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SUMMARY

Focusing on human gut microbiota, this research work covered the most advanced as-

pects about the metagenomic data analysis of human gut microbiota, and explored the

possibility of putting the findings about disease-related human microbiota into application.

In Chapter 2 of this dissertation, we pre-processed and carried out a uniform anno-

tation of the raw data of human gut microbiota from hosts suffering various diseases by

applying the state-of-the-art bioinformatics tools. For systematic analysis, a novel binning

unit was defined, functional taxonomic unit. With the annotation result, we answered the

question of how the ecological niches of gut microbiota correlate with the host health in

every step of a well-designed meta-analysis, covering all the four aspects , i.e. taxonom-

ic composition, functional carriage of these microbes, taxonomic co-occurrence network

and also functional gene-gene interaction network. Universal taxonomic and functional

biomarkers were identified. Interesting finding from the gene-gene interaction network and

significantly alteration of taxonomic network patterns indicated that the gut microbiota in-

side human gut aggregate a ‘super organism’ and influence the host health in a community

manner. In summary, taxonomic composition, microbial functions, microbial correlations

and the interactions of microbial functions are four indispensable components for char-

acterizing microbial community, which should be the comprehensive way for defining a

pan-microbiome. This literal definition of pan-microbiome provides a practical framework

for designing future research works.

In Chapter 3 of this dissertation, we proved the existence of an aging progression of

human gut microbiota by applying unsupervised machine learning approaches on metage-

nomics data. We applied an unsupervised machine learning approach SPD on genera abun-

dance profile of human gut microbiota quantified by 16S rRNA sequencing data. Without

using the age information of the samples, SPD sorted sample groups on a minimal span-

ning tree that recapitulated the aging progression. This result indicated the existence of an

xvii



aging progression reflected in the human gut microbiota. In the meantime, we found 35

genera associated with this age-related progression. Some of these genera were not identi-

fied using the commonly-used statistical approaches for metagenomics analysis. Literature

review of these 35 genera led to a lot of evidences of the functional relevance of these gen-

era. The evidences collectively indicated an age-related decline of the beneficial functions

of gut microbiota, as well as increase of inflammation and diseases, especially for the el-

derly people older than 90s. This is the first study characterizing the human gut microbiota

in a trajectory manner, which sheds light on the possibility of exploring diverse approaches

for conducting metagenomics analysis.

In Chapter 4 of this dissertation, we further explored to develop a machine-learning

based tool LightCUD in Chapter 4, which was designed to assist the diagnosis of IBD based

on human gut microbiome. The well-designed feature selection steps and comparison of

different machine learning algorithms contributed to a high-performance tool. Regarding

the high-speed development and popularity of NGS, LightCUD highlights the potential of

diagnostic tools developed with machine learning algorithms based on the data of human

gut microbiome.

In Chapter 5 of this dissertation, we released the first database integrating disease-

related genes of human gut microbiota, named DREEM, which provides a clue and data

resources for those studies about disease-related changes of gut microbiota.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Human gut microbiota

The studies about the human microbiota could be traced back to 1680s, during which An-

tonie van Leewenhoek had compared his fecal and oral microbiota[1, 2]. He noticed the

striking differences of microbes between these two habitats. Some others consider the

origin of microbiota research should be two centuries later, marked by the publication

of A Flora and Fauna within Living Animals by Joseph Leidy in 1853[3]. Then, Louis

Pasteur, lie Metchnikoff, Theodor Escherich and some other pioneer microbiologists and

immunologists, laid the foundations for characterizing the interactions between host and

microbiota. Pasteur’s medical discoveries proved the germ-theory of disease at the first

time, and he also pointed out the potential value of non-pathogenic microorganisms for

maintaining a normal human physiology, with a famous quote “Life would not long remain

possible in the absence of microbes”[4, 5]; Metchnikoff discovered that phagocyte could

kill pathogens[6]; and Escherich described E.coli at the first time and was convinced that

the intestinal bacteria are essential to the physiology of digestion[7]. Alfred Nissle, a Ger-

man physician, isolated the Escherichia coli Nissle 1917 strain from human gut in 1917

and showed the protective role of this strain against pathogens, which remains a commonly

used probiotic[8]. However, ‘microbiota’ has not been documented as a basic microbiolo-

gy term until 50 years ago, which was specified as “a catalog of microbes”[9, 10]. Latter-

ly, the term ’microbiome’ was defined in 1988 as “A convenient ecological framework in

which to examine biocontrol systems is that of the microbiome. This may be defined as a

characteristic microbial community occupying a reasonably well defined habitat which has
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distinct physio-chemical properties. The term thus not only refers to the microorganisms

involved but also encompasses their theatre of activity”[11] (which was recoined by Joshua

Lederberg in 2001 as “microbiota and their genes”[12]). At the meantime, pioneer micro-

biologists discovered the methods to culture anaerobic organisms in the laboratory, which

facilitated the understanding about the composition and function of the microbiota commu-

nities living on the surfaces of human body and how those microbiota changed throughout

human lives[13]. In 1960s, the first in vivo experiment proved that germ-free mice can only

recover normal physiology by being colonized with bacteria from faeces[14].

Following all these great advances in understanding microbiota, the great plate count

anomaly soon became apparent in 1980s[15], that the majority of microbes from natural en-

vironment can not be cultured or observed in the lab. This observation motivated the devel-

opment of sequencing-based approaches to identify unculturable microorganisms, which

were first applied to study environmental microorganisms. Subsequently the sequencing-

based methods were adapted to the analysis of human-associated communities, which has

provided an unprecedented view into the composition and function of the human microbio-

ta.

“When you are hungry, you are not alone. When you are sick, you are not alone, ei-

ther”. The human body is home for tens of trillions of microbes across different body

sites, including nasal passages, oral cavity, skin, gastrointestinal tract, and urogenital tract

etc[17](Figure 1.1). Especially, inside the human gut reside a huge amount of microbes,

the number of which was estimated to be ten times the number of human body cells (Figure

1.2), and 100 times as many genes as the human genome, most of which confer physiolog-

ical function. These gut microbiota are critically important to host health and have been

reported as an important virtual organ[18]. In fact the structure of gut microbiota is the

result of a continuous co-evolutionary history of interactions between the host bodies and

intestinal microbes. This intimate association has affected both sides[19], and as a result all

higher organisms negotiate a truce with their commensal microbes and battle pathogenic
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Figure 1.1: Genus- and phylum-level classification of bacteria colonizing different parts of
a subject [16].
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Figure 1.2: The gut microbiome is as important as human host genome.

microbes on a daily basis. Consequently, this “forgotten organ” constitute the backbone of

human gut ecological system by controlling the biochemical cycling of elements essential

for life. The gut microbiota benefit host through various approaches such as supplying

nutrition, influencing immune system, resisting pathogens and participating in the mainte-

nance of health[17, 20] (Figure 1.3).

1.1.2 Metagenomics analysis

In 1995, Fleischmann et al. performed whole chromosome sequencing of bacteria Haemophilus

influenzae Rd, which released the only complete genome sequence from a free-living or-

ganism[21]. Since then, sequencing the microbial genome has become a universal means

for studying microbes. As of March 2020, the National Center for Biotechnology Infor-

mation has collected 245,875 complete genomes of prokaryotic microorganisms. Such

massive amount of genomic data has spawned the development of comparative genomics
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Figure 1.3: Commensal bacteria exert a miscellany of protective, structural and metabolic
effects on the intestinal mucosa[18].

and systematic biology. The molecular level analysis of microorganisms have promoted

our recognition about the association between genomic structure and its function. How-

ever, the culture-based single genome annotation method has great limitations. First, only

less than 1% of microorganisms in the nature can be isolated and cultured[22]; Second-

ly, the genomes of microorganisms that are sequenced after separation and culture have a

preference and cannot reflect the real situation of the original environment[23, 24]; Last

but not least, microbes do not exist in isolation in a natural ecosystem (such as water, air,

soil, intestines, etc.), but rather in communities in which competition and cooperation are

essential for shaping the composition and function of a microbial community[25]. Since

single microbial isolates in lab cultures can not accurately characterize the environmental

communities, researchers have developed approaches to move beyond single pure-culture

laboratory experiments to understand microbial community composition, structure, func-

tion,and evolution. The metagenomics analysis provided an effective way to overcome the

above mentioned limitations[25].

Metagenomics is the study of genetic material recovered directly from environmental

samples in an untargeted (shotgun) way, which facilitated the identification of microbial

genome sequences from environmental samples without the need of cultivating these or-
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ganisms in the laboratories[26]. As shown in Figure 1.4, the whole pipeline for metage-

nomics analysis includes collecting samples from the original environment, sample quality

control, extracting all the DNA of all microorganisms from the samples, building up gene

library and conducting whole genome sequencing/16S rRNA amplicon sequencing. Once

getting the raw data, short reads were assembled into contigs, from which the relative abun-

dance of every microbe and the potential functionality of the entire community could be

referred. With metagenomics analysis, we could systematically characterize the micro-

bial community structure, biodiversity, social relationship, co-evolution and the interaction

between host and microbiota, which broad our understanding about human microobiota.

The rapid development of high-throughput next generation sequencing (NGS) technology

further facilitate the metagenomics analysis, but put more challenge on data analysis and

integration.

Because of the experimental process, the total number of counts per sample is highly

variable due to different library size. The statistical analysis of microbiome abundance da-

ta usually starts with a normalization step. The most-common used normalization method

is to transfer the original raw count into ration of every count divided by the number of

total reads (sequencing depth) in each sample. Some other approaches have been proposed

for data normalization, for instance Aitchison’s log-ratio approach, the centered log-ratio

transformation (clr), and rarefaction normalization, which randomly select the same num-

ber of reads from each sample[27, 28]. Based on the normalized data, one could explore

the microbiome composition to identify possible data structures. Diversity is one of the

most important indicators for the quality of an ecosystem, which could be divided into two

categories, alpha diversity (within sample diversity) and beta diversity (between samples

diversity). Alpha diversity measures the homogeneity regarding abundance of the differ-

ent species in a sample by integratin both their richness and evenness. Commonly used

measures of alpha diversity include Chao1 index and Shannon index. Beta diversity char-

acterizes the differences in microbial composition between samples, including Bray-Curtis,

6



UniFrac and weighted UniFrac distances. Another important step for exploring data struc-

tures is to draw ordination plots for visualizing the distances between samples. In order to

draw the ordination plots, the high dimensional data need to be mapped onto tow or three

dimensions while keeping the main variance as much as possible. The most commonly

used methods for dimension reduction include PCA, PCoA and NMDS[29]. Subsequently,

the inference analysis is performed to identify those features of interest with differential

abundance regarding different host status. When one is interested in the global difference

in microbial compositions, multivariate comparison like PERMANOVA[30] could be ap-

plied. Univariate differential testing could be applied when one wants to identify specific

features differently distributed between samples groups. The common used methods in-

clude t-test, Wilcoxon rank-sum test and Kruskal-Wallis test. Microbes interact with each

other and also with the host. The correlation analysis could be applied to identify host

condition associated features or construct microbial correlation networks. The approached

for computing correlation include naive correlation coefficients like Bray-Curtis distance,

Pearson correlation and Spearman correlation, also some toolkits like CoNet,LSA, MIC,

RMT and SparCC[31]. The metagenomics analysis include but is not limited to aforemen-

tioned approaches. Actually, it’s far from enough and there is still considerable need for

improvement in current technologies and exploration of new methods.

1.1.3 Disease-related variability of human gut microbiota

Regarding this rapid progress, the metagenomics analysis of the NGS data has been play-

ing an important role in understanding the impact of gut microbial ecosystem on human

diseases. In the past decade, the correlation between gut flora and the health and disease

of host has become the hotspot of researches, remarkably further driven by the launch of

the National Microbiome Initiative in 2016, Human Microbiome Project (HMP) and iHMP

project targeting multiple omics technologies. Through case-control metagenome-wide as-

sociation studies, the population structures of gut flora have been well studied. The clinical
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Figure 1.4: Illustration of simplified pipelines to obtain genome sequences from cultured
and uncultured microbes[26].
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trials and animal experiments have revealed that the alteration of the gut microbiota are

closely associated with the happen of diseases like type II diabetes (T2D)[32, 33], Crohn’s

diseases[34], obesity[35], depression[36] and colorectal cancer[37], et al., illustrated by

obvious changes in community structure and metabolic potential.

Using 16S rRNA sequencing data, IBD-affected individuals were reported to have 30-

50% reduced biodiversity of gut microbes[38]. Studies focusing on bacterial 16S rRNA

genetic phylotypes suggested significant phylotypic alterations in the intestinal microbiota

of irritable bowel syndrome (IBS) patients[36, 39]. It has been proved that the relative

portion of Bacteroidetes decreased in obese people, while increased with weight loss on

two types of low-calorie diet[40]. Gut microbiota from inflammatory bowel disease (IBD)

patients were detected to produce significantly more short-chain fatty acids and ammoni-

a than that from healthy individuals[41]. Also, studies of depression have demonstrated

the overrepresentation of Bacteroidales and underrepresentation of Lachnospiraceae[42].

These studies indicated that the gut flora are strongly associated with human health taxo-

nomically, therefore lead to a stirring of interests of variation in the gut microbiota.

With whole genome sequencing data, the disease-related alteration of human gut micro-

biota could be characterized not only on species level, but also on gene level. An obesity-

related study demonstrated that the obesity-associated signals originated from the host gut

microbiome may be much stronger than that from the host genome[35]. A T2D-related

study showed that the T2D-enriched microbial markers involve membrane transport of

sugars, branched-chain amino acid transport, methane metabolism, xenobiotics degrada-

tion and metabolism, and sulphate reduction[33]. It is also documented that from the point

of gut flora, liver-cirrhosis was associated with assimilation or dissimilation of nitrate to or

from ammonia, GABA, phosphor transferase systems, haem biosynthesis and some type-

s of membrane transport[43]. 15,894 genes were indicated as the significantly different

functional genes, and they could also be applied to an efficient discrimination of lean and

obese individuals[35]. Another study indentified 75,245 genes alternated between patients
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with liver cirrhosis and health controls[43]. These WGS studies of gut microbiome have

exhibited a lot of disease-related genes and metabolic pathways of gut flora.

Intra-individual changes have also been revealed as driven by restoring forces within a

dynamic system though the composition of the adult gut microbiota appears to be relative-

ly stable compared to the inter-individual changes[44]. Aging is a process capturing many

aspects of the biological variation of the human body, which was accompanied by an in-

creased incidence of infection and functional decline in the gut of elderly individuals[45].

Several previous studies have reported age-related changes of human gut microbiota[46,

47, 48, 49, 50, 51, 52, 53, 54]. By culturing microbes, Hopkins et al. found larger number

of Enterobacteria in children’s fecal than in adults[46]. Yatsunenko et al. found the number

of Bifidobacterium declined as ages of the hosts increased using 16S rRNA sequencing[48].

Odamaki et al. revealed that there was an increasing proportion of Bacteroides, Eubacteri-

um and Clostridiaceae accompanying aging; while Enterobacteriaceae were enriched in

elderly and infant; Bifidobacterium were more abundant in infants; Lachnospiraceae were

more abundant in adults[47]. Stewart et al. discovered L-lactate dehydrogenase major in

milk fermentation declined and transketolase major in the metabolism of fiber increased

over the first years of life[50] using whole genome sequencing.

1.1.4 Clinical applications

Regarding all these advances, it comes to a common sense that maintaining gut microbial

structure and function is beneficial to human health. Normal gut bacteria as a union, their

metabolites are essential for host physiologic activities. The dysbiosis of gut microbiota has

been associated with a lot of infectious, inflammatory, functional, and nutritional patholog-

ical conditions. Manipulating the gut microbiota in a well-designed approach could help

prevent or treat some diseases.

• Pathogen target treatment
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Antibiotics has been used to kill specific pathogen and modulate the dysbiosis of human

gut microbiota since 1920s, although they can disrupt the stability of microbial community

at the same time. But the beneficial clinical outcome is obvious and has made antibiotics an

established and effective treatment for a number of infectious intestinal diseases, like infec-

tious C. difficile-associated diarrhea. Even for those diseases (e.g., IBD and IBS) without

a clear recognition of pathogen-associated etiology, antibiotics treatment are also one of

the most common used treatment approaches. Mouse model studies have also proved the

potential reversing or attenuating effect of gut microbiota on the dysbiosis of gut microbio-

ta[55]. However, the concerns should be addressed whenever using antibiotics for treating

diseases, since it is in the risk of resulting in an increased susceptibility to diseases and the

dysregulation of host immune homeostasis.

• Probiotics modulation

Probiotics are defined as a set of live microorganisms conferring a health benefit to

the host by improving or restoring the gut flora. Probiotic therapy could be dated back to

almost 100 years age, when Elie Metchnikoff (this name appears twice in this chapter) sug-

gested that the yogurt consumption make Bulgarian peasants live longer. In both China and

Japan, fermentation using various microorganisms is a traditional method to produce miso

(soybean paste), sake (wine made from rice), natto (fermented soybean), pickles, fermented

dairy products, and many other products[56]. Probiotics have been studied in recent years

as an approach for modulating microbial populations and functions in order to promote

host health and manage or prevent intestinal diseases. Ingestion of probiotics has been

used to treat a lot of pathological disorders, for instance allergic reactions, constipation,

infections in infancy, and IBS. A balanced enteric flora might competitively exclude possi-

ble pathogens, promote the intestinal immune system, and produce beneficial metabolites

such as short-chain fatty acids, vitamins, amino acids like arginine, cysteine and glutamine,

polyamines, antioxidants, and growth factors[57].
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• Fecal Transplantation

Fecal microbiota transplantation (FMT) is a procedure to transfer slightly processed

feces from a healthy donor to a recipient with some kind of conditions, with the aim to es-

tablish a healthy diverse microbial community within the gut of patients. FMT has a long

history, which could date back the fourth century. In ancient Chinese medicine Ge Hong

used ‘yellow soup’ to treat food poisoning and severe diarrhoea. In the sixteenth century,

Li Shizhen used a ‘soap’ mixed with fresh, dry or fermented stool as oral administration to

treat abdominal diseases. In seventeenth century, Fabrizio from Italy and Paullini from Ger-

man reported the use of FMT. The first record about the use of FMT in Western medicine

was published in 1958. Ben Eiseman and his colleagues treated patients suffering from

pseudomembranous colitis, before Clostridioides difficile was discovered as the real cause.

Nowadays, FMT is still a highly effective way for treating recurrent Clostridium difficile in-

fections. With the rapid updates about the role of gut microbiota in modulating host health,

FMT has been experimentally validated as efficient at treating various conditions, such as

Crohns disease, ulcerative colitis, metabolic and autoimmune diseases, autism, Parkinsons

disease, multiple sclerosis, irritable bowel syndrome, and chronic fatigue syndrome. The

implementation of FMT is easy, and it has been proved as a cheap and reliable treatment

approach[58]. However, there are still concerns about its long-term risks and the standard

application protocols have not yet been established.

• Machine learning based algorithms for disease diagnosis

Machine learning approaches have been applied to conduct diseases prediction with

various biological data[59]. The gut microbiome is one of the representative data type.

Recently, studies have begun to predict host conditions by exploring the power of ma-

chine learning algorithms applied on human gut microbiome patterns[60]. The main chal-

lenge for implicating this kind of algorithms is that the microbial imbalance associated

with disease-related dysbiosis could be caused by a wide range of reasons, which putting a
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lot of challenge on feature selection. Additionally, individual studies usually have limita-

tions like small sample sizes, various processing procedure, and inconsistent findings[61].

This situation led to the difficulty for generalizing prediction models across studies[62].

A few Meta-analysis has been performed to address these issue, combining sample co-

horts from multiple microbiome studies. Duvallet et al. performed a meta-analysis cov-

ering 10 diseases to find consistent patterns characterizing disease-associated microbiome

changes[61]. Pasolli et al. also performed a meta-analysis collecting 2,424 publicly avail-

able samples[62]. The authors pointed out that the addition of healthy controls from other

studies to training sets could improve the disease prediction capabilities of models. The

data integration and external validation could improve the robustness and generalization of

models for prediction, compared to those models that are validated internally only, which

call for an integrated database including disease-related markers of human gut microbiota

as inclusive as possible.

1.2 Outline of this dissertation

The human gut microbiota has been revealed as an essential partner for human health.

Numerous studies have been conducted around human gut microbiota by applying metage-

nomics analysis on data generated by next-generation sequencing data which has enhanced

the understanding about the microbial compositions and functional carriage of human gut

microbiota. The aims of these studies included but not limited to those studies tried to re-

veal the microbial diversity, functional dysbiosis, mcriobial pathways, novel genes, antibi-

otic resistance gene, co-evolution of host and microbiota, interaction between host and mi-

crobiota (Figure 1.5). These studies led to the revolution about the recognition of disease-

related changes of human gut microbiota, which has been one of the hotspots. Those

related studies have nonetheless provided important insight into the association between

host diseases and gut microbial dysbiosis, there is an urgent call to integrate those scattered

datasets about multiple diseases, which will assist the community to see a forest instead of
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individual trees for characterizing the gut microbial community. Besides data integration,

new machine learning methods and different observation angles are also in an urgent call

and deserve exploration. With all these established discoveries and publicly available WGS

data of human gut microbiota, developing new tools and building up databases to put those

disease-related markers into application are also necessary. These are the essential parts

for characterizing human gut microbiota using metagenomics analysis.

As shown in Figure 1.6, this dissertation characterized the human gut microbiota from

four aspects, mainly focusing on the metagenomics analysis of disease-related human gut

microbiota. The first part (referring to Chapter 2) characterized the consistent changes of

human gut microbiota behind multiple diseases using case-control comparative analysis.

The second part (referring to Chapter 3) characterized the dynamic changes of human gut

microbiota during host aging progression in a trajectory way. The third part (referring to

Chapter 4) explored the application of disease-related human gut microbiota, building up

a disease diagnosis tool through applying machine learning algorithm on human gut mi-

crobiome. The last part (referring to Chapter 5) constructed a database integrating disease-

related marker genes in human gut microbiome, which will benefit the community who are

also interested in doing analysis or developing application tools of human gut microbiome.

• Consistent changes of human gut microbiota behind multiple diseases.

The first part (Chapter 2) of this dissertation characterized the alteration of human gut

microbiota behind multiple diseases through a pan-microbiome analysis.

Variation of the human gut microbiome in different population related to various dis-

eases has been researched by a plethora of studies[63, 17, 64, 65]. Meanwhile, increasing

amount of whole-genome metagenomic sequencing of the human gut microbiome have

provided important insights[66, 17, 67, 68, 69]. However, there is still a lack of com-

prehensive understanding on how the transformation of host pathological conditions are

associated with the dysbiosis of the human gut microbial community, thus encouraging us

to carry out the comprehensive analyses on the WGS data of human gut microbiome with
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Figure 1.5: Application of metagenomics in the human gut microbiome.

regard to the hosts suffering from different kinds of diseases and dip into the question about

what kinds of human gut microbial community are healthy.

One straightforward approach to answer this question is to identify microbes consis-

tently altered in different diseases. Claire et al. tried to find the genera related to multi-

ple diseases using 16S RNA sequencing data[70, 71, 72]which has nonetheless provided

important insight. Since microbes share metabolites with the host and also among them-

selves[73], functional characterization of the human gut microbiome is another foremost

aspect. The increasing amount of WGS data of the human gut microbiome[66, 17, 74, 75,

76] gave us a chance to make it happen. However, it could be very difficult to absolutely

say some kinds of microbes or functional genes are harmful while others are beneficial,

because a very large proportion of harmful microbes or functional genes in one disease

might be beneficial in another disease[71, 72, 77]. The microbial community inside our

gut is an ecological community of complex microbial niches and also can be considered as

a super-organism. Inspired by the significance of species-species collaboration network in

an ecological system and gene-gene interaction network inside the genome of an organis-
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Figure 1.6: Outline of this dissertation.

m, models to characterize the microbial cooperation and also the functional genes’ linkage

will be super interesting and rise the chance for more systematic feature detection.

Herein, we conducted pan-microbiome analysis on a large scale of gut metagenom-

ic WGS data collected from groups of hosts under six types of pathological conditions,

T2D, Crohn’s diseases (CD), ulcerative colitis (UC), liver cirrhosis, obesity and symp-

tomatic atherosclerosis, as well as their healthy controls[33, 32, 43, 35, 78, 79, 80]. We

pre-processed and carried out a uniform annotation of the raw data. With the annotation

result, we carried out a comprehensive pan-microbiome analysis of human gut microbio-

ta covering all the four aspects mentioned above, i.e. taxonomic composition, functional

carriage of these microbes, taxonomic co-occurrence network and also functional gene-

gene interaction network. We answered the question of how the ecological niches of gut

modulate human health in every step of this well-designed meta-analysis.

• Dynamic Alteration of disease-related microbiota during aging progression.

Moving beyond Chapter 2, Chapter 3 explored to characterize the human gut micro-

biota in a different perspective, capturing the transformation of human gut microbiome in
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a trajectory way during host aging, and characterizing how the disease-related microbiota

altered during this aging progression.

Age-related changes of human gut microbiota have been revealed by several previous

studies[49, 52, 51, 45, 46, 53, 50, 54, 48]. Hopkins et al. found higher numbers of Enter-

obacteria in children’s fecal than adults through culturing microbes[46]. Using 16S rRNA

sequencing, Yatsunenko et al. found Bifidobacterium declined with increasing ages[48].

Odamaki et al. revealed that aging was accompanied by increasing proportion of Bac-

teroides, Eubacterium and Clostridiaceae; Enterobacteriaceae were enriched in infant and

elderly; Bifidobacterium were enriched in infants; Lachnospiraceae were enriched in adult-

s[47]. Using whole genome sequencing, Stewart et al. discovered decline of L-lactate de-

hydrogenase (milk fermentation) and increase of transketolase (metabolism of fiber) over

the first year of life[50]. In these studies, various supervised machine learning methods

have been applied, including multi-group comparative analysis with permutational analy-

sis of variance (PERMANOVA)[46, 47, 49, 50], Spearman rank correlation and Random

Forest[48], as well as frequency-inverse document frequency and minimum-redundancy

maximum-relevance[51], which effectively identified taxonomic or functional signatures

showed aging-related changes of gut microbiota.

In this part, we proposed to explore an unsupervised machine learning approach for

identifying aging-related progression of microbiota community and bacteria genera associ-

ated with this progression. The unsupervised algorithm adopted here is called Sample Pro-

gression Discovery (SPD), which was developed to identify progressive changing patterns

of gene expression that reflect the biological progression in various biological processes

and systems[81]. This idea was first applied to microarray gene expression analysis[81],

and then extended to flow cytometry[82] and single-cell RNA-seq analysis[83]. Here, we

applied SPD on community profiles extracted from 16S rRNA sequencing data of human

gut microbiota samples in various age periods ranging from new-born babies to centenar-

ians. SPD recapitulated the underlying aging progression of the data in an unsupervised
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fashion, and sorted the gut microbiota samples in an order consistent to the host ages. In

addition, SPD identified bacteria genera associated to the aging-related progression of gut

microbiota. These findings demonstrated the existence of an aging progression of human

gut microbial community, and points to important bacteria genera that characterize the ag-

ing of gut microbiota.

• A machine learning tool for diagnosing diseases based on human gut microbiota.

Moving from analysis and characterization of disease-related human gut microbiota,

in Chapter 4 we explored to develop a disease discrimination tools based on the gut mi-

crobiome using disease-related marker species or genera as features for building machine

learning models.

IBD is a group of inflammatory conditions of the colon and small intestine that af-

fects over 2.5 million Europeans[84] and 3.1 million Americans[85], and has a notably

increasing prevalence in the Asia-Pacific region[86]. An early accurate diagnosis can help

clinicians to improve treatment. However, there is no gold standard diagnosis for monitor-

ing quiescent disease in patients with IBD. Moreover, the two major types of IBD, UC and

CD[87], have different mechanisms of tissue damage[88], necessitating different treatment

strategies. It is clinically critical but usually difficult to identify the specific types of IBD,

because there are no golden biomarkers or clinical tests capable of discriminating CD from

UC patients in practice[89]. Even colonoscopy may miss inflammation in some parts of

the gastrointestinal tract[90].

Keeping this question in mind, we developed the tool LightCUD for discriminating UC

and CD from non-IBD colitis using the human gut microbiome. LightCUD embodies four

high-performance modules, namely, WGS-based health vs IBD module, WGS-based UC

vs CD module, 16S-based health vs IBD module and 16S-based UC vs CD module. Each

module is composed of a machine learning model and a customized reference database. In

details, we used the high-throughput WGS data to analyze the microbial composition of gut
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microbiota samples. These samples were from patients with UC and CD, and healthy con-

trols. The taxonomic profiles of these samples were obtained as feature abundance matrices

at strain level for two WGS-based modules and at genus level for two 16S-based modules

respectively. We designed a feature selection strategy for all the modules. Also, we com-

pared the performances of five different machine learning algorithms, i.e., logistic regres-

sion, random forest, gradient boosting classifier, support vector machine and LightGBM

for training each model of corresponding module[91, 92, 93, 94]. The LightGBM-based

models performed best. As a result, we established four high-performance lightGBM-based

modules, namely, WGS-based health vs IBD module, WGS-based UC vs CD module, 16S-

based health vs IBS module and 16S-based UC vs CD module. For the two WGS-based

modules, we further optimized the feature/strain sets to improve the modules performance.

The result illustrated that 49 strains for WGS-based health vs IBD module and 12 strain-

s for WGS-based UC vs CD module could achieve the best performances. Finally, we

constructed and released the tool LightCUD. With 16S rRNA sequencing or WGS data

from individual gut microbiota samples as input data, LightCUD predicts the probability

of having IBD, and the sample identified as IBD will then be classified as UC or CD.

• A database integrating disease-related marker genes in human gut microbiome.

To benefit the community who are interested in characterization or developing appli-

cation tools of human gut microbiota, we released a database of Disease-RElatEd Marker

genes (DREEM database) in human gut microbiota as Chapter 5 of this dissertation.

Although some a set of microbial genes may be recognized as those associated with

a specific disease, we probably just haven’t seen the forest for the trees. There still lacks

a common set of microbial genes related to human health and diseases in general terms.

People constructed such as the IGC database, an integrated gene catalogue of intestinal

microbiome, however it is not associated with specific pathogenicity and host health[66].

Therefore, an integrated general knowledge of these microbial genes certainly facilitate

understanding the correlation between gut flora and human health and disease, as well as
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the mechanisms of how gut flora contributes to disease process. Fortunately, large amounts

of metagenomic data by current studies have been released at the public databases Gen-

Bank[95] and EMBL[96], though providing a provisional knowledge with fragmentary

evidences, leading to the chance for information integration.

Herein we constructed a comprehensive database, named DREEM, which have re-

trieved a large scale of WGS data of human gut metagenomes, covering six types of

pathological conditions, i.e., T2D, CD, UC, liver cirrhosis, symptomatic atherosclerosis

and obesity. The short reads with the size of 18.63T consisting of 1,729 samples were pro-

cessed with a standard procedure, involving the state-of-the-art bioinformatics tools and

statistical analysis. Then we picked out 1,953,046 non-redundant DREEM genes. The

DREEM genes specific to a certain disease were also stored as an individual gene set with

respect to six diseases considered in the current program. Furthermore, we provided a set

of Core-DREEM genes, which are shared among the samples of five metabolic syndrome

related co-morbidities: T2D, CD, UC, liver cirrhosis and obesity. All DREEM genes were

analyzed for taxonomic classification and functional annotation. Serving as the integration

of gut microbial pathogenic gene catalogues, as a result, DREEM could be employed to

detect functional and metabolic disturbance of host gut microbiomes, thus may provide

brand-new strategies for host disease diagnosis and facilitate studies on human gut flora.
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CHAPTER 2

CONSISTENT CHANGES OF HUMAN GUT MICROBIOTA BEHIND

MULTIPLE DISEASES

2.1 Introduction

The gut microbiota has been reported to be serving as an important “forgotten organ” which

embodies 100 trillion microbes[97]. The numerous microbes constitute the backbone of

human gut ecological system by controlling the biochemical cycling of elements essential

for life. This large and dynamic bacterial community can benefit the host through various

approaches such as supplying nutrition, influencing immune system and resisting pathogen-

s[63]. Variation of the human gut microbiome in different population related to diseases,

ethnic factors, diet habitat and age has been researched by a plethora of studies[63, 17,

64, 65]. Meanwhile, increasing amount of whole-genome metagenomic sequencing of the

human gut microbiome have nonetheless provided important insights[66, 17, 67, 68, 69].

However, there is still a lack of comprehensive understanding on how the transformation of

host pathological conditions are associated with the dysbiosis of the human gut microbial

community.Our understanding of the underlying mechanisms is still limited by its individ-

uality and complexity.

Fortunately, it has received increasing concerns on the gut microbiota of hosts suffering

from various diseases such as type 2 diabetes (T2D), Crohn’s diseases, obesity, liver cirrho-

sis, irritable bowel syndrome (IBS) and depression[33, 32, 35, 79, 78, 43, 36]. Together,

these studies revealed the compositional changes in gut microbial community of individ-

uals with different diseases, suggesting the correlation between states of the individual

health and the microbial dysbiosis.Significant discrepancies in the structure of the human

gut microbiome and metabolic potential between cases and healthy controls have been re-

21



vealed.Despite being crucial for understanding the relationship between the gut microbial

ecosystem and the host pathological conditions, these separate studies and incomparable

data sets missed the forest for the trees, thus encouraging us to carry out the comprehen-

sive analyses on the whole genome sequencing (WGS) data of human gut microbiome with

regard to the hosts suffering from different kinds of diseases.

To achieve this goal,we carried out a uniform processing and analysis on a large scale

of gut metagenomic WGS data collected from groups of hosts under six types of patho-

logical conditions, T2D, Crohn’s diseases, ulcerative colitis, liver cirrhosis, obesity and

symptomatic atherosclerosis, as well as their healthy controls[33, 32, 35, 79, 78, 43, 80].

From this we obtained a large and comprehensive pan-microbiome of human gut microbial

community regarding both bacterial members and gene functions. We then identified a set

of core strains that can be used as signature taxa and elucidated the adaptive mechanism

at community level by discriminating the distinct patterns of species-species correlation

network between cases and controls.

2.2 Data and methods

2.2.1 Dataset collection

We collected WGS data of human gut microbiome from seven separate studies[33, 80, 32,

35, 79, 78, 43], which consists of samples with six types of diseases (T2D, obesity, Crohn’s

disease, ulcerative colitis, liver cirrhosis and atherosclerosis) and their corresponding con-

trol. The hosts of the samples are of widespread geographical originations (i.e. Europe,

America and China). Detailed hosts originations and sample sizes with corresponding re-

search publications were summarized in Table 5.1 and Table 5.2. Samples were carefully

selected according to health conditions of their host recorded in original literatures. Those

with comorbidity were excluded from further analysis. In general, 11.5 billion paired-end

short reads of 1,729 samples, with a total size of 18.63 tera base (Tb), were downloaded

from GenBank[98] and EMBL[99]. All samples were sequenced in Illumina with read
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length ranging from 75bp to 102bp as recorded[33, 80, 32, 35, 79, 78, 43]. For samples

from Nielsen and Colleauge’s obesity study[78], we selected the healthy individuals with

BMI < 25 as controls (63 in total) for obesity, Crohn’s diseases and ulcerative colitis. The

obese only individuals (BMI ≥ 30) in healthy healthy conditions were chosen as obesity

samples, of which the ones with inflammatory bowel disease were excluded. Finally, a total

of 1,659 samples were included in our study. All WGS data was retrieved and processed in

a standard workflow as shown in Figure 2.1a and described in details as below.

2.2.2 Short reads assembly and gene annotation

Raw short reads were assembled into contigs by InteMAP, an integrated metagenomic as-

sembly pipeline designed for NGS sequencing data[100]. 88.75% of the short reads were

assembled with the average contig length of 1,531 bp. Short reads with low quality and

contigs with low sequencing depth were strained off as quality control for further analy-

sis. Genes identification was carried out on contigs by two metagenomic gene predictors,

MetaGeneMark[101] and MetaGUN/MetaTISA[102, 103], with combining genes detected

by both tools to include more protein coding genes. Herein both InteMAP and Meta-

GUN/MetaTISA were developed by the authors[100, 102]. In total, we identified 639.3

million genes for all samples. A strategy similar to MetaHIT was implemented to construct

the non-redundant gene set (the 95% identity and 90% coverage criteria), with the pairwise

alignment tool replace by CD-hit[43, 104]. The obtained non-redundant gene set consists

of 35, 714, 294 representative genes.

2.2.3 Taxonomic classification and functional annotation

In order to obtain more accurate taxonomic classification and avoid deviation caused by

the similarity between homologous genes, only contigs longer than 1, 000 bp were consid-

ered for phylogenetic assignment. A combination of a composition-based method and a

sequence alignment algorithm mapping against 2, 712 genomes from NCBI RefSeq were
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employed to conduct the classification[105, 106], during which alignment result was de-

cided by the one with higher alignment score. Taxonomic information was then assigned

to the representative genes of the non-redundant gene set, resulting in 2, 661 strains, 1, 478

species, 696 genera and 39 phylum , and covering 60.14% ± 11.68% of the sequencing

reads in all samples. We ensured that comparative analysis using these procedures was

not biased by data set origins. Function annotation was further performed for all represen-

tative genes via BLAST[106] against COG (Cluster of Orthologous Groups of proteins)

and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases with the criteron of

e-value≤ 10−3[107, 108]. 42.27% genes of the non-redundant gene set were classified into

4, 786 COGs[107, 106], and 21.06% genes of the non-redundant gene set were classified

into 145 KEGG pathways. Genes in the same orthologous group of COG are functionally

conserved to each other when translated into proteins. In this study, we identify FTUs at a

resolution considering functional orthologous as genes classified into the same COG[106,

107] and taxonomical unit of genes aligned onto the same reference genomes of one strain

in NCBI[105, 109].

2.2.4 Construction of FTU abundance matrix and statistical analysis

Since bacteria can exchange genetic material, we proposed a generalized concept, namely

functional taxonomic unit (FTU). An FTU is defined as a group of genes in the same cluster

of functional orthologous with identical taxonomic assignment under a certain rank (i.e.,

phylum, class, order, family, genus, species and strain). As a basic unit of metagenomic

analysis, FTU was introduced here to characterize not only the profile of signature mi-

crobes and the functional carriage of metabolic pathways, but also the linkage of these two

metagenomic determinant factors. FTU is somehow analogous to OTU, which is common-

ly used as pragmatic proxies for microbial “species” at different taxonomic levels during

16S rRNA analysis. Using FTU we can structurally organize the abundant metagenomic

data and reduce the magnitude of complexity, further conduct analysis in a systematical
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manner.

Implemented via the alignment tool bowtie2[110], the occurrence of each FTU was

counted by the number of mapped reads to the representative genes, followed by a nor-

malization over gene length to eliminate bias. The occurrences of all FTUs then formed

into an abundance matrix for further analysis. To exclude random mapping, only FTUs

with relative abundance above 10−8 were considered as presented in a sample, where the

relative abundance of a FTU was defined as its abundance normalized over the abundance

summation of all FTUs in this sample.

In this study, genes in the same FTU were functionally conserved (classified to the same

COG) and from the same genome of one strain. The relative abundance matrix and relative

frequency matrix of phylums, genera, species, COGs and COG categories were constructed

by the same approach as of FTUs. Wilcoxon rank-sum test was used to identify weather the

features (i.e. phylums, genera, species, COG category and COG class) were significantly

differing between cases and their controls with Q value thresholds (adjusted from P value

to control the false discovery rate). As a nonparametric test approach, it was widely used to

find out features with significantly different distribution between two sample groups using

magnitude-based ranks[111].

In order to figure out how the forementioned features correlated with each other, we

computed Spearman correlation coefficients with SparCC[112]. The credible correlations

(P < 0.05) were picked to calculate the network complexity, node active index in the

network. The visualization of the interaction network was created by CytoScape[113].

2.2.5 Determination of core strains and discrimination model based on lightGBM

As shown in Figure 2.2a, all six sample groups contributed to a set of core FTUs, 1, 095

FTUs for cases and 12, 494 for controls. By tracing back the taxonomic information of

core FTUs, we obtained a list of shared strains for cases and controls separately. All 40

shared strains of cases were also included in the shared strain list of controls. In respec-
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t to the strain relative abundance, they all ranked in top 100 abundant taxa and made up

41.72% of the community. With regard to the fact that about 40% of our data were taxo-

nomically unclassified, the 40 core strains (40 out of 2, 661 strains) dominated 69.37% of

the community Table 2.1. With the relative abundance of the 40 common features across all

samples, we trained a discrimination model using lightGBM algorithm, a fast, distributed

and high performance gradient boosting framework based on decision tree[91]. We evalu-

ated its performance by a tenfold cross-validation approach and scored the discrimination

ability in a receiver operating characteristic (ROC) analysis. The discriminative ability of

the model was computed as the area under the ROC curve. As shown in Figure 2.2b, cases

were correctly identified from controls with an average AUC of 78.68%, suggesting the 40

strains can be used as powerful biomarkers.

Table 2.1: The 40 shared strains

40 shared strains Abundance Order Feature IS

Mycobacterium smegmatis str. MC2 155 3 181

Buchnera aphidicola str. Ak (Acyrthosiphon kondoi) 45 159.8

Methylobacterium nodulans ORS 2060 13 152.1

Pseudomonas putida NBRC 14164 6 135.1

Legionella pneumophila 2300/99 Alcoy 40 134

Streptococcus pneumoniae SPN034156 19 128.3

Coprococcus catus GD/7 2 128

Eggerthella sp. YY7918 9 126

Nitrosomonas sp. AL212 20 124.4

Burkholderia gladioli BSR3 15 123.9

Bacillus thuringiensis YBT-1518 7 121.9

Terriglobus roseus DSM 18391 53 121.1

Carnobacterium sp. 17-4 51 120
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Table 2.1 continued

Desulfobulbus propionicus DSM 2032 8 116.3

Lactococcus lactis subsp. cremoris A76 14 115.4

Desulfosporosinus orientis DSM 765 17 115.4

Alteromonas macleodii str. ’English Channel 615’ 12 114.2

Escherichia coli O83::H1 str. NRG 857C 5 112.7

Staphylococcus saprophyticus subsp.
36 112.5

saprophyticus ATCC 15305

Streptococcus pneumoniae gamPNI0373 48 109.9

Bartonella quintana RM-11 28 109.3

Cyanothece sp. PCC 7822 4 108.8

Candidatus Nitrospira defluvii 29 107.3

Marinobacter hydrocarbonoclasticus ATCC 49840 22 105.7

Blattabacterium sp. (Blaberus giganteus) 85 105.7

Pandoraea sp. RB-44 44 105.4

Streptococcus suis GZ1 26 105

Treponema azotonutricium ZAS-9 31 104.5

Escherichia coli O7::K1 str. CE10 11 102.6

Streptococcus agalactiae A909 66 102

Escherichia coli str. ’clone D i14’ 57 98.8

Escherichia coli BL21(DE3) 21 97.8

Flavobacteriaceae bacterium 3519-10 92 95.1

Escherichia coli 042 56 93.7

Bacillus megaterium WSH-002 101 92.5

Yersinia pestis D182038 Salmonella enterica
18 91.5

subsp. enterica serovar

Choleraesuis str. SC-B67 41 90.5
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Table 2.1 continued

Desulfomicrobium baculatum DSM 4028 10 90

Cronobacter sakazakii SP291 27 89.2

Bacteroides fragilis NCTC 9343 1 82.9

As an additional benefit, lighGBM assigned an importance score to each strain by esti-

mating the increase in error rate caused by removing that strain from the set of predictors

(Figure 2.2c, Table 2.1). This brought us a chance to further reduce the size of biomarkers

and optimize the discrimination ability. We sorting the 40 strains with regard to the impor-

tance score, and successively added 5 strains in a step into the training set of model training.

We found that the model with 15 strains achieved the best performance, with the highest

AUC of 79.55% (Figure 2.2b). Case by case model training and test further validated these

15 strains as signature strains (Figure 2.3 and Table 2.2).

Table 2.2: The 15 core strains
Core strains

D.orientis DSM 765
D.propionicus DSM 2032
Carnobacterium sp. 17-4
T.roseus DSM 18391
B.thuringiensis YBT-1518
B.gladioli BSR3
Nitrosomonas sp. AL212
Eggerthella sp. YY7918
Coprococcus catus GD-7
S.pneumoniae SPN034156
L.pneumophila 2300 99 Alcoy
P.putida NBRC 14164
M.nodulans ORS 2060
B.aphidicola str. Ak (Acyrthosiphon kondoi)
M.smegmatis str. MC2 155
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2.2.6 Species-species co-occurrence networks

With the relative abundance of taxonomic composition across a group of samples, we de-

rived the correlation of all genera, species and strains with Spearman correlation coefficient.

Only Spearman correlations with P < 0.05 were accepted. Otherwise, the correlation co-

efficients (R) were manually set to be zero. R distributed in the range [-1,1]. In order to

systematically summarize the co-occurrence network pattern, we counted the number of

feature pairs with R in the corresponding intervals as shown in Figure 2.9a, b and c. The

number was scaled and Gaussian function was found to be well fit the bell-shape curve. The

pattern transformation of co-occurrence network was obvious on all the three taxonomic

ranks (i.e., genus, species, strain).

2.2.7 Species interaction model construction and performance evaluation

We designed a four-step pattern recognition procedure to identify cases by species interac-

tion networks. Firstly, we constructed a graph with all links representing species-species

validated correlation (P < 0.05). The most intensively connected species was selected

from the graph as the determinative feature for specimen selection in the current iteration.

Basing on the relative abundance distribution of this selected feature across samples, mean

value was adopted to partition the population into two separate groups, i.e., the high abun-

dance group and the low abundance group. With each group as a specimen, the correlation

between any two features was calculated as described above, resulting in a R (correlation

coefficient) matrix and a corresponding P value matrix. The valid values (P < 0.05)

in R matrix were classified into 20 bins as one observation. The selected feature and its

strong connected features (abs(R) > 0.6) were removed from the graph and the remaining

features were iterated into the next loop for feature selection and sampling. After 100 it-

erations for both controls and cases, there were 400 specimens in total. A neural network

classifier with 10 hidden neurons was constructed for cases discrimination, the performance

of which was assessed by receiver operating characteristic analysis. The AUC and corre-
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sponding 95% confidence intervals for training data sets (1000 bootstrap replicates) were

99.63% (98.38% ∼ 99.97%).

2.2.8 Index deduction for coordinate network

We have elucidated the complex interactions among a list of features. The network was

evaluated by several indices as following, with reference[114]. Take COG category as one

examples, which was the most complex case. Supposing that a network is supported by

26 COG categories, namely, {Xm}26m=1 = {A,B, ..., Z}, and G (Xm) = {xmi}g(Xm)
1 is a

set of COGs involved in Xm, where g (Xm) = |G (Xm)| is the cardinality of G (Xm). For

any given prontein xmi ∈ G (Xm) corresponding to a node in the network, the existence of

association between xmi and another protein xnj ∈ G (Xn) is given by

δ (xmi, xnj) =

 1, if |r (xmi, xnj)| ≥ 0.6 and p (xmi, xnj) ≤ 0.05;

0, otherwise,
(2.1)

where R and P showed the correlation coefficient and corresponding P -value between the

two COG xmi and xnj . The associated COG set of xmi is defined as the neighbor node set:

A (xmi) = {xnjxnj ̸= xmi; δ (xmi, xnj) = 1; xnj ∈ G (Xn)} , (2.2)

where n = 1, 2, ..., 26. Let a(xmi) = A(xmi) to be the count of associated COGs of xmi,

and

b(xmi) = {(xm1i1 , xm2i2)} (2.3)

(xm1i1 , xm2i2 ∈ A (xmi) ; δ(xm1i1 , xm2i2) = 1; i1 ̸= i2) (2.4)
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to be the count of associations among COGs in COG category A (xmi). The active index

of COG xmi is thus evaluated by a modified definition of cluster coefficient:

c(xmi) =
a(xmi)(a(xmi)− 1) + 1

2b(xmi) + 1
− 1. (2.5)

Another two indices for evaluation of COG categories were also worth attention. To mea-

sure the internal interaction of category Xm, let

v(xmi|Xm) =

g(Xm)∑
k=1
k ̸=i

δ(xmi, xmk), xmi ∈ Xm (2.6)

denote the vertex degree of COG in Xm, then the internal complexity of association among

COGs in Xm is measured by

g(Xm)∑
i=1

v(xmi|Xm) ln v(xmi|Xm), (2.7)

as the definition of local network comlexity. For further comparision of different COG

categories, the index got normalized by its maximum values as

t(Xm) =

g(Xm)∑
i=1

v(xmi|Xm) ln v(xmi|Xm)

g(Xm)(g(Xm)− 1) ln(g(Xm)− 1)
. (2.8)

Similarly consider the interaction between two COG categories Xm and Xn, and let

v(xmi|Xn) =
g(Xn)∑
j=1

δ(xmi, xnj),

v(xnj|Xm) =
g(Xm)∑
i=1

δ(xmi, xnj),

xmi ∈ Xm, xnj ∈ Xn. (2.9)
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2.3 Results

2.3.1 Overview of gut microbiome in each sample using FTU

In this study, we identify FTUs at a resolution considering functional orthologous as genes

classified into the same COG[106, 107] and taxonomical unit of genes aligned onto the

same reference genomes of one strain in NCBI[105, 109](see details in Data and method-

s). As a result, we identified 747, 687 FTUs in total, which consists of 6, 253, 507 non-

redundant gene sequences covering 33.65% of the DNA reads. Based on this combined

profiling, we then deduced the relative abundance of FTUs across 1, 659 samples, sub-

sequently obtained the FTU relative abundance matrix, which was the foundation of the

follow-up analysis.

To investigate the genetic landscape of gut microbiota from both functional and taxo-

nomic perspectives, we computed the cumulative number of FTUs present in any combina-

tion of n sample groups (with n = 1−6), demanding the FTUs are with relative frequencies

higher than 10−8 to eliminate random mapping bias (Figure 2.1b). Here, we recognized the

FTUs in a set of samples as an FTU pool. Integrating all samples in the six disease groups,

we obtained an entire FTU pool of 747, 687 FTUs, with the case pool of 729, 375 FTUs

and the control pool of 691, 419 FTUs. The majority (673, 107 FTUs, 90.0% of the entire

FTU pool) of the FTUs are common in both the case and the control FTU pools. However,

comparing to the FTU pool of the controls with 18, 312 (2.6%) control-only FTUs, the one

of the cases showed more expansive, with 56, 268 (7.7%) case-only FTUs, reflecting the

higher divergence of the gut microbiota from the cases. As shown in Figure 2.1b, the FTU

pools kept growing along with sample groups added in for both cases and healthy controls,

suggesting the divergence of gut microbiome has not yet saturated in cases with different

diseases as well as the healthy individuals even in such a large scale study. Nevertheless, it

is obvious that the curves tended to converge with more sample groups added in.

To further study the characteristics of the human gut microbiome on the basis of F-
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Figure 2.1: Overview of gut microbiome in each sample using FTU. a, Schematic diagram
of the data processing workflow (details in Data and methods). b, Number of FTUs cap-
tured by number of investigated sample groups. For n sample groups (n = 1, 2, ..., 6), the
number of FTUs presented in all possible group combinations (which is 6!/ [n!(6− n)!])
were separately measured and statistically shown by box and whisker plots for both cases
(tangerine) and controls (blue). Boxes denote the interquartile range (IQR) between the
first and third quartiles and the line inside denotes the median. The △ and ▽ denote the
mean values of the cases and the controls, respectively. Whiskers denote the lowest and
highest values within 1.5 times IQR from the first and third quartiles, respectively. Circles
denote outliers beyond the whiskers. c and d, Reduced dimensional representation of sam-
ples in different groups performed by t-SNE algorithm. The grouping criteria were shown
in different colors and styles on the legends. c, Samples were grouped by ethic background
regardless of pathological conditions. d, Samples were grouped by pathological conditions
irrespective of ethic background.
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TU pool, we computed the distances between samples according to the relative abundance

of the pooled FTUs. The t-SNE technique was then performed to obtain the reduced di-

mensional representation of all investigated samples. In order to demonstrate the sample

clustering patterns, two grouping criteria were applied, the ethic/racial background and

the pathological conditions, as shown in Figure 2.1c and 2.1d, respectively. Samples with

consistent ethnic/racial background (i.e. European, American and Asian) were clearly ob-

served to gather together, revealing that ethnic/racial background was one of the strongest

associations of microbial community members (Figure 2.1c), which supported the previ-

ous finding of Tanya et. al[115]. Samples of intestinal microbial dysbiosis resulted from

the same pathological disorders exhibited similar result, indicating different pathological

disorders dragged the microbial communities into different directions (Figure 2.1d). This

finding motivated us to integrate samples with same pathological disorder but from multiple

geographical regions as one group for further comparative analysis, which was expected to

elucidate the universal biological mechanisms by eliminating the deviations from inconsis-

tent racial backgrounds.

2.3.2 The core FTUs of all samples and the signature strains

The exploration of the common set of FTUs is of equal importance as the FTU pool. For

this purpose, we recognized the FTUs shared by more than 90% of the samples within a

pathological group as shared FTUs. Applying similar approach as the construction of FTU

pool, we computed the number of shared FTUs commonly presented in all combinations of

n sample groups and illustrated as shown in Figure 2.2a. With sample groups sequentially

added in, both curves exhibited a trend of convergence, of which the one of the controls

is more noticeable. The common sets of core FTUs with 1, 095 and 12, 494 for cases and

controls, respectively, were finally obtained by including all sample groups of six inves-

tigated pathological conditions. Comparing to the cases, the healthy controls possessed a

much more inclusive common set of core FTUs but a relatively more compact FTU pool
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at all combinations of group scales (2.1b and 2.2a). This showed that the gut microbial

community of controls are more similar to each other than those of the cases, which are

more differentiated in their own way, suggesting the different directions of alterations for

microbiota under various pathological conditions.

By tracing back the taxonomic information of the core FTUs, we obtained 40 strains

shared by all cases and 255 ones by the controls. The 40 shared strains of the cases were

found to be universally presented among all samples of both cases and controls, with rank-

ing on the top 100 abundant taxa (Table 2.1). We then regarded these 40 strains as the core

strains. To test whether the core strains can be used to identify cases from controls, we

trained a model of lightGBM (highly efficient boosting decision tree)[91] in a training set

of the cases and controls using the profiles of these 40 strains. We evaluated the model per-

formance with a ten-fold cross-validation approach and scored the discrimination ability

by a receiver operating characteristic (ROC) analysis. The predictive power of model was

assessed by the AUC (area under the ROC curve), which was 78.32%.

To further determine the representativeness of these 40 strains, we investigated the

species-species co-occurrence network. Only connection bounds with absolute values of

Spearman correlation larger than 0.5 (P < 0.05) are showed in Figure 2.2d and Figure

2.2e. We found that, compared to the controls, more positive and less negative interaction

pairs were observed in the cases. This distinct pattern transformation of the co-occurrence

network based on the core strains due to the difference of host pathological conditions was

consistent with later investigations on global species co-occurrence network. Therefore,

it validated that these 40 strains can be served as core and representative taxa of the gut

ecological community.

We carried out more experiments to further simplify the set of signature strains whilst

achieving better prediction performance. According to the importance score of each strain

assigned by lighGBM, we sequentially selected a number of strains in a stepwise manner,

with one strains added in at each step, as the model features and evaluated the behavior
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Figure 2.2: The common set of FTUs and the signature strains. a, Number of shared FTUs
plotted as a function of number of sample groups investigated. The measurement of shared
FTUs commonly presented in all combinations of n sample groups and its illustration were
similar to Figure 2.1b. The cases and controls were displayed in tangerine and blue respec-
tively. b, Performance evaluation of the lightGBM-based discrimination model trained on
the 15 signature strains. The predictive power was scored by ROC analysis with a tenfold
cross-validation approach. The average AUC reached 79.55%, suggesting the abundance
of the signature strains can be employed as powerful biomarkers. Additionally, the model
assigned an important score to each strain to measure its contribution to the discrimination
ability as shown in c. The bar lengths indicate the importance of the strains, and colors
represent their average relative abundances. d, Co-occurrence network of the signature s-
trains distributing among the controls. e, Co-occurrence network of the signature strains
distributing among the cases. In both d and e, the orange ribbons represent negative corre-
lations, whereas the blue ones represent positive connections. The length of chords around
the periphery is proportional to the number of connections.
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of models with AUC. We found that as the feature set added up to 15 strains, the model

performance didn’t improve any more (Figure S1). In fact, with these 15 strains (Table

2.2), the discrimination model achieved better performance than the former model built

with all the 40 strains. As shown in Figure 2.2b, cases were correctly identified with an

average AUC of 79.55%, suggesting that these signature strains can be employed as uni-

versal signature taxa for different diseases. In addition, we validated the predictive ability

of these signature strains as they could consistently predict host phenotype for different

illnesses with high AUCs (see details in Figure 2.3). The average feature importance s-

core of the ten-fold cross validation training models indicated several strains as the most

discriminant for case identification. Mycobacterium smegmatis str. MC2 155, Buchner-

a aphidicola str. Ak (Acyrthosiphon kondoi) and Methylobacterium nodulans ORS 2060

were the three most discriminative bacteria in the models, with the first one had the highest

discrimination score. We ascribed this result to the uneven distribution of these strain-

s between cases and controls, also the relatively high abundance of these strains (Figure

2.2c). In summary, we demonstrated and recommended that the 15 signature strains can be

considered as potential clinical biomarkers to indicate changes of the intestinal ecosystem.

2.3.3 Phylogenic and functional characteristics of the gut microbiome in diverse diseases

Having the FTU abundance matrix available, the profiles of taxonomic composition and

functional constituent can be easily deduced. The result showed that the gut microbiota

compositions are heterogeneous (Figure 2.4a), whereas the functional capabilities of these

microbes are homogenous among different individuals (Figure 2.4b), which was consistent

with previous report[17]. Regarding the microbial compositions, Bacteroides, Escherichia

and Coprococcus were found to be the most abundant genera by averaging among all sam-

ples. The disease-specific genera species and strains of various sample groups or groups

combinations can be deduced (Q < 0.01 in Wilcoxon rank-sum test). Case-control com-

parative analysis revealed that the relative distribution of hundreds of genera in samples
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Figure 2.3: Performance evaluation of the lightGBM-based discrimination model trained
on the signature strains.

with Crohn’s disease, ulcerative colitis and liver cirrhosis were significantly different from

their corresponding controls.It is worth noting that Listeria, which has been reported to be

frequently associated with diarrhea and inflammatory response[116], was found to be sig-

nificantly enriched in four types of diseases (i.e., Crohn’s disease, ulcerative colitis, liver

cirrhosis and obesity) comparing to their controls (Q < 0.01 in Wilcoxon rank-sum test),

indicating that its enrichment plays a critical role in the development of multiple diseases.

It is also worth mentioning that apparent transitions were easily observed within disease

groups with multiple geographical origins, especially for taxonomic compositions. This

finding further backed the conclusion obtained from Figure 2.1c and 2.1d.

With regard to the fact that the bacteria share genetic material, we should not only ad-

dress the gut bacterial community by its members, but also consider the community as a

whole and characterize it at the functional level of genes. As shown in Figure 2.4b, the

dominant COG categories were replication, recombination and repair (L, 9.1% in health
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controls and 8.9% in cases), carbohydrate transport and metabolism (G, 8.6% in health

controls and 8.5% in cases), cell wall/membrane/envelope biogenesis (M, 7.6% in health

controls and 7.7% in cases), amino acid transport and metabolism (E, 7.6% in health con-

trols and 7.5% in cases), transcription (K, 7.5% both in health controls and cases) and

translation, ribosomal structure and biogenesis (J, 7.1% in health controls and 7.2% in cas-

es), which were important for basic life activities. However, when looking into specific

functional orthologue groups (COG), highly diverse abundance distribution from sample

to sample was observed. Functional case-control comparative analysis revealed that there

existed a list of COGs (Q < 0.01 in Wilcoxon-rank sum test) significantly related to dif-

ferent diseases with more or less overlapping (Figure 2.5). Remarkably, Corhn’s disease,

ulcerative colitis and liver cirrhosis all led to distinct abundance distributions of a large

number of COGs between cases and controls, implying that the three diseases were highly

related to the transformation of the gut microbial metabolic functions, especially compared

to the other two metabolic diseases T2D and obesity. Additionally, we noticed that ho-

mologs of the UspA protein (COG0589) enriched significantly in all five groups of cases in

comparison with their controls. As a member of the universal stress proteins (USP), UspA

constitute a natural biological defense mechanism which could help the organism surviving

through nutrient starvation, the presence of oxidants or other stress agents[117]. Studies

discovered that UspA is playing a role in the invasion and virulence of some pathogens

further supported our finding[118, 119]. We traced the taxonomic origination of COG0589

by assembly all related FTUs and listed the result in Table 2.3. It suggested most of the

related taxa were disease-enriched. In addition, CelA, phosphotransferase system (PTS)

cellobiose-specific component IIB was found to be enriched in Crohn’s disease, ulcerative

colitis, liver cirrhosis and obesity. The evidence that PTS acted as virulence regulation for

several pathogens backed this discovery[120].
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Figure 2.5: Venn diagram of the significantly disease-related COGs, which were revealed
using case-control comparative analysis (Q ¡ 0.01 in Wilcoxon-rank sum test).

Table 2.3: The taxomnomic origination of genes in

COG0589

Species Case enriched Case depelted

Bacteroides fragilis Yes No

Carnobacterium sp. 17-4 No No

Bifidobacterium adolescentis Yes Yes

Cronobacter sakazakii No No

Mycobacterium smegmatis Yes Yes

Coprococcus catus Yes No

Escherichia coli Yes No

Synechococcus sp. CC9902 No No

Bacillus amyloliquefaciens Yes Yes

Cyanothece sp. PCC 7822 No No
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Table 2.3 continued

Desulfomicrobium baculatum Yes No

Eggerthella sp. YY7918 No No

Salmonella enterica Yes No

Butyrivibrio fibrisolvens No No

Lactococcus lactis Yes No

Bartonella clarridgeiae Yes No

Pseudomonas putida No No

Legionella pneumophila No No

Chlamydia trachomatis Yes No

Burkholderia gladioli Yes No

Treponema azotonutricium No Yes

Lactobacillus casei Yes Yes

Streptococcus pneumoniae Yes No

Pandoraea sp. RB-44 No No

Mesorhizobium loti Yes No

2.3.4 Co-occurrence network pattern characterization of the gut microbiome

Although on the basis of abundance profiling, common markers of microbial community

members and functional elements in various sample groups have been dug out, the under-

lying mechanism of how the microbial community is associated with diseases has yet to be

elucidated thoroughly. Due to the inherent complexity of the gut microbial community as

being part of natural ecosystems, studying each organism in isolation is far from enough.

Co-occurrence patterns, as described above, are able to show how particular organisms

in a system occur together and vary with the host pathological conditions. Considering

the microbial community as a whole, we analyzed both the taxonomic and functional co-
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occurrence network to characterize the gut ecosystem more systematically.

Firstly, we discovered that the distinct patterns of species correlation network in cases

and controls elucidate the community-level adaptive mechanism. The gut microbiota is

an ecosystem with many biological interactions. Together with host effect, dietary habits,

antibiotics and other external factors, interactions between microbes have been revealed

to be good implications in community assembly[121]. Relationships analogous to macro-

ecological ’checkerboard pattern’ of organismal co-occurrence have also been observed in

microbial community due to competition and cooperation[122, 123]. With metagenomic

data, species-species co-occurrence network analyses have provided a new dimension in

studies of symbiotic microbial communities.

In this study, as a large number of samples covering six types of diseases and their

healthy controls were investigated, we were able to conduct a comprehensive case-control

comparative analysis on the interacting species pairs. We found that the positive interaction

potentials of the cases are significantly higher than those of the controls. On the contrary,

more negative interaction pairs were observed in controls than cases. This phenomenon

can be observed when conducting comparative analysis on different phylogenic classifica-

tion levels (i.e., genus, species and strain, as well as within pathological groups, see detail

in Figure 2.9a, 2.9b and 2.9c, and 2.6),and Table 2.4). The consistent pattern shift sug-

gested there exists a potential community-level adaptive mechanism to suit the dysbiosis

of micro-ecology in the gut of cases. As proposed in previous studies[123, 124], habitat

filtering was the dominant structuring force in the gut microbiome,which lead to the con-

clusion that species with negative connections tended to be complementary pairs, whereas

positive correlations implied competitions between each other, with regarding to relative

abundance distribution across samples. Therefore, more microbial members in the gut of

healthy controls and cases are involved in cooperation and competition with each other,

respectively. This can also be clearly observed in the network diagrams for both species

level and genus level (Figure 2.7 and Figure 2.8, respectively).
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Figure 2.6: Distributions of correlation coefficient (R) of healthy controls and cases be-
tween genera (the first row), species (the second row) and strains (the third row).

Figure 2.7: Species level taxonomic mutually dependent relationship. Interacted strength
between pairwise species regarding their abundance distribution in controls and cases, re-
spectively. The deeper the color, the stronger the interaction. Red and blue lines to repre-
sent negative and positive connection, respectively.
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Figure 2.8: Same as Figure 2.7, This figure is on genus level

Table 2.4: Co-occurrence species pairs
Complementary pairs (r < −0.6, P.value < 0.05)

Healthy controls Cases

CES-CES 47 20
CES-NCES 800 213
NCES-NCES 3542 412

Competetive pairs (r > 0.6, P.value < 0.05)

Healthy controls Cases

CES-CES 29 594
CES-NCES 405 3061
NCES-NCES 1409 5029

CES: case-enriched species
NCES: not case-enriched species

In order to further validate this finding and distinguish the interaction patterns between

healthy and cases, we employed a pattern recognition technique to identify cases from

controls by species interaction networks. As shown in Figure 2.9d and described in Data

and methods, a neural network discriminator was constructed with the training and tenfold

cross-validation AUC achieving 0.9963 (within confidence interval 0.9838-0.9997, see Fig-
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ure 2.9e) and 0.9428, respectively. It shed light on defining a healthy or unhealthy micro-

ecology of human gut at a systematic level. We can apply this model into time-series

samples or different set of samples to systematically characterize the co-occurrence pattern

of one type of microbial ecosystem.

To explore the interactions between species and its underlying mechanism, we cate-

gorized the interactions into three types according to the relative richness on either side

of the pair for further investigation. The interactions between both case-enriched species

(CES-CES), case-enriched species and not case-enriched species (CES-NCES), and both

not case-enriched species (NCES-NCES). When looking into those strongly correlated

pairs (|R| > 0.6, P < 0.05), we found that the correlations of different interaction type-

s were significantly varied with the status of pathological disorders (chi-square test, P =

6×10−16). Specifically, with regard to the competitive relationship, the positive correlation-

s expanded extensively from healthy controls to cases, especially for the CES-CES pairs,

which increased by over 20 times. On the contrary, the amount of cooperation pairs were

dramatically decreased from healthy controls to cases, especially for the NCES-NCES pairs

with a reduction of nearly tenfold. Integrating with the discoveries of forementioned stud-

ies[123, 124] and our current observations, it is implied that in a healthy host the microbial

community members cooperated with each other in a harmonious and ’peaceful’ manner.

While during the gut microbiota alteration of the host from healthy to various pathological

disorders, the CES, which are highly potential pathogens, dragged a large number of com-

munity members into a ’war’ of largely increased competitions. They competed with other

CES and the NCES to survive through the defective mechanism and further colonized the

gut. As we known, the gut epithelium was protected by a layer of mucus composed of pro-

teins known as mucins that are rich in fucose, galactose, sialic acid, N-acetylgalactosamine,

N-acetylglucosamine and mannose. These sugars were harvested by saccharolytic mem-

bers of the microbiota, such as Bacteroidales in the gut, which makes them available to

species within the microbiota that lack of this capability. However, pathogenic bacteria in
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the gut could also exploit the availability of these sugars to promote their own expansion.

A strong evidence in our result is the interactions connected to one of the dominant species

Bacteroides fragilis. In the co-occurrence network of healthy controls, it cooperated with

220 other species (R < −0.4, P < 0.05), most of which were NCES (Table 2.5 and Table

2.6). Nevertheless, in the network of the cases, all its complementary pairs disappeared

with the emergence of 37 competing interactions instead. This has undoubtedly supported

our speculation.

Table 2.5: Strongly correlated pairs in cases (R > 0.6 or

R < −0.4, P < 0.05)

Genus1 Genus2 Correlation Sign

Bacteroides helcogenes Bacteroides fragilis 0.625 1

Bacteroides salanitronis Bacteroides fragilis 0.603 1

Bacteroides thetaiotaomicron Bacteroides fragilis 0.684 1

Bacteroides vulgatus Bacteroides fragilis 0.679 1

Bacteroides xylanisolvens Bacteroides fragilis 0.707 1

Ca.Azobacteroides pseudotrichonymphae Bacteroides fragilis 0.732 1

Capnocytophaga canimorsus Bacteroides fragilis 0.743 1

Capnocytophaga ochracea Bacteroides fragilis 0.603 1

Chelativorans sp. BNC1 Bacteroides fragilis 0.657 1

Chitinophaga pinensis Bacteroides fragilis 0.704 1

Chthonomonas calidirosea Bacteroides fragilis 0.691 1

Desulfobacterium autotrophicum Bacteroides fragilis 0.638 1

Dyadobacter fermentans Bacteroides fragilis 0.663 1

Echinicola vietnamensis Bacteroides fragilis 0.654 1

Emticicia oligotrophica Bacteroides fragilis 0.652 1

Flavobacteriaceae bacterium Bacteroides fragilis 0.707 1
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Table 2.5 continued

Flavobacterium johnsoniae Bacteroides fragilis 0.617 1

Leadbetterella byssophila Bacteroides fragilis 0.694 1

Legionella pneumophila Bacteroides fragilis 0.799 1

Maribacter sp. HTCC2170 Bacteroides fragilis 0.608 1

Niastella koreensis Bacteroides fragilis 0.651 1

Odoribacter splanchnicus Bacteroides fragilis 0.625 1

Paludibacter propionicigenes Bacteroides fragilis 0.718 1

Parabacteroides distasonis Bacteroides fragilis 0.752 1

Porphyromonas gingivalis Bacteroides fragilis 0.637 1

Prevotella denticola Bacteroides fragilis 0.618 1

Prevotella intermedia Bacteroides fragilis 0.765 1

Prevotella melaninogenica Bacteroides fragilis 0.616 1

Prevotella sp. oral taxon 299 str. F0039 Bacteroides fragilis 0.617 1

Pseudomonas putida Bacteroides fragilis 0.601 1

Solitalea canadensis Bacteroides fragilis 0.637 1

Acinetobacter baumannii Bacteroides fragilis 0.689 1

Alteromonas macleodii Bacteroides fragilis 0.680 1

Anaeromyxobacter sp. Fw109-5 Bacteroides fragilis 0.624 1

Acinetobacter baumannii Bacteroides fragilis 0.689 1

Alteromonas macleodii Bacteroides fragilis 0.680 1

Anaeromyxobacter sp. Fw109-5 Bacteroides fragilis 0.624 1

Secondly, based on the functional profile of all samples, we integrated the COG abun-

dance distribution of all samples and deduced the coordination network indices, i.e. internal

complexity of individual COG categories and interacted strength between different COG
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Figure 2.9: a-c, Distributions of correlation coefficient (R) of healthy controls and cases
between genera (a), species (b) and strains (c). The height of the bars in the histograms rep-
resented the relative number of feature pairs with R’s falling into corresponding intervals.
The Spearman correlation should meet the criteria of P < 0.05, otherwise the relevant R’s
were manually set to be zero. The distributions were easily noticed to be of bell shapes
that Gaussian distributions can be used for well fitting. d, Outline of the four-step pattern
recognition procedure to identify cases based on the species interaction networks. Step
1, from the overall species -species correlation network, the most intensively connected
species was selected as the determinate feature for specimen selection in current iteration.
Step 2, based on relative abundance distribution of the selected feature across samples,
mean value was adopted to conduct sampling as described in Data and methods. Step 3,
for each specimen, the correlation between any two features was calculated, resulting in a
R (correlation coefficient) matrix and a corresponding P value matrix. The valid values in
each R matrix were classified into 20 bins as one observation. The selected feature in step
1 and its intensively connected features (abs(R) > 0.6) were removed from the network
and the remaining features were iterated into the next loop of Step 1-3 for feature selection
and sampling. Step 4, 400 specimens were obtained in total after 100 iterations for both
controls and cases. Step 5, a neural network classifier with 10 hidden neurons was trained
for cases discrimination, with the performance assessed by ROC analysis. The AUC and
its 95% confidence intervals of training sets (1000 bootstrap replicates) were 99.63% and
98.38% - 99.97%, respectively (e).
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categories (see Data and methods for detailed calculation). The result showed that the

COG category N (cell motility) was highly internal complex (Figure 2.10a) although with

relatively low abundance (Figure 2.4b), suggesting a prominent hallmark of cell motili-

ty. Further in the interacted network, cell motility (N) was intensively connected to sig-

nal transduction mechanisms (T) and cell cycle control/cell division/chromsome partition-

ing(D) (Figure 2.10b and 2.10c), especially for cases. This observation suggested that cell

motility is important for bacterial colonization of the hosts, especially for pathogens, with

regard to the fact that pathogens are more abundant in cases. Additionally, we detected that

translation/ribosomal structure and biogenesis (J) linked closely to cell cycle control/cell

division/chromsome partitioning (D), nucleotide transport and metabolism (F), transcrip-

tion (K) and replication/recombination/repair (L), which implied that functional category J

was the linkage center for these cellular activities.

Regarding the functional pathway profiles, we analyzed the coordination network of

KEGG modules. Both networks of healthy controls (Figure 2.10d) and cases (Figure 2.10e)

implied that KEGG module of flagellar assembly and bacterial chemotaxis were intensive-

ly connected with each other (Spearman correlation R = 0.89 for healthy controls and

R = 0.92 for cases, P < 0.05). As both modules are crucial for the process of the host

colonization[125], our finding implied that these two processes should be highly connect-

ed with each other. The higher level of connections for sample groups of cases indicated

that the combination of these two modules is likely to help enhancing the establishment

of a successful infection for pathogens. As flagellar assembly is the determinant factor for

cell motility, this finding further backed the result of COG category internal complexity

analysis. Carbon metabolism of healthy controls was found to be linked with other path-

ways more actively than that of cases, which can also be concluded from the higher active

index of this pathway in networks (Figure 2.10b and 2.10c). It is suggested that bacte-

ria of healthy controls conducted carbon metabolism more efficiently than which of the

cases through intensively cooperating with relevant modules. In addition, we found that

50



lipopolysaccharide biosynthesis shown negative correlation with several metabolic path-

ways in healthy controls but not in cases. As we known, the lipopolysaccharide which

constitutes the outer leaflet of the outer membrane for most Gram-negative bacteria is com-

monly referred to as an endotoxin[126]. This observation indicated the importance of trade

off between different metabolic pathways to maintain a healthy microbial ecology.

2.3.5 A more comprehensive pan-microbiome revealed by members, functions and networks

Pan-microbiome has been proposed as the collection of all microbial members in a cer-

tain environment with stable microbial community[127, 128, 129], which have nonetheless

provided important insights. Despite the currently limited knowledge regarding disease

specific and graphical differences in human gut microbiology, the data in our paper al-

lowed us to appreciate that the microbiomes of different cases consolidate to form a pan-

microbiome pool that is larger than the microbiome of any single study. As a natural

habitat for numerous microorganisms, human gut is a dynamic microbial ecological sys-

tem. As the microbiota share genetic material, we should not only address the gut bacterial

community by community members, but also should consider the community as a whole

and characterize it at the functional level of genes. Here, with the availability of WGS

data from human gut microbiota deep sequencing and FTUs, we can further explore the

functions of the microbial members. In addition, we proposed the co-occurrence network

analysis of community members and functional gene orthologs to characterize the human

gut community on system level. All of these aspects contributed to a more comprehensive

“pan-microbiome” and provided deep insights into how the gut microbiomes have diverged

during the physiological condition shift.

2.4 Discussion

We have collected WGS data of gut microbiome from a wide range and large scale of hosts

of diverse physiological conditions and various national backgrounds to obtain a global
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Figure 2.10: Characterization of the microbial community functions with co-occurrence
network indices. a, Internal complexity of individual COG categories. b and c, Interacted
strength between pairwise COG categories with regard to their abundance distribution in
controls and cases, respectively. The deeper the color, the stronger the interaction. d and
e, Coordination networks of KEGG modules for healthy controls and cases, respective-
ly. Network active index of KEGG pathways were shown as the height of columns and
strong correlations between different KEGG pathways were linked by red and blue lines to
represent negative and positive connection, respectively.
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framework of understanding to the dysbiosis of human gut microbial community. With the

integration of both taxonomic classification and functional annotation, we organized a large

number of sequencing reads into a pool of FTUs, the basic analysis units in this context

microbial community characterization. All WGS short reads gathered from various sources

were processed with a unified and well-designed workflow to make sure the analysis and

results are comparable. Meanwhile, the relative abundance was normalized over all features

for each sample to eliminate the variation caused by different sequencing depth. Further

more, we adopted the Q value instead of P value as the criterion for determining disease

specific features to keep criterion consistency among variant samples sizes of pathological

groups.

The large collection of metagenomic data set from spanning hosts with standardized

processing and analyzing workflow enabled us for a systematic investigation. With com-

parative analysis on FTU pools of all six sample groups, we identified 40 core strains and

further handpicked 15 of them as signature strains, which optimized the separation of cases

and controls. Case-control studies on genera compositions and COG profiles revealed that

genus Listeria and protein homolog UspA (COG0589) were significantly more abundant

in cases with various diseases than corresponding controls (Q < 0.01). Therefore, they

are of highly potential to serve as universal biomarkers to aid therapeutic means aiming

to amend gut ecological composition. The atherosclerosis group was excluded from Ven-

n diagram (Table 2.2) drawing because of the variation insignificance between cases and

controls, probably due to insufficient sample size.

The statistical result suggested that although taxonomic compositions varied from sam-

ple to sample, the functional compositions maintained consistent when classified into COG

categories. This implied the functional stability of human gut microbiota at the community-

level. Basic functions such as replication/recombination/repair, carbohydrate transport and

metabolism were the most abundant ones. Nevertheless, abundance was not the only fac-

tor to determine the significance of a feature, especially when regarding human gut as a
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complex microbial ecology. We then proposed a mathematical model to compute the inter-

nal complexity and interacted strength of COG categories, separately for quantifying the

activeness of the functions and the strength of connections between functional categories.

The result showed that in addition to the forementioned basic abundance dominant func-

tions, cell motility was of high internal complexity and connected intensively with signal

transduction mechanisms, especially for cases. Similar coordinate network analysis based

on KEGG modules further backed this finding. Besides all of the above, we believe our

mathematical model also provided a new approach to investigate the significance of a fea-

ture in a complex system.

The most exciting discovery in this study is that we revealed the potential adaptive

mechanism of human gut microbial community. Correlation networks of microbial mem-

bers showed that microbes tended to be negatively connected in healthy controls, whereas

positively connected in cases. This implied that the microbial community of a healthy hosts

is in a harmonious mode with more cooperation connections between members. Until the

pathogens started to perturb the original state and drag lots of members into a ’war’ mode

with increasingly competition connections during gut microbiota alteration of the host suf-

fering from pathological disorder. As human gut has been reported as a habitat-filtering

microbial ecology, this finding supplied potential adaptive mechanism for nutritional in-

tegration. Although some detailed evidences found in the coordination network strongly

supported our speculation, a mechanistic and comprehensive understanding of those ob-

servations remained elusive. More rigorously designed experiments are needed to further

verify this interesting discovery.

Though we could not avoid the deviation from the inconsistent sequencing platforms

and uncertainty during annotation, we designed a uniform analysis pipeline form the start

of raw short reads to reduce the potential deviation. We encourage large scale collection of

samples with different kinds of diseases all around the world and conduct data sequencing

with identical sequencing technique, which will be better. Additionally, longitudinal mon-
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itoring of the microbiome of human gut will also benefit the analysis regarding human gut

microbial community as an ecological system. Nevertheless, our systematic analysis great-

ly enhanced our understanding of the pan-microbiome. With all findings described above,

our knowledge to the associations of gut flora and host physiological disorders has widened

and deepened. Moreover, increasing number of gut microbiome samples relevant to more

human diseases, and the development of multi-omics such as proteomics and metabolomic-

s, are hoping to contribute to expand our comprehension of human gut pan-microbiome.

Table 2.6: Strongly correlated pairs in healthy controls(R >

0.6 or R < −0.4, P < 0.05)

Genus1 Genus2 Correlation Sign

Bacteroides vulgatus Bacteroides fragilis 0.620 1

Bacteroides xylanisolvens Bacteroides fragilis 0.602 1

Brucella canis Bacteroides fragilis 0.630 -1

Ca.Azobacteroides pseudotrichonymphae Bacteroides fragilis 0.686 1

Ca.Phytoplasma mali Bacteroides fragilis 0.631 -1

Capnocytophaga canimorsus Bacteroides fragilis 0.708 1

Capnocytophaga ochracea Bacteroides fragilis 0.655 1

Chitinophaga pinensis Bacteroides fragilis 0.624 1

Dyadobacter fermentans Bacteroides fragilis 0.707 1

Echinicola vietnamensis Bacteroides fragilis 0.604 1

Flavobacterium johnsoniae Bacteroides fragilis 0.612 1

Lactobacillus salivarius Bacteroides fragilis 0.611 -1

Leadbetterella byssophila Bacteroides fragilis 0.680 1

Legionella pneumophila Bacteroides fragilis 0.843 1

Methanobrevibacter smithii Bacteroides fragilis 0.606 -1

Paludibacter propionicigenes Bacteroides fragilis 0.713 1
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Table 2.6 continued

Parabacteroides distasonis Bacteroides fragilis 0.674 1

Peptoclostridium difficile Bacteroides fragilis 0.622 -1

Prevotella intermedia Bacteroides fragilis 0.675 1

Pseudomonas brassicacearum Bacteroides fragilis 0.621 -1

Solitalea canadensis Bacteroides fragilis 0.618 1

Sulfurimonas autotrophica Bacteroides fragilis 0.645 -1

Thermoanaerobacter sp. X514 Bacteroides fragilis 0.616 -1

Tistrella mobilis Bacteroides fragilis 0.618 -1

Alteromonas macleodii Bacteroides fragilis 0.613 1

Bacillus halodurans Bacteroides fragilis 0.613 -1

Bacillus licheniformis Bacteroides fragilis 0.664 -1

Bacillus sp. JS Bacteroides fragilis 0.609 -1

Bacillus subtilis Bacteroides fragilis 0.602 -1

Acidobacterium capsulatum Bacteroides fragilis 0.575 -1

Acidovorax avenae Bacteroides fragilis 0.455 -1

Agrobacterium radiobacter Bacteroides fragilis 0.485 -1

Agrobacterium vitis Bacteroides fragilis 0.565 -1

Alicycliphilus denitrificans Bacteroides fragilis 0.586 -1

Alicyclobacillus acidocaldarius Bacteroides fragilis 0.559 -1

Alkaliphilus metalliredigens Bacteroides fragilis 0.478 -1

Amycolatopsis orientalis Bacteroides fragilis 0.408 -1

Anaerobaculum mobile Bacteroides fragilis 0.468 -1

Anaplasma marginale Bacteroides fragilis 0.416 -1

Arthrobacter chlorophenolicus Bacteroides fragilis 0.548 -1

Arthrobacter phenanthrenivorans Bacteroides fragilis 0.439 -1

Azospirillum brasilense Bacteroides fragilis 0.501 -1
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Table 2.6 continued

Bacillus amyloliquefaciens Bacteroides fragilis 0.507 -1

Bacillus clausii Bacteroides fragilis 0.516 -1

Bacillus coagulans Bacteroides fragilis 0.433 -1

Bacillus cytotoxicus Bacteroides fragilis 0.569 -1

Bacillus halodurans Bacteroides fragilis 0.613 -1

Bacillus infantis Bacteroides fragilis 0.428 -1

Bacillus licheniformis Bacteroides fragilis 0.664 -1

Bacillus pseudofirmus Bacteroides fragilis 0.518 -1

Bacillus pumilus Bacteroides fragilis 0.421 -1

Bacillus sp. 1NLA3E Bacteroides fragilis 0.592 -1

Bacillus sp. JS Bacteroides fragilis 0.609 -1

Bacillus subtilis Bacteroides fragilis 0.602 -1

Bacillus toyonensis Bacteroides fragilis 0.476 -1

Bacillus weihenstephanensis Bacteroides fragilis 0.411 -1

Bartonella australis Bacteroides fragilis 0.442 -1

Bartonella henselae Bacteroides fragilis 0.426 -1

Bdellovibrio exovorus Bacteroides fragilis 0.476 -1

Beutenbergia cavernae Bacteroides fragilis 0.457 -1

Bifidobacterium adolescentis Bacteroides fragilis 0.524 -1

Bifidobacterium animalis Bacteroides fragilis 0.591 -1

Bifidobacterium bifidum Bacteroides fragilis 0.512 -1

Bifidobacterium longum Bacteroides fragilis 0.458 -1

Borrelia burgdorferi Bacteroides fragilis 0.401 -1

Borrelia garinii Bacteroides fragilis 0.482 -1

Borrelia recurrentis Bacteroides fragilis 0.435 -1

Bradyrhizobium sp. BTAi1 Bacteroides fragilis 0.440 -1
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Table 2.6 continued

Bradyrhizobium sp. ORS 278 Bacteroides fragilis 0.466 -1

Bradyrhizobium sp. S23321 Bacteroides fragilis 0.409 -1

Brucella canis Bacteroides fragilis 0.630 -1

Brucella ceti Bacteroides fragilis 0.414 -1

Brucella melitensis Bacteroides fragilis 0.534 -1

Buchnera aphidicola Bacteroides fragilis 0.545 -1

Burkholderia gladioli Bacteroides fragilis 0.447 -1

Burkholderia multivorans Bacteroides fragilis 0.522 -1

Burkholderia phenoliruptrix Bacteroides fragilis 0.400 -1

Burkholderia phymatum Bacteroides fragilis 0.451 -1

Burkholderia phytofirmans Bacteroides fragilis 0.503 -1

Burkholderia sp. CCGE1003 Bacteroides fragilis 0.523 -1

Burkholderia sp. YI23 Bacteroides fragilis 0.471 -1

Ca.Kinetoplastibacterium crithidii Bacteroides fragilis 0.408 -1

Ca.Phytoplasma mali Bacteroides fragilis 0.631 -1

Ca.Arthromitus sp. SFB-mouse-Yit Bacteroides fragilis 0.517 -1

Cellulomonas fimi Bacteroides fragilis 0.427 -1

Chlamydophila pneumoniae Bacteroides fragilis 0.435 -1

Chlorobium limicola Bacteroides fragilis 0.407 -1

Chromobacterium violaceum Bacteroides fragilis 0.577 -1

Clostridium difficile Bacteroides fragilis 0.405 -1

Clostridium novyi Bacteroides fragilis 0.467 -1

Clostridium perfringens Bacteroides fragilis 0.439 -1

Clostridium tetani Bacteroides fragilis 0.586 -1

Conexibacter woesei Bacteroides fragilis 0.460 -1

Coprococcus catus Bacteroides fragilis 0.534 -1
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Table 2.6 continued

Coprococcus sp. ART55SLASH1 Bacteroides fragilis 0.480 -1

Coriobacterium glomerans Bacteroides fragilis 0.461 -1

Cronobacter sakazakii Bacteroides fragilis 0.475 -1

Dehalobacter sp. DCA Bacteroides fragilis 0.522 -1

Desulfatibacillum alkenivorans Bacteroides fragilis 0.481 -1

Desulfomicrobium baculatum Bacteroides fragilis 0.478 -1

Desulfotomaculum carboxydivorans Bacteroides fragilis 0.463 -1

Desulfotomaculum gibsoniae Bacteroides fragilis 0.482 -1

Desulfovibrio salexigens Bacteroides fragilis 0.417 -1

Desulfurispirillum indicum Bacteroides fragilis 0.559 -1

Desulfurococcus mucosus Bacteroides fragilis 0.433 -1

Dickeya dadantii Bacteroides fragilis 0.433 -1

Eggerthella sp. YY7918 Bacteroides fragilis 0.439 -1

Enterobacter cloacae Bacteroides fragilis 0.444 -1

Ethanoligenens harbinense Bacteroides fragilis 0.495 -1

Eubacterium rectale Bacteroides fragilis 0.473 -1

Faecalibacterium prausnitzii Bacteroides fragilis 0.496 -1

Flexistipes sinusarabici Bacteroides fragilis 0.556 -1

Frankia sp. EuI1c Bacteroides fragilis 0.412 -1

Geobacillus sp. JF8 Bacteroides fragilis 0.501 -1

Gloeobacter kilaueensis Bacteroides fragilis 0.416 -1

Gordonibacter pamelaeae Bacteroides fragilis 0.484 -1

Haemophilus somnus Bacteroides fragilis 0.486 -1

Haliangium ochraceum Bacteroides fragilis 0.432 -1

Haloarcula hispanica Bacteroides fragilis 0.453 -1

Helicobacter bizzozeronii Bacteroides fragilis 0.418 -1
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Table 2.6 continued

Heliobacterium modesticaldum Bacteroides fragilis 0.473 -1

Hyphomonas neptunium Bacteroides fragilis 0.519 -1

Ketogulonicigenium vulgare Bacteroides fragilis 0.504 -1

Kineococcus radiotolerans Bacteroides fragilis 0.459 -1

Kocuria rhizophila Bacteroides fragilis 0.545 -1

Kribbella flavida Bacteroides fragilis 0.464 -1

Kytococcus sedentarius Bacteroides fragilis 0.541 -1

Lachnoclostridium phytofermentans Bacteroides fragilis 0.457 -1

Lactobacillus brevis Bacteroides fragilis 0.460 -1

Lactobacillus helveticus Bacteroides fragilis 0.557 -1

Lactobacillus salivarius Bacteroides fragilis 0.611 -1

Lawsonia intracellularis Bacteroides fragilis 0.449 -1

Leptospirillum ferriphilum Bacteroides fragilis 0.405 -1

Leptotrichia buccalis Bacteroides fragilis 0.504 -1

Leuconostoc kimchii Bacteroides fragilis 0.523 -1

Listeria monocytogenes Bacteroides fragilis 0.481 -1

Marinobacter hydrocarbonoclasticus Bacteroides fragilis 0.426 -1

Melissococcus plutonius Bacteroides fragilis 0.478 -1

Mesorhizobium ciceri Bacteroides fragilis 0.453 -1

Mesorhizobium opportunistum Bacteroides fragilis 0.481 -1

Methanobacterium lacus Bacteroides fragilis 0.424 -1

Methanobrevibacter ruminantium Bacteroides fragilis 0.473 -1

Methanobrevibacter smithii Bacteroides fragilis 0.606 -1

Methanocaldococcus fervens Bacteroides fragilis 0.457 -1

Methanocaldococcus infernus Bacteroides fragilis 0.410 -1

Methanosaeta harundinacea Bacteroides fragilis 0.499 -1
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Table 2.6 continued

Methanosphaera stadtmanae Bacteroides fragilis 0.431 -1

Methanothermobacter marburgensis Bacteroides fragilis 0.456 -1

Methanothermobacter thermautotrophicus Bacteroides fragilis 0.458 -1

Methylobacterium extorquens Bacteroides fragilis 0.405 -1

Methylovorus sp. MP688 Bacteroides fragilis 0.413 -1

Modestobacter marinus Bacteroides fragilis 0.539 -1

Mycoplasma penetrans Bacteroides fragilis 0.438 -1

Myxococcus stipitatus Bacteroides fragilis 0.449 -1

Myxococcus xanthus Bacteroides fragilis 0.435 -1

Natranaerobius thermophilus Bacteroides fragilis 0.455 -1

Natronomonas pharaonis Bacteroides fragilis 0.462 -1

Neisseria gonorrhoeae Bacteroides fragilis 0.441 -1

Nocardia farcinica Bacteroides fragilis 0.565 -1

Nocardioides sp. JS614 Bacteroides fragilis 0.528 -1

Nocardiopsis dassonvillei Bacteroides fragilis 0.405 -1

Novosphingobium sp. PP1Y Bacteroides fragilis 0.465 -1

Oceanimonas sp. GK1 Bacteroides fragilis 0.454 -1

Oceanobacillus iheyensis Bacteroides fragilis 0.457 -1

Ca.Phytoplasma asteris Bacteroides fragilis 0.438 -1

Opitutus terrae Bacteroides fragilis 0.493 -1

Oscillibacter valericigenes Bacteroides fragilis 0.529 -1

Paenibacillus mucilaginosus Bacteroides fragilis 0.559 -1

Paenibacillus sp. Y412MC10 Bacteroides fragilis 0.407 -1

Peptoclostridium difficile Bacteroides fragilis 0.622 -1

Phaeobacter gallaeciensis Bacteroides fragilis 0.462 -1

Phenylobacterium zucineum Bacteroides fragilis 0.463 -1
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Table 2.6 continued

Propionibacterium acidipropionici Bacteroides fragilis 0.554 -1

Propionibacterium avidum Bacteroides fragilis 0.551 -1

Propionibacterium freudenreichii Bacteroides fragilis 0.575 -1

Propionibacterium propionicum Bacteroides fragilis 0.562 -1

Pseudomonas aeruginosa Bacteroides fragilis 0.443 -1

Pseudomonas brassicacearum Bacteroides fragilis 0.621 -1

Pseudonocardia dioxanivorans Bacteroides fragilis 0.477 -1

Psychrobacter arcticus Bacteroides fragilis 0.439 -1

Psychrobacter sp. PRwf-1 Bacteroides fragilis 0.421 -1

Pyrococcus sp. ST04 Bacteroides fragilis 0.424 -1

Rhizobium leguminosarum Bacteroides fragilis 0.548 -1

Rhodobacter sphaeroides Bacteroides fragilis 0.431 -1

Rhodospirillum photometricum Bacteroides fragilis 0.480 -1

Rickettsia heilongjiangensis Bacteroides fragilis 0.445 -1

Roseburia intestinalis Bacteroides fragilis 0.504 -1

Roseiflexus castenholzii Bacteroides fragilis 0.482 -1

Ruminococcus bromii Bacteroides fragilis 0.543 -1

Ruminococcus obeum Bacteroides fragilis 0.403 -1

Ruminococcus sp. SR1SLASH5 Bacteroides fragilis 0.556 -1

Ruminococcus torques Bacteroides fragilis 0.438 -1

Sanguibacter keddieii Bacteroides fragilis 0.428 -1

Selenomonas sputigena Bacteroides fragilis 0.493 -1

Shewanella sediminis Bacteroides fragilis 0.526 -1

Shewanella woodyi Bacteroides fragilis 0.554 -1

Sideroxydans lithotrophicus Bacteroides fragilis 0.541 -1

Simkania negevensis Bacteroides fragilis 0.440 -1
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Table 2.6 continued

Singulisphaera acidiphila Bacteroides fragilis 0.463 -1

Sinorhizobium fredii Bacteroides fragilis 0.565 -1

Sinorhizobium meliloti Bacteroides fragilis 0.446 -1

Sphingomonas sp. MM-1 Bacteroides fragilis 0.467 -1

Sphingomonas wittichii Bacteroides fragilis 0.447 -1

Sphingopyxis alaskensis Bacteroides fragilis 0.491 -1

Spirochaeta smaragdinae Bacteroides fragilis 0.542 -1

Spiroplasma chrysopicola Bacteroides fragilis 0.412 -1

Spiroplasma taiwanense Bacteroides fragilis 0.495 -1

Stackebrandtia nassauensis Bacteroides fragilis 0.421 -1

Staphylococcus lugdunensis Bacteroides fragilis 0.536 -1

Streptococcus lutetiensis Bacteroides fragilis 0.482 -1

Streptomyces rapamycinicus Bacteroides fragilis 0.521 -1

Streptomyces violaceusniger Bacteroides fragilis 0.409 -1

Streptosporangium roseum Bacteroides fragilis 0.596 -1

Sulfolobus islandicus Bacteroides fragilis 0.486 -1

Sulfurimonas autotrophica Bacteroides fragilis 0.645 -1

Synechococcus sp. PCC 6312 Bacteroides fragilis 0.506 -1

Synechococcus sp. PCC 7502 Bacteroides fragilis 0.450 -1

Terriglobus roseus Bacteroides fragilis 0.449 -1

Thalassolituus oleivorans Bacteroides fragilis 0.409 -1

Thermoanaerobacter sp. X514 Bacteroides fragilis 0.616 -1

Thermobifida fusca Bacteroides fragilis 0.425 -1

Thermococcus sp. AM4 Bacteroides fragilis 0.447 -1

Thermocrinis albus Bacteroides fragilis 0.548 -1

Thermodesulfobium narugense Bacteroides fragilis 0.414 -1

63



Table 2.6 continued

Thermodesulfovibrio yellowstonii Bacteroides fragilis 0.497 -1

Thermotoga naphthophila Bacteroides fragilis 0.413 -1

Thermovibrio ammonificans Bacteroides fragilis 0.444 -1

Thioalkalimicrobium cyclicum Bacteroides fragilis 0.408 -1

Tistrella mobilis Bacteroides fragilis 0.618 -1

Treponema azotonutricium Bacteroides fragilis 0.510 -1

Treponema caldaria Bacteroides fragilis 0.440 -1

Treponema succinifaciens Bacteroides fragilis 0.479 -1

Turneriella parva Bacteroides fragilis 0.536 -1

Vibrio campbellii Bacteroides fragilis 0.409 -1

Xanthomonas campestris Bacteroides fragilis 0.563 -1

butyrate-producing bacterium Bacteroides fragilis 0.426 -1
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CHAPTER 3

DYNAMIC CHANGES OF HUMAN GUT MICROBIOTA DURING AGING

PROGRESSION

3.1 Introduction

The human gut is an eco-system containing more than one hundred trillion microbes, and

plays an important role in the host health[130]. The long-term natural selection acting on

both the hosts and microbes leads to a relatively stable structure of the intestinal micro-

biota, which has been proved finally promoting mutual cooperation and functional stability

of this inherently complex ecosystem[18]. Factors influencing the variation of gut micro-

bial community in different individuals include environment, diet, host genetics and the

pathological conditions of the hosts[17, 80, 35, 131, 79]. Aging is a process capturing

many aspects of the biological variation of the human body, which was accompanied by an

increased incidence of infection and functional decline in the gut of elderly individuals[45].

Several previous studies have reported age-related changes of human gut microbio-

ta[46, 47, 48, 49, 50, 51, 52, 53, 54]. By culturing microbes, Hopkins et al. found

larger number of Enterobacteria in children’s fecal than in adults[46]. Yatsunenko et al.

found the number of Bifidobacterium declined as ages of the hosts increased using 16S

rRNA sequencing[48]. Odamaki et al. revealed that there was an increasing proportion

of Bacteroides, Eubacterium and Clostridiaceae accompanying aging; while Enterobacte-

riaceae were enriched in elderly and infant; Bifidobacterium were more abundant in in-

fants; Lachnospiraceae were more abundant in adults[47]. Stewart et al. discovered L-

lactate dehydrogenase major in milk fermentation declined and transketolase major in the

metabolism of fiber increased over the first years of life[50] using whole genome sequenc-

ing. In these above mentioned studies, various supervised machine learning algorithms
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have been applied to effectively identify taxonomic and functional signatures for aging-

related variations of gut microbiota, including multi-group Spearman rank correlation,

Random Forest[48], comparative analysis with permutational analysis of variance (PER-

MANOVA)[46, 47, 49, 54], and frequency-inverse document frequency and minimum-

redundancy maximum-relevance[51].

As an exploration, we proposed to apply an unsupervised machine learning algorith-

m to reveal the existence of aging-related progression of microbial community, and those

bacteria genera associated with this progression. Sample Progression Discovery (SPD) as

an unsupervised machine learning algorithm was adopted here. SPD was previously de-

veloped to reveal the progressively transforming patterns of gene expression, which could

be applied to identify those biological progressions of various biological systems and pro-

cesses[81]. The idea of SPD has been sequentially applied to gene expression analysis

of microarray data[81], and then extended to the analysis of flow cytometry data[82] and

the analysis of single-cell RNA-seq data[132]. In this part of this dissertation, we applied

SPD on community profiles of human gut microbiota samples extracted from 16S rRNA

sequencing data. These samples cover various age periods ranging from new-born babies

to centenarians. SPD successfully recapitulated the underlying aging progression of the

data in an unsupervised fashion, which sorted the gut microbiota samples in an order con-

sistent to the host ages. Additionally, SPD identified those bacteria genera associated with

this aging-related progression of the gut microbiota. Overall, these findings proved the

existence of an aging progression in human gut microbial community, and identifies some

important bacteria genera that could characterize the aging progression of gut microbiota.

3.2 Data and methods

3.2.1 Data and data annotation

There are 371 samples of subjects included in this study, ranging from new-born babies to

centenarians, which have been described in a previous publication[47]. We downloaded
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the raw data of 16S rRNA data following the accession number DRA004160 from D-

NA data bank of Japan. Three samples were eliminated because that only one end of

paired-end reads could be found. 16S rRNA data processing was performed using Mothur

pipeline[133]. Those raw reads with average quality score < 25 or read length < 150bp

were classified as low quality and then filtered out. The criteria of minimum length of

reads was set as 150bp for the reason that the average overlap region of paired reads was

about 150bp. Since the number of reads in each sample was distributed in a Gaussian

shape (8, 734 ± 2, 748), we could conclude that all the 368 samples were sequenced in a

normal depth. Those reads passing quality control and also with both paired ends were

merged as sequences, while those low-quality reads failed to pass quality control or with

only one end which was supposed to be a pair were discarded. Then the merged sequences

were aligned against Silva reference database version 132[134] to annotate the taxonomical

composition. The threshold of bootstrap confidence value for the alignment was set 80%

(80% identity) during 100 iterations. The taxonomic composition at genus level could be

revealed according to the alignment result, which resulted in 368 genera in total.

3.2.2 Feature matrix

The genus abundance matrix was defined as N = {nij}, wherein nij represents the num-

ber of reads from sample i classified into genus j. 119 genera with extremely abundance

were filtered out, and three genera with unclear annotations were combined into one genus

cluster named “unclassified”, after which 247 features were obtained for further analy-

sis. To eliminate the influence of various sequencing depth of different samples, we trans-

ferred the genus abundance matrix into a relative abundance matrix F = {fij}, where

fij = nij/
∑247

k=1 ni,k . One sample from subject “Japanese 320” with abnormally high pro-

portion of Pseudomonas was filtered out. Finally, a 367× 247 relative abundance matrix F

was obtained for further analysis.

With decent numbers of samples in all age groups, the genus relative abundance of pop-
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ulation in each age group was estimated as the mean value of samples in the corresponding

group. This step partially reduced the sparsity of the data matrix and the variations of in-

dividual samples. Age periods were defined regarding the physiological transition of the

hosts, wherein the new-born babies were grouped according to their weaning status and the

adults were grouped by decade. The number of samples in each age group was depicted in

Table 3.1.

3.3 Results

3.3.1 Data annotation and samples overview

As initially raw data, a total of 3.2 million high-quality 16S rRNA sequences were obtained

from 368 samples[47], with 8, 734± 2, 748 (mean ± deviation) reads per sample. The 16S

rRNA sequences were binned into 366 genera according to the common-used pipeline of

Mothur[133] with SILVA[134] as the reference database (see Data and methods for more

details). 119 genera with extremely low abundance were removed. The total number of se-

quences annotated to these genera only accounted for 0.01% of all the sequences. Also, the

sample ‘Japanese 320’ was excluded for its abnormally high proportion of Pseudomonas,

which pointed to either pathological disorder of this individual or normal sampling. After

all these preprocesses, a relative abundance matrix of the 247 genera across the 367 sam-

ples were derived, which was used as the basis for further analyses. For the purpose of

revealing the existence of age-related progression of gut microbiota, all the samples were

divided into 14 age groups by considering the physical transformation of different body pe-

riods. Accordingly, adults were grouped by decade, while new-born babies were grouped

based on their weaning status (Table 3.1). Except the group of centenarians, there were at

least 10 samples in each age group.

Principle component analysis (PCA) was performed here to visualize the taxonomic

patterns of these samples by transforming the high dimensional raw data into a three-

dimension space. PCA was applied on the relative abundance matrix of the 247 genera
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Table 3.1: Samples were grouped into 14 age-segment groups. The first three groups of
new-born babies were classified regarding their weaning status, i.e. before weaning, wean-
ing and after weaning separately. Other samples were grouped by decade.

Group Age segmentation Number of samples Female Male

1 (0, 0.4] 10 6 4
2 (0.4, 1.2] 12 4 8
3 (1.2, 3] 19 9 10
4 (3, 9] 14 8 6
5 (9, 19] 10 3 7
6 (19, 29] 40 24 16
7 (29, 39] 88 43 45
8 (39, 49] 34 21 13
9 (49, 59] 25 13 12

10 (59, 69] 28 17 11
11 (69, 79] 15 10 5
12 (79, 89] 48 32 16
13 (89, 99] 19 15 4
14 ≥ 100 5 5 0

across the 367 samples. The top three principle components with the highest explanation

power explained 33.17%, 15.09% and 10.32% of the original data variance, respectively.

As Figure 3.1 shows, those samples from children younger than three years old scattered

loosely, which means they are quite different from each other. This observation confirmed

the finding of the previous literature[48], which discovered that interpersonal variation de-

creased as the hosts become older. Nevertheless, the samples did not gather into distinct

groups when analyzed using this linear analysis method.

3.3.2 Age-related variation of gut microbiota revealed by supervised methods

Two traditional supervised statistical approaches was applied in a univariate fashion to i-

dentify the age-related variation of the gut microbiota. First, permutational one-way ANO-

VA test[135] was applied on the genus relative abundance matrix to find those genera with

abundances significantly varied across different age groups. The abundances of forty three

genera showed significant difference in different age groups with P < 0.001 during 1000
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Figure 3.1: Sample overview using PCA. Using the relative abundance of 247 genera across
all the 367 samples as input, we linearly transformed and visualized the data in a three-
dimensional space. Each sample is represented by one dot, colored according to age. Sam-
ples from children younger than three (the dark blue dots) scattered most distantly, while
older age groups were mixed together in the PCA space.
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times of randomization. Herein the P values have been adjusted using Bonferroni correc-

tion (see more details in Table 3.2). Spearman correlation was then applied to identify those

genera co-varying with aging. 17 genera were identified positively correlating with aging

and one genus negatively correlating with aging (Table 3.3). These findings agreed with

multiple previous literatures, which also revealed the variation of individual genus in the

gut microbial community during the host aging[46, 47, 49, 54]. Another further question

naturally arose as to whether the gut microbial community shift continuously during aging

as a whole.

Table 3.2: Significant genera from Permutational one-way

ANOVA analysis

Alistipes

Anaerofilum

Anaerostipes

Bifidobacterium

Bilophila

Blautia

Butyricicoccus

Butyricimonas

Christensenellaceae R-7 group

Christensenellaceae ge

Cloacibacillus

Clostridium sensu stricto 1

Coprococcus 1

Corynebacterium

Desulfovibrio

Dorea
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Table 3.2 continued

Escherichia-Shigella

Family XIII UCG-001

Fusicatenibacter

GCA-900066225

Intestinibacter

Intestinimonas

Izimaplasmatales ge

Lachnospira

Lachnospiraceae ge

Methanobrevibacter

Negativibacillus

Odoribacter

Parabacteroides

Phascolarctobacterium

Rhodanobacter

Ruminiclostridium 5

Ruminiclostridium 9

Ruminococcaceae NK4A214 group

Ruminococcaceae UCG-002

Ruminococcaceae UCG-005

Ruminococcaceae UCG-010

Ruminococcaceae ge

Ruminococcus 2

Sellimonas

Subdoligranulum

Sutterella

72



Table 3.2 continued

Veillonella

Table 3.3: Genera correlated with aging with Spearman correlation
Postive Negative

Alistipes Bifidobacterium
Butyricimonas
Christensenellaceae R-7 group
Christensenellaceae ge
Cloacibacillus
Desulfovibrio
GCA-900066225
Intestinimonas
Odoribacter
Parabacteroides
Phascolarctobacterium
Ruminiclostridium 9
Ruminococcaceae NK4A214 group
Ruminococcaceae UCG-002
Ruminococcaceae UCG-005
Ruminococcaceae UCG-010
Ruminococcaceae ge

3.3.3 Aging progression of gut microbiota revealed by unsupervised analysis

An unsupervised method SPD was applied to analyze the gut microbiota data in a multi-

variate fashion, which is totally different from the previous supervised univariate methods

that search for features co-varying with aging. The averages of genus relative abundance of

samples in each age group, which is a 247× 14 matrix, was input to SPD. The scale effect

was eliminated by normalizing the relative abundance of each feature across samples. A

minimum spanning tree (MST) was constructed for each of the genus features based on

Euclidean distance. This MST represented a putative progression ordering among the 14
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sample groups. The 247 resulting MSTs for those 247 genera were cross compared with

each other to examine whether there is a relatively dominant progression ordering fitted

well by multiple genera among the samples. SPD used a progression similarity matrix to

summarize the results of these comparisons, wherein each element of the matrix counted

the number of progression orderings that the two corresponding genera both fit well with.

The result was shown in Figure 3.2a and part of the highlighted area of this matrix was

magnified in Figure 3.2b. It could be observed that a subset of 35 genera (Table 3.4) fitting

well with a common set of putative progression orderings. An overall minimal spanning

tree could be constructed using this subset of 35 genera, which represent a common pro-

gression ordering (shown in Figure 3.2c). One age was represented by one node of the

tree in Figure 3.2c. To assist the visualization, nodes were labeled and colored according

to the order of their real age groups. Noticeable, for determining the structure of the tree,

the age information was not used.SPD aimed to identify a progression ordering among the

samples, represented by an overall minimal spanning tree, and discover those features ex-

hibiting gradual changes respecting this progression. The age progression ordering across

the 14 sample groups was recapitulated by the overall minimal spanning in Figure 3.2c.

Table 3.4: Critical genera identified by SPD

Critical genera

Allisonella

Acidocella

Oscillospira

Angelakisella

Parvimonas

Ruminiclostridium 9

Ruminococcaceae UCG-003

Anaerotruncus
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Table 3.4 continued

Clostridiales vadinBB60 group ge

Cloacibacillus

Corynebacterium

GCA-900066225

Desulfovibrio

Christensenellaceae R-7 group

Harryflintia

Ruminococcaceae NK4A214 group

DTU014 ge

Rikenellaceae RC9 gut group

Bilophila

GCA-900066755

Lactobacillus

Tyzzerella

Butyricimonas

Odoribacter

Phascolarctobacterium

Butyrivibrio

Prevotellaceae UCG-003

Senegalimassilia

Oxalobacter

Peptococcus

Parascardovia

Rhodanobacter

Cellulosilyticum

Epulopiscium
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Table 3.4 continued

Pyramidobacter

These sample groups could be further classified into four larger groups, i.e. Cente-

narians, Elderly, Adults, and Children and teenagers. The order of these larger sample

groups on this minimal spanning tree perfectly matched with the aging order of these sam-

ple groups. This finding is interesting since it discovered that there existed an aging pro-

gression of the human gut microbiota, based on the truth that SPD recovered the correct

ordering of aging progression using the genus relative abundance without any prior knowl-

edge.

Figure 3.2: SPD recovered aging progression with taxonomical composition of human gut
microbiota. (a) Progression similarity matrix for all genera, with each element counting the
number of progression orderings the two corresponding genera shared. (b) We manually
picked the highlighted area from (a). These selected genera were consistent with a common
set of putative progression orderings. (c) An overall minimal spanning tree of the 14 age
groups based on the selected genera. Each node represents one age group.
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3.3.4 35 critical genera underlying the aging progression of gut microbiota

We further examined those 35 identified genera that contributed to the aging progression

of gut microbiota. Compared to previous methods mentioned above, out of the 35 genera,

11 were detected as significant features in the permutational one-way ANOVA analysis

with adjusted Pvalue < 0.001. None of them was detected as correlated with aging by

Spearman rank correlation analysis. For remaining 24 genera only detected by SPD, a

few have been previously reported in other literature, such as Butyrivibrio, Oxalobacter,

Lactobacillus which have been experimentally demonstrated associating with aging[136,

137, 138], as well as Prevotellaceae which has been reported with lower presence in the

gut microbiota of centenarians[139].

Regarding the varying trend of these critical genera, among the 35 genera selected by

SPD according to the progression similarity, only 9 of them monotonically varies along

with aging, while the rest of them increased at the beginning while then decreased in dif-

ferent age periods (Figure 3.3). This illustrated one advantage of SPD, which was designed

to find those features exhibiting gradual changes respecting a common underlying progres-

sion pattern, and the gradual changes were not limited to be monotonic and also include

those not monotonic changes. Therefore, this analysis was able to discover all those genera

gradually changing without abrupt fluctuations during aging. Extensive literature review

of these 35 genera has been performed, and a lot of previous reports of the functional rele-

vance of these genera has been published.

Figure3.4 shows those genera with abundances increased with respect to aging, but de-

creased in the extremely elderly subjects. Within these genera, Lactobacillus species are

commonly used probiotics[140]. Species in genus Oscillospira are central to the human

gut microbiota for degrading fibers[141], and have been frequently reported enriched in

lean subjects compared to those obese subjects [142, 143, 144, 145]. Genus Oxalobacter

is responsible for degrading oxalate in the gut, and it has been experimentally demonstrat-

ed existing in the gut of almost all young individuals, but these bacterium may later get
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Figure 3.3: The relative abundance of all the 35 critical genera across different age groups.

lost during aging[136]. Prevotellaceae is commonly found in the gastric system of people

who maintain a diet high in carbohydrates and low in animal fats[146] and could be lost

in centenarians[139]. Researchers also found that there was an increased abundance of

genus Prevotellaceae in the guts of healthy individuals than those people with Parkinsons

disease[147]. Parascardovia is a genus within the family Bifidobacteriaceae. This family

has been shown benefiting the host health in multiple ways[148]. Species within genus Bu-

tyrivibrio have been proved experimentally as butyrate producing bacteria, while butyrate

is a preferred energy source for colonic epithelial cells and has been demonstrated to play

an important role in maintaining colonic health of hosts[149]. Integrating all these findings,

it could be concluded that these genera are health beneficial ones. The decrease of these

beneficial genera in the elderly age groups, especially centenarians, maybe manifestation

of or causal associations to decline of health in those age groups.

In contrast, genera in Figure 3.5 showed generally monotonically increasing patterns re-

specting the whole aging progression. Literature review of these genera led us to conclude

that these genera are most likely to be health harmful. Genus Parvimonas was enriched

in colorectal cancer compared to the healthy controls[150, 151, 152, 70, 153]. Genus
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Figure 3.4: Genera that first increased and then decreased during aging, especially sharply
decreased the 13th or 14th age groups, or both.
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Anaerotruncus has been reported as relatively enriched in patients with age-related mac-

ular degeneration[154]. Genus Corynebacterium was reported more abundant in the gut

of autistic individuals with autism spectrum disorders[155]. Many species within genus

Corynebacterium have been reported involved in human and animal diseases[156]. Genus

GCA-900066225 is one representative genus in the family Lachnospiraceae, which has

been reported to be associated with the stress of the host, ulcerative colitis, as well as

Crohn’s and celiac disease[157]. Genus Desulfovibrio produce hydrogen sulfide using sul-

fate as the electron acceptor, and these sulfate-reducing bacteria are often reported asso-

ciating with the host inflammation[158, 159]. Strain Bilophila wadsworthia within genus

Bilophila has been reported as causing systemic inflammation in specific-pathogen-free

mice[160]. Species within genus Odoribacter has been reported enriched in tumor-bearing

mice[66]. Genus Butyricimonas was more abundant in those subjects suffering from sys-

tolic blood pressure, high rectal temperature, and with a significantly lower physical activity

score[161]. Overall, these monotonically increasing genera were often reported to relate

with host diseases.

All these prior literature of these identified genera led to one interesting finding. Many

of the genera first increasing and then decreasing were previously demonstrated as health

beneficial, whereas most of the monotonically increasing genera along with aging were

frequently identified as disease related genera. Specially, when individuals turn elderly be-

yond 90s, their guts tend to lose some beneficial genera while get some potentially harmful

genera.

3.4 Discussion

Since the variation of gut microbiota is intensively related to the health status of the hosts,

in order to exclude other influences, an ideal dataset for examining aging related changes of

human gut microbiota should be collected from healthy subjects form different age groups.

Unfortunately, we do not know the healthy status of individuals in this study, because
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Figure 3.5: Genera that exhibited general increasing patterns during aging.
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that the data we used here were obtained from a previously published paper[47] which

did not include the detail of health information for these samples. During our literature

search on age-related variation of the human gut microbiota, we realised that the health

status of individuals in such studies are often not reported in multiple previously published

papers[47, 48, 162, 51, 163].

We performed extra analysis to gauge the health status of those samples used in this part.

We retrieved multiple previous datasets on the human gut microbiome of hosts suffering

from different diseases[80, 79, 32, 78, 33, 43], which have been detailed in Chapter 2 of

this dissertation. We obtained the relative abundance of the human gut microbial genera

of each sample in these previous datasets. The abundance distribution of these genera

could be visualized for both disease samples and healthy controls. It could be clearly

observed that some genera were more abundant in the disease samples compared to those

healthy controls, and the majority of these genera have been demonstrated as opportunistic

pathogens of the human gut[164, 165, 166, 167, 168, 169, 170, 171, 172, 173]. According

to Figure 3.6, those disease-enriched genera typically showed higher variance and higher

abundance in disease samples than in those healthy ones (first and second columns of Figure

3.6), while all of these disease-enriched genera exhibit very low abundance in the dataset

used in this part of analysis (third column of Figure 3.6). This observation implied that the

samples in the current dataset are dissimilar to the diseases samples while more similar to

the healthy samples in the previous datasets. Thus this comparison demonstrated that the

most of samples in this part of analysis were derived from healthy individuals.

Operational taxonomic unit (OTU) is another commonly used classification unit for

16S rRNA sequencing data analysis, which allows for classifying 16S rRNA sequences

into features at a finer resolution compared to the previously used genus level classifica-

tion. we applied the progression analysis to the OTU level features, the result of which

confirmed our observations in the genus level analysis. In detail, we clustered sequences

with similarity threshold 0.97, which resulted in 4,663 OTUs. Those OTUs with extremely
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Figure 3.6: Frequency histogram of the relative abundance of disease-enriched genera dis-
tributed in different kinds of samples in our previous studies and the current dataset. All
the value bins along the x-axis are consistent and all the relative abundance values were
log transformed before being binned. We could see that the distribution of the samples we
included in this paper is more similar to the healthy samples and exhibit lower abundance
compared to the disease samples.
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low abundances were filtered, and there were 1,229 OTUs passing this filtering step. The

input for SPD analysis was the averages of the relative abundances of the remaining OTUs

for each age group. The result showed that the progression analysis based on OTU fea-

tures could partially recapitulate the correct order of the age groups (Figure 3.7), but not

as good as the result from genus level analysis as shown in Figure3.2c. Nevertheless, it

reassured the existence of an aging progression of human gut microbiota, which could be

demonstrated by the analyses at both OTU level and genus level.

For quantifying species diversity in the metagenomics literature, the alpha diversity

and the beta diversity are very popular metrics. Herein, we calculated the alpha diversity

and the beta diversity of gut microbiota in each age group based on the averages of genus

relative abundance of samples in the corresponding group. We chose Shannon index to

quantify the alpha diversity and Bray-Curtis dissimilarity between different age groups for

quantifying the beta diversity. As shown in Figure 3.8, the alpha diversity of each individual

age group steadily increases as a function of aging, while experienced a steep drop in the

extremely elderly age group [99, 110]. This observation agreed with the results shown

in Figure3.4, where multiple aging-related genera significant decreased in the extremely

elderly age group. Different from alpha diversity, the beta diversity was usually applied to

quantify the dissimilarity between different age groups (Figure 3.9). When focusing on the

variation of beta diversities between neighboring age groups, it could be observed that the

beta diversity between groups [2, 3] and between groups [13, 14] were notably larger than

the beta diversities between other neighboring age groups. The specially larger distinction

between group 2 (weaning) and group 3 (weaned) could be explained by the transformation

of weaning status, which is often accompanied by drastic dietary changes. However, those

samples in group 13 and group 14 are all elderly individuals with continuous ages, thus

the alteration of dietary habits can not explain the large dissimilarity between groups 13

and 14 anymore. Therefore, we conjecture that the large dissimilarity between groups 13

and 14 is due to the aging of gut microbiota, manifested in the sudden decrease of multiple
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Figure 3.7: The minimal spanning tree generated from SPD based on OTUs.
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genera in the extremely elderly samples. Overall, our observations in the analyses of both

alpha and beta diversity confirmed our previous observation that the abundance of multiple

genera suddenly decreased in those extremely elderly age samples (Figure3.4).
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88



CHAPTER 4

A MACHINE LEARNING TOOL FOR DIAGNOSING DISEASES BASED ON

HUMAN GUT MICROBIOTA

4.1 Introduction

IBD is a group of inflammatory conditions of the colon and small intestine that affects over

2.5 million Europeans[84] and 3.1 million Americans[174], and has a notably increasing

prevalence in the Asia-Pacific region[175]. An early accurate diagnosis can help clini-

cians to improve treatment. However, there is no gold standard diagnosis for monitoring

quiescent disease in patients with IBD. Moreover, the two major types of IBD, UC and

CD[176], have different mechanisms of tissue damage[177] necessitating different treat-

ment strategies. It is clinically critical but usually difficult to identify the specific types of

IBD, because there are no biomarkers or clinical tests capable of discriminating CD from

UC patients in practice[178]. Even colonoscopy may miss inflammation in some parts of

the gastrointestinal tract[179].

The human gut microbiota has been viewed as a relatively forgotten organ, however

has been increasingly concerned with an important role in health[18]. Recently the next-

generation sequencing (NGS)-based profiling studies of the intestinal microbiome have

reinforced the view that the pathogenesis of IBD is closely associated with the unbalanced

composition of the microbial community[180, 181, 182]. In contrast to serum biomarkers,

fecal biomarkers respond more directly to the changes of the intestinal conditions. With

the development of NGS technology and advances in hospital bioinformatics analysis, it is

time to propose a diagnostic procedure to discriminate UC and CD from non-IBD colitis,

especially based on the current high-throughput NGS data of the human gut microbiome.

In this work, we present a tool, named LightCUD, for discriminating ulcerative colitis
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(UC) and Crohn’s disease (CD) from non-IBD colitis using the human gut microbiome.

LightCUD embodies four high-performance modules, namely, WGS-based health vs IB-

D module, WGS-based UC vs CD module, 16S-based health vs IBD module and 16S-

based UC vs CD module. Each module is composed of a machine learning model and

a customized reference database. In details, we used the high-throughput whole-genome

sequencing (WGS) data to analyze the microbial composition of gut microbiota samples.

These samples were from patients with UC and CD, and healthy controls. The taxonomic

profiles of these samples were obtained as feature abundance matrices (FAMs) at strain lev-

el for two WGS-based modules and at genus level for two 16S-based modules respectively.

We designed a feature selection strategy for all the modules. Also, we compared the per-

formances of five different machine learning algorithms, i.e., logistic regression, random

forest, gradient boosting classifier, support vector machine and LightGBM for training each

model of corresponding module[94, 93, 92, 91]. The LightGBM-based models performed

best. As a result, we established four high-performance lightGBM-based modules, name-

ly, WGS-based health vs IBD module, WGS-based UC vs CD module, 16S-based health

vs IBS module and 16S-based UC vs CD module. For the two WGS-based modules, we

further optimized the feature/strain sets to improve the modules performance. The result

illustrated that 49 strains for WGS-based health vs IBD module and 12 strains for WGS-

based UC vs CD module could achieve the best performances. Finally, we constructed and

released the tool LightCUD. With 16S rRNA sequencing or WGS data from individual gut

microbiota samples as input data, LightCUD predicts the probability of having IBD, and

the sample identified as IBD will then be classified as UC or CD.

4.2 Data and methods

As shown in Figure 4.1, we first conducted metagenomics analysis for WGS data of hu-

man gut microbiota samples from two types of IBD and healthy controls. Based on the

alignment result from last step, we constructed feature profiles at strain level for WGS-
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Figure 4.1: The pipeline of data processing and the LightCUD program construction. With
WGS raw data of 349 samples, we eliminated the low-quality reads and assembled the
remaining reads into contigs. Contigs ¿ 1,000 bp were taxonomically binned into strains
and genera. 16S rRNA-based discrimination modules were constructed with genus-level
profiles and WGS-based discrimination modules were constructed with strain-level pro-
files. For the four modules, we designed different feature selection procedures and com-
pared different machine learning algorithms. LightGBM was selected as the core algorithm
for modules construction for its best performance. For WGS-based modules, we further
optimized the model by shrinking the feature set through pre-training. Finally, a high-
performance dual-usage discrimination program LightCUD was successfully constructed.
The corresponding reference databases were released along with the prediction modules.

based modules, and at genus level for 16S-based modules. After the well-designed feature

selection steps, we selected the LightGBM models to construct the discriminant modules,

outperformed the other four machine learning algorithms. We then describe in details about

the methods.

4.2.1 Data description

We downloaded a deeply sequenced microbiota data set of 396 human stool samples from

public database, which has been described in a previous study of human intestinal tract

metagenome[78]. Among the samples, 47 ones labeled with relative health were excluded
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because of their uncertainty of being IBD patients or healthy. So totally 349 samples were

included in this study, consisting of 201 samples from healthy controls, 127 samples from

UC, and 21 samples from CD. 4.68 TB WGS paired-end short reads of these samples were

downloaded from NCBI GenBank[95]. We first assembled the original short reads into

contigs using InteMAP[183], which was designed as an integrated assembly pipeline for

NGS metagenomic short reads. To ensure the validity of further analysis, short reads with

low quality and contigs shorter than 1,000 bp were filtered out.

To verify the generalization ability of LightCUD, we also conducted blind validation

with an independent data set, which has been described in another study[79]. This data

set includes 244 GB short reads of 185 samples with moderate size, including 16 healthy

controls and 169 with CD (> 696MB and < 2000MB per sample, filtering out samples in

the bottom or top quartiles were filtered out).

4.2.2 Constructing feature profiles for WGS-based and 16S-based modules

NGS techniques enable us to systematically characterize the composition of complex mi-

crobial community, such as human gut microbiota. 16S rRNA genes for bacteria were the

most commonly used target genes for molecular analysis, which provides fairly consisten-

t taxonomic assignment for a relatively wide range of genera[184]. Although expensive,

WGS can theoretically classify taxonomic composition at strain level. WGS-based strain

typing is widely used in the epidemiologic analysis of bacterial pathogens in public health,

so we developed our program with both WGS-based and 16S rRNA-based modules. In

this subsection, we then describe how to construct the strain profiles and genus profiles as

FAMs for the WGS-based modules and 16S-based modules separately.

With high-quality contigs, we were then able to recognize the members of the micro-

bial community. To perform taxonomic binning at strain level, we used the 2,712 strain

genomes references in NCBI RefSeq[95]. The PhymmBL tool[185] was applied to tax-

onomic binning, which combined the sequence composition-based method and sequence
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alignment algorithm. With Bowtie 2-2.1.0 alignment[110], phylogenetic profiles for a sam-

ple were then calculated by counting the number of short reads aligned to each contig. To

obtain comparable relative abundances of strains, a correction process for sequencing depth

was applied during which the numbers of aligned reads were normalized by the contig

length and the number of matches per sample. The resulting values of relative abundances

were between 0 and 1. The strain-level taxonomic profiles served as FAMs for WGS-based

modules.

In the current study, we also consider such a case that only 16S rRNA data are se-

quenced for human gut microbiota samples. For this case, we designed 16S-based modules

trained with the WGS data herein, and calculated the genus-level taxonomic profiles as

FAMs. The relative abundance of each genus in the 16S-based FAM was calculated by

adding up the relative abundances of strains belonging to this genus.

For WGS-based modules, we finally annotated 2,661 strains as features with the data set

of 349 samples. As we know, a major drawback of WGS analysis is that it is very expensive,

mainly because of the large size of whole genome reference database. To address this

issue, we optimized the feature set by selecting the most discriminative, so that we could

construct a relatively small reference database meanwhile avoiding model overfitting. The

features selection process consisted of three steps as follow: 1. Only strains with relative

abundances more than 10-6 in at least one sample were reserved. This step was designed

to filter out some feature that might be noise information for model training. 2. Group

versus group comparative analysis was carried out and strains that significantly passed the

Wilcoxon rank sum test (P < 0.01) were retained[111]. This analysis is commonly used

in metagenomics analysis to identify potentially disease-related taxa. We added this step

to select case sensitive strains, and avoid the noise created by insensitive features. 3. The

hub nodes/strains in the strain-strain co-occurrence network graphs were selected in an

iterative procedure. In co-occurrence networks, nodes were strains and links represented

validated strain-strain correlations (P < 0.05). The correlations were calculated using the
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Spearman correlation in SparCC[112], based on the relative abundances of strains across

samples. The most intensively connected strain was picked out as the representative strain

(or feature) in each iteration. The selected strain and its strong connected strains (|R| > 0.4)

were then removed from the graph and the remaining strains were iterated into the next loop

of feature selection. This process was kept running until less than three nodes were left in

the network graph. This step was designed to select the most representative strains and

exclude the strains intensively correlated with the representative strains.

Details of the feature selection process and the detailed parameters are available in the

attached R code. We conducted this feature selection process separately for the WGS-

based both healthy vs IBD and UC vs CD cases. Finally, we have 320 strains for health vs

IBD case, and 159 strains for UC vs CD case, of which 29 overlapped strains were good

discriminators for both cases.

For 16S-based module, 508 genera were annotated as features. Since 16S sequencing

data is in small size and the alignment is fast, we only need to conduct basic feature se-

lection to exclude noise in feature abundances. In order to eliminate the randomly mapped

genera, we required that the relative abundances of selected features are no less than 10-6

in more than 90% samples. Therefore, we have 503 features left for the two 16S-based

modules.

4.2.3 Deciding the machine learning algorithm for building LightCUD

With the above optimized feature profiles (strains for WGS-based modules and genera for

16S-based modules), we were able to train the machine learning models of WGS-based

modules and 16S-based modules as discrimination methods with five common-used ma-

chine learning algorithms and evaluate their performances. The five algorithms are logistic

regression, random forest, gradient boosting classifier, support vector machine and Light-

GBM[94, 93, 92]. Herein the performances were evaluated with five-fold cross validation

using the average AUC (area under receiver operating characteristic curve) and AP (av-
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erage precision, area under precision-recall curve). AP was adopted as a supplementary

measure since the training datasets were unbalanced. For the health vs IBD case, we have

349 samples consisting of 148 IBD and 201 healthy controls. For the UC vs CD case, we

have 148 samples containing 127 UC and 21 CD. As shown in Table 4.1, the models built

with LightGBM performed overall better than the other four algorithms, with the highest

AUC in all the discrimination tasks and the highest AP in three out of four discrimination

tasks (WGS-based health vs IBD and UC vs CD, 16S-based health vs IBD and UC vs CD).

Table 4.1: Comparison of model performances built with five different machine learning
algorithms. LightGBM performed better than the other four algorithms, with the highest
AUC in all the four discrimination tasks (health vs IBD and UC vs CD) and the highest AP
in three out of four tasks.

Discrimination tasks
WGS WGS 16S 16S

Health vs IBD UC vs CD Health vs IBD UC vs CD

Machine learning algorithm AUC AP AUC AP AUC AP AUC AP

Logistic regression 0.861 0.781 0.735 0.438 0.857 0.761 0.815 0.559
Random forest 0.899 0.840 0.781 0.539 0.873 0.807 0.725 0.520

Gradient boosting classifier 0.796 0.685 0.732 0.331 0.803 0.685 0.858 0.595
SVM 0.864 0.810 0.726 0.396 0.846 0.750 0.821 0.544

LightGBM 0.967 0.814 0.974 0.887 0.971 0.965 0.962 0.845

4.2.4 Construction and optimization of the LightCUD method

After determining LightGBM as the core machine learning algorithm, we then present the

construction details of LightCUD. For the two 16S rRNA modules, we trained the model

parameters with the taxonomic profiles of 503 genera passing the feature selection. With

the genus profiles of 201 healthy controls and 148 IBD patients, we trained 16S-based

health vs IBD module. With the genus profiles of 127 UC and 21 CD, we trained 16S-

based UC vs CD module. The model parameters were tuned to optimize the performance

of the two cases through five-fold cross validation. The relatively short reference sequences

of the 16S rRNA reference database allowed for the rapid alignment of query sequences, so

the 16S modules could work very fast and make judgment for one sample in a few minutes.
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For WGS data, we constructed and optimized the WGS-based modules with strains as

features. Compared with genera, strains are remarkably more critical for medical interest

in judgement of pathogenicity and characterization of a disease. The three-step feature

selection strategy evidently reduced the number of features/strains. However, the database

including reference genomes of hundreds of strains was still too large for application, so

we further shrunk the feature set using a pre-training procedure. At the same time, this

procedure could improve the performance and stability of the WGS-based modules.

Through pre-training, we assigned significance scores to the features/strains that passed

the three-step feature selection procedure. The significance score of each strain was calcu-

lated using LightGBM through evaluating the increment of the error rate caused by remov-

ing that strain from the set of predictors. In order to optimize the generalization ability, the

size of the feature set was determined and the most important features were selected as fol-

lows. All the features/strains were sorted in a queue according to their significance scores.

Herein we added the top one feature into a waiting list, and evaluated AUC of the models

using the feature in the waiting list with a five-fold cross validation. Then, we added the

next one feature into the waiting list and calculated the AUC again. This process was con-

tinued until all the features were added into the waiting list, overall 320 strains for health

vs IBD case and 159 strains for UC vs CD case. We found that with increasing number

of features added into the waiting list, the AUCs increased at the beginning and decreased

after reaching the largest values. The WGS-based health vs IBD module with 49 features

achieved the best performance, and the UC vs CD module with 12 features achieved the

best performance (Figure 4.2). The module AUCs labeled as stars in Figure 4.2 were higher

than those of modules shown in Table 4.1, even though the number of feature/strains are re-

duced, which illustrated that the model performances was improved by optimizing feature

set, owing to the reduction of potential noise features. Therefore, for WGS-based modules,

we selected the 49 most important features/strains for health vs IBD discrimination and

the 12 strains for UC vs CD discrimination. With these features, we separately trained the
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Figure 4.2: Optimizing the feature sets for WGS-based modules. The cyan dots denoted
the AUC values for a different round of five-fold cross validation with the different number
of features, and the blue dots represented mean values of the cyan dots in the same column.
(a) Illustrated the WGS-based health vs IBD case and (b) illustrated the WGS-based UC
vs CD case. For both the cases, AUCs increased with more features at the beginning and
decreased after reaching the top values. 49 features for WGS-based health vs IBD case and
12 features for UC vs CD case were best.

health vs IBD module and UC vs CD module.

4.3 Results

4.3.1 Implementation and performance of LightCUD

As the feature sets (genera for 16S-based modules and strains for WGS-based modules)

and model parameters were determined, we trained the models of LightCUD with all the

training samples to build a universal decision tree. Finally, we released the LightCUD
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program for first identifying IBD colitis samples and further discriminating UC and CD,

for both WGS data and 16S sequencing data from the human gut microbiota samples. As

shown in Figure 4.3, LightCUD goes through different processing routes for WGS data and

16S sequencing data. For WGS data, LightCUD first blasts the raw data in FASTA format

against the customized health vs IBD reference database embodying the reference genomes

of the 49 strains we determined above. With the alignment results, LightCUD calculates

the taxonomic profiles and then determines whether the query sample tends to be healthy

or IBD. If IBD is indicated, LightCUD further decides whether the query sample belongs

to UC or CD type in this sample using the customized WGS reference database of the 12

selected strains. For 16S data, the genera serving as model features were consistent for

both the health vs IBD and UC vs CD modules, so only one 16S rRNA reference database

of 503 genera was embodied for these two modules. With 16S rRNA data, LightCUD goes

through one time of alignment against the reference database to reveal the taxonomic profile

of the query sample on genus level. Further, LightCUD makes decision based on this taxo-

nomic profile in two steps. Firstly, LightCUD decides whether this sample indicates health

or IBD. If IBD, LightCUD further makes decision about the specific type of IBD as UC or

CD. These four modules have been integrated into an accessible pipeline and released as

an open source tool on the webpage (see http://cqb.pku.edu.cn/ZhuLab/LightCUD/), along

with the customized databases. The databases were built using the reference sequences of

strains from NCBI[95] for WGS-based modules and genera from RDP[134] for 16S-based

modules.

The performance of LightCUD was validated using the average AUC and AP with five-

fold cross validation. The average AUC and AP of both the WGS-based and the 16S-based

modules, for health vs IBD and UC vs CD cases, indicated that all four cases were highly

discriminative in distinguishing IBD from healthy controls, and further identifying the spe-

cific type of IBD (4.4). It is also noted that the WGS-based modules (AUC = 0.984 and AP

= 0.947 for health vs IBD module, AUC = 0.989 and AP = 0.953 for UC vs CD module)
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Figure 4.3: Schematic of the LightCUD framework. The input data to LightCUD is the raw
reads of the sample in FASTA format. First, with the ‘-t‘ parameter, LightCUD decides the
data type. For different data types, different customized reference databases are used. For
both WGS and 16S data, LightCUD goes through a two-stage judgment. At the first stage,
LightCUD decides whether the query sample is healthy or IBD. If IBD, LightCUD further
judges the specific type, namely, UC or CD.
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Figure 4.4: Evaluation of the performance of LightCUD. We evaluated the accuracy of
disease classification using LightCUD with receiver operating characteristic curve and
precision-recall curves representing the results. Lines in each subplot with different colors
represent the model performance in one of the five-fold cross validations. As the training
sets were unbalanced, we reported both the AUC values and the AP values. The average
AUC and AP were labeled under corresponding curves.

performed better than the 16S-based modules (AUC = 0.968 and AP = 0.926 for health vs

IBD module, AUC = 0.965 and AP = 0.894 for UC vs CD module). For the current release,

we set default discrimination thresholds with regard to the sample proportion of training da-

ta. For health vs IBD cases, default thresholds were set as NIBD/(NIBD+NHealth) = 0.42,

wherein N represents the number of samples in corresponding class labeled with the sub-

scripts. Similarly, default thresholds were set as NCD/(NCD+NUC) = 0.14 for UC vs CD

cases. With the default thresholds, LightCUD reached high prediction accuracies during

five-fold cross validation, on the average, 92.3% for WGS-based health vs IBD module,

93.3% for WGS-based UC vs CD module, 88.5% for 16S-based health vs IBD module,

and 93.1% for 16S-based UC vs CD module. Herein, the accuracies were the proportion of

predicted labels that were exactly the same as the actual labels of samples.

In order to verify the generalization ability, we further conducted blind validation with
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an independent dataset with 185 samples including 16 healthy controls and 169 with CD

[16]. After removing low quality reads and human genome reads, we run LightCUD on the

sequences of each sample. The program returned a score indicating IBD probability. The

results showed that LightCUD maintained good performance (AUC = 0.809, AP = 0.971)

in discriminating healthy controls from IBD patients with CD. Further, LightCUD showed

76.9% accuracy when discriminating CD from UC.

4.3.2 The strains for WGS modules serving as biomarkers

The high performance of the strain-level WGS-based module convinced us that the 49

strains discriminating healthy controls from IBD patients and the 12 strains distinguish-

ing the specific type of IBD were clinically valuable. More details about these strains as

biomarkers are presented as follow.

The 49 strains selected for health vs IBD discrimination, and the 12 strains for UC

vs CD discrimination were completely different, as shown in Figure4.5c and Figure4.5d.

It should be noted that most of the selected disease sensitive strains were not dominant

members in the microbial community. In Figure4.5a and Figure4.5b, the features passing

the three-step selection process were sorted in a descending order according to feature

significance scores assigned during pre-training. The relative abundance of each feature

was randomly distributed. This observation excluded the possibility that the features we

finally selected were in extremely low abundances, also indicated that the features with

valuable discrimination ability are not necessarily dominant.

These strains serving as discriminative biomarkers would be valuable for the analysis of

IBD related intestinal microbial dysbiosis. We discussed some reported findings associated

with these biomarkers. Enterobacter cloacae, a clinically significant species, has been

reported to be enriched in the intestines of IBD patients[186]. As a member of this species,

in our study strain E. cloacae subsp. dissolvens SDM was significantly enriched in IBD

samples and very important for the health vs IBD discrimination (Figure4.5c). In addition,
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Figure 4.5: Features abundances in light of feature significance scores. Relative abun-
dances of features for the WGS-based health vs IBD module (a) and the UC vs CD module
(b). All the features that passed the three-step feature selection were shown in descending
order according to feature significance score. (c, d) Color bars show relative abundances
of features, scaled to 0-1 with the maximum value of all 30 (or 15) abundances values. In
(c), ‘*‘ indicates significantly higher abundances in IBD and ‘o‘ indicates the abundances
of strains significantly decreased in IBD (P¡0.01). In (d), ‘*‘ indicates significantly higher
abundances in CD and ‘o‘ indicates significantly higher abundances in UC (P¡0.01).

species Mycobacterium ulcerans has been reported to be the major cause of the skin disease

Buruli ulcer[187], herein the M. ulcerans str. Agy99 was enriched in IBD fecal samples and

exhibited quite high discrimination ability. Furthermore, species Burkholderia gladioli and

Ehrlichia canis have both been frequently reported as pathogens[188, 189], in this study the

B. gladioli str. BSR3 and E. canis str. Jake with high discrimination ability were enriched in

IBD samples. Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111 has been reported

to produce cellulases when provided with appropriate substrates, and the genome also has

sequences for six predicted cellulose degrading enzymes, which are necessary for digesting

fiber and cannot be produced within the body[190]. Cellulose has been proved effective for

colitis amelioration[191]. Our results revealed that this strain was quite important for UC

and CD discrimination, and was significantly depleted in CD samples compared with UC

samples.
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4.4 Discussion

In this study, we constructed a diagnostic tool, LightCUD, which can discriminate IBD

from healthy controls and further distinguish the specific type of IBD. The LightCUD pro-

gram performed well for both WGS and 16S sequencing data, AUC ¿ 0.95 and AP ¿ 0.89

for all four cases (WGS-based health vs IBD and UC vs CD, 16S-based health vs IBD and

UC vs CD) during five-fold cross validation. As the first released human gut microbiome-

based IBD diagnostic tool, LightCUD embodies discrimination modules constructed with

stool samples better than any other reported classifiers. Gevers et al. constructed a clas-

sifier to distinguish CD from healthy controls based on 199 stool samples with an AUC

of 0.66 [8]. Papa et al. performed an analysis of the 16S sequencing data from 91 stool

samples, and reached a discrimination accuracy with an AUC of 0.83[192]. For the current

study, LightCUD has only a single command line but provides a non-invasive mechanism

of distinguishing IBD from healthy controls based on stool samples. For either WGS or

16S data, LightCUD processes a sample in several hours, depending on the sequencing

depth. Parallel computation may further reduce the running time of prediction. With the

development and popularity of NGS, LightCUD highlights the potential of diagnostic tools

developed with machine learning algorithms based on the data of human gut microbiome.

It should be pointed out that the WGS-based module construction involved a well-

designed selection of features, which contributed to a set of highly representative features

(strains) of the microbial community and accelerated the computation. The analysis of

these selected features revealed the fact that highly discriminative features were not neces-

sarily to be dominant ones. In addition, these features/strains have been frequently reported

as IBD associated strains. These specific strains are valuable biomarkers in designing an-

imal models of IBD for human clinical trials to study the mechanisms of probiotics and

pathogens in ameliorating inflammation.

LightCUD may be subject to the available sample sets. For example, the model dis-
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tinguishing UC from CD performed inferiorly than the model distinguishing IBD from

healthy controls, because of the limited number of CD samples in our training set. Also,

LightCUD was subject to limited clinical trials. Therefore, even though LightCUD outper-

formed the other reported programs, further validation is essential before it can be used in

clinical diagnosis.
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CHAPTER 5

A DATABASE INTEGRATING DISEASE-RELATED MARKER GENES IN

HUMAN GUT MICROBIOME

5.1 Introduction

In the past decade, the correlation between gut flora and the pathological disorders of host

has become the hotspot of research, remarkably further driven by the launch of the Nation-

al Microbiome Initiative (NMI) in 2016. The clinical trials and animal experiments have

revealed that the alteration of the gut microbiota are closely associated with the happen of

diseases like type II diabetes (T2D)[32, 33], Crohn’s diseases (CD)[34], obesity[35], de-

pression[36] or colorectal cancer[37], illustrated by obvious changes in community struc-

ture and metabolic potential. For example, it has been proved that the relative portion of

Bacteroidetes decreased in obese people, while increased with weight loss on two types

of low-calorie diet[40]. Gut microbiota from inflammatory bowel disease (IBD) patients

were detected to produce significantly more short-chain fatty acids and ammonia than that

from healthy individuals[41]. Also, studies of depression have demonstrated the overrepre-

sentation of Bacteroidales and underrepresentation of Lachnospiraceae[42]. These studies

indicated that the gut flora are strongly associated with human health generically and bio-

chemically, therefore led to a stirring of interests of variation in the gut microbiota at both

species and gene level.

In regard to all this progress, the rapid development of metagenomics using next-

generation sequencing (NGS) has been playing an important role in understanding the

impact of gut microbial ecosystem on human disease. Through case-control metagenome-

wide association studies, the population structures of gut flora have been well studied.

IBD-affected individuals were reported to have 30-50% reduced biodiversity of gut mi-
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crobes[38]. Studies focusing on bacterial 16S rRNA gene phylotypes suggested significant

phylotype level alterations in the intestinal microbiota of irritable bowel syndrome (IB-

S) patients[36, 39]. However, 16S rRNA analyses have limitations on understanding the

microbial molecular-mechanisms. Thus the whole-genome sequencing (WGS) has been

widely used to investigate host microbial metabolic potentials. An obesity-related study

demonstrated that the obesity-associated signals originating from the host gut microbiome

may be much stronger than that of presently known host genome[35]. A T2D-related study

showed that the T2D-enriched microbial markers involve membrane transport of sugars,

branched-chain amino acid transport, methane metabolism, xenobiotics degradation and

metabolism, and sulphate reduction[33]. It is also documented that from the point of gut

flora, liver-cirrhosis was associated with assimilation or dissimilation of nitrate to or from

ammonia, GABA (c amino butyric acid) biosynthesis, denitrification, GABA shunt, phos-

phor transferase systems, haem biosynthesis and some types of membrane transport, such

as amino-acid transport[43]. These pathogenic studies of gut microbiome have exhibited a

lot of disease-related genes and metabolic pathways of gut flora involved in those kinds of

known human diseases. For instance, 15,894 genes were indicated as the significantly dif-

ferent genes, they may not only be applied to an efficient discrimination of lean and obese

individuals, but also characterize human gut flora by gene functionary level for obesity-

related metabolic disorders[35]. For gut microbial species associated with liver cirrhosis,

there were 75,245 genes identified to reveal the difference between patients with liver cir-

rhosis and health controls[43]. Since these disease-related genes are disease specific and

population specific, it should be expected that more batches of such genes related with hu-

man diseases will be found in gut microbiome with the expanding of human microbiome

projects.

Although some a set of microbial genes may be recognized as those associated with

a specific disease, we probably just see the forest for the trees without a common set of

microbial genes related to human health and diseases in general terms. People constructed
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such as the IGC database, an integrated gene catalogue of intestinal microbiome, however

it is not associated with specific pathogenicity and host health[66]. Therefore, an integrated

general knowledge of these microbial genes certainly facilitate understanding the correla-

tion between gut flora and human health and disease, as well as the mechanisms of how gut

flora contributes to disease process. However, at present large amounts of metagenomic

data by current studies widely scatter at the public databases GenBank[95] and EMBL[96],

leading to the difficulty in information integration and utilization, as well as to a provisional

knowledge with fragmentary evidence.

Herein we constructed a comprehensive database, named DREEM, of Disease-RElatEd

Marker genes in human gut microbiome, which have retrieved a large scale of WGS data

of human gut metagenomes in DREEM, covering six types of pathological conditions, i.e.,

T2D, CD, ulcerative colitis (UC), liver cirrhosis, symptomatic atherosclerosis and obesi-

ty. The short reads with the size of 18.63T consisting of 1,729 samples were processed

with a standard procedure, involving the state-of-the-art bioinformatics tools and statisti-

cal analysis. Then we picked out 1,953,046 non-redundant DREEM genes. The DREEM

genes specific to a certain disease were also stored as an individual gene set with respect

to six diseases considered in the current program. Furthermore, we provided a set of Core-

DREEM genes, which are shared among the samples of five metabolic syndrome related

co-morbidities: T2D, CD, UC, liver cirrhosis and obesity. All DREEM genes were an-

alyzed for taxonomic classification and functional annotation. Serving as the integration

of gut microbial pathogenic gene catalogues, as a result, DREEM could be employed to

detect functional and metabolic disturbance of host gut microbiomes, thus may provide

brand-new strategies for host disease diagnosis and facilitate studies on human gut flora.
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5.2 Data and methods

5.2.1 Data source

The data in DREEM were collected from seven studies[33, 32, 43, 35, 78, 79, 80] currently

with all WGS metagenomics data publicly available, which include samples with six dis-

eases (T2D, obesity, CD, UC, liver cirrhosis, symptomatic atherosclerosis, Table 5.1) and

their corresponding control groups. We collected 18.63T paired-end short read sequences

of 1,729 samples from GenBank and EMBL (Table 5.2).

Table 5.1: Original publications of samples
Diseases Major References

T2D [1]Qin, J., et al. (2012). Nature, 490(7418): 55-60.
T2D [2]Karlsson F.H., et al. (2013). Nature, 498(7452): 99-103.
CD, UC and Obesity [3]Nielsen H.B., et al. (2014). Nature biotechnology, 32(8): 822-828.
CD [4]Lewis, J.D., et al. (2015). Cell Host & Microbe, 18(4): p. 489-500.
Obesity [5]Le Chatelier, E., et al.Nature, 2013. 500(7464): p. 541-546.
Liver Cirrhosis [6]Qin N.,et al. (2014). Nature, 50(2):311-317.
Symptomatic Atherosclerosis [7]Karlsson F.H., et al. (2012). Nature communications, 3: 1245.

Table 5.2: Detailed information of samples and DREEM genes
Disease Type Soure Paper Sample NUM Control Patients Num of DREEM Genes

T2D
[1] 352 173 179

331,420[2] 96 43 53

CD
[3] 223 201 21

660,972[4] 369 26 343

UC [3] 328 201 127 748,605

Obesity
[3] 274 163 111

469,580[5] 265 96 169

LC [6] 237 114 123 355,170

Atheor [7] 27 15 12 21,730
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5.2.2 Data processing

All the WGS sequencing data were retrieved and processed in a standard workflow shown

in Figure 5.1. We now describe in detail the steps of data processing as follows.

Short reads assembly and gene annotation

With the original short reads assembled into contigs by InteMAP, an integrated metage-

nomic assembly pipeline designed for NGS short reads[183], genes were then annotated by

two metagenomic gene predictors, MetaGeneMark[193], MetaGUN/MetaTISA[194, 103],

with the strategy that genes detected by the two tools were combined to include more pro-

tein coding genes. Short reads with low quality and contigs with low sequencing depth

were strained off for the validity of further analysis.

Significant genes identification and their validation

The annotated genes from each of the seven studies[33, 32, 43, 35, 78, 79, 80] were first

respectively clustered by CD-HIT[104], a standardized and ultra-fast clustering algorith-

m used to merge similar gene sequences, and seven sets of non-redundant genes select-

ed by CD-HIT were then obtained. Furthermore, implemented via the alignment tool

bowtie2[195], the occurrence of each non-redundant gene was calculated by the number

of mapped reads. The occurrences of genes then resulted in an abundance matrix, serving

for further calculation of significant difference. Here Wilcoxon rank sum test is applied.

As a nonparametric test approach, it found out genes with significantly different distribu-

tion between two sample groups using magnitude-based ranks. If the ranks of the two

sample groups are significantly separated, then the statistic test identifies significant dif-

ference[196]. In this paper, the genes with significantly higher frequencies (P < 0.05 in

Wilcoxon rank-sum test, which is a widely accepted significant level) in disease group than

in healthy control group were picked out as the significant genes.

To show the stability of significant genes identified with respect to the sample size of
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Figure 5.1: Data processing workflow. All the WGS data downloaded from GenBank or
EMBL are processed in this standard procedure. Original WGS data are assembled into
contigs by InteMAP, from which genes were further predicted by MetaGUN and MetaTIS-
D. Gene sequences were clustered with CD-HIT (sequence identity threshold set at 90%) to
generate presentative sequences. In the unit of publication, Significant genes were selected
after W-rank sum test (P < 0.05). Finally, all significant genes were clustered again to
reduce redundancy and generate the final DREEM genes.
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Figure 5.2: Rarefaction curves of the number of significant genes as a function of the num-
ber of samples from each publication. The number of samples and significant genes were
both normalized by their maximum value to fit to one graph. All the AUC values exceed-
ed 0.85, which indicated that the sample number is sufficient for almost all the potential
significant genes related to the six types of diseases.

seven studies used by us, we also conducted a saturation evaluation for each of seven sets

of significant genes (Figure 5.2). The number of significant genes is a function of sample

numbers. Since all the AUC (area under the receiver operating characteristic curve, see

details in Table 5.3) values achieved greater than 0.85, which is large enough to confirm

that we effectively identified almost all the genes significantly related to the relevant six

diseases.
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Table 5.3: AUC of rarefaction curves of number of significant genes as function of sample
numbers

AUC Lower Boundary Upper Boundary

Samples from Ref. 1 0.9773 0.9678 0.9838
Samples from Ref. 2 0.9518 0.9203 0.9715
Samples from Ref. 3 0.9096 0.8865 0.9312
Samples from Ref. 4 0.9851 0.9749 0.9909
Samples from Ref. 5 0.9811 0.9747 0.9856
Samples from Ref. 6 0.9742 0.9561 0.9854
Samples from Ref. 7 0.8601 0.7054 0.9401

DREEM genes and their functional annotation

Considering all the seven sets of significant genes mentioned above as a whole, we then

integrated the data sets and clustered them with CD-HIT[104] again to further reduce the re-

dundancy. Thus, we retrieved the final representative genes as the DREEM genes (Disease-

RElatEd Marker genes) set. A total of 1,953,046 DREEM genes were collected as the final

set, which covers the six diseases, and 58.9% of which are complete (with 5’ end and 3’

end) coding gene sequences.

Gene function prediction was further performed for all the DREEM genes via BLAST[197]

against the COG database[198] (e-value≤ 10−5).

5.3 Results

5.3.1 Data organization and statistics

As mentioned above, a total of 1,953,046 DREEM genes was collected for the DREEM

dataset. Furthermore, they were classified into six groups as DREEM T2D, DREEM Obesity,

DREEM Crohn, DREEM UC, DREEM LC, and DREEM Athero, corresponding to each

disease. Different diseases (e.g., T2D and liver cirrhosis, liver cirrhosis and IBD, IBD and

T2D) show a relatively unique profile, though many DREEM genes were shared among

them. Venn diagram was drawn to show overlaps among the five sets of DREEM genes, i.e.,
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DREEM T2D, DREEM Obesity, DREEM Crohn, DREEM UC and DREEM LC (Figure

5.3, Table 5.4). The gene set DREEM Athero was not included owing to there was less

correlation of Atherosclerosis with gut microbial community, compared to the other five

types of diseases, indicated by the extremly small number of DREEM genes in the data

set of DREEM Athero. Herein, 5,100 DREEM genes were found shared by the five type-

s of diseases, and were designated as the Core-DREEM genes. For public releasement,

the sequences in the set of Core-DREEM genes were uniformly renumbered (see detailed

information on the database website).

We applied PhymmBL[185] to taxonomically classify the DREEM genes, 75% of

which were assigned into 14 phylums and 581 species. Overall, for both the DREEM genes

and the Core-DREEM genes, the dorminant phylums are Proteobacteria, Firmicutes and

Bacteroidetes, and the most abundant species are Coprococcus catus GD/H7, Bacteroides

fragilis NCTC9343, Bacillus thuringiensis YBT1518, Clostridium perfringens str.13 (de-

tails are illustrated on the DREEM database website, Table 5.5, Figure 5.4 and Figure 5.5).

Table 5.5: Number of core DREEM genes assigned to each

species (only numbers > 20 were shown)

Species NUM

Coprococcus catus GDSLASH7 835

Bacteroides fragilis NCTC 9343 435

Bacillus thuringiensis YBT-1518 198

Clostridium perfringens str. 13 118

Desulfomicrobium baculatum DSM 4028 112

Marinobacter hydrocarbonoclasticus ATCC 49840 97

Eggerthella sp. YY7918 79

Cronobacter sakazakii SP291 75

Bifidobacterium adolescentis ATCC 15703 70
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Table 5.5 continued

Desulfatibacillum alkenivorans AK-01 55

Escherichia coli O7COLONCOLONK1 str. CE10 55

Enterobacter cloacae subsp. cloacae ENHKU01 51

Treponema azotonutricium ZAS-9 51

Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 50

Carnobacterium sp. 17-4 49

Desulfobulbus propionicus DSM 2032 49

Ilyobacter polytropus DSM 2926 45

Lactococcus lactis subsp. cremoris A76 44

Yersinia pestis D182038 40

Escherichia coli O83COLONCOLONH1 str. NRG 857C 37

Rhizobium leguminosarum bv. viciae 3841 37

Nitrosococcus watsonii C-113 36

Desulfosporosinus orientis DSM 765 34

Pandoraea sp. RB-44 34

Salmonella enterica subsp. enterica serovar Choleraesuis str. SC-B67 34

Escherichia coli 042 33

Herbaspirillum seropedicae SmR1 32

Buchnera aphidicola str. Ak LPARENAcyrthosiphon kondoiRPAREN 31

Thermaerobacter marianensis DSM 12885 31

Acidovorax avenae subsp. avenae ATCC 19860 29

Flavobacterium indicum GPTSA100-9 = DSM 17447 29

Streptococcus agalactiae A909 29

Streptococcus agalactiae NEM316 29

Candidatus Nitrospira defluvii 28

Streptococcus suis GZ1 28

114



Table 5.5 continued

Azospirillum brasilense Sp245 27

Streptococcus pneumoniae gamPNI0373 25

Bartonella clarridgeiae 73 24

Methanocella arvoryzae MRE50 24

Nitrosomonas sp. AL212 24

Thermoplasma acidophilum DSM 1728 24

Dickeya dadantii 3937 23

Pseudomonas putida NBRC 14164 23

Bacillus cereus B4264 22

Burkholderia sp. YI23 22

Hyphomonas neptunium ATCC 15444 22

Solibacillus silvestris StLB046 21

Furthermore, most of the DREEM genes were functionally classified into three main

categories, i.e., metabolism, cellular processes and cell signaling. For Core-DREEM genes,

4,805 genes out of 5,100 were conferred with certain functions, among which about 41.1%

were responsible for metabolism, while 27.8% for information storage and procession, and

23.1% for cellular processes and cell signaling (Table 5.6, Figure 5.6 and Figure 5.7). Inten-

sively involved pathways include integrase, type IV secretory pathway, site-specific DNA

recombinase related to the DNA invertase Pin, DNA-binding response regulator and ABC-

type multidrug transport system, ATPase components of ABC transporters with duplicated

ATPase domains, Na+-driven multidrug efflux pump, etc.
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Table 5.4: Number of DREEM genes shared by different data sets
Data Sets Number of Genes

T 156556
C 349320
L 212567
O 342846
U 445936
TC 19110
TL 13417
CL 29053
TO 15184
CO 23420
LO 9908
TU 27480
CU 118282
LU 12270
OU 27143
TCL 9757
TCO 5204
TLO 2781
CLO 2746
TCU 28692
TLU 6694
CLU 18704
TOU 4975
COU 13204
LOU 2062
TCLO 1444
TCOU 9397
TLOU 1128
CLOU 3038
TCLU 24501
TCLOU 5100
Total 1941919
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Figure 5.3: Statistics indicating the number of DREEM genes shared by different data sets.
U, C, O, L and T stand for data set of DREEM UC genes, DREEM Crohn genes, DREEM
Obesity genes, DREEM LC genes and DREEM T2D genes respectively. There are 5,100
Core-DREEM genes, which are shared by other five data sets. Most DREEM genes are
unique to one data set. Nevertheless, DREEM UC and DREEM Crohn share the largest
number of genes compared with other pairs of data sets, indicating a stronge correlation
between the two types of IBD.
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Figure 5.4: Taxonomic annotation of all the DREEM genes at phylum level.
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Figure 5.5: Taxonomic annotation of the core DREEM genes at phylum level.
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Figure 5.6: Functional annotation of all the DREEM genes via BLAST against COG
database (evalue ≤ 10−5).
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Figure 5.7: Functional annotation of the core DREEM genes
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Table 5.6: Number of core DREEM genes assigned to different COGs
COG category Number

Information storage and procession JAKLB 1337

J 674
A 0
K 256
L 406
B 1

Cellular processes and signaling cellular DYVTMNZWUOX 1108

D 82
Y 0
V 147
T 175
M 243
N 22
Z 0
W 0
U 156
O 193
X 90

Metabolism CGEFHIPQ 1974

C 322
G 498
E 459
F 219
H 149
I 131
P 176
Q 20

Poorly characterized RS 386

R 266
S 120

Total 4805
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5.3.2 Web interface of DREEM

We designed a downloading webpage (http://cqb.pku.edu.cn/ZhuLab/ DREEM/) to allow

users to download all the datasets described above. Every gene ID was designed as seri-

al number in the DREEM database, followed by its raw data source information, linked

disease categories, integrity description, taxonomic and functional annotation. For those

complete genes with complete 3’ end and 5’ end, length information was also stored in

IDs. Every entry in the DREEM dataset is constituted by a gene ID followed by nucleotide

sequence. There are eight sets in total on our webpage, one set of all the DREEM genes,

six sets of six types of diseases separately, and one set of the Core-DREEM genes. On

the search page, one may search for interesting items of the Core-DREEM genes. On each

item of search result, apart from taxonomic and functional annotation information, linkage

to NCBI is also available for further investigation.

5.4 Discussion

With numerous metagenomic data, there are continuous publications focusing on the im-

pact of gut microbiome on host diseases, from which more and more important disease-

related genes and pathways have been discovered. To integrate these genes, DREEM was

set up from 18.63T paired-end short reads of 1,729 human gut microbiota samples, and

1,953,046 DREEM genes were constructed through a well-designed procedure. As the

first database concentrating the disease-related genes of human gut microbiome, DREEM

compiled multiple sets of high-throughput sequencing data of disease-related metagenomic

studies including six diseases. Furthermore, the saturation evaluation (as shown in Figure

5.2) for each set of significant genes suggests that the sample size is enough to cover almost

all the potential DREEM genes. Another merit of DREEM is the identification of the Core-

DREEM genes, which are released as an important set on the webpage. Clearly, based

on the DREEM database, the road to an integrated general knowledge may be paved with
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understanding the consistency of host intestinal microbial pathophysiological mechanisms

in various diseases. Also, our understanding of the impact of gut flora on human health and

disease is therefore expected to be widening and deepening.

What merits attention is the distribution of Core-DREEM gene numbers among vari-

ous diseases (see Figure 5.3). Large amounts of the unique DREEM genes in CD or UC

suggest that these two types of IBDs are quite different diseases. However, they share the

most abundant markers (118,282 genes) compared with other pairs of diseases, indicating

the strong correlation between these two types of IBDs. Moreover, the fact that CD shares

more genes with liver cirrhosis than UC does is consistent with the fact that CD can affect

any part of the gastrointestinal tract, while UC is restricted to the mucosa[199], as the al-

terations in composition of gut microbiota, mucosal and systemic immunity, and increase

in small intestine bacterial and permeability of small bowel are all potential mechanisms of

gut-liver interaction[200]. Considering the awkward situation that the accurate diagnosis

of CD and UC is still a challenge[201], these DREEM genes would be valuable for es-

tablishing reliable biomarkers for the early and better diagnosis and prognosis of various

IBDs. Furthermore, those shared marker genes between obesity and other diseases may

help resolve the mechanism how obesity influences other relevant diseases.

Annotation of the DREEM genes provides a picture for the universally microbial taxo-

nomic distribution and metabolic genes involved in the six types of diseases. For instance,

the taxonomic classification clearly indicates that the millions of DREEM genes fall in only

581 species, and the most abundant species is Coprococcus catus, which has been reported

significantly associated with obesity[202]. Another relative abundant species Clostridium

perfringens has been reported to cause life-threatening gas gangrene and mild enterotox-

aemia in human[203]. At phylum level, Proteobacteria are the largest subgroup, which

take part 43.0% of all the DREEM genes. This finding emphasizes the medical importance

of various members of Proteobacteria in human gastrointestinal disease, which has been

well documented[204]. Meanwhile, functional annotation of the Core-DREEM genes find-
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s that 104 (2.0%) out of 5,100 tend to gather in type IV systems (COG3451, COG3505 and

COG3843 with 5,665 COGs as reference), paralleling previous studies which suggested

that the protein substrates of type IV systems are important for the virulence of bacterial

pathogens[205]. This result indicates that the overexpression of genes involved in this path-

way is significantly correlated with multiple diseases. However, only 1,241,386 (63.6%)

out of 1,953,046 DREEM genes are annotated with certain functions. The other 36.4%

DREEM genes remains functionally unknown, which supplies a reliable reference for fur-

ther experiment design to replenish the database of disease-related bacterial pathogens.

As the first released database focusing on the disease-related genes of human gut micro-

biome, DREEM provides wide and deep vision into the microbial genetic diversity related

to relevant human diseases. We hope that DREEM could serve as a reference catalogue

for future studies of pathophysiological role of gut microbiomes in human health. More-

over, we expect that, based on intestinal microbiota and with the help of the DREEM

database, the new diagnostic and therapeutic strategies of host disease could be invented.

The Core-DREEM genes have shown potential usefulness of designing microbiota-targeted

biomarkers, which may be a powerful tool for disease detection and treatment.

Nevertheless, the increasing expansion of related projects will be expected to improve

our capacity in the future, to compile the latest sequenced samples of more relevant human

diseases, such as depression, IBS and so on. We will keep updating so that the database

stays current as new disease-related gut metagenomic study published. We plan to evolve

DREEM by adding significant functionality. One valuable direction of ongoing develop-

ment is to establish disease prediction models to help identify relevant diseases based on the

DREEM genes. As DREEM supplies references for designing animal experiment model

to explore whether these effects interact in ways that influence outcome, drug targets may

also be recommended over time. To sum up, we believe that the resource built by DREEM

will expand to well meet the further requirements of the research community for human

gut microbiomes.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

Focusing on human gut microbiota, this research work covered the most advanced aspects

about the metagenomic data analysis of human gut microbiota, and explored the possibility

of putting the findings about disease-related human microbiota into application.

In Chapter 2 of this dissertation, we pre-processed and carried out a uniform anno-

tation of the raw data of human gut microbiota from hosts suffering various diseases by

applying the state-of-the-art bioinformatics tools. For systematic analysis, a novel binning

unit was defined, functional taxonomic unit. With the annotation result, we answered the

question of how the ecological niches of gut microbiota correlate with the host health in

every step of a well-designed meta-analysis, covering all the four aspects , i.e. taxonom-

ic composition, functional carriage of these microbes, taxonomic co-occurrence network

and also functional gene-gene interaction network. Universal taxonomic and functional

biomarkers were identified. Interesting finding from the gene-gene interaction network and

significantly alteration of taxonomic network patterns indicated that the gut microbiota in-

side human gut aggregate a ‘super organism’ and influence the host health in a community

manner. In summary, taxonomic composition, microbial functions, microbial correlations

and the interactions of microbial functions are four indispensable components for char-

acterizing microbial community, which should be the comprehensive way for defining a

pan-microbiome. This literal definition of pan-microbiome provides a practical framework

for designing future research works.

In Chapter 3 of this dissertation, we proved the existence of an aging progression of

human gut microbiota by applying unsupervised machine learning approaches on metage-
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nomics data. We applied an unsupervised machine learning approach SPD on genera abun-

dance profile of human gut microbiota quantified by 16S rRNA sequencing data. Without

using the age information of the samples, SPD sorted sample groups on a minimal span-

ning tree that recapitulated the aging progression. This result indicated the existence of an

aging progression reflected in the human gut microbiota. In the meantime, we found 35

genera associated with this age-related progression. Some of these genera were not identi-

fied using the commonly-used statistical approaches for metagenomics analysis. Literature

review of these 35 genera led to a lot of evidences of the functional relevance of these gen-

era. The evidences collectively indicated an age-related decline of the beneficial functions

of gut microbiota, as well as increase of inflammation and diseases, especially for the el-

derly people older than 90s. This is the first study characterizing the human gut microbiota

in a trajectory manner, which sheds light on the possibility of exploring diverse approaches

for conducting metagenomics analysis.

In Chapter 4 of this dissertation, we further explored to develop a machine-learning

based tool LightCUD in Chapter 4, which was designed to assist the diagnosis of IBD based

on human gut microbiome. The well-designed feature selection steps and comparison of

different machine learning algorithms contributed to a high-performance tool. Regarding

the high-speed development and popularity of NGS, LightCUD highlights the potential of

diagnostic tools developed with machine learning algorithms based on the data of human

gut microbiome.

In Chapter 5 of this dissertation, we released the first database integrating disease-

related genes of human gut microbiota, named DREEM, which provides a clue and data

resources for those studies about disease-related changes of gut microbiota.
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6.2 Future plan

6.2.1 Interplay between host genome and microbiome

It is clear that the gut microbiota and the host form a closely cross-talked symbiot. It has

been proved that both of the taxonomic composition and functional carriage of gut mi-

crobiota are correlated with the host metabolites[206]. With 16S rDNA sequencing data

of the gut microbiota, it will be possible to characterize the taxonomic composition and

community assembly of the microbiota. With whole genome sequencing data, additional

information about functional carriage of the microbiota will be available, also finer anno-

tation of the taxonomic information. From the host side, with metabolomics, the faecal

or blood metabolites could be quantified. With proteomics, it is possible to quantify the

expression levels of thousands of proteins for the certain tissue part. With genomics (bulk

or single cell RNA sequencing), the expression level of tens of thousands of genes could

be revealed. The marriage of the host metabolites/proteome/gene expression and the fully

characterization of the gut microbiota will definitely contribute to series of interesting find-

ings, which will advance our understanding about how the gut microbiota are correlated

with the host metabolism.

6.2.2 Detection of microbial association networks in human gut microbiota

As pointed out in Chapter 2, the community structure matters more than individual mi-

crobes when characterizing different gut microbial ecosystem. By far, most of the pub-

lished works tried to reveal microbial assembly rules using cross-sample variation. The

variation of different host conditions could confound the findings and lead to false con-

clusions. So, a well-designed long-term monitoring of host and collecting stool samples

at different time points will definitely contribute to a better set of samples for doing cor-

relation analysis to reveal the real community assembly rules of the gut microbiota.Also

the methods for revealing the correlation between different microbial compositions is lim-
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ited. Exploring new methods for computing the correlation and discovering solid microbial

communities is also in an urgent call.

6.2.3 Human gut microbiota aging clocks based on machine learning algorithms

We have tried to develop the machine learning tools LightCUD (Chapter 4) based on human

gut microbiota for assisting disease diagnosis. Also, we have proved the existence of an

aging progression of human gut microbiota (Chapter 3). The next plan for continuing this

dissertation is to develop a human gut microbiota aging clocks based on machine learning

algorithms, which could predict the ages of one’s gut microbiota and also assisting the

designing of microbiome-targeted therapeutic strategies to prevent aging.
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