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SUMMARY

Humans are known to have the capability of understanding events by composing dif-

ferent atomic concepts, even for event types that have never been seen before. However,

event detection has been so far treated as a sequence tagging problem in literature. Despite

the increasing accuracy obtained on benchmarks such as ACE, current supervised sequence

tagging models lack the compositional generalization ability. We present a model that is

able to achieve zero-shot compositional generalization for event detection. Our model,

named compositional graph modular network (CGMN), proposes two separate graph neu-

ral networks to obtain compositional semantic representations for sentences and events

respectively. Meanwhile, it ties graph-based event representations with the weight param-

eters of an event matching layer, so that the semantic representations for sentences and

events can be connected with each other, thereby achieving zero-shot recognition of new

events using only their constituent atomic concepts. Our experiments on the ACE 2005

dataset as well as our collected Twitter event dataset show that, CGMN significantly out-

performs state-of-the-art event detection methods on unseen classes and demonstrate strong

zero-shot compositional generalization capabilities.
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CHAPTER 1

INTRODUCTION

Event detection (ED) is an important natural language understanding problem with ap-

plications including document summarization [1], knowledge base population [2, 3], and

question answering [4]. To date, ED has been treated as a sequence tagging problem—

tagging event trigger words in a sentence and classifying them into different event types.

The sequence tagging model is typically learned from a corpus (eg., ACE [5]) that consists

of human-annotated sentences. Earlier methods use traditional statistical sequential mod-

els and pre-defined linguistic features, while recent works focus more on deep sequential

models due to their representation power and feature learning capabilities, which can be

further enhanced by large-scale pre-trained language models like BERT [6] and RoBERTa

[7].

Zero-shot learning (ZSL) has been a long-standing tough problem in machine learning.

In ZSL, a model learned from training data can face test samples that come from never-

seen-before classes. Even with zero training experience for such unseen classes, the model

still needs to recognize the samples from them, by using only certain semantic descriptions

of the unseen classes. To achieve ZSL, the model needs to understand the associations

between classes and transfers knowledge from the seen classes to the unseen ones. Various

approaches have been proposed for zero-shot generalization for computer vision tasks, by

leveraging prior knowledge about classes such as visual attributes [8], word embeddings

of the labels [9], class hierarchy [10], and external knowledge graph [11]. In text mining,

although supervised text classification has been widely studied, zero-shot text classification

has been little explored and remains a challenging problem.

However, to accomplish the zero-shot event detection, a key limitation of current se-

quence tagging models is their lack of compositional generalization ability for event de-
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Figure 1.1: Given two categories PERSON TEST POSITIVE and GOVERNMENT
DONATE MONEY, we can compose the attributes to understand new incoming class of
PERSON DONATE MONEY during testing stage.

tection. Take the ongoing COVID-19 pandemic as an example. Every day, millions

of tweets are created to discuss various events about this pandemic. When humans di-

gest such tweets, we can easily recognize never-seen-before events types based on com-

binations of atomic concepts. Figure 1.1 shows a tweet describing an event about PER

TEST POSITIVE. Even given a new event type we have never encountered before, tak-

ing PERSON DONATE MONEY as an example, we have no difficulty in understanding

them because the constituent concepts (PERSON, DONATE, MONEY) may have well oc-

curred in other event types we are familiar with, such as PERSON TEST POSITIVE

and GOVERNMENT DONATE MONEY. Such compositional generalization is crucial for

human’s ability of quickly learning new concepts through the combination of atomic con-

cepts, thus understanding an almost-infinite number of events from finite primitives. Unfor-

tunately, this ability is missing in current sequence tagging models for ED because different

event triggers are treated as independent symbols—the complex event semantics is treated

as a whole label rather than the composition of several atomic concepts.

In this thesis, we propose a compositional graph modular network (CGMN) to enable

2



zero-shot compositional event detection. Unlike existing methods that treat event types as

discrete labels, we model events using a graph of atomic concepts, which is constructed to

model the relations among events and their primitives (including triggers and arguments).

Such a atomic concept graph enables learning vector representations of events, so as to

encode their compositional semantics. Specifically, CGMN uses a graph neural network

(GNN) [12] over the concept graph to propagate information between events through their

constituent atomic concepts. At inference time, the representation of a new event type can

be obtained via GNN inference.

The event embeddings computed from the atomic concept graph will be tied to the

weights of an event detector, thus enabling zero-shot detection of new events. The detector

determines whether a sentence contains target events and is trained over seen events. It

consists of: 1) a modular network that embeds atomic concepts into a latent semantic space

and prepares for composition; 2) a modularized sentence encoder that obtains composi-

tional semantic representations for sentences over the dependency parsing tree structure;

and 3) a event matching layer using sentence and event embeddings for event detection.

A key design for the event matching layer is to tie event embeddings (computed from the

concept graph) to the classification layer’s weights, so that the event embeddings act as

weight parameters for combining sentence features and determining if the target event type

is present. At inference time, the detection of any new event type can be naturally derived

once its embedding has been computed.

To evaluate our model, we collected and annotated a COVID-19 event dataset from

Twitter. Labels in our collected data are all compositional like exemplified in Figure 1.1.

Our experimental results show that our model can improve accuracy from 39.40% to 68.44%

on seen classes, and 18.88% to 25.90% on unseen classes. We also evaluated our method

on the ACE 2005 benchmark under our compositional setting, and found that our method

outperforms all the baseline methods, improving accuracy from 29.12% to 36.22% on seen

classes and 18.73% to 25.94% on unseen classes.

3



Our main contributions include:

1. We exploit the compositionality of labels by the graph structure between labels and

attributes for knowledge transfer, and we exploit the structure of sentences to embed

both labels and sentences on the same semantic space;

2. We tie the label embeddings to classifier weights for efficient zero-shot learning;

3. We enrich the embeddings obtains by BERT with knowledge of atomic attributes and

dependency structure for more efficient sentence-level information aggregation;

4. We conducted extensive experiments that evidence the effectivenss of our method

compared with existing work. We also collect a new dataset named Twitter-COVID19

for evaluating compositional text classification.

4



CHAPTER 2

BACKGROUND

2.1 Related Works

2.1.1 Event Detection

Event detection is one of the important information extraction tasks and has been studied

by the NLP community for years. Earlier approaches to event detection extracts linguistic

features manually [13, 14, 15]. Later on, deep learning models have been recently domi-

nating for event detection due to their better performances, including adapted versions of

CNN [16, 17], RNN [18], and GNN [19, 20].

The dynamic multi-pooling convolutional neural networks (DMCNN) proposed in [16]

and the event detection structure in [17] are both based on the convolutional neural network

(CNN). Later, the joint recurrent neural networks in [18] introduce the recurrent neural net-

works (RNN) into the event extraction task. Furthermore, using an attention mechanism

to model structured information has also been shown to benefit model performance. For

example, [19] has proposed a supervised attention mechanism to encode argument infor-

mation in event detection. Besides CNN and RNN, recent works [20] have shown that

graph neural networks can be applied to extract the most relevant information of different

entites in event detection as well.

2.1.2 Zero-shot Learning

Zero-shot learning (ZSL) is a challenging task testing models’ ability of learning concepts

about new unseen data with no corresponding labeled data. Most traditional works in Com-

puter Vision aim to find implicit relations between categories [8], [21], [22], [23]. Besides,

more complicated models like graphical convolutional network with semantic knowledge

5



graph [11] and compositional modular network [24]

Zero-shot text classification has also been studied by only a handful of works. Ex-

isting literature has learned relation information from deep neural network models based

on a large amount of corpus data [25, 26]. [27, 28, 29] proposed models jointly learning

information from the sentence and label semantic embeddings via methods like entail-

ment learning. [30] take advantage of class labels, class descriptions, class hierarchy, and

knowledge graph to thoroughly extract semantic information from the text data. The meth-

ods introduced above are more specific under circumstances that the labels have not much

explicit relationship with the examples and will not test the model’s compositional learn-

ing ability. To the best of our knowledge, our model is the first to realize compositional

zero-shot learning in text classification.

2.1.3 Compositional Generalization

Zero-shot compositional generalization has been a trending topic in computer vision s [31,

32, 33, 34]. Some of the existing literature are based on embedding the object-attribute pair

in image feature space [35, 36], while the others learn the joint compatibility between the

features extracted from the images and the pairs defined as their labels [24, 11, 37].

The compositional generalization in natural language processing is defined in [38] as

the intrinsic connection between the ability to produce and understand different sentences

composed of the same component argument blocks, like John loves Mary and Mary loves

John. The tasks or implementations details are different. A common trial is based on

the SCAN task, which is a novel sequence modeling task, mapping word sequences to

command sequences [39, 40]. Another common task is to compose different arguments

representations to model compositional phenomena [41]. [42] also proposes an end-to-end

decomposition and modular network with similar ideas tested both on image recognition

and language modeling. However, although it is performing a compositional learning abil-

ity of the model, the modules are still meaningless while training and people can only

6



know how the model select and compose the modules with some post-training analysis to

see their training paths, which we think is not that reasonable compared to the humans’

compositional learning ability.

2.2 Related Techniques

2.2.1 Pre-trained Models

Pre-trained language models have recently brought the natural language processing (NLP)

community into the transfer learning era. The transfer learning framework consists of two

stages, where we first pre-train a large-scale language model (e.g., BERT [6], RoBERTa

[7], ALBERT [43], T5 [44]) on a large text corpus in an unsupervised manner and then

fine-tune it on downstream tasks.

In this thesis, we mainly utilize the BERT model architecture [6], which is based on a

multi-layer bidirectional Transformer [45]. Instead of the traditional left-to-right language

modeling objective, BERT is trained on two tasks: predicting randomly masked tokens and

predicting whether two sentences follow each other.

2.2.2 Graph Neural Networks

Over the past few years, the success in neural networks have improved the researches in

pattern recognition and the data mining. Many machine learning tasks that used to rely

heavily on the manually extracted features, like object detection, machine translation, and

speech recognition), have all been entirely changed by different kinds of end-to-end deep

learning architectures, including Convolutional Neural Network (CNN) [46], Long Short

Term Memory (LSTM) [47], and auto-encoder (AE) [48].

Although traditional deep learning methods have achieved great success in extracting

features from Eucilidean Space data, many data in realistic application scenarios are gener-

ated from the non-Eucilidean space, and this makes the traditional deep learning methods

perform not so well in handling these non-Eucilidean space data. Thus, recently, the re-

7



searchers become more interested in applying deep learning on graph. Inspired by this kind

of thoughts, the Graph Neural Network (GNN) is generated, catering to people’s needs.

Graph is a widely utilized data structure in algorithms. Many tasks and applications in

real life can be described as or expressed by graph problems, like the social media [49, 50],

protein architecture [51], transportation networks[52], the recent popular knowledge graph

[53] and so on. As a unique non-Euclidean data structure, graph methods and analysis

focus on the node classification, graph classification, edge prediction, and data clustering.

With high validity in performance and very strong interpretability, GNN has widely aroused

peoples’ interest no matter from the academia and the industry. Graph Neural Network is

to make full use of the graph data structure in neural networks to solve some graph-based

data mining problems. Almost all the classic structures or models in natural language pro-

cessing have the applications in graph neural network, like Graph Convolutional Network

(GCN) [54], Graph Attention Networks [55], Graph Transformers Networks [56], Graph

Recurrent Neural Network (RNN) [57]. Different GNN methods vary according to their

different ways of building graphs, different information propagation methods, and differ-

ent architectures. Although there exist many GNN methods, it is still a small proportion for

GNN to be utilized to implement zero-shot classification problems. Only several methods

combine GCN and knowledge graph to import label information into the model [11].

8



CHAPTER 3

METHODOLOGY

3.1 Problem Formulation

We formulate zero-shot compositional event detection as a sentence multi-label classifica-

tion task. Given a sentence x = [x1, . . . , xN ], the entire sentence is associated with an

one-hot event label vector y. Different from existing works, we view events as composi-

tions of atomatic concepts.

Formally, we assume a set of atomic concepts, denoted as Sc, |Sc| =M , include predi-

cates, arguments, and entities that constitute events. Each event y is defined as a composi-

tion of several atomic concepts: y = {c0, c1, · · · , ca}, ci ∈ Sc. Furthermore, each token is

associated with an atomic concept label C = [c1, . . . , cN ]. An event occurs only if all of its

atomic concepts are present in the sentence. When necessary atomic concepts are present,

though, whether the event occurs still depends on the context of the sentence.

Atomic concepts represent event predicates as well as the involved arguments in differ-

ent events. For example, the atomic concepts can be predicates such as ANNOUNCE and

REOPEN, or entities such as SCHOOL and GOVERNMENT; these atomic concepts are then

composed into different events, such as SCHOOL REOPEN, and GOVERNMENT ANNOUNCE.

A special concept named NONE is defined, used there’s no other concept present.

The zero-shot event detection task is to train an event detector E from training samples

belonging to a set of seen event types Yseen, namely D = {xi, yi}Ni=1, yi ∈ Yseen. But at test

time, E may encounter samples belonging to new event types Ynew that were never seen

before during training. The new event types Ynew share the same set of atomic concepts

with Yseen, but there are zero samples of the new event types during training. As such,

the model must have the ability of composing previously seen atomic concepts into never-

9



seen-before event types with zero training. The zero-shot event detection problem has two

settings: 1) conventional zero-shot learning, where all the test data are from the unseen

classes ; 2) generalized zero-shot learning, where the test set includes data from both seen

and unseen classes.

3.2 Model Architecture

At a high level, our CGMN model for zero-shot compositional event detection consists of

three key components, as shown in Figure 3.1. First, it has a modular network (section 3.3)

that embeds atomic concepts into a latent semantic space. Rephrasing needed: The concept

embeddings will serve as building modules for learning composition semantic representa-

tions for both sentences (section 3.4) and events (section 3.5). Finally, CGMN determines

whether a target event occurs in a sentence, while tying its weights to event representa-

tions to enable zero-shot detection for unseen events. In what follows, we detail these four

components.

3.3 Modular Network for Embedding Atomic Concepts

CGMN features a modular network that learns embeddings for atomic semantic concepts

of events. The concept embeddings output by the modular network will be fundamental

building blocks for learning compositional representations of both events and sentences

and realize compositional event detection. As shown in Figure 3.1, we design in CGMN

corresponding modules that map atomic concepts into a shared embedding space ui ∈ RD

where D is the embedding dimension. The modules for embedding atomic concepts can be

parameterized by a matrix U ∈ RM×D, which is end-to-end trainable during the learning

of CGMN.

By treating such atomic concepts as basic units, we will later compose concept embed-

dings to obtain semantic representations for both sentences (section 3.4) and events (sec-

tion 3.5). The reason of using such modularized concept embeddings, instead of directly

10
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Figure 3.1: A sketch map of our proposed method frame, including 3 main components: 1)
the modular network for embedding atomic concepts; 2) the modularized sentence encoder;
and 3) compositional event semantics.

using BERT embeddings, is two-fold: 1) it maps atomic concepts, sentences, events into

a shared semantic space, which facilitates matching events with sentences based on their

compositional semantics; 2) it provides canonical and reusable abstractions, which enables

connecting newly unseen event types with seen ones and obtaining their representations—

this is critical to zero-shot compositional generalization.

3.4 Modularized Sentence Encoder

In this section, we want to learn sentence-level concept representation, i.e. representation

of sentence semantics in terms of atomic concepts To this end, we propose an two-stage

encoder framework. First, it detects probable atomic concepts on the token-level, and rep-

resents tokens in terms of atomic concepts, called token-level concept representation. Sec-

ond, it aggregates token-level concept representations with dependency parse to produce

concept representations on the sentence-level.
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Token-level atomic concept detection. Given the BERT-encoded hidden representation

of an N -token sentence {h1,h2, · · · ,hN} as the input, CGMN utilizes multi-layer per-

ceptrons as token classifiers to produce the probability distribution of each token over the

atomic concepts. Namely, it computes a probability distribution P ∈ RN×M , denoting the

classification probabilities of N tokens over M different atomic concepts. With P, we can

transform the BERT-encoded token representations into token-level concept representa-

tions by multiplying the probability matrix P with the universal atomic concept embedding

matrix U:

H′ = PU ∈ RN×D, (3.1)

where H′ is an N × D matrix representing the the new token embeddings in the atomic

concept space. In matrix H′, each row vector represents its corresponding token in terms

of atomic concepts.

Sentence-level atomic concept aggregation. Now, we need to construct sentence-level

concept representations from the token-level. To better learn compositional sentence rep-

resentations from the above token embeddings, it is important to model the compositional

relations between tokens even for distant tokens in the sentences. Thus, we design our sen-

tence encoder using Graph Attention Networks (GAT, [55]) and apply it over dependency

parse to efficiently propagate information among tokens and focus on important parts of

the sentence with syntactic guide. Formally, the dependency parsing tree is an undi-

rected graph G = (V , E), where V = {v1, v2, · · · , vNv} and E = {e(vi,vj)|vi, vj ∈ V ; i, j ∈

[0, Ne)} are the nodes and edges. Each node vi ∈ V represents a token wi in the sen-

tence, while each edge e(vi,vj) is a dependency parsing arc [58, 59]. We apply GAT to first

compute the attention coefficients between a certain node i and its neighbours j ∈ Ni:

eij = a([WGATh
′
i‖WGATh

′
j]), j ∈ Ni, (3.2)
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where WGAT is a learnable weight matrix of GAT, a(·) is the self-attention mechanism,

and [·‖·] means the concatenation operation. Then, we normalize the attention coefficients

with softmax functions:

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

. (3.3)

After computing the coefficients, we then aggregate them via concatenating the atten-

tion features:

h′′i = σ(
∑
j∈Ni

αijWGATh
′
j), (3.4)

where h′′i is the new hidden feature of each node i (after fusing the neighbour domain

information) and σ(·) is the activation function.

As the output of the sentence-encoding attention network is the node representations

after propagation along the edges, we need to summarize the information to construct a

graph representation. Hence, we add a Readout layer after the attention network for this

purpose and derive the sentence representation hs as:

hS =
1

|V|
∑
v∈V

h′′v +MaxPooling(h′′1,h
′′
2, · · · ,h′′V). (3.5)

As such, we’ve obtained sentence-level concept representations that can be conve-

niently compared with the event representations built from the same atomic concepts, en-

abling principled zero-shot learning and domain generalization. The remaining of this

section is devoted to the construction of event representations.

3.5 Graph-Based Learning of Compositional Event Semantics

While we can directly train a classifier with weights W on the sentence-level concept

representation for event detection, the learned weights on seen event types cannot naı̈vely

generalize to unseen event types. Instead, we build event representations from atomic
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PERSON TEST NEGATIVE

PERSON TEST POSITIVE PERSON TEST NEGATIVE

POSITIVE

Figure 3.2: An example of event-concept schema graph. The first row includes example
atomic concepts, and the second row event types consisting of three concepts each.

concepts and use them as classifier weights.

To generalize to unseen events in a principled manner, we construct an event-concept

schema graph that encodes relations between events through common atomic concepts as

intermediates, and we obtain representations for unseen events by propagating information

from seen events to unseen events by this graph, thus enabling classification for unseen

event types at test time.

Event-concept schema graph. The event-concept schema graph is a bipartite graph of

events and atomic concepts. An edge exists between an event and an atomic concept if the

latter is a constituent part of the former. Figure 3.2 shows an example schema graph.

Compositional event representations. After constructing the event-concept schema graph

, we apply GCN to learn compositional event representations as follows:

Z`+1 = σ(ÂZ`V`), (3.6)

where Â ∈ R(M+K)×(M+K) is the normalized adjaceny matrix of the graph, V` ∈ RD×D is

the trainable weight matrix during the training process at l-th layer and Z` ∈ R(M+K)×D is

the node feature representations at l-th layer.

To initialize node embeddings at the input layer, for atomic concept nodes we use em-

beddings learnt in section 3.3, and for event type nodes, we average the representations of
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their constituent atomic concepts. We use the output node embeddings for event types as

event representations and predicted event classifier weights Ŵ.

The event-concept schema graph encodes the second-order relation between events

through common neighbors, i.e. atomic concepts, and how informative an atomic con-

cept is to an event. By information propagation with GCN, similar event types according

to informative atomic concepts would share similar internal representations in GCN.

Furthermore, we expect that the event representations can be effectively used for event

detection. At training stage, we train a set of classifier weights W′|seen directly on seen

event types. We enforce that predicted weights for seen events, Ŵ|seen are close to the

weights W′|seen by the regularization loss (Equation 3.8). With all these combined, the

GCN model should be able to predict classifier weights for seen and unseen event types

according to their similarities.

3.6 Loss Function

For training CGMN, the overall objective function consists of three losses:

1. The atomic concept loss `1. For a token x in a sentence, the modularized sentence

encoder in section 3.4 predicts probability distribution of atomic concepts for this token, p̂.

The following atomic concept loss

`1(x, c) = cross entropy(p̂, c) (3.7)

where c is the ground-truth atomic concept label is used for training signals for automic

concept modules.

2. The regularization loss `2. For sentences with event types seen in training, we define

the regularization loss to make sure that the weights predicted with GCN in section 3.5, Ŵ,

is close to the weights W′, where W′ is the classifier weights for seen event types trained
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directly on the training examples with standard multiclass classification setting:

`2 = mean squared error(Ŵ|seen,W′|seen) (3.8)

where |seen restricts the weight matrices to include columns of seen event types only.

3. The ground-truth classifier loss `3. Finally, we minimize the cross entropy loss for

predicting events for sentence x, where y′ is the predicted event probabilities for seen event

types W′|seen and y is the ground-truth event type vector:

`3(x) = cross entropy loss(y′,y) (3.9)

The total loss during the training stage can be obtained once we compose the three kinds

of loss together. To make the generated weights fit the ground-truth classifier weights faster

than the speed of the ground-truth classifier changes, we apply a partition parameter before

L3:

`total =
∑
(x,y)

∑
xi∈x

`1(xi, ci) + `2 + λ
∑

(x,y)seen

`3(y
′,y) (3.10)

During testing stage, as the prediction scores for the seem classes are intended to be

higher than the unseen classes, we employ a calibration bias on all the prediction scores for

unseen classes according to the previous work [24, 28].

While in training, we use optimize both W′ and predicted weights Ŵ, during inference

at test time, we only use the weights Ŵ predicted by our model to predict both seen and

unseen event types.
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CHAPTER 4

EXPERIMENTS

In this section, we empirically evaluate the performance of CGMN for zero-shot composi-

tional text classification.

4.1 Datasets

4.1.1 Basic Information

To evaluate the zero-shot compositional generalization ability of different methods, we use

two datasets on event classification.

• Twitter-COVID19 is a dataset we collected during 2020/05/13 and 2020/07/06, which

consists of 2,002 tweets discussing COVID-19 related events during the pandemic. We

build this dataset to evaluate compositional zero-shot text classification because the se-

mantics of the events are inherently compositional. Specifically, the event semantics is

composed of atomic attributes, , “PERSON TEST POSITIVE” is composed of attributes

“PERSON”, “TEST”, and “POSITIVE”. In total, this dataset contains 127 different at-

tributes and 163 different event labels. Among the 163 events, we use 72 as seen classes and

the remaining 91 as unseen ones for testing the generalization ability of methods. The de-

tails of data collection and annotation process for this dataset are provided in sec:appendix.

• ACE 2005 [5] is a popular benchmark for event detection. We treat the event labels as

compositional labels whose semantics are composed from event predicates and arguments.

The dataset originally contains 599 different documents. We preprocessed the dataset by

excluding the instances that contain no event, and also segmenting the documents into

sentences to perform sentence-level event classification. In this way, we obtain a total

number of 3877 sentences. These sentences are annotated with 41 token-level argument
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labels and 653 sentence-level event type labels. Among the 653 events, we use 400 as seen

classes for training and the remaining 253 as unseen ones.

To extract compositional event information from the Twitter data about the COVID-19,

we establish a dataset of Twitter-Covid19. For each tweet in the dataset, we offer a cor-

responding event/sentence-level label and a set of corresponding fine-grained token-level

labels, so that it can be utilized either in sequence labelling tasks and sentence classification

tasks. Table 4.1.1 shows the brief information about the dataset.

Table 4.1: Brief Information of Twitter-COVID19 dataset.

Data Set # of Annotated Tweets ZSL-Setting

Training 1200 S
Validation 400 S

Test 402 S(263) + U(149)

Total 2002 S(1863) + U(149)

The statistics of dataset partitions is shown in Table 4.2.

4.1.2 Data Collection

We have been continuously collecting the Twitter data since 2020/03/06 by tracking certain

COVID-19 related keywords with the Twitter-API. For further annotation, we continue to

filter the COVID-19 related Tweets with certain sets of keywords to get the required event

type data. For example, we utilize ”shortage”, ”lack” and ”short of” to filter SHORTAGE-

related Tweet events. Following these steps, we have annotated 2002 Tweets sampled from

2020/05/13 to 2020/07/06. We manually reduce the number of the duplicated Tweets and

Table 4.2: Statistics of the Twitter-COVID19 and ACE 2005 datasets.

Dataset
Seen Data Unseen Data

#Train #Valid #Test #Test

Twitter-COVID19 1200 400 263 139
ACE 2005 2400 600 530 347
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choose different topics for the Twitter data posted on the same day.

Token-level Annotations: For the token-level annotations, Tweets are required to be

split into smaller-scale words or sentences, which is known as the tokenization operation.

We utilize the Tweetokenizer in the NLTK toolkit to accomplish this issue and then utilize

the AllenNLP’s NER tool to accomplish a primary annotation towards the tokens. With

the rough annotated Tweets, we then manually check the labels’ validity and ensure them

to follow the BIO format as is widely utilized in Named Entity Recognition (NER) tasks,

where we add the suffix ”B” (begin) to the first token of a mention and ”I” (inside) to the

tokens following it. And for the other tokens, we will assign an ”O” (other) tagging to

them. Following these steps, we generated 163 different token labels and annotated them

on the previously obtained Twitter data. Besides the token labels popular in most NER

tasks like PER, ORG, LOC, TIME and so on, we focus more on the fine-grained concepts

related to COVID-19: TEST, POSITIVE, VACCINE, etc.

Sentence-level Annotations: According to the Token-level Annotations before, we set

up the corresponding sentence-level annotation. We utilize 3-element tuples of the anno-

tated token labels (without BIO schema) (c0, c1, c2) to represent the brief information of

the whole Tweet C. For example, we utilize the tuple (PER, TEST, POSITIVE) to represent

the events describing some person or people testing positive for COVID-19. If the tweets

do not have as many main elements as 3, we pad the rest label components with ”-”, which

has similar meanings with ”O” in token-level annotations. For the Sentence-level anno-

tations, we tagged 167 event types in all, covering events on {REOPEN, EDUCATION,

SHORTAGE, CHARITY, VACCINE, PROTEST, DEATH, DELAY, CANCEL, BANKRUPT,

FUNDAID, TEST POSITIVE, TEST NEGATIVE, DISEMPLOYMENT}.

4.2 Evaluation Protocols and Metrics

During the testing stage, we aim to test on both non-generalized and generalized zero-shot

learning setting. For non-generalized zero-shot learning setting, we test model perfor-
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mances on pure unseen data. As this is basically a text classification problem, we use

multiple metrics including:

1. Accuracy on the unseen categories;

2. Macro precision over all testing the unseen classes;

3. Macro recall over all testing the unseen classes;

4. Macro F1 score over all testing the unseen classes;

5. Besides, to measure the performance on the seen classes, we also utilize the accuracy

on the seen classes.

For generalized zero-shot learning setting, we test on both seen data and unseen data.

Thus, we use similar multiple metrics:

1. Overall accuracy on testing data, including both seen data and unseen data;

2. Accuracy on the unseen categories;

3. Accuracy on the seen classes;

4. Macro Precision over all the categories in testing set;

5. Macro Recall over all the categories in testing set;

6. Macro F1 score over all the categories in testing set.

Given n samples in the testing set, we can assume {ŷ1, ŷ2, · · · , ŷn} as the model predic-

tions and {y1, y2, · · · , yn} as the ground-truth labels respectively. The testing set includes

k categories in all.

Accuracy (Acc) measures the predictive accuracy on the categories appearing in the

testing set. It only computes the cases where the sentence-level prediction equals the

ground-truth label:

Acc =
1

N

n∑
i=1

I(yi = ŷi). (4.1)
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Macro Precision is the average of the precision score computed over each category

in the testing set, which is the proportion of correctly predicted samples in total predicted

samples:

macro precision =
1

k

k∑
i=1

precisioni . (4.2)

Macro Recall is the average of the recall score computed over each category in the

testing set, which is the proportion of correctly predicted samples in total gold samples in

the dataset:

macro recall =
1

k

k∑
i=1

recalli . (4.3)

Macro F1 score is the average of the F1-score computed over each category in the

testing set. F1 score for each category can be computed via:

F1-score =
2× precision× recall

precision+ recall
(4.4)

, while the macro average can be expressed as:

macro F1-score =
1

k

k∑
i=1

F1-scorei . (4.5)

4.3 Baseline Methods

• BERT is a popular model widely utilized in text classification. It is an uncased BERT-

base model and we follow the sentence classification pipeline in [6]. With no adaptations

to zero-shot learning settings, the model offers a benchmark on seen data accuracy.

• BERT-M is a basic zero-shot text classification approach, treating the task as a binary

matching problem between sentences and labels. Considering the compositional labels as

sequences, it uses the uncased BERT-base model to obtain representations for both sen-

tences and labels. By computing the cosine similarity between a label and the sentence

representations, the model measures how well a label matches the text,
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• TMN [24] is a state-of-the-art compositional zero-shot learning model in computer vision

area. It adopts a set of fully-connection-layer based modules with no explicit meanings

and configure them with a gating mechanism in a task-driven way. The model can be

generalized to unseen compositions of attributes via re-weighting the primitive modules to

accomplish the zero-shot classification.

•ZS-GCN [11] is a zero-shot learning method also based on GCN. It uses semantic embed-

dings of labels and the categorical information in the knowledge graph as the node inputs

and the graph structure of GCN to introduce the external relation information between seen

classes and unseen classes. After iterations, the node representations of GCN will serve as

the weights of the classifiers.

• ZSTC-E [29] is a benchmark of zero-shot text classification. It formulate the zero-shot

text classification problem as an entailment learning problem. Considering the composi-

tional sentence labels as sequences and also the definitions of the categories, it feeds both

the sentence and labels to BERT, and predicts an event by deciding whether the constituent

attributes are entailed by the sentence.

4.4 Implementation Details

The network structure of CGMN utilizes BERT-base-uncased [6] as the sentence encoder, a

1-layer single-head Graph Attention Network (GAT) in the sentence compositional seman-

tics learning, and a L-layer Graph Convolutional Network (GCN) in graph-based learning

of compositional label semantics. For training stage, we use ADAM [60] optimizer with

β1 = 0.9 and β2 = 0.999 in our experiments for all the models. We use a learning rate

of 0.001 and a batch size of 32 for the model across all datasets. The maximum number

of epochs is 10. The max sequence length is set to 256. We select λ, the loss partition

parameter during the model learning, from {0.1, 0.25, 0.5, 1, 2} and the number of GCN

layers L from {1, 2, 3, 4, 5} based on the predictive accuracy on the development set.
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Table 4.3: Predictive accuracy under non-generalized zero-shot learning setting. S Acc and
U Acc are the predictive accuracy on the seen classes and unseen classes respectively. U
Precision, U Recall, and U F1-Score denotes the macro precision, recall, and F1-Scores
computed over unseen classes. The results are presented in percentage (%).

Models
Twitter-COVID19 ACE

U Acc U Pre U Rec U F1 S Acc U Acc U Pre U Rec U F1 S Acc

BERT 0.72 1.06 0.30 0.72 64.26 0.58 0.03 0.79 0.05 35.09
BERT-M 15.11 10.23 18.10 13.07 41.14 5.08 4.02 5.62 5.03 22.31
TMN 17.99 10.98 17.40 12.01 66.54 15.32 13.82 18.48 14.81 34.71
ZS-GCN 22.97 15.35 25.09 16.81 67.18 23.22 16.69 20.75 16.85 35.16
ZSTC-E 18.88 11.27 18.45 12.63 39.40 18.73 11.15 17.99 12.48 29.12
Ours 25.90 17.65 26.74 18.79 68.44 25.94 17.21 21.82 17.43 36.22

4.5 Main Results

Non-Generalized Zero-Shot Learning: Table 4.3 shows the experimental results on both

Twitter-COVID19 and ACE 2005 dataset in the non-generalized zero-shot setting. Com-

pared with all the baselines, CGMN performs the best with a significant increase on both

two datasets in terms of all the metrics. On average, our model not only achieves an im-

provement of 2.83% and 1.28% on unseen data accuracy and unseen macro F1 score over

the strongest baseline, but also outperforms the other models on seen data accuracy. This

indicates that strong compositional capability will also make benefits on seen data classifi-

cation.

Generalized Zero-Shot Learning: For generalized zero-shot learning setting, we can get

similar results as is shown in Table 4.4. CGMN performs the best on all the metrics with

only a little sacrifice of seen data accuracy. On average, CGMN achieves an improvement

of 1.2% and 1.5% on overall accuracy and overall F1 score over the strongest baseline,

showing that CGMN possesses a strong zero-shot generalization ability. Specifically, the

strongest baseline on seen data accuracy, BERT, does not possess a zero-shot learning abil-

ity. With still comparable seen data accuracy with BERT, CGMN does not sacrifice too

much seen data accuracy to accomplish the generalized zero-shot learning problem.
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Table 4.4: Predictive accuracy under generalized zero-shot learning setting. O Acc indi-
cates the overall accuracy on testing set including both seen and unseen data. S Acc and
U ACC are the predictive accuracy on the seen classes and unseen classes respectively. O
Precision, O Recall, and O F1-Score denotes the macro precision, recall, and F1-Scores
computed over all the testing classes. The results are presented in percentage (%).

Models
Twitter-COVID19

O Acc S Acc U Acc O Pre O Rec O F1

BERT 42.29 64.26 0.72 7.99 13.20 9.18
BERT-M 24.87 35.35 5.04 5.22 11.74
TMN 42.29 59.70 9.35 14.19 16.68 13.98
ZS-GCN 44.62 61.36 12.95 15.00 19.19 15.05
ZSTC-E 27.70 33.04 17.60 10.38 12.55 10.36
Ours 45.22 59.31 18.55 16.68 23.04 17.62

Models
ACE

O Acc S Acc U Acc O Pre O Rec O F1

BERT 21.44 35.09 0.58 1.88 3.97 2.08
BERT-M 6.81 13.79 20.84 3.02 1.12 2.56
1.16
TMN 22.39 31.58 8.35 10.97 11.81 10.42
ZS-GCN 26.53 34.20 14.82 12.75 14.68 13.65
ZSTC-E 24.32 28.87 17.37 12.61 13.76 12.76
Ours 28.32 33.08 21.04 14.02 16.61 14.08
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Table 4.5: Examples incorrectly predicted by TMN, but correctly predicted by CGMN.
Green parts indicates the correct components, while red parts and blue parts indicate the
attribute detection error and attribute selection errors.

Ground-
Truth Label

Incorrect Examples Wrong
Predictions

COMPANY
REOPEN
LOC

Teesside Cannabis Club shop reopens to members af-
ter lockdown closure Teesside Cannabis Club
has reopened their shop to members following the
coronavirus pandemic. The Exhale shop, located on
Norton Road in #cannabiscommunity

COMPANY
REOPEN
CLOSE

ORG
SHORTAGE
RESOURCE

Kenya is hoarding unprocessed COVID-19 sam-
ples according to the Kenya Medical Association
(KMA) , a medical agency, following a shortage of
reagents to carry out the tests.

GOV
SHORTAGE
RESOURCE

More discussion about the baselines: For baseline methods, we also have some addi-

tional observations on their performances. Without any information propagation from the

seen classes, BERT makes almost no correct predictions on the unseen classes. For TMN,

the gating mechanism will choose the modules automatically without any semantics or

syntactic information as restriction. With some interference information or redundant in-

formation in the sentence, the method will not perform as good as CGMN on evaluations

over both seen and unseen data, which also proves the effectiveness of our GAT based

sentence compositional semantics learning.

For ZS-GCN, although the model is also based on GCN, the sentence representation

and label representation are individually obtained. CGMN outperforms this method on all

experiments, proving the efficiency of our universal attribute semantics.

4.6 Ablation Study

We perform ablation studies to evaluate the effectiveness of our three components: 1) the

universal attribute embeddings, 2) the GAT based compositional sentence-level attribute

encoder, 3) the label-attribute schema graph based GCN, and 4) the GCN output based
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Table 4.6: Ablation study on Twitter-COVID19 dataset. For each ablation model, the pa-
rameters remain default as λ = 0.25 and L = 1. The results are presented in percentages
(%).

Models
Non-generalized Generalized

S Acc U Acc S Acc U Acc O Acc

BERT 64.26 0.72 64.26 0.72 42.29
Ours w/o UACE 64.25 26.62 53.61 17.27 42.79
Ours w/o GAT 68.82 11.51 55.89 10.79 40.30
Ours w/o GCN 58.94 14.39 56.65 2.16 37.81
Ours w/o ZSC 62.74 0.72 62.74 0.72 41.30
Ours 68.44 25.90 59.31 18.55 45.22

zero-shot text classifier. Table 4.6 shows the results on the Twitter-COVID19 dataset under

both the non-generalized and generalized zero-shot setting. Our findings are shown as

followings:

• Ours w/o UACE: Without the universal atomic concept embeddings (UACE), the pre-

dictive accuracy for seen classes drops significantly by 5.13% on average. Removing this

part will result in the input of the GAT based sentence representation not in the same space

as the following compositional label representation. However, the relation information be-

tween the seen classes and unseen classes are preserved by GCN. Therefore, there is an

obvious drop in seen classes, while the performance on unseen classes maintains.

• Ours w/o GAT: Without the GAT based compositional sentence-level attribute encoder

, the predictive accuracy on unseen classes drops signifigantly by 11.13% on average. Re-

moving this part and simply averaging all the token representations as the sentence repre-

sentation will stop the model from pruning redundant information and selecting the main

parts of the sentences. Generating some intereference in this way, there is a significant drop

on the performance over the unseen data.

• Ours w/o GCN: Without the label-attribute schema graph based GCN, the accuracy for

seen classes drops by 6.08% and the accuracy for unseen classes drops by 14.02% on aver-

age. With simple average of the constituent attribute embeddings as the compositional label

representations serving as the classifier weights, the relationships between compositional
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labels become ambiguous as the information propagation between labels is missing, which

makes it more difficult for the model to link the label representations with the sentence

representations.

• Ours w/o ZSC: Without the GCN output based zero-shot classifier (ZSC), the accuracy

for unseen classes drops to almost 0, as this part takes the very important role of transferring

the knowledge from the seen classes to the unseen classes. Removing this part will make

our model lose the ability of zero-shot learning.

4.7 Parameter Study

We investigate the effects of the loss partition weight λ and the number of GCN layers

L, whose default values are λ = 0.25 and L = 1. All the experiments are conducted

on Twitter-COVID19 dataset under both the non-generalized and the generalized zero-shot

learning setting. Figure 4.1 summarizes and presents the results. Besides the study on

influence of model parameters, we also want to learn how the partitions of seen and unseen

classes will effect the model performance. Figure 4.2 displays the results.

Effect of GCN Depth: Along with the increment of the number of GCN layers L, the

performances decrease. As our attribute-concept schema graph has limited size, too many

iterations of information propagation along the edges results in a loss of structure infor-

mation. Another reason might be that the optimization becomes harder with the network

going deeper.

Effect of Loss Proportions: While increasing λ from 0.1 to 2, the performances improves

at first and then begins to drop. If λ is too small, the sentence classifier is trained slowly; if

λ is too large, the model will update the sentence classifier first, which might cause greater

difference between weights of the ground-truth regularization classifier and the GCN based

zero-shot classifier. Both circumstances harm the performance.

Model Sensitivity to Unseen Data Proportions: In this part, we investigate how the data

partition between seen data and unseen data influences the model performance. There are
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Figure 4.1: Parameter study investigating the influences of the loss partition weight λ and
the number of the layers L. The first row and the second row show the results obtained
under the non-generalized and generalized zero-shot learning setting respectively. The
results are presented in percentages.
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Figure 4.2: The curve of seen accuracy and unseen accuracy on different partition of data.

two changes in this set of experiments: 1) the proportion of the unseen classes to all classes;

2) the proportion of the unseen data in the test set. The first variable is implicit and is the

cause of the second variable. As the number of unseen categories increases, the number of

unseen examples rises accordingly.

Here, we select {63, 91, 103, 113, 123} as the number of the unseen categories, leading

to the number of unseen examples in the test set varying in {71, 139, 197, 259, 346} from

a constant size of the test set. In Figure 4.2, the x grid indicates the proportion of unseen

data to testing data, while the y grid shows the accuracy of the model. From the figure,

we can see that CGMN performs quite stable with these two variables increasing, which

means that CGMN relies more on its capability of composing different atomic attributes

than training on enough number of examples.

4.8 Case Study

We present the t-SNE visualization [61] of the label representations generated by GCN as-

sociated with the constituent attributes in the compositonal labels as shown in Figure 4.3.

This visualization shows that the label representations are organized by label similari-

ties, indicating that the compositional labels with common constituent attributes tend to
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Figure 4.3: t-SNE visualization for our GCN output classifier. We focus on the “PERSON
DEATH”, “RESOURCE SHORTAGE”, and “TEST” related categories. A triplet set of ex-
ample is given as well to show the compositional capability of the model.
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have similar embeddings. Taking the categories with common attributes “PERSON” and

“DEATH” as an example, no matter belonging to seen classes or unseen classes, they in-

tend to cluster with each other in the figure. Similar conclusions can be obtained from the

distribution of categories with common attributes “RESOURCE” and “SHORTAGE”.

To test the distributions of the categories with fewer common attributes, we also plot

the representations of labels with only one common attribute of “TEST” and observe that

they distribute less clustering than “PERSON DEATH” related labels. As the label repre-

sentations obtained from the GCN also serves as the weights of the zero-shot classifier Ŵ,

CGMN is more intend to output similar prediction scores towards similar compositional

labels.

To show that CGMN possesses the ability of composing attributes to accomplish zero-

shot learning, we also offer a triplet example of categories {“EDU SHORTAGE RESOURCE”,

“LOC DONATE RESOURCE”, “EDU DONATE RESOURCE”}. In the triplet, the category

“EDU SHORTAGE RESOURCE” and “LOC DONATE RESOURCE” are among the seen

classes while training, and the category “EDU DONATE RESOURCE” belongs to the un-

seen classes, only appearing during the testing stage. In Figure 4.3, the “EDU DONATE

RESOURCE” category embeds in the middle of the other two categories, which proves that

the “EDU DONATE RESOURCE” category can be compositionally obtained via CGMN.

4.9 Error Analysis

Challenges in Zero-shot Event Detection: To better understand the challenges in compo-

sitional zero-shot text classification task, we examine predictions made by baselines. From

the misclassified examples, we observe the following major error types: 1) attribute detec-

tion error; and 2) attribute selection error. Table 4.5 shows related examples of the errors

predicted by TMN.

• Attribute Detection Error: This kind of error occurs when some constituent attributes

of the predicted labels do not appear in the sentence or match the ground-truth labels. The
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Figure 4.4: The proportions of error types predicted by CGMN.

error is usually caused by incorrect detection of attributes.

• Attribute Selection Error: Different from the previous one, some constituent attributes

of predicted labels have appeared in the sentence instead of the ground-truth labels. The

reason is usually that the information collected in the sentences are not in the correct direc-

tion or from the correct parts, leading to the model selecting incorrect attributes to compose.

Error Analysis for CGMN: Our model, to some extent, eliminates the error types men-

tioned above. We utilize GAT based compositional attribute encoder and dependency pars-

ing tree to extract the information from the main parts in the sentence. However, these error

types have not been totally removed. The statistics of error types occuring in the CGMN

predictions are shown in Figure 4.4.

After the analysis, we found some possible reasons: 1) For attribute detection errors,

due to the imbalanced appearance of the attributes during the training process and the exis-

tence of some ambiguous or noisy examples in the data, models sometimes annotate some

tokens with incorrect attributes in the sentences. The evaluation of the results from the at-

tribute detector in CGMN displayed in Table 4.7 also proves this. 2) For attribute selection

errors, as the dependency parsing tree relies on the external tool—AllenNLP 1, it is more

1Obtained from website: https://allennlp.org/
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Table 4.7: Evaluation of the results from the attribute detector in CGMN.

Metrics Value(%)

Macro-Recall 79.61
Macro-Precision 89.79
Macro-F1 score 82.55
Macro-Accuracy 99.92
Overall Acccuracy 81.53
Off-O Accuracy 80.40
O Accuracy 81.64

likely to introduce error propagation stemming from dependency parsing errors.
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CHAPTER 5

CONCLUSION

We proposed a compositional graph neural network for the zero-shot compositional event

detection problem. To achieve zero-shot compositional generalization, we map both sen-

tences and event labels into a shared embedding space of the atomic attributes, while using

graph neural networks to capture compositional semantics. Moreover, we tie the compo-

sitional label embedding with the weights of the final classifier to achieve zero-shot learn-

ing. Extensive experiments on Twitter-COVID19 dataset and ACE 2005 dataset under both

conventional and generalized zero-shot learning settings have demonstrated our model’s

strong ability of compositional learning and zero-shot generalization. For future work, it

is interesting to model atomic attributes that are not given a prior, as well as incorporate

compositional grammars as constraints into the model learning process.
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