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SUMMARY 

The field of wearable electronics is changing healthcare and increasing possibilities for 

human-machine interfaces. Soft electronics stretch with the skin to monitor long-term heart 

rate trends or direct the motion of smart prosthetics. The capabilities are only as good as 

the signal quality. A significant challenge for these devices is that by their very definition 

– wearable – these flexible sensors suffer from motion artifacts not previously found when 

measured in a stationary setting. This thesis investigates three significant sources of motion 

artifacts for flexible sensors: relative motion between sensor and signal source, the unique 

challenges of skin strain, and change in contact impedance. Relative motion is not a unique 

problem for wearable electronics. Still, human tissue's elastic nature means that most body-

mounted sensors undergo more relative motion than on a comparable rigid machine. 

Device design is analyzed showing a small form factor, and lightweight designs reduce 

device motion. Human skin is an unstable platform to mount devices. Skin strain causes 

device movement and changes the biopotential during measurement. Experimental 

examples show material and design solutions to increase adhesion, reduce strain within the 

device, and maintain breathability for long-term recordings. Flexible sensors measuring 

biopotential are susceptible to changes in contact impedance. Skin strain and vibrations 

create motion artifacts that can mimic or disrupt many biosignals, making them hard to 

filter out. A prototype device is presented that uses a strain isolating layer to reduce skin 

strain at the electrode, which stabilizes contact impedance and reduces motion artifacts. 

Experimental data from the device compensating for these three sources of motion artifacts 

is presented for quantitative comparison. 



 1 

CHAPTER 1. INTRODUCTION 

Wearable electronics are everywhere and are estimated to make up an $104 billion 

market by 2027[1]. Forbes estimates that with the advancement in wearable technology, 

there will be a $200 billion savings in healthcare costs over the next 25 years[2]. Medical 

tests that once required expensive clinical equipment only found in a medical facility can 

now be done by the patient at home with a portable device. The COVID-19 quarantine of 

this past year, 2020, has forced the world to think differently about virtual healthcare. 

Expanding healthcare monitoring beyond the clinic can provide the general population with 

more routine access to medical advice. Using wearable electronics to collect data outside 

the clinic can also give medical providers access to better patient data as well. Instead of 

showing up to the doctor’s office to measure weight blood pressure, we could wear a heart 

monitor the day before. This data can be wirelessly transferred securely to the doctor’s 

portal, and a full heart health assessment can be made based on the hearts real-time 

response to various activities throughout the day. The electrocardiogram (ECG) and 

accelerometer data from multiple hours can provide better insight beyond the narrow time 

window most patients spend with their healthcare provider.  

This is an optimistic view of the future, and to be sure, not all wearable electronics will 

make our lives happier and healthier. It is estimated that 1/3 of all fitness trackers are 

unused after just six months of being purchased, and very few popular devices are FDA 

approved for clinical level data[3].  To be worth the effort of wearing, these devices must 

solve a problem and add value for the user as well as the healthcare provider. For example, 

cardiovascular diseases affect 48% of the adult population in the United States and continue 
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to be the number one cause of death worldwide[4]. Portable, long-term, continuous 

monitoring of ECG is urgently needed to detect the onset of various arrhythmias that can 

happen anytime during daily activities. Many ambulatory ECG devices have been 

developed to provide smaller form factors than the gold-standard Holter monitor. 

Collecting high-quality data outside the clinical setting remains challenging due to motion 

artifacts (MA). In fact, most wearable devices rely on relatively simple electronics to 

measure optical or electrical measurements from the skin[5] and are thereby easily 

susceptible to motion artifacts. A motion artifact is the temporary change in measured 

voltage caused by the movement of the sensor and/or body where the sensor is located.  

This goal of this thesis is to investigate the main causes of motion artifacts and develop 

a wireless ECG device with improved signal quality by eliminating these sources of signal 

noise. A background review of ECG measurement, wearable ECG devices, and current 

limitations is followed by a system overview of the prototype device developed during this 

research. Next, the testing methods and materials are presented. Next, the results of 

analytical calculations, comparison with commercial devices, and demonstration of long-

term ECG recording are discussed. Finally, a review of the contributions and potential for 

future study conclude the thesis. 
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CHAPTER 2. BACKGROUND 

2.1 ECG Measurement 

The electrocardiogram, sometimes abbreviated EKG due to the German spelling, is the 

measurement of the heart’s electrical activity. ECG measurement began around 1902 and 

was pioneered by Dr. Willem Einthoven who developed the PQRST annotation we use 

today[6]. The heart is a muscle, and muscle contraction and relaxation is caused by ionic 

exchange within the muscle fibers. The resulting electrical activity travels through the body 

and is measured on the skin surface using electrodes. The time varying amplitude of the 

voltage at a given location is the superposition of all the muscle activity in the body at that 

instant in time. The signal from a particular muscle fiber gets weaker as it travels through 

the body, so most ECG electrodes are placed strategically on the chest to pick up a clear, 

dominant signal from the heart (Figure 2.1B). Figure 2.1A shows the ECG waveform 

plotted as electrical amplitude versus time. This represents the sequence with which 

different muscle fibers in the heart contract or relax, moving from left to right to form the 

PQRST sequence. This plot corresponds to the areas labeled in Figure 2.1C, where 

generally, the orange lines indicate muscle contraction, and the white lines indicate 

relaxation[7]. The P wave is the firing of the SA node, followed by the PR interval which 

is a delay of electrical impulse at the AV node that allows blood to fill the appropriate 

chambers. Next the QRS complex is the contraction of both ventricles to pump blood out 

of the heart. The R peak is what is generally referred to as the heartbeat because it is the 

most dominant period with the largest amount of muscle contraction. Following this is the 
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ST segment when the ventricles begin repolarization. The T wave is a result of this 

repolarization as the heart is prepared for another cycle.  

 

Figure 2.1 ECG plot with diagram of the human heart[7, 8] 

A more detailed description of heart function is beyond the scope of this thesis. 

However, the sequence described above shows how a non-invasive ECG measurement can 

provide detail into the complex functions of the heart. One can also imagine that a signal 

this complex can only be relied upon for detailed measurements if it is very precise. The P 

and T waves are similar in size, and any disturbance of the overall electrical measurement 

can create noise that could mimic these small features. The most common of these 

disturbances is a motion artifact, which is defined in the next section. 
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2.2 Motion Artifact Definition 

A motion artifact has been defined as  

“a phenomenon or feature not originally present or expected and 

caused by an interfering external agent, action, or process, as an 

unwanted feature in a microscopic specimen after fixation, in a 

digitally reproduced image, or in a digital audio recording”[9]. 

A brief search for the term will likely produce journal articles dealing with blurred X-ray 

images or CT scans, and a blurry picture is a good image to have in mind. Imagine taking 

a picture of an athlete. In this case, reflected light is the signal and it is coming from the 

signal source, the athlete. The camera, or more specifically, the optical sensor inside the 

camera is the sensor. When the camera and the athlete are both stationary the picture is 

clear, this is the first case. The second case is when the camera is stationary, but the athlete 

is moving, resulting in a blurry picture. The third case is when the athlete is stationary, but 

the camera is moving, also resulting in a blurry picture. A fourth case is also possible, when 

both the athlete and the camera are moving together exactly. This is hard to do by walking 

but is very common when riding in a vehicle. The picture remains clear no matter how fast 

the vehicle is moving because there is no relative motion between the source and the sensor. 

The relative motion between the sensor and source of the signal is what created the blurry 

picture.  

In the same way, relative motion between any sensor and the source of the signal being 

measured will cause a motion artifact. Because the ECG is an electrical signal, the entire 

setup can be modeled as an electrical system and is depicted in Figure 2.2. Any change to 
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the properties of the system will change the voltage being measured. For ECG signals, any 

relative motion that disturbs the signal while traveling from the heart to the device can be 

considered a motion artifact. The signal can be disturbed in different ways throughout the 

entire system. For example, walking creates a downward force on the skin and ECG device 

with every step, which causes temporary stretching of the skin and relative motion of the 

skin with the electrode. Together, these two disturbances change the half-cell potential of 

the skin as well as the contact impedance with the electrode, respectively[10]. Additionally, 

vibrations that originate from the leg can travel through the skin and jiggle the circuit or 

disrupt the electrode contact. These temporary changes in the measured voltage can have 

the same amplitude and frequency as the heart rate[11], making them difficult to 

distinguish from many physiological signals.  

 
Figure 2.2 Equivalent circuit representation[12] 

A list of changes to the system, ordered by the locations from Figure 2.2, is shown in 

Table 2.1. Examples of activities that cause this relative motion include, but are not limited 

to, walking, jogging, stretching, coughing, laughing, riding in an accelerating vehicle, etc. 

The consistent feature of these activities is that the activity introduces relative motion 

between the device and the heart, disturbing the signal. Some works include items such as 
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powerline interference and baseline drift[13] as motion artifacts because this type of noise 

is common in ambulatory ECG measurement, but they are not included in this study.  

Although motion is often involved, such as walking through an electromagnetic field that 

distorts the signal, the mechanism causing powerline interference is fundamentally 

different than the motion artifact caused by walking. Next, we will review how other ECG 

devices have performed. 

Table 2.1. Effects of Relative Motion on an ECG Device 

Area Relative motion Resulting change 

Circuit Strain, bending Resistance 

Damage to components 

Wires Strain Resistance 

Skin/electrode Strain Resistance 

Skin contact 

Disconnection 

Body/electrode Strain, vibrations Half-cell potential 

2.3 A Review of ECG Devices and Current Limitations 

2.3.1 ECG Device Categories 

ECG devices developed and used over the past few decades include a wide range of 

designs and strategies. They can be arranged in four general categories shown in Figure 

2.3. Starting clockwise from the top left is a clinical standard 12-lead ECG where the 

patient is usually seated or laying and connected with gel electrodes and wires. The top 

right is an ambulatory Holter monitor that also uses gel electrodes and wires, but the device 

is battery powered and capable of recording data for over 24 hours. Next, the bottom right 

is a patch device, often called a single lead, that uses adhesive gel electrodes. This device 

is capable of multi-day monitoring, but not usually continuous data, rather it is event 

triggered to only record when an irregular heartbeat is detected. Finally, on the bottom left 
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there is a fitness tracker. These often use straps around the chest or are only a wrist mounted 

device.  

 

Figure 2.3 ECG devices by category 

2.3.2 Limitations and Solutions 

Further development of prototype and single lead devices has shown good results. The 

smaller size allows greater mobility. In addition to reducing size, many other techniques 

have been used to improve signal quality. Software algorithms and signal filtering are 

commonly used to improve signal quality, but are computationally expensive, especially 
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for long-term monitoring, and still only provide an estimate of the actual biosignal[14-17]. 

Filtering can also be done on any signal as a secondary improvement method but is 

incapable of improving the raw data. Another solution is to use pressurized tight straps to 

restrict device movement on the skin[18, 19]. However, this method causes severe 

discomfort and restriction of the user's activities. If a user loosens the strap pressure, the 

sensor loses the proper contact to the skin, resulting in signal degradation. Some devices 

use conductive gels to reduce impedance or strong adhesives to reduce movement, but this 

often creates skin rash after extended use or even skin breakdown when removed[20-24]. 

Recent studies have shown possible applications of dry, adhesive-free electrodes that make 

gentle lamination on the skin[25-27]. However, these still suffer from excessive MA 

caused by multiple wires, the rigidity of sensors, and the electrode's movement on the skin. 

Dry electrodes are especially sensitive to skin strain and vibration induced by body motion 

while walking, reaching, and performing other daily activities[5, 14, 28, 29].  

One improvement in dry electrode design was the development of thin-film, open-mesh 

electrodes capable of stretching with the skin. Previous works have shown some reduction 

of MA using the mesh electrodes compared to rigid electrodes due to their conformal 

contact[30-34]. Others have shown the correlation between signal quality and electrode 

contact area[34-36]. This led to investigating the mechanisms causing changes to 

conformal contact and electrode contact area, showing that skin strain at the electrode is 

the main source of MA for dry electrodes. Although recently reported devices have used 

soft materials[37-41] or serpentine patterns[42-44], no prior work has shown the capability 

of a wearable device to significantly reduce MA caused by skin-electrode strain from 

external sources.  
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Table 2.2 Comparison of wearable ECG monitoring systems. 

Ref. 

Device 

name 

(Year) 

Strain 

reduction 

from 

sensors 

Continuous 

data 

transmission  

Level of 

activities 
Substrate 

Electrode 

type 

Electrode 

reusability 

This 

work 

SIS 

(2021) 

Yes 

(strain 

isolator) 

 > 8 hours* 

(single device) 

Real, 

continuous 

daily activities, 

including 

excessive 

jogging 

Perforated, 

breathable 

silicone  

Dry Yes 

[19] 
MAX-ECG  

(commercial) 
No 

48 hours** 

(with a battery 

replacement) 

- 
Adhesive 

patch 
Wet No 

[45] 
Zio 

(commercial) 
No No*** - 

Adhesive 

patch 
Wet No 

[21] 
CAM 

(commercial) 
No No*** - 

Adhesive 

patch 
Wet No 

[22] 
Cardiostat 

(commercial) 
No No*** - 

Gel 

electrode 
Wet No 

[46] 
No name 

(2019) 
No 

< 1 hour 

(not portable) 

In-lab  

activities 

Acrylic 

adhesive 
Wet No 

[18] 
No name 

(2019) 
No 

< 1 hour  

(with a chest 

strap) 

In-lab  

activities 

Elastic  

strap 
Wet No 

[40] 
No name 

(2019) 
No 3 hours 

Simulated in-

lab 

sitting/standing 

Silicone 

elastomer 
Dry Yes 

[44] 
SEP 

(2019) 
No 

< 1 hour 

(with a wired 

circuit) 

Simulated  

in-lab jogging 

Silicone 

elastomer 
Dry Yes 

* Sample rate: 256 Hz. 

** Sample rate: 128 Hz. 

*** Data saving to a local storage, not for real-time, continuous data transmission. 
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CHAPTER 3. SYSTEM OVERVIEW 

The device developed in this study is referred to as a strain isolated soft bioelectronics 

(SIS). Figure 3.1 summarizes the design overview of an SIS, structure layouts, strain-

isolation mechanics, and the device functions. The all-in-one, soft, imperceptible system 

has an exceptionally small form factor (Figure 3.1A) that adheres securely and discretely 

to the chest area for continuous health and motion monitoring throughout various daily 

activities. The schematic illustration in Figure 3.1B shows the multi-layered device 

structure, including a pair of skin-mounted sensors, strain-isolating blocks, soft elastomeric 

membranes, printed circuit board (PCB), and integrated chip components. Thus, the SIS's 

most crucial component is a pair of strain-isolating layers (SIL) in Figure 3.1B. The SIL is 

positioned above each electrode. Among the components, a pair of nanomembrane mesh 

electrodes makes direct contact with the skin for measuring non-invasive physiological 

signals, such as ECG, heartrate (HR), and respiration rate (RR) This open-mesh, stretchable 

electrode can endure excessive tensile strain up to 100% without failure. The SIS's bottom 

layer is an extremely low modulus silicone gel with excellent adhesive properties to bond 

the device to the skin. The top layer is a low modulus silicone elastomer that provides a 

durable platform to mount the circuit and makes the device more comfortable to handle 

and prevents unwanted sticking to clothes. The miniaturized PCB and rechargeable battery 

are secured and encapsulated with the silicone elastomer. The circuit is mounted in the 

center on a thin layer of silicone gel to allow a greater range of bending without skin 

delamination.  
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Figure 3.1 Overview of the SIS 

The unique feature of this design is the SIL mounted above each electrode. Figure 3.1C 

visualizes the deformation the substrate and electrodes would exhibit under uniaxial strain. 

Typically, MA to the wearable device on the chest area arises from typical daily activities, 

such as standing, walking, running, or sudden arm movements. In various movement 
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conditions, the SIL in the SIS device surrounds and shields the electrodes from excessive 

or sudden strain while leaving the elastomer directly over the electrodes free to maintain 

conformal contact at the skin-electrode interface. Photos in Figure 3.1D capture how the 

SIL can offer strain isolation for the electrode, directing skin strain to areas less critical to 

signal quality. The entire device, including all necessary components and a rechargeable 

battery, still maintains mechanical flexibility and stretchability. As shown in Figure 3.1E, 

the SIS is capable of twisting, bending, and stretching, beyond the expected deformation 

of intended application sites on the upper torso. The schematic illustration in Figure 3.1F 

describes the data processing workflow of the SIS and signal monitoring/storage via a 

portable smart device. The measured data from the electrodes and the onboard 

accelerometer are transmitted via Bluetooth to the user's smartphone or tablet for real-time 

display or recording of physiological signals. A custom-designed Android application can 

display real-time ECG data, 3-axis angular orientation data, and 3-axis acceleration. 

Further ECG annotation and long-term health data can be calculated at the end of each 

session. While some device designs presented by other groups aim to reduce strain at the 

electrodes using stiff adhesive patches or fabric backings[18, 19], they result in increased 

stiffness and rigidity of the device, losing the conformal electrode contact to the skin as 

well as consistent signal quality. On the other hand, the presented SIS maintains the quality 

of skin-electrode contact with a soft elastomeric membrane, while limiting the excessive 

strain transmission to the electrode via the SIL integration. Thus, the SIS can offer 

continuous, high-quality health monitoring in real-life activities at homes or clinical 

settings.  
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CHAPTER 4. MATERIALS AND METHODS  

4.1 Materials  

4.1.1 SIS Assembly 

Device assembly, depicted in the top of Figure 4.1 as a simplified side view of the 

device, starts with the two layer elastomer substrate. The circuit is attached with an 

additional layer of silicone gel. The strain isolation layers are attached directly to the top 

of the substrate with a thin layer of silicone adhesive. The electrodes are placed on the 

bottom of the substrate using water soluble tape. The electrodes are then connected to the 

circuit with flexible thin film connections. The battery and circuit are encapsulated with 

elastomer to prevent tugging at connections, and to waterproof the electrical components. 

 

Figure 4.1 SIS assembly steps 
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4.1.2 Elastomer Substrate Fabrication 

A custom mold was fabricated in four sequential steps shown in Figure 4.2A from left 

to right. First, an array of holes was laser cut in 3 mm acrylic sheet. A reverse mold was 

cast using DragonSkin™ (Smooth-On) to produce a flexible array of needles, followed by 

another DragonSkin™ mold to produce a flexible array of holes. Finally, EpoxAcast™ 670 

HT (Smooth-On) was cast, producing a needle array of 3 mm tall, tapered needles spaced 

1.5 mm apart (Figure 4.2B). Each molding step was preceded by applying generous mold 

release for easy removal, and the material was only allowed to cure after using a vacuum 

chamber to evacuate trapped air. Epoxy needles with a base diameter less than 0.5 mm 

were prone to breaking during elastomer removal. Perforated breathable substrates were 

produced by pouring elastomer layers into the epoxy mold (Figure 4.2C). Since the 

perforations are shaped by the tapered needles with a larger diameter base, the silbione 

layer was applied first for a larger diameter hole facing the skin (Figure 4.2D). This 

encouraged the outward wicking of moisture from the skin. The silbione was spin-coated 

at 800 rpm for 60 s and allowed to cure for 24 hours. Next, Ecoflex 30 was spin-coated at 

200 rpm for 30 s and allowed to cure for 5 hours. Final perforated substrates were carefully 

removed from the mold for thin-film integration with the circuit and electrodes using a 

similar assembly process as smooth substrates. Total substrate thickness was 1.5-2.0 mm, 

while thinner samples were difficult to remove from the mold without tearing. 
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Figure 4.2 Breathable substrate fabrication 

4.1.3 Electrode Fabrication 

The thin, nanofilm mesh electrodes are fabricated by standard photolithography and 

metal etching in a micro-electronics cleanroom. Figure 4.3 shows the sequence, starting 

from the top left. A silicon wafer is coated with Polydimethylsiloxane (PDMS) as a release 

layer. Polyimide (PI) is coated before Chromium and Gold deposition. A series of 

photoresist (PR) patterning and metal etching steps produce the electrode patterned 
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electrode, which is further encapsulated with PI to reenforce and insulate the electrode. PI 

etching is done using reactive ion plasma etching to reveal the gold electrode contact pads.   

 

Figure 4.3 Electrode fabrication 

4.2 Strain Isolation 

4.2.1 Contact Impedance 

The change in contact impedance was measured for gel and dry electrodes to quantify 

how much change occurs when different components are disturbed. The testing was 

conducted on the forearm with wires connecting the electrodes to a B&K LCR meter. 

Figure 4.4A shows the three types of disturbance: shaking wires, direct pressure on the 

electrode, and pressure on the skin immediately surrounding the electrode. The peak-to-

peak change of each portion of time was normalized with respect to the initial impedance 

value for each category with the resulting bar graph in Figure 4.4B. The results of gel 

electrodes are shown in Figure 4.4C and the sharp changes in amplitude from 50-100 s 
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indicate that direct pressure makes an immediate change to the impedance. This contrasts 

with the skin disturbance for gel electrodes, which was close to that of the wires. The dry 

electrode test, shown in Figure 4.4D, has similar results for wires, but a very different 

waveform for electrode and skin. There is an initial decrease near 50 s when pressure was 

placed on the electrode, but this established a new contact impedance that remained for the 

duration of the test. The following disturbance to the electrode and skin are much more 

similar, and even their values in the bar graph are close. This discover led to further 

investigation as to why these disturbances were similar, which is further modeled in the 

next section.    

 

Figure 4.4 Sources of impedance change 

 



 19 

4.2.2 Skin Strain Model 

A circular electrode and skin are in unstrained steady-state configuration (Figure 4.5A) and 

the skin under biaxial strain (Figure 4.5B) with stretch ratios 𝜆1, 𝜆2. The area of skin in 

contact with the electrode remains the same. When the skin experiences strain, the 

electrode moves with the skin, but remains relatively unstrained. This loading scenario 

causes a portion of the skin that is initially in contact with the electrode to slide out of 

contact with the electrode. If the skin strain is held constant, then a new steady-state will 

be reached at the current skin/electrode interface. One source of MA is caused by the 

impedance change that occurs when the skin moves relative to the electrode. The sensitivity 

of the skin/electrode interface is quantified by the change in the area in contact at the 

skin/electrode interface, depicted as the gray ellipse in B. The stretch ratio is defined as 

𝜆𝑖 =
𝐿 + 𝛿𝑖

𝐿
= 1 + 휀𝑖             𝑖 = 1,2 (1) 

where 𝐿 is the original length, 𝛿𝑖 is the elongation, and 휀𝑖 is the strain. Equation (1) can be 

rearranged to describe the new length as 

𝜆𝑖𝐿 = 𝐿 + 𝛿𝑖            𝑖 = 1,2 (2) 

From Figure 4.5B, it can be shown that the stretch ratios also define the new half lengths 

𝑎 = 𝜆1𝑟,   𝑏 = 𝜆2𝑟. (3) 

The change in area is calculated using the area of an ellipse minus the area of the circular 

electrode 

𝛿𝐴 = 𝜋𝑎𝑏 − 𝜋𝑟2. (4) 

Substituting 𝑎, 𝑏 from (3) into (4) results in 

𝛿𝐴 = 𝜋𝑟2(𝜆1𝜆2 − 1). (5) 
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Mesh electrodes (Figure 4.5C)  can be modeled as an 𝑁 numbered array of small electrodes 

with a radius 𝑟1, having a total area equal to a single electrode with radius 𝑟2, the 

relationship given by 

A = 𝜋𝑁𝑟1
2 = 𝜋𝑟2

2. (6) 

After substituting the area from (6) into (5), we can show that the change in area is directly 

proportional to the stretch ratios for a single electrode or an array of electrodes by 

𝛿𝐴 = 𝐴(𝜆1𝜆2 − 1) = 𝜋𝑁𝑟1
2(𝜆1𝜆2 − 1) = 𝜋𝑟2

2(𝜆1𝜆2 − 1). (7) 

Therefore, the total change in area for an array is proportional to the strain across the entire 

array, regardless of the radius of each individual pad. 

 

Figure 4.5 Skin strain model 
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4.2.3 Strain Layer Material Characterization 

The strain layer was cut from solid sheets of polypropylene. Various lengths of material 

were cut and subjected to a bending test (Figure 4.6A) to determine Young's modulus for 

accurate modeling of stiffness.  For a sheet modeled as a cantilever beam fixed at one end, 

the deflection from a force at the tip is calculated by[47] 

𝛿 =
𝑃𝐿3

3𝐸𝐼
 (8) 

where 𝛿 is the deflection at the free end, 𝑃 is the force, 𝐿 is the beam length, 𝐸 is Young's 

modulus, and 𝐼 is the moment of inertia of a rectangular beam (Figure 4.7B). From this 

equation, the modulus can be calculated by 

𝐸 = (
𝑃

𝛿
)

4𝐿3

𝑏ℎ3
 (9) 

where (
𝑃

𝛿
) is the measured value from the bending test and determined by a linear least-

squares fit of the data. The data from each trial was trimmed to exclude inertia effects of 

the measurement device near the ends of travel, shown in Figure 4.6B. The Young's 

modulus was calculated after conversion of the force data using the sample dimensions 

(Figure 4.6C) and averaged over three trials using samples of different lengths and slightly 

different widths. The SIL sheet thickness ℎ for all samples is 0.31 mm, along with the base 

width (b) = 29.35, 28.78, 28.37 mm, and the length (L) = 18.0, 20.7, 23.2 mm.  
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Figure 4.6 Strain layer material characterization 

4.2.4 Strain Layer Development 

Strain layer geometry was developed based on the given electrode dimensions. Using 

principal mechanics equations[47], the minimum and maximum thickness were derived to 

minimize in-plane-strain while allowing for expected out-of-plane bending to maintain 

conformal contact with the skin. First, the elongation value of the middle section (Figure 

4.7A) was calculated for the sheet modeled as a prismatic beam, given by 

𝛿 =
𝑃𝐿

𝐸𝐴
 (10) 
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where 𝐴 is the cross-sectional area for a rectangular beam. The two edge portions are 

modeled as a simply supported beam with point load and maximum deflection in the 

middle given by 

𝛿 =
𝑃𝐿3

48𝐸𝐼
. (11) 

Together, the elongation from (10) and bending of the edges from (11) add up to the total 

strain inside the perimeter of the SIL. Combining these equations and solving for ℎ results 

in  

ℎ𝑚𝑖𝑛 =
𝑃𝐿

2𝐸𝑏𝛿𝑎𝑙𝑙𝑜𝑤
(1 +

𝐿2

12𝑏2
). (12) 

where ℎ𝑚𝑖𝑛 is the minimum sheet thickness required to keep the elongation below 𝛿𝑎𝑙𝑙𝑜𝑤. 

Actual values are P = 1 𝑁, 𝐿 = 21 𝑚𝑚, 𝐸 = 1.22 𝐺𝑃𝑎, w = 5.5 𝑚𝑚, and 𝛿𝑎𝑙𝑙𝑜𝑤 =

0.64 𝑚𝑚 based on 2% strain of the inner dimension 𝐿. Resulting in ℎ𝑚𝑖𝑛 = 14.2 𝜇𝑚.  

 

Figure 4.7 Schematic of strain isolation layer  
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4.3 Finite Element Analysis 

Commercial software ABAQUS was used to validate analytical calculations and 

optimize mechanical performance. The three main components considered were the 

elastomer substrate, the PCB circuit, and the strain isolation layer, with the mesh, loading 

conditions and preliminary strain results shown in Figure 4.8. All components were meshed 

using hexahedral elements: elastomer (C3D8RH), PCB circuit (C3D8), and strain isolation 

layer (C3D8R), with 787 total elements and 1876 total nodes. The elastomer substrate was 

modeled as a hyperelastic Neo-Hooke material with coefficients 𝐷1 = 10.152, C10 =

4.8𝐸 − 02. The elastic modulus (𝐸) and Poisson's ratio (𝜈) are 𝐸𝑃𝐶𝐵 = 24 GPa, 𝜈𝑃𝐶𝐵 =

0.12, 𝐸𝑆𝐼𝐿 = 1.22 GPa, 𝜈𝑆𝐼𝐿 = 0.43. 

 

Figure 4.8 FEA mesh and loading conditions 

4.4 Signal Processing 

The signal-to-noise ratio (SNR) is used to assess the signal quality and quantify the 

motion artifacts. SNR calculation was made by identifying the heartrate peaks using a 
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variation of the Pan-Tompkins algorithm for detecting the QRS complex[48]. Figure 4.9 

shows the sequence starting in the top left. First, the raw signal is filtered using a 0.5-30 

Hz bandpass filter to eliminate baseline wander and other high frequency noise such as 

powerline interference. A derivative filter and squaring of the values accentuate the 

absolute values of all peaks. A convolutional filter combines the absolute value of the two 

adjacent peaks from each QRS complex resulting in a relative amplitude used here as the 

signal. These signal peaks were removed using a high-order median filter (order = 99), 

leaving the remaining noise. The signal-to-noise ratio was then calculated using 

𝑆𝑁𝑅𝑑𝐵 = 10log10

𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
 (13) 

as the ratio of the average amplitude of each QRS complex versus the average noise 

amplitude. 
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Figure 4.9 ECG signal filtering and SNR calculation 
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CHAPTER 5. RESULTS AND DISCUSSION 

5.1 Material Results  

5.1.1 Adhesion 

Conformal contact and secure adhesion are critical for high signal quality. The adhesive 

value of the elastomer substrates were tested using a peel test on the forearm. Figure 5.1A 

shows the device with the stain layer removed. Peel tests of the SIS with and without the 

strain layer produced similar results, but the strain layer showed an increased adhesive 

value. The plot in Figure 5.1B shows the adhesive peel force with the corresponding part 

of the device superimposed above. There is a clear rise in peel force from 10-30 mm 

followed by a decrease after the circuit has peeled up from the skin. This was visually 

observed during the test. Next, the test with the strain layer shows a similar feature, where 

the average peel force is 0.2614 N/cm compared to 0.1832 N/cm for the elastomer alone. 

The strain layer surrounds the electrode and distributes the upward force over a larger area 

of elastomer. This is similar to the way in which a Command™ hook (3M) has good 

adhesion when the hook is in place, but to remove the adhesive one only needs to pull down 

on the strip with much less force than what the hook can withstand. This is an added benefit 

of strain isolation that helps secure the electrode from external force. 
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Figure 5.1 Results of adhesion peel test 

5.1.2 Breathability 

The need for a breathable device became clear while testing motion artifacts for jogging 

during the summer. Acceptable signal quality would soon give way to huge motion artifacts 

and finally complete delamination of the device. The breathable fabrication detailed in 

section 4.1.2 produced substrates capable wicking sweat away to maintain adhesion and a 

stable signal amplitude. Samples of different elastomer materials, thicknesses and 

perforation patterns were tested following guidelines from ASTM E 96. Glass jars were 

filled with distilled water and sealed with the samples. The jars were placed in a 

temperature-controlled oven and measured for change in mass at regular intervals. The 

samples were rotated into a new position following each measurement to reduce the 

possibility of uneven evaporation between samples. Two tests were conducted, the first 

(Figure 5.2A) also included the widely used commercially available and breathable 
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medical adhesive Tegaderm (3M), shown as sample number 4. The second test (Figure 

5.2B) included the final version of the Silbione and Ecoflex substrate with electrodes and 

strain layers blocking some of the perforations to test the breathability at the electrode, 

shown as sample number 11.  

The water vapor transmission rate is a measure of the mass able to flow through the 

substrate. This value will change for a material depending on environmental factors. The 

temperature and humidity were different between the two tests, but each sample was also 

normalized by percentages of their respective open samples, jar 1 and jar 7. Sample 11 had 

a value of 13.24% whereas the Tegaderm sample 4 had a value of 8.17%. Other 

comparisons between samples that were repeated in both tests confirm that the comparison 

is valid. Samples 2 and 8, as well as samples 6 and 12 used the same elastomer and have 

very similar percentages despite their different water vapor transmission values.   
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Figure 5.2 Results of water vapor transmission test with breathable elastomer 

5.1.3 Strain Reduction 

The collected data in Figure 5.3 shows the finite element analysis (FEA) result of a 

device with the applied tensile strain (15%) in the vertical direction to mimic a stretched 

human skin. The bottom electrode, without the integrated SIL, experiences 36% strain, 

while the top electrode that is shielded by the SIL has a calculated strain of 3%. The change 

in contact area for each electrode is proportional to strain, meaning that the total area of 

skin sliding past each tiny electrode pad on the bottom electrode is over 12 times the change 
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occurring in the top electrode. It is clear that less change occurs with the top electrode 

protected by the SIL. 

The second noteworthy observation is that the device is still able to withstand the 

elongation. The areas in between the SIL and circuit stretch well within the limits of their 

elastic range. The idea of tuned stiffness or hard-soft integration is used in other fields, and 

has benefit for wearable electronics. Restricting some skin strain, while allowing other 

areas to flex and move means that portions of the device can maintain good adhesion and 

contact, while the forces spread across the entire device still have some areas to deform. 

 

Figure 5.3 FEA and experimental results of axial strain test 

5.2 ECG Results of SIS  

5.2.1 Comparison with Identical Electrodes 

To evaluate the performance of the SIL, short and repeatable comparison tests were 

conducted with a stopwatch on an indoor course. Each three-minute trial consisted of 30-
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second intervals for each activity in the following order: idle (0 mph), walking (2 mph), 

fast walking (4 mph), jogging (6 mph), walking (2 mph), and idle (0 mph). The same device 

was used for eight total trials, four of which occurred before the SIL was mounted to a bare 

elastomer substrate, and four trials were conducted with the SIL-integrated device. 

Consistent skin preparation and device placement were carefully repeated, and the device 

was removed after each trial to demonstrate the electrode's reusability. The summarized 

results from Figure 5.4A show representative data; an SIS shows a clear reduction of MA 

compared to a bare elastomer case without the SIL material. The corresponding data are 

shown in Figure 5.4F where the signal to noise ratio (SNR) is calculated from all trials 

(n=4). Although both cases show decreased SNR during jogging, the SIS maintains better 

signal quality than the elastomer-only case. The mean SNR reduction from idle to jog was 

31.6 to 16.9 dB for elastomer compared to 30.3 to 22.0 dB for the SIL; this is a reduction 

of signal quality by 47% for elastomer alone versus 27% for the SIS when compared to 

their respective baseline idle signals. 

 

Figure 5.4 Results of jogging test with SIS compared to no strain isolation 
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5.2.2 Comparison with Commercial Device 

To validate the device performance, the SIS was worn with another commercial 

wireless heart monitor for simultaneous ECG recording on the chest area. Photos in Figure 

5.5A show an SIS and a commercial all-in-one device (MAX-ECG Monitor, Maxim 

Integrated, Inc.) on the chest. Although both devices have a similar footprint, the 

commercial one contains a stiffer fabric-backed adhesive gel electrode patch shown to 

buckle and delaminate from the skin. The strain experienced across the entire length of the 

patch becomes concentrated at the edge where the circuit is connected, resulting in 

delamination directly over the electrode. This observation highlights the SIS's advantage 

of tuned stiffness specifically at the electrode, while still allowing the rest of the device to 

have conformal contact to the skin that can endure body movements. Figure 5.5B plots the 

SNR results from four simultaneous tests of the two devices, with mean idle values 

normalized for comparison. The mean SNR reduction from idle to jog was 25.7 to 12.1 dB 

for the commercial device compared to 25.7 to 21.6 dB for the SIS. This is a reduction of 

signal quality by 53% for the commercial device versus 16% for the SIS when compared 

to their respective baseline idle signals. Raw ECG plots in Figure 5.5C show 2-second 

comparisons for idle, walk, and jog from one trial, capturing increased MA as a user's 

activity level increases. On the other hand, the SIS could maintain the signal quality levels. 

The normalized ECG amplitudes are shown for equal comparison, to compensate for the 

smaller signal in the commercial device partially due to its placement higher on the chest, 

and thereby, farther from the heart. A more extended trial with additional exercises is 

shown in Figure 5.5D. The moving average HR calculations show a slight increase during 

walking and jogging (30-150 s), followed by a slight decrease during resting (150-200 s) 
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before rising higher for the remaining exercises (200-350 s). Both devices plot a similar 

trend throughout the test until the burpee exercise (300 s) introduces over 5-g acceleration. 

The SIS shows a noticeable jagged deviation indicating MA interfering with the HR 

algorithm, but the plot continues smoothly after the exercise is finished. Unlike the SIS, 

the amplitude of MA from the commercial one significantly interferes with the HR 

algorithm, resulting in a complete failure in HR and RR detection after 300 s (Figure 5.5D). 

Throughout the testing session, the commercial device has higher fluctuation in the 

detection of continuous HR and RR than the SIS. In a similar way, we compared the effect 

of arm movements to the wearable devices. Plots in Figure 5.5E summarize the measured 

ECG data from the SIS and the MAX-ECG when a subject has constant arm movements, 

capturing significant MA from the commercial device.  
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Figure 5.5 Results of simultaneous testing of SIS and commercial device 
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5.2.3 Validation of Long-term Monitoring 

Further testing was conducted to evaluate the SIS's long-term performance for 

everyday use and real-life activities. The testing protocol involved normal daily activities 

such as rest, deskwork, household chores, and exercises (Figure 5.6A). Participants were 

instructed to wear the device under comfortable clothes and follow a schedule that included 

activities from each category. A representative set of recorded data in Figure 5.6B shows 

an example of real-time, continuous recording of physiological data for 8-consecutive 

hours: raw ECG data with user-reported activities of four different colors (top), measured 

HR and RR data from ECG, showing clear signals even with excessive motions (middle). 

The acceleration data is classified by intensity level throughout the recording to give an 

overall measure of activity throughout the day and daily totals of these four types of 

activities (idle, walk, fast walk, and jog). HR and RR are continuously monitored 

throughout the day and activity classification without any MA issues or device 

delamination problems.  

A comparison plot in Figure 5.6C shows the percentage of time spent in each of the 

four types of activities. It compares the reported time by a participant with the calculated 

time measured by the activity classification. There are apparent discrepancies in the 

reported times by the user report and classified one. In general, participants underestimated 

time spent in the two lowest activity categories while overestimated time spent in the two 

higher activity categories. Since activity level is used to give a better picture of overall 

health, having quantifiable measurements can help, especially with the tendency to 

overestimate the healthy choices we are making.  
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Figure 5.6 Results of 8-hour ECG measurement with multiple activities 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This work presented a description of ECG measurement, a definition of motion 

artifacts, and a review of wearable ECG devices and their limitations. The SIS device has 

been presented as a capable solution to wireless ECG monitoring. Details of the fabrication 

and methods for developing the device have also been presented. The skin strain model for 

correlating strain and motion artifacts as well as the development of strain isolation for 

mesh electrodes were described. Results confirmed the importance of adhesion and 

breathability for consistent signal quality. Signal to noise ratio was used to compare signal 

quality between tests and between devices. Stain isolation resulted in better signals that 

with identical electrodes without strain isolation. The SIS showed a marked improvement 

over a comparable commercial device in multiple tests and was able to continuously 

monitor ECG signals throughout daily activities, including exercise.     

6.2 Future Work 

The strain isolation concept has potential to be used in other wearable electronics. 

Relative motion and skin strain cause motion artifacts for other signals such as 

photoplethysmogram (PPG), electroencephalogram (EEG), electromyogram (EMG), etc. 

There may also be commercial applications for strain isolation with gel electrodes or wire 

restraints to improve quality in the clinic as well. 
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