
UNIVERSAL NAVIGATION: LEARNING A GENERAL NAVIGATION POLICY
FOR HETEROGENEOUS ROBOTS

A Dissertation
Presented to

The Academic Faculty

By

Qian Luo

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2021

© Qian Luo 2021



UNIVERSAL NAVIGATION: LEARNING A GENERAL NAVIGATION POLICY
FOR HETEROGENEOUS ROBOTS

Thesis committee:

Dr. Sehoon Ha
School of Interactive Computing
Georgia Institute of Technology

Dr. Matthieu Bloch
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Matthew Gombolay
School of Interactive Computing
Georgia Institute of Technology

Date approved: July 31, 2021



I’m not super. Any talents I have, I worked for – it seems a long time since I thought of

myself as a hero.

Oliver Queen



ACKNOWLEDGMENTS

I would like to thank Prof. Sehoon Ha for serving as my advisor during my time at

the Computer Animation Robotics Lab, greatly inspiring me with various research ideas

and teaching me numerous technical skills. I also thank Prof. Matthieu Bloch and Prof.

Matthew Gombolay for serving as my course mentors and members of my thesis commit-

tee, who taught me fundamental knowledge of this work and gave me golden advice.

I thank Prof. Woon-Hong Yeo for giving me opportunity to work as a research assistant

in his lab, and supporting me during my last semester. I also thank Prof. Dhruv Batra for

leading me to join his lab project, which greatly benefit my future career.

Special thanks are due to my family, friends and colleagues who kept encouraging me

during my master’s journey. I could never complete this work without your support!

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 DRL based Visual Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Skill Generalization in Visual Navigation . . . . . . . . . . . . . . . . . . . 5

2.3 Meta-learning and Few Shot Adaptation . . . . . . . . . . . . . . . . . . . 6

Chapter 3: Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 4: Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Navigation baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Adaptation with Supervised Learning . . . . . . . . . . . . . . . . . . . . . 10

4.3 Adaptation with Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 5: Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 13

v



5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Adaptation Experiments with Meta-Learning . . . . . . . . . . . . . . . . . 13

5.3 Comparison of Adaptation Algorithms . . . . . . . . . . . . . . . . . . . . 16

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 6: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



LIST OF TABLES

5.1 Comparison of Adaptation Algorithms . . . . . . . . . . . . . . . . . . . . 17

vii



LIST OF FIGURES

1.1 The visual features of robots of different sensor heights are quite different,
making it hard to directly transfer the learned policy to another robot. Vi-
sual navigation for heterogeneous robots must resolve perspective differences. 2

4.1 A network architecture of a navigation agent, which consists of the percep-
tion and inference networks. . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Adaptation via supervised learning or meta learning. We only adapt the
perception network while freezing the inference network. . . . . . . . . . . 10

5.1 Learned Behaviors of the baseline agent with the default setting (Top)
and the adapted agent with meta-learning for the camera height change
(Middle) and the target object change (Bottom). We show three observa-
tions and three map images, which are sampled at different moments. For
all experiments, green lines indicate the shortest path between the starting
and goal locations. The rightmost column represents the trajectories of two
dimensional latent variables over time. . . . . . . . . . . . . . . . . . . . 14

5.2 Learning curves of meta-adaptation for two tasks: sensor height changes
(Left) and object color changes (Right). The results indicate that meta
learning can successfully adapt to new scenarios (blue to red). . . . . . . . 15

5.3 Analysis on meta-learning adaptation. We report the average success rates
that are measured in both sensor height changing and target color changing
scenarios. We investigate the number of the latent dimension (Left) and
the number of shots (Right). More shots lead to better success rates but the
number of latent dimensions do not have significant impacts on the success
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

viii



SUMMARY

Target-driven visual navigation is a challenging problem that requires a robot to find the

goal using only visual inputs. Many researchers have demonstrated promising results using

deep reinforcement learning (deep RL) on various robotic platforms, but typical end-to-end

learning is known for its poor extrapolation capability to new scenarios. Therefore, learn-

ing a navigation policy for a new robot with a new sensor configuration or a new target

still remains a challenging problem, which could be defined as a ’Universal Navigation’

problem. The objective of the proposed research is to find a universal policy for the agent

to quickly adapt to new sensor configurations or target objects, and successfully navigate

in unseen situations. In this project, we design a policy architecture with latent features

between perception and inference networks and quickly adapt the perception network via

meta-learning while freezing the inference network. Our experiments show that our algo-

rithm adapts the learned navigation policy with only three shots for unseen situations with

different sensor configurations or different target colors. We also analyze the proposed

algorithm by investigating various hyperparameters. A paper based on this work [1] was

accepted to International Conference on Robotics and Automation(ICRA) 2021.
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CHAPTER 1

INTRODUCTION

Visual navigation is a fundamental skill for robotic creatures to conduct real-world au-

tonomous missions, such as logistics, surveillance, or home-assistance. However, learning

visual navigation policy is a challenging problem that involves multiple aspects of robotics

research, from scene understanding to motion planning. Recent advances in deep learning

have enabled robotic agents to learn effective navigation policies in various scenarios [2,

3, 4]. However, deep RL often requires a tremendous amount of computational costs. For

instance, the work of Wijmans et al. [5] requires a large GPU cluster with 64 nodes to solve

a point-to-point navigation problem, which corresponds to six-months of GPU time.

Learning visual navigation becomes even more challenging if we start to consider a

lot of heterogeneous robots needing navigation skills for their missions, such as wheeled

robots for warehouse logistics, legged robots for wilderness monitoring, or drones for last-

mile delivery. A naive approach is to learn a navigation policy for each robot independently,

but it will be computationally expensive. To make matters worse, there is no guarantee that

the same scheme will lead to the same successful policy on all the robots. An alternative

approach is to transfer a learned policy from one robot to another robot: however, heteroge-

neous robots have different sensing and actuation capabilities, making the transfer difficult.

Figure 1.1 illustrates camera inputs of different robots(different sensor heights) that are

sampled from the same location, which present noticeable different visual features.

To deal with such ’Universal Navigation’ problem, we propose a novel algorithm for

learning a visual navigation policy that can quickly adapt to new observations induced by

different camera configurations or different target objects. We assume the same action

space across different robots; under this assumption, all agents are controlled using the

same abstract navigation commands, such as go straight, turn left, turn right, and stop.
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Figure 1.1: The visual features of robots of different sensor heights are quite different,
making it hard to directly transfer the learned policy to another robot. Visual navigation for
heterogeneous robots must resolve perspective differences.

Under this assumption, the key technical challenges here are to extract invariant knowledge

shared across different observation spaces and to adapt the learned policy to a new scenario

with a minimal amount of additional data.

We tackle this problem based on two steps: the baseline agent learning step and the

adaptation step. During the baseline agent learning step, we train an effective navigation

agent that consists of two components: 1) a perception network that encodes visual inputs

into the latent variable and 2) an inference network that infers the cost-to-go value and

optimal actions from the latent variable. During the adaptation phase, we only adapt the

perception network using supervised learning (SL) while freezing the inference network.

Because SL requires a lot of samples from the target environment that are not available for

real-world applications, we propose a few-shot adaptation method via meta-learning.

We evaluate the proposed algorithm on a target-driven navigation problem on the Habi-

tat simulator [6]. We investigate the adaptation of navigation skills to heterogeneous robots
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(unseen scenarios with different camera heights) and different tasks (different target ob-

jects). Our experimental results indicate that the learned agent with one visual observation

space can be quickly adapted to a new scenario by using less than five shots, which is en-

abled by our novel method of meta-learning on the latent space. We further validate the

algorithm’s design by comparing different hyper-parameters, the dimension of the latent

parameters and the number of meta update steps.
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CHAPTER 2

RELATED WORK

2.1 DRL based Visual Navigation

Over the past few years, a tremendous effort has been put towards enabling autonomous

navigation agents in realistic environments. For this purpose, many environments with var-

ious fidelity have been developed. The early work of Mirowski et al. [7] provides game-like

maze environments, while recent simulators like MINOS [8], Habitat [6], and iGibson [9,

10], provide a physics-enabled simulated environment with a photo-realistic rendering for

training and evaluation of autonomous agents performing various tasks such as object ma-

nipulation, navigation, and search. These simulators enable the agents to learn the task via

trial-and-errors, over millions or billions of environment interactions, aiming for successful

sim-to-real transfer.

Recently, Decentralized Distributed Proximal Policy Optimization (DD-PPO) [5] demon-

strates that a near-perfect point-goal agent can be trained to navigate based on visual ob-

servations and GPS information in an end-to-end fashion. Yuke Zhu et al. [11] trains

scene-specific expert policies while demonstrating how the control policy can be condi-

tioned on visual target information, such as a picture of the goal location in addition to the

agent’s first-person view observation.

To enable longer-horizon navigation with spatio-temporal dependencies, the work of

Fang [12] proposes a novel network architecture using Transformer [13] for visual navi-

gation, which shows better performance than both reactive and Long short-term memory

(LSTM) [14] agents. Active Neural SLAM [15, 16] shows that the careful hierarchical

decomposition of the navigation policy leads to reduced sample complexity compared to

typical end-to-end agents.
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We utilize the Habitat simulator [6] and PPO [17] algorithm to train a vision-based

target-driven expert policy. Our agent perceives the RGB visual information of the envi-

ronment that contains a single visual target goal.

2.2 Skill Generalization in Visual Navigation

Various methods for generalizing the learned agents to new scenarios have been proposed

[11, 18, 19, 20, 21, 22, 23]. One of the popular approaches to generalize over the various

sensor and task configurations is Domain Randomization (DR) [20, 24], which trains an

agent in randomized environments.

An alternative approach to address the generalization problem is a hierarchical approach

that decomposes the problem into multiple sub-components. For instance, the object-search

task can be decomposed into the detection of object-specific information and navigation

based on the extracted information. The work of Ye et al. [18] jointly trains an object

recognition model for predicting the object mask and a control policy. At the adaptation

phase, only the object recognition model is adapted with supervised learning, while the con-

trol policy remains unchanged. Similarly, in the work of Devo et al. [19], the architecture

is decomposed into two networks: object recognition network and navigation/exploration,

where only the recognition part is adapted at the transfer stage. Yuke Zhu et al. [11] studies

the generalization of RL in different scenes and tasks by sharing feature embeddings of

perception network across scene-specific expert policies. With such design the perception

network is ought to produce generalized features that are useful in different scenes.

Our policy is similarly decomposed into two components; however, we do not rely on

any assumption regarding the task at hand. The expert policy (prior to adaptation) is trained

in an end-to-end fashion with a constrain of a bottleneck between perception and inference

components. We keep the inference network fixed at an adaptation stage and only adapt

the perception part. While the task selected for experiments is related to navigation, our

method can be applied to a wide range of vision-based control problems.
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2.3 Meta-learning and Few Shot Adaptation

As opposed to learning a single policy exhibiting robust behaviors in all scenarios, re-

searchers [25, 26, 27, 28, 29, 30] have developed algorithms to quickly adapt the learned

policy to a new scenario, which is referred to as meta-learning. One notable algorithm

is Model-agnostic Meta-learning (MAML) [25], which is a meta-learning algorithm that

can be applied to both supervised learning and reinforcement learning. During the training

phase of MAML, the optimizer brings the network parameters into the state where they

are ready for fast adaptation to a new task. By taking a few gradient steps during the meta-

adaptation phase, the agent becomes ready for the testing domain. In the work of Wortsman

et al. [31], a self-supervised interaction objective is combined with MAML to enable the

navigation agent to adapt throughout testing rollouts. Li et al. propose [32] to jointly

meta-train a high-level policy with sub-skills in an unsupervised fashion and only adapt the

high-level policy at the adaptation phase. Our approach also utilizes the MAML for training

the perception network without relying on the learning of the sub-skills. We demonstrate

that latent embedding enables rapid adaptation with only a handful of the target images set

to the same configuration as in the source environment.

6



CHAPTER 3

PROBLEM FORMULATION

Let us consider a target-driven visual navigation problem, where the agent aims to learn

a policy to find the given target with egocentric visual inputs. We formulate this task as

Partially Observable Markov Decision Processes (PoMDPs), (S,O,A, T , r, p0, γ), where

S is the state space, O is the observation space, A is the action space, T is the transition

function, r is the reward function, p0 is the initial state distribution and γ is a discount

factor.

In a typical navigation episode, at each time t, the agent receives an observation ot

based on current state st, ot = c(st). After the agent takes an action at ∼ π(ot) based

on the observation ot, it gets reward r from the environment and arrives at a new state

st+1 = T (st, at). The goal of reinforcement learning [33] is to find the optimal policy that

maximizes the accumulated reward:

J(π) = Es0,a0,...,sT

T∑
t=0

γtr(st, at). (3.1)

1) Observation Space. In our problem, we assume that each robotic agent has its own

observation function ot = c̃(st) ∈ Õ, which represents its unique camera perspective,

possibly with the target object class present in observation. Here, we regard st as the ground

truth state at time t, which represents the agent’s position and orientation. For instance,

Turtlebot [34] and Fetch [35] robots have different camera heights of 0.15−0.55m and 1.1−

1.5m, which results in distinctive visual features in input images from the same location.

Also, the observed visual inputs of different targets from the same position will be different

from each other. We assume that an observation function c̃ typically returns a single RGB

or RGB-D image. This robot-specific observation function defines our unique challenge of
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learning a common navigation policy that can be generalized to a new observation space.

2) Action Space. From the given observation ot, the agent takes an action at ∈ A,

where the discrete action space A is defined as {MoveForward, TurnLeft, TurnRight,

Stop}, which is the default setting in the Habitat [6] environment. The episode is con-

sidered successful only if the agent calls the ’Stop’ action at the location close enough to

the pre-defined target. Otherwise, the episode is considered failed, and the agent does not

receive a success reward.

3) Reward function. Our reward function is designed to encourage the agent to reach

the goal, which is slightly adapted from the default setting in the Habitat:

rt(st, at) =


rs, if dgt < 0.1 and at = Stop

rd + w1(d
g
t−1 − d

g
t )− w2(d

s
t−1 − dst), others

where rs is the reward when the episode ends successfully, rd is a fixed negative live

penalty, and dgt and dst are the distances from the agent to the goal and start point at time

t. The term dst−1 − dst is designed to encourage exploration at the beginning of episode to

prevent the agent from being trapped in a narrow room. We set rs, rd, w1, and w2 as 10,

-0.1, 1 and 0.1 for all the experiments.
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CHAPTER 4

METHOD

4.1 Navigation baseline

As the first step, we train a baseline navigation agent that successfully finds an object

based on visual inputs. Our algorithm particularly requires a highly effective agent because

it defines the nominal behaviors of all the agents. We train a baseline agent with a standard

configuration with the 1.25 m camera height with a red color target.

We use an end-to-end RL framework to train an agent to find a specified target with a

single observation function. Our policy architecture consists of two components: the per-

ception network and the inference network (Figure Figure 4.1). For the perception network,

we use a simple 3-layer CNN visual encoder to extract features, or the latent variables, of

the RGB image input. The inference network processes the features through a Long Short-

Term Memory network (LSTM) [14] and computes the final actions and values. We opti-

mize the entire policy network using Proximal Policy Optimization (PPO) algorithm [17].

Figure 4.1: A network architecture of a navigation agent, which consists of the perception
and inference networks.
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Figure 4.2: Adaptation via supervised learning or meta learning. We only adapt the per-
ception network while freezing the inference network.

4.2 Adaptation with Supervised Learning

Once we obtain a baseline agent, the next step is to adapt it to an updated observation

function ot ∼ c̃(st) that is different from the original function c. A naive solution is to

train a new policy from scratch; however, this approach takes a lot of computational time

and does not guarantee that the same hyperparameters can learn a satisfactory policy in

a new scenario. Alternatively, a more structured approach is domain randomization (DR)

[20, 24], where we train a single navigation agent while randomizing observation functions

during the training process. However, DR can learn a conservative policy that is suboptimal

for many tasks.

Instead, we propose only to adapt the perception network to a new observation function

c̃ using supervised learning (Figure Figure 4.2), which is similar to the idea of the prior

work of Gordon et al. [23]. More specifically, we adapt the learned perception network to

produce the same latent variables from the collected images, which will be the inputs to the

inference network. We do not change the inference network because the agent can use the

same actions to solve the problem if the current state is inferred correctly.

For all the states {s1, · · · , sK} in the sampled trajectories, we collect all the tuples of

(c(st), c̃(st), φ(ot)) where φ is the perception network that outputs the latent state from the

visual observations. The same simulator state st is used as input to both c and c̃, and the
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difference in ot is reflected in the sensory observation (e.g. camera view from a different

sensor heights or a distinct target object). Then we can train a new perception function

φ̃(st) by minimizing the loss L =
∑
|φ(c(st)) − φ̃(c̃(st))|. Our preliminary experiment

indicates that this adaptation with SL works well for a target navigation task in various

scenarios given enough data from the new environment.

4.3 Adaptation with Meta-Learning

Algorithm 1 A Few Shot Adaptation with Meta-Learning

1: Initialize task distribution p(T ), learning rates α and β, a number of gradient steps K,
and model parameter θ

2: while not done do
3: Sample batch of tasks Ti based on p(T )
4: for all Ti do
5: Calculate ∇θLTi(fθ) and compute adapted parameters with K gradient descent:

θ′i = θ − α∇θLTi(fθ)
6: end for
7: θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i)

8: end while

However, if we aim to apply the SL approach to real-world scenarios, it is likely to

be infeasible because it requires a lot of samples from the target-environment. In addi-

tion, it requires us to collect the observation c̃(st) from the same simulation trajectory

{s1, · · · , sK}. But it is difficult for a robot to exactly track the given simulation trajectory

in the real-world environment due to the difference in observation functions and control er-

rors, unless we exploit other frameworks, such as Simultaneous Localization and Mapping

(SLAM) [36] or external motion capture systems.

Instead, it will be more data-efficient if we can adapt to a new scenario using only a

handful of examples via meta-learning. In our scenario, this corresponds to collection of

observations from a few key places, such as the four corners of the room or locations near

the goal object. Please note that we simplified the problem by assuming that the sim-to-real

gap is only introduced by a new observation function, while the other sim-to-real factors

11



have minimal impacts due to the photo-realistic rendering of the environment.

We propose a data-efficient adaptation via meta-learning, which requires only a few

shots. We exploit the existing meta-learning framework, Model Agnostic Meta Learn-

ing [25], which explicitly learns to make a quick adaptation to the perception network φ̃

with a small number of gradient steps. In our scenario, we consider a distribution of tasks,

p(T ), where each task Ti is to navigate with the given observation function c̃i. We train

our meta-perception network φ̃θ, which is parameterized by θ, to learn an unseen task from

only M ≤ 10 samples. To this end, we first sample a batch of N tasks T1···N from the

distribution and compute the adapted parameters θ1···N by taking K gradient steps. Then

we update the meta-parameters θ by aggregating the changes of the adapted parameters,

θ1···N . The algorithm is summarized in Algorithm Line 1. For more details, please refer to

the original paper [25].

12



CHAPTER 5

EXPERIMENTAL EVALUATION

In this section, we discuss the simulation experiments for validating the proposed algo-

rithm. We design the experiments to answer the following questions.

1. Can our algorithm effectively adapt to unseen observation functions?

2. Does our meta-adaptation show better generalization than other algorithms?

3. How does the selection of hyper-parameters impact the performance?

5.1 Experiment Setup

We use the Habitat simulator as our testing platform, which offers photo-realistic rendering

at high speed, up to over several thousand FPS on a single GPU. All the experiments are

conducted on a laptop equipped with an 8GB Intel i7 8750H Processor and a GTX1060

GPU. We firstly train the navigation baseline (Section section 4.1) in the Habitat Avonia

environment to find a red ball with the 1.25m camera height. The training dataset contains

4000 episodes, and the validation set contains 200 new episodes with randomized initial

agent positions and target object locations.

We learn policies using PPO [17], where the discount factor is set to 0.99, and the GAE

parameter is 0.95. After 6 hours of training, the agent could navigate to the target with 84%

success rate and 0.69 success weighted path length (SPL) [37]. For adaptation wiht meta

learning, our MAML implementation uses the same inner learning rate of 2e-4 and outer

learning rate of 2e-4, three-shots(all containing the object), and ten gradient step updates.

5.2 Adaptation Experiments with Meta-Learning

Figure Figure 5.1 shows the rollouts of three agents:

13



Figure 5.1: Learned Behaviors of the baseline agent with the default setting (Top) and the
adapted agent with meta-learning for the camera height change (Middle) and the target
object change (Bottom). We show three observations and three map images, which are
sampled at different moments. For all experiments, green lines indicate the shortest path
between the starting and goal locations. The rightmost column represents the trajectories
of two dimensional latent variables over time.

1. Navigation Baseline: The agent is trained and evaluated with fixed sensor (1.25m)

and target configuration.

2. Sensor Height Changing: The agent is meta-trained with the heights between 0.6m

and 1.3m and evaluated at 1.8m after meta-adaptation.

3. Target Changing: The agent is meta-trained with 10 target colors and evaluated

with a new dark-blue color after meta-adaptation.

Each row contains three egocentric observations and three map images collected at

three different moments: when an agent is searching the ball, locating the ball, and getting

close to the ball, respectively. As shown in Figure Figure 5.1, our algorithm successfully

adapts the policy to new scenarios using only three-shots. As expected, the adapted agents

show very similar behaviors to the baseline agent because we only adapt the perception

network. The rightmost column of Figure Figure 5.1 plots two-dimensional latent values in

the rollouts, which become larger when the agent detects the target object. Meta-adapted

14



Figure 5.2: Learning curves of meta-adaptation for two tasks: sensor height changes (Left)
and object color changes (Right). The results indicate that meta learning can successfully
adapt to new scenarios (blue to red).

agents in both scenarios closely track the baseline agent’s latent features, and are able to

call the “STOP” action to end the episode successfully.

Figure Figure 5.2 illustrates the learning curves of two meta-adapted agents. The train-

ing takes only 15 minutes for the sensor height changing scenario while taking three hours

for the color-changing problem. For both scenarios, the testing loss after meta-updates is

much lower than the testing loss before beta-updates, highlighting the importance of the

meta-updates in our algorithm. And we also want to note that the testing loss for the color-

changing problem is still going down even when the training curve is saturated.

We compare the proposed algorithm against the navigation baseline and a few other

training methods:

1. Navigation Baseline: The agent is trained with a nominal observation function as

described in Section section 4.1.

2. Domain Randomization: The agent is trained with randomized observation func-

tions within the training range.

3. Domain Randomization with target embedding: Inspired by the work of Zhu et

al. [11], we amend domain randomization to take an observation of the target as
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additional inputs. Such augmentation serves as an oversampling mechanism that

balances the distribution of target and non-target images.

4. Supervised Learning (SL): The agent is adapted with supervised learning as de-

scribed in Section section 4.2.

5. SL + Few Shots: Based on the perception network learned by SL, we further refine

the model by leveraging three images from the target environment, which uses the

same amount of data as meta-learning.

6. MAML + Few Shot Adaptation The agent is trained using the method described in

Section section 4.3 and task settings described in Section section 5.2

We apply these methods to two tasks: camera sensor height changes task and target

color changes task. In both tasks, the training and testing range of either method are the

same. For all experiments, we train each policy until they are fully converged. We did

not set the same computation budgets because some methods (Navigation Baseline, Do-

main Randomization) are pure reinforcement learning and the others combine reinforce-

ment learning and supervised learning. We run 200 episodes for each agent and take the

average SPL and success rate to ensure the accuracy.

5.3 Comparison of Adaptation Algorithms

The results are summarized in Table Table 5.1. During the training, all of the methods

produce approximately equal results, and all perform on par with the Navigation Baseline.

However, in the testing setting our algorithm, adaption with meta-learning shows the best

performance in both scenarios, while others approaches perform poorly on the unseen tasks.

In the color changing case, our algorithm dramatically outperforms other methods, and the

SPL and success rate are close to that of baseline agent in the training agent.
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Table 5.1: Comparison of Adaptation Algorithms

Training Testing

Task: Camera Height Changes SPL Success SPL Success

Navigation Baseline 0.69 0.84 0.00 0.00
Domain Randomization 0.71 0.86 0.04 0.10
DR + target embedding 0.69 0.82 0.06 0.09
SL 0.66 0.83 0.02 0.05
SL + Few Shots 0.61 0.75 0.01 0.03
MAML + Few Shot Adaptation 0.67 0.84 0.18 0.25

Training Testing

Task: Target Color Changes SPL Success SPL Success

Navigation Baseline 0.69 0.84 0.06 0.10
Domain Randomization 0.41 0.50 0.16 0.21
DR + target embedding 0.43 0.52 0.16 0.22
SL 0.63 0.82 0.18 0.24
SL + Few Shots 0.60 0.78 0.08 0.11
MAML + Few Shot Adaptation 0.63 0.80 0.50 0.70

5.4 Analysis

We further analyze the proposed algorithm by conducting an ablation study. Particularly,

we investigate the impact of two hyperparameters: the dimension of the latent space be-

tween the perception and inference networks, which is studied based on three-shot MAML

adaptation, and the number of shots in meta-adaptation studied with two-dimensional la-

tent space. Intuitively, the dimension of the latent space is expected to have an impact on

the performance: a smaller dimension may be easier to adapt but also may result in a more

convoluted latent space. We also expect that more shots grant the meta-learning process

more adaptation capability while making the entire network harder to learn.

We compare the performance of meta-learning with different hyperparameters in Fig-

ure Figure 5.3. All of the experiments are evaluated in the testing sets for both sensor height

changing and object color-changing tasks. Against our intuition, the dimension of the la-

tent space does not significantly affect the success rate. We suspect that this is because a
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Figure 5.3: Analysis on meta-learning adaptation. We report the average success rates
that are measured in both sensor height changing and target color changing scenarios. We
investigate the number of the latent dimension (Left) and the number of shots (Right).
More shots lead to better success rates but the number of latent dimensions do not have
significant impacts on the success rate.

low-dimensional embedding is sufficient for our testing scenarios: please note that an agent

can achieve the 70% success rate with only two-dimensional latent features. Then a high

dimensional space is expected to have a similar embedding structure, which is also easy to

learn. On the other hand, the number of shots positively impacts the success rate: one-shot

adaptation results in only a 55% success rate while the ten-shot adaptation achieves a 73%

success rate. However, more shots require us to collect more real-world data, which can be

cumbersome on real robots. We choose three shots for all the experiments, which shows

near the optimal performance with the minimal number of additional examples.

18



CHAPTER 6

CONCLUSION

In this work, we show that meta-learning on an embedding space produced by a visual

encoder demonstrates promising results at the adaptation of heterogeneous robots in the

new sensory configurations. We effectively apply our method to two different adaptation

scenarios, object color and sensor height changing problems, in the target-driven visual

navigation task. Our method requires only a handful of shots from the target environments

and outperforms the baseline generalization methods described in the paper.

In our solution of ’Universal Navigation’ problem, we consider the fact that only a few

shots are required at the adaptation stage, and our method could potentially be effective in

the sim-to-real transfer. In this approach, the agent will be firstly trained in the simulated

environment utilizing the scalability of the recent deep RL algorithms, without the safety

risk to the robot or its surroundings. Then the learned policy can be adapted to the real-

world scenario via the proposed meta-adaptation algorithm, which requires only a few

real-world images. We plan to further investigate our algorithm on real robots, such as

Fetch [35] or TurtleBot [34].

While we evaluate our algorithm on two different scenarios, there exists a variety of

sensory adaptation scenarios that can be further tested in the future. Such variations include

environment lighting, camera properties (FoV, lens distortions), multiple cameras, different

sensors (LIDAR and IMUs), more complex object shapes, and the combination of all of

these factors.

19



REFERENCES

[1] Q. Luo, M. Sorokin, and S. Ha, “A few shot adaptation of visual navigation skills to
new observations using meta-learning,” arXiv preprint arXiv:2011.03609, 2020.

[2] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, guidance, and naviga-
tion for indoor autonomous drone racing using deep learning,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2539–2544, 2018.

[3] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt: Kinodynamic mo-
tion planning via learning reachability estimators from rl policies,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 4298–4305, 2019.

[4] A. Amini, G. Rosman, S. Karaman, and D. Rus, “Variational end-to-end navigation
and localization,” in 2019 International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 8958–8964.

[5] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D.
Batra, “Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames,”
arXiv, arXiv–1911, 2019.

[6] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Y. Zhao, E. Wijmans,
B. Jain, J. Straub, J. Liu, V. Koltun, J. Malik, D. Parikh, and D. Batra, “Habitat: A
Platform for Embodied AI Research,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[7] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to navigate in complex
environments,” arXiv preprint arXiv:1611.03673, 2016.

[8] M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and V. Koltun, Minos:
Multimodal indoor simulator for navigation in complex environments, 2017. arXiv:
1712.03931 [cs.LG].

[9] F. Xia, A. R. Zamir, Z.-Y. He, A. Sax, J. Malik, and S. Savarese, “Gibson env: Real-
world perception for embodied agents,” in Computer Vision and Pattern Recognition
(CVPR), 2018 IEEE Conference on, IEEE, 2018.

[10] F. Xia, W. B. Shen, C. Li, P. Kasimbeg, M. E. Tchapmi, A. Toshev, R. Martın-Martın,
and S. Savarese, “Interactive gibson benchmark: A benchmark for interactive nav-
igation in cluttered environments,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 713–720, 2020.

20

https://arxiv.org/abs/1712.03931


[11] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learn-
ing,” in 2017 IEEE international conference on robotics and automation (ICRA),
IEEE, 2017, pp. 3357–3364.

[12] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory transformer for
embodied agents in long-horizon tasks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 538–547.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-
cessing systems, vol. 30, pp. 5998–6008, 2017.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[15] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov, “Learning to
explore using active neural slam,” arXiv preprint arXiv:2004.05155, 2020.

[16] D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object goal nav-
igation using goal-oriented semantic exploration,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[18] X. Ye, Z. Lin, H. Li, S. Zheng, and Y. Yang, “Active object perceiver: Recognition-
guided policy learning for object searching on mobile robots,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, 2018,
pp. 6857–6863.

[19] A. Devo, G. Mezzetti, G. Costante, M. L. Fravolini, and P. Valigi, “Towards gener-
alization in target-driven visual navigation by using deep reinforcement learning,”
IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1546–1561, 2020.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain ran-
domization for transferring deep neural networks from simulation to the real world,”
in International Conference on Intelligent Robots and Systems (IROS), IEEE, 2017,
pp. 23–30.

[21] A. Sax, B. Emi, A. R. Zamir, L. Guibas, S. Savarese, and J. Malik, “Mid-level visual
representations improve generalization and sample efficiency for learning visuomo-
tor policies,” arXiv preprint arXiv:1812.11971, 2018.

21
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