0}, are presented in

Figure 6.5. It is interesting to observe that the optimal trajectory for the case S1(tf ) = 0

goes along the shore without venturing into the currents, as to be expected from the physics

of this problem.

The proposed scheme outperforms the approach presented in Ref. [111] in terms of the

computation complexity with just n+ n` number of states, as opposed to (n+ `)2 + n+ `

number of states in the latter approach. Also, the freedom in formulating desensitized opti-
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mal control schemes, especially for trajectory desensitization, is significant with sensitivity

functions. However, given the dynamics and the constraints (Equation 6.1-Equation 6.2),

there exists a set of trajectories, and each trajectory has an associated sensitivity cost(∫ tf
t0
‖vec S(t)‖2

Q(t)dt
)

. Given the original cost function (Equation 6.1), the optimal trajec-

tory that minimizes the cost function also has an associated sensitivity cost. In the proposed

approached with an augmented cost function, by penalizing the sensitivity cost, one expects

to find another trajectory that is less sensitive, while satisfying all the constraints. Such a

trajectory, however, may not exist. There is an implicit assumption here, namely, that there

exists a path that is less sensitive to parametric variations compared to the optimal one,

given the original cost function along with state and control constraints. In some prob-

lems, it could be the case where the solution to the original optimal control problem can no

longer be desensitized. Analysis on “desensitizability” of an optimal control problem is a

potential direction for future work.

Similarly, in the case of final state desensitization where the sensitivities at the final

time are fixed, it is assumed that the control u is able to drive the augmented state, with

the sensitivity terms added to the original state vector x, given the constraint in the original

optimal control problem. In that case, in order to be able to desensitize a given system,

there is an implicit assumption that the system with the augmented state [x> (vec S)>]>

is controllable. Otherwise, the control input u may not have enough authority to drive

the additional states introduced via the sensitivity function. In such cases, an additional

feedback term is the only available option to handle the parameter variations.

6.4 Constraint Desensitized Path Planning

For the optimal control problem (Equation 6.1)-(Equation 6.2), assuming the constraint

function g(x, ρ, t) is a smooth function in x, a naı̈ve approach to obtain conservative trajec-

tories to address constraint violation under parametric uncertainties would be to penalize
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the constraint sensitivity matrix, defined as

Sg(t) =
∂g(x(ρ, t), ρ, t)

∂ρ

∣∣∣∣
ρ=ρ̂

=

(
∂g(x, ρ, t)

∂x
S(t) +

∂g(x, ρ, t)

∂ρ

) ∣∣∣∣
x=x(ρ̂,t),ρ=ρ̂

, (6.31)

by constructing the augmented cost

Jg(u) = J (u) +

∫ tf

t0

‖vec Sg(t)‖2
Q dt, (6.32)

where Q ≥ 0.

By minimizing the cost in Equation 6.32, one attempts to minimize the variation in the

constraint value with respect to variations in the parameter for all times. However, it is

clear that the variation in the constraint value when the system is far from the constraint

boundary is not as important as when the system is close to the constraint boundary. For

example, in the path planning problem with a dynamic obstacle, a larger variation in the

constraint value may be acceptable when the agent is far from the obstacle, but a collision

may result due to even relatively small variations when the agent is near the constraint

boundary. Weighting the sensitivity of the constraint value equally in both cases using

a running cost function may therefore lead to solutions that are highly sensitive near the

constraint boundary.

To account for the fact that the constraint variations are more likely to cause constraint

violations when the system is closer to the constraint boundary, we introduce a relevance

function r : R→ [0,∞) of the form

r(w) =


r̃(w), if w ≤ 0,

r̃(0), if w > 0,

(6.33)

where r̃ : R → [0,∞) is a continuous function that is monotonically increasing over the
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interval (−∞, 0], that is, r̃(w1) ≥ r̃(w2), if w1 > w2 for all w1, w2 ≤ 0. Examples of r̃(w)

include e−w2 (Gaussian), max(0, 1− |w|) (Hat function), 1/(1 + w2), etc.

Next, we define the relevant constraint sensitivity (RCS) matrix Sr : [0,∞)→ Rk×` as

Sr(t) = RSg(t), (6.34)

where R = diag (r(g1(x(p, t), p, t)), . . . , r(gk(x(p, t), p, t))). Henceforth for the purpose

of the analysis, and unless stated otherwise, the derivative of the logistic function s(w) =

1/(1 + e−w) is chosen as the candidate relevance function, that is,

r̃(w) = s(w)(1− s(w)). (6.35)

Note that the derivative of the logistic function has a symmetric “bell-shape” with the max-

imum at w = 0, and decaying tails. The relevance function allows one to penalize sensitiv-

ities according to their relevance with respect to potential constraint violation. The impact

of the choice of the relevance function on constraint desensitization is discussed later. The

sensitivity matrix Sr captures the idea of giving more importance to variations near the

constraint boundary.

Finally, we propose to solve the optimal control problem with the augmented cost func-

tion

Ja(u) = J (u) +

∫ tf

t0

‖vec Sr(t)‖2
Q dt, (6.36)

the dynamics in Equation 6.14 and Equation 6.12, and the constraints in Equation 6.2 to

construct trajectories that address constraint violation under parametric uncertainties. Here-

after, the term
∫ tf
t0
‖vec Sr(t)‖2

Q dt in Equation 6.36 will be referred to as the RCS cost.

We now apply the proposed approach on simple test examples to analyze the optimal

trajectories obtained by penalizing RCS. First, we analyze the claim of penalizing RCS over
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constraint sensitivity using a 2D path planning problem involving a dynamic obstacle with

uncertainty in its speed. Subsequently, the effect of various constraint forms that represent

the collision avoidance condition, chosen from a set of valid ones, is studied. We then stress

upon the need to select an appropriate constraint function to construct RCS using the car

vs. train problem, and finally, the trade-off studies with multiple obstacles are presented.

The videos demonstrating the optimal trajectories for the example problems discussed in

this section can be found on the web1.

6.4.1 2D Time-Optimal Problem

Consider the following 2D time-optimal path planning problem with the agent dynamics

and initial conditions

ẋ(t) = v cos(u(t)), x(0) = a0, (6.37a)

ẏ(t) = v sin(u(t)), y(0) = b0, (6.37b)

where (x, y) denotes the agent’s position, v is the agent’s speed, and u(t) ∈ [0, 2π) is

the agent’s heading (control). The agent intends to reach (af , bf ) in minimum time, while

avoiding a dynamic circular obstacle that is moving parallel to the y-axis with a constant

speed ρ, and dynamics given by

ż(t) = ρ, z(0) = d, (6.38)

where (c, z) denotes the obstacle’s position. With [x, y, z]> as the state vector, the constraint

for collision avoidance can be expressed as

g = ro −
[
(x− c)2 + (y − z)2

]1/2 ≤ 0, (6.39)

1https://youtu.be/zCvuIQSMzlw
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Figure 6.6: Absolute values of Sg and Sr as a function of the agent’s position

where ro is the safe distance. For this problem, we assume that the obstacle’s speed ρ is the

uncertain parameter. Henceforth, the time and parameter dependency of the elements in the

state vector are dropped for brevity. Since the problem has simple dynamics, a closed form

expression to the sensitivity of the constraint function g(x) with respect to the uncertain

parameter ρ is given by

Sg(t) =
∂g

∂ρ
= − (y − z)t

[(x− c)2 + (y − z)2]1/2
. (6.40)

The effect of incorporating the relevance function into the proposed scheme is analyzed

by comparing the constraint sensitivity and RCS. In this regard, the obstacle’s position is

fixed at (0, 1) with ro = 0.6, and since the constraint sensitivity varies linearly with time,

t = 1 is chosen. Figure 6.6 presents the absolute values of the sensitivities (Sg and Sr)

over the mesh generated to represent the agent’s position. The white circular area in the

middle represents the infeasible region. It can be observed that RCS (Sr) is activated when

the agent gets closer to the obstacle, as opposed to the constraint sensitivity, which only

captures the sensitivity in the constraint value. Furthermore, it has also been observed

(though not presented here for the sake of brevity) that by just penalizing the constraint

sensitivity using the cost in Equation 6.32, conservative trajectories cannot be obtained
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Figure 6.7: Results for constraint desensitized 2D path planning

as the sensitivity profile over-constrains the problem (see Figure 6.6(a)). In the case of

penalizing RCS, the agent has sufficient incentive to move away from the obstacle as the

variations closer to the constraint boundary now incur a higher penalty (see Figure 6.6(b)).

Figure 6.7 shows the results obtained for the time-optimal path planning problem with

(a0, b0) = (0, 0), (af , bf ) = (0, 10), c = 5, d = 2, and v = 1. The nominal value of the

uncertain parameter ρ̂ is chosen to be 0.25. The cost function in Equation 6.36 is mini-

mized with φ(x(tf ), tf ) = tf , L(x(t), u(t), t) = 0, given the dynamics in Equation 6.37,

and the constraint in Equation 6.39. The optimal control package GPOPS-II [170] is used

to numerically solve the optimal control problem. From Figure 6.7(a), it can be observed
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that as the weighting factor Q for the RCS term in the cost function increases, the optimal

trajectory becomes more conservative (the distance to the obstacle is greater), and the mag-

nitude of the RCS reduces along the trajectory (see Figure 6.7(b)). Figure 6.7(c) suggests

that the conservative trajectories have higher constraint sensitivity, and further corroborates

the underlying intuition behind introducing the relevance function.

For this particular example, five different relevance functions: 1) e−w2 (Gaussian); 2)

max(0, 1− |w|) (Hat function); 3) s(w) (Logistic function); 4) 1/(1 + w2); and 5) 1/(1 +

|w|)2; were also evaluated to observe the behavior of the constraint desensitized trajectories.

All the aforementioned functions provide conservative trajectories similar to the ones in

Figure 6.7(a), with slight differences in curvature. The results are not presented in the

interest of brevity. Analyzing different relevance functions and their impact on constraint

desensitization in general optimal control problems is a separate study meant for future

work.

6.4.2 Dependency on the Constraint Form

In this section, the effect of the form of the constraint function over the behavior of the

optimal trajectories obtained from constraint desensitized planning is investigated. To this

end, the constraint function in Equation 6.39 is expressed alternatively as

gβ = rβo −
[
(x− c)2 + (y − z)2

]β/2 ≤ 0, (6.41)

where β > 0. We first analyze the RCS plots shown in Figure 6.8(a), Figure 6.8(c), and

Figure 6.8(e). The simulation parameters remain the same as the ones used for the results

in Figure 6.6. The general expression for RCS, for any β > 0, is given by

Sr = − r(gβ)︸ ︷︷ ︸
relevance term

× β(y − z)t
[
(x− c)2 + (y − z)2

]β/2−1︸ ︷︷ ︸
constraint sensitivity

(6.42)
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Note that, for β > 0, the relevance term (see Equation 6.42) decays exponentially as the

agent moves away from the obstacle. For β > 2, the constraint sensitivity term increases

super-linearly with separation between the agent and the obstacle. Consequently, RCS

decays with Euclidean distance and becomes prominent as the agent gets closer to the ob-

stacle. Also, as β increases, the decay (logistic) term overpowers the constraint sensitivity

term and the penalty region around the obstacle shrinks.

The optimal trajectories given the constraint Equation 6.41, for β = 0.5, 2, 4, and with

different weights (Q) in the RCS cost can be seen in Figure 6.8(b), Figure 6.8(d), and

Figure 6.8(f), respectively. The simulation parameters are the same as the ones used for

the results in Figure 6.7. Similar to the results obtained for β = 1, the optimal trajectories

become conservative for all values of β, as Q increases. However, it is noted that the

behavior of these optimal trajectories vary. As β increases (for β ≥ 1), the curvature of the

desensitized trajectories reduces. For this particular example, under turn radius constraints,

the designer can alternatively tune the value of β to obtain the desired trajectory shape.

6.4.3 The Car vs. Train Problem

Consider the 1D version of the problem described in subsection 6.4.1, where an agent (car)

is restricted to move along the x-axis, and the obstacle (train) is moving along the y-axis.

Note that the dynamics for the obstacle remain the same, given in Equation 6.38, while the

agent dynamics takes the form

ẋ(t) = u(t), xa(0) = a0,

where u(t) ∈ [0, vmax], and y(t) = 0, t ∈ [0, tf ]. In this case, the state vector [x, z]> is

two-dimensional.

Similar to the previous experiments, we assume that the agent’s primary task is to min-

imize travel time whilst reducing risk of collision under uncertainty in the obstacle’s speed.
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Figure 6.8: Absolute values of the RCS (a, c, e) and the optimal trajectories (b, d, f) for
different constraint forms
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Figure 6.9: The car vs. train problem

It is intuitive to expect that the desensitized solution will ensure that the distance between

the train and the car is sufficiently large during the event of crossing the rail track. Com-

puting an RCS cost using the constraint (Equation 6.39) is found to provide a desensitized

solution that drives the agent to reach the target point in minimum time, regardless of the

distance between the agent and the obstacle (i.e, beyond the safe distance ro).

The discrepancy between the desensitized solution for the RCS, obtained using the

constraint in Equation 6.39 and the intuitive solution can be understood by considering

the behavior of a real-world driver. The expression in Equation 6.39, although a valid

constraint, does not capture a driver’s perception of the collision constraint in this problem.

Effectively, the train’s motion along the rail track is of no consequence to the driver, except

when he is crossing the track. It is during this crossing phase that the driver would ensure

sufficient separation (at least the safe distance ro) between the train and the car to prevent

collision.

This motivates us to propose a constraint of the form,

1[|x(t)− c| ≤ wo] [r2
o − (y − z(t))2]︸ ︷︷ ︸

g(z)

≤ 0, (6.43)
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where 1[·] is the indicator function, and 2wo is the width of the track. Note that 1[|x(t) −

c| ≤ wo] is a boxcar function which makes the constraint function in Equation 6.43 non-

smooth. To this end, we suggest to use the so-called super-Gaussian [187]

ϕ(x(t); c, wo) = exp

(
−
[
x(t)− c
wo

]γ)
, (6.44)

where γ ∈ 2Z+ (set of positive even numbers), as an approximation to the boxcar function.

From Figure 6.9(a), it can be observed that as γ → ∞, ϕ converges to a boxcar function.

Subsequently, the RCS for the constraint function in Equation 6.43 with a super-Gaussian

approximation can be obtained as

Sr = r
(
ϕ(x(t); c, wo)g(z)

)∂(ϕ(x(t); c, wo)g(z)
)

∂ρ
. (6.45)

Figure 6.9(b) shows the optimal control for different levels of constraint desensitization,

while employing RCS in Equation 6.45 with the same simulation parameters as before,

except now γ = 20, vmax = 1. It is observed that when there is no penalty on RCS, the car

is dangerously close to the train at the crossing. The result further confirms that the RCS

in Equation 6.45, when penalized appropriately, allows the car to maintain a safe distance

while crossing the track to avoid collision under uncertainty in the speed of the train. This

example indicates that an appropriate constraint function is crucial for the success of the

proposed approach.

6.4.4 Trade-off Studies with Multiple Obstacles

In this section, the proposed approach is evaluated in instances involving multiple dynamic

obstacles moving with uncertain velocities. The dynamics of the agent follow the ODEs

in Equation 6.37. In addition to the agent’s heading θ, its speed v ∈ [0, 1] is included as

a control input. Starting at location (0, 0), the agent is tasked with reaching the target lo-

cation (30, 0) in minimum time while avoiding the obstacles. We consider four different
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instances with the number of obstacles N ∈ {2, 3, 5, 10}. The obstacles are all assumed to

be identical and their movement is restricted to be parallel to the y-axis with their speed ρ

being the uncertain parameter. The nominal value of ρ̂ is 0.25. A schematic of the environ-

ment, containing the initial positions of the agent and the obstacles, and the directions of

the obstacles’ nominal velocity vectors for the case of N = 10, is shown in Figure 6.10.

Figure 6.10: Schematic of an uncertain multi-obstacle environment

Note that at each instance, there are N constraints enforcing collision avoidance, and

the speed of the associated obstacle is the uncertain parameter. Ignoring the zeros in the

matrix Sr(t), all the sensitivity terms are weighted equally by choosing the Q in the RCS

cost in Equation 6.36 to be of form Q = αIN . Each instance involves four levels of pe-

nalization of the RCS cost with α = 0 (blue, no penalty), 0.1 (magenta), 0.33 (green), 1

(black). From Figure 6.11(b), and for different instances (N = 2, 3, 5, 10), it can be ob-

served that as α increases, the agent takes longer paths, essentially trying to avoid obstacles

while maintaining some safety buffer. To characterize safety, collision probabilities were

computed by running Monte Carlo simulations on the optimal trajectory, obtained from

GPOPS-II, while propagating the dynamics in an open-loop fashion for 1000 samples. In

the Monte Carlo simulations the variation in each of the obstacle’s speed ∆ρ is obtained by

sampling from a normal distribution N(0, σ2) with σ2 = 0.1. The trade-off between travel

times (tf ) and collision probabilities (Pc) for the four instances are shown in Figure 6.11.
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Figure 6.11: Trade-offs plots for instances with different number of obstacles

From Figure 6.11, it is seen that penalizing RCS (for higher α values) yields safer trajec-

tories, which mitigate the chance of constraint violation in uncertain environments while

trading off optimality (travel time). For instances with N = 2, 3, a 95% reduction in colli-

sion probability is achieved for a 10% trade-off in travel time. Due to the cumulative effect

of increasing the number of obstacles obstacles and the number of uncertain parameters

on the RCS cost (that measures the risk of constraint violation), the travel times for safer

trajectories are seen to increase with N .

It is observed that the computation times for the tested instances are of the same order

of magnitude (a few milliseconds). The approach is limited by the efficiency of the chosen

optimal control solver. The regularizer has no guarantees in terms of convexity, and conse-

quently the optimizer may converge to a local minimum. Depending on the initialization,

the homotopy class of the obtained trajectories may vary. For the above simulations, we

report the optimal trajectory among the ones obtained from different initializations. While

in the above simulations the obstacles are restricted to follow simple paths parallel to the y

axis, it is important to note that the regularizer can be derived for arbitrary obstacle motion

as long as its dynamics are known and the uncertain parameters are identified.
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6.5 C-DOC: Co-state Desensitized Optimal Control

In this section, we are interested in desensitizing the cost itself. By denoting

J (u, ρ) =

∫ t

t0

L(x(s), u(s), s) dt+ C(x̃(t), u, t), (6.46)

C(x̃(t), u, t) =

∫ tf

t

L(x(s), u(s), s) dt+ φ(x(tf ), tf ), (6.47)

we immediately notice that the parametric variation at time t, affects the total cost J (u, ρ)

only through the cost-to-go C(x̃(t), u, t). Thus, the sensitivity of the total cost for a para-

metric variation at time t from its nominal value ρ̂ can be captured through the term

SC(x(t), ρ̂, u, t) =
∂C

∂ρ
(x̃(t), u, t)

∣∣∣
ρ=ρ̂

. (6.48)

There are several ways to capture the effect of the parametric variations on the cost, one of

which is to consider the following sensitivity cost

Jc(u, ρ̂) =

∫ tf

t0

‖SC(x(t), ρ̂, u, t)‖2
Q(t) dt, (6.49)

for some Q(t) ≥ 0, for all t ≥ t0.

There are three major formulations relevant to the problem of cost-based desensitiza-

tion, which are as follows.

Problem 3. Solve

inf
u∈U

J (u, ρ̂) (6.50a)

subject to Jc(u, ρ̂) ≤ D. (6.50b)

Let us denote the solution of Problem 3 to be the “cost-desensitization” function J(D)

which represents the optimal cost given a bound on the sensitivity metric. A similar prob-
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lem is to consider minimizing the sensitivity of the cost for a given bound on the perfor-

mance index, as presented below.

Problem 4. Solve

inf
u∈U

Jc(u, ρ̂) (6.51a)

subject to J (u, ρ̂) ≤ J. (6.51b)

Let us denote the solution of Problem 4 to be the “desensitization-cost” function D(J).

Finding analytical or numerical solutions to J(D) or D(J) are challenging. However, J(D)

or D(J) can be constructed by solving the following family optimization problems for all

α ∈ [0,∞).

Problem 5. Solve

inf
u∈U
J (u, ρ̂) + αJc(u, ρ̂) (6.52)

By observing that the scalar α can be absorbed into the matrix Q(t), we will rewrite the

objective function in Problem 5 as

Js(u) = J (u, ρ̂) + Jc(u, ρ̂).

When the sensitivity cost has zero weight (Q(t) ≡ 0), we solve problem (Equation 6.1) and

retrieve lim supD→∞ J(D), and as we increase the weight on the sensitivity cost (through

Q(t)), we arrive at an optimal control whose performance is more insensitive to the varia-

tions in the parameters. In the limit whenQ(t)→∞ for all t, we retrieve lim supJ→∞D(J).

In this work, we will focus on minimizing Js(u). Detailed analysis of J(D) and D(J) will

appear elsewhere.
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The new optimization problem we are interested in solving is

inf
u
Js(u) (6.53a)

subject to ẋ = f(x, ρ̂, u, t), x(t0) = x0 (6.53b)

ψ(x(tf ), tf ) = 0. (6.53c)

The following section presents a formal theorem for the fact that the co-states capture

the sensitivity of the cost-to-go function for any given control input ū(t), that satisfies

the terminal constraint in Equation 6.53c with nominal value of the parameter ρ̂. In this

section, the trajectory constraints in Equation 6.2b are ignored. The result would allow us

to penalize a weighted norm of the co-states, with their dynamics obtained from the adjoint

equations, that desensitizes the cost function with respect to the variations in the targeted

parameters.

6.5.1 Main Theorem

In this section we characterize the cost-sensitivity SC(x(t), ρ̂, u, t) in terms of the co-state

process associated with the optimal control problem given by Equation 6.1, Equation 6.2a,

and Equation 6.2c. The following theorem shows that the sensitivity of the cost-to-go

function with respect to the state at time t can be represented by a co-state process λ with

certain boundary conditions at the final time tf .

Theorem 7. Consider the dynamical system ẋ = f(x, u, t), evolving under a given control

law ū ∈ Ū ⊆ U , where

Ū =
{
ū : [t0, tf ]→ Rm is PWC, ū(t) ∈ U, ψ(x(tf ), tf ) = 0,

x(tf ) = x0 +

∫ tf

t0

f(x(t), ū(t), t) dt
}
.

Then, for a cost-to-go function (associated with the cost functional in Equation 6.1) with
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x = x(t)

C(x, ū, t) = φ(x(tf ), tf ) +

∫ tf

t

L(x(τ), ū(τ), τ) dτ, (6.54)

under the control ū ∈ Ū , the sensitivity of the cost-to-go function with respect to the state

x at time t is,

λ>(t) =
∂C

∂x
(x(t), ū, t), (6.55)

which obeys the dynamics

λ̇>(t) = −∂H
∂x

(x(t), ū, λ(t), t), (6.56)

where

H(x, u, λ, t) = L(x, u, t) + λ>f(x, u, t). (6.57)

Furthermore, the terminal condition for the ODE in Equation 6.56 is given by

λ(tf ) =
∂φ

∂x
(x(tf ), tf ). (6.58)

Proof. For a fix control ū, the cost-to-go from any state x at time t is

C(x, ū, t) =φ(x(tf ), tf ) +

∫ tf

t

L(x(s), ū(s), s)ds

where x(t) = x.

Let the perturbed state at time t be represented by x(t, α) = x(t) + αδx(t) where

α ∈ [0, α0) for some α0 > 0, and δx(t) ∈ Rn. With this perturbation the new cost-to-go is

C(x+ αδx, ū, t) =φ(x(tf , α), tf ) +

∫ tf

t

L(x(s, α), ū(s), s)ds
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where x(s, α) denotes the perturbed state at time s ≥ t. By denoting x(s, α) = x(s, 0) +

αδx(s), for all s ≥ t, we obtain

δẋ(s) = fx(x(s, 0), ū(s), s)δx(s) +O(α),

where O(α) is such that limα→0O(α) = 0. Consequently, δx(s) = Γ(s, t)δx(t) + O(α)

where Γ(s, t) is the state transition matrix corresponding to the matrix fx(x(s, 0), u(s), s).

Therefore,

C(x+αδx, ū, t)− C(x, ū, t) = αφx(x(tf , 0), tf )Γ(tf , t)δx

+ α

[∫ tf

t

Lx(x(s, 0), u(s), s)Γ(s, t)ds

]
δx+O(α2)

and thus,

lim
α→0+

C(x+ αδx, ū, t)− C(x, ū, t)

α
=
[
φx(x(tf , 0), tf )Γ(tf , t)

+

∫ tf

t

Lx(x(s, 0), u(s), s)Γ(s, t)ds
]
δx,

and

Cx(x, ū, t) = φx(x(tf , 0), tf )Γ(tf , t) +

∫ tf

t

Lx(x(s, 0), ū(s), s)Γ(s, t)ds.

At this point, if we denote

λ> , Cx(x, ū, t).

We then have

λ̇> = −λ>fx − Lx,

since Γ̇(s, t) = −Γ(s, t)fx(x(t, 0), u(t), t). Furthermore, λ(s) satisfies the terminal condi-
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tion λ(tf ) = φx(x(tf ), tf ). Thus, if we define the Hamiltonian as H = L+ λTf , it follows

that

λ̇> = −∂H
∂x

and this λ represents the first order variation in cost-to-go with boundary condition

λ(tf ) = φx(x(tf ), tf ).

The result follows.

It is interesting to note that the theorem holds not only for the optimal control (a result

that follows directly from the maximum principle [188]), but for any control law that is

piecewise continuous and ensures that the terminal constraint is met. The C-DOC problem

can now be fully formulated using this result.

For the C-DOC problem the augmented state is x̃ = [x> ρ>] with dynamics given in

Equation 6.4. The Hamiltonian, defined in Theorem 7, for this system, can be written as

H(x̃, u, λ, µ, t) = L(x, u, t) + λ>ẋ+ µ>ρ̇

= L(x, u, t) + λ>f(x, ρ, u, t), (6.59)

where λ and µ are the co-states corresponding to state x and vector of parameters defined

by ρ, respectively. The corresponding adjoint equations are given by

λ̇> = −∂H
∂x

(x̃, u, λ, µ, t) = −λ>∂f
∂x

(x, ρ, u, t)− ∂L

∂x
(x, u, t), (6.60a)

µ̇> = −∂H
∂ρ

(x̃, u, λ, µ, t) = −λ>∂f
∂ρ

(x, ρ, u, t). (6.60b)

Since the co-states represent the sensitivity of the cost-to-go function for a given control
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input u(t) (Theorem 7), they can be expressed as

λ(t)> =
∂C

∂x
(x̃(t), u, t), (6.61a)

µ(t)> =
∂C

∂ρ
(x̃(t), u, t), (6.61b)

for a given control u ∈ Ū , this results in the trajectory x(t) for t0 ≤ t ≤ tf , where

C(x̃, u, t) = φ(x(tf ), tf ) +

∫ tf

t

L(x(τ), u(τ), τ) dτ.

Note that ρ is an augmented state in the given problem and affects the cost J through the

state x, whose dynamics is a function of ρ. Since we have used ρ̇ = 0 and ρ(t0) = ρ̂,

we have ensured that ρ(t) = ρ̂. Thus, by comparing Equation 6.48 and Equation 6.61b,

we obtain µ(t) = SC(x(t), ρ̂, u, t). Therefore, weighting the co-state in the existing cost

function will ensure that the solution of the augmented problem minimizes the sensitivity

of the cost J with respect to parametric variations. This results in an updated optimal

control problem with an augmented cost, accounting for the sensitivity component, given

by

Js(u) = φ(x(tf ), tf ) +

∫ tf

t0

[
L(x(t), u(t), t) + µ>(t)Q(t)µ(t)

]
dt. (6.62)

Minimizing the cost in Equation 6.62, subject to the dynamics in Equation 6.4, terminal

constraint in Equation 6.2c, and the transversality conditions in Equation 6.58 with

µ(tf ) = 0, (6.63)

yields a desensitized optimal control problem for the original problem. Here, Q(t) ∈ R`×`
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is a user-defined positive semi-definite weighting function and is generally of the form

Q(t) ≡ diag(α1(t), . . . , α`(t)). (6.64)

This co-state based approach requires formulating 2(n+ `) number of states, as compared

to the higher 2(n+`)2 +n+` states in [111], employing sensitivity matrices for an optimal

control problem. The resulting problem is typically solved by the off-the-shelf existing

solvers.

6.5.2 Numerical Examples

The following section presents some numerical examples that will aid in understanding

the implementation of this technique and will elucidate its subtleties. The simulations are

obtained using GPOPS-II [170].

Consider an optimal control problem of minimizing a quadratic cost

J (u) =

∫ tf

0

1

2
(x>R1x+ u>R2u) dt, (6.65)

given the n-dimensional linear dynamics with parameter vector ρ

ẋ = A(ρ)x+B(ρ)u, (6.66a)

ρ̇ = 0, (6.66b)

with initial conditions x(0) = x0, ρ(0) = ρ̂, where x ∈ Rn, u ∈ Rm, ρ ∈ R`, A : R` →

Rn×n, B : R` → Rn×m, R1 ≥ 0, R2 > 0, and tf is fixed. The goal is to desensitize

the cost with respect to the parameter ρ. Following the steps to construct the cost term for
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desensitization, the Hamiltonian is given by

H =
1

2
(x>R1x+ u>R2u) + λ>ẋ+ µ>ρ̇,

=
1

2
(x>R1x+ u>R2u) + λ>(A(ρ)x+B(ρ)u). (6.67)

The adjoint equations are

λ̇> = −∂H
∂x

= −x>R1 − λ>A(ρ), (6.68)

µ̇> = −∂H
∂ρ

= −(x> ⊗ λ>)
∂

∂ρ
vec A(ρ)− (u> ⊗ λ>)

∂

∂ρ
vec B(ρ). (6.69)

where λ and µ are the co-states of x and ρ, respectively. Since the cost has to be desensitized

with respect to ρ, the augmented cost that has to be minimized for the C-DOC problem is

given by

Js(u) =

∫ tf

0

1

2
(x>R1x+ u>R2u+ µ>Qµ) dt. (6.70)

To demonstrate the results, we consider a one-dimensional linear system with the dy-

namics ẋ = ax + bu with initial condition x(0) = 1, and let R1 = R2 = 2, tf = 20. We

first analyze the case where b is the uncertain parameter with its nominal value as b0 = 1,

and a = −1. The solutions obtained for Q = 0 and 1, 000 are shown in Figure 6.12. Note

that the sensitivity measure (µ2(t)) in Figure 6.12(b) is lower for the desensitized solution.

Since b is the source of uncertainty that perturbs the trajectory (and eventually the cost), by

introducing desensitization (Q = 1, 000), it can be observed from Figure 6.12(d) that the

control goes to zero earlier compared to the non-desensitized solution. By making the con-

trol zero, the source of uncertainty is removed from the system. The results obtained from

the Monte-Carlo simulations with b ∈ [0.8b0, 1.2b0] are shown in Figure 6.12(c), which

suggests that the variation in the cost for the desensitized solution is significantly lower.

The results for the case where a is the uncertain parameter with its nominal value as
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Figure 6.12: Results obtained for an LQR problem with B matrix being uncertain
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a0 = −1 (stable), and b = 1 are shown in Figure 6.13. Since a is the source of uncertainty,

by switching on the desensitization (Q = 1, 000), it can be observed from Figure 6.13(a)

that the state approaches zero faster compared to the non-desensitized solution. Conse-

quently, from the Monte-Carlo simulations (a ∈ [0.8a0, 1.2a0]), it can be observed that the

variations in the optimal trajectory (Figure 6.13(c)), and the cost (Figure 6.13(d)) are sig-

nificantly lower for the desensitized solution, though the cost for the same is higher which

is a trade-off. The error bars in Figure 6.13(d) represent the minimum and the maximum

costs obtained form the Monte-Carlo results where the corresponding grey bars represent

the nominal costs with a = a0.

A more interesting case is a marginally stable system with a0 = 0, and a ∈ [−0.2, 0.2].

The corresponding results can be found in Figure 6.14. In the previous cases, although

a parametric variation in a is studied, such variations did not change the stability of the

system, i.e., if the nominal system is stable, then the system with parametric variation is

stable as well. Since a can be both stable and unstable, the optimal control obtained for the

nominal system without desensitization will be less effective combating the instabilities

compared to the desensitized solution, as can be seen from the dispersion in trajectories

(and costs) in Figure 6.14.

6.5.3 Discussion

In this section we address the relationship between the sensitivity matrix defined in Equa-

tion 6.6 and the co-states λ. Let us note that, λ>(t) = ∂C
∂x

(x(t), u, t), which can be ex-

pressed as

λ>(t) =
∂C(x(t), u, t)

∂x0

[
∂x(t)

∂x0

]−1

=
∂C(x(t), u, t)

∂x0

Λ(t|t0, x0)−1, (6.71)

where Λ(t|t0, x0) =
∂x(t)

∂x0

is the sensitivity of the state at time t along the trajectory with

respect to variation in its initial condition x0 [111]. Note that the dependency of x(t),
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Figure 6.13: Results obtained for an LQR problem with a stable A matrix being uncertain
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Figure 6.14: Results obtained for the LQR problem with a = 0 (red: Q = 0, green:
Q = 1, 000)

t ≥ t0 on t0 and x0 (initial conditions) is implicit. The relationship between the co-state

and the sensitivity matrix in Equation 6.71 can be generalized to obtain the sensitivity of

the solution with regards to the state at any other time t′ as

λ>(t) =
∂C(x(t), u, t)

∂x(t′)

∂x(t′)

∂x(t)
=
∂C(x(t), u, t)

∂x(t′)
Λ(t|t′, x(t′))−1 ∀ t, t′ ∈ [t0, tf ]. (6.72)

Therefore,

λ(t) = Λ(t|t′, x(t′))−>
[
∂C(x(t), u, t)

∂x(t′)

]>
, (6.73)[

∂C(x(t), u, t)

∂x(t′)

]>
= Λ(t|t′, x(t′))>λ(t). (6.74)

From the above expressions, we observe that the sensitivity matrix Λ(t|t′, x(t′))> is

essentially the transition matrix between the co-states λ(t) and the partial of the cost-to-go

function at time t with respect to the state at time t′ i.e., the sensitivity of the cost-to-go

function at time t with respect to the state at time t′ < t.
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CHAPTER 7

DESENSITIZED STRATEGIES FOR PURSUIT-EVASION GAMES WITH

ASYMMETRIC INFORMATION

7.1 Preliminaries

7.1.1 Differential Games with Asymmetric Information

Consider a two-player differential game with payoff function

Jρ(u, v) = φ(x(tf ), tf ) +

∫ tf

t0

L(x(t), u(t), v(t), t) dt, (7.1)

and constraints

ẋ(t) = f(x(t), ρ, u(t), v(t), t), x(t0) = x0, (7.2)

gu(x(t), ρ, t) ≤ 0, (7.3)

gv(x(t), ρ, t) ≤ 0, (7.4)

where t ∈ [t0, tf ] denotes time, with t0 being the fixed initial time and tf being the final

time, x(t) ∈ Rn denotes the state of the game, with x0 being the fixed state at t0, and

ρ ∈ D ⊂ Rk is a vector of model parameters. The player choosing the control input

u ∈ U = {Piecewise Continuous (PWC), u(t) ∈ U, ∀ t ∈ [t0, tf ]} with U ⊆ Rm, the set

of allowable values of u(t), aims to minimize the payoff function in Equation 7.1. On the

other hand, the player choosing the control input v ∈ V = {PWC, v(t) ∈ V, ∀ t ∈ [t0, tf ]}

with V ⊆ R`, the set of allowable values of v(t), aims to maximize the payoff function

in Equation 7.1. In Equation 7.1, φ : Rn × R≥0 → R is the terminal cost function,

and L : Rn × Rm × R≥0 → R is the running cost. The subscript ρ indicates that given
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the controllers u and v, the payoff in Equation 7.1 is a function of the parameter vector

ρ. Finally, gu(gv) : Rn × Rk × R≥0 → Rq(Rr), denotes the state constraints that the

minimizing (maximizing) player has to meet along the trajectory. It is assumed that the

state constraints gu and gv depend on the control inputs u and v, respectively, and are

independent of the control inputs of the adversary. For the case of pursuit-evasion games

in dynamic uncertain environments, which is analyzed in section 7.3, the constraints in

Equation 7.3 and Equation 7.4 can be used to enforce collision avoidance of the moving

obstacles for both agents. The game ends when the condition

ψ(x(tf ), tf ) = 0, (7.5)

is met at the final time.

In this work, it is assumed that the minimizing player cannot observe the parameter

vector ρ, and it knows only the nominal value of the parameter, which is denoted by ρ̂. For

the minimizing player, the parameter vector assumes variations about the nominal value

ρ̂. It is assumed that the maximizing player knows the true value of the parameter, which

includes the nominal value (ρ̂) and its possible variation ∆ρ = ρ̄ − ρ̂, where ρ̄ is the true

value of the parameter vector. In terms of the information that the players have about their

adversaries, in this work we assume that the maximizing player is aware of the fact that the

minimizing player only knows the nominal value of the parameter. The minimizing player

is aware of the fact that its adversary knows the true value of the parameter vector, although

it does not know its true value. Therefore, both players know that the minimizing player is

at an information disadvantage.

For the minimizing player, the parametric variations can lead to constraint violations

and to this end, it modifies its payoff function by augmenting a sensitivity-function-based

risk measure. It is further assumed that the maximizing player is unaware of the modified

payoff function that the minimizing player employs. Consequently, in the proposed ap-
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proach each player tries to solve a non-zero-sum dynamic game (based on the information

each player has about its own game) to obtain the corresponding feedback strategies. In the

following subsection, we introduce the theory of sensitivity functions that is appropriate

for the differential game formulation.

7.1.2 Sensitivity functions

Consider the dynamics in Equation 7.2, and assume variations in the model parameters

ρ ∈ D, with ρ̂ being the nominal value of the parameter vector. Furthermore, assume that

f(x, ρ, u, v, t) is continuous in (x, ρ, u, v, t), and continuously differentiable with respect

to x and ρ for all (x, ρ, u, v, t) ∈ Rn×D×U ×V × [t0, tf ]. The solution to the differential

equation in Equation 7.2 from the initial condition x0 using admissible controls, u ∈ U and

v ∈ V , is given by

x(ρ, t) = x0 +

∫ t

t0

f(x(ρ, τ), ρ, u(τ), v(τ), τ) dτ. (7.6)

Since f(x, ρ, u, t) is differentiable with respect to ρ, it follows that

∂x

∂ρ
(ρ, t) =

∫ t

t0

[
∂f

∂x
(x(ρ, τ), ρ, u(τ), v(τ), τ)

∂x

∂ρ
(ρ, τ)

+
∂f

∂ρ
(x(ρ, τ), ρ, u(τ), v(τ), τ)

]
dτ. (7.7)

Taking the derivative with respect to t, we obtain

d

dt

[
∂x

∂ρ
(ρ, t)

]
=
∂f(x, ρ, u(t), v(t), t)

∂x

∣∣∣∣
x=x(ρ,t)

∂x

∂ρ
(ρ, t)

+
∂f(x, ρ, u(t), v(t), t)

∂ρ

∣∣∣∣
x=x(ρ,t)

. (7.8)
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Evaluating Equation 7.8 at the nominal conditions (ρ = ρ̂), the dynamics for the parameter

sensitivity function S : [t0, tf ]→ Rn×`

S(t) =
∂x(ρ, t)

∂ρ

∣∣∣∣
x=x(ρ̂,t)

(7.9)

can be obtained as

Ṡ(t) = A(t)S(t) +B(t), S(t0) = 0n×`, (7.10)

where

A(t) =
∂f(x, ρ, u(t), v(t), t)

∂x

∣∣∣∣
x=x(ρ̂,t), ρ=ρ̂

, (7.11)

B(t) =
∂f(x, ρ, u(t), v(t), t)

∂ρ

∣∣∣∣
x=x(ρ̂,t), ρ=ρ̂

. (7.12)

Since the initial state is given (fixed), the initial condition for the sensitivity function is

the zero matrix, and Equation 7.10 is called the sensitivity equation in the literature [164].

To compute the sensitivity function over time, the state x has to be propagated using the

dynamics in Equation 7.2 under the nominal conditions,

˙̂x = f(x̂, ρ̂, u, v, t), x̂(t0) = x0. (7.13)

Note that the minimizing player u has information only about the nominal value of the

parameter. Here, x̂(t) = x(ρ̂, t) denotes the nominal state at time t, as computed by the

minimizing player while solving the differential equation in Equation 7.13, given the con-

trollers u and v. From the properties of continuous dependence with respect to the parame-

ters and the differentiability of solutions of ordinary differential equations, for sufficiently
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small variations in ρ̂, the solution x(ρ, t) can be approximated by

x(ρ, t) ≈ x(ρ̂, t) + S(t)(ρ− ρ̂). (7.14)

This is a first-order approximation of x(ρ, t) about the nominal solution x(ρ̂, t). In the

next section we develop a scheme to generate safe trajectories for the minimizing player by

penalizing a risk measure that is defined using sensitivity functions.

7.2 Constraint Desensitized Planning

7.2.1 Relevant Constraint Sensitivity

For the differential game expressed using Equation 7.1-Equation 7.5, assuming gu(x, ρ, t)

is a smooth function in x, we obtain the sensitivity of the constraint function as

Su(t) =
∂gu(x(ρ, t), ρ, t)

∂ρ

∣∣∣∣
ρ=ρ̂

=

(
∂gu(x, ρ, t)

∂x

∂x(ρ, t)

∂ρ
+
∂gu(x, ρ, t)

∂ρ

) ∣∣∣∣
x=x(ρ̂,t),ρ=ρ̂

=

(
∂gu(x, ρ, t)

∂x
S(t) +

∂gu(x, ρ, t)

∂ρ

) ∣∣∣∣
x=x(ρ̂,t),ρ=ρ̂

. (7.15)

In chapter 6, it has been argued that “variations in the constraint value when the system

is far from the constraint boundary are not as important as when the system is close to

the constraint boundary”. Therefore, to account for the fact that the constraint variations

are more likely to cause constraint violations when the system is closer to the constraint

boundary, a relevance function r : R→ [0,∞) of the form

r(z) =


r̃(z), if z ≤ 0,

r̃(0), if z > 0,

(7.16)
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where r̃ : R → [0,∞) is a continuous function that is monotonically increasing over the

interval (−∞, 0], that is, r̃(z) ≥ r̃(y), if z > y for all z, y ≤ 0, is considered.

Next, we construct the relevant constraint sensitivity (RCS) matrix Sr : [0,∞)→ Rq×k

as

Sr(t) = RSu(t), (7.17)

where

R = diag
(
r(gu1 (x(ρ, t), ρ, t)), . . . , r(guq (x(ρ, t), ρ, t))

)
. (7.18)

For the purpose of the analysis, as considered in chapter 6, the derivative of the logistic

function s(z) = 1/(1 + e−z) is chosen as the candidate relevance function, that is,

r̃(z) = s(z)(1− s(z)). (7.19)

The sensitivity matrix Sr captures the idea of giving more importance to variations near

the constraint boundary. Using the RCS, a conservative strategy for the minimizing player

is proposed in the following subsection.

7.2.2 Players’ Strategies

As mentioned earlier, each player solves a non-zero-sum game based on the information

it has about the parameter vector, and what it knows about its adversary. The minimizing

player knows that the maximizing player has an advantage in terms of possessing the true

value of the parameter. While the minimizing player is aware of this fact, since it is does

not have the true value of the parameter vector, it can only solve the game under nominal

conditions (ρ = ρ̂). To construct safe trajectories (that minimize the chance of constraint

violation) for the minimizing player under parametric uncertainties, we propose a modified
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payoff function of the form

J̃ρ̂(u, v) = Jρ̂(u, v) +

∫ tf

t0

‖vec Sr(t)‖2
Q dt, (7.20)

where ‖w‖Q = w>Qw, and Q ≥ 0. The subscript of J̃ in Equation 7.20 denotes the

parameter value that is used to evaluate the payoff function, given the control inputs u

and v. The term
∫ tf
t0
‖vec Sr(t)‖2

Q, hereafter referred to as the RCS regularizer, can be

understood as a sensitivity-based measure that captures the risk of constraint violation.

The minimizing player solves the non-zero-sum differential game

min
u∈U
gu≤0

J̃ρ̂(u, v) max
v∈V
gv≤0

Jρ̂(u, v). (Gu)

In (Gu), the minimizing player, choosing the controller u ∈ U , tries to minimize the aug-

mented payoff function J̃ρ̂(u, v) that carries the sensitivity-based risk measure while satis-

fying its trajectory constraints (gu ≤ 0) under nominal conditions. Subsequently, the player

choosing the controller v ∈ V tries to maximize the original payoff function while satisfy-

ing its constraints (gv ≤ 0) under nominal conditions. Accordingly, the minimizing player

employs the state-feedback controller û∗ : Rn → U , where (û∗, v̂∗) (with v̂∗ : Rn → V ) is

the solution to (Gu).

As mentioned in section 7.1.A, the maximizing player is unaware of the modified payoff

function of the minimizing player. However, it knows that the minimizing player only has

information about the nominal value of the parameter ρ̂. Consequently, the maximizing

player solves the non-zero-sum differential game

max
v∈V
gv≤0

Jρ̄(u, v) min
u∈U
gu≤0

Jρ̂(u, v). (Gv)

Finally, the maximizing player employs the state-feedback controller v̄∗ : Rn → V , where

(ū∗, v̄∗) (with ū∗ : Rn → U ) is the solution to Gv.
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7.3 Pursuit-Evasion with Asymmetric Information

In this section, we analyze a two-player pursuit-evasion problem with an uncertain dynamic

obstacle using the approach presented in subsection 7.2.2. Here, the control u corresponds

to the pursuer (minimizing player), and the control v corresponds to the evader (maximizing

player).

Consider a one-pursuer one-evader problem with players’ dynamics given by

ẋp = vp cosu, ẏp = vp sinu, (7.21)

ẋe = ve cos v, ẏe = ve sin v, (7.22)

where (xi, yi) ∈ R2, i = {p, e}, denote the positions of the pursuer (p) and the evader (e),

vp denotes the speed of the pursuer, and ve denotes the speed of the evader. The initial

positions of the agents are assumed to be given, and are denoted as xi(0) = ai, yi(0) = bi,

i = {p, e}. In Equation 7.21 and Equation 7.22, u, v denote the headings (control inputs)

of the pursuer and the evader, respectively. The pursuer’s objective is to capture the evader

by entering its capture zone, assumed here to be a disk of radius ε > 0 centered at the

instantaneous position of the evader, in finite time, whereas the evader’s objective is to

avoid capture indefinitely. At the same time, both agents have to avoid colliding with a

dynamic circular obstacle of radius ro, moving parallel to the y-axis with equations of

motion

ż = ρ, z(0) = d, (7.23)

where (c, z) denotes the position of obstacle, and |ρ| is its constant speed along the y-axis.

For both agents, collision avoidance can be enforced by choosing the constraint functions
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gu, gv of the form

gu = ro −
√

(xp − c)2 + (yp − z)2 ≤ 0, (7.24)

gv = ro −
√

(xe − c)2 + (ye − z)2 ≤ 0, (7.25)

j = {1, . . . , N}. Finally, to ensure capturability of the evader, it is assumed that vp > ve.

Also, it is assumed that each player can observe its instantaneous position and that of their

adversary.

For this problem, we consider the speed of the obstacle to be the uncertain parameter

i.e., the evader is aware of the actual speed of the obstacle (ρ̄) while the pursuer has only

the corresponding nominal value (ρ̂) and cannot observe the obstacles’ movements (until

collision). To this end, safe trajectories for the pursuer can be generated using the regu-

larizer introduced in subsection 7.2.2. Since the obstacles have simple dynamics, a closed

form expression to the sensitivity of the pursuer’s constraint function gu with respect to the

uncertain parameter ρ at time t is given by

Su(t) =
∂gu

∂ρ
=

(z − yp)t√
(xp − c)2 + (yp − z)2

. (7.26)

Owing to the intractability of solving the proposed pursuit-evasion problem analytically

under the framework presented in subsection 7.2.2, the corresponding games (Gu) and (Gv)

are solved numerically in a receding horizon fashion, presented in the following subsection.
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7.3.1 Receding Horizon Control

In order to construct a receding horizon control (RHC) law for both players, we rewrite the

dynamical equations in Equation 7.21-Equation 7.23 in discrete time as follows.

xpk+1 = xpk + vp cosuk∆t, ypk+1 = ypk + vp sinuk∆t, (7.27)

xek+1 = xek + ve cos vk∆t, yek+1 = yek + ve sin vk∆t, (7.28)

zk+1 = zk + ρ∆t, k = {1, . . . , N}, (7.29)

where the subscript k denotes the variable at the kth time-step, and ∆t is the length of time

interval considered for discretization (assumed to be a constant). The initial conditions are

given by (xi0, y
i
0) = (ai, bi), i = {p, e}, z0 = d. At each time-step, let N∆t be the length of

the horizon over which the games (Gu) and (Gv) are solved to obtain the open-loop controls

of players.

Since the players follow an RHC law with fixed time horizon, we assume that the

pursuer wants to minimize the relative distance at the end of the horizon, and vice versa for

the evader. Consequently, at the kth time-step in the RHC framework, the payoff function

which the players want to optimize is given by

Jρ(ǔ1:N , v̌1:N) =
√

(xpk+N − xek+N)2 + (ypk+N − yek+N)2, (7.30)

where ǔ1:N , v̌1:N are the control inputs of the players for the optimization as per the RHC

law. Note that the time interval ∆t is assumed to be constant and hence, the augmented

payoff function along with the RCS regularizer the pursuer minimizes at the kth time-step

is given by

J̃ρ̂(ǔ1:N , v̌1:N) = Jρ̂ +
N∑
i=1

‖vec Srk+i‖2
Q, (7.31)
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where Srk+i is the RCS at the ith step in the time horizon. The RHC algorithm the agents

use to obtain their respective control inputs at the kth time-step is given in Algorithm 4.

Assuming that there exists solutions for both games (Gu) and (Gv), the well-known Gauss-

Seidel method is employed to obtain the fixed points for both games [180]. The constraints

gu and gv are imposed at discrete time-steps for collision avoidance in the optimization

problems stated in Algorithm 4.

Algorithm 4 Receding horizon control law for the players

1: procedure RHC(N , ∆t, xpk, xek)
2: Initialize with [v̌1:N ]0, i← 1 . Pursuer’s game (Gu)
3: repeat
4: [ǔ1:N ]i ← arg min

ǔ1:N , gu≤0
J̃ρ̂(ǔ1:N , [v̌1:N ]i−1)

5: [v̌1:N ]i ← arg min
v̌1:N , gv≤0

Jρ̂([ǔ1:N ]i, v̌1:N)

6: i← i+ 1
7: until convergence
8: uk ← [ǔ1]i−1

9: Initialize with [v̌1:N ]0, i← 1 . Evader’s game (Gv)
10: repeat
11: [ǔ1:N ]i ← arg min

ǔ1:N , gu≤0
Jρ̂(ǔ1:N , [v̌1:N ]i−1)

12: [v̌1:N ]i ← arg min
v̌1:N , gv≤0

Jρ̄([ǔ1:N ]i, v̌1:N)

13: i← i+ 1
14: until convergence
15: vk ← [v̌1]i−1

16: return uk, vk
17: end procedure

7.3.2 Simulations

In this subsection, we present the simulation results for the pursuit-evasion game with

one uncertain dynamic obstacle. The simulations are performed in MATLAB using its in-

built function fmincon in conjunction with YALMIP [181] for the optimization problems

shown in Algorithm 4. The simulation parameters corresponding to the players and the

obstacle are chosen to be ε = 0.3, vp = 1, ve = 0.6, ρ̂ = 0.25, (ap, bp) = (0, 0), (ae, be) =

(3, 0), (c, d) = (2, 1.15), ro = 0.5. The variation in the obstacle’s speed is chosen to be
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ρ̄ − ρ̂ = 0.1. The parameters corresponding to the RHC control law are set to N = 10,

∆t = 0.1. The convergence criterion to obtain the equilibrium points for the games Gu and

Gv, as per the Algorithm 4, is chosen to be ‖[ǔ1:N ]i−1− [ǔ1:N ]i−1‖, ‖[v̌1:N ]i−1− [v̌1:N ]i−1‖ ≤

10−4

First, we examine the case where the pursuer does not desensitize, which can be cap-

tured by setting the penalty on the relevant constraint sensitivity (RCS) to be Q = 0. In

this case, the pursuer ends up colliding with the obstacle, and the result is presented in Fig-

ure 7.1. The filled grey circle denotes the obstacle’s instantaneous position (not observed

by the pursuer) while the dotted circle represents its initial position. The blue line denotes

the trajectory traced by the pursuer with the markers denoting the initial and the instanta-

neous position of the pursuer. Similarly, red corresponds to the evader. The green curves

denote the instantaneous N -step look ahead trajectories for both players based on the RHC

control law. The collision in this case can be attributed to the fact that the pursuer considers

just the nominal model of the obstacle, which cannot be observed until collision, and it

does not consider “the risk” associated to it.

Figure 7.1: An instance where the pursuer does not penalize the RCS (Q = 0) that leads to
collision

Figure 7.2 presents the results obtained for the case where Q = 1. In this case, the

pursuer solves a multi-objective optimization that minimizes the risk of collision, captured
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(a) k = 5 (b) k = 25

(c) k = 50 (d) k = 102

Figure 7.2: Simulation results for the instance where the pursuer penalizes the RCS cost
with Q = 1, and successfully captures the evader while avoiding the obstacle

using the norm of RCS, along with the relative distance at the final time-step. This is evident

from the fact that the pursuer’s instantaneous look-ahead trajectory (the green curve) takes

the pursuer away from the obstacle, as opposed to pursuing the evader along its line-of-

sight, even when the pursuer and the look-ahead trajectory is sufficiently away from the

obstacle. As a result, the pursuer maneuvers around the obstacle while maintaining a safe

distance from it. The pursuer is also successful in capturing the evader.

It has to be noted that the pursuer’s trajectory in Figure 7.2 is efficient in the sense that

it avoids collisions for a large range of variations of the obstacle speed. As observed in

chapter 6, higher penalty on the RCS norm will provide a trajectory that is prone to lesser

collisions under parametric variations while trading off capture time.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

In this dissertation, we presented solutions to pursuit-evasion problems containing multiple

agents and uncertainties. First, we considered problem formulations that involve multiple

pursuers and multiple evaders with deterministic dynamics. Since multi-pursuer multi-

evader problems are known to be intractable, heuristics based on the geometry of the game

are employed to obtain task-allocation algorithms that are computationally efficient. This

is achieved by first analyzing pursuit-evasion problems involving two pursuers and one

evader. In chapter 2, two pursuers/one evader problems are analyzed in two different sce-

narios, assuming both pursuers to be superior to the evader in terms of their speed capabil-

ities. The first scenario involves pursuers that have access to information of the evader’s

position and velocity and use this information to follow a constant bearing strategy. In the

second scenario, the pursuers have access to the evader’s position only and hence, they

follow a pure pursuit strategy. The time optimal evading strategy is identified in both sce-

narios. Since obtaining a closed-form solution in the second scenario is elusive at this point,

a competitive suboptimal strategy that can be practically implemented is identified and is

compared against the optimal strategy. The regions of non-degeneracy are used to inves-

tigate the utility of employing two pursuers to more efficiently capture the evader. If the

initial positions of the players are such that the problem is degenerate, then one of the pur-

suers does not play any role in the game, and the optimal evading strategy is pure evasion

from the other pursuer. Optimal evading strategies against relay pursuit are also investi-

gated by keeping one pursuer stationary. The results presented in this chapter provides a

potential framework for solving larger classes of multi-player time-optimal pursuit-evasion
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games under different information structures.

In chapter 3, under the assumption that the pursuers are faster than the evader(s), and

that they follow either a constant bearing (CB) or a pure pursuit (PP) strategy, workable so-

lutions for multi-pursuer single-evader (MPSE) and multi-pursuer multi-evader (MPME)

problems are provided. In both CB and PP cases, it has been established that the optimal

evading strategy in the MPSE setting depends only on those pursuers that capture the evader

simultaneously. Using this insight, a dynamic allocation algorithm for the pursuers, which

is independent of the evader’s strategy, has been proposed to solve the MPSE problem. The

proposed algorithm is based on the notion of active/redundant pursuers and their classifi-

cation using the Apollonius cycles (for the case of CB) or the Apollonius curves (for the

case of PP). The algorithm is further extended to solve MPME problems for any number

of pursuers and evaders. These algorithms ensure capture of all the evaders either in an

MPSE or an MPME setting in finite time. Subsequently, the proposed solution techniques

are extended to problems with heterogeneous teams of pursuers and evaders.

Second, we considered uncertainties that are exogenous and stochastic in nature. In

chapter 4, using the theory of general constrained games, the problem of steering a Gaus-

sian in adversarial scenarios is studied. The problem is posed from a perspective of the

player that desires to drive the distribution to a given terminal Gaussian while minimizing

a quadratic cost. The player that tries to maximize the cost is assumed to be indifferent to

the terminal constraint. It is shown that the game need not have a saddle point equilibrium.

Subsequently, we obtained necessary conditions for the controller to drive the mean to the

specified value in the upper game. The covariance steering problem is solved numerically

using the well-known Jacobi procedure. The proposed approach is applied on the missile

endgame guidance problem.

In chapter 5, a novel approach to addressing pursuit-evasion problems under external

stochastic flow fields is presented. The players’ nominal trajectories are obtained using

forward reachability analysis while ignoring the diffusion part of the flow field. The nom-
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inal solution thus obtained is time-optimal for the players under deterministic conditions.

Assuming a linear feedback control strategy, a chance-constrained covariance game is con-

structed around the nominal solution. The proposed covariance steering game involves

optimizing over the value of the smallest relative distance that can be achieved with high

probability. The pursuer tries to minimize this value while the evader tries to maximize

it by equivalently optimizing over the covariance of the relative distance. The proposed

approach is tested on realistic linear and nonlinear flow fields. Numerical simulations sug-

gest that the pursuer can effectively steer the game towards capture while controlling the

covariance of the relative distance.

Finally, we considered uncertainties that are parametric in nature. In chapter 6, the asso-

ciated optimal control formulation is analyzed initially using sensitivity functions. Various

schemes for trajectory/state desensitization are proposed which compete with the existing

approaches in terms of the computational complexity, and it is realized that the sensitiv-

ity function is more tractable compared to the Seywald’s sensitivity matrix. The proposed

schemes are demonstrated using fixed final time, and minimum time Zermelo’s optimal

control problems. Subsequently, a sensitivity function-based regularizer is introduced to

obtain conservative solutions that avoid constraint violation under parametric uncertainties

in optimal control problems. Using the fact that collision avoidance can be expressed as a

state constraint, the approach is applied for path planning problems involving dynamic un-

certain obstacles. The proposed regularizer is first analyzed on simple problems to study its

characteristics and to identify its limitations. It is observed that the form of the constraint

function used to construct the regularizer affects the behavior of the trajectories. The re-

sults on environments with as many as ten dynamic obstacles indicate that safety can be

enhanced with an acceptable trade-off in optimality.

In chapter 7, the sensitivity function based approach is extended to game-theoretic for-

mulations to address planning in adversarial environments with asymmetric information.

The uncertainty associated to the asymmetric information is assumed to be parametric in
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nature. To this end, penalizing the norm of the relevant constraint sensitivity, which can

be understood as a form of risk measure, is shown to provide safe trajectories that reduce

the risk of constraint violations. In a two-player pursuit-evasion game in which the pur-

suer has information only about the nominal motion model of an uncertain obstacle, it is

demonstrated that the pursuer can generate trajectories that can capture the evader while

successfully avoiding the obstacle under variations in its nominal motion model.

8.2 Recommendations for Future Research

The work presented in chapter 2 provides interesting directions for future research. Algo-

rithm 1 and the Apollonius allocation (A2) algorithm are implemented at every time-step

to identify active pursuers for each evader. The computational requirements associated to

the implementation of these algorithms can be improved by having an estimate of when the

assignment can change to avoid unnecessary calculations at every time-step. The A2 algo-

rithm identifies the redundant pursuers to save resources in terms of fuel. However, it does

not consider fuel limitations posed for a single vehicle, as is the case in real-world scenar-

ios. Therefore, it is been observed that a single pursuer can be assigned to the active duty of

pursuing evaders for a considerably longer time compared to the rest of the pursuers in its

team. To this end, the proposed algorithms for multi-pursuer multi-evader (MPME) prob-

lem can be extended to include constraints on the total time for which a pursuer can remain

active. A potential solution approach to this problem formulation can involve employing

the pursuers that are found to be redundant as per the A2 algorithm.

Another interesting research direction is to consider non-holonomic dynamics that im-

poses turn-radius constraints for players in MPME problems [189, 190]. One of the promis-

ing approaches to solve this problem can involve extending the notion of Apollonius curves

to account for the players’ turn-radius constraints. The concept of an evader’s safe-reachable

area in pursuit-evasion problems with non-holonomic systems can be utilized in this regard

[191]. The boundary of an evader’s safe reachable set can be considered as the general-
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ization of the Apollonius circle. It has to be noted that the Apollonius circle is expressed

in closed-form as a function of the players’ instantaneous positions and speed capabilities.

However, the safe reachable set of an evader, which is assumed to be a Dubins vehicle, in

a pursuit-evasion game can only be obtained numerically. In MPME scenarios, obtaining

such safe reachable sets for every pursuer-evader pair can be computationally challenging.

Once the boundary of the safe reachable set associated to a single pursuer-evader pair can

be obtained efficiently, the next challenge is to define a closed curve around each evader

that is analogous to the Apollonius boundary to identify its active pursuers. In order to ad-

dress airspace security using the solution approaches proposed in this thesis, it is important

to extend them to scenarios with closed domains. Since in the case of guarding a territory,

it is common to assume that successful evasion involves leaving the game space by being

able to cross the boundary of the closed domain.

In chapter 4 and chapter 5, it is assumed that each player observes the instantaneous

positions of the players and the control input of their adversary at the previous time-step.

This is a very strong assumption, and future work can consider output-feedback structure,

that is closer to real-world situations. An observer for each player can be constructed

to estimate the state of their adversary while employing an output-feedback control. As

demonstrated in [72], the players can choose to increase the uncertainty in their state along

with optimizing the relative distance. This can prove to be an efficient strategy for the

evader, as shown in chapter 5, when it is slower compared to the pursuer.

In the covariance steering game from chapter 4, it is assumed that the maximizing

player is indifferent to the minimizing player’s terminal constraint. The terminal constraint

is a form of capture condition for pursuit-evasion problems. Since the evader would ideally

want to avoid capture indefinitely, the case in which the maximizing player (evader) is ad-

versarial to the terminal constraint is worth analyzing. In the corresponding mean steering

game, a condition similar to the relative controllability matrix being full rank can be ob-

tained for both players. Such a result will establish the fact regarding who can efficiently
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drive the state to their desired terminal condition.

Extension to multi-player stochastic pursuit-evasion problems is an important area of

research. The forward reachability based approach for deterministic pursuit-evasion, dis-

cussed in chapter 5, is developed for multi-pursuer single-evader (MPSE) games [66].

Therefore, in MPSE scenarios, the nominal trajectories of the players can be obtained from

the forward reachability analysis, as discussed in Ref. [66]. First, a chance-constrained

covariance game involving multiple pursuers and single evader can be formulated to obtain

feedback strategies for all players. The interesting aspect of this research direction is to

analyze the aspect of cooperation among the pursuers. The payoff function for each pur-

suer can be designed such that the pursuers capture the evader with high probability in a

decentralized and non-cooperative fashion. Alternatively, there can be a payoff function

that is common to all pursuers such that the evader can be captured with high probability in

a cooperative fashion. The importance of cooperation can be quantified by comparing the

performance under the aforementioned payoff functions. Also, it is important to analyze

the existence and uniqueness of the equilibrium solution in these covariance steering games

One of the challenging research directions is to develop computationally efficient algo-

rithms to solve these games numerically. The Gauss-Seidel and Jacobi iterative techniques

require the payoff function to be convex to guarantee the existence of a stable equilibrium,

and subsequently, convergence of these algorithms. In most cases, the pursuit-evasion prob-

lem formulations are non-convex, and convexification methods can be explored to address

this problem [192, 193, 194].

Finally, desensitized optimal control (DOC) and its game-theoretic extension provide

promising research directions. The idea of DOC can be analyzed from the perspective of

risk-sensitive optimal control. Assuming that the parameter is a Gaussian random variable

ρ ∼ N (ρ̂, P ), the expected output variation can be approximated using sensitivity functions
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as

E[δyδy>] ≈ tr[Y SPS>Y >], (8.1)

where y is the output vector, Y is the Jacobian of the output function with respect to the state

vector x, and S is the sensitivity function. It has been shown that by penalizing the expected

output variations, as opposed to the norm of the sensitivity matrix, open-loop trajectories

that are robust to parametric variations can be generated in the case of hypersonic vehicle

trajectory optimization [195]. This approach is very much inline with the concept of risk-

sensitive optimal control, where the variance of the cost function is penalized along with

the expected cost to ensure robustness.

In chapter 6, the sensitivity function based regularization techniques ensure robustness

of the open-loop trajectories under parametric variations. The approach can be extended

to include feedback control design into the DOC framework by considering the sensitivity

equation of the closed-loop trajectory, given by

Ṡ = (A+ CK)S +B, S(t0) = 0, (8.2)

where K is the closed-loop gain that is obtained under the assumption of linear feedback

control ∆u = K∆x. Here, A, B, C denote the Jacobian of the state dynamics with respect

to state, parameter, and control, respectively (evaluating along the nominal trajectory). Pre-

viously work assumed that the gain K to be a constant [113], and was independent of the

nominal control that is obtained while regularizing the sensitivity function. Preliminary

research suggests that the gain K can be driven by the choice of the nominal control by

augmenting the dynamics of the Riccati equation to the set of constraints. This will most

likely provide a coupled nominal and feedback control with an acceptable trade-off between

the corresponding performance metrics.

Finally, the problem formulation that is discussed in chapter 7 can be extended to in-
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clude the aspect of deception by the player who has an information advantage. For example

in the pursuit-evasion game, discussed in chapter 7, it is worth analyzing whether the rel-

evant constraint sensitivity (RCS) regularizer is efficient against active deception by the

evader. Assuming the evader knows that the pursuer has only the nominal model of the

obstacle, and both players follow a position-feedback-based strategy, the evader can max-

imize the chance of pursuer colliding the obstacle by modifying its own payoff function.

This will involve luring the pursuer closer to the obstacle due to its lack of information

regarding the parametric variations, and based on the pursuer’s feedback strategy.
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Birkhäuser Basel, 2008, pp. 269–283.

[194] G. Ibragimov, M. Ferrara, M. Ruziboev, and B. A. Pansera, “Linear evasion differ-
ential game of one evader and several pursuers with integral constraints,” Interna-
tional Journal of Game Theory, pp. 1–22, 2021.

[195] V. R. Makkapati, J. Ridderhof, P. Tsiotras, J. Hart, and B. van Bloemen Waanders,
“Desensitized trajectory optimization for hypersonic vehicles,” in IEEE Aerospace
Conference, Big Sky, MT, 2021, pp. 1–10.

197



VITA

Venkata Ramana Makkapati is a doctoral candidate in the School of Aerospace Engineering

at Georgia Tech. He applies techniques from optimal control and differential games to

address problems pertaining to autonomous vehicles, emphasizing safe path planning and

airspace security. He received the B.Tech. from IIT Madras in 2014, and the M.Tech.

from IIT Kanpur in 2016, both in Aerospace Engineering. In the past, he held internship

positions at Foresight AI (a self-driving car technology start-up in Silicon Valley), CSIR -

National Aerospace Laboratories, Bangalore, India, and Mahindra & Mahindra, Chennai,

India. Ramana is an FAA certified Private Pilot in the category Airplane Single Engine

Land.

198


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Motivation
	Literature Survey
	Contributions and Thesis Outline

	2 | Pursuit-Evasion Scenarios Involving Two Pursuers and One Evader
	Background
	Problem Formulation
	The Regions of Non-degeneracy
	Optimal Evading Strategies Against Two Pursuers
	Optimal Evading Strategies with a Stationary Pursuer

	3 | Task Allocation in Multi-Player Pursuit-Evasion Problems
	Problem Formulation
	Optimal Evading Strategies in Multi-Pursuer Single-Evader Problems
	Active/Redundant Pursuers
	Extension to Multi-Pursuer Multi-Evader Problems
	Pursuit-Evasion with Heterogeneous Teams

	4 | Covariance Steering for a Class of Linear Quadratic Stochastic Dynamic Games
	Mathematical Preliminaries
	Separation of Mean and Covariance Control Problems
	Mean Steering Game
	Covariance Steering Game
	Numerical Simulations

	5 | Pursuit-Evasion in Stochastic Flow Fields
	Problem Formulation
	Reachability Analysis
	Covariance Control Game
	Simulations

	6 | Desensitized Optimal Control
	Preliminaries
	Sensitivity Functions
	Optimal Trajectory Desensitization
	Constraint Desensitized Path Planning
	C-DOC: Co-state Desensitized Optimal Control

	7 | Desensitized Strategies for Pursuit-Evasion Games with Asymmetric Information
	Preliminaries
	Constraint Desensitized Planning
	Pursuit-Evasion with Asymmetric Information

	8 | Conclusions
	Summary
	Recommendations for Future Research

	References
	Vita

