
CACEE: CONTEXT AWARE CONCOLIC EXECUTION ENGINE FOR
MALWARE ANALYSIS

A Thesis
Presented to

The Academic Faculty

By

Samuel Lovejoy

In Partial Fulfillment
of the Requirements for the Degree

Masters of Science in Electrical and Computer Engineering
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2021

© Samuel Lovejoy 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/478867883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CACEE: CONTEXT AWARE CONCOLIC EXECUTION ENGINE FOR
MALWARE ANALYSIS

Thesis committee:

Prof. Brendan Saltaformaggio, Advisor
School of Computer Engineering
Georgia Institute of Technology

Prof. Frank Li
School of Computer Engineering
Georgia Institute of Technology

Mr. Chris M Roberts
CIPHER Lab
Georgia Tech Research Institute

Date approved: April 30, 2021

ACKNOWLEDGMENTS

I would first like to thank Prof. Brendan Saltaformaggio who heads the Cyber Forensics

Innovation Laboratory at Georgia Tech. Without his help, I am quite confident that I would

be stuck in a ”dead field” and have never discovered a passion for computer security. In

addition, much thanks is owed to Mingxuan Yao, Ranjita Pai Kasturi, and Jon Fuller, the

infallible charismatic trio of PhD students who kept my spirits up through weeks or even

months of slow progress.

Next, much credit is owed to my family, who not only let me move back home in light

of the coronavirus pandemic but also supported my education at every turn. Rachel Parent,

who took care of me for such a long time and whom I call far too little. My friends, both

here in Atlanta and back in Maine, you all are fantastic and while our paths are sure to split

ways, I do wish you the absolute best.

Lastly, credit is due to Sandia National Laboratory, whose funding has sponsored this

research. Years of work and experience are reflected in this document; it feels as though

an entire four year college experience has been summed up in less than fifty pages. I am

grateful for such a wonderful college experience at Georgia Tech, and doubly grateful for

all the extraordinarily talented people I have met while here. See you all soon again.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

Summary . x

Chapter 1: Introduction . 1

Chapter 2: Background . 3

2.1 Static Analysis . 3

2.1.1 Overview . 3

2.1.2 Control flow . 3

2.1.3 Static Analysis Deterrents . 4

2.2 Concrete Analysis . 5

2.2.1 Overview . 5

2.2.2 Data Dependence . 5

2.2.3 Concrete Analysis Deterrents . 5

2.3 Concolic Analysis . 7

2.3.1 Overview . 7

iv

2.3.2 Function Modeling . 7

2.4 Web APIs . 8

2.4.1 Web API Components . 8

2.4.2 API Keys . 9

Chapter 3: Design . 10

3.1 Dataset . 10

3.1.1 Dataset . 10

3.1.2 Dataset Restrictions . 10

3.2 Code Coverage . 11

3.2.1 Targeting . 11

3.2.2 Greedy Exploration . 11

3.2.3 Branch Prediction . 12

3.2.4 Rewinding . 13

3.3 Data Modeling . 13

3.3.1 Instruction Modeling . 13

3.3.2 Function Modeling . 14

3.4 Web Profiling . 14

3.4.1 Authentication Mechanisms . 15

3.4.2 Packet Reconstruction . 15

3.5 Rules . 16

3.5.1 Library Call Context . 16

3.5.2 Rule structure . 17

v

3.5.3 Rule methods . 17

3.5.4 Redundant Functions . 18

Chapter 4: Implementation . 19

4.1 Environment . 19

4.1.1 Analysis Environment . 19

4.1.2 Repositories . 19

4.2 Choice of Tooling . 19

4.2.1 QEMU & KVM . 19

4.2.2 PIN . 20

4.2.3 Triton . 21

4.2.4 Python . 22

4.2.5 Z3 . 22

4.2.6 Other Tools . 22

4.3 Expanding the Triton Dynamic Analysis Framework 22

4.3.1 Exposing Additional Bindings to Python 23

4.3.2 Adding Support for Symbolic Pointers 23

4.3.3 Adding Support for Loaded Symbols 24

4.4 Creating Dataset Rules . 24

4.4.1 Service Rule . 25

4.4.2 API Key Rule . 26

4.4.3 Downloader Rule . 28

4.4.4 Dropper Rule . 28

vi

4.4.5 Exfiltrator Rule . 29

Chapter 5: Evaluation . 31

5.1 Vidar Case Study . 31

5.1.1 Vidar Summary . 31

5.1.2 Web Profile for IP API . 32

5.1.3 Analysis on Vidar . 32

5.2 LOWBALL Case Study . 34

5.2.1 LOWBALL Summary . 34

5.2.2 Web Profile for Dropbox . 35

5.2.3 Analysis on LOWBALL . 35

5.3 Vflooder Case Study . 36

5.3.1 Vflooder Summary . 36

5.3.2 Web Profile for VirusTotal . 37

5.3.3 Web Profile for Twitter . 37

5.3.4 Analysis of Vflooder . 37

5.4 Findings . 38

Chapter 6: Conclusion . 39

6.1 Related Works . 39

6.2 Limitations . 39

6.3 Conclusion . 40

References . 42

vii

LIST OF TABLES

2.1 A non-exhaustive list of static analysis deterrents. 4

2.2 A non-exhaustive list of concrete analysis deterrents. 6

3.1 Unhandled corner cases for the system design. 11

3.2 The function model for the function WinHttpReadData. 14

3.3 The four authentication and authorization schema. 15

3.4 The elements that make up library call node. 16

4.1 Rules for modeling behaviors within the cloud-abusing malware dataset. . . 24

5.1 CACEE analysis for web rules on three case studies. 38

5.2 CACEE analysis for behavior rules on three case studies. 38

viii

LIST OF FIGURES

2.1 An example of a basic block with its respective defuse chain. 6

2.2 A sample API request to the OMDB API with JSON response. 8

3.1 An artificial control flow graph demonstrating greedy exploration. 12

3.2 A sequence of three API calls that indicate downloading and executing a file. 17

4.1 The code for a HTTP GET request using WinINet and the resulting packet. . 27

5.1 Decompiled code from the Vidar malware simplified for readability. 33

ix

SUMMARY

An emerging pattern in malware is the use of public web services for command and

control (C&C) infrastructure. This new trend, combined with the short lifespan of malware

in the wild, makes extracting behaviors from malware in an automated fashion a difficult

problem. The Context-Aware Concolic Execution Engine (CACEE) is a tool designed to

recreate the original execution context, forcing Windows 32-bit malware to execute their

payloads as if they were still operational. CACEE monitors the flow of data as the payload

executes, and uses this information to synthesize the behaviors the malware exhibits. Three

malware case studies that abuse public web services are analyzed with CACEE, and the

results are compared against manual reverse engineering.

x

CHAPTER 1

INTRODUCTION

The lifespan of malware in the wild is typically very short, normally lasting only a few

days before an updated version is released or activity stops altogether [1]. After this nar-

row timing window has expired, it is difficult for automated tools to analyze the payload of

the malware. Trigger conditions, such as temporarily registered domain names, stop func-

tioning. As a result the malware does not execute its payload and now security analysts

must manually reverse engineer the malware in order to ascertain any malicious behaviors.

This already tedious process is often made worse by the fact that malware authors in-

corporate numerous tricks in order to deter security researchers from investigating their

malware. The tricks, collectively called anti-reverse engineering (anti-RE) techniques, also

prevent a wide array of existing tools from functioning properly. Security researchers will

update their tools or develop new tools to combat anti-RE techniques. Malware authors

then respond by further obfuscating their malware, inventing new tricks and trends to halt

the efforts of security researchers. New tooling must be able to handle current trends in

anti-RE techniques in order to generalize well.

One staple of malware is the use command and control (C&C) infrastructure [2]. C&C

servers are used by malware authors to control infected machines. They are most often tied

to domains, and as a result a staple of cyber defense has been to use the plaintext domain

name service (DNS) to analyze network traffic and blacklist domains if they are flagged

as malicious. Historically, malware authors may employ a domain generation algorithm,

which procedurally generates new domains and sends them out to infected hosts as old

ones are blacklisted [3, 4]. A new trend in malware is to use public web services as C&C

infrastructure.

Public web services, such as Dropbox and Google Drive, offer enormous utility to the

1

general public, including malware authors. Because of their reputation and popularity, net-

work administrators cannot blacklist these highly trafficked websites. While most cloud

services implement automatic scanning for malware samples, malicious actors implement

many workarounds for this, some as simple as just uploading shell commands or partition-

ing files [5]. Malware abuse public web services for network discovery, anti-RE techniques,

botnet management, and even reverse shells [6].

An analysis of web service abusing malware could provide insights on how to create

the next generation of cyber defense. Existing network-oriented systems such as intrusion

detection systems rely on network signatures to proactively secure networks [7], which

can be circumvented by utilizing public web services. With a large-scale analysis of web

service abusing malware, new signatures could be generated for host-oriented systems.

In addition, service providers can potentially take action against malicious API keys or

accounts associated with malicious activity.

With such a short time window to collect very elusive samples, a novel system is pro-

posed to recreate the context that the malware originally used for its payloads when it was

first encountered in the wild. This system is to be driven by concolic execution. Concolic

execution is a technique that involves executing the malware and exploring now unreach-

able code sections— analyzing malware as if it were a code coverage problem.

To this extent, we propose the Context-Aware Concolic Execution Engine (CACEE).

A tool designed to solve past the trigger conditions present in public web service abusing

malware. Beyond this, CACEE aims to analyze each payload of a given web abusing

malware, and tag samples with abstract behaviors in an automated fashion. CACEE can

then categorize samples based on behaviors on datasets consisting of no longer operational

malware.

2

CHAPTER 2

BACKGROUND

2.1 Static Analysis

2.1.1 Overview

Static Analysis is the practice of analyzing the bytes of an executable. In practice, this is

done by analyzing the disassembly. Most modern Windows PE32 malware are compiled

through the Microsoft Visual C++ Compiler (MSVC) or through Microsoft .NET [1]. One

of the most important parts of static analysis is symbol identification. There are two types

of symbols used by binaries— dynamic symbols and debugging symbols. The linker uses

dynamic symbols to load in library functions into memory then store their pointers in the

global offset table. Debugging symbols, on the other hand, are optional symbols used to

convey excess information when debugging a program. In practice, only dynamic symbols

are used for malware analysis since the malware author will omit debugging symbols. In

the context of malware analysis, static analysis is very fast but lacks the accuracy compared

to concrete analysis.

2.1.2 Control flow

One of the main incentives for using static analysis is to ascertain control flow. In the x86

architecture, there are four assembly instructions that can impart changes to control flow,

since the instruction pointer is not directly writable [8]. These four instructions are jumps,

calls, repeats, and returns. When constructing a control flow graph— a jump indicates a

potential fork in control flow— a branch. The destination of a call instruction marks the

start of a function. On the other hand, a return instruction marks the end of a function (note

that a function may only have one start but may multiple ways to exit). Repeat instructions

3

Table 2.1: A non-exhaustive list of static analysis deterrents.

Technique Summary
File Compression The executable decompresses itself as it runs.
Runtime Encryption The malware decrypts its own code as it runs.
Dynamic Memory The malware tracks most or all of its data on the heap.
Missing Code The payload is hidden in other locations (files, internet, etc).
Static linking Statically linked library code removes symbol information.
Segment Manipulation Section header properties are manipulated at runtime.
String Obfuscation String constants are decoded during execution.
Self-Modifying Code The malware modifies its own code during execution.
Garbage Data The malware fills itself with red herring bytes.

do alter control flow, but will eventually proceed into the next instruction, so do not affect

the control flow graph. Any set of sequential instructions with no breaks in control flow is

called a basic block.

Dynamic symbols play an important role in control flow. Call instructions made to

library code are sections in control flow where execution leaves the user memory space.

This is often used to execute privileged instructions or to make privileged system calls [8,

9]. Since the parameters to these library calls have strict typing, security analysts can use

library calls to determine data types. Moreover, since symbols represent code, they are also

partial indicators of behavior.

2.1.3 Static Analysis Deterrents

There are numerous ways for a malware author to obfuscate their code from static analysis.

Many existing code obfuscation tools implement one or more of these anti-reverse engi-

neering (anti-RE) techniques; these tools are often collectively referred to as packers. A

non-exhaustive table of static analysis deterrents is provided in Table 2.1.

4

2.2 Concrete Analysis

2.2.1 Overview

Concrete analysis (used interchangeably with dynamic analysis) is the practice of analyz-

ing the behavior of an executable while it runs. Unlike static analysis, concrete analysis

is able to monitor the flow of data throughout system memory and therefore provide high

resolution data dependence. Data dependence involves tracking which registers and mem-

ory regions are used and defined by each instruction as they are executed. To do this,

concrete analysis is often also accompanied by a debugger such as WinDbg [10, 11]. Like

static analysis, there are numerous tricks a malicious program may employ in order to deter

concrete analysis.

2.2.2 Data Dependence

By tracking register and memory states before and after instructions are executed, it is

possible to accurately monitor the flow of data through a binary as it executes. This is called

data dependence. For CISC architecture sets like x86, instructions must often be modeled

individually as compared to RISC architectures like ARM where instructions can often be

modeled in groups [12]. One of the most common representations of data dependence is

a data structure called a define-use or def-use chain [13]. A def-use chain indicates which

registers and memory regions are defined or used by an individual modeled instruction. An

example of a def-use chain for a single basic block is provided in Figure 2.1.

2.2.3 Concrete Analysis Deterrents

Like static analysis, it is important to consider the many ways a malware author can imple-

ment countermeasures for concrete analysis. These techniques are tabulated in Table 2.2.

5

Figure 2.1: An example of a basic block with its respective defuse chain.

Table 2.2: A non-exhaustive list of concrete analysis deterrents.

Technique Summary
Debugger Check The malware checks to see if it is running under a debugger

and adjusts behavior if so.
Artificial Exceptions The malware introduces artificial exceptions and adjusts be-

havior if an attached debugger handles the exception.
Process forking The malware spawns new processes and performs malicious

operations in a new process.
Sandbox Check By checking the hardware on its machine, the malware

stops executing if it sees virtualized hardware.
Killswitches A killswitch is in place that stops the malware from func-

tioning once activated, often involving the internet.
Long Sleep Timers The malware waits a very long time before running, or only

activates on a specific day.
Exact Constraints The payload is only executed given precise constraints such

as timing or hardware constraints.
Hash-based Loading The malware verifies every loaded image by hash, greatly

reducing the effectiveness of function hooking.

6

2.3 Concolic Analysis

2.3.1 Overview

Concolic (concrete + symbolic) analysis is the practice of introducing constraints to ma-

nipulate system flags in order to adjust dynamic control flow throughout execution. Branch

conditions are switched throughout execution so that user specified locations in the binary

can be reached; every switched branch condition introduces one or more new states [14,

15]. The original purpose of symbolic execution was for code coverage, but use has since

expanded to include malware analysis [16]. Without concrete analysis, symbolic analysis is

highly prone to the path explosion problem. The number of states grows exponentially and

analysis becomes very resource intensive [14]. Concrete analysis can be used to combine

states and significantly reduce memory usage [17].

2.3.2 Function Modeling

Since a large percentage of the number of instructions executed are outside of the user space

inside of library functions, modeling the behavior of these library functions can greatly

reduce the amount of resources required for concolic execution [16]. In order to step over

library functions, it is necessary to model which pieces of data the functions modify within

the user memory space. This often requires manual modeling of functions, listing inputs

and outputs and which data types are expected. The outputs to modeled functions often

become constraints that the symbolic tool must symbolize to redirect execution.

In addition to modeling the behavior of library functions, dynamic binary instrumen-

tation is also frequently necessary to enable concolic execution. Dynamic binary instru-

mentation involves inserting callbacks to specific instructions, functions, or binary images

[18]. These callbacks are the primary means for implementing instruction modeling and

function modeling.

7

Figure 2.2: A sample API request to the OMDB API with JSON response.

2.4 Web APIs

2.4.1 Web API Components

Many public web services offer APIs, both free and commercial, for developers and busi-

nesses. These APIs follow the client-server model, where the user sends an HTTP(s) re-

quest and the server then returns data for that request. The most common architecture for

these APIs is the REST (representational state transfer) architecture, which emphasizes

statelessness [19]. Some APIs require authentication, this is most commonly done by the

OAUTH authentication framework [20].

While API requests vary from service to service, most requests contain four basic com-

ponents: the HTTP verb, resource endpoint, additional HTTP headers, and form data.

The HTTP verb is one of GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS,

TRACE, or PATCH [21]. While mostly important for the HTTP syntax, it can also differ-

entiate endpoints. Second the resource endpoint, this is the name of the object on the server

to request. Third are additional HTTP headers that are necessary to complete the request.

These are typically outlined in the API documentation; API keys commonly appear here.

Last is the form data and/or HTTP body, this contains data to be uploaded to the server,

and typically only exists for HTTP POST actions. An example of API usage for the Open

Movie Database is shown in Figure 2.2, showing a GET request and a JSON response [22].

8

2.4.2 API Keys

Many web APIs require authentication through user accounts. These accounts are typically

represented in the form of an API key. API keys are a type of Uniform Resource Identifier

(URI), which manifest themselves in code as strings [23]. While malpractice, API keys

and other parameters like them are typically hardcoded by malware authors [24].

9

CHAPTER 3

DESIGN

3.1 Dataset

3.1.1 Dataset

When designing a tool, it is important to keep in mind the scope of the problem for which

the tool is designed for. In this case, the scope of the dataset is MSVC C/C++ compiled

portable executable 32-bit binaries (PE32). While some contemporary malware have begun

using 64-bit, the majority of the existing samples are Windows PE32 [1]. Static analysis is

used to select malware samples with interesting behaviors. In particular, the sample should

contain dynamic symbols for internet functions. Additionally, the sample should have an

existing VirusTotal report; this is used in order to establish the ground truth [25]. Most

importantly the malware sample should connect to a popular domain as cited by Alexa’s

top visited sites [26]. While these are the only two strict requirements, samples are then

prioritized based on file entropy and size.

3.1.2 Dataset Restrictions

In the making of an automated, general tool such as CACEE, some samples prove too

sophisticated. As such, there are numerous problems with some binaries that require them

to be discarded. These problems are tabulated in Table 3.1.

With these cases kept in mind, other anti-RE techniques shown in the previous chapter

must be accounted for in the system design.

10

Table 3.1: Unhandled corner cases for the system design.

Problem Rationale
Static Linking Since static linking removes the majority of dynamic sym-

bols within a binary. User code and library code cannot be
easily distinguished complicating behavior analysis.

Process forking While possible to follow new processes, it quickly becomes
too cumbersome to handle reloading every tool in another
memory space.

Self-Modifying Code The program trace catalogues instructions by address, if two
different instructions exist at the same address, then retrac-
ing becomes very difficult.

Segment Manipulation Complex packing techniques such as segment manipulation
often interfere with symbolic memory regions, since set per-
missions or symbolic memory regions is required.

3.2 Code Coverage

3.2.1 Targeting

Concolic execution is able to explore multiple paths beyond concrete execution. However,

not all paths may be feasible at all and some may not be executable within a reasonable

time frame. As such, it is important to consider which locations in the binary contain the

payload or at least reach out to C&C infrastructure. An excess reliance on static analy-

sis methods such as these may reduce the scalability of the system. With this in mind,

CACEE only cross-references specific symbols found in these images: wininet.dll, win-

http.dll, winsock.dll, winsock2.dll [27]. Specific API calls of interest within these images

include but are not limited to InternetConnect, WinHttpReadData, and ConnectSocket.

3.2.2 Greedy Exploration

CACEE relies on greedy exploration— a search algorithm where CACEE approaches ba-

sic blocks with stop conditions. Stop conditions are defined by program exit, unsolvable

symbolic conditions, or if the malware fails to catch an exception. After a stop condition

has been reached, CACEE rewinds the program state to the closest explorable symbolic

11

Figure 3.1: An artificial control flow graph demonstrating greedy exploration.

branch, then continues exploring on the new path. After all stop conditions or solvable

branch constraints have been exhausted, exploration is considered complete. In this way,

CACEE functions as a code coverage tool for functions of interest, rather than exploring

the entire code segment. An illustration of greedy exploration is shown in Figure 3.1.

3.2.3 Branch Prediction

Since the introduction of symbolic data in greedy exploration leads to the path explosion

problem, certain precautions must be put in place in order to limit the time spent solving for

solvable branches. One solution to this is through branch prediction, a technique commonly

employed into processors [28]. CACEE predicts the successive branch that leads to a better

result based on the previous exploration of that branch [29]. In practice, this is often applied

to non-critical validation functions, such as checksum functions. If a branch is encountered

12

more than once with different symbolic data, then CACEE remembers the previous branch

conditions and uses these to predict a path out of the validation function, saving time and

resources.

3.2.4 Rewinding

In order to reset execution to the last solvable branch, it is necessary to rewind the program

state back. In order to do this, data dependence must be captured and stored for every in-

struction executed as well as any changes that the system makes to memory. Upon reaching

a stop condition, data dependence from the program trace will be used to step backwards

instruction by instruction. This is done in favor of using memory snapshots, since data

dependence must be used anyways for behavioral analysis.

3.3 Data Modeling

Data dependence is a very important component of designing a concolic engine. To achieve

high resolution data dependence, instructions and functions must be modeled so that the

system understands the changes made to memory and registers. This is needed to populate

the define-use chain— a data structure cataloging which registers and memory regions

were defined or used for every instruction. In the case of instruction modeling, opcodes are

stepped into, while in the case of function modeling opcodes are stepped over.

3.3.1 Instruction Modeling

Data dependence needs to be dynamically determined for each instruction. Since x86 is a

complex instruction set, it is very cumbersome to model each instruction, yet each instruc-

tion must be modeled individually. CACEE wraps over existing tools for its instruction

modeling, then implements its own callbacks whenever unsupported or unrecognized in-

structions are encountered.

13

Table 3.2: The function model for the function WinHttpReadData.

Function
Name WinHttpReadData

Parameter
Data

IN HINTERNET hRequest
OUT LPVOID lpBuffer
IN DWORD dwNumberOfBytesToRead,
OUT LPDWORD lpdwNumberOfBytesRead

Calling
Convention stdcall

Return
Type boolean

3.3.2 Function Modeling

Unlike instruction modeling, few robust tools exist that exhaustively model the behavior of

the Win32 API. In order to step over library calls, CACEE requires a complete modeling

of the Win32 API reference. This includes the function inputs and outputs, data types,

enumerated values, and the contents of complex memory structures.

The solution CACEE utilizes is automatic and based at the source level. Automatic

function modeling parses information from the Windows32 header files based on variable

names from Microsoft’s Source-code Annotation Language (SAL) [30]. The declarations

of the typing in the SAL indicate whether the function parameters are inputs or outputs, as

well as some data typing information for simpler data types. SAL provides CACEE with

the function name, parameter names, parameter types, return types, calling convention, and

whether the parameter is an input or output. Some typing information, namely for variably

sized complex memory objects, remain inconclusive. Table 3.2 shows a function model for

the function WinHttpReadData.

3.4 Web Profiling

In designing this system, one must consider how the malware author will implement their

network behavior. For CACEE, network behavior is extracted through packet reconstruc-

tion from groups of API calls in the program trace. Additionally, the characteristics of

14

Table 3.3: The four authentication and authorization schema.

Authentication Method Description
Optional Header An API token is attached as an additional header of each

HTTP(s) packet sent out.
Stateful API An API token is sent to a dedicated endpoint and the server

designates a session for the key.
Request Token The malware author must request a new token in order to

use the web API.
No Token The malware uses only public resources from the web ser-

vice.

the web API implementation affect the API calls the malware author will use. Any use of

public web APIs by malware is considered malicious, regardless if the service is used in a

benign fashion.

3.4.1 Authentication Mechanisms

There are numerous schema web APIs use to verify users; all web APIs analyzed in this

document have dedicated endpoints for authentication, although authentication may be op-

tional for public resources. Since the steps required for authentication and authorization

vary between each web API, CACEE must handle each case [31, 32, 33, 25]. Within the

context of CACEE, depending on the scheme, the malware author may opt to hardcode

their API key. Different Windows C++ functions, such as WinHttpAddRequestHeaders,

may be observed in one scheme that may not be present in other schema.

3.4.2 Packet Reconstruction

CACEE implements packet reconstruction by grouping API call sequences together based

on shared handles. This is important to identify characteristics across many different types

of web services. API calls are categorized as either source calls, sink calls, or additional

calls, with a source call potentially having multiple sink calls. An example of a source

call is InternetOpen, which creates the first handle to used by other functions in the API

15

Table 3.4: The elements that make up library call node.

Data Collected Description
Name The name of the function called.
Parameters The parameters passed to the library function.
Defines Memory regions used by the library function.
Uses Memory regions used by the library function.
Index The location in the trace where the function call occurs.
Return Value The return value from the library call.
Address The address in the binary where this function is called.

sequence. HttpSendRequest is an example of a sink call, as it signifies the end to a request.

Any other modifications or intermediate handles to the API sequence such as InternetCon-

nect or HttpSetOption are categorized as additional calls. Parameter fields, notably content

types can then be recognized from the reconstructed packet.

3.5 Rules

CACEE uses a system of rules to identify the behaviors of the malware and the characteris-

tics of the web service. The rules are split into behavior rules and web rules respectively for

behaviors and characteristics. All rules in CACEE are determined through data collected

from calls to Windows C++ library functions. CACEE groups these calls together and de-

termines which rules a malware sample satisfies. Rules analysis occurs after the program

has concluded execution and is configurable by the end user.

3.5.1 Library Call Context

CACEE gathers additional context whenever the malware calls a library function. The data

dependence from a library call is very complicated, and is usually derived from manual

and/or automatic function modeling. Using data dependence, library calls are grouped

together into a graph with each call representing a single node in the graph. The edges of

the graph are indicate data dependence.

16

Figure 3.2: A sequence of three API calls that indicate downloading and executing a file.

3.5.2 Rule structure

Rules are built from two components, a structure and a method. The structure is derived

from the names, defines, and uses of the library calls. Rule structures are small, general

purpose graphs that represent potential Windows C++ API sequences that can indicate the

behavior or characteristic. CACEE can then examine the program trace looking for groups

of calls that could complete a rule structure. An example rule structure is provided in

Figure 3.2. This particular structure of the dropper behavior indicates that the program

downloads a file to disk then executes it. The arrows here represent data dependence (not

call order), that is, data defined by InternetReadFile is used by WriteFile and so on.

3.5.3 Rule methods

Simply because there are three library call nodes linked by data dependence that satisfy a

particular behavior does not necessarily indicate that the malware exhibits this behavior.

In many cases there is more context needed; this context involves the parameters passed

to each function and the return value. Additional methods are required to make sure that

the matched behavior is truly exhibited by the malware. Consider the preceding example

in Figure 3.2. It is possible that the program downloads a file to disk, but that file is not

an executable file. Data dependence between WriteFile and ShellExecute may still exist;

however, it is necessary to make sure that the path specified to WriteFile is the same as the

path specified to ShellExecute. In this way rule methods greatly reduce the number of false

positives that would appear should behaviors only be recognized as pure API sequences.

17

3.5.4 Redundant Functions

In many API sequences, there are precursor functions in order to open handles, estab-

lish permissions, etc. Within the behavior structure graphs, these functions are omitted

since they do not include parameters of interest. The minimalist approach to building rule

structure graphs fares better than including massive structures, where encoding schemes or

functions from other libraries may overlap. An example of this in Figure 3.2 is CreateFile.

This library call is necessary before a call to WriteFile, but does not contain any parameters

of interest to the rule method.

18

CHAPTER 4

IMPLEMENTATION

4.1 Environment

4.1.1 Analysis Environment

The environment of choice is a Windows 7 Professional virtual machine. Security features

on the virtual machine are removed, and the necessary tools are installed. QEMU and KVM

are used alongside a prepared QCOW2 image to create the virtual machine [34]. Network-

ing and USB components are virtualized. No compiled function hooking is performed. A

fixed snapshot is used before every malware executes, such that changes to the registry and

disk can be easily monitored.

4.1.2 Repositories

The samples are obtained through the public repository VirusShare, and have a report from

VirusTotal available [25, 35].

4.2 Choice of Tooling

There are many ways in which one could implement a concolic code coverage tool. The

tools we used best fit our needs and best fit our dataset, and may not necessarily be the most

general purpose solutions. At large, it is possible to substitute one or more tools mentioned

below.

4.2.1 QEMU & KVM

Since CACEE is a dynamic system for malware analysis, the malware must be run in a

virtual machine. QEMU alongside KVM is the most advanced framework for virtualizing

19

Windows platforms on Linux. The configuration virtualizes a Windows 7 Professional 64-

bit environment virtualizing disk, network components, keyboard and mouse peripherals,

8 gigabytes memory, and PCI bus for display.

4.2.2 PIN

The lowest level of CACEE is the dynamic binary instrumentation platform PIN [18]. PIN

is a free, closed-source tool from Intel that runs in the same memory space as the target

program. PIN just-in-time (JIT) compiles code for hooking, which is helpful against many

dynamic anti-RE techniques. Furthermore, PIN is able to instrument instructions, func-

tions, as well as images giving CACEE more flexibility. PIN has a few shortcomings, but

all can be accounted for.

The first issue with PIN is that its API is in C/C++, which leads to longer developing

times. This is mitigated by using Triton, which introduces PIN bindings to Python [36]. In

this way, CACEE only needs to be recompiled when changes to the Triton source code are

made. Some functionality must be added to Triton, however.

The second issue with PIN is that PIN requires symbols for its analysis. This is the

leading reason why CACEE opts to avoid statically linked binaries and other such bina-

ries that lack dynamic symbols. Without these symbols, CACEE cannot perform its rules

analysis, as library functions cannot be recognized. In a perfect world, CACEE could rec-

ognize functions taking their checksum and comparing those to a large database, but this

exhaustive effort only handles a small portion of malware samples and is beyond the scope

of this work.

An alternative debugger to PIN could be WinDbg. WinDbg, paired alongside hexray’s

IDA Pro disassembler, offers an extremely powerful interface that for binary analysis [10,

37]. In our own work, we found the overhead associated with these two tools was too

cumbersome for large-scale analysis, and thus resorted to using PIN+Triton instead.

20

4.2.3 Triton

Triton is another dynamic binary analysis framework that is built from Intel’s PIN, but

provides numerous quality of life features, most notably bindings to Python2. In addition

to a general purpose dynamic binary instrumentation platform, Triton also functions as a

taint-analysis engine and is a symbolic execution engine. Unlike other symbolic execution

engines, Triton operates on the CPU instructions themselves and does not implement its

own search strategies [38, 36]. Triton’s more lightweight approach to concolic analysis is

more favorable to CACEE whose pipeline is performance sensitive. Furthermore, Triton

implements its own tracer, which is used in CACEE to construct the program trace, which

contains the data dependence of each CPU instruction executed.

There are a few issues with Triton, the foremost of which is that Triton does not support

every x86 CPU instruction. Some complex CPU instructions must be ignored by the tracer

leaving gaps within the program trace. Such gaps are typically minor, and do not cause

issues with abstracting behaviors from the program trace. It is possible, but extremely

tedious, to modify the Triton source to handle more x86 instructions, but such instruction

modeling does not typically increase the scope of the system.

Another issue with Triton is the naivety of its symbolic execution platform. Complex

buffer operations and pointer arithmetic require additional support. Furthermore, Triton

does not offer built-in support function models like other engines. Despite these shortcom-

ings, its lightweight approach is still ideal for CACEE.

Other alternatives to Triton are Angr and KLEE [16, 39]. Angr is the most widely used

concolic execution platform with bindings in Python, while KLEE leverages LLVM com-

piler infrastructure for its symbolic execution engine. These two tools have been around

for awhile, but each have their own issues that led to Triton becoming the best fit.

21

4.2.4 Python

Python is the preferred programming language for CACEE. This is because of its for-

giving syntax, and importantly its ability to create bindings in C. The compiled bindings

greatly increase system performance since the python interpreter is not required at runtime.

Python 2 is the version used, since that is the only version supported by Triton at the mo-

ment. CACEE implements its own fork of the python programming language to compile

necessary packages, notably networkx [40].

4.2.5 Z3

Z3 is an SMT (Satisfiability Modulo Theories) solver engine from Microsoft Research

[41]. It is the tool of choice because of its strong documentation and Python API. CACEE

starts Z3 as a side process and feesd symbolic data to Z3 and back by localhost socket

communication. CACEE is responsible for making queries to Z3, which serves as a back-

end for CACEE.

4.2.6 Other Tools

While not essential to the system pipeline, IDA Pro alongside WinDbg is frequently used

to manually reverse engineer individual malware samples [37, 10].

4.3 Expanding the Triton Dynamic Analysis Framework

CACEE interacts with Triton to manage memory with the malware’s own memory space.

Triton also binds functionality between PIN and Python. Some additional bindings are

needed to be exposed as well as some additional functionality needs to be added which

requires modifying the Triton source code. In addition, support for symbolic pointers and

dynamically loaded symbols are needed for CACEE to fully explore all paths within a

binary.

22

4.3.1 Exposing Additional Bindings to Python

Python C API (not to be confused with CPython, the whole language compiled into C)

offers ways to converting complex dynamically typed python variables into C variables

through PyObjects. Any Python data type passed to Triton from CACEE is treated as a

PyObject. The function is then responsible for interpreting the PyObject into a usable

data type in C++.

A simple example of a new binding exposed is startAnalysisFromSymbols. This func-

tion takes in a list from Python of function names such as InternetConnect or WriteFile

that when encountered cause CACEE to begin tracing. This is put into place to boost per-

formance by limiting the size of the trace. The PyObject is first interpreted into a const

char * array with PyStr AsString. Next, the function checks to see if there is a dynamic

symbol with the same name as the function name. Finally, the function calls RTN Open,

RTN InsertCall, and RTN Close from the PIN API to start the tracer [42].

4.3.2 Adding Support for Symbolic Pointers

Native Triton does not support symbolized pointers and always concretizes them. Opera-

tions involving pointer arithmetic frequently result in symbolic memory access; it becomes

necessary to mitigate this issue by introducing I/O protections for symbolic pointers [29].

In practice, this is a callback from Triton’s symbolic memory framework. In this callback,

if-then-else statement chains on the symbolic memory region iteratively. To determine the

memory region size, we estimate using either the program trace or the program stack, de-

pending on if the pointer was allocated dynamically or statically respectively. Should these

size estimations fail and the malware attempt to access symbolic memory, then the region

is concretized [29].

23

Table 4.1: Rules for modeling behaviors within the cloud-abusing malware dataset.

Rule Short Description
Service The name of the web service contacted.
API key An API key or other identifier sent to the web service.
Downloader The malware downloads a file to disk.
Dropper The malware downloads a file then executes it.
Exfiltrator The malware uploads data to the web service.

4.3.3 Adding Support for Loaded Symbols

Many malware samples, especially compressed malware samples, will dynamically load

libraries and functions. Two functions in the Windows C++ API handle this; LoadLibrary

loads a shared library with a specified name as a new image and GetProcAddress finds the

address in memory of a function with a specified name [42]. These functions are instru-

mented with PIN by default to load image (IMG) and routine (RTN) objects respectively

as these functions appear. While Pin may be aware of the new symbols, triton must tell

CACEE about these new symbols in order for CACEE to adapt to new critical functions

being loaded in. When these functions are loaded, triton will update CACEE’s import ta-

bles. The import table, a dictionary, is passed into to Triton as a PyObject. A new dictionary

entry is added through PyDict SetItem, then returned back to CACEE.

4.4 Creating Dataset Rules

Since the end goal of CACEE is to extract behaviors from cloud-abusing malware, custom

rules must be put into place. Two types are rules are implemented, web rules, which focus

on characteristics of the web service, and behavior rules, which focus on what the malware

does before and after interacting with the web service. Only web rules are required to

interact with public web services; behavior rules may interact with C&C servers or other

domains. Rules vary in complexity, and are summarized in Table 4.1.

Table 4.1 represents the various behaviors CACEE can potentially extract from a mal-

24

ware’s trace. For each rule, there are many possible API sequences that could be used to

satisfy their structures. Since implementing cases for all possible API sequences is very ex-

haustive, preferential modeling was performed based on the frequency of dynamic symbols

present within the dataset. Static scans of malware repositories showed that few samples

had dynamic symbols for socket functions, while the libraries Wininet.lib and WinHttp.lib

were common. As such, function models and rule structures for the aforementioned li-

braries were implemented instead of models for Winsock2.lib.

Furthermore, internet API sequences are split into Complex Internet Sequences (CISs)

and Simple Internet Sequences (SISs) depending on the malware author’s implementation.

CISs require more symbolic solving and thus are less likely to resolve than an SIS. CISs

also often require packet reconstruction. An example of an SIS is the function URLDown-

loadToFile which completes an HTTP GET request with only one API call. On the other

hand, CISs require many more functions and are often non-determinate in length.

Lastly, all rule implementations specific to this dataset are inherited from the Rule ab-

stract class. The rule API runs outside of the concolic analysis, and runs in Python 3 instead

of Python 2. The rules API only requires a program trace (saved in JSON format) as an

input. Note that since the rules are implemented in post-analysis, they can be swapped out

without having to rerun the samples.

4.4.1 Service Rule

The service rule is a web rule only intends to determine which web service the malware is

attempting to contact; more precisely, it is looking for public web domains.

Service Structure

The service rule structure consists of any function that can be used to start a TCP session to

a web domain or IP address. The most common functions used here are InternetConnect,

WinHttpConnect, and URLDownloadToFile. Since there is no other information needed

25

from the function parameters other than a domain, each structure for the service rule is a

single node from either a SIS or a CIS.

Service Method

As for a method, the root domain is first extracted with regular expressions. Then, the root

domain is compared against Alexa’s Top 10000 sites [26]. If the site is in the Top 10000, it

is considered a public web service, and the rule is satisfied.

4.4.2 API Key Rule

The API Key rule is web rule that is much more complex than the service rule. Its purpose

is to associate the abused web service with some sort of API key, user account, or uniform

resource identifier. Unfortunately, authentication and authorization varies widely from ser-

vice to service, and are often implemented in CISs. CACEE currently handles identifying

information in additional HTTP headers or from within the domain itself.

API Key Structure

The structure for the API Key rule is often a CIS. A malware can make any number of

calls to WinHttpAddRequestHeaders or similar functions and still maintain a valid request.

On the other hand, the identifier could be within the domain itself, such as a link to a file

sharing site or social media account. In the latter case, the structure is identical to that of

the service rule. In the more complex former case, a larger section of the API sequence

is required such as shown in Figure 4.1. This is because in general cases, CACEE opts to

reconstruct the packet from the API sequence.

API Key Method

The method function of the API key rule performs the parsing of the reconstructed packet.

It then uses regular expressions to extract any identifiers that it can find. This rule will

26

(a) A code snippet that shows the generic sequence of an HTTP GET request to http://gatech.edu.

(b) The resulting HTTP GET stream from the code sequence. There is also a DNS stream over UDP
not shown.

Figure 4.1: The code for a HTTP GET request using WinINet and the resulting packet.

27

also examine the target host and any additional headers. In addition, the API key will track

HTTP verbs and endpoints to categorize API abuse.

4.4.3 Downloader Rule

The downloader rule is a behavior rule, like the API key rule, it parses non-deterministic

blocks of internet API sequences. More specifically, the downloader rule involves data

dependence between data received from an HTTP GET or FTP sequence and writes to

disk.

Downloader Structure

The downloader structure mirrors the API key structure at first. A multitude of structures

including the sequence shown in Figure 4.1a can potentially represent the downloader rule

structure. URLDownloadToFile is a simpler case that is a single node structure. CISs for

the downloader structure tend to include the functions InternetReadFile or WinHttpRead-

Data with data dependence to file API functions. Notably, it is very common occurrence

to see some kind of string processing on the buffers written to by the aforementioned func-

tions. These operations do not manifest themselves within the downloader structure but are

considered in the rule method.

Downloader method

The downloader rule is almost entirely structure based. The only checks are to make sure

that the data written to disk is originally sourced from the internet, that the buffer is not

empty, and that the disk write operation succeeded.

4.4.4 Dropper Rule

The dropper rule is a behavioral rule that is an extension of the downloader rule— the

malware downloads a file and then executes it. This behavior mirrors that of malicious

28

installers, often referred to as droppers.

Dropper Structure

Like the downloader rule, the dropper rule tends to start with a CIS then moves onto file

API functions. As an extension, the dropper rule will also execute the downloaded file. No

single node structures for this rule exist. Similar to the downloader rule, the structure is

minimal; that is, it includes in order: the internet sequence, the file I/O command (if any),

and then the process creation command.

Dropper Method

The dropper method requires several checks to make sure the behavior is correctly flagged.

First, the file downloaded must be data dependent on the file API command. This is more

difficult in practice; this is because many executable files are too large to fit into memory

and must be downloaded to disk in fragments. While the internet sequence and file I/O

are connected through data dependence; it is often the case where the process creation

commands shares no data dependence with the previous API calls within the rule. To

compensate for this, CACEE compares filenames used by the process creation commands

and compares those to the filenames present within the file handles from the file I/O API

call. If the filenames match (i.e. the same file is executed as is downloaded) then the rule

is satisfied.

4.4.5 Exfiltrator Rule

The opposite of the downloader rule, the exfiltrator rule indicates that the malware is up-

loading data from the infected machine over the internet. It is a behavior rule that first

requires a read from the hard drive then starting either a CIS or a SIS. If the file was not

present at the start of execution, the exfiltration rule is still flagged.

29

Exfiltrator Structure

The structure of the exfiltrator rule involves two nodes. The first is a read operation with a

file I/O API call, such as fread or ReadFile. The second sequence is an internet sequence

that sends the read-in data over the network, most commonly an HTTP POST packet. Any

string processing or other modifications made to the data before it is sent out is not consid-

ered within the structure.

Exfiltrator Method

The method of the exfiltrator rule is not very complex. In short, the method checks to see

if there is data dependence from the file I/O API call and the network operation. If this is

true, and the HTTP verb is POST or PUT (or FTP equivalent), then the rule is satisfied.

30

CHAPTER 5

EVALUATION

The small scale evaluation considers three malware samples: Vidar. a spyware that abuses

ip-api.com, LOWBALL, a dropper malware abusing dropbox.com, and Vflooder, a mal-

ware trojan that reads from twitter to manipulate infected machines. Each sample is manu-

ally reverse engineered, which functions as the ground truth. Then, CACEE is run against

each sample and their results are compared.

5.1 Vidar Case Study

Vidar (MD5: 40f19de327aac4b5d11d0882a7e67e9b) is a malware fork of the Arkei mal-

ware family [43]. It is a commercial malware that one can buy on shops and forums ranging

from $250-700. The malicious C&C server is changed every version of Vidar, with this

hash belonging to an unidentified early version. The malware is built on the marketplace

server where it is configured by the buyer. A set of global flags exist which determine

which functionalities are enabled or disabled. Once the malware has been configured, it is

compiled with a user ID number and ready to deploy. The buyer can check the state of their

infected machines on the rotating domain.

5.1.1 Vidar Summary

The Vidar malware, written in C++, starts by checking the user locale. If the locale is

Russian, Azerbaijani, Belarusian, Kazakh, or Uzbeki, then the malware will not infect the

machine. The malware generates a creates a hidden, temporary directory with a random-

ized name in the C:\ProgramData\ parent directory. The first internet connection the

malware makes is an HTTP connection to a Russian C&C server immortalled.mcdir.ru

(alive as of publication). The malware generates a POST request using part of the machine

31

GUID as the identifier for the infected host. Vidar then moves on to download the specific

libraries it needs to execute the rest of its payload. The malware then proceeds to collects

a wide variety of information about the infected machine, including hardware information,

running processes, and browser data. Next, Vidar obtains network information by sending

an HTTP POST request to ip-api.com. Vidar uses this site to get JSON data about the

host’s network and dumps that information into a file called information.txt. The malware

finalizes it search looking for cryptocurrency wallets as well as some user and system in-

formation. After this is done, Vidar compresses all of the data it finds and sends it back to

its C&C server immortalled.mcdir.ru. Vidar presents very few anti-RE techniques, only

really implementing some lightweight string obfuscation.

Note, more payloads are equipped in this malware, they are just disabled by configura-

tion. In addition, the malware contains an updating dropper agent since the market vendors

rotate the domain every version. This agent is also capable of injecting custom payloads

from the buyer.

5.1.2 Web Profile for IP API

It is interesting to note that Vidar is using ip-api.com in the intended way. It is gather-

ing information about the victim’s IP address without using any kind of authorization or

authentication. In addition to using no token, ip-api.com does not support uploading any

text or media, and does not host user content. While one could consider the usage benign,

any API use done by malware is considered malicious. Cases like the Vidar family and

ip-api.com represent an emerging pattern in spyware.

5.1.3 Analysis on Vidar

CACEE’s analysis of Vidar starts from the symbol InternetOpenA (A for ANSI encoding).

This is the first API call in Vidar’s first HTTP POST packet sent to immortalled.mcdir.ru.

CACEE misses Vidar checking system locales and creating its own directory, neither of

32

Figure 5.1: Decompiled code from the Vidar malware simplified for readability.

which have are important to the five rules in use for this sample. Analysis continues and

CACEE finds a call to InternetConnectA as well as HttpOpenRequestA. A section of sim-

plified decompiled code for Vidar is shown in Figure 5.1; CACEE is able to extract the

parameters passed to these internet calls and store them in the program trace. Notably,

CACEE is able to capture the domain for this version and the user profile ID (11), which in-

dicates the buyer on the C&C server. Due to environmental constraints, HttpSendRequestA

fails despite the C&C server being online. Despite not having access to its libaries, Vidar

continues executing. CACEE executes pass the HTTP POST request to ip-api.com and to

the final POST request to the C&C server. After this is finished, CACEE rewinds the state

in an attempt to reach the ShellExecuteA API call which could not be reached concretely.

This is the case where the malware authors have pushed an update or that the buyer has

dropped a custom payload. CACEE instantiates a symbolic buffer for the return of Interne-

tReadFile and execution continues to CreateFileA and WriteFile. Unfortunately, CACEE

does not recognize a solvable branch from this point onward and closes.

In post-analysis, CACEE flags three rules satisfied: the service rule, the downloader

33

rule, and the exfiltrator rule. The service rule is satisfied first with a call to InternetCon-

nectA passing the domain ipapi.com. Next, the exfiltrator rule is satisfied when Vidar

calls ReadFile to read-in a gzip compressed information.txt file. The buffer from Read-

File has data dependence with HttpAddRequestHeadersA, which then shares handles with

HttpSendRequestA. Finally, the downloader rule is satisfied since at the end of execution,

CACEE is able to solve a branch from InternetReadFile eventually leading to WriteFile for

the downloading behavior of Vidar. While Vidar exhibits the dropper behavior as well, it is

not recognized by CACEE. The profile ID configured with this Vidar sample (11) is used

as an additional header, but is not considered an API key since it is not used for a public

service.

5.2 LOWBALL Case Study

LOWBALL (MD5: d76261ba3b624933a6ebb5dd73758db4) is a dropper malware used as

a payload for a spear-phishing campaign targeting media companies in Hong Kong in 2015

[44]. Only 4% of the size of Vidar, LOWBALL is a backdoor trojan utilizing dropbox.com

as its C&C server. The no longer existing Dropbox account was managed by the malware

authors outside of this sample.

5.2.1 LOWBALL Summary

The first step in LOWBALL’s execution is to deobfuscate its own hardcoded Dropbox API

key. The malware then dynamically loads in shell32.dll and from it grabs the function

ShellExecuteA. After this, the malware attempts to download an updated version of itself

using an outdated version of the Dropbox API (api.dropbox.com). Should this download

succeed, the malware would write the file to disk, then execute it as a new process. If the

download fails, it enters a while loop waiting for the Dropbox account to come back online.

In a new process, LOWBALL will send an HTTP PUT request creating a new file in the

Dropbox folder with the hostname of the infected machine. Finally, the malware enters

34

an infinite loop where it communicates with the Dropbox account functioning as a C&C

server. Interestingly, LOWBALL does not create a reverse shell of any kind; rather, it only

uses batch files to control the infected machine. It is suspected that the malware authors

hosted other malware in their Dropbox folder, with LOWBALL acting as a first stage [44].

5.2.2 Web Profile for Dropbox

Dropbox’s flexible service can be very useful for malware authors wishing to obfuscate

their network traffic. Its authentication scheme is by an API key passed an additional HTTP

header. Dropbox allows the user to host almost any type of file; although it does have

mitigations to prevent users from uploading malware [45]. Non-executable files such as

shell commands can also be uploaded by the malware authors and used to control infected

hosts. Dropbox does also offer a public front-end, since folders can be made public for

anyone to download. All things considered, the Dropbox API can provide enormous utility

to malware authors.

5.2.3 Analysis on LOWBALL

CACEE begins its analysis on the LOWBALL malware in its update function with a call

to InternetConnectA used with domain api-content.dropbox.com. CACEE is able to fol-

low the stream and the malware is successfully able to download an error message from

the Dropbox account. LOWBALL uses strncmp to see if it received an error of any kind.

It then proceeds to enter the while loop. CACEE detects that it cannot concretely exit

the while loop, and rewinds the state to a solvable branch from the result of strncmp. It

solves the branch then writes the error code using to disk using fwrite. The malware then

proceeds to attempt to execute the downloaded file with ShellExecuteA. After this point

LOWBALL would exit, but CACEE rewinds to a previous state and begins executing to-

wards the main payload of the LOWBALL malware. CACEE catches several GET, PUT,

and POST requests to the Dropbox API, but none resolve. LOWBALL does read in a file

35

called onlineflagfile and sends it by a POST request. CACEE eventually times out

in the backdoor infinite loop, since there is no escaping branch.

In the post-analysis phase, CACEE flags all five rules as met for LOWBALL. The ser-

vice rule is satisfied by several HTTP connections to api-content.dropbox.com, and the

API Key rule is satisfied by sgKddaX ntAAAAAAAAAADVYeex9Pc0NuhGII10uLUhy-

Kte7gEehQSxjYgRB2yWT. CACEE sees that executes a downloaded file with Interne-

tReadFile, fwrite, then ShellExecuteA, which satisfies both the dropper rule and the down-

loader rule. Lastly, CACEE identifies data dependence between a call to fread and a call to

HttpSendRequestA, satisfying the exfiltrator rule.

5.3 Vflooder Case Study

Vflooder (MD5: 6b32a7ad0c62a86dc8d08f807d20b2a9) is a malware family that is de-

signed to disrupt services by spam flooding APIs [46]. The attacked APIs vary family to

family; in this case the victim APIs are VirusTotal and Twitter.

5.3.1 Vflooder Summary

The malware begins by creating a new thread using CreateThread passing the main func-

tion. After this the malware takes its own file into memory from disk. The malware then

makes an API request to virustotal.com request via HTTP POST to /vtapi/v2/file/scan to

submit a new file. The purpose of this is to perform a Denial-of-Service attack on VirusTo-

tal by submitting copies of itself in a loop. Alongside this thread, Vflooder connects to a

hardcoded twitter account (/pidoras6) and make a GET request via HTTPS. The malware

will then parse the HTML from the twitter page to extract a tweet from the malware author,

decode the tweet from base64 and jump to its own C&C server https://w0rm.in/join/join.php,

which is no longer active. According to MalwareBytes, this site once sold website exploits

[46]. The malware then proceeds to read data in from the malicious website with Win-

HttpReadData.

36

5.3.2 Web Profile for VirusTotal

While at first one might think that it is best for malware to avoid VirusTotal at all costs, it

is still possible to abuse VirusTotal’s API. For authentication and authorization, VirusTo-

tal uses an API key passed as an additional header that carries privileges with it. For file

sharing, it is possible to upload files to VirusTotal for scans, and some files may be down-

loaded depending on permissions. Text sharing is also possible through comments. Lastly,

VirusTotal does have a few ways to host user data (e.g. a user could manage comments on

a filehash) but users are extremely limited in ways they can manage it [25].

5.3.3 Web Profile for Twitter

Twitter’s API has a history of abuse from a multitude of misinformation campaigns [47].

Like VirusTotal, it requires an API key passed as an additional HTTP header, which has

permissions tied to it. Twitter allows primitive file sharing in the form of tweets, includ-

ing images, but not executables [32]. Text sharing is very easy on twitter in the form of

tweets. Perhaps most of all, twitter has a powerful public front-end in the form of malicious

accounts.

5.3.4 Analysis of Vflooder

CACEE begins analysis of the Vflooder malware from the CreateThread function. It tracks

the DoS thread’s HTTP communications with VirusTotal, and extracts the malware’s hard-

coded API-key. Analysis then proceeds to the jump-server portion of the malware. CACEE

identifies a GET request to twitter.com which resolves but is blocked on the virtual machine

network. Vflooder, with incorrectly parsed HTML, makes an API call to WinHttpCrackUrl

which is then interpreted as a search engine request for the less-than-character <. At this

point, the malware crashes and CACEE cannot continue analysis.

Despite a flawed execution, CACEE still maintains a context-rich execution trace for

this strain of Vflooder. The service rule is satisfied twice, once by VirusTotal and again by

37

Table 5.1: CACEE analysis for web rules on three case studies.

Malware Sample Service API Key
Vidar ip-api.com None
LOWBALL api-content.dropbox.com sgKddaX ntAAAAAAAAAADV...
Vflooder twitter.com None

virustotal.com a0283a2c3d55728300d06487...

Table 5.2: CACEE analysis for behavior rules on three case studies.

Malware Sample Downloader Dropper Exfiltrator
Vidar GET /line None 1 POST US 636d1cd5...
LOWBALL GET /1/files/auto WmiApCom.bat POST onlineflagfile
Vflooder GET /pidoras6 None POST 0933a85ab... 2

Twitter. The API key rule is also satisfied, since the VirusTotal API key is extracted as an

additional header passed to WinHttpSendRequest. The downloader rule is also satisfied by

a GET request to the twitter account. The exfiltrator rule is mistakenly marked as satisfied,

as Vflooder reads itself from disk with ReadFile, and posts to VirusTotal, and not machine

specific data as with the case of the other two samples.

5.4 Findings

In Table 5.1, CACEE is able to correctly identify every web characteristic of the public

web service according to the rules provided. This includes each public web service that the

malware connected to, and any credentials the malware used that were associated with that

API. For the behavior rules, shown in Table 5.2, CACEE misses that the Vidar sample can

download and execute files, and falsely identifies that the Vflooder malware is exfiltrating

data from the infected machine. The rules reflect behaviors that are expected to be observed

in the dataset with manual reverse engineering. It is possible in a large scale study of

samples with CACEE could analyze malware to a similar effect.

1False Negative
2False Positive

38

CHAPTER 6

CONCLUSION

6.1 Related Works

Concolic execution has already seen applications for malware analysis for windows mal-

ware. Brumley et al. used concolic execution to identify trigger conditions in malware,

including missing C&C servers, a condition that has been frequently observed within our

dataset [48]. Other frameworks like S2E aim to extract a trace from the sample with con-

colic execution, which CACEE more closely resembles [17]. S2E even creates a dedicated

analysis environment based on preset Windows images. Pure symbolic engines like Angr

read in a memory dump and solve for constraints without the use of concrete execution

[16]. Older research, such as Qi et al., uses concolic execution for code coverage and

pathfinding [14].

With specific regard to Remote Access Trojan (RAT) malware, Baldoni et al. used

concolic execution to emulate C&C server commands [49]. Furthermore, Moser et al.

were even able to recreate C&C servers with concolic execution on RAT malware [50].

Shankarapani et al. used API call patterns taken from static analysis to create fast signa-

tures for malware identification [51]. On the other hand CACEE does not aim to identify

malware with signature based detection, but rather analyze known malware samples to

gain a greater understanding of the malware’s payload. CACEE also differs from existing

concolic execution tools in that it attempts to automate much of the data modeling process.

6.2 Limitations

The development of CACEE is still in its infancy, and as such there are many corner cases

that CACEE cannot yet handle. As previously discussed in Table 3.1, there are many anti-

39

RE techniques greatly limiting the capabilities of CACEE on sophisticated malware sam-

ples. The prevalence of these techniques and packing tools that implement them reduce the

generality of CACEE. Beyond this, CACEE is currently only implemented for Windows-

PE32 malware on the x86 architecture, and does not support the .NET framework. Other

architectures or operating systems are not currently supported at this time, further limiting

generality.

In addition to dataset limitations, CACEE relies on API calls for branch conditions.

That is, not all branches are solvable for CACEE, as it relies on function modeling to

introduce symbolic data. Branch conditions that exist before the first encountered critical

symbol are also not subject for forward solving. Finally, not all complex data types are

modeled yet, or are even exposed in the Windows header files. As a result some branch

conditions dependent on these complex data types cannot be solved.

Unlike other concolic execution engines, while tolerant of the path explosion problem,

CACEE struggles to interpret data types outside of API calls. This is because CACEE

solves branch conditions from the EFLAGS register and introduces symbolic memory re-

gions as a result. To do this, CACEE must know the size of the return value of the API call.

This is a difficult problem at the binary level with complex memory objects of variable size,

since complex memory structures often contain metadata indicative of their size.

6.3 Conclusion

The lifespan of malware in the wild is typically very short. To compensate for this problem,

CACEE uses concolic execution to trick the malware into behaving as if it were released

just a few days ago. Monitoring the data defined and used by the malware as it runs,

CACEE dumps more information than a traditional sandbox albeit in a longer time. With

this information in hand, CACEE abstracts behaviors from the data in order to provide high

level summaries of the malware’s payload.

Another tool in a malware analyst’s toolbox, CACEE is specifically designed to tackle

40

an emerging trend in malware, the use of public web services in malicious payloads. Ca-

pable of handling a variety of anti-RE techniques, CACEE unloads vast amounts of infor-

mation about a malware sample in an automated fashion. With this data, CACEE is able

to understand trends in large datasets of malware and malware families. It is also possi-

ble to adapt CACEE behavior analysis to model behaviors expectant of different types of

malware, such as internet-of-things malware or industrial control system malware.

In a few cases, CACEE has shown results comparable to that of manual reverse engi-

neering. It has also shown itself capable of exploring paths not normally reachable through

only concrete analysis. These results may indicate that in order to tackle emerging trends

in malware a in-depth approach such as binary analysis may be required. Future trends,

such as DNS-over-HTTPS, may further complicate network-oriented analysis and require

binary analysis solutions such as CACEE and other concolic execution tools.

41

REFERENCES

[1] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A view on current
malware behaviors.,” in Proceedings of the 2nd USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), Boston, MA, Apr. 2009.

[2] P. A. Networks, “Stop attackers from using dns against you,” Tech. Rep., 2020.

[3] K. Ingham and S. Forrest, “A history and survey of network firewalls,” 2014.

[4] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D.
Dagon, “From throw-away traffic to bots: Detecting the rise of dga-based malware,”
in Proceedings of the 21st USENIX Security Symposium (Security), Bellevue, WA,
Aug. 2012.

[5] Automating malware scanning for documents uploaded to cloud storage, https : / /
cloud . google . com / architecture / automating - malware - scanning - for - documents -
uploaded-to-cloud-storage, [Accessed: 2021-03-28].

[6] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang, “Finding the linchpins of the dark web:
A study on topologically dedicated hosts on malicious web infrastructures,” in Pro-
ceedings of the 34th Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2013.

[7] Evasions in intrusion prevention/detection systems, https://www.virusbulletin.com/
virusbulletin/2010/04/evasions-intrusion-prevention-detection-systems, [Accessed:
2021-03-28].

[8] I. Corporation, Intel® 64 and ia-32 architectures software developer’s manual, 2021,
p. 18.

[9] User mode and kernel mode, https://docs.microsoft.com/en-us/windows-hardware/
drivers/gettingstarted/user-mode-and-kernel-mode, [Accessed: 2021-03-29].

[10] D. Vostokov, WinDbg: A Reference Poster and Learning Cards. Opentask, 2008,
ISBN: 190671729X.

[11] S. Vömel and F. C. Freiling, “A survey of main memory acquisition and analysis
techniques for the windows operating system,” Digital Investigation, vol. 8, pp. 3–
22, 2011.

[12] A. Ferrari, X86 assembly guide, https://www.cs.virginia.edu/∼evans/cs216/guides/
x86.html, [Accessed: 2021-04-02].

42

https://cloud.google.com/architecture/automating-malware-scanning-for-documents-uploaded-to-cloud-storage
https://cloud.google.com/architecture/automating-malware-scanning-for-documents-uploaded-to-cloud-storage
https://cloud.google.com/architecture/automating-malware-scanning-for-documents-uploaded-to-cloud-storage
https://www.virusbulletin.com/virusbulletin/2010/04/evasions-intrusion-prevention-detection-systems
https://www.virusbulletin.com/virusbulletin/2010/04/evasions-intrusion-prevention-detection-systems
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/user-mode-and-kernel-mode
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” vol. 13,
no. 4, pp. 451–490, Oct. 1991.

[14] D. Qi, H. D. Nguyen, and A. Roychoudhury, “Path exploration based on symbolic
output,” ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, no. 4, p. 32, 2013.

[15] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less traveled
paths,” in Proceedings of the 2013 Annual ACM SIGPLAN International Conference
on Object Oriented Programming, Systems, Languages & Applications (OOPSLA),
Indianapolis, IN, Oct. 2013.

[16] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, et al., “Sok:(state of) the art of war: Offensive tech-
niques in binary analysis,” in Proceedings of the 37th Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[17] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-
path analysis of software systems,” ACM SigPlan Notices, vol. 46, no. 3, pp. 265–
278, 2011.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” ACM SigPlan Notices, vol. 10, no. 6, pp. 234–245, 2005.

[19] R. Felding, Architectural styles and the design of network-based software architec-
tures, 2000.

[20] E. D. Hardt, “The oauth 2.0 authorization framework,” RFC Editor, RFC 6749, Oct.
2012.

[21] Http request methods, https : / / developer. mozilla . org / en - US / docs / Web / HTTP /
Methods, [Accessed: 2021-04-27].

[22] Open movie database, https://www.omdbapi.com/, [Accessed: 2021-04-28].

[23] D. Connolly and L. Masinter, “The ’text/html’ media type,” IETF, RFC 2584, Jun.
2000.

[24] G. J. Széles and A. Coleşa, “Malware clustering based on called api during runtime,”
in Proceedings of the International Workshop on Information and Operational Tech-
nology and Security (IOSec), Crete, GR, Sep. 2018.

[25] Virustotal corporation, https://www.virustotal.com/, [Accessed: 2021-04-02].

43

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://www.omdbapi.com/
https://www.virustotal.com/

[26] The top 500 sites on the web, https://www.alexa.com/topsites, [Accessed: 2021-04-
02].

[27] Windows 32 api reference, https : / / docs .microsoft . com/en - us /windows /win32 /
apiindex/windows-api-list, [Accessed: 2021-04-15].

[28] S. Mittal, A survey of techniques for dynamic branch prediction, Apr. 2018.

[29] F. Kilger, “Extracting ics models from malware via concolic analysis,” M.S. thesis,
Georgia Institute of Technology, 2020.

[30] Understanding sal, https://docs.microsoft.com/en-us/cpp/code-quality/understanding-
sal?view=msvc-160, [Accessed: 2021-04-06].

[31] Ip geolocation api, https://ip-api.com, note=[Accessed: 2021-04-15.

[32] Twitter api, https://developer.twitter.com/en/docs/twitter-api, [Accessed: 2021-04-
21].

[33] Dropbox inc. https://dropbox.com, [Accessed: 2021-04-15.

[34] Qemu: Quick emulator, https://github.com/qemu/QEMU, [Accessed: 2021-04-19].

[35] Virusshare, https://virusshare.com/, [Accessed: 2021-04-20].

[36] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution framework,” in Pro-
ceedings of the Information and Communications Technology Security Symposium
(SSTIC), Rennes, France, 2015, pp. 31–54.

[37] Ida pro - interactive disassembler, https://www.hex-rays.com/IDA-pro/, [Accessed:
2021-04-19].

[38] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in sym-
bolic execution,” ACM SigPlan Notices, vol. 47, no. 6, pp. 193–204, 2012.

[39] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs.,” in Proceedings of the
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
San Diego, CA, Dec. 2008.

[40] Networkx: Network analysis in python, https://networkx.org/, [Accessed: 2021-04-
19].

[41] Z3: The z3 theorem solver, https://github.com/Z3Prover/z3, [Accsesed: 2021-04-19].

44

https://www.alexa.com/topsites
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://docs.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-160
https://docs.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-160
https://ip-api.com
https://developer.twitter.com/en/docs/twitter-api
https://dropbox.com
https://github.com/qemu/QEMU
https://virusshare.com/
https://www.hex-rays.com/IDA-pro/
https://networkx.org/
https://github.com/Z3Prover/z3

[42] Pin 3.18 user guide, https : / / software . intel .com/sites / landingpage/pintool /docs /
98332/Pin/html/, [Accessed: 2021-04-19].

[43] Let’s dig into vidar – an arkei copycat/forked stealer (in-depth analysis), https : / /
fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-
depth-analysis/, [Accessed: 2021-04-20].

[44] China-based cyber threat group uses dropbox for malware communications and tar-
gets hong kong media outlets, https://www.fireeye.com/blog/threat-research/2015/
11/china-based-threat.html, [Accessed: 2021-04-20].

[45] How dropbox handles viruses and malicious software, https://help.dropbox.com/
accounts-billing/security/viruses-malware, [Accessed: 2021-04-20].

[46] Analyzing malware by api calls, https: / /blog.malwarebytes.com/threat- analysis/
2017/10/analyzing-malware-by-api-calls/, [Accessed: 2021-04-21].

[47] S. Lee and J. Kim, “Warningbird: A near real-time detection system for suspicious
urls in twitter stream,” Feb. 2012.

[48] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin, “Automatically
identifying trigger-based behavior in malware,” in Botnet Detection, Springer, 2008,
pp. 65–88.

[49] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting Malware Anal-
ysis with Symbolic Execution: A Case Study,” in Proceedings of the International
Conference on Cyber Security Cryptography and Machine Learning (CSCML), Is-
rael, Jun. 2017.

[50] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for Mal-
ware Analysis,” in Proceedings of the 28th Symposium on Security and Privacy
(Oakland), Oakland, CA, May 2007.

[51] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala, “Malware
detection using assembly and api call sequences,” Journal in Computer Virology,
vol. 7, pp. 107–119, 2011.

45

https://software.intel.com/sites/landingpage/pintool/docs/98332/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/98332/Pin/html/
https://fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-depth-analysis/
https://fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-depth-analysis/
https://fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-depth-analysis/
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://help.dropbox.com/accounts-billing/security/viruses-malware
https://help.dropbox.com/accounts-billing/security/viruses-malware
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	2 | Background
	Static Analysis
	Concrete Analysis
	Concolic Analysis
	Web APIs

	3 | Design
	Dataset
	Code Coverage
	Data Modeling
	Web Profiling
	Rules

	4 | Implementation
	Environment
	Choice of Tooling
	Expanding the Triton Dynamic Analysis Framework
	Creating Dataset Rules

	5 | Evaluation
	Vidar Case Study
	LOWBALL Case Study
	Vflooder Case Study
	Findings

	6 | Conclusion
	Related Works
	Limitations
	Conclusion

	References

