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SUMMARY 

This research work presents a methodology for simulating the effects of total 

ionizing dose (TID) radiation upon RRAM-based neural network accelerators. The 

experimental data on irradiating a 256×256 RRAM array test chip with 60Co gamma rays 

up to a maximum TID of 1 Mrad (Si) were characterized with statistical methods in order 

to model the drift in RRAM cell conductance as a function of TID level. Multiple deep 

neural network (DNN) models were developed in the PyTorch framework in order to 

evaluate the effects of TID on DNNs implemented in hardware with similar RRAM 

memory technology and levels of radiation exposure. Using the statistical parameters 

discovered from the experimental TID data, weight changes were injected into the DNNs 

in order to simulate TID radiation effects and evaluate the resultant change of inference 

accuracy. Multiple simulations were conducted adhering to this methodology and the 

results pertaining to TID-induced inference accuracy degradation are discussed further in 

this work. 
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CHAPTER 1. INTRODUCTION 

Emerging memory technologies are of particular interest to the aerospace and nuclear 

industries where choosing low-cost, high-density, and radiation-hardened non-volatile 

memory (NVM) is one of the key challenges in designing systems for harsh environments. 

Edge autonomy is also becoming a more desirable feature for those industries since many 

of their designs include small embedded systems which are not connected to the Internet 

and must meet real-time software deadlines for safe functionality. One example from the 

aerospace industry is the Mars Perseverance rover, which has complex scheduling tasks, a 

limited power budget, and is too far from Earth to receive immediate feedback from 

mission control. To improve its science throughput, Perseverance uses onboard planning 

software to operate autonomously between ground control commands. One example from 

the nuclear industry is the hundreds of connected sensors and actuators throughout every 

nuclear plant which monitor for abnormal conditions, report real-time power production 

data, and control time-sensitive mechanisms such as uranium centrifuges. Improved 

radiation-hardened processing and AI are vital innovations for the future of the aerospace 

and nuclear activities. 

Many of the aerospace and nuclear plant computer systems in operation today 

employ Flash memory in their designs due to its low cost and high density. Flash achieves 

its high density by storing charge in floating-gate MOS transistors, but as a result, suffers 

from relatively low program/erase endurance when compared to other memory 

technologies such as dynamic random-access memory (DRAM) or hard disk drives (HDD) 

[1]. Flash is also particularly susceptible to failures as a result of ionizing radiation which 
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is present both in deep space and in nuclear reactors. Today’s Flash technology can only 

sustain a total ionizing dose (TID) up to 75 krad (Si) and suffers functional failures during 

writes due to radiation-induced charge pump degradation [2]. Therefore, it is necessary to 

assess the radiation hardness of emerging NVM technologies such as resistive random-

access memory (RRAM), as well as the radiation tolerance of RRAM-based neural network 

architectures that may be deployed on edge devices like spacecrafts or nuclear reactors. 

In this research, the cumulative effects of TID radiation on a HfO2-based RRAM 

memory array were characterized from hardware tests and then simulated in software to 

determine the radiation tolerance of various neural network architectures implemented with 

HfO2 RRAM memory. The rest of this chapter provides background information needed to 

understand the work presented in this thesis. 

1.1 Metal-Oxide RRAM Device 

Metal-oxide RRAM is an emerging NVM technology that has seen intense research 

and development in both academia and industry over the past decade. It is classified into 

the emerging “non-volatile RAM” (NVRAM) category of memory along with other 

emerging technologies such as phase change memory (PCM) and magneto-resistive RAM 

(MRAM). Similar to PCM and MRAM, the RRAM memory cell functions as a 

“memristor”; it is a two-terminal device whose resistance can be electrically programmed 

to a high resistance state (HRS) or a low resistance state (LRS) in order to encode bits (1 

or 0). When operated in multi-level cell (MLC) mode, multiple resistance levels between 

the HRS and LRS can be programmed to encode multiple bits per cell (e.g., with 4 

programmable resistance levels, a single RRAM cell could encode log2(4) = 2 bits). Metal-
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oxide RRAM is constructed with an insulating metal-oxide dielectric, such as HfO2, 

sandwiched between two conducting electrodes (Fig. 1). The resistance of the channel is 

controlled by applying a high voltage across the electrodes in order to form/destroy a 

conductive filament in the insulating layer. 

 

Fig. 1. Schematic of a metal-oxide RRAM cell with unipolar and bipolar I-V curves [3]. 

The early RRAM devices in the mid-2000s had large device areas (>> μm2), large 

programming currents (~ mA), long programming times (> μs), low endurance (< 103 

cycles), and required a large forming voltage (~10 V). In the mid-2010s, many of these 

deficiencies had been overcome. Device sizes down to 10 nm or below have been 

demonstrated, programming currents are now in the order of a few μA or tens of μA, 

programming speed is on the order of a few ns or tens of ns, programming endurance cycles 

are typically larger than 106, retention time can be as long as 3000 hours at 150 °C (which 

is extrapolated to be more than 10 years at 85 °C), and the forming process with large 

voltage in the first cycle can be much reduced to below 3V or even eliminated by shrinking 

the oxide thickness. Most of these good characteristics were reported in HfO2 material 

systems, which are compatible with standard silicon CMOS processes. HfO2 RRAM has 

since been demonstrated at the chip-level by various research institutions and companies 



 4 

as a viable embedded NVM technology down to a 22 nm feature size (Windbond [4], 

TSMC [5], Intel [6], etc.)  

1.2 Deep Neural Networks 

In the field of machine learning, there are two distinct tasks which comprise most 

state-of-the-art inference models: feature extraction and classification. Neural networks are 

a type of machine learning model which have rose to prominence in the past decade due to 

their ability to learn feature extraction and classification simultaneously from raw input 

data. Advancements in the field of neural networks such as backpropagation, batch 

normalization, regularization, and optimization algorithms have enabled the creation of 

deep neural networks (DNN) which consist of many stacked layers of connected neurons 

and potentially millions of trainable parameters. DNNs such as AlphaGo, GoogLeNet, and 

DCGAN have revolutionized the field of artificial intelligence, displaying extremely high 

accuracies and performances which were even demonstrated to surpass human ability. 

Various DNN architectures exist for various purposes, with three being frequently used in 

today’s industry: convolutional neural networks (CNN), recurrent neural networks (RNN), 

and generative adversarial networks (GAN). 

1.2.1 Convolutional Neural Network (CNN) 

Convolutional neural networks are a class of DNNs which are commonly used for 

image classification, image segmentation, video recognition, and signal processing. They 

are usually comprised of multiple interleaved convolutional layers and pooling layers. The 

convolutional layers convolve input data with a small kernel, producing a feature map that 

gets passed to the next layer. This process is similar to how individual neurons in the visual 
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cortex of the brain respond to stimuli only in a restricted region of the visual field (i.e., the 

receptive field). The pooling layers then reduce the dimension of the input data by 

combining the outputs of clusters of neurons into a single neuron in the next layer. This 

allows for the dominant features in the feature map which are positionally and rotationally 

invariant to be extracted and passed to the classification layer. By cascading convolutional 

layers and pooling layers, CNNs achieve high performance in a variety of image-related 

inference tasks with computational efficiency and built-in noise suppression. 

Fig. 2. CNN architecture for classifying handwritten digits from the MNIST dataset [7]. 

1.2.2 Recurrent Neural Network (RNN) 

Recurrent neural networks differ from other types of DNNs in that they include 

feedback connections to compute current outputs from current inputs + previous outputs. 

This recurrent structure allows RNNs to hold “memory” over time which aids in learning 

temporally dependent features from time-series input data. RNNs are commonly used in 

natural language processing (NLP), speech recognition, and text autocompletion systems. 
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Fig. 3. Basic RNN unfolded in time. Feedback connections hold time series features in “memory” [8]. 

1.2.3 Generative Adversarial Network (GAN) 

Generative adversarial networks are unique in that they train two models at the same 

time, namely the “generator” model and the “discriminator” model. The generator model, 

given a latent input vector, attempts to generate output data which mimics data from the 

original dataset. The discriminator model, given input data, attempts to determine the 

certainty that the input came from the original dataset. During training, these two models 

engage in a zero-sum game where the generator learns to produce fake data more 

representative of the dataset while the discriminator learns to be more accurate in 

discriminating fake data from real data. The result of this training process is a generator 

model that is highly capable of generating new data that appears to be from the original 

dataset. GANs are most often used in image reconstruction, video generation, and 

automatic dataset augmentation. 
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Fig. 4. GAN training process involves pitting a generator and discriminator against each other [9]. 

1.3 Neural Network Quantization 

In the field of deep learning, quantization refers to the technique of shrinking the 

memory footprint of a neural network by reducing the numerical precision of its learnable 

parameters. For example, the weights and activations of a model can often be quantized 

from 32-bit floating point values to integer values of lower bit width (e.g., 8-bit, 4-bit, or 

2-bit) in order to save memory and reduce computation. Weight quantization is often a 

necessary step in order to deploy DNNs on resource-constrained devices which may not 

have enough memory or floating-point hardware to perform inference efficiently. 

Quantization often comes at a cost of reduced inference accuracy. However, many 

quantization methods have been demonstrated in the literature which are highly successful 
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in minimizing performance degradation [10, 11, 12]. CNNs have generally enjoyed the 

most success with quantization. Applying quantization methods to other types of DNN 

architectures like RNN and GAN have been less successful due to their significantly higher 

sensitivity to weight initialization, weight precision, and hyperparameters during training 

[13]. However, some promising methods for RNN and GAN quantization have been 

proposed [13, 14, 15]. 

1.4 Neural Network Hardware Acceleration 

Performing DNN computations efficiently is necessary for deploying DNNs on edge 

devices such as airplanes, spacecraft, and nuclear reactors. However, training and 

evaluating a large neural network is known to be both a memory-intensive and compute-

intensive task. Large neural networks can have tens of millions of parameters which must 

be frequently transferred between on-chip memory, off-chip memory, CPU, and GPU if 

available. At the same time, one or more compute units must perform thousands of 

multiply-and-accumulate (MAC) operations with the network’s weights in order to 

perform matrix-vector multiplications that produce the network outputs as well as gradients 

for weight updates. Although various techniques have been introduced to optimize this 

enormous computational cost, data movement still takes up to 90% of the total energy 

consumption even in highly optimized ASIC designs [16]. Researchers have been studying 

ways to tackle this “memory wall” problem by creating efficient hardware architectures for 

neural network training and inference. 

Most computer systems today are implemented with a von Neumann architecture, 

which is to say that the computer’s central processing unit and main memory unit are 
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logically separated. In such an architecture, CPU accesses to memory result in the desired 

bits being read out from the memory array row-by-row and then transferred to the CPU for 

processing. Although von Neumann computers still dominate in industry due to their 

simple design and long heritage, they also suffer from performance limitations when used 

in memory intensive applications such as DNN training and inference since all data must 

be transferred out of memory and then back into memory many times over. Processing-in-

memory (PIM) architectures have recently emerged as a potential solution for DNN 

acceleration in hardware. Instead of one or a few CPUs reading bits row-by-row from a 

main memory unit, many small compute units are interleaved with many small memory 

units in a fabric for increased parallelism. MAC operations can then be performed along 

memory array bit lines with analog current and voltage for increased computational 

efficiency. Specifically, Ohm’s Law (I = V/R = VG) applied to each cell of the array can 

be used to implement analog floating-point multiplication and Kirchhoff’s Current Law 

(∑Iout = ∑Iin) applied to the bit lines of the array can be used to implement floating-point 

addition. Crossbar memory arrays with selector-based cell access have also shown latency 

and energy improvements over traditional transistor-based cell access. 
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Fig. 5. Brain-inspired, non-von Neumann computing in which a dense crossbar array of memristors hold 

the synaptic weights of a neural network [17]. 

Due to its high density, high endurance, and precise programming with analog 

properties, RRAM is considered a promising candidate for storing synaptic weights in 

hardware implementations of neural networks. An RRAM-based memory array could be 

configured as an in-memory computing fabric like the PIM architecture described above. 

Then by mapping quantized weights into the RRAM array conductances and mapping 

network inputs into analog signals on the horizontal word lines, MACs can be efficiently 

performed in memory by reading out the analog currents on the vertical bit lines and 

converting them to digital values with ADCs. The variable resistance property of RRAM 

also makes it an attractive technology for use in spiking neural networks (SNN). SNNs 

differ from artificial neural networks in that they more closely mimic the biological 

structure of the brain and the electrical interactions between neurons over time. A neuron 

in an SNN only fires when its membrane potential exceeds some threshold. The signal from 

one neuron travels to other nearby neurons which, in turn, increase or decrease their 
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potentials in response and either fire or do not fire based on those potentials. Therefore, the 

resistance of an RRAM cell can function as the synapse between neurons, affecting their 

membrane potentials and spiking patterns. Computing paradigms which mimic the 

structure of the brain are also known as neuromorphic computing architectures. 
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CHAPTER 2. EXPERIMENTAL DATA ANALYSIS 

 This chapter describes the process by which experimental evidence for the effects 

of TID radiation on a multi-level RRAM array was collected. Then the statistical analysis 

used to extract conductance drift parameters from the experimental data is described. 

Finally, the conductance drift parameters are presented and discussed. 

2.1 HfO2 RRAM Test Chip 

In order to quantify the TID effect, gamma-ray irradiation up to 1 Mrad (Si) was 

performed on a HfO2 RRAM test chip in an experimental facility by our collaborators at 

Arizona State University [18]. The chip under test includes CMOS peripheral circuits (e.g., 

row decoder and level shifter) that control read/write access to a 256×256 one-transistor-

one-resistor (1T1R) array, as shown in Fig. 6. The chip was fabricated in a 90nm 

technology node by courtesy of Winbond Electronics (Taiwan) and supported 2-bit MLC 

operation for a total of 4 programmable cell states. In order to test the effects of radiation 

on each cell state, 4096 cells of each state were programmed into the array as 64×64 

subarrays. Table 1 shows the mapping of conductance values to cell states. State 1 is the 

high resistance state (HRS), State 4 is the low resistance state (LRS), and State 2 and State 

3 are the intermediate states. After successfully programming all the cells, the chip was 

irradiated in a test chamber with 60Co gamma rays. The cell conductances were then read 

out of the array at increasing TID levels and recorded for later data analysis. The discrete 

TID levels observed were 36 krad (Si), 255 krad (Si), 358 krad (Si), 652 krad (Si), and 932 

krad (Si). A secondary RRAM chip was also programmed identically to the first chip but 
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not exposed to TID in order to be used as a control sample. Its conductances were read out 

at the same times as the radiation sample for comparison. 

 

Fig. 6. (a) Die micrograph of the 64kb RRAM test chip. (b) Circuit schematic of the chip including: 256×256 

1T1R RRAM array, column and row decoders, level shifter, and mux based on transmission gates [18]. 

TABLE 1. CONDUCTANCE MAPPING TO CELL STATE 

State 1 (HRS) <1.25 μS 

State 2 (Intermediate) 52 μS ± 10% 

State 3 (Intermediate) 104 μS ± 10% 

State 4 (LRS) 156 μS ± 10% 
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2.2 Experimental Results 

The heat maps in Fig. 7-9 visualize the 4 cell states of the radiation sample (into 

the four-quadrant plot) from the experimental data before irradiation, at TID level = 36 

krad (Si) and at TID level = 932 krad (Si), respectively. During the irradiation, there is a 

measurable fluctuation of conductance values within each state, especially for State 2 and 

State 3. This observation is consistent with our current understanding of RRAM device 

physics, which suggests that intermediate states are more unstable due to the instability of 

forming weak conductive filaments that consist of oxygen vacancies. 

There are also a handful of cells whose conductances shifted significantly enough 

to transition into other states. It is noticeable that at TID level = 36 krad (Si), some cells in 

State 1 flipped to State 4, while at TID level = 932 krad (Si), a portion of those cells 

recovered. Previous research has also observed such instability with possible flipping 

direction from HRS to LRS or vice versa [19]. This phenomenon was attributed to non-

bridging oxygen being created by the irradiation as indicated by X-ray photoelectron 

spectroscopy (XPS). In the XPS spectra, the non-bridging oxygen peak significantly 

increased post-irradiation, indicating bond-breaking in the HfO2 thin film and generation 

of new pairs of oxygen vacancies and oxygen ions. The new oxygen vacancies could form 

conductive filaments, triggering the HRS → LRS transition, while the creation of oxygen 

ions near the existing filaments could rupture the filaments, yielding the LRS → HRS 

transition. 
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Fig. 7. Pre-irradiation heat map of cell conductances in the test chip. Bottom left = state 1 (HRS); Bottom 

right = state 2; Top left = state 3; Top right = state 4 (LRS). 

 

Fig. 8. Post-irradiation heat map of cell conductances in the test chip after TID of 36 krad (Si). A number of 

cells in state 1 (HRS) flipped to state 4 (LRS). 
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Fig. 9. Post-irradiation heat map of cell conductances in the test chip after TID of 932 krad (Si). Some cells 

in state 4 flipped back to HRS. 

A general downward trend in the change of conductance can also be seen in the 

data visualizations. Fig. 10 shows the cumulative distribution function (CDF) of the 

conductance distributions for each state before irradiation and after 932krad (Si) of TID. 

The first conclusion that can be made from this data is that the distributions are strongly 

Gaussian as anticipated. The second conclusion is that there are slight bends in the tails of 

the distributions due to intrastate fluctuation, and some tail bits can be seen to have 

switched states entirely. Some cells in state 1 transitioned to State 3 and State 4, some cells 

in State 2 transitioned to State 1, and some cells in State 4 transitioned to State 3. 
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Fig. 10. The 4-state conductance distribution measured from the RRAM test chip before (a) and after (b) TID 

irradiation of 932krad (Si). The y-axis is presented in Gaussian scale. 

Fig. 11 shows a random selection of 128 cells from each state and how their 

conductances changed across all the measured TID levels. The conductance fluctuations 

and outliers can be clearly seen. State 1 has the most outliers and shows the most inter-

state variation. State 2 is the most unstable and shows the most intra-state variation. State 

3 is relatively stable, and State 4 is relatively stable with the fewest outliers. 
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Fig. 11. A random selection of 128 cells from each state in the test chip plotted against TID level. State 1 had 

the most outliers. State 2 was the most unstable and showed the most intra-state variation. State 3 and State 

4 had significant intra-state variation but the fewest outliers. 

2.3 Statistical Analysis 

The experimental data suggest that TID has an influence on both the analog and 

digital properties of the RRAM cells. Specifically, the conductances of the cells show slight 

drift and fluctuation within each state, while a small portion of cells showed large enough 

conductance variation to flip to other states. Therefore, the parameters of interest for TID 

analysis are the conductance mean drift, conductance fluctuation, and percentage of cells 

which flipped to other states. 

The process for extracting the proportion of cells which flipped to other states was 

simple. By comparing the conductance values of each cell at a given TID level to their 

initial pre-irradiation values, the cells which transitioned into different conductance ranges 

could be identified and counted. The results of this process after 1 Mrad (Si) of TID are 

summarized in Table 2. HRS → LRS transitions were most frequent, with transitions into 



 20 

the intermediate states being less frequent but non-negligible. Adopting a frequentist 

approach, these results can be interpreted as the independent probabilities of a cell flipping 

to another state after 1 Mrad (Si) of exposure. 

TABLE 2. INTER-STATE TRANSITION PROBABILITIES AT 932KRAD 

State 1 → State 4 0.146% 

State 2 → State 1 0.098% 

State 4 → State 3 0.049% 

 

In order to characterize the analog MLC RRAM conductance trends as a function of 

TID level, the following methodology was derived: First, the outlier cells which “digitally” 

flipped to other states are removed in order to not bias the mean. Then, the relative 

conductance change of a cell, ΔG, is measured at each radiation dose by taking the 

difference between the current G of the cell and the initial pre-irradiation G of the cell. 

 Δ𝐺 = 𝐺𝑇𝐼𝐷 𝑙𝑒𝑣𝑒𝑙 − 𝐺𝑝𝑟𝑒 𝑟𝑎𝑑 (1) 

ΔG is thus calculated for each cell, and the average μ(ΔG) and standard deviation 

σ(ΔG) at every TID level for each state 1-4 are obtained. The results of this process after 1 

Mrad (Si) of TID are summarized in Table 3. The aforementioned downward trend in 

conductance change can also be observed in this table. Aside from State 2 which exhibited 
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the most instability, the rest of the states showed an overall negative change in G when 

compared to the pre-irradiation baseline. 

TABLE 3. MEAN AND STDEV OF ΔG FOR EACH STATE AT 932 KRAD 

Cell State μ(ΔG) σ(ΔG) 

1 (HRS) -0.114 μS 0.434 μS 

2 (Intermediate) 0.765 μS 10.99 μS 

3 (Intermediate) -1.025 μS 1.240 μS 

4 (LRS) -1.264 μS 1.209 μS 

 

It is understood that RRAM may exhibit retention degradation even without 

irradiation due to thermal activation in the CMOS process. Therefore, it is important to 

compare μ(ΔG) and σ(ΔG) between the radiation sample and the control sample (i.e., the 

identical chip that did not go through the irradiation but was tested at the same time 

intervals). Fig. 12-13 show the μ(ΔG) and σ(ΔG) between the radiation sample and the 

control sample for each of the 4 states. 
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Fig. 12. Comparison between radiation sample and control sample of μ(ΔG) for each state across all the 

TID levels. 
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Fig. 13. Comparison between radiation sample and control sample of σ(ΔG) for each state across all the 

TID levels. 

The data from Fig. 12-13 reveal that the radiation sample has ~3-5X larger μ(ΔG), 

but similar amount of σ(ΔG) when compared to the control sample. This means that the 

TID effect mainly causes conductance drift, while conductance fluctuation is a more 

intrinsic property potentially attributed to thermal vibration. 
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2.4 Discussion 

It is clear from the experimental data that HfO2 RRAM arrays are susceptible to 

conductance fluctuations under the influence of total ionizing dose radiation. Specifically, 

the effects of TID exhibited analog behavior in the form of intra-state conductance drift, as 

well as digital behavior in the form of inter-state bit flips. When simulating TID effects in 

an analog-based neural network accelerator, it is necessary to include the effects of both 

these phenomena into the weight update mechanism. The following section describes the 

weight update methodology, as well as the experimental setup for TID effect simulation 

and the results of TID simulation on multiple different DNNs. 
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CHAPTER 3. NEURAL NETWORK SIMULATIONS 

This chapter introduces the deep neural network models that were used in the analysis 

of performance degradation under the influence of TID. First, the models and associated 

datasets are explained. Then, the TID simulation methodology is explained. Finally, the 

results of the simulation experiments are presented and discussed. 

3.1 DNN Models 

Multiple DNN models with different architectures and inference tasks were 

developed using the PyTorch deep learning framework in order to compare TID results 

across architectures and come to more general conclusions about the impact of TID on 

RRAM-based DNNs. Two important DNN tasks were identified: classification and 

generation. For the classification task, three popular CNN models were trained to classify 

images from the CIFAR-10 and ImageNette datasets. For the generation task, an RNN was 

trained to predict next characters based on previous characters in the Text8 and Penn 

Treebank datasets. Summaries of each architecture are given below.  

3.1.1 Convolutional Neural Networks (CNN) 

3.1.1.1 VGG-16 

The VGG-16 model is a very popular CNN architecture that is commonplace in 

both industry and academia. It became famous for its simplicity and high performance in 

image classification at the 2014 ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) competition. The VGG network architecture generally consists of multiple 
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cascaded convolutional layers followed by max-pooling layers and then one or more fully 

connected layers for softmax classification. In the case of VGG-16, there are sixteen weight 

layers comprised of thirteen convolutional layers and three fully connected layers. Max 

pooling layers are placed between each convolutional filter block. The full architecture for 

each dataset is shown in Fig. 14. 

 

Fig. 14. The VGG-16 architecture consists of a pipeline of convolutional layers, max-pooling layers, and 

Rectified Linear Unit (ReLU) activations followed by one or more fully connected (FC) layers for softmax 

classification into the 10 different classes. 

3.1.1.2 VGG-8 

The VGG-8 model is a condensed version of the popular VGG-16 model. It has a 

similar architecture to VGG-16 but is half as deep with less layers and trainable weights. 

In particular, the VGG-8 model has eight weight layers comprised of three pairs of 
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convolutional layers with max-pooling in between and two fully connected layers. The full 

architecture for each dataset is shown in Fig. 15. 

 

Fig. 15. The VGG-8 architecture is nearly identical to VGG-16, although it is shallower with only eight 

weight layers as opposed to sixteen. 

3.1.1.3 ResNet-18 

The ResNet-18 model is another highly popular model which gained fame after 

winning 1st place in image classification at the 2015 ILSVRC competition. The model 

contains eighteen weight layers which comprise four “residual learning blocks.” Each 

block of the network contains both convolutional layers and shortcut connections to future 

blocks. The shortcut connections allow for information to flow from the initial layers to 

the last layers in one hop which helps alleviate the effects of overfitting during training. 
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This technique was shown to enable even deeper networks than VGG. The full architecture 

is shown in Fig. 16. 

 

Fig. 16. The ResNet-18 architecture consists of a regular feed-forward pipeline like VGG-16 and VGG-8, 

but also has skip connections between convolutional blocks. ResNet-18 is the deepest model of the three and 

only has one max-pool and one average-pool layer before a fully connected layer for classification. 

3.1.2 Recurrent Neural Networks (RNN) 

3.1.2.1 LSTM 

Although basic RNNs have shown good performance on some time-dependent tasks, their 

performance is known to be limited by a few major issues such as the vanishing gradient 

problem in training and the short-term memory problem in inference. In other words, basic 

RNNs are difficult to train, and they “forget” temporal dependencies in the dataset quickly 
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which hinders their performance on tasks that require longer-term context memory like 

speech recognition and NLP. To solve this problem, many variants of the RNN architecture 

have been explored in the literature. One of the most popular RNN variants is the Long 

Short-Term Memory (LSTM) architecture. The LSTM architecture consists of multiple 

LSTM cells connected sequentially, where each LSTM cell has three information pathways 

known as the input gate, output gate, and forget gate. The forget gate decides what 

information in the cell is important to keep or forget, the input gate decides what 

information should enter long term memory, and the output gate decides what information 

should be passed to the next LSTM cell or network layer. This carefully regulated cell 

structure allows an LSTM network to “remember” information for longer periods of time 

than the basic RNN architecture and helps avoid the vanishing gradient problem that 

commonly plagues RNNs. Therefore, due to its superior properties, an LSTM network with 

512 hidden cell units was used for testing the effects of TID on RNNs in this experiment. 

The full architecture is shown in Fig. 17. 
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Fig. 17. The LSTM architecture consists of an embedding layer which learns to group input words of similar 

meaning, an LSTM layer with 512 hidden units for context learning, and then a fully connected layer to 

predict the next character. The Text8 dataset has 27 unique characters whereas Penn Treebank has 50. 

3.2 Datasets 

The datasets used for training the CNNs are comprised of thousands of images of ten 

different classes. Specifically, two popular image datasets were used to train the CNNs for 

image classification: CIFAR-10 and ImageNette. The images from these datasets are of 

assorted sizes, resolutions, and classes. Each image class refers to a different main subject 

of the image (e.g., dog, horse, airplane, truck, French horn, golf ball). 

The datasets used for training the RNN are comprised of millions of English 

characters and words. Specifically, two popular language datasets were used to train the 
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RNN for character sequence prediction: Text8 and Penn Treebank. The sentences from 

these datasets come from various encyclopaedia, news, and literature sources and are 

commonly used for evaluating models on sequence labelling tasks. 

3.2.1 CIFAR-10 

The CIFAR-10 dataset [20] was prepared by the Canadian Institute for Advanced 

Research and contains 60,000 color images with 32×32 resolution in 10 different classes. 

There are 6,000 images of each class with the 10 different classes representing airplanes, 

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. The images in CIFAR-10 are 

very low resolution and are a labelled subset of the 80 Million Tiny Images dataset. CIFAR-

10 is often used for quickly prototyping neural networks for image classification tasks. 

3.2.2 ImageNette 

The ImageNette dataset [21] was prepared by Fast.ai, a non-profit research group 

focused on deep learning and artificial intelligence. The images in ImageNette are a 

labelled subset of the popular ImageNet dataset, which contains over 14,000,000 images 

and is used in the annual ILSVRC competition to determine the state-of-the-art DNNs for 

image classification and object detection. ImageNette contains 14,000 color images of 

varying sizes in 10 different classes. The 10 classes are tench, English springer, cassette 

player, chain saw, church, French horn, garbage truck, gas pump, golf ball, and parachute. 

Since each image in the dataset has a different size, our PyTorch code applies bilinear 

interpolation to resize the images to 224×224 resolution before passing them to the 

networks. 
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3.2.3 Text8 

The Text8 dataset [22] was prepared by Matt Mahoney. It is a 100 MB subset of 

“clean” English text (A-Z characters only) from the first 109 bytes of a dump of Wikipedia 

from 2006. It is commonly used for prototyping sequence based DNN models. 

3.2.4 Penn Treebank 

The English Penn Treebank (PTB) dataset [23] was prepared by the Penn Treebank 

Project team. It consists of a selection of 98,732 stories from the Wall Street Journal over 

a three-year period. The dataset includes over 7,000,000 words and 50 unique characters. 

PTB is commonly used for NLP research. 

3.3 Methodology 

There are three main steps to simulating the effects of TID on a DNN implemented 

with HfO2 RRAM. First, the neural network must be trained and quantized to the bit 

precision of the RRAM hardware. Then, analog shift is applied to each weight of the 

network according to observed trends in the experimental TID data. Finally, digital shift is 

applied to a small percentage of weights to simulate the outlier RRAM cells which flip to 

other states. Each step of the process is explained more thoroughly in this section. 

3.3.1 Quantization 

The first step in the methodology is to make the DNN models compatible with the 

RRAM device cell precision. In this study, an RRAM chip with 2-bit MLC precision was 

used. Therefore, the weights of the neural networks must also be quantized to 2-bit values. 
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This quantization step was performed for each CNN model using the WAGE framework 

from [10]. WAGE constrains weights (W), activations (A), gradients (G) and errors (E) 

among all the layers of a CNN to low bit width integers in both training and inference. 

Therefore, a 2-8-8-8 W/A/G/E configuration was used in this work to isolate the effects of 

TID on weights while still keeping fairly high precision for activations, gradients, and 

errors which could be computed in a neuromorphic computing architecture with analog 

circuitry. For the RNN models, the Trained Ternary Quantization (TTQ) method from [15] 

is used. Quantizing RNNs is known to be a more challenging task since quantization 

naturally augments the exploding/vanishing gradient problem which RNNs already 

struggle with at full 32-bit precision. However, TTQ has shown good performance for low 

bit width RNN performance on language modelling tasks [14]. 

One caveat to the training process is that both WAGE and TTQ quantization with 2-

bit precision actually produce symmetric ternary weights centered at 0 (i.e., (-x, 0, +x)) 

instead of utilizing the full range of quaternary values that are possible with 2 bits (i.e., (-

x, -y, +y, +x)). This is because prior research has shown that symmetric ternary weights 

tend to perform better than binary and quaternary weights [10, 14]. WAGE clamps the 

weights between [-0.5, +0.5] and scales them down in later layers of the network by a 

constant scalar value in order to simplify batch normalization and prevent 

exploding/vanishing gradients during backpropagation. Since now the weight values are 

quantized to (-0.5, 0, +0.5) but there are 4 cell states in the RRAM hardware, two mapping 

schemes were devised: the first scheme is to map States 1/2/3 to (-0.5, 0, +0.5) and the 

second scheme is to map States 2/3/4 to (-0.5, 0, +0.5). These mapping schemes will be 

referred to as Scheme A and Scheme B respectively. For consistency, Scheme A and 
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Scheme B are also used in evaluating the RNN with TTQ quantization. It’s worth noting 

that in a physical hardware design, negative weights can still be represented by using the 

middle state as a reference and performing differential read-out in the practical circuits. 

3.3.2 Analog Weight Updates 

In order to simulate the “analog” effects of TID exposure on RRAM-based neural 

networks, the conductance drift and conductance fluctuation phenomena previously 

discussed in Section 2 must be incorporated into the weights of the neural network. This 

weight update process is summarized by the following two steps: 

1. For each weight in the network, sample a ΔG from the Gaussian distribution: 

𝛥𝐺 = 𝒩(𝜇(∆𝐺),  𝜎(∆𝐺)2) (2) 

where μ(ΔG) and σ(ΔG) are the drift and fluctuation parameters at 1 Mrad (Si) 

corresponding to the associated cell state for that weight. 

2. Map ΔG → ΔW according to the rule: 

 
𝐺𝑟𝑒𝑓 =

𝐺𝑚𝑎𝑥 + 𝐺𝑚𝑖𝑛

2
 (3) 

 𝑊 = (𝐺 −  𝐺𝑟𝑒𝑓) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑐𝑎𝑙𝑒 (4) 

where weight scale is a constant scalar used by WAGE and TTQ to scale down the 

weight magnitudes in each layer, simplifying batch normalization and achieving 

better training stability. 
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Table 3 shows the conductance drift and fluctuation parameters for each of the four cell 

states at 1 Mrad (Si). 

3.3.3 Digital Weight Updates 

In order to simulate the “digital” effects of TID radiation on RRAM memory arrays, 

the bit flipping phenomenon previously described in Section 2 must also be incorporated 

into the weights of the neural network. The outlier transition probabilities for each cell state 

at 1 Mrad (Si) are shown in Table 2. The error caused by RRAM cell conductances shifting 

to other levels was simulated in the DNN models by modifying random weights in each 

layer of the network so as to fit the same distribution of state transitions. For example, the 

experimental data showed that 0.146% of the cells transitioned from HRS to LRS. Taking 

that number as the probability of HRS → LRS transitions, 0.146% of the HRS weights in 

the DNN were changed to LRS weights. This process is repeated for all observed state 

transitions. 

3.4 Results 

3.4.1 CNN Models 

For experimental validation, each CNN model was trained on each image dataset for 

300 epochs and the baseline pre-irradiation inference accuracy for each of the DNN models 

was recorded. Then, each CNN was evaluated ten times under a simulated TID exposure 

of 1 Mrad (Si). During each trial, the weights of the baseline CNN were modified according 

to the TID simulation methodology using weight mapping Scheme A. Then the baseline 

CNN was modified according to the TID simulation methodology using weight mapping 
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Scheme B. The results of the ten trials for each CNN on each dataset were averaged and 

the resulting accuracy degradations were calculated. Table 4 shows the experimental 

results for each model on the CIFAR-10 dataset along with the number of weights in each 

model. Table 5 shows the experimental results for each model on the ImageNette dataset 

along with the number of weights in each model. 

TABLE 4. TID SIMULATION RESULTS ON THE CIFAR-10 DATASET 

Model Baseline Post-Rad 

Scheme A 

Post-Rad 

Scheme B 

Acc. Deg. 

Scheme A 

Acc. Deg. 

Scheme B 

# Network 

Weights 

VGG-8 93.15% 92.69% 92.62% -0.46% -0.53% 12,973,440 

VGG-16 88.91% 87.70% 88.17% -1.21% -0.74% 14,715,584 

ResNet-18 72.28% 66.95% 23.66% -5.33% -48.62% 11,172,032 

 

TABLE 5. TID SIMULATION RESULTS ON THE IMAGENETTE DATASET 

Model Baseline Post-Rad 

Scheme A 

Post-Rad 

Scheme B 

Acc. Deg. 

Scheme A 

Acc. Deg. 

Scheme B 

# Network 

Weights 

VGG-8 62.39% 61.68% 30.06% -0.71% -32.33% 30,274,944 

VGG-16 89.32% 88.92% 87.80% -0.40% -1.52% 134,289,088 

ResNet-18 87.54% 86.73% 33.99% -0.81% -53.55% 11,172,032 
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It should be noted that not all baseline accuracies are of similar value. Achieving 

state-of-the-art (>90%) accuracy on a dataset is a difficult undertaking which requires 

extensive testing, validation, architecture modification, and hyperparameter tuning. 

Different models tend to require different sets of parameters for maximum training 

efficacy. Larger models also tend to take longer to train but have higher upper limits on 

their accuracies. Since all models in this experiment were trained for 300 epochs using 

similar batch sizes and learning rates for variable control, the classification accuracies 

differ. For VGG-8, we also look at Top-1 accuracy while the other models use Top-5. 

However, for the purposes of this research, we are more interested in the TID-induced 

accuracy degradation effect than the maximum theoretical performance of each model. 

3.4.2 RNN Models 

The same experimental setup was used for training and evaluating the RNNs, 

however 100 epochs were used to train the RNNs on each of the text datasets and instead 

of classification accuracy, average character perplexity (PPL) is used as the metric for RNN 

performance. Lower PPL means the model’s predicted next character fits the language 

model (i.e., the character probability distribution) better. Table 6 shows the experimental 

results for the LSTM model on the Text8 dataset along with the number of weights in the 

model. Table 7 shows the experimental results for the LSTM model on the Penn Treebank 

dataset along with the number of weights in each model. 
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TABLE 6. TID SIMULATION RESULTS ON THE TEXT8 DATASET 

Model Baseline 

PPL 

Post-Rad 

Scheme A 

Post-Rad 

Scheme B 

PPL Incr. 

Scheme A 

PPL Incr. 

Scheme B 

# Network 

Weights 

LSTM 3.49 3.61 10.51 +0.12 +7.02 2,232,859 

 

TABLE 7. TID SIMULATION RESULTS ON THE PENN TREEBANK DATASET 

Model Baseline 

PPL 

Post-Rad 

Scheme A 

Post-Rad 

Scheme B 

PPL Incr. 

Scheme A 

PPL Incr. 

Scheme B 

# Network 

Weights 

LSTM 2.75 2.86 8.27 +0.11 +5.52 2,338,866 

 

3.5 Discussion 

3.5.1 Comparison Between Architectures 

Overall, each of the CNN models showed good resilience to TID-induced weight 

changes up to 1 Mrad (Si) with at least one of the weight mapping schemes. In particular, 

VGG-8 and VGG-16 showed the highest resiliency to TID effects, exhibiting accuracy 

degradations of less than 1% in most cases. ResNet-18 also showed some resiliency with 

Scheme A, having experienced an average accuracy degradation of 5.33% on the CIFAR-

10 dataset and 0.81% on the ImageNette dataset. However, ResNet-18 showed significant 

degradation on the order of 50% with both datasets when using Scheme B. 
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The ResNet architecture mainly differs from VGG in that it includes skip 

connections between previous layers and future layers in the residual learning blocks (Fig 

17). I hypothesize that these skip connections make the ResNet architecture more unstable 

to TID radiation effects. With the weight error injection methodology presented in this 

thesis, each weight of the network is slightly shifted to account for the TID effects. 

However, with skip connections, weight errors in earlier layers will also be propagated to 

later layers, thus creating a compounding effect that could accumulate in the classification 

layers and amplify the accuracy degradation. In the case of the VGG architecture, no such 

skip connections exist, and each layer is independent of the previous/following layers. 

Therefore, errors in one layer are isolated to just that layer and compounding effects are 

minimized. 

 

Fig. 18. Single residual block of a ResNet architecture showing the skip connection between layers [24]. 

TID-induced errors in the first weight layer would be compounded with errors in the second weight layer 

and then compounded again with errors from the previous residual block before passing the output to the 

next residual block. 
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The RNNs showed similar performance results to the CNNs despite having a 

different quantization method, a different inference task, and no noise-smoothing 

convolution operations. For Scheme A, the LSTM architecture was highly resilient to 1 

Mrad (Si) of TID, only displaying a 0.11-0.12 increase in PPL for both datasets. However, 

the performance degradation became more severe for both datasets when using Scheme B. 

These results suggest that the degradation of DNN performance under TID may not depend 

significantly on the quantization method or the inference task (e.g., classification vs. 

generation). Rather, the structure of the architecture and the connection paths between 

neurons play a more pertinent role. 

3.5.2 Comparison Between Weight Mapping Schemes 

The results show that the choice of weight mapping scheme is important for 

minimizing inference accuracy degradation in both types of DNNs. In some cases, the 

difference between Scheme A and Scheme B was small, and either choice resulted in good 

resiliency. However, Scheme A tended to outperform Scheme B in most trials. This can 

likely be attributed to the stability of the represented cell states in each weight mapping 

scheme. In Scheme A, States 1, 2, and 3 are mapped to weights (-x, 0, +x). State 1 had the 

lowest amount of conductance drift and did not cause much fluctuation in its associated 

weights. State 2, the most unstable state, was relegated to influencing the 0 weights of the 

network. Therefore, despite having the widest ΔG distribution, State 2’s fluctuations about 

0 may preserve symmetry in a way that has minimal impact on the neural network 

inference. Meanwhile in Scheme B, States 2, 3, and 4 are mapped to weights (-x, 0, +x). 

State 1 is no longer considered in this mapping, and instead State 4 is used. State 4 

contributed more fluctuation to its associated weights while the unstable intermediate 
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States 2 and 3 were still being used. Previous experimental results indicated TID-induced 

conductance drift is the more dominant force in accuracy degradation compared to TID-

induced bit flips. Thus, Scheme B is naturally more unstable and displays larger accuracy 

degradation on average. 

3.5.3 Comparison Between Model Sizes 

The last variable of interest is the model size/depth. The impact of model size on 

TID-resiliency is less conclusive in this data and requires a more thorough investigation. 

However, some of the data suggest that larger models with higher numbers of weights are 

more resilient to TID effects. For example, VGG-16 is the largest model with ~15 million 

weights for the CIFAR-10 dataset and ~134 million weights for the ImageNette dataset. It 

was also the most resilient to TID-induced weight changes across both datasets and weight 

mapping schemes, averaging only about 1% accuracy degradation. This observation might 

be explained by the higher degree of redundancy that larger models have with their weights 

and neuron connections. With more connections, a significant shift in one weight due to 

intra-state fluctuation or inter-state bit flipping has less of a total effect. However, it should 

be noted that LSTM, the smallest model with just ~2 million weights, still displayed high 

resiliency on both datasets with Scheme A. Smaller models being less resilient may be a 

trend, but it is not a rule. 

An interesting outlier is the decrease of 32% in VGG-8 for the ImageNette dataset. 

VGG-8 is not very small (~30 million weights) and previously showed good performance 

on CIFAR-10 with both weight schemes. It also does not have any architecture 

idiosyncrasies that could amplify the effects of weight errors. It’s possible that during 
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training, this model converged to a relatively steep peak in its high-dimensional parameter 

space. If the model converged to such a peak, then a small disturbance could still have a 

large effect on the overall accuracy. In any case, the dynamics of radiation-induced effects 

on deep neural network performance are complicated and not yet well understood. More 

research is needed in this area to better understand this phenomenon. 
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CONCLUSION 

In this research, a HfO2-based multi-level RRAM test chip was analyzed under 

gamma ray irradiation at increasing levels of total ionizing dose radiation. A statistical 

model was developed from the data to capture the distribution of conductance changes, 

ΔG, of each RRAM cell as a result of TID radiation. Finally, the statistical model was used 

to inject weight errors into multiple pre-trained, 2-bit quantized DNN models in order to 

simulate the effects of 1 Mrad (Si) of TID radiation on DNN inference accuracy, assuming 

the DNNs were implemented in hardware with similar RRAM-based memory. 

The results of the simulations showed that such RRAM-based neural network 

accelerators should be highly robust to TID-induced weight changes up to 1 Mrad (Si), 

exhibiting inference accuracy degradations as low as 0.40%. However, software and 

hardware engineers must be careful when designing and evaluating their networks under 

simulated TID environments. DNN architecture, model size, weight quantization method, 

and weight mapping scheme can all influence the resiliency of the network to TID radiation 

effects. Although these preliminary results are promising for the prospect of using RRAM-

based neural network accelerators in radiation environments, there is still more opportunity 

for research in this area. In a future work, more scrutiny could be placed on the lower-level 

implications of weight error propagation through a network. It would also be useful to 

study the effects of the intermediate TID levels (36krad – 652krad) that we were not 

simulated in this study in order to better understand the role of the RRAM-based neural 

network performances across all the TID levels of interest. Finally, the effects of TID on 
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GANs and other types of RNN architectures like Gated Recurrent Unit (GRU) should be 

studied further when their training and quantization methods become more mature.  
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