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If you were born with the weakness to fall, you were born with

the strength to rise.

Rupi Kaur
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SUMMARY

Human physiology shows a wide range of cyclical physiological changes co-

ordinated by endogenous biological clocks. These clocks work in different time

scales. Circadian rhythms follow the earth’s day-night cycle and have a period of

24 hours, while the ultradian rhythms have shorter periods. Multiscale changes

and variations in our physiology and behavior ensure optimal health and adap-

tation to our environment.

Disruptions in physiological rhythms have been shown to reflect illness, or

indeed, can lead to or exacerbate underlying conditions. For example, it has been

shown that the likelihood of suffering cardiovascular complications such as sud-

den cardiac death or arrhythmia is associated with the circadian rhythm [1]. This

may reveal a circadian mechanism of action. It is well-known that poor sleep can

lead to a variety of mental health issues [2]. Moreover, both physical and mental

health disorders (such as cardiovascular disease and depression) can lead to cir-

cadian disturbances, including difficulties falling asleep, nocturnal panic attacks,

and insomnia [3, 4]. This can create a reinforcement feedback loop to exacerbate

both mental and physical health issues.

Treatment of many disorders requires clinic visits, with a strong reliance on pa-

tient self-reports for filling in the gaps between these in-person assessments. This

lack of monitoring leads to both biases in the data (self-reporting/recollection is

well-known to be problematic [5]) and a lack of provision for responding to rapid

changes in health (such as cardiovascular decompensation or suicide risk). Ob-

jective tools for monitoring patients in between clinical visits are largely absent.

In recent years, advances in (and a push in commercialization) of wearable tech-

nology have enabled almost real-time monitoring of changes in physiology. This

has the potential to transform the landscape for monitoring diseases. However,
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despite these advances, there has been a general lack of rigorous studies ‘in the

wild’ and a lack of focus on novel metrics derived from the raw data.

The research described in this thesis aims to address the gap in the area of pas-

sive and continuous monitoring using wearables in naturalistic settings. Towards

this goal, the focus of this research is on building signal processing and machine

learning frameworks to quantify non-stationarities in physiological signals and

biological rhythm disruptions. In the first part of this dissertation, a wearable-

based sleep detection approach is developed. The proposed approach uses the

variations observed in the motion and heart rate data and detects patterns in

these change events associated with sleep-wake transitions. By combining differ-

ent modalities, this approach achieved higher wake detection accuracy compared

to a solely actigraphy-based method on a clinical cohort.

The second part of this dissertation focuses on features quantifying biologi-

cal rhythms to separate healthy controls and participants with health disorders

and validates the developed techniques in two different applications. The first

work presents the use of accelerometer and Photoplethysmogram (PPG) signals

to derive health outcomes post-trauma, based on analyzing circadian and ultra-

dian rhythm features with machine learning algorithms. Then, deep learning

algorithms are employed to extract features and representations for the same

classification task. The second work presents the use of both passive (motion,

location, social contact) and active (clinically-validated survey) data collected by

a smartphone app for monitoring HF patients non-invasively. The results show

that these data modalities could provide a complementary continuous monitoring

approach.

Once verified by deploying on devices in real-life settings, the tools in this

dissertation can potentially assist caregivers in monitoring patients and inform

more timely and appropriate clinical decisions and interventions.
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CHAPTER 1

INTRODUCTION

Wearables could improve upon conventional long-term patient monitoring tools

because they can collect diverse and objective data types, provide insights into pa-

tients’ behavior in naturalistic settings, and capture biological rhythms over mul-

tiple time scales ranging from seconds to weeks. Treatment approaches for many

disorders are in-person clinic visits and monitoring patients with self-reported

questionnaires in between the assessments. However, varying symptoms might

not be captured in one hospital visit’s data [6], or might not reflect the patient’s

behavior in the home environment [7]. While administering questionnaires in the

gaps between the clinic visits aims to solve these problems, these self-reporting

tools are subjective and prone to recall bias [5]. Furthermore, some disorders may

require dynamic monitoring of changes to provide timely care and support. De-

veloping novel wearable-based monitoring methods would enable objective lon-

gitudinal assessments over multiscale physiological dynamics.

Biological rhythms occur on different time scales and have diverse cycle lengths.

The biological clock that follows the earth’s day-night cycle and has 24 hours pe-

riod is called the circadian rhythm [8]. The suprachiasmatic nucleus (SCN) of the

hypothalamus is the master clock that controls the circadian oscillators [3] and

regulates the synthesis of melatonin [9]. Therefore, the circadian master clock is

involved in orchestrating the timing and the structure of the sleep/wake cycle.

Ultradian rhythms result from various biological processes and have periods less

than 24 hours [10]. Some examples of ultradian rhythms include sleep states,

electrical activity changes in the brain, respiration, and circulation.

While the biological clocks are essential mechanisms for our survival and
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adaptation to our environment, underlying adverse conditions could disrupt these

mechanisms. In the previous studies, it has been shown that physical and mental

health disorders could lead to circadian rhythm disturbances, including difficul-

ties falling or staying asleep, nocturnal panic attacks, or more severe symptoms

at particular times of the day [3]. While these circadian rhythm disturbances

are considered as symptoms of disorders, there is a bidirectional relationship,

and heightened circadian disturbances could exacerbate the symptoms of mental

and physical health issues [2]. Furthermore, it has been shown that cardiovas-

cular events such as cardiac death or arrhythmia demonstrate circadian rhythms

[1], and Heart Rate Variability (HRV) metrics follow circadian and ultradian cy-

cles [11]. Participants with Post-traumatic Stress Disorder (PTSD) show alter-

ations in the Hypothalamic-Pituitary-Adrenal (HPA) axis which regulates ultra-

dian rhythms, and therefore have an impact the cardiovascular system [12]. One

of the primary symptoms of the disorder is hyperarousal events, resulting in

sudden heart rate elevations. Consequently, studying the biological rhythm dys-

regulation over days as well as smaller timescales could provide novel insights

into both cardiovascular and mental health disorders and may widen our com-

prehension of their impact on physical health.

This dissertation describes the use of various data modalities from wearable

devices to build low-cost methods for passive monitoring. These methods can

complement conventional approaches (such as self-report questionnaires) and im-

prove the disease state estimation performance. In this work, wearable data is

analyzed in multiple timescales. On the ultradian scale, a novel sleep detection

technique was developed, and HRV metrics were derived. The circadian rhythm

was investigated using standard features and unsupervised machine learning ap-

proaches to generate novel features. Machine learning models were built to es-

timate or predict disease states from these features. Figure 1.1 illustrates some
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examples of ultradian and circadian cycles as well as the disease states. The up-

per plot shows the sleep/wake cycle, an ultradian rhythm occurring on an hourly

time scale. In the middle plot, daily changes in activity are shown to illustrate the

circadian rhythm. The bottom plot shows the disease states, which tend to move

from an acute phase to a chronic phase.

Sleep

Minutes →

Ultradian 
Cycles

Circadian
Cycles

Disease 
States

Wake

Days →

Years →

Tr
au
m
a

Acute Phase Intermediate 
Phase
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Figure 1.1: Biological rhythms and physiological states on three temporal scales.

1.1 Major contributions

The major contributions of this work can be summarized as follows:

• Designed and implemented a novel sleep/wake state detection method from

movement and physiological signals collected from wearable devices.

• Designed and implemented a machine learning-based algorithm for map-

ping motion and heart rate variability features that capture circadian and ul-

tradian variability from longitudinal wearable data to estimate post-trauma

outcomes.

• Developed a novel method for unsupervised feature extraction from 2-dimensional

representations of movement data using deep learning.
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• Designed and implemented a method for using passively collected smart-

phone data to predict heart failure decompensation events and developed a

novel late-fusion approach to fusing multimodal data.

The above contributions have been published in the following:

Journal articles:

• Siegel, B.I., Cakmak, A.S., Reinertsen, E., Benoit, M., Figueroa, J., Clifford,

G.D. and Phan, H.C., 2020. Use of a wearable device to assess sleep and

motor function in Duchenne muscular dystrophy. Muscle & Nerve, 61(2),

pp.198-204.

• Cakmak, A.S., Da Poian, G., Willats, A., Haffar, A., Abdulbaki, R., Ko, Y.A.,

Shah, A.J., Vaccarino, V., Bliwise, D.L., Rozell, C. and Clifford, G.D., 2020.

An unbiased, efficient sleep-wake detection algorithm for a population with

sleep disorders: change point decoder. Sleep, 43(8).

• Cakmak, A.S., et al. 2021. Classification and prediction of post-trauma

outcomes related to PTSD using circadian rhythm changes measured via

wrist-worn research watch in a large longitudinal cohort. IEEE Journal of

Biomedical and Health Informatics [in press].

Conference articles and abstracts:

• Cakmak, A.S., Reinertsen, E., Taylor, H.A., Shah, A.J. and Clifford, G.D.,

2018, December. Personalized heart failure severity estimates using passive

smartphone data. In 2018 IEEE International Conference on Big Data (Big

Data) (pp. 1569-1574). IEEE.

• Cakmak, A.S., Lanier, H.J., Reinertsen, E., Harzand, A., Zafari, A.M., Ham-

moud, M.A., Alrohaibani, A., Wakwe, C., Appeadu, M., Clifford, G.D. and
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Shah, A.J., 2019. Passive Smartphone Actigraphy Data Predicts Heart Fail-

ure Decompensation. Circulation, 140(Suppl−1), pp.A15444-A15444.

• Cakmak, A.S., Thigpen, N., Honke, G., Alday, E.P., Rad, A.B., Adaimi, R.,

Chang, C.J., Li, Q., Gupta, P., Neylan, T., and McLean, S.A., 2020. Us-

ing Convolutional Variational Autoencoders to Predict Post-Trauma Health

Outcomes from Actigraphy Data. Presented at NeurIPS (Machine Learning

for Mobile Health), Dec 12, 2020 (online), also available as an arXiv preprint

arXiv:2011.07406. [Selected as spotlight presentation.]

The following article is currently in submission:

• Cakmak, A.S., Shah, A.J. and Clifford, G.D. Dynamics of interpersonal so-

cial interactions and motion passively captured from smartphones predict

decompensation in heart failure.

1.2 Scope and organization of the dissertation

This work is organized as follows: Chapter 2 presents background on sleep detec-

tion on wearables. Following this, PTSD, heart failure, and Duchenne muscular

dystrophy (DMD) disorders are described in detail. The chapter concludes with

detailed descriptions of the datasets used in this dissertation.

Chapter 3 focuses on variations on shorter time scales and ultradian rhythms.

The chapter summarizes change point detection techniques and assesses their

performance on artificial heart rate data. Then, a novel sleep detection tech-

nique that utilizes change points observed in physiological and movement sig-

nals from wearables is introduced. The technique’s performance was measured

on a dataset with simultaneous wearable, and Polysomnography (PSG) record-

ings from a sleep clinic and the expert annotations from the sleep clinic were

used as ground truth. The ability of the technique to accurately estimate sleep
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study parameters such as sleep efficiency was also assessed and compared to a

movement data-based approach. Finally, performance on a second dataset with

a second research watch was presented to demonstrate the generalizability of the

proposed technique to different devices.

Chapter 4 discusses the use of HRV and movement metrics from the research

watch for monitoring patients post-trauma passively. Previously validated and

novel features to quantify the ultradian and circadian variability are derived from

longitudinal watch data, and machine learning techniques are used to map these

to clinical outcomes. The second project discusses using an unsupervised deep

learning method to derive features from movement data and compare perfor-

mance with a fully supervised approach. Furthermore, sleep detection described

in Chapter 3 is applied to the data collected in daily living conditions to capture

the sleep disturbances post-trauma.

In Chapter 5, the analysis for intermediate and chronic disorders is presented.

In the first project, a smartphone-based framework is used to collect data for

heart failure patients. The HF decompensation event prediction ability of various

single-modality models are compared. It is shown that the late fusion approach

improves the performance of the models, and a time-to-event analysis is pre-

sented. In the following sub-sections, circadian rhythm metrics are derived from

movement data of intermediate and chronic state PTSD, and DMD patients and

relation to clinical outcomes are assessed. Finally, Chapter 6 discusses concluding

remarks and future directions.
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CHAPTER 2

BACKGROUND

Smartphones and wearables become a part of our daily lives and give us an amaz-

ing opportunity to collect physiological data, in every part of the life and during

many human activities. In this part of the thesis, wearable-based methods for

sleep detection and disease state estimation (for post-traumatic stress disorder

and heart failure) are reviewed.

2.1 Sleep states and wearable-based sleep/wake detection

Several sleep/wake classification algorithms for wearables have been suggested

over the last decades, and they are typically based solely on actigraphy derived

from accelerometer [13, 14, 15, 16]. Several findings suggest that only using move-

ment signals leads to the main limitation of current algorithms: the incorrect clas-

sification and overestimation of low activity tasks as such sleep [17, 18, 19]. In-

deed, low activity (quiescent) segments are not unique to sleep but are common to

other activities such as reading or watching television. Another limitation results

from the adoption of imprecise evaluation metrics used in assessing the perfor-

mance of these devices. Since the percentage of sleep is typically higher compared

to wake overnight, total accuracy may not be a reliable metric to evaluate perfor-

mance. Sleep/wake detection may be considered as a “rare class problem” and

may be amenable to alternative model evaluation metrics which better reflect this

issue.

The first approaches in the field for state determination were based on cal-

culating a weighted sum over the actigraphy epochs around the current epoch

and scaling the summation to distinguish sleep from wakefulness [13, 14]. Oak-
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ley presented a similar approach in which the current epoch, epochs in the 2

minutes before and the 2 minutes after the current epoch are scaled with pre-

determined coefficients and summed [20]. If the summation is higher than the

threshold, the region was labeled as wake. The Oakley algorithm is utilized in

commercially available devices with different threshold selections (e.g., Actiwatch

2, Philips Respironics; Bend, Oregon). These actigraphic methods rely solely on

the amplitude of actigraphic signals, which makes them low cost and easy to

implement. However, these methods may overestimate sleep, particularly for pa-

tients with disordered sleep [21, 22]. It has been long been known that heart rate

reflects transitions from sleep to wake and from wake to sleep [23, 24, 25]. Re-

cent studies in the field leverage a combination of photoplethysmography (PPG)

and accelerometer signals for sleep/wake detection [26, 27, 28]. However, these

approaches have not been tested on clinical populations and still show low sensi-

tivity in detecting wake epochs.

2.2 Post-traumatic stress disorder

PTSD is a psychiatric condition that can develop after exposure to threatening

or horrifying events. Significant symptoms consistent with the eventual devel-

opment of PTSD may manifest within days, weeks or months, and more rarely,

a year or two after the traumatic event [29]. Symptoms may include persistent

intrusive memories of trauma, sleep disturbances, avoidance of stimuli related to

the trauma, hyperarousal, and negative changes in mood and cognition. PTSD

can result from events such as violent personal assaults, natural or human-caused

disasters, motor vehicle collisions, combat, and other forms of violence [30]. It has

been shown that patients with PTSD experience sleep disturbance, particularly in

terms of nightmares and panicked awakenings from sleep [4]. In addition, var-

ious studies suggest a significant comorbidity of pain with PTSD [31]. Many
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models have been developed to explain this co-occurrence of pain and PTSD, in-

cluding the mutual maintenance model [32]. According to this model, pain acts

as a reminder of the traumatic event and maintains PTSD symptoms. Then, these

symptoms reduce the ability to cope with pain effectively. Although approxi-

mately 90% of all U.S. adults report exposure to at least one traumatic event in

their lifetime, most do not develop PTSD [33]. It has been shown in previous

studies that the majority of individuals experience PTSD onset within the first

three months after trauma, while “delayed expression” PTSD (after six months)

was observed on average for 15.3% of the cases [34].

PTSD prediction using standard survey data remains a challenge, since po-

tential risk factors (such as age, gender, previous trauma) did not show a strong

association with PTSD [35, 36, 37]. In a previous study, Schultebraucks et al. [38]

combined biomarker data with clinical assessments from the emergency depart-

ment (ED) to build a cross-validated prediction algorithm. By fusing these two

modalities, the model’s Area Under The Curve (AUC) for classifying participants

with non-remitting PTSD symptoms from participants with resilient trajectories

was 0.83 on a validation dataset. They also tested the use of electronic medi-

cal records alone and achieved an AUC of 0.72, which outperformed the baseline

classifier (AUC=0.62). In another work, video and audio-based features were used

with a deep learning classifier and achieved an AUC of 0.90 for predicting PTSD

one month after ED enrollment [39].

The exponential increase in consumer wearables, and in wearable technology

generally, has created an exciting opportunity to predict adverse mental health

outcomes using wrist-wearable data [40, 41]. Two key outputs of wrist-wearable

data are HRV and actigraphic data. Individual differences in a various time- and

frequency-domain HRV measures have been found to predict a range of mental

and physical health outcomes, including depression, anxiety, and poorer cardio-
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vascular health [42, 43]. On the other hand, individuals with established PTSD

have been shown to have HRV profiles consistent with increased sympathetic

nervous system activity during sleep [44, 45]. In a previous pilot study, by using

a dataset of 23 subjects with current PTSD and 25 control subjects, the authors

found that HRV features derived from time periods with the lowest heart rate in

24-hour periods classify PTSD with an AUC of 0.86 [46]. McDonald et al. used

heart rate data from 100 participants to detect the onset of PTSD triggers [47].

By combining the heart rate features with and Support Vector Machine (SVM),

authors achieved an AUC of 0.67 and found that their algorithms associated the

increase of heart rate with onset of PTSD trigger.

Motion data provides a cost-effective solution for monitoring participants over

extended periods of time. It can be used to estimate sleep disturbance using de-

rived sleep/wake estimates and the rest/activity patterns [48]. Many studies

utilized actigraphy as an objective tool to characterize disturbances in sleep and

circadian rhythm in PTSD [49, 5]. However, analyses were confined to identifying

statistically significant differences in populations and cross-validated classifica-

tion analysis was not performed. In another study, Tsanas et al. developed a sleep

period estimation algorithm using accelerometer and ambient light data from

wearables [50]. Authors find that their proposed method can estimate the sleep

onset and sleep offset data captured by self-reported sleep diaries on a cohort

including 42 PTSD participants. In addition, they inspect the group differences

and found that the activity during sleep and Intradaily Variability (IV) features

to be statistically significant across groups. However, to author’s knowledge, no

other study has combined heart rate and motion data to build an objective multi-

variate classifier over extensive periods of time. This dissertation combines both

modalities to analyze multiscale biological rhythms and builds objective passive

monitoring tools.
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2.3 Heart failure

The American Heart Association estimates that between 2013 and 2016, approxi-

mately 6.2 million Americans had HF [51]. In 2012, the economic burden of HF

was estimated at $30.7 billion. Projections suggest a 127% increase in cost by 2030.

Overall, cardiovascular diseases account for the highest expenditures amongst all

non-communicable diseases in the US [52].

HF decompensation, associated with hypervolemia (volume overload), is de-

fined as a clinical syndrome in which a functional change in the heart leads to new

or increasing symptoms, including fatigue, dyspnea, and edema, and requires

hospitalization [53]. Treatment includes diuretics and vasodilators intended to

improve volume status and cardiac function. Unfortunately, even following suc-

cessful treatment and return to the euvolemic (normal volume status) state, de-

compensation episodes can continue to occur with increasing frequency [53, 54].

Patil et al. reported that about 20% of the patient cohort were readmitted within

30 days of initial hospitalization due to HF, with a median readmission time of 12

days [55]. Furthermore, patients with a lower income had a higher readmission

rate, indicating that socio-economical factors could also contribute to the disease’s

progression. If low-cost monitoring methods identify decompensation episodes

developing outside the clinic, medical interventions could be administered proac-

tively to prevent hospitalization or other adverse outcomes.

Various studies investigated techniques for monitoring HF patients non-intrusively.

Packer et al. [56] showed that using a combination of clinical variables and

impedance cardiography features could be a predictor of a decompensation event

in the next 14 days. Previous studies have also investigated the use of wearable

devices adhered to the chest. In the ‘Multisensor Monitoring in Congestive Heart

Failure’ study, the authors propose an algorithm that uses physiological signals,
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and they report a sensitivity of 63%, and specificity of 92% [57]. However, the

authors provide few details and claim it is ‘proprietary’. Inan et al. recorded

seismocardiogram signal with a non-invasive wearable patch before and after a

6-minute walk test to analyze the cardiac response to exercise [58]. The authors

used graph similarity scores between the rest and recovery phases and found a

significant difference between compensated and decompensated groups. In an-

other example, similarity-based modeling was used with physiological signals

from a patch on the chest to detect changes from the baseline. This algorithm

had a sensitivity of 88% and specificity of 85% [59]. Using ballistocardiogram

data recorded at home was also investigated [60], and authors demonstrated that

collecting high-quality ballistocardiogram data at home is feasible, and an AUC

of 0.78 could be achieved for classifying clinical status. Other non-invasive ap-

proaches include patient-reported outcomes, which could be collected using clin-

ically validated questionnaires such as KCCQ. The KCCQ assesses the quality of

life, predict readmissions and mortality in HF patients [61]. In a previous study,

Flynn et al. reported that KCCQ has modest correlations with exercise capacity

measured by the 6-minute walk test in a population with HF [62].

With the advancement of technology, smartphones have become a ubiquitous

part of our daily life. For long-term monitoring, using a smartphone could be

advantageous to a solution requiring an additional device by reducing the disrup-

tion to patients’ normal daily routine. Our research team and collaborators have

previously developed the Automated Monitoring of Symptom Severity (AMoSS)

app, which is a custom and scalable smartphone-based framework for remote

monitoring [63]. Subsequently, the current authors used the passive data from

the first ten participants of this study to estimate the KCCQ surveys collected

through the app [64]. The model estimated the KCCQ score with a mean abso-

lute error of 5.7%, providing an entirely passive method of monitoring HF related
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quality of life. (The method was passive in the sense that it does not require any

active participation by either the patient or clinical staff beyond the everyday use

of a mobile phone to monitor activity and behavioral patterns in the background

using software.) Then, in subsequent work, motion data was used to classify de-

compensation or compensation events [65]. By using a hold-out test randomly

sampled from 30% of the events (Ntest = 32), the AUC of the classifier was found

to be 0.76. Heart failure decompensation events were also predicted from fea-

tures derived from passive and active data collected by the smartphone-based

framework [66]. Features were extracted from multiple modalities including mo-

tion, social contact, location, and clinical survey data (KCCQ). Algorithms based

on using a single modality and two different sensor fusion approaches were de-

veloped. An analysis of the feature importance in the model is also presented.

Finally, a novel late-fusion model that combines the KCCQ, motion, and social

contact data is proposed.

2.4 Increased risk of cardiovascular disease due to post-traumatic stress disor-

der

PTSD has been associated with cardiovascular diseases and previous studies have

shown that PTSD might have harmful effects on cardiovascular health due to

following reasons:

• Physical changes: One of the main symptoms of PTSD include hypervigi-

lance, and the reminders of the traumatic event results in higher sympathetic

nervous system activity [12]. The activity of is sympathoadrenal axis is also

increased, and this leads to higher levels of catecholamine, which could ef-

fect the heart [67].

• Lifestyle factors: PTSD symptoms could lead to unhealthy behaviours in-
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cluding smoking, alcoholism, or physical inactivity [68]. In addition, obesity

might also have an association with PTSD and patients with PTSD report

higher Body Mass Index.

Vaccarino et al. used a dataset of male twins from the Vietnam Era Twin

Registry to analyze the association of PTSD with coronary heart disease [12].

Authors found that the incidence of heart disease is double in twins with PTSD.

On another study, Kang et al. studied World War II prisoners of war, and found

that cardiovascular disease risk is significantly higher if participant has PTSD [69].

2.5 Duchenne muscular dystrophy

DMD is a genetic disorder that results in progressive loss of functional muscle

mass [70]. This progressive loss of muscle stats early in life and could result in

the loss of life in adolescent years due to compromise of respiratory muscula-

ture. Symptoms of DMD include gait abnormalities, difficulty rising up from the

ground, frequent falls, and sleep disorders [71, 72]. Previous studies have investi-

gated utility of actigraphy data to estimate outcomes related to DMD. Davidson et

al. used StepWatch activity monitor (Orthocare Innovations, Washington) to col-

lect data from participants with DMD (N=16) and healthy controls (N=13) [73].

By using parameters derived from the watch, authors found participants with

DMD had less step count and were inactive for longer periods. In another work,

22 participants with DMD wore an actigraph during their daily life [74]. The au-

thors found the area under the curve for each 1-minute epoch of actigraphy data

could be a useful feature to estimate the muscle strength. These works indicate

that wearable-based monitoring could be useful for DMD, but metrics related to

circadian rhythm have not been tested in this population yet.
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2.6 Datasets used in this thesis

2.6.1 Emory post-traumatic stress disorder dataset

The dataset in Emory PTSD study includes a subgroup of participants (n = 102,

men, mean age = 68.56, SD = 1.93) from the Emory Twin Study Follow-up re-

cruited from the Vietnam Era Twin Registry [75]. Written informed consent was

obtained from all participants, and the Emory University Institutional Review

Board approved this research (IRB #00081004). All PSG data were collected from

data acquisition systems (Natus, Remlogic) set up in two bedrooms in the Emory

Sleep Center. During PSG, subjects wore a commercially available wrist-worn

research watch (Empatica E4, Empatica; Cambridge, MA). The wrist-worn de-

vice recorded PPG and 3-axis accelerometer signals with sampling rates 64 Hz

and 32 Hz respectively. After the participants were discharged from clinic, they

start wearing Actiwatch research watch (Philips Respironics, Bend, Oregon). The

device collected activity data continuously everyday, up to two weeks and aggre-

gated into 30-second epochs.

2.6.2 Advancing Understanding of RecOvery afteR traumA post-traumatic stress

disorder dataset

The Advancing Understanding of RecOvery afteR traumA (AURORA) dataset,

used in this thesis, consisted of individuals who present to participating emer-

gency departments within 72 hours of a traumatic event [76]. Traumatic events

that qualified automatically for study enrollment were motor vehicle collision,

physical assault, sexual assault, fall > 10 feet, or mass casualty incidents. The

patients ranged in age from 18 to 75 years. Although the AURORA study’s aim

is to collect data from 5000 individuals, the data is being analyzed in a series of

tranches (or ‘freezes’) to report results to the scientific community. This approach
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also allows future data to act as a truly independent test set. For the current study,

we present the analysis of the first set of participants (N=1618) enrolled between

July 31, 2017, and July 31, 2019. There were 2312 subjects enrolled until July 31,

2019. Participants who were deceased, those who dropped, who were pregnant

or incarcerated, or anyone for whom the medical data extraction form was not

available were not included in the released analyzable cohort, making the final

dataset size 1618 participants. These 1618 participants are referred to as ‘Freeze 2’

dataset. Demographics (age, sex, BMI, and employment status) of the participants

are shown in Table 2.1.

Table 2.1: Freeze 2 dataset participant demographics. p values calculated using
Wilcoxon rank sum test (age, BMI) or Fisher exact test (sex, employment) between
PCL-5 ≥ 31 and PCL-5 < 31 participants. Age and BMI are shown as Mean (SD).

Total Week-8
PCL-5 ≥ 31

Week-8
PCL-5 < 31

p
val.

Sex M
F

581

1037

156

409

194

471
0.57

Age 35 (13) 36 (12) 35 (13) 0.31

BMI 30.4 (8.7) 30.7 (9.2) 30.3 (8.4) 0.53

Emp. Status Employed
Other

1064

554

374

191

545

220
0.05

The AURORA study protocol was ethically approved by the central Institu-

tional Review Board (IRB #17-0703) at the University of North Carolina Chapel

Hill. Participants were asked to wear a research watch (Verily Life Sciences; San

Francisco, CA) at least 21 hours a day for the eight-week period and at subse-

quent times that vary by the study participant. This research watch collected

accelerometry and the PPG data at 30 Hz sampling frequency.
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2.6.3 Automated Monitoring of Symptom Severity heart failure dataset

AMoSS app, designed and implemented by our research team and collaborators,

passively collects location, activity, clinical surveys and contact activity/diversity

data via de-identified lists of word type, as well as recipients and senders of

text messages and phone calls, including length/duration and time of day [77].

In order to protect subject’s privacy, all data are de-identified at source, using

hashed identifiers and random geographic offsets. The app uploads data every

few hours to Amazon Web Services for storage.

Subjects with HF were enrolled in an ongoing HF study at the Veterans Af-

fairs Medical Center and Emory University Hospital in Atlanta, USA. The study

protocol was approved by the IRB (#00075867) at Emory University. The AMoSS

app was installed on subject’s phone after they visited the HF clinic. The subject

could also opt to stop the collection of individual data types at any time. The app

passively collected data while the clinical team recorded the clinical events, which

consisted of hospital visits with compensated or decompensated status during the

enrollment.

Table 2.2: AMoSS HF dataset description. If the metric is not available, the partic-
ipant is excluded from that row.

Num. comp. events 62

Num. decomp. events 48

Avg. comp. events per person 2

Avg. decomp. events per person 2

Avg. ejection fraction (%) 35

Gender 93% male
Age (mean ± std) 67 ± 8

BMI (mean ± std) 31 ± 6

Employment
Employed: 3

Unemployed: 5

Retired: 7
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There were 28 participants (26 males) who contributed at least one clinical

event during their enrollment. To be included in the study, participants need to

have a diagnosis consistent with congestive heart failure as noted in the electronic

medical records within the Emory Health Network. Additionally, participants

needed to be over the age of 18, able to consent to a clinical study, and spoke

English as their primary language. Patients were ineligible for participation in the

study if they had been diagnosed with a terminal illness with a life expectancy of

less than six months or if they were enrolled in a hospice program. Additionally,

participants could not have been enrolled in clinical study that precluded them

from participating in another clinical study. Finally, participants had to be willing

and able to comply with the use of their smartphone as indicated in the study.

Table 2.2 shows more details about the participants in the dataset.

2.6.4 Duchenne muscular dystrophy dataset

Fifty five participants who were aged 5 to 17 years participated in the DMD study

conducted at Children’s Healthcare of Atlanta medical center. The study was

approved by Emory University Institutional Review Board. Participants were

recruited during regularly scheduled appointments. Informed consent was ob-

tained from parents or legal guardians, and assent was obtained from each par-

ticipant.

At the time of enrollment, 37 participants were taking steroids. Actigraphy

devices were provided for 31 participants. Nine did not wear the device at the

appropriate times or did not wear it at all. From the remaining 23 participants,

14 were ambulatory. During the study, each participant wore the Actiwatch 2

(AW2; Philips Respironics, Bend, Oregon) research watch for up to 10 days on

their non-dominant wrist. The research watch recorded data continuously each

day and summarized data into 30-second epochs. The median recording duration
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was seven days.
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CHAPTER 3

CHANGE-POINT DETECTION FOR SLEEP STATE ESTIMATION

3.1 Rapid state change detection techniques

Non-stationarity is one of the key characteristics of human physiology and activ-

ity, driven by structured working days, alarms, unpredictable human interaction,

etc., as well as intrinsic changes in the central nervous and cardiovascular systems.

Many techniques have been proposed to artificially remove non-stationarities such

as ‘detrending’, or removing a mean, slope, or nonlinear fit in an arbitrary piece-

wise manner [78, 79]. However, such approaches tend to create large artifacts

around changes in stationarity [80, 81]. Moreover, many useful time series anal-

ysis techniques assume stationarity. Therefore, change point detection – the esti-

mation of points in time where the probability distribution of a stochastic process

changes – can enable the analysis of stationary segments of data and reveal under-

lying structure. For instance, Bernaola-Galvàn [82] used time series segmentation

and change point detection to investigate non-stationaries in human HR time

series and found mean level jumps between HR segments were smaller in heart

failure patients compared to healthy controls. Furthermore, HR interval segments

were found to follow a power law distribution, for both heart failure patients and

healthy controls.

In this work, six change point detection methods were applied to a realistic ar-

tificial dataset, which consisted of beat-to-beat (RR) interval time series data gen-

erated by a previously published model [83], hereafter referred to as “RRGen”.

The performance of each change point detection algorithm was evaluated as a

function of noise, tolerance (time between a true and estimated change point),
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and arrhythmia (ectopy). Using artificial data enables the assessment of algo-

rithmic performance by comparing estimated change points against true change

points. Moreover, if the artificial dataset is realistic, parameters of the change

point detection method can be optimized for use on real data that exhibits similar

statistics. By using the knowledge of the exact time of state transitions inherent

in RRGen, we tuned parameters of each algorithm to detect change points during

in real overnight recordings.

3.1.1 Artificial beat-to-beat interval time series data generation

The ‘RRGen’ algorithm was used to generate realistic 24-hour RR time series

(tachograms) from a model of cardiovascular interactions and transitions between

physiological states [83]. The model incorporates short-range variability due to

Meyer waves and respiratory sinus arrhythmia, and long-range transitions in

physiological states, by using switching distributions extracted from real data.

The model incorporates both short and long-term variability, modeled on the

normal sinus rhythm database [84]. Different tachograms can be produced by

calling RRGen with different seeds and one example is illustrated in Figure 3.1.

Figure 3.1: Artificial RR Interval data generated using RRGen. RR intervals are
shown as purple points and the true change points are shown with dashed black
lines.
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3.1.2 Change point detection methods

Recursive Mean Difference Maximization

Recursive Mean Difference Maximization (RMDM) was proposed by Bernaola-

Galvàn [82] to study scaling behavior of the human heart rate, and has been

tested on artificially generated non-stationary time series with different statis-

tical properties and real data [85, 86]. The method recursively maximizes the

difference in the mean values between adjacent segments. Given the input sig-

nal S = {x1, x2, ..., xN} of length N, a sliding pointer is moved from the left to

right, splitting the signal into S1 = {x1, x2, ..., xj} and S2 = {xj+1, xj+2, ..., xN} sub-

sequences with N1 and N2 number of samples respectively, where j is index at

which the split occurs. Means of the subsequences S1 and S2 are calculated as:

µ1 =
1

N1
∑

xi∈S1

xi, µ2 =
1

N2
∑

xi∈S2

xi. (3.1)

The means are compared using the Student’s t-statistic:

t(S1, S2) =

∣∣∣∣∣ (µ1 − µ2)√
σP

∣∣∣∣∣ (3.2)

where σP is the pooled variance, defined as

σP =
(N1 + N2)(V(S1) + V(S2))

((N1 + N2 − 2)N1N2
(3.3)

and V(S) is the sum of squared deviations of the data in the signal S:

V(S) = ∑
xi∈S

(xi − µ)2 (3.4)

Student’s t-statistic is calculated as a function of the index j in the time series.
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A candidate change point jmax is selected, at which t(j) reaches the maximum

tmax.

The significance level P(τ) of jmax is calculated as P(τ) = {tmax ≤ τ}, where

P(τ) could not be obtained in a closed analytical form and was numerically ap-

proximated by Bernaola-Galvàn as

P(τ) =
{

1− I[ ν
ν+τ2

](δν, δ)

}γ

(3.5)

where γ = 4.19 ln N − 11.54, δ = 0.40, N is the length of the signal, ν = N − 1 is

the number of degrees of freedom, and Ix(a, b) is the incomplete beta function.

If P(τ) exceeds a predefined threshold P0 (0.95 as in this work), the signal is

split into two subsequences. Before index j is confirmed as a change point, τ be-

tween the two candidate subsequences is also calculated to see if the significance

exceeds P0. To reduce false positives, the condition that the minimum candidate

segment length should be greater than l0 was added. This procedure is repeated

for each new sub-sequence until splitting the signal into candidate subsequences

that differ by a significance level P0 is not possible.

Bayesian Blocks

This algorithm was proposed by Scargle et al. and detects change points via dy-

namic programming [87]. The Bayesian Blocks (BBlocks) approach fits a piecewise

constant signal model to data by maximizing a fitness measure specified accord-

ing to the data type.

The total fitness of the partition P of the signal S = {x1, x2, ..., xN} of length N

is additive and defined as

F
[
P(S)

]
=

Ns

∑
k=1

f (Sk) (3.6)
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where Ns is the number of segments and f (Sk) is the fitness of the kth segment

Sk derived from maximizing the log likelihood of blocks given M point measure-

ments xi, i ∈ 1, ..., M

f (Sk) =
(∑M xi)

2

4 ∑M σ2
i

(3.7)

where xi is the ith data point and σi is the error variance of the data point mea-

surement. Note that in our case, since a data point’s measurement error was

unknown and the signal was normalized, the error variance was taken as σ = 1.

The BBlocks algorithm starts with a sub-signal of only one data point xi=1,

wherein only one segmentation is possible. In each step, a new datum xi=i+1 is

added to the signal and can be considered the last point of the last segment of a

possible optimal segmentation of samples. The starting point r of the last segment

of this optimal partition is obtained at each step by the following

ri = argmax[ f (r) + F
[
P opt(r− 1)

]
] (3.8)

where the definition of variables is the same as for the equations (Equation 3.6)

and (Equation 3.7) and P opt(r− 1) is the optimal partition from the previous step.

When the last data sample is presented to the algorithm, the calculated value

of rN becomes the last change point, marking the beginning of the last segment.

This segment is removed, the data point before rN is considered the last datum,

and the corresponding value of ri is assigned to the next change point. All change

points are found by starting from the end, moving towards the start of the time

series, and iteratively peeling off blocks.

Binary Segmentation

Binary Segmentation (BiS) has been widely used in change-point detection analy-

sis and is computationally fast ([88, 89]). The procedure minimizes a cost function,
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and starts by searching for a change-point τ in the input signal S = {x1, x2, ..., xN}

that satisfies the condition

CS1:τ + CS(τ+1):N
+ β < CS1:N (3.9)

where C is a cost function and β is a penalty term that reduces over-fitting.

If the condition in (Equation 3.9) is met, τ becomes the first estimated change-

point, and S1:τ and S(τ+1):n become the first subsequences. The process continues

within these segments until data cannot be divided any further. Cost function in

the above equation is given by

CSτi :τi−1
= −2 log L(θ|Sτi−1:τi) (3.10)

where L is the likelihood function. If the data is assumed to follow the Normal

distribution, log likelihood becomes

−2 log(L) =
τi

∑
j=τi−1

log(2π) + log(σ2
i ) +

xi − µ2
i

σ2
i

(3.11)

Then the cost function of mean changes in the time series can be expressed as

CSτi :τi−1
=

τi

∑
j=τi−1

(xj − n−1
i ∑τi

j=τi−1 xi)

σ2 (3.12)

Any cost function C can be adapted for use in this framework, and one or more

change-points can be detected.

Pruned Exact Linear Time

This algorithm was proposed by Killick et al. [89] and minimizes a cost func-

tion which chosen according to prior probability distribution of data. Algorithm
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calculates following minimization

F(s) = min
τετs

(
m+1

∑
i=1

[C(S(τi−1+1):τi)
+ β])

= min
t
(min

τετt
(

m+1

∑
i=1

[C(S(τi−1+1):τi)
+ β]) + C(S(t+1):n) + β)

= min
t
(F(t) + C(S(t+1):n) + β)

(3.13)

Pruned Exact Linear Time (PELT) assumes that for all t < m < T, there is a

constant K that satisfies

C(S(t+1):m) + C(S(m+1):T) + K ≤ C(S(t+1):T) (3.14)

After each change point is estimated, pruning is performed by removing

points that satisfy the condition

F(t) + C(S(t+1):m) + K ≥ F(m) (3.15)

because these removed points cannot be the last optimal change point for T >

m. In this work, the built-in MATLAB r2019a function ’findchangepts.m’ was

used.

Bayesian Online Change Point Detection

Adams and MacKay proposed a Bayesian Online Change Point Detection (BOCPD)

algorithm [90] and further developed by Turner et al. [91]. This method estimates

change points using Bayesian inference, whereby the posterior probability of the

time since the last change point, referred to as “run length”, is calculated sequen-

tially.

For normally distributed data with unknown mean and variance, the conju-
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gate prior on observations follows a normal-inverse-gamma distribution with ν,

α, and β hyper parameters. On each step of the algorithm, a new datum xi=i+1

is added to the analyzed signal and xt indicates data sample at time t. The pos-

terior predictive probability of a new datum has the form of a non-standardized

Student’s t-distribution [92] with 2α degrees of freedom, center at µ, and PPV

αν
β(ν+1) .

The posterior predictive probability of segment length r at data point i is given

by

π
(r)
t = t2αt(xt|µt,

βt(νt + 1)
αtνt

) (3.16)

Using predictive probability, growth probabilities are calculated as

P(rt = rt−1 + 1, x1:t) = P(rt−1, x1:t−1)π
(r)
t (1− H(rt−1) (3.17)

where H(τ) denotes the hazard function of a change point occurring. If inter-

vals between change points are assumed to follow an exponential distribution

with timescale λ, the hazard function becomes H(τ) = 1/λ. The change point

probability at time t is

P(rt = 0, x1:t) = ∑
rt−1

P(rt−1, x1:t−1)P(xt|rt−1, x(r)t )H(rt−1) (3.18)

The distribution of run lengths is calculated as

P(rt|x1:t) =
P(rt, x1:t)

∑rt P(rt, x1:t)
. (3.19)
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Finally, the hyperparameters are updated according to

µt+1 =
νtµt + xt

νt + 1
,

νt+1 = νt + 1,

αt+1 = αt + 0.5,

βt+1 = βt +
νt(xt − µi)

2

2(νt + 1)

(3.20)

as defined in the conjugate Bayesian analysis of the Gaussian distribution [92].

This process repeats for the remaining data samples of the analyzed signal. After

the run length distribution is calculated for all samples, indices with maximum

probabilities are used to estimate the location of change points.

Modified Bayesian Online Change Point Detection Algorithm

Each new datum added to the analyzed signal results in one of two possible

events for the segment length rt: 1) it increases so rt = rt−1 + 1, or 2) a change

point occurs and rt = 0.

Originally, for each value of t, the run length probability vector v is sequen-

tially calculated. v(1) = P(rt = 0) is calculated by (Equation 3.18). v(2 : t) is the

probability of each possible run length at time t and calculated by (Equation 3.17).

This vector is normalized by (Equation 3.19). Finally, all run length probability

vectors are concatenated, and the run length with the maximum probability is

selected as the run length for time t.

Although the run length should drop to zero as a change point is encountered

in the time series, this approach fails to find rt = 0. Due to sequentially calculating

run length probability vectors, v(1) is rarely the maximum row in the vector, so

the run length is almost never set to zero.

A simple modification enables the correct selection of rt = 0 when change
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Figure 3.2: Top plot shows the artificially generated RR interval data, true change
points are shown in black dashed lines. Middle plot shows the run length for
BOCPD. Bottom plot shows the run length for mBOCPD. Note that the false trig-
gering of BOCPD algorithm is avoided using the mBOCPD algorithm.

points are encountered. The growth probability, e.g. probability of continuing the

current run, is calculated as

P(rt = rt−1 + 1, x1:t) = ∑
ri−1

P(rt−1|x1:t−1)P(xt|rt−1, x(r)t )(1− H(rt−1)) (3.21)

The growth probability is compared to the change point probability P(rt =

0|x1:t). If the change point probability is higher, the segment is ended and the

run length becomes zero. Otherwise, the run length vector is increased by one.

This approach is illustrated in Figure Figure 3.2 and is denoted as the Modified

Bayesian Online Change Point Detection (mBOCPD) algorithm.

3.1.3 Performance metrics for change point detection

In order to assess how well estimated change points mapped to true change

points, the following performance measures were used:

• True Positive (TP): An estimated change point within a temporal tolerance

γ of a true change point was labeled as a true positive. If more than one
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estimated change point occurred within γ of a true change point, only one

estimated change point was counted towards the total number of true posi-

tives.

• False Positive (FP): If the estimated change point was not within the toler-

ance, γ, of any true change point, then it was labeled as a false positive.

• False Negative (FN): If there was not any estimated change point within the

tolerance γ of a true change point, then a false negative was recorded.

True negatives cannot be counted, since these would overwhelm any statistics

and depend heavily on the sampling frequency. The recall or true positive rate

(TPR = TP/(TP + FN)) and positive predictive value (PPV = TP/(TP + FP))

were calculated in this analysis. The true negative rate was not calculated be-

cause there were many more non-change points versus change points in the data.

Instead, the number of false positives was counted. Finally, the F1 score — the

harmonic mean of TPR and PPV (F1 = 2TP/(2TP + FP + FN)) - was used to

optimize the parameters of each algorithm.

3.1.4 Parameter selection for change point detection algorithms

To find optimal parameters for each algorithm, the F1 score was maximized via

grid search using realistic search ranges for each parameter. For RMDM, the

minimum segment length ranged from l0 = {6 : 1 : 12}. For BBlocks, the free

parameter ranged from γ = {1.5 : 0.5 : 4, 5}. After w0 and p0 was set, the optimal

posterior probability cut-off level was searched for in the range {0.5 : 0.1 : 1}. If

the posterior probability of a point was higher than that level, it was labeled as

a change point. In the analysis using the BOCPD method, the expected segment

length was tested in the range λ = {100 : 100 : 2000}. For mBOCPD, the expected

segment length ranged from λ = {10 : 10 : 100} for RRGen. PELT was tested
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via detecting changes in root mean square level, standard deviation, mean, and

“linear” mode – which finds the locations at which the mean and the slope of

the signal change most abruptly. For BiS, changes in mean or mean and standard

deviation were evaluated at the same time, and assumed data were drawn from

normal distributions. For Hannan-Quinn, BIC, and AIC information criteria, the

following penalties were tested respectively: β = 2p × log(log(N)), β = p ×

log(N), and β = 2× p. Parameters selected via grid search were used to analyze

artificial RR interval data, for RMDM a minimum segment length l0 = 7 was

used. For BiS changes based on mean were evaluated. For PELT changes were

based on root mean square level. For BBlocks a free parameter value γ = 4 was

used. For BOCPD, λ = 1840 was used and for mBOCPD an expected segment

length λ = 80 was used. Temporal tolerance γ was set to 10 seconds.

3.1.5 Change point detection performance on artificial beat-to-beat interval time

series

Figure 3.3: Performance of methods for detecting change points on the artificial
data.

Using RRGen, 500 samples of RR interval data of length 1000 samples were

generated. While RMDM achieved highest TPR when applied to artificial RR

interval data, BOCPD had higher positive predictive value and fewer false pos-

itive counts compared to other methods as shown in Figure 3.3. When artificial
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Figure 3.4: Performance of methods for detecting change points on the artificial
data with noise probability set to 0.1.

noise was added (probability of noise = 0.01), BiS achieved the highest positive

predictive value and the fewest false positive counts. The computation time (tc)

for methods was also recorded. For BOCPD and mBOCPD, tc was 0.178 and

0.164 seconds respectively. For RMDM tc = 0.159, for BiS tc = 0.129, for PELT

tc = 0.004, and for BBlocks tc = 0.023. When the length of artificial RR inter-

val time series was set to 9000 samples, the computational time was; for BOCPD

tc = 7.149, for BOCPD tc = 6.9146, for RMDM tc = 1.629, for BiS tc = 3.186, for

PELT tc = 0.010, and for BBlocks tc = 0.426.

3.2 A change point decoder for sleep-wake detection on memory-constrained

wearables

The Change Point Decoder (CPD) uses the change points from wearable device

signals to predict sleep or wake [93]. The method is inspired by the encod-

ing/decoding framework in neuroscience [94], where a neural population re-

sponse to a stimulus signal is observed in the form of spike trains. These re-

sponses are then used to train encoding models that describe the probability of

the responses. When a spike train is observed from a group of cells, this model

is used to ”decode” or estimate the stimulus signal. Similarly, in sleep/wake de-
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tection problems, the stimulus becomes the sleep/wake states, and alternations

in these states result in the observed changes in PPG and actigraphy signals. Pre-

vious studies have shown that the mean and standard deviation of heart rate

decreases during Non-REM sleep and increase during wakefulness [23, 24, 25].

We hypothesized that change point detection could be used to mark these alter-

ations in the heart rate. Body movements have also been used as a sleep/wake

identification feature in various studies over the years [13, 19, 20]. In this method,

changes in the amplitude and gross body movements were detected to capture

this information.

3.2.1 Preprocessing accelerometer and photoplethysmogram data

Initially, the Empatica E4 timestamp was synchronized with the PSG timestamp.

A series of preprocessing steps were applied to PPG and accelerometer signals

to convert these signals into a sequence of events. Firstly, the PPG signal was

preprocessed using PhysioNet Cardiovascular Signal Toolbox [95]. Peak detection

was performed using the qppg method provided with the toolbox, and the data

was converted to peak-to-peak (PP) interval time series. Then, non-sinus intervals

were detected and removed by measuring the change in the current PP interval

from the previous PP interval and excluding intervals that change by more than

%20. PP intervals outside of physiologically possible range were also removed to

obtain NN interval time series, which was filtered using a Kalman filter to reduce

noise [96, 97].

The accelerometer data was converted to activity counts following the ap-

proach by Borazio et al. [98]. Activity counts are the output format of most

commercial actigraphy devices; data are summarized over 30-s epochs or time in-

tervals. This conversion compresses information, and reduces required memory

for storing data. Z-axis actigraphy data were filtered using a 0.25–11 Hz passband
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to eliminate extremely slow or fast movements [48]. The maximum values inside

1-s windows were summed for each 30-s epoch of data to obtain the activity count

for each epoch. Figure 3.5 illustrates these preprocessing steps for accelerometer

data.
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Figure 3.5: Preprocessing steps for the accelerometer data. Subplot (a) shows
the raw accelerometer data from z axis and subplot(b) is the data after filtering.
Activity counts obtained from summing the maximum values inside 1-second
windows are shown in subplot (c).

Lastly, a tilt angle time series was derived from the raw accelerometer data to

capture information that is not present in the activity count time series. Specifi-

cally, tilt angle, which is the angle between the gravitational vector measured by

the accelerometer and the initial orientation with the gravitational field pointing

downwards along the z-axis, can be calculated from the accelerometer reading as

ρ =
az√

a2
x + a2

y + a2
z

(3.22)

where ρ is the tilt angle and ax, ay, and az are the readings from x, y, and z axes

of the accelerometer, respectively.
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After obtaining the NN interval, actigraphy, and tilt angle time series, change-

point detection techniques were applied to detect significant changes. We applied

BiS technique to NN interval and actigraphy time series [89]. In a previous study,

Yoneyama et al. stated that abdominal motion due to breathing causes 5° fluc-

tuations, so 10° threshold is ideal for detecting body turnover events [99]. 10°

changes in the tilt angle time series were stored as change events. In this way,

all signals were represented as event sequences of the form t1,i, t2,i, ..., tn,i where

n ∈ Z+ was the index of the change-point, i ∈ {1, 2, 3} was the type of time series

change-point occurred, and t ∈ R>0 denoted the time. Figure 3.6 illustrates the

conversion to event streams.
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Figure 3.6: Conversion of NN interval, tilt, and actigraphy time series into point
processes. Left hand side figures show the signals and detected change-points
as dashed lines. Arrival times of each change-point tn,i are shown as dots in the
right hand side figures.

3.2.2 Encoding step

In the encoding step, following the approach by Pillow et al. [94], change-points

occurring in different signals were modelled. The intensity function λNN(t) for

NN interval time series was expressed as

λNN(t) = f (k · x(t) + h · zNN,history + cNN,act · zact + cNN,angle · zangle) (3.23)
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where x(t) was the sleep/wake stimulus that drives the changes in the signals.

k, h, c were stimulus, history, and coupling filters respectively. zNN,history repre-

sented the history of the Normal-To-Normal (NN) time series while zact and zangle

were the windows of actigraphy and angle time series. f was selected as the ex-

ponential function and it converted the summation into probability of spiking.

The process generating the event streams was viewed as a Poisson Generalized

Linear Model (GLM) and filter coefficients were estimated by fitting a GLM to

the data. This generalized linear model approach allowed for both excitatory and

inhibitory interactions between signals. We repeated same process for actigra-

phy and tilt angle time series to find the intensity functions λact(t) and λtilt(t)

respectively. Figure 3.7 illustrates the encoding procedure for λtilt(t).
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Figure 3.7: Encoding diagram for the angle time series. Raw signals from the
Empatica devices are converted to change-point time series. History, coupling,
and stimulus filters were applied on one-minute windows of data, summed and
converted to spiking probability of tilt angle time series in time interval ∂t using
instantaneous firing rate λtilt(t).
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Figure 3.8: Decoding sleep/wake states from change event streams. Top plot
illustrates the change events observed in NN interval, tilt and actigraphy time
series. These change events are decoded back into sleep/wake states, as shown
in the bottom plot.

3.2.3 Decoding step

In the decoding step, information about sleep/wake states was decoded back

from the patterns of change observed in the signals, as shown in Figure 3.8. The

log-likelihood function of events from a multidimensional process is given by

log p(z|x, θ) = ∑
i,n

log λi(tn,i)−∑
i

∫ t

0
λi(t)dt + const. (3.24)

where θ = {k, h, c} represented model parameters from encoding step, x was the

sleep/wake stimulus, z was the event streams. The posterior probability of the

sleep/wake stimulus given the event streams was

log p(x|z) = log p(z|x) + log p(x) + const. (3.25)

Then, combining Equation 3.24 and Equation 3.25, penalized maximum likeli-

hood estimate of the sleep/wake stimulus was calculated by minimizing

xest = argmin
x

(− log p(z|x) + Λ‖xTV‖) (3.26)
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where xest was the estimate sleep/wake and z was the observed change event

streams. Total Variation (TV) norm prevented overfitting and preserved step-

like properties of the sleep/wake stimulus. After estimation, the output xest was

thresholded and converted back to binary sleep/wake detection.

3.2.4 Hyperparameter selection for change-point decoder

The data window size for encoding model filters, the TV regularization parameter

Λ, and the threshold were selected by sweeping a range of values and selecting

parameters maximizing the F1 score on the training set. The F1 score was used

to guide model selection since it is a combined metric for precision and recall. In

this task, precision indicates how many epochs in the detected wake are correct,

whereas recall refers to the percentage of total wake epochs correctly classified.

Therefore F1 score, which combines precision and recall, proves to be a useful

metric for this imbalanced classification scenario.

3.2.5 Performance on the Emory PTSD dataset

The Emory PTSD dataset was used for training and testing the proposed method

since in this study, participants underwent PSG study and wore their research

watch during the recording. The sleep technicians from the Emory Sleep Clinic

annotated the recordings and these annotations became the ground truth in the

analysis. The study population was assigned to four groups according to their

Apnea-Hypopnea Index (AHI) and Periodic Limb Movement Index (PLMI) as

follows:

• Group 1: Subjects with AHI < 15 and PLMI < 15

• Group 2: Subjects with AHI ≥ 15 and PLMI < 15

• Group 3: Subjects with AHI < 15 and PLMI ≥ 15

• Group 4: Subjects with AHI ≥ 15 and PLMI ≥ 15

38



All the data from the dataset were randomly split into two sets, with 70 sub-

jects assigned to the training set and 32 subjects assigned to testing. Two-sample

Kolmogorov tests were performed for age, Apnea–hypopnea index (AHI), pe-

riodic limb movement index (PLMI), and sleep efficiency of the subjects in the

training and testing sets. Differences in these measures between the sets were

not statistically significant, suggesting that the training set is representative of the

testing set. Table 3.1 show ages and PSG-defined sleep efficiency in both sets.

Table 3.1: Participant Demographics and PSG Sleep Statistics in Training and Test
Sets from Emory PTSD dataset. Mean (Standard Deviation) of variables in each
group.

Training Set Testing Set

Diagnosis n Age
PSG Sleep
Efficiency n Age

PSG Sleep
Efficiency
%

Group 1 19 68.11 (2.31) 75 (13) 9 68.22 (2.64) 74 (14)
Group 2 22 68.05 (2.03) 72 (14) 7 69.43 (1.62) 74 (13)
Group 3 24 68.42 (2.87) 74 (15) 14 68.28 (1.68) 67 (19)
Group 4 5 67.20 (3.42) 65 (16) 2 69 (0) 74 (5)

All Subjects 70 68.11 (2.48) 73 (14) 32 68.56 (1.93) 71 (16)

Hyperparameters selected on the training set for CPD are 1-minute window

size, regularization parameter of 2, and threshold3 of 0.22. Concordance between

PSG and the method was evaluated on the testing set. The mean across subjects

for total accuracy, sleep accuracy, wake accuracy, Cohen’s Kappa, F1 score, Wake

After Sleep Onset (WASO), and Sleep Efficiency (SE) were calculated. For both

WASO and SE metrics, the error was calculated as the PSG gold standard minus

estimated value. On the testing set, CPD achieved a total accuracy of 0.72, sleep

accuracy of 0.70, and wake accuracy of 0.74. Kappa value was 0.40, which indi-

cated fair agreement between the method and the gold standard PSG annotation.

WASO and SE errors were 7.66 minutes and 2.09 respectively.

Table 3.2 shows the same experiment repeated by using each signal by it-
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self, without the coupling filters between the different domains. Tilt angle signal

model performed better than PPG and actigraphy models in terms of Kappa, F1

score, WASO error, and SE error performance metrics. However, all three single

signal models resulted in lower total accuracy, Kappa, F1 score, and higher SE

error when compared to the combined model with the coupling filters.

Table 3.2: Performances of single signal models in the testing set.

PPG model
Mean (SD)

Act. model
Mean (SD)

Tilt model
Mean (SD)

Total accuracy 0.60 (0.14) 0.69 (0.13) 0.69 (0.15)
Sleep accuracy 0.49 (0.19) 0.89 (0.12) 0.65 (0.22)
Wake accuracy 0.83 (0.13) 0.34 (0.17) 0.75 (0.20)
Kappa 0.25 (0.17) 0.24 (0.19) 0.36 (0.23)
F1 score 0.60 (0.16) 0.41 (0.17) 0.61 (0.19)
WASO error (min) -53.31 (89.39) 65.13 (69.45) -2.44 (65.21)
SE error (%) 20.87 (22.37) -16.54 (15.98) 6.21 (18.13)

Comparison with other methods

The Oakley (OA) sleep/wake detection method was also implemented using the

same dataset. The algorithm is adapted for 30-second epochs following the ap-

proach by Kosmadopoulos et al. [100]. Actigraphy data is weighted and summed

as follows

Ai = 0.04 · E(i−4) + 0.04 · E(i−3) + 0.2 · E(i−2) + 0.2 · E(i−1) + 2 · E(i)

+ 0.2 · E(i+1) + 0.2 · E(i+2) + 0.04 · E(i+3) + 0.04 · E(i+4) (3.27)

where i denotes the current epoch index and E denotes the actigraphy count in

the epoch. Then Ai is compared to a predefined threshold to identify sleep/wake.

In Actiwatch devices, there are three different thresholds: low (20), medium (40),

and large (80). Since the wearable device is different in this study (Empatica E4,
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Table 3.3: Sleep/wake identification performances in the Training Set for OA
and CPD methods

Training Set

OA
Mean (SD) 95% CI

CPD
Mean (SD) 95% CI

Total Accuracy 0.76 (0.10) [0.73, 0.78] 0.76 (0.12) [0.73, 0.79]
Sleep Accuracy 0.82 (0.15) [0.79, 0.86] 0.78 (0.19) [0.73, 0.82]
Wake Accuracy 0.61 (0.19) [0.56, 0.65] 0.72 (0.18)* [0.67, 0.76]

Kappa 0.41 (0.17) [0.37, 0.45] 0.46 (0.20) [0.41, 0.50]
F1 Score 0.59 (0.14) [0.56, 0.63] 0.64 (0.15)* [0.60, 0.68]

WASO Error (min.) -22.82 (69.04) [-39.28, -6.36] 13.17 (56.84)* [-0.38 26.72]
SE Error (%) 3.01 (15.74) [-0.74, 6.76] -1.59 (14.18)* [ -4.97, 1.79]

* Wilcoxon signed-rank comparison of two methods, 5% significance level.
Abbreviations: CI, Confidence Interval; SD, Standard Deviation.

Empatica; Cambridge, MA), it could result in an actigraphy time series with a dif-

ferent amplitude range than Actiwatch and thresholds may not apply. Therefore,

the threshold was selected using the training data to maximize F1 score and was

set to 70.
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Figure 3.9: ROC and Precision-Recall curves for the CPD and OA methods. Per-
formance of both methods is illustrated as their threshold varied. Operating
points are shown with red circles on the plots.

Concordance between PSG and the two methods are evaluated on testing set.

The mean across subjects for total accuracy, sleep accuracy, wake accuracy, Kappa,

F1 score, WASO, and SE are shown in Table 3.3 and Table 3.4 for both methods.
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Table 3.4: Sleep/wake identification performances in the Testing Set for OA
and CPD methods

Testing Set

OA
Mean (SD) 95% CI

CPD
Mean (SD) 95% CI

Total Accuracy 0.76 (0.09) [0.72, 0.79] 0.72 (0.14) [0.67, 0.77]
Sleep Accuracy 0.85 (0.12)* [0.80, 0.89] 0.70 (0.19) [0.63, 0.76]
Wake Accuracy 0.54 (0.20) [0.47, 0.62] 0.74 (0.21)* [0.66, 0.81]

Kappa 0.39 (0.17) [0.33, 0.45] 0.40 (0.24) [0.31, 0.49]
F1 Score 0.59 (0.14) [0.54, 0.64] 0.62 (0.20) [0.55, 0.70]

WASO Error (min.) -9.95 (63.75) [ -32.94, 13.03] 7.66 (67.34) [-16.62, 31.94]
SE Error (%) -0.03 (14.93) [-5.42, 5.35] 2.09 (16.81) [-3.97, 8.15]

* Wilcoxon signed-rank comparison of two methods, 5% significance level.
Abbreviations: CI, Confidence Interval; SD, Standard Deviation.

Figure 3.9 illustrates ROC curve and Precision-Recall curve for both methods as

their threshold is varied. Operating points selected using the training data are also

marked with red circles on the plots. The AUC for the CPD method was found

to be 0.78 and 0.67 for the OA method. Moreover, we observed from Figure 3.9

that it was possible to achieve similar performance to OA by changing the CPD

method’s threshold. However, it was not possible for OA method to reach the

CPD’s operating point by modifying the threshold value.

As shown in Table 3.3 and Table 3.4, the CPD method achieved greater accu-

racy for wake accuracy, Kappa, and F1 Score for both training and test sets. The

difference between wake accuracy was statistically significant (p < 0.05) for the

methods in both training and test sets. It can also be seen that OA overestimated

WASO while wake accuracy is low. Note that the CPD method exhibited lower

WASO error in both analyses. When using the medium threshold setting (40) is

used for the OA method, total accuracy was 0.54, sleep accuracy was 0.38, and

wake accuracy was 0.81 for the test set. The error in the number of sleep wake

transitions in the test set was overestimated as -17.19 (36.13) for the OA algorithm
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and underestimated as 64.41 (34.80) for the CPD.

Figure 3.10 provides the Bland Altman analyses of the differences for SE and

WASO for the OA and CPD methods for the Testing set. The modified Bland

Altman plot shows that the Oakley method exhibited a bias towards overestimat-

ing WASO (see Figure 3.10, bottom left subplot). These plots also show that both

methods exhibited similar performance as measured by SE error.
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Figure 3.10: Modified Bland–Altman plots for sleep metrics in test set. X-axis
shows ground truth (i.e. gold standard) PSG metrics and y-axis shows the differ-
ence between PSG and the estimates. Participants belonging to four subgroups
determined by AHI and PLMI are indicated with different symbols.

Table 3.5 and Table 3.6 compare the results of both methods for all four groups

in the test set. The CPD has a higher wake accuracy than the Oakley method in

each subject group, while the Oakley method performs slightly better in terms of

total accuracy.
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Table 3.5: Sleep/wake identification performance in different disorder groups in the
Testing set.

Total Accuracy
Mean (SD)

Sleep Accuracy
Mean (SD)

Wake Accuracy
Mean (SD)

Kappa
Mean (SD)

Group 1
Oakley 0.78 (0.07) 0.88 (0.10) 0.52 (0.20) 0.42 (0.13)

CPD 0.76 (0.07) 0.76 (0.13) 0.73 (0.23) 0.44 (0.20)

Group 2
Oakley 0.78 (0.09) 0.84 (0.13) 0.55 (0.12) 0.42 (0.10)

CPD 0.75 (0.12) 0.75 (0.13) 0.63 (0.27) 0.37 (0.30)

Group 3
Oakley 0.73 (0.09) 0.84 (0.13)*

0.54 (0.25) 0.35 (0.20)
CPD 0.69 (0.18) 0.64 (0.23) 0.78 (0.18)* 0.39 (0.25)

Group 4
Oakley 0.75 (0.17) 0.78 (0.16) 0.67 (0.17) 0.44 (0.33)

CPD 0.70 (0.14) 0.62 (0.21) 0.87 (0.02) 0.42 (0.21)

* Wilcoxon signed-rank comparison of two methods, 5% significance level.

Table 3.6: Sleep study statistic estimation per-
formance in different disorder groups in the test
set

SE error
Mean (SD)

WASO error
Mean (SD)

Group 1
Oakley -0.07 (18.75) -8.56 (78.67)

CPD 1.67 (10.89) 5.33 (38.42)

Group 2
Oakley 0.71 (5.16) -16.00 (37.62)

CPD -8.73 (14.38) 47.21 (72.94)

Group 3
Oakley -1.68 (16.93) -2.14 (69.85)

CPD 5.54 (19.42) -1.04 (74.88)

Group 4
Oakley 9.02 (2.67) -49.75 (15.20)

CPD 17.73 (13.65) -59.50 (53.74)
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Figure 3.11: Comparison of OA and the CPD methods for one participant in the
Emory PTSD dataset. First plot illustrates the activity counts from the Empatica
research watch, second plot shows the ground truth annotations from the Emory
sleep clinic. The third and fourth plots are the CPD and OA estimates respectively.

3.2.6 Performance on the data collected with Verily research watch

CPD method’s performance was also tested on the Verily research watch. Us-

ing the research watches from AURORA study, 21 nights were recorded from 3

participants. In this internal dataset, participants wore research watch while un-

dergoing a PSG study or wearing a Sleep Profiler (Advanced Brain Monitoring,

Carlsbad, CA). Ground truth labels for each night’s recording was obtained ei-

ther from sleep technician annotations for the PSG or Sleep Profiler. The CPD

model was not retrained due to the small size of this dataset but the weights from

Emory PTSD dataset was directly used. With threshold set at 0.5 level and no ad-

justment, sleep accuracy was 0.73, wake accuracy was 0.77, F1 score was 0.31, and

Cohen’s kappa value was 0.22. If the threshold is readjusted on this dataset using

the highest F1 score, sleep accuracy was 0.90, wake accuracy was 0.58, F1 score

was 0.43, and Cohen’s kappa value was 0.37. The data collection for this internal

study is still ongoing and the performance after retraining the model entirely will
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also be investigated in the future work.

3.2.7 Discussion

This chapter of the thesis presents a novel method (CPD) for identifying sleep and

wake states from movement and physiological signals collected using wearable

devices. The method was comprised of three types of filters; stimulus, history,

and coupling. Filter coefficients were estimated through a training process and

then were used to detect sleep and wake states from change points. Our approach

was flexible enough to incorporate various signal modalities and incorporating in-

formation from these results in higher wake detection performance. The CPD ap-

proach used a combination of movement-related and physiological signals, mak-

ing it possible to overcome some of the limitations of previous algorithms based

solely on actigraphy. For instance, the results demonstrate that the CPD method

does not overestimate sleep and has high wake detection performance. Therefore,

the CPD method can provide an unbiased solution to sleep/wake detection. The

CPD modeled time series of discrete change events derived from wearable device

signals and outputted a score of wakefulness which can be used to investigate

gradual transitions between sleep and wake states within the epochs.

The OA method exhibited a higher sleep accuracy with respect to the CPD

approach, which resulted in slightly higher total accuracy for OA since the preva-

lence of the sleep epochs in the data was relatively higher than the prevalence

of wake epochs. By contrast, we observed a significant improvement in wake

accuracy by using the CPD. Higher wake accuracy also resulted in lower WASO

error for both training and test sets with the CPD. The OA method overestimated

WASO and had lower wake detection accuracy, even though the threshold param-

eter was optimized during training (Table 3.3, Table 3.4). This outcome indicated

that the Oakley algorithm misclassified sleep epochs as wake while being unable
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to recognize true wake epochs. A similar pattern was observed in subjects with-

out any sleep disorder (Group 1) within the test set. This result could be due to

the fact that when there is no movement, OA could not estimate that the subject

was wake, as exemplified in Figure 3.11.

Periodic Limb Movement Disorder is characterized by episodes of limb move-

ments during sleep, and these limb movements could bias the actigraphy based

method into estimating a subject is awake. For Periodic Limb Movement Disorder

subjects (Group 3), the CPD method had higher wake accuracy compared to OA,

indicated in Table 3.5. However, this did not lead to significantly lowerWASO er-

ror due to the CPD method’s lower sleep accuracy in this group, suggesting that

limb movements had a similar effect in both methods.

Accurate estimates of WASO could become especially important in monitoring

populations with difficulties falling or staying asleep. For example, WASO dura-

tion has been used as a diagnostic criterion for insomnia [101]. The OA method

is known to have lower performance in detecting wakefulness for insomnia [21,

22]. In this study, optimizing the threshold parameter for OA did not yield a

significant increase in wake accuracy. Therefore, the CPD method could be more

useful in this population due to its higher accuracy in detecting wake epochs

and the lower error in WASO. On the other hand, CPD method had a high error

for estimating the number of sleep/wake transitions, which should be taken into

account while applying the method on the insomnia population.

The proposed method only required the timestamps of the change points. Due

to this fact, the CPD approach required less storage space than other methods. In

this study, saving raw accelerometer and PPG signals for each subject resulted

in 6.91 GB of data. However, if the change points alone were saved, stored data

were only 1.3 MB. Using the CPD method reduced the required memory to 0.02%

compared to other approaches that need the whole signal for feature extraction
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or training the models. As a result, the CPD method could result in immense

memory (and energy) savings for large populations, applications with more data

streams, and studies in which subjects are monitored over long periods.

This proposed method had some limitations. Since the signals were stored as

change point time series and raw signals were not saved, the information in signal

segments was lost. This could limit the data being used for other applications

such as detecting or monitoring disorders like arrhythmia or sleep apnea. Also,

it has been observed that the CPD approach has lower wake accuracy in subjects

with sleep apnea (Group 2) compared to other groups. Future studies will explore

adding a PPG-derived respiration signal to the model to improve performance in

subjects with sleep apnea. A second limitation of the CPD is the lower number of

sleep/wake transitions. The CPD method employs total variation regularization.

While this regularization prevents overfitting and preserves piecewise constant

structure of sleep/wake signal, it results in fewer switches between sleep and

wakefulness.

3.2.8 Conclusion

In conclusion, this work presents the Change Point Decoder, which is a novel

technique for sleep/wake identification in patients with highly disordered sleep.

The CPD provides higher wake detection accuracy when compared to a solely

actigraphy-based method. This superior performance could enable more accurate

investigation of the vital role of awakenings during the night in various psycho-

logical disorders. The CPD method requires low memory in the wearable devices

compared to existing methods, and therefore, it could prove beneficial in long-

term studies. Moreover, as a method, the CPD has the ability to adapt to different

and novel devices and signals beyond the accelerometer. In the following chap-

ter, features related to biological rhythms will be investigated and CPD will be
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applied to data collected during daily life to estimate post-trauma outcomes from

wearable data.
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CHAPTER 4

CIRCADIAN RHYTHM DISRUPTION DETECTION

Acute diseases are health conditions that develop suddenly and have potential to

improve with correct treatments. In this chapter, the extent to which outcomes

developing post-trauma can be predicted from circadian rhythm changes was

investigated, using longitudinal data passively collected from a research watch.

Novel approaches to distinguishing between people that will and will not develop

PTSD after exposure to a trauma is presented using the AURORA dataset, which

was described in subsection 2.6.2. Figure 4.1 illustrates the AURORA study on

the disease scale plot.
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Figure 4.1: Illustration of AURORA study on disease time scales. The participants
are enrolled into the study after exposure to a traumatic event and monitored
through the acute phase using wearable devices.

The analysis in this chapter focuses on motion and heart rate data from the

accelerometer and PPG sensors of the research watch. Figure 4.2 and Figure 4.3

show the data contribution of participants over the monitoring period. In these

maps, if the participant did not share any samples from 1-hour window, it is

marked as missing. It can be seen that missingness of the motion data increases

gradually over time. On the contrary, heart rate data is missing from hour 10 to

20 consistently, possibly due to motion artifacts and low quality PPG data. For

instance, there were only 44 participants with less than 25% missing heart rate

data.
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Figure 4.2: Binary missingness map of the motion data for the AURORA dataset.
x axis is the 24 hours of the day, assuming the participant stayed in the same time
zone from the Emergency Department enrollment and ”0” hour is the midnight in
this time zone. y axis of the map shows each day. If the participant did not share
any samples from 1-hour window, it is marked as missing. Final map is obtained
by summing how many participants shared data for each 1-hour window across
56 days.

0 10 20 30 40 50
Days

0

10

20

Ho
ur

s

Heart rate data

400

600

800

1000

Figure 4.3: Binary missingness map of the heart rate data for the AURORA
dataset. The map is constructed following the same procedure described in Fig-
ure 4.2 for the heart rate data.
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4.1 Using circadian rhythm changes measured via wrist-worn research watch

for post-trauma outcome classification

The first method is based on a classification algorithm fed by a set of motion

features and HRV metrics. Data were analyzed using cosinor-based rhythmom-

etry method [102] to completely automate the detection of rest/activity periods

without the need for subjective information such as sleeping diaries or time zone

information in the setting of both complete and missing data (the latter resulting

from non-compliance or dead batteries). HRV metrics were extracted together

with actigraphy features to quantify rest and activity states and examined the

effect of varying the duration of data used to predict PTSD outcome.

4.1.1 Patient class labels and survey tools

Three clinical surveys were administrated in the ED – the Peritraumatic Distress

Inventory (PDI), PTSD Checklist for DSM-5 (PCL-5), and Michigan Critical Events

Perception Scale (MCEPS) [103, 104], as shown in Figure 4.4. PCL-5 administered

at the ED solicited information on symptoms 30 days prior to the traumatic event.

The raw scores of these surveys were used as features to the models to deter-

mine if prediction of the outcomes is feasible without using the research watch

data. Hereinafter, these surveys will be referred to as PDIED, PCL − 5ED, and

MCEPSED to indicate they were administrated at ED.

Three clinical surveys administered at the eighth week of the study were used

to create the binary outcome classes. These outcomes could potentially be used

to identify subjects who require intervention to prevent or reduce the severity of

PTSD. Firstly, the PCL-5 survey scores were used to capture PTSD symptoms out-

lined by Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria

[30]. The score PCL− 5 = 31 was used as the threshold, following the recommen-
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Traumatic 
event

Emergency
Department Wk-1 Wk-2 Wk-3 Wk-4 Wk-5 Wk-6 Wk-7 Wk-8

Clinical surveys
Week 8

Clinical surveys
Pre-existing conditions

Figure 4.4: Timeline of data collection and clinical surveys in the AURORA study.

dation of the developers of the PCL-5 survey [105].

Secondly, since patients with PTSD report sleep disturbance, the PCL-5 ques-

tionnaire was combined with one item from Pittsburgh Sleep Quality Index Ad-

dendum (PSQIA) in order to measure sleep anxiety and panic [49, 106, 107, 108].

This item is referred to as PSQIA-PanicSleep. The question and response cate-

gories were modified as follows to assess the difficulty of staying asleep: “In the

‘reference period’, how often did you awaken from sleep with severe anxiety or panic?” so

that 0 = “never”, 1 = “less than once a week”, 2 = “1-2 nights a week”, 3 = “3-4 nights a

week” and 4 = “every or nearly every night”. The cut-off for the survey was selected

in order to separate participants with severe sleep disturbance. In this outcome,

participants with PSQIA− PanicSleep ≥ 3 and PCL− 5 ≥ 31 were assigned to

the first class while PSQIA− PanicSleep < 3 and PCL− 5 < 31 were assigned to

the second class. This outcome is referred to as PTSD-Sleep Panic/Anx. outcome.

It has been shown in previous studies that chronic pain could accompany

PTSD [32]. For the third outcome, the PCL-5 survey was combined with Patient-

Reported Outcomes Measurement Information System (PROMIS) Pain Interfer-

ence Short Form 4a (PROM-Pain4a) [109]. In this survey, the participant was

asked to rate how much pain interfered with different areas of life on a 5-point

scale (1 = “not at all,” 2 = “a little,” 3 = “some,” 4 = “a lot,” and 5 = “extremely.”).

The same scoring rules as the PROMIS Pain Interference Short Form 4a scale was
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used; the response values were summed and converted to a T-score. The T-score

re-scales the raw score into a standardized score with a mean of 50 and a stan-

dard deviation of 10. A higher PROMIS T-score represents more of the concept

being measured and the T-scores help in interpreting the PROMIS scores in a

clinically meaningful way (More information about the T-scores could be found

in www.healthmeasures.net). By using the PROMIS T-score guidelines, the cut-

offs were selected for mild and severe pain interference following the guidelines

for T-score interpretation. Participants with PROM− Pain4a ≥ 66.6 (correspond-

ing to a raw score of 16) and PCL − 5 ≥ 31 were assigned to first class while

PROM − Pain4a < 55.6 (corresponding to a raw score of 8) and PCL − 5 < 31

were assigned to second. This outcome is referred to as PTSD-Pain Int. out-

come. Figure 4.5 illustrates the number of participants in each class, determined

by week eight outcome surveys. Hereinafter, these surveys will be referred to as

PSQIA− PanicSleepweek8, PCL− 5week8, and PROM− Pain4aweek8 to indicate they

were administrated at week eight.

AURORA Freeze 2 Dataset:1618 participants

PCL-5 
< 31

PCL-5 
≥ 31 Total

765 565 1330

371 368 739

657 490 1147

321 329 650

PTSD PCL-5 < 31,
PSQIA-Panic 

Sleep < 3

PCL-5 ≥ 31,
PSQIA-Panic 

Sleep ≥ 3
Total

711 174 885

346 119 468

613 153 766

300 105 405

PCL-5 < 31,
PROM-Pain4a  

< 55.6 

PCL-5 ≥ 31,
PROM-Pain4a 

≥ 66.6 
Total

360 241 601

175 151 326

305 211 516

150 134 284

PTSD and 
Sleep Anxiety/Panic

PTSD and 
Pain Interference

Compliance

Outcome surveys →

ED surveys →

Research watch →

ED surveys and research watch →

Figure 4.5: AURORA Freeze 2 Dataset overview and number of participants in
each outcome group that is used in this research. Outcome surveys applied at
week eight (PCL-5, PSQIA-PanicSleep, and PROM-Pain4a) were used to create
the outcome groups. ED surveys included PDI, MCEPS and PCL-5 administrated
at ED department following trauma. Top row of the tables indicates the number of
participants that answered the outcome surveys, which is the maximum number
available for the analysis. The rows below the first row indicate if the participants
shared other modalities in addition to the outcome surveys.
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4.1.2 Preprocessing steps for the accelerometer and photoplethysmogram data

The raw sensor data collected by the Verily research watch was preprocessed

using the same procedure outlined in subsection 3.2.1. Movement data are com-

monly represented as a “double plot”, which shows activity levels (measured via

accelerometry in this case). Figure 4.6 illustrates this for one participant using

eight weeks of actigraphy data. Each column is created by stacking two consecu-

tive days of data. The first column shows activity levels on days 1-2, the second

column shows days 2-3, and so on. Darker colors indicate lower levels of activity.

If 24 hours are shown on the y-axis instead of 48 hours, we refer to this plot as

movement map.
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Figure 4.6: Detection of rest and activity regions from actigraphy data. Lighter
colors indicate higher intensity movements. Deviations from the typical pattern
are seen on days 30-40 in this example participant.

Cosinor-based rest and activity region identification

Single-component cosinor models were used to detect 24-hour rest and activity

regions without any time-zone or sleep diary information [102]. Actigraphy data

of each participant were split into 48-hour windows with an overlap of 24-hours.
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The cosinor model with the following form was then fit to the data

Y(t) = M + K · cos(2πt/τ + φ), (4.1)

where M is known as the mesor, K is the amplitude, and φ is the phase of the

circadian rhythm. By identifying the times at which the cosine fit crossed the

mesor baseline, the start and end of rest and active segments of the day were

determined. The process is illustrated in Figure 4.7.

Figure 4.7: Fitting a cosine signal to actigraphy data to identify rest and activity
regions. Detected rest and activity regions are marked on the figure with black
and yellow shaded regions respectively.

4.1.3 Motion and heart rate variability feature sets

After preprocessing, the actigraphy signal in each 30-second epoch, together with

the NN interval time series of each participant, was used for feature extraction.

Table 4.1 and Table 4.2 describes the features extracted from these preprocessed

signals. Features derived from the accelerometer signal included Interdaily Stabil-

ity (IS), IV, the mean and standard deviation of movement in the detected rest and

activity regions, circadian rhythm strength, rest start index, and cosinor-based

rhythmometry metrics (Mesor, Amplitude, Phase).
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Table 4.1: Movement feature set, derived from the accelerometer data from the
Verily research watch.

Feature Name Abbr. Description

Interdaily Stability ISrest, ISact

The ratio between the variance of the
average actigraphy pattern around the
mean and the overall variance.

Intradaily Variability IVrest, IVact

The ratio of the mean squares of the
difference between all successive hours
of actigraphy and the mean squares around
the grand mean.

Movement
MVrest,µ, MVrest,σ,
MVact,µ, MVact,σ

Mean and standard deviation of movement
in the rest and active parts of the day.

Circadian Rhythm
Strength

CRSµ, CRSσ
Average movement in active part of the day
divided by average movement in rest region.

Rest Start Index RSIµ, RSIσ Hour index of the start of rest region.

Cosinor-based
Rhythmometry

Mesorµ, Mesorσ,
Amplitudeµ, Amplitudeσ,
Phaseµ, Phaseσ

Cosine fit to the data (described in Equation 4.1),
M is the mesor, K is the amplitude, and φ is the
phase of the circadian rhythm.

rest, act: Label indicating feature calculated during rest or activity periods
µ, σ: Mean and standard deviation across the days analyzed
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Table 4.2: Heart rate variability feature set, derived from the photoplethysmogram
data from the Verily research watch.

Feature Name Abbr. Description

Avg. NN Intervals NNmeanµ, NNmeanσ Mean of Normal-to-Normal (NN) intervals

IQR of
NN Intervals

NNiqrµ, NNiqrσ IQR of NN intervals

Kurtosis of
NN Intervals

NNkurtµ, NNkurtσ Kurtosis of NN intervals

Skewness of
NN Intervals

NNskewµ, NNskewσ Skewness of NN intervals

SDNN SDNNµ, SDNNσ Standard deviation of NN intervals

RMSSD RMSSDµ, RMSSDσ
Root-mean square differences of
successive NN intervals.

pNN50 pNN50µ, pNN50σ

Mean number of times per hour
in which the change in consecutive
NN intervals exceeds 50 milliseconds.

Acceleration and
Deceleration Capacity

of Heart

ACµ, ACσ,
DCµ, DCσ

Acceleration and deceleration capacity
of heart, calculated with Phase-rectified
signal averaging method.

High Frequency
Spectral Content

HFµ, HFσ
Spectral content in high frequency band
(0.15Hz ≤ LF ≤ 0.4Hz)

Low Frequency
Spectral Content

LFµ, LFσ
Spectral content in low frequency band
(0.04Hz ≤ LF ≤ 0.15Hz)

Total Power ttlpwrµ, ttlpwrσ Sum of energy in all bands.

LF/HF Ratio LFHFµ, LFHFσ Ration of LF and HF power.

Sample Entropy SampEnµ, SampEnσ Sample entropy of NN intervals

Approximate Entropy
of Heart Rate

ApEnµ, ApEnσ Approximate entropy of NN intervals

Signal Quality Index avgSQIµ, avgSQIσ Morphology-based quality of each beat

µ, σ: Mean and standard deviation across the days analyzed
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A non-parametric way of quantitatively describing the rhythm is the Rest-

Activity metrics, which include IS and IV [110]. IS can be defined as the ratio of

the variance the 24 hour activity pattern around the mean and overall variance

IS =
n×∑24

h=1(āh − ā)2

p×∑n
h=1(ai − ā)2 , (4.2)

where ā is the mean of all data, āh are the hourly means, ai are the data points,

and n is the number of data points in the interval. p is set to 24 for the circadian

rhythm assessment. IS quantifies the instability of the rhythm and the coupling

to the environmental zeitgebers such as light and temperature [111].

IV is the ratio of the first derivative to overall variance and quantifies fragmen-

tation of the rest-activity rhythm as

IV =
n×∑n

i=2(ai − ai−1)
2

(n− 1)×∑n
h=1(ai − ā)2 . (4.3)

IV is a measure of the fragmentation of the rest-activity rhythm and it quantifies

the frequency of transitions between rest and activity. IV metric is higher if the

participant is taking naps frequently during the day or have frequent awakenings

during the night.

Rest-activity metrics have been used in various studies to assess the uncou-

pling of the rhythm to zeitgebers. In a previous work, we have derived the metrics

from smartphone data to estimate heart failure decompensation related symp-

toms which include worsening fatigue and edema [64]. Huang et al. used the

metrics to assess the age associated differences in circadian rhythm in a dataset

of 65 young, middle-aged, old and the oldest age group participants [112]. The

authors found that IV is highest in the oldest age group, which could indicate

sleep disturbances. Figure 4.8 illustrates one application of rest-activity metrics to

actigraphy data. It can be seen that a higher variation between each day results
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in a lower IS.

Figure 4.8: Movement patterns and rest-activity metrics for two participants. Sub-
plot (a) is the double plot of the first participant, subplot (b) is the average daily
activity, and subplot (c) is the plot of actigraphy data over hours. Subplots (d), (e),
(f) are the double plot, average daily activity, and actigraphy plot for the second
participant respectively.

Cosinor-based rhythmometry metrics can provide information about the par-

ticipants’ circadian rest-activity cycle [102]. To extract cosinor rhythmometry fea-

tures, a cosine model described in Equation 4.1 was fit to the data. M was mesor

(baseline activity of subject), K was amplitude (how active subject is during the

day versus night), and φ was acrophase (a metric of the circadian cycle).

In addition, average movement in the active part of the day was divided by

the average movement in the rest region to obtain the Circadian Rhythm Strength

(CRS) metric. Active and rest parts of the day were determined by using the
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approach described in subsubsection 4.1.2. Rest Start Index (RSI) was the hour

index of rest start region and approximated the start of the sleep period of the

day. Lastly, mean and the standard deviation of the movement data from the rest

active parts of the day was calculated (MV).

CRS, RSI, and cosinor-based rhythmometry metrics were extracted from each

day within the window and then the mean and standard deviation of the metric

were calculated. Similarly, for MV metrics, the mean and standard deviation of

12-hour rest and activity regions across the window were extracted.

The HRV feature set was derived using PhysioNet Cardiovascular Signal Tool-

box and included time domain, frequency domain and entropy metrics [95]. More

details about the HRV features used can be found in Table 4.2. Time domain fea-

tures included NNmean, NNiqr, NNkurt, NNskew, SDNN, RMSSD, and pNN50.

NNmean was the average heart rate without abnormal beats or arrhytmias. NNiqr

was the statistical dispersion of the NN intervals. NNkurt measured how peaked

or flat the distribution of the NN intervals was relative to a Gaussian. NNskew

quantified the asymmetry of NN interval distribution. Strong asymmetries could

be driven by rapid accelerations. SDNN reflected the cyclic components that

were responsible for variability. RMSSD was associated with short-term rapid

changes in the heart rate, and was correlated with vagus-mediated components

of HRV. pNN50 assessed parasympathetic (vagal) activity. Frequency domain

HRV metrics included HF, LF, ttlpwr, and LFHF. HF reflected the modulation

of vagal tone, primarily by breathing. LF reflected modulation of sympathetic or

parasympathetic tone by baroreflex activity. ttlpwr was the sum of energy in all

bands and was equivalent to variance. Lastly, LFHF was the ration of LF and HF

power and was indicator of sympathovagal balance. Entropy metrics included

SampEn and ApEn. SampEn quantified the likelihood that two sequences similar

for m points remain similar at the next point (i.e. match within a tolerance of r),
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not taking into account self-matches. ApEn quantified the amount of regularity

and the unpredictability of fluctuations over time-series data. In addition to these,

signal quality of the PPG signal was calculated and used as an additional feature.

All HRV metrics were calculated in 5-minute segments with a 30-second over-

lap using the toolbox. Then 5-minute segments from the rest regions, detected by

the cosinor method were selected in order to obtain the segments with the fewest

movement artifacts and highest signal quality. The mean and standard deviation

across the windows were calculated and used as features. Feature extraction was

performed on a virtual computer in AWS, (48 vCPUs, 3.6 GHz, 96 GiB memory)

and it took about three days for processing monthly data ( 700 participant’s data

on average).

4.1.4 Data organization for model training

As the first step in the pipeline, the data were adjusted by randomly undersam-

pling the majority class in order to address the problem of class imbalance. This

imbalance can be seen for PTSD-Sleep Panic/Anx. outcome, where the num-

ber of participants was 153 for the first class (PSQIA− PanicSleepweek8 ≥ 3 and

PCL− 5week8 ≥ 31) and was 613 for the second class (PSQIA− PanicSleepweek8 <

3 and PCL − 5week8 < 31). Specifically, all participants from the minority class

were used, and the same number of participants from majority class were ran-

domly selected to obtain balanced classes. Under-sampling of majority class sub-

jects was repeated in an external cross-validation fold, where n1 was defined as

the number of majority class participants and n2 was the number of minority class

participants. The external repeats were implemented n1/n2 times, and this ratio

was rounded to the nearest integer.
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4.1.5 Machine learning models

The mapping of the data or the normalized features (min-max normalization us-

ing [113]) into outcome classes is a supervised binary classification problem. All

the models were written in the Python 3 language and the programming code is

based on Scikit-learn [114]. Three different binary classifiers were trained for each

experiment category as follows:

• SVM: An SVM is a supervised model that is designed to find the optimal

separating hyper-plane with the maximum margin within the classes. Lin-

ear and radial basis function kernels were used.

• Logistic Regression: A logistic regression classifier uses a logistic function to

model the probabilities of the outcomes. L2 regularization was used with the

logistic regression classifier to achieve a robust model, minimize overfitting

and reduce any effect of codependences without reducing the number of

features. The regularization strength was set to the default level (1) of the

Scikit-Learn logistic regression classifier.

• Multilayer Perceptron (MLP): A MLP is a type of supervised classifier with

a feed-forward architecture, with one or more hidden layers between input

and the output. A one-layer MLP with 100 neurons and L2 regularization

was used, and these parameters were set at the default values for the Scikit

classifier.

A five-fold cross-validation procedure was used for parameter tuning and model

assessment and the class prevalence was adjusted to be identical in each fold.

The model was trained on the data from all participants except one held-out fold,

and the participants in the remaining fold were then used as the test data. This

process was repeated to ensure testing on all participants. Performance metrics
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were calculated for each test fold, and the mean and standard deviation of each

metric were calculated across the five folds. After extracting the features, the

training phase of the classifier took an average of 0.57 seconds on a 2.3 GHz i5

Intel chipset.

4.1.6 Overview of experiments

Three categories of experiments were performed as follows and all models were

tested for the full dataset and for the subset of participants whose PTSD outcome

at week eight is different from baseline PTSD status assessed in the ED (ex: PCL−

5ED < 31 and PCL− 5week8 ≥ 31):

• Experiment 1 (survey model): Prediction of eight-week outcome from ED

survey data. The PCL− 5ED solicits information on symptoms 30 days prior

to the traumatic event. The raw scores of these surveys were used as features

to the models.

• Experiment 2 (research watch model): Prediction of eight-week outcome

from the data. HRV and actigraphy features described in the previous sec-

tions were combined to obtain a feature matrix of 50 columns and models

were trained to predict or classify the single corresponding eight-week out-

come:

– Using all participants and using a 56-day window.

– Prediction of eight-week outcome using 7, 14, . . . , 56 days of HRV

and actigraphy features, using participants who contributed data on

all days. When an analysis window shorter than 49 days was used,

the classifier was “predicting” the outcome at day 56 “ahead-of-time”.

However, when the analysis window size was 56 days for example, it

reduced to a “classification” task.
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– Analysis of feature trajectories (daily averages of each feature in the

56-day window): Participants who report as non-PTSD (PCL − 5ED ¡

31) in ED were isolated. Two subgroups were then created by looking

at week eight surveys; participants who develop new-onset PTSD and

those who remain non-PTSD. Then, the significance of each feature for

these subgroups was tested using the Wilcoxon rank sum test.

• Experiment 3 (fusion model): Fusion of research watch and survey models

by concatenating the feature sets. Experiment 3 was implemented on par-

ticipants who contributed both the research watch data and the ED survey

data. Survey model and research watch model from previous experiments

were also trained on this subset of participants to ensure results are directly

comparable and the contribution of fusing modalities could be tested accu-

rately.

4.1.7 Experimental results

Results of Experiment 1

The cross-validation performance of different types of classification models using

ED survey-based features is shown in Table 4.3. Logistic regression classifier has

achieved the highest AUC for all outcome types. Table 4.4 shows all metrics in-

cluding accuracy, TPR, TNR, and PPV for the logistic regression classifier. Models

showed high performance for all outcome types; 0.67, 0.70, and 0.70 accuracies for

PTSD, PTSD-Sleep Anx./Panic, and PTSD-Pain Int. outcomes respectively.

The performance was evaluated for the participants for whom PTSD outcome

changed from admission to week eight (N=270 for PTSD outcome, N=150 for

PTSD-Sleep Anx./Panic outcome, N=110 for PTSD-Pain Int. outcome) without

retraining the model. For these subsets of the participants, accuracies of 0.33,
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Table 4.3: AUC comparison of different classifiers using ED surveys as features
for eight-week outcome prediction. Results are reported as mean (standard devi-
ation).

Outcome Log. Reg MLP RBF
SVM

Linear
SVM

PTSD 0.73 (0.03) 0.73 (0.03) 0.72 (0.03) 0.73 (0.03)
PTSD,
Sleep

Anx./Panic
0.79 (0.04) 0.79 (0.05) 0.76 (0.07) 0.78 (0.07)

PTSD,
Pain Int. 0.77 (0.04) 0.77 (0.04) 0.74 (0.04) 0.76 (0.04)

Table 4.4: Performance of logistic regression model using ED surveys as features
for eight-week outcome prediction (N=739 for PTSD outcome analysis, N=468 for
PTSD-Sleep Anx./Panic outcome analysis, N=326 for PTSD-Pain Int. outcome
analysis). Results are reported as mean (standard deviation).

Outcome Acc. AUC TPR TNR PPV

PTSD 0.67 (0.01) 0.73 (0.03) 0.64 (0.05) 0.70 (0.05) 0.69 (0.06)
PTSD,
Sleep

Anx./Panic
0.70 (0.06) 0.79 (0.04) 0.67 (0.11) 0.74 (0.07) 0.72 (0.07)

PTSD,
Pain Int. 0.70 (0.04) 0.77 (0.04) 0.68 (0.03) 0.73 (0.09) 0.72 (0.09)
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0.32, and 0.34 was achieved for PTSD, PTSD-Sleep Anx./Panic, and PTSD-Pain

Int. outcomes respectively.

Results of Experiment 2

Table 4.5 shows the performance of different classifiers when HRV and actigraphy

features were used. It can be seen that similar to Exp. 1, logistic regression classi-

fier performed the best for all outcome types. Models achieved the highest AUC

of 0.70 and accuracy of 0.65 when the outcome is PTSD-Pain Int. However, the

performance was lower for other outcome types; accuracy was 0.56 for PTSD out-

come and 0.58 for PTSD-Sleep Anx./Panic. Table 4.6 shows the logistic regression

classifier performance in detail for the research watch models. The model per-

formance was similar for participants undergoing a change in the clinical status.

The accuracies were 0.55, 0.59, 0.64 for PTSD, PTSD-Sleep Anx./Panic, and PTSD-

Pain Int. outcomes respectively for this subset. For each outcome type, Figure 4.9

shows the feature importance determined by the absolute value of the logistic

regression coefficients, averaged over folds. Figure 4.10 illustrates the AUC from

each window size when participants with data contribution from all 56 days are

considered. The best performance was achieved when all 56 days were used as

the analysis window.
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Figure 4.9: Feature importance for logistic regression models (window size=56

days). Highest five average absolute feature coefficients across folds are illustrated
for each outcome
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Figure 4.10: AUC of the logistic regression models with different window size
selection. Subplot (a) shows the AUC for the PTSD outcome, subplot (b) shows
PTSD-Panic Sleep/Anx. outcome, and subplot (c) shows PTSD-Pain. Int. outcome
over the days

Table 4.5: AUC comparison of different classifiers using HRV and actigraphy fea-
tures for eight-week outcome prediction. Results are reported as mean (standard
deviation).

Outcome Log. Reg MLP RBF
SVM

Linear
SVM

PTSD 0.56 (0.05) 0.55 (0.04) 0.54 (0.03) 0.56 (0.05)
PTSD,
Sleep

Anx./Panic
0.61 (0.06) 0.60 (0.06) 0.61 (0.07) 0.59 (0.06)

PTSD,
Pain Int. 0.70 (0.02) 0.69 (0.04) 0.69 (0.03) 0.69 (0.02)
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Table 4.6: Performance of logistic regression model using HRV and actigraphy
features for eight-week outcome prediction. Results are reported as mean (stan-
dard deviation).

Outcome Acc. AUC TPR TNR PPV

PTSD 0.56 (0.03) 0.56 (0.05) 0.58 (0.06) 0.53 (0.06) 0.55 (0.02)
PTSD,
Sleep

Anx./Panic
0.58 (0.05) 0.61 (0.06) 0.64 (0.07) 0.53 (0.08) 0.58 (0.08)

PTSD,
Pain Int. 0.65 (0.04) 0.70 (0.02) 0.69 (0.04) 0.63 (0.08) 0.65 (0.08)

Results of Experiment 3

For comparison with the fusion models, experiments were repeated on the par-

ticipants who contributed both research watch and survey data. The AUC was

improved for participants whose PTSD status has changed, in all outcome types

compared to the ED survey only models. For PTSD outcome AUC improvement

was two percentage points. For PTSD-Sleep Panic/Anxiety outcome, improve-

ment was six percentage points, and for PTSD-Pain Int. outcome improvement

was 26 percentage points. The AUC of the overall model (including all partici-

pants) was also improved to 0.79 for PTSD-Pain Int. outcome type as shown in

Table 4.7. However, for all outcome types, AUC of survey and fusion models were

not significantly different as determined by Hanley and McNeil two-tailed test.

Table 4.7: AUC comparison of different model types. Results are reported as
mean (standard deviation).

Model PTSD PTSD-Sleep
Anx./Panic PTSD-Pain Int.

Survey 0.74 (0.03) 0.77 (0.07) 0.75 (0.09)
Research watch 0.54 (0.04) 0.55 (0.08)* 0.68 (0.04)
Fusion 0.73 (0.04) 0.75 (0.09) 0.79 (0.04)

* Table entry corrected to show the result for PTSD-Sleep
outcome.
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4.2 Change-point decoder sleep detection performance on the AURORA dataset

CPD method described in section 3.2 was also applied to AURORA dataset. One

of the challenges in applying sleep detection methods to wearable data collected

in-the-wild is accurate detection of the sleep period. If the sleep period is detected

accurately, it could be used to estimate metrics related to sleep. For example,

sleep efficiency is the ratio of total sleep time to the sleep period and it requires

knowledge of both the sleep period length and the sleep/wake estimate during

the sleep period. Asking the participants to fill sleep diaries is one method of

recording sleep periods in research studies [115]. However, this technique could

be subjective as it requires the participant to input sleep onset and offset times

and this procedure was not was not used in AURORA study. In addition, Verily

research watch did not record time zone information. Therefore, two different

methods to estimate the sleep period were tested. For the first method, the rest

periods obtained by fitting a cosine (described in detail in subsubsection 4.1.2)

was used as the sleep periods. For the second method, the time zones of par-

ticipant’s ED visit during the enrollment was recorded. It was assumed that the

participant stays in this timezone during the entire study period. After the de-

tection of sleep periods, the data within each period was used for sleep detection

and sleep feature estimation.

The data from each sleep period was converted to change-points. Then, CPD

method was applied to change event time series. As described in subsection 3.2.6,

the model was not retrained and the weights obtained from the Emory PTSD

dataset was used directly. Two different features were calculated to quantify the

sleep disturbance. Sleep efficiency (SE) was used to quantify how well participant

slept. The number of sleep/wake transitions (SWNum) was calculated to assess

the frequency of episodes of wakefulness and sleep disturbance.
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To assess the severity of sleep disturbance, a slightly modified version of the

Insomnia Severity Index was administered at week eight of the study [116]. Lower

scores indicate no clinically significant insomnia while higher scores indicate se-

vere clinical insomnia. Participants who had contributed at least more than three

sleep periods were determined and by using this questionnaire, the participants

with severe insomnia were assigned to the first class (N=82) while the remaining

participants were assigned to the second class (N=411). Majority class was ran-

domly under-sampled to obtain balanced classes. The mean, standard deviation,

and the slope of sleep features (SE, SWNum) were calculated from the 14-day

window before the Insomnia Severity Index questionnaires. A logistic regression

model with L1 regularization was built to estimate the outcome classes deter-

mined by the questionnaire. Five-fold cross validation was used to validate the

model.

Table 4.8: Performance of sleep outcome prediction models. Results are reported
as mean(standard deviation) of the external folds of each experiment.

Sleep period
estimation technique Acc. AUC TPR TNR PPV

Cosinor-based 0.54 (0.05) 0.58 (0.06) 0.57 (0.13) 0.51 (0.09) 0.52 (0.04)

ED time zone 0.59 (0.06) 0.61 (0.08) 0.60 (0.09) 0.58 (0.16) 0.58 (0.08)

Table 4.8 shows the performance of the models for week eight outcome pre-

diction when different sleep period estimation techniques are used. The ED time

zone based sleep period model achieved 11% better performance compared to the

baseline and these results indicate that this technique holds promise to quantify

the sleep disturbance of the participants. It can also be seen that the performance

depends on the selection of sleep period estimation technique.
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4.3 Unsupervised feature extraction using convolutional variational autoen-

coders

Deep learning methods could learn meaningful representations from the actig-

raphy data. Furthermore, unsupervised learning is well suited for this problem

space because the data without the labels derived from clinical surveys could be

utilized. This research represents the first attempt to apply unsupervised deep

learning methods to actigraphy data for feature extraction and representation.

The outcomes of three clinical surveys were used to create the classes for the

binary classification experiments. The Post-traumatic Stress Disorder Checklist

for DSM-5 (PCL-5) was used to measure PTSD symptoms and participants with

PCL-5 score greater than 28 were labeled as PTSD [117]. Scored depression vari-

ables from PROMIS Depression - Short Form 8b (PROM-Dep8b) were used to

measure depression symptoms, with a threshold of 60 for depression [118]. One

item from Pittsburgh Sleep Quality Index Addendum [108] (“how often did you

awaken from sleep with severe anxiety or panic”) was used to assess the diffi-

culty in staying asleep (PanicSleep). In the first experiment, the PCL-5 survey

was used by itself, while in the second experiment, PCL-5 and PanicSleep survey

scores were combined to determine the outcome classes. Lastly, all three surveys

were combined to find the participants who experienced both depression and

PTSD symptoms. Also, the participant’s general physical health status in the 30

days pre-trauma was used as a feature to test if it could increase the performance

of models based on passive actigraphy data. This pre-health score is a derived

normative score based on questions from the 12-Item Short Form Health Survey

(SF-12) [119].

In the experiments, all participants from the minority class were used, and

the over-represented majority class was under-sampled so that the results were
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not biased due to the unequal class prevalence. For the deep learning models,

internal 5-fold cross-validation was performed. All experiments were repeated 30

times on external folds with different random samples from the majority (healthy)

class.
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Figure 4.11: (a) Daily actigraphy levels for one participant, this double plot shows
activity levels measured over 28 days. (b) CNN-LSTM model, movement data
with 24-hour time steps are used as inputs to time distributed 1-D CNN layers.
(c) VAE model, latent features were used with a logistic regression classifier for
outcome prediction. VAE was also used to generate artificial movement data to
train the CNN-LSTM model.

A variational autoencoder (VAE) is an unsupervised generative model that has

an encoding phase in which the input data is projected onto lower-dimensional

latent representations and a decoding phase that reconstructs the input, as shown
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in Figure 4.11 (c). However, in the VAE model, the encoder is trained under the re-

striction that the latent representations follow a Gaussian distribution N(Zµ, Zσ).

In this work, unlabelled movement maps were used to train a convolutional VAE

with two 2D convolution layers (Conv2D) with 16 and 32 number of filters and

kernel sizes of 3. The number of units in the dense layers was set to 16. The num-

ber of filters in the Conv2DTranspose layers were 32, 16, and 1. The embedding

dimension of VAE was 8. The model was trained for 30 epochs with a batch size

of 128. Then, the latent representation of the movement maps (zact) was used as

input features to a logistic regression model in binary classification experiments.

Secondly, an alternative supervised CNN-LSTM model was trained to esti-

mate mental health outcomes from clinical surveys. The number of filters in the

Conv1D layer was set to 32, and the kernel size was 3. The number of units

in the LSTM and the dense layer was set to 20. Actigraphy data were inputted

as 24-hour subsequences, and the model was trained for 30 epochs with a batch

size of 32. Lastly, 100 healthy and 100 unhealthy artificial movement maps were

generated with VAE models by using randomly sampled encoding vectors. The

artificial data was used in the training step of the CNN-LSTM model to test if the

performance will be improved.

We visualized what the different VAE latent representations learned by plot-

ting their traversals as shown in Figure 4.12.

We observed that when the unsupervised features extracted with the VAE

model were combined with the physical health before the traumatic event (cap-

tured with the SF− 12), the model achieved an AUC of 0.64 and an accuracy of

0.60 in differentiating healthy participants from participants showing PTSD and

depression symptoms as determined by clinical surveys. When model was re-

duced to passive data only (by removing the SF− 12 feature), the AUC dropped

by 3%, but the accuracy was unchanged. The model performance was also tested
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Figure 4.12: Latent traversals of pre-trained VAE model. Each row reconstructs an
movement map as the value of each latent dimension is traversed between [-2, 2]
while keeping the values of all other latent variables fixed. Most of the variables
show decreasing of daily energy, while z8 shows the circadian phase change.

to identify participants with PTSD and sleep disturbance, as shown in Table 4.9.

The CNN-LSTM model had an accuracy of 0.56 and an AUC of 0.57 in classifying

healthy participants and participants showing PTSD and depression symptoms.

By incorporating the artificial data generated by the VAE, the recall of the model

increased from 0.45 to 0.60, while other metrics did not change.

Table 4.9: VAE model mental health outcome estimation performance. Results are
reported as mean(standard deviation) of the external folds of each experiment.

Outcome Features Acc. AUC Precision Recall

PCL-5 zact 0.55(0.01) 0.56(0.01) 0.55(0.01) 0.51(0.01)

PanicSleep
PCL-5

zact 0.59(0.02) 0.61(0.03) 0.59(0.02) 0.57(0.02)

PanicSleep
PCL-5

PROM-Dep8b
zact 0.60(0.03) 0.61(0.03) 0.60(0.04) 0.58(0.03)

PanicSleep
PCL-5

PROM-Dep8b

zact
SF-12

0.60(0.02) 0.64(0.03) 0.61(0.02) 0.57(0.03)
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Table 4.10: CNN-LSTM model mental health outcome estimation performance.
Results are reported as mean(standard deviation) of the external folds of each
experiment.

Outcome Features Acc. AUC Precision Recall

PCL-5 zact 0.52(0.01) 0.53(0.01) 0.53(0.02) 0.40(0.04)

PanicSleep
PCL-5

zact 0.56(0.03) 0.59(0.03) 0.58(0.04) 0.48(0.06)

PanicSleep
PCL-5

PROM-Dep8b
zact 0.56(0.04) 0.57(0.04) 0.58(0.05) 0.45(0.08)

4.4 Comparison of models using movement data

In order to directly compare all approaches for the movement data (feature ex-

traction, VAE-based feature extraction, and CNN-LSTM), the movement features

from subsection 4.1.3 were used to estimate the same outcomes as the deep

learning methods. This movement data based feature set included ISrest, ISact,

IVrest, IVact, MVrest,µ, MVrest,σ, MVact,µ, MVact,σ, CRSµ, CRSσ, RSIµ, RSIσ, Mesorµ,

Mesorσ, Amplitudeµ, Amplitudeσ, Phaseµ, Phaseσ and more details about each fea-

ture could be found in Table 4.1. For PTSD outcome, model performed slightly

above random chance (Acc.=0.53 and AUC=0.55) similar to previous analysis. For

PTSD-Sleep Panic/Anx. outcome, the model achieved an accuracy of 0.60 and an

AUC of 0.62. For PTSD-Pain Int., accuracy of the model was 0.59 and the AUC

was 0.64. On the other hand, when the VAE-logistic regression approach was

run to estimate the PTSD-Pain outcome the accuracy was 0.52, AUC was 0.53. In

comparison, CNN-LSTM model’s accuracy was 0.52, and AUC was 0.51 for this

outcome.
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4.5 Discussion

In this part of the dissertation, features and patterns related to ultradian and cir-

cadian rhythmicity derived from data recorded on a research watch were used to

predict or detect post-trauma outcomes. Patients with PTSD have previously re-

ported sleep disturbance symptoms including insomnia and nightmares [49]. Pre-

vious studies have also shown that PTSD has a high co-occurrence with chronic

pain, which could interfere with patients’ daily lives [31, 32]. Moreover, PTSD

could also result in decreased interest in activities, as stated by the DSM-5 cri-

teria [30]. Therefore, we hypothesized that PTSD might lead to changes in the

biological rhythms that could be captured by the actigraphy and HRV data.

In the first project, three clinical surveys administered in the ED were used as

features to train a logistic regression model to predict eight-week PTSD. Using

these ED surveys, the models achieved AUCs of 0.73 for PTSD outcome, 0.79 for

PTSD-Panic Sleep/Anx. outcome, and 0.77 for PTSD-Pain. Int. outcome. These

results indicate that previous PTSD status and stress experienced immediately

following the traumatic event are a significant predictor of PTSD in the following

months. However, in general, these models predicted that the PTSD status is

unlikely to change.

Then, the use of various types of machine learning models with HRV and

actigraphy features was investigated. The logistic regression model achieved the

highest cross-validated accuracy for predicting the PTSD label at week eight post-

trauma when the data from the enrollment until the end of week eight was con-

sidered. The weights of the logistic regression model were analyzed to identify

the contribution of each feature Figure 4.9. NNiqrσ, avgSQIµ, LFµ and LFHFµ

had the highest relative importance amongst the HRV features. LF power, in par-

ticular, was lower in the population with eight-week PTSD (a mean of 1178ms2 vs

77



1562ms2). Since the LF power is dominantly associated with baroreflex activity,

it can be interpreted as blunted baroreflex activity over this period [120], which

is consistent with the literature on PTSD [121]. Previous studies have also shown

that LF power is significantly different in stressful conditions compared to the

resting conditions [122, 123]. Therefore, this metric could be reflecting the stress

the participants are experiencing following the traumatic event. From the actig-

raphy based metrics, the movement during the rest and the active parts of the

day, IVact, ISrest, ISact and CRSσ, metrics were the most important. IV measures

the fragmentation of rest/activity rhythm and the transitions between rest and

activity, and IVact shows irregular activity during the daytime. IS is a measure

of variability between days [124]. ISrest and ISact were informative when the out-

come is PTSD-Sleep Anx./Panic. This result could indicate that anxiety resulting

from trauma could lead to decoupling from zeitgebers in both rest and activity

regions.

It is debatable whether collecting data from surveys or a wearable (such as our

research watch) represents a lower burden for subjects who develop PTSD. Wear-

able technologies such as smartwatches (and even mobile phones) are now com-

monplace and provide the opportunity to collect data without user intervention,

while survey-based assessments are active data collection techniques requiring

effort and input from the user. However, wearables also require frequent device

charging at regular intervals, which is unsustainable in the long term unless a

user already is in the habit of doing so. It may not be an either/or proposition,

though, and these two approaches could complement each other. For example,

participants who were not able or willing to fill in the survey at admission could

benefit from passive data collection. In our study, N = 533 participants did not

fill the ED surveys, but they wore research watches. For these participants, watch-

based models could become the prime monitoring method. However, compliance
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could also be affected by diagnostic status. Research watch data compliance was

calculated as the hours with data divided by total hours in the eight-week win-

dow, and it was significantly different in PTSD-Sleep Panic/Anx. groups as de-

termined by the Wilcoxon rank sum test. Average compliance was 83% for the

first group (PanicSleep ≥ 3 and PCL− 5week8 ≥ 31) and was 86% for the second

group (PSQIA-PanicSleep < 3 and PCL − 5week8 < 31). The compliance to ED

surveys (PDI, MCEPS, PCL− 5ED) was higher for PCL− 5week8 ≥ 31 group (69%)

compared to PCL− 5week8 < 31 group (48%), and this difference was statistically

significant as determined by the Fisher exact test. The research watch models

could be more useful for participants undergoing a change in clinical status since

the data analysis is windowed and can provide a daily or weekly output which

may be interpreted as the severity of illness. This could facilitate the evaluation

of response to intervention, for example. Therefore, watch-based models have the

potential for passive monitoring over long study periods.

The cosinor method described in this work for determining the rest and activ-

ity regions could be helpful for the studies in which participants across different

time zones or in situations when obtaining sleep diary and time zone informa-

tion would be highly burdensome for the participant. In the second sub-project,

these rest regions were used as the sleep periods, and sleep-related metrics were

derived from the data within the periods by applying CPD sleep detection tech-

nique. However, the model achieved only slightly better performance than ran-

dom chance (AUC=0.58) to detect severe sleep disturbance. In comparison, time

zones recorded during the ED enrollment were assumed to be the time zone

participants were located, and then CPD was applied to the 6-hour window af-

ter midnight. This second technique performed better (AUC=0.61) compared to

cosinor-based rest period detection, indicating the importance of sleep period es-

timation method selection. However, in both cases, the performance of estimating
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the self-reported insomnia outcome was low. This finding is consistent with pre-

vious research [5, 125], and could indicate that self-reported insomnia does not

match the objective estimates for the PTSD patients.

In the third sub-project, unsupervised learning was leveraged, and it was

shown that the VAE model could extract more informative features and achieved

higher accuracy compared to the CNN-LSTM. VAE approach compresses four-

week worth of actigraphy data into an 8 dimensional vector. Therefore, this

method could result in immense memory savings for applications with more

data streams or long-term studies and could be adapted to different and novel

devices. Finally, the performance of the deep learning models and machine learn-

ing models with hand-extracted features were compared using the motion data.

By looking at the results, it can be seen that estimating the PTSD outcome based

on only PCL-5 survey is difficult for all models. The performance was better when

somatic symptoms such as sleep or pain are included, and hand-crafted features

perform slightly better compared to deep learning-based approaches. As more

data is collected, the training of deep learning methods could be improved.

There are several limitations to this work. First, the outcomes (PTSD status at

week eight) may reflect the appearance of PTSD at any time over the intervening

eight weeks. The high variability in the speed of development of PTSD is likely

to create high class confusion in any machine learning paradigm. Moreover, there

is the potential for individuals’ PTSD symptoms to wax and wane over eight

weeks, further confusing any algorithm trained on such data. Second, due to the

use of self-report surveys from week eight for constructing outcome classes, our

cohort is a subset of the original AURORA Freeze 2 dataset, albeit a rather large

cohort. As more data are collected in the AURORA study in the coming years, we

will address this limitation by re-evaluating the methods with more participants.

Lastly, time zone information was not available for our participants. Circadian
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(mis)alignment may have provided additional information for adjusting features.

While the cosinor-based rest-activity detection might compensate for this lack of

information, it cannot fully address the issue.

4.6 Conclusion

In this chapter, various approaches to quantify ultradian and circadian rhythms

are presented. This research represents, to best of the author’s knowledge, the

first attempt to predict outcomes following a traumatic event from a wearable (or,

more specifically, a research watch). Outcomes were both classified and predicted

using non-invasive physiological features derived from the research watch, using

a logistic regression model. A method to automatically detect rest and activity

periods of the day was also developed using the cosinor analysis and combined

with CPD method to estimate sleep metrics. Activity heat plots were used for

unsupervised feature extraction for the first time using deep learning methods.

Acute conditions could lead to chronic conditions without the required treat-

ment and they also have the capacity to improve with early detection of symp-

toms. For example, accurate prediction of PTSD in the early aftermath of trauma

would enable early preventive interventions [126]. Rothbaum et al. [127] showed

that trauma survivors receiving an early modified prolonged exposure interven-

tion reported significantly less PTSD severity compared to the assessment group.

It has also been shown in a preliminary study that administering an early single

high-dose hydrocortisone could reduce the risk of PTSD development [35]. While

wearable-based PTSD detection based on only PCL-5 survey was not very effec-

tive, the performance was very promising when other somatic symptoms such

as sleep disturbance or pain was included in the outcome classes. Notably, the

model for participants with a combined PTSD and pain outcome combined pro-

vides the highest performance. Identifying and treating these particular types
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of individuals is extremely important. Previous studies report that patients with

both chronic pain and PTSD combined use healthcare services more than the pa-

tients with PTSD or chronic pain alone, increasing healthcare costs [32]. Moreover,

PTSD treatment for these patients could be more beneficial than for other groups,

since they also report a reduction in pain symptoms after treatment [128].

In conclusion, the methods for classifying or predicting outcomes (for window

sizes smaller than 49 days) could be useful in passively monitoring changes in

symptom severity in large populations and in low-resource settings. Without the

prior knowledge of which patients to administer treatment to, smartwatch-based

monitoring could be used to identify the subset of patients to prioritize.
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CHAPTER 5

CHRONIC DISEASE STATE PREDICTION

Chronic diseases are health conditions that are persistent and last long periods

of time with reoccurring symptoms [129]. In this part of the thesis, the signal

processing and machine learning techniques for chronic disease state prediction is

presented. Using the dataset described in subsection 2.6.3, features were derived

from passive and active data collected by the smartphone-based framework for

predicting or classifying heart failure decompensation events. The movement

data from research watches in DMD and Emory PTSD studies were also analyzed

in relation to clinical outcomes. Figure 5.1 shows the datasets used in this part of

thesis on the disease time scale plot.

Disease 
States

Years →

Tr
au
m
a

Acute Phase Intermediate 
Phase

Chronic 
Phase

Emory PTSD study
AMoSS study,

DMD study

Figure 5.1: Illustration of AMoSS, DMD and Emory PTSD studies on disease time
scales.

5.1 Methods for monitoring heart failure patients using passive smartphone

data

5.1.1 Data collection using the smartphone application and the clinical events

Figure 5.2 illustrates the study timeline and the data collection after the enroll-

ment and discharge from the clinic. We analyze different data modalities, includ-

ing motion, social contact, location, and clinical survey data (KCCQ) collected by
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the smartphone. We develop algorithms based on using a single modality and

two different sensor fusion approaches. We also present an analysis of the feature

importance in the model and report a novel late-fusion model which combines

the KCCQ, motion, and social contact data.

Hospital 
discharge

Days → 
1 2 3 4 16 17 1815 3130

Smartphone based 
data collection starts

Clinic visit: 
HF Decompensation

Clinic visit: 
Compensated

Figure 5.2: Illustration of the AMoSS HF study timeline. Passive data collection
started after the hospital discharge, and the clinical team recorded the clinical
events after the enrollment.

Clinical events

Clinical events consisted of decompensated and compensated events and were

collected by the clinical team when the participants visited the hospitals. In the

compensated events, the participants visited the hospital for any reason, and their

fluid levels were determined to be normal. For the decompensated events, the

clinical team determined the participant to have functional limitation related to

HF. Decompensated and compensated events were assigned to positive and neg-

ative classes respectively. The number of events contributed by each participant

varied as shown in Figure 5.3.

Passive data sources

The raw 3D accelerometer data was converted to activity counts using the Actigra-

phy Toolbox to reduce the required memory for storing and eliminate noise [130].
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Figure 5.3: Number of events for each participant. y axis shows the number of
events and x axis shows the unique IDs. Compensated and decompensated events
are shown with different colors.

In the first step, the z-axis of the accelerometer data was filtered using a band-

pass Butterworth filter with 0.25− 11 Hz passband to eliminate extremely slow

or fast movements [131]. Then, the maximum values inside 1-second windows

were summed for each 30-second epoch to obtain the activity counts, following

the approach described by Borazio et al. [98]. Figure 5.4 illustrates the double plot

for the motion data for one participant over a recording period of 300 days. White

regions indicate missing data, which could be due to the participant turning off

the data sharing or the smartphone running out of battery.

Social contact data included the call data and the duration of each call. Each

contact was anonymized and assigned a unique identifier at the source. Fig-

ure 5.5 illustrates one participant’s social contact over 300 days for the ten most

frequently contacted IDs. Lastly, location data was collected using the Android

location services application program interface, which generally used cellphone

tower or WiFi and not GPS for geolocation. Figure 5.6 shows the location data of
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Figure 5.4: Double plot representation of smartphone actigraphy data, which
illustrates daily motion intensity levels for one participant. Darker colors indicate
lower intensity movement, and the white color indicates missing data. On the top
of the plot, decompensated and compensated clinical events are shown with red
and orange squares respectively.

a participant, collected from compensated and decompensated windows. High

spatial resolution was not required since the aim was to identify the general en-

vironment in which a user was located. (E.g., home, work, shops, etc.) If the

smartphone moved at least 100 meters, and at least 5 minutes had passed since

the last location data update, a new relative location was recorded. These pa-

rameters were defined while designing the app to preserve battery life while still

providing sufficient temporal and spatial resolution in comparison to the phone’s

ability to geo-locate without GPS.

Active data sources

Active data type, which required user input, was KCCQ administrated through

the smartphone app. The scores are lower for severe HF symptoms, and KCCQ

scores ≤ 25 correspond to New York Heart Association (NYHA) class IV. In this

study, we used the shorter version of the questionnaire, referred to as KCCQ-12

[132]. The KCCQ-12 survey had physical limitation, symptom frequency, qual-
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Figure 5.5: Participant’s social contact intensity over 300 days. Each unique con-
tact is assigned a number as shown in the y-axis, and the circle radius is pro-
portional to call duration to each ID. On the top of the plot, decompensated and
compensated clinical events are shown with red and orange squares respectively.

Figure 5.6: Location data collected in compensated and decompensated windows,
shown on the same map with 50x50 km dimensions.
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ity of life, and social limitation domains, and the summary score (ranging from

0-100) was the average of all domains. Figure 5.7 shows the KCCQ-12 scores

administrated through the app.

Figure 5.7: KCCQ summary score over days for one participant. KCCQ score ≤ 25
indicates a transition to severe HF. On the top of the plot, decompensated and
compensated clinical events are shown with red and orange squares respectively.

5.1.2 Personalized prediction models of heart failure severity

In the preliminary analysis conducted in 2018, the feasibility of predicting the

quality of life of patients with HF using passive smartphone data measured via

the smartphone app was assessed [64]. Patient-specific models to estimate KCCQ

using various features from past passively monitored data were built. In a sub-

sequent analysis, these features were used to cluster patients into high (KCCQ ≤

25) versus moderate (KCCQ > 25) severity HF groups.

Feature extraction

Several features were extracted from movement data to evaluate rest-activity char-

acteristics and circadian rhythms of subjects. Rest-activity rhythms were assessed

using IS, IV, Most Active 10 Hours (M10), and Least Active 5 Hours (L5) [124].
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IS and IV were described in detail in subsection 4.1.3. M10 is the average of the

most active 10 hours over all days. A drop in M10 could imply a reduction in

physical activity due to HF symptoms. Lastly, L5 is the average of the least active

5 hours. L5 indicates movements during sleep, and night-time arousal. Cosi-

nor rhythmometry features, total energy of activity data, and the time of day of

the maximum activity rhythm were also calculated. The correlation coefficient

Rk quantifies the correlation of a variable with itself at a previous time, e.g. Ai

versus Ai−k. In this work a lag k = 24 hours was used. A more pronounced

circadian rhythm will result in a higher Rk [133]. MSE was calculated to quantify

irregularity or unpredictability of behavior over multiple timescales. MSE was

calculated following the methods described by Costa et al. [134]. Actigraphy time

series were coarse-grained by averaging the data points within non-overlapping

windows. The first 20 scales of multiscale entropy were calculated by varying the

window size from 1 to 20. For each coarse-grained time series, sample entropy

was calculated.

Severe HF causes discomfort and can hinder physical activity, which could

lead to the subject staying at home more, or altering routine behaviors. Location

features were extracted to capture these changes. Using all location data from

each subject, the “home” location was defined as the most frequently visited lo-

cation. The percentage of time spent at “home” was calculated. The second most

frequently visited location was determined in a similar fashion as “home”. The

percentage of time spent at the second most frequent location was calculated.The

area within a 20 km radius from home was designated as “zone-1”, and the area

outside of this radius was called “zone-2”, as shown in Figure 5.8. The number

of times the subject visited each zone was counted.Haversine distances between

all locations to the “home” location were summed. The Haversine distance is the

shortest distance between two coordinates over the surface of the earth.
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Figure 5.8: Example of location data collected with AMoSS app. Increasing height,
represents the probability of visiting an area. Areas south and west from the
origin are represented as negative distances. The red circle is the boundary of
“zone-1”, the area enclosed by a circle of 20 km radius from most frequently
visited location.

HF symptoms could affect a subject’s social behavior. The following contact ac-

tivity features were extracted from smartphone data: total number of calls, mean

duration of calls, standard deviation (std) of duration of calls, mean duration

without any calls, standard deviation of duration without any calls.

Machine learning models

Personalized models were created for each subject to estimate the KCCQ sum-

mary score. GLM with binomial distribution and logit link was used. Elastic net

regularization was applied to personalized GLMs to decrease bias and improve

classification performance [135]. Models were built only for subjects from whom

sufficient data was gathered over at least ten windows at that time of the study,

and a window was defined as two weeks. If insufficient data was gathered from

ten or more windows, or did not share a specific data type at all, no model was
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built for that data type.

Model performance was assessed via record-wise leave-one-out cross valida-

tion (LOOCV). Given N windows of data, N − 1 windows are used to train the

model for a given patient for predicting KCCQ scores, and the held-out window is

used as the test set data from which a KCCQ score is predicted. This is repeated

for the remaining N − 1 windows. The Mean Absolute Error (MAE) between

actual and estimated KCCQ scores was calculated for each personalized model.

In addition to regression analysis, a classification analysis with a K-Nearest

Neighbors (K-NN) approach was performed after quantizing KCCQ summary

scores. Data were dichotomized into KCCQ scores ≤ 25 or > 25 [136]. KCCQ

scores ≤ 25 correspond to New York Heart Association (NYHA) class IV. Patients

with class IV HF are unable to complete any physical activity without discomfort.

KCCQ scores > 25 correspond to NYHA class I-III which describes less severe

HF compared to class IV. Clustering analysis was performed for two subjects

who had enough KCCQ summary scores in each class. Cosine distance and five

nearest neighbors were used as model specifications. Five-fold cross validation

was implemented whereby the model was trained on four folds and the fifth held-

out fold was used for testing, and this process was repeated for the remaining four

folds. The percentage of correctly classified points were reported for each subject.

Experimental results

The average MAE over the population for estimating the KCCQ using only activ-

ity metrics was 5.71 units (or percent, since the scale is normalized to be between

0-100) as shown in Table 5.1. When only location metrics were used to estimate

the KCCQ scores, the MAE rose to 7.40 (N=8). For personalized models based on

contact activity features, the population average (N=9) MAE was 6.05. For per-

sonalized models built with features from all three data domains, the population
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average MAE was 5.43. Although one might therefore be tempted to infer that

movement provides the most information in this context, inspection of Table 5.1

shows that the most useful type of data depends on the individual. Moreover,

the most frequently selected features by elastic net in the LOOCV procedure also

varied according to the subject. This creates a strong case for personal models

trained on initial KCCQ reports. It can also be noted that the models developed

here outperform the baseline (sample-and-hold) estimate, i.e. simply using the

first KCCQ score. No error exceeded 8% when all three domains of data types

were available.

Table 5.1: Mean absolute error of leave-one-out cross validation KCCQ estimation
models for each of the first 10 patients in the AMoSS HF dataset.

Initial KCCQ Motion Location Social contact Combined Baseline
score features features features features model

95 0.43 0.90 0.91 0.44 2.12

50 † 2.26 2.47 2.25 40.39

13 4.93 † 4.01 3.92 4.74

56 5.45 7.73 6.44 5.45 34.86

71 5.46 5.44 5.68 5.49 6.61

38 7.50 12.08 7.41 7.52 17.96

77 9.41 9.55 7.82 7.85 19.87

19 † 12.32 8.82 7.99 6.10

13 8.22 8.31 † 8.33 19.31

33 † † 10.90 † 13.32

AVG→ 5.71 7.40 6.05 5.43 16.53

† indicates patient did not share data type.

Figure 5.9 provides a visualization of points with t-Distributed Stochastic Neigh-

bor Embedding [137] in 3 dimensions using social contact features. Using contact

activity features from two subjects (Subject 1 and Subject 8 from Table 5.1), five-

fold cross validation of the K-NN classification approach was performed. Out-of-

sample classification accuracy for these two subjects were 0.78 and 0.88 respec-

tively. Repeating the same analysis with location features resulted in respective
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classification accuracies of 0.65 and 0.73.
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Figure 5.9: Visualization of two KCCQ clusters (Severe HF defined as KCCQ≤ 25)
in three arbitrary dimensions (represented by t1−3) using t-Distributed Stochastic
Neighbor Embedding on social networking behavior features for two subjects.

5.1.3 Dynamics of interpersonal social interactions and motion passively captured

from smartphones predicts decompensation in heart failure

In the second analysis using AMoSS HF dataset, motion, social, location, and

clinical survey data collected via the smartphone-based monitoring system were

used to develop and validate an algorithm for predicting or classifying HF decom-

pensation events (hospitalizations or clinic visit) versus clinic monitoring visits in

which they were determined to be compensated or stable. Models based on single

modality as well as early and late fusion approaches combining patient-reported

outcomes and passive smartphone data were evaluated. Passively collected data

from smartphones, especially when combined with weekly patient-reported out-

comes, may reflect behavioral and physiological changes due to HF and thus

could enable prediction of HF decompensation.
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Feature extraction

Several features were extracted from the data collected through the app to con-

struct the motion feature set. A window of data was the N day period be-

fore a clinical event, and the feature extraction was performed for each win-

dow. The window size N was chosen to be 14 days initially since it was also se-

lected by the developers of KCCQ to represent the participant’s recent functioning

[61]. Firstly, from preprocessed smartphone activity counts, descriptive statistics

were extracted. These included mean (actmean), standard deviation (actstd), mode

(actmode), skewness (actskew), and kurtosis (actkurt). The completeness percentage

(actcomp) was calculated by dividing the epochs with data by the total number of

epochs in the window.

For each window, the total number of calls (numCalls), the sum of the duration

of calls (durCalls), the standard deviation of the duration of calls (durCallsstd),

the sum of durations without any calls (durNoCalls), and the standard deviation

of these durations (durNoCallsstd) were calculated to be used as social contact

features.

Using the participant’s location data, the most frequently visited location was

determined and defined as the “home” location. The number of times the partici-

pant was at the home location was calculated and used as a feature (atHome). For

the second location feature, Haversine distances between all locations to the home

location were summed (distToHome). Lastly, the area within a 2 km radius from

home was defined as “zone-1”. The area outside of this radius was defined as

“zone-2”. The number of times the participant contributed from these two zones

were calculated (zone1, zone2).

From the KCCQ data, two different feature sets were investigated. Firstly, the

summation score (KCCQsum) was used as a feature. For the second set (KCCQall),

each domain (physical limitation, symptom frequency, quality of life, and social
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limitation) was used separately. For these two active data feature sets, the per-

formance of using the mean of all surveys inside the window or using the most

recent survey was also tested.

Machine learning models

Logistic regression classifiers were trained to map the feature vector to the com-

pensated or decompensated outcome. All the models were written in the Python

3 language, and the programming code was based on Scikit-learn [113]. Since

each participant could contribute more than one event, we used leave-one-patient

out cross-validation. The model was trained on the data from all participants ex-

cept one held-out participant, and this participant’s data was used as the test set.

This process was repeated for each participant in the dataset. All experiments

were repeated 50 times to obtain the final results.

Since the number of compensated and decompensated events were highly im-

balanced, as seen in Table 2.2, the majority undersampling was performed on

the training set before training the classifiers. During the majority undersam-

pling, all participants from the minority class were used, and the same number of

participants from the majority class were randomly selected. Sequential forward

feature selection was used to select the three most informative features from each

modality.

Early and late fusion approaches combined passive and active modalities and

are shown in Figure 5.10. In the early fusion approach, extracted features were

combined at the input level to create a single feature vector. Secondly, all single

modality model’s output probabilities were concatenated and used as input to an-

other classifier for the late fusion approach. In the fusion models, the participants

who contributed all data types were included in the analysis. Models were also

evaluated on the same participants to analyze if the fusion approached improve
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upon the single modality approaches. Finally, the effect of changing the window

size and sliding the window was tested using the same participants for all the

models.

Model performance metrics were accuracy (Acc.), Positive predictive value

(PPV), True positive rate (TPR), AUC, and Area under the precision-recall curve

(AUCPr). In this analysis, positive class was the decompensated events while

compensated events were the negative class. Accuracy is the ratio of the number

of correctly classified samples to the total number of samples. PPV (or precision)

is the ratio of the number of correctly classified positive samples to the number of

the samples which is predicted as positive. TPR (or recall) is the ratio of positives

that are correctly classified to actually positive samples. AUC is the area under

the ROC curve which shows the model performance under different classification

thresholds. Lastly, AUCPr is the area under precision-recall curve.

Figure 5.10: Modality fusion techniques. Purple and red colors indicate two dif-
ferent modalities. Figure (a) shows the early fusion approach, and figure (b)
shows the late fusion of the modalities.

To examine and interpret the features further, SHapley Additive exPlanation

(SHAP) values for the early fusion model were calculated [138]. This framework

is model agnostic, and SHAP values quantify the contribution and impact of each

feature to the model.
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Experimental results

The cross-validation performance for each single modality model is shown on

Table 5.2. For these experiments, the window was set to 14 days before each clin-

ical event. The number of unique participants and the number of clinical events

changed according to the modality since the participants could stop contributing

data. For the motion model, 23 participants contributed 28 decompensated events

and 44 compensated events. For the social contact model, there were 21 partic-

ipants with 27 decompensated events and 45 compensated events. Lastly, there

were 18 participants with 13 decompensated events and 33 compensated events

for the location model.

Table 5.2: Passive data model performances. Results are reported as
mean(standard deviation) of the external folds of each experiment.

Modality Acc. AUC AUCPr PPV TPR

Motion 0.66 (0.03) 0.66 (0.03) 0.60 (0.06) 0.55 (0.04) 0.61 (0.06)

Location 0.59 (0.07) 0.56 (0.10) 0.39 (0.11) 0.34 (0.10) 0.49 (0.17)

Social 0.58 (0.05) 0.65 (0.05) 0.56 (0.06) 0.46 (0.06) 0.60 (0.07)

Table 5.3 provides the single modality results for the active data type, KCCQ

survey. For two different feature sets (KCCQsum and KCCQall), the table shows

the performance metrics when the mean of all the questionnaires within the 14-

day window was used and when the most recent questionnaire was used. For

this active data type, 20 unique IDs contributed 23 decompensated events and 32

compensated events. Using the summary KCCQ score and taking the most recent

questionnaire has resulted in the highest AUCPr score of 0.69.

In the fusion of KCCQ and motion data, 15 participants contributed 13 de-

compensated events and 27 compensated events. Similarly, for KCCQ and mo-

tion data model, 17 participants contributed data for both modalities, 21 decom-
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Table 5.3: Active data single modality model performance. Results are reported
as mean(standard deviation) of the external folds of each experiment.

Modality Acc. AUC AUCPr PPV TPR

Mean of window,

KCCQsum
0.64 (0.01) 0.75 (0.01) 0.61 (0.02) 0.55 (0.01) 0.66 (0.03)

Mean of window,

KCCQall
0.65 (0.02) 0.67 (0.02) 0.54 (0.04) 0.57 (0.02) 0.69 (0.04)

Most recent,

KCCQsum
0.69 (0.01) 0.77 (0.01) 0.69 (0.02) 0.61 (0.02) 0.71 (0.03)

Most recent,

KCCQall
0.69 (0.03) 0.70 (0.01) 0.61 (0.04) 0.60 (0.02) 0.74 (0.04)

pensated events, and 26 compensated events. When three modalities were used

(KCCQ, motion, social contact), 16 participants contributed 18 decompensated

events and 21 compensated events. Lastly, when all data types were merged,

there was data available for 12 participants, ten decompensated events, and 18

compensated events. The results for the early fusion models is shown in Ta-

ble 5.4 and in Table 5.5 for the late fusion models. The highest AUCPr of 0.77 was

achieved when KCCQ and motion and social contact modalities were combined

with late fusion. For early fusion models, using the same modalities resulted in

an AUCPr of 0.69. The corresponding SHAP summary plot for the early fusion

model is shown in Figure 5.11.

Using the best models in each category, how early the algorithm could pre-

dict the outcome (time-to-event analysis) was also investigated. In this analysis,

participants who shared data for all windows and data types were used (N=13;

13 decompensation events; 18 compensation events). Figure 5.12 illustrates the

AUCPr of the models as the window was shifted. From the single modality mod-

els, social contact model was most drastically effected by shifting the analysis
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Table 5.4: Results of early fusion models. Results are reported as mean(standard
deviation) of the external folds of each experiment.

Modality Acc. AUC AUCPr PPV TPR

Motion, soc. 0.62 (0.04) 0.58 (0.03) 0.54 (0.04) 0.53 (0.05) 0.53 (0.06)

KCCQ, motion 0.73 (0.02) 0.81 (0.01) 0.75 (0.03) 0.69 (0.02) 0.73 (0.05)

KCCQ,

motion, soc.
0.71 (0.04) 0.72 (0.05) 0.69 (0.06) 0.70 (0.04) 0.66 (0.09)

KCCQ, motion,

soc., loc.
0.67 (0.05) 0.64 (0.07) 0.57 (0.11) 0.55 (0.07) 0.56 (0.09)

Table 5.5: Results of late fusion models. Results are reported as mean(standard
deviation) of the external folds of each experiment.

Modality Acc. AUC AUCPr PPV TPR

Motion, soc. 0.64 (0.03) 0.63 (0.04) 0.52 (0.05) 0.54 (0.04) 0.56 (0.07)

KCCQ, motion 0.67 (0.03) 0.75 (0.02) 0.67 (0.04) 0.61 (0.03) 0.72 (0.07)

KCCQ,

motion, soc.
0.71 (0.04) 0.79 (0.03) 0.77 (0.04) 0.68 (0.04) 0.70 (0.05)

KCCQ, motion,

soc., loc.
0.62 (0.07) 0.72 (0.07) 0.60 (0.11) 0.49 (0.07) 0.68 (0.10)
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Figure 5.11: SHAP summary plot for the early fusion model. Features are sorted
by their impact on the y-axis. Each point on the plot shows the Shapley value for
one instance. Horizontal location shows the feature’s effect for predicting positive
class (decompensated) or negative class (compensated), and color indicates the
feature value.

window. Late fusion models performed better compared to KCCQ models when

time to event was less than four days. Figure 5.13 shows the effect of the win-

dow size to AUC and AUCPr metrics. Similar to time-to-event analysis, only the

participants who shared all data types for all windows were used (N=11; 12 de-

compensation events; 15 compensation events). It can be seen that KCCQ model

performance was not effected, since this model used the last score (closest to the

event) within the window. Social contact model’s performance was improved as

the window size was decreased.

5.2 Using movement data for chronic post-traumatic stress disorder state esti-

mation

Using the Actiwatch research watch data from the Emory PTSD dataset described

in subsection 2.6.1, movement features (IS, IV, mean and standard deviation of
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Figure 5.12: Performance change as the data window is shifted. x axis indicates
the time-to-event. Early and late fusion models use KCCQ, motion, social contact
modalities.

Figure 5.13: Performance change as the data window size is changed. x axis
indicates the window size. Early and late fusion models use KCCQ, motion,
social contact modalities.
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movement, CRSµ, CRSσ, RSIµ, RSIσ, Mesorµ, Mesorσ, Amplitudeµ, Amplitudeσ,

Phaseµ, Phaseσ) were derived. From the participants who wore the Actiwatch,

there were N = 8 participants who were diagnosed with long-term PTSD and

there were N = 88. Due to low number of PTSD participants, it was not possible

to build a cross-validated classifier. T-test was used to compare the means of

features for PTSD and non-PTSD groups. Among these 14 movement features,

CRSσ and IS features had statistically significant difference (p = 0.028 and p =

0.017 respectively). Figure 5.14 illustrates the violin plots of IS and CRSσ for both

groups.

Figure 5.14: Violin plots of motion features IS and CRSσ motion features.

5.3 Use of a wearable device to assess sleep and motor function in Duchenne

muscular dystrophy

In another study, actigraphy data was used to assess the sleep disturbance and

day-time activity levels in participants with DMD [139]. A subset of the ambu-

latory participants (N=13) completed 6-minute walk test (6MWT) during their

appointments to assess their functional capacity. The 6MWT measures how far

an individual can walk within a 6-minute period and was conducted with am-
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bulatory participants in accordance with the methods described in 2010 by Mac-

Donald et al. [140]. The percentage predicted 6-minute walk distance (6MWD)

was calculated by dividing the distance walked by the expected distance for each

participant’s age and height by using the Geiger equation [141]. Parents of all

participants completed the Sleep Disturbance Scale for Children [142]. The ques-

tionnaire consists of 26 Likert-type questions and one of the factors measured was

Disorders of Initiating and Maintaining Sleep (DIMS).

A longitudinal actigraphy dataset was created using the Actiwatch research

watch, as described in subsection 2.6.4. The rest/activity metrics (IS, IV, M10,

L5) were derived from the research watch actigraphy data of the participants

following the steps described in subsection 4.1.3. For the ambulatory group, lin-

ear regression models were built to assess the associations of outcomes with the

metrics. Within the ambulatory group, linear regression modeling revealed a

significant association between M10 and percentage predicted 6MWD such that

more daytime activity was associated with better 6MWD performance (R2 =

0.41, p = 0.019). In addition, a more fragmented daily rhythm (higher IV) had

more difficulty initiating and maintaining sleep as measured by the DIMS sub-

scale (R2 = 0.61, p = 0.008).

5.4 Discussion

In the first project described in this chapter, features derived from data passively

collected by a smartphone app were used for predicting decompensation events

in a heart failure population. There were three passive data modalities (motion,

location, and social contact) and one active (the KCCQ). The hypothesis was that

activity, location, and social contact data were all affected by changes in health sta-

tus for patients with HF, and these data gathered via smartphone could be used

to assess patient quality of life. Activity data can be used to infer the circadian
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rhythm of the patient, activity-rest schedules, and disruptions (such as awaken-

ings during the night). Location data can indicate if the patient is disinclined or

unable to leave the house or continue a normal routine. Social contact data pro-

vides information about the patient’s social interaction, particularly with a given

subgroup of contacts. During health changes, we observe a change in social be-

havior with a user changing the frequency or duration of calls and to whom they

are placed. Although none of these changes are particularly specific to changes in

HF when taken in isolation, when combined, they provide a more accurate mea-

sure of the changes in health. For this dataset, traditional change point detection

methods are not feasible for detecting decompensation events since the data is

unstructured and the missingness is high.

In the first sub-project, features extracted from the three domains (activity, lo-

cation, and social contact) were used to build personalized models to estimate the

quality of life-related to HF. Personalized models were implemented instead of

population models because KCCQ scores are subjective and self-reported. Using

only activity data, the MAE in the KCCQ estimate was 5.71%. A K-NN model,

which classifies KCCQ scores as ≤ 25 or > 25 was implemented to detect clin-

ically significant changes in the population. This binary classifier exhibited an

accuracy of 78% and 88% for the two subjects who had a sufficient number of

passive data and KCCQ scores.

Using only passive data sources, as described in this analysis, and eliminating

active data uploading can reduce the burden on patients by minimizing their ef-

fort required to participate and increase adherence to monitoring. Moreover, the

phone app provides a natural communication medium for the caregiver to inter-

vene when significant or sustained deterioration in health is detected. Subjects

had the option to determine which types of data to share and the frequency of

their uploads. This option was provided to empower users to take ownership of

104



their data, decide when and how they were monitored, and increase compliance.

For patients with high mortality risk, these options could be removed to improve

data continuity and adherence. It is important to note that patients’ adherence to

uploading of active data sources can decline rapidly over time [143].

We also observed variation in compliance measured by active data upload-

ing, but this was not a consistently diminishing level as implied in other studies.

For example, a subject enrolled for 428 days sent passive activity data for 328

days, although only 46 KCCQ survey reports were completed in the same period.

However, we may only need the first few weeks of reports to build individual-

ized models during the higher compliance period. In the cases where we have

insufficient data to build a model, or the confidence in the model drops below a

given threshold, incentives can be provided to report the KCCQ. In this way, the

information is maximized, and the patient burden is minimized.

In the second sub-project, next-day HF decompensation prediction algorithms

were built using each modality separately and fusing all data types. From the

passive data sources, the motion data-based model achieved the highest AUCPr

of 0.60. For a model based only on the responses of the KCCQ, using the sum-

mary of all domains and using the most recent score resulted in the best perfor-

mance with an AUCPr of 0.69 (Table 5.3). Combining both passive and active

data modalities achieved a superior performance compared to models based on

passive or actively collected data alone (see Table 5.4 and Table 5.5). The highest

performing model combined KCCQ, motion, and social contact data. Late fusion

approach achieved a 8% higher AUCPr than early fusion when three modalities

were used. Late fusion presents a lower-dimensional vector to the final classifier

[144]. Therefore, this method could reduce the chances of overfitting and ad-

dresses the curse of dimensionality when the sample size is small. The TPR (0.70)

and PPV (0.68) of this model could indicate that the approach could potentially
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add clinical interventions into the framework and result in a low number of false

alarms.

Figure 5.11 illustrates the feature importance using the SHAP method. Dura-

tion and number of calls were among the most informative features, indicating

that the dynamics of social interactions could be affected by the disease status.

It can also be seen in the SHAP summary plot that a higher call duration but

fewer number of calls result in a higher probability of HF decompensation. An-

other important feature was the KCCQ summary value, and a lower value of this

parameter gave rise to higher SHAP values. The SHAP plot also indicated that

higher mean smartphone motion intensity resulted in a higher probability of HF,

which was unexpected since HF limits daily physical activity and is often asso-

ciated with fatigue. In a previous study, Duncan et al. have shown that steps

measured by a smartphone and a wearable differed a mean bias of 21.5%, and

hypothesize that this could result from the behavior of the participants (i.e., not

carrying the phone on short walking breaks, carry location for the phone) [145].

Similarly, our results show that the smartphone’s motion data does not measure

the physical effort but that it reflects patterns of behavior, including phone uti-

lization and body movements.

When different time-to-event horizons were tested, a general trend of lower

performance for longer future predictions was observed, as expected, since symp-

toms are likely to become more pronounced closer to the event. However, pre-

dictions two days ahead were better than one day, and performance four days

ahead was almost as good as one day before the event. This indicates that one-

day, two-day, and four-day models could be run simultaneously to identify short-

and medium-term risks and result in different levels of intervention. Changes in

performance will be affected by the levels of missingness as the event approached

and the intrinsic behaviors, which may explain the performance of the two-day
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window.

There are two fundamental limitations of the analysis on this project. Firstly,

when the data were missing, the app did not indicate whether this resulted from

the participant closing the app voluntarily or if it resulted from the smartphone

battery running out. These behaviors have different etiologies, which may be

related to impending decompensation in different ways. For example, closing

the app may indicate being tired, whereas a battery running out of charge may

indicate apathy connected with depression. If an additional label is collected for

missing sections, it could be used to learn other behavioral patterns. Secondly,

even though each participant contributed many days, the study’s sample size was

relatively small (N=28 participants), and therefore, the methods should be further

validated in a larger cohort.

Finally, motion data collected with wearables were investigated for chronic

DMD and PTSD cohorts. While cross-validated models could not be built due

to small set of data samples, the motion features were compared with clinical

outcomes. DMD study indicated that wearable-based approaches could provide

an opportunity to monitor DMD patients non-invasively. First, ambulatory par-

ticipants with more activity rhythm fragmentation had higher ratings of subjec-

tive impairment in initiating and maintaining sleep. IV and the DIMS subscale

measure overlapping constructs of sleep disruption, and their close association

provides evidence that IV is a clinically meaningful indicator of sleep-wake dys-

function in DMD. Second, habitual day-time activity was associated with walk

test performance, providing evidence that M10 may be a valid marker of ambula-

tory status complementary to the 6MWT. Similarly, in the Emory PTSD dataset, IS

and CRSσ features were statistically significant across healthy and chronic PTSD

groups. PTSD group had lower IS, which could indicate that this group had

lower coupling to environmental zeitgebers that regulate the circadian rhythm.
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This group also had a higher and more variant CRSσ feature. Further data collec-

tion is required for both of these studies, but the findings in this dissertation could

indicate that wearable-based approaches could be useful for passive monitoring

at home.

5.5 Conclusion

In this chapter, machine learning approaches for monitoring chronic state HF,

DMD, and PTSD patients were introduced. Chronic diseases persist over longer

periods [129], and could require long-term care to improve the recurring symp-

toms. Thus, the methods described in this dissertation could be beneficial for

patients suffering from chronic conditions and their care providers. Firstly, due to

the ubiquity of smartphones or wearables and the ease of scalability of the frame-

work, these methods will facilitate monitoring large populations at a low cost.

Secondly, they could be considered minimally invasive and impose less burden

on patients already suffering from long-term diseases. In conclusion, the findings

from this chapter demonstrate the feasibility of wearable and smartphone-based

approaches to monitor chronic diseases and show that these methods could be

non-invasive and passive alternatives to existing approaches.
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CHAPTER 6

CONCLUSION

This dissertation presents wearable-based tools and technologies for improving

longitudinal patient monitoring. The overall aim of the dissertation is to present

low-cost and non-invasive technology that can be combined with existing tools

for more accurate and efficient longitudinal monitoring. All the methods pre-

sented in this work are validated using large-scale human-subject studies with

data collected in the wild.

The first part of this dissertation focused on building a novel sleep detection

model using the physiological and motion signals and discussed how the change

points in these signals could be utilized to estimate underlying sleep/wake states.

This work demonstrated that only the information in the change points is suffi-

cient to achieve unbiased performance. Storing the signals as change-event time

series could reduce the required memory of the device. In this way, this work

would enable the memory-constraint wearables to monitor longer durations in-

home settings. Furthermore, different smartwatch brands could provide signals

with varying amplitudes, but the proposed method was dependent only on the

changes in the signals, so it could be well-suited to work on any device.

In the second part of the dissertation, longitudinal wearable-based monitoring

techniques are presented for two different applications. The first work showed

that these features that quantify the physiological variability in the weeks post-

trauma could provide important information regarding the health conditions in

the following months. While the wearable-based models were not very useful

for estimating PCL-5 survey outcome, the models showed better performance

for distinguishing between healthy participants and participants with multiple
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symptoms. Furthermore, it is shown that including the wearable-based monitor-

ing could improve upon self-report surveys administrated in ED and could be

more helpful in identifying changes in the disease status.

The last part of the dissertation discussed using wearables to monitor partic-

ipants with chronic health conditions such as heart failure. A smartphone-based

framework collected passive and active data types from participants. Novel algo-

rithms were developed for predicting decompensation events, and the predictive

performance of each data modality was tested. To the author’s knowledge, this

work represents the first smartphone-based approach for non-invasive longitu-

dinal monitoring for cardiovascular diseases. Fusion approaches for combining

all modalities were evaluated and discussed. Most significantly, it is shown that

the inclusion of passive metrics improved the performance, and therefore, this

approach could improve upon self-report-based methods for monitoring heart

failure patients.

Although the passive-monitoring models developed in this dissertation have

shown promise in detecting both developing and chronic health conditions, fu-

ture studies are required for assessing if they could be coupled with clinical in-

terventions and if they could be deployed on wearable devices to be used during

free-living conditions. Possible future directions and improvements could include

(i) detecting non-wear regions from wearables and handling the missing data, (ii)

investigating circadian variability of the heart rate for mental health disorders,

(iii) alerting caregivers using disease severity estimates from the models. In the

following section, these research questions and possible future directions are dis-

cussed.
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6.1 Future directions

6.1.1 Detecting non-wear regions from wearables and handling the missing data

Non-wear periods are recordings of data when the participant does not wear the

device, but data is recorded and not marked as missing. These non-wear regions

could be confused with sedentary periods and could lead to biases in circadian

metrics and inaccuracies for sleep-period detection. A new dataset should be

created to validate algorithms for non-wear region detection since none of the

datasets used in this dissertation had labels for this task. Existing approaches in

the literature focus on the tilt and the activity intensity measured by accelerometer

signals [146, 147], the signal quality of the PPG signal or the number of heartbeats

detected in the window could also be used as additional tools. After the non-

wear periods are detected, these could also be marked as missing data regions.

Performance of different missing data imputation techniques could be tested to

see the effect on the final model performance.

6.1.2 Investigating circadian variability of the heart rate for mental health disorders

HPA axis and the master biological clock SCN regulate the cortisol hormone re-

lease to the body through complex biological pathways [148]. Cortisol production

also follows a rhythm under the control of these systems, rising before sleep offset

and decreasing through the day. Previous studies have shown that patients with

mental health could have abnormal cortisol rhythms, with phase advancements

[148, 149]. Since cortisol leads to an increase in the heart rate, the metrics derived

from the PPG data could track this rhythm. Other HRV metrics such as LF, HF,

or RMSSD could also be monitored daily to quantify the stress response through

HRV. It was not possible to monitor the circadian variability of the heart rate in

this dissertation due to the high missingness of the data during daytime as shown

111



in Figure 4.3. If another wearable is used to collect higher quality PPG data from

both daytime and sedentary regions, circadian variability of the heart rate could

become another biomarker to monitor the participants.

6.1.3 Alerting caregivers using disease severity estimates from the models

Finally, the methods developed in this dissertation could be coupled with clinical

interventions. The model’s output could be interpreted as a severity indicator

instead of class membership and the framework could alert the caregiver if there

is a deterioration. For example, for the AMoSS project, the models could be de-

ployed on smartphones, and the app could deliver alerts to the clinical teams.

Based on this, the clinicians could check their patients and deliver timely support

and corrective therapies. However, whether this approach could reduce hospital-

izations and improve patient’s quality of life should be tested in real-life scenarios

and further validated.

6.2 Final remarks

Recent advances in wearable technology provided a new tracking tools for re-

searchers. The methods described in this dissertation could significantly improve

passive wearable-based monitoring and provide insights to patient’s daily life be-

haviours outside the clinic. Sleep diaries could be used to find the sleep periods

of patients and then CPD method could be used to objectively track sleep dis-

turbances every night. Biological rhythm metrics from wearables or smartphones

could track the patient’s recovery after hospital discharge. This dissertation pro-

vides a basis for a non-invasive health monitoring on multiple scales and these

technological advances could become a complementary tool for clinicians.
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[24] G. Varoneckas, K. Plauška, J. Kauk, et al., “Components of the heart rhythm
power spectrum in wakefulness and individual sleep stages,” International
Journal of Psychophysiology, vol. 4, no. 2, pp. 129–141, 1986.

[25] M. Bonnet and D. Arand, “Heart rate variability: Sleep stage, time of night,
and arousal influences,” Electroencephalography and Clinical Neurophysiology,
vol. 102, no. 5, pp. 390–396, 1997.

[26] P. Fonseca, T. Weysen, M. S. Goelema, E. I. Møst, M. Radha, C. Lun-
singh Scheurleer, L. van den Heuvel, and R. M. Aarts, “Validation of
photoplethysmography-based sleep staging compared with polysomnog-
raphy in healthy middle-aged adults,” Sleep, vol. 40, no. 7, zsx097, 2017.

[27] Z. Beattie, Y. Oyang, A. Statan, A. Ghoreyshi, A. Pantelopoulos, A. Russell,
and C. Heneghan, “Estimation of sleep stages in a healthy adult popula-
tion from optical plethysmography and accelerometer signals,” Physiologi-
cal Measurement, vol. 38, no. 11, p. 1968, 2017.

[28] S. Eyal and A. Baharav, “Sleep insights from the finger tip: How photo-
plethysmography can help quantify sleep,” in 2017 Computing in Cardiology
(CinC), IEEE, 2017, pp. 1–4.

[29] J. I. Bisson, “Post-traumatic stress disorder,” BMJ, vol. 334, no. 7597, pp. 789–
793, 2007.

[30] A. P. Association et al., Diagnostic and statistical manual of mental disorders
(DSM-5®). American Psychiatric Pub, 2013.

[31] T. J. Sharp and A. G. Harvey, “Chronic pain and posttraumatic stress
disorder: Mutual maintenance?” Clinical Psychology Review, vol. 21, no. 6,
pp. 857–877, 2001.

[32] D. A. Fishbain, A. Pulikal, J. E. Lewis, and J. Gao, “Chronic pain types
differ in their reported prevalence of post-traumatic stress disorder (PTSD)
and there is consistent evidence that chronic pain is associated with PTSD:
an evidence-based structured systematic review,” Pain Medicine, vol. 18,
no. 4, pp. 711–735, 2017.

115



[33] D. G. Kilpatrick, H. S. Resnick, M. E. Milanak, M. W. Miller, K. M. Keyes,
and M. J. Friedman, “National estimates of exposure to traumatic events
and PTSD prevalence using DSM-IV and DSM-5 criteria,” Journal of Trau-
matic Stress, vol. 26, no. 5, pp. 537–547, 2013.

[34] B. Andrews, C. R. Brewin, R. Philpott, and L. Stewart, “Delayed-onset post-
traumatic stress disorder: A systematic review of the evidence,” American
Journal of Psychiatry, vol. 164, no. 9, pp. 1319–1326, 2007.

[35] E. J. Ozer, S. R. Best, T. L. Lipsey, and D. S. Weiss, “Predictors of posttrau-
matic stress disorder and symptoms in adults: A meta-analysis.,” Psycho-
logical Bulletin, vol. 129, no. 1, p. 52, 2003.

[36] National Collaborating Centre for Mental Health (UK and others), “Pre-
dictors of PTSD and screening for the disorder,” in Post-Traumatic Stress
Disorder: The Management of PTSD in Adults and Children in Primary and
Secondary Care, Gaskell, 2005.

[37] C. R. Brewin, B. Andrews, and J. D. Valentine, “Meta-analysis of risk fac-
tors for posttraumatic stress disorder in trauma-exposed adults.,” Journal
of Consulting and Clinical Psychology, vol. 68, no. 5, p. 748, 2000.

[38] K. Schultebraucks, A. Y. Shalev, V. Michopoulos, C. R. Grudzen, S.-M.
Shin, J. S. Stevens, J. L. Maples-Keller, T. Jovanovic, G. A. Bonanno, B. O.
Rothbaum, et al., “A validated predictive algorithm of post-traumatic stress
course following emergency department admission after a traumatic stres-
sor,” Nature Medicine, vol. 26, no. 7, pp. 1084–1088, 2020.

[39] K. Schultebraucks, V. Yadav, A. Y. Shalev, G. A. Bonanno, and I. R. Galatzer-
Levy, “Deep learning-based classification of posttraumatic stress disorder
and depression following trauma utilizing visual and auditory markers of
arousal and mood,” Psychological Medicine, pp. 1–11, 2020.

[40] E. Reinertsen and G. D. Clifford, “A review of physiological and behavioral
monitoring with digital sensors for neuropsychiatric illnesses,” Physiologi-
cal Measurement, vol. 39, no. 5, 05TR01, 2018.

[41] G. Valenza, M. Nardelli, A. Lanata, C. Gentili, G. Bertschy, R. Paradiso,
and E. P. Scilingo, “Wearable monitoring for mood recognition in bipo-
lar disorder based on history-dependent long-term heart rate variability
analysis,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 5,
pp. 1625–1635, 2013.

[42] R. M. Carney, K. E. Freedland, P. K. Stein, G. E. Miller, B. Steinmeyer, M. W.
Rich, and S. P. Duntley, “Heart rate variability and markers of inflamma-

116



tion and coagulation in depressed patients with coronary heart disease,”
Journal of Psychosomatic Research, vol. 62, no. 4, pp. 463–467, 2007.

[43] J. M. Dekker, R. S. Crow, A. R. Folsom, P. J. Hannan, D. Liao, C. A. Swenne,
and E. G. Schouten, “Low heart rate variability in a 2-minute rhythm strip
predicts risk of coronary heart disease and mortality from several causes:
the ARIC Study,” Circulation, vol. 102, no. 11, pp. 1239–1244, 2000.

[44] T. A. Mellman, B. R. Knorr, W. R. Pigeon, J. Leiter, and M. Akay, “Heart
rate variability during sleep and the early development of posttraumatic
stress disorder,” Biological Psychiatry, vol. 55, no. 9, pp. 953–956, 2004.

[45] G. J. van Boxtel, P. J. Cluitmans, R. J. Raymann, M. Ouwerkerk, A. J. Denis-
sen, M. K. Dekker, and M. M. Sitskoorn, “Heart rate variability, sleep, and
the early detection of post-traumatic stress disorder,” in Sleep and Combat-
Related Post-traumatic Stress Disorder, Springer, 2018, pp. 253–263.

[46] E. Reinertsen, S. Nemati, A. N. Vest, V. Vaccarino, R. Lampert, A. J. Shah,
and G. D. Clifford, “Heart rate-based window segmentation improves ac-
curacy of classifying posttraumatic stress disorder using heart rate vari-
ability measures,” Physiological Measurement, vol. 38, no. 6, p. 1061, 2017.

[47] A. D. McDonald, F. Sasangohar, A. Jatav, and A. H. Rao, “Continuous
monitoring and detection of post-traumatic stress disorder (PTSD) triggers
among veterans: a supervised machine learning approach,” IISE Transac-
tions on Healthcare Systems Engineering, vol. 9, no. 3, pp. 201–211, 2019.

[48] S. Ancoli-Israel, R. Cole, C. Alessi, M. Chambers, W. Moorcroft, and C. P.
Pollak, “The role of actigraphy in the study of sleep and circadian rhythms,”
Sleep, vol. 26, no. 3, pp. 342–392, 2003.

[49] D. J. Inman, S. M. Silver, and K. Doghramji, “Sleep disturbance in post-
traumatic stress disorder: a comparison with non-PTSD insomnia,” Journal
of Traumatic Stress, vol. 3, no. 3, pp. 429–437, 1990.

[50] A. Tsanas, E. Woodward, and A. Ehlers, “Objective characterization of ac-
tivity, sleep, and circadian rhythm patterns using a wrist-worn actigra-
phy sensor: Insights into posttraumatic stress disorder,” JMIR mHealth and
uHealth, vol. 8, no. 4, e14306, 2020.

[51] S. S. Virani, A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway,
A. P. Carson, A. M. Chamberlain, A. R. Chang, S. Cheng, F. N. Delling,
et al., “Heart disease and stroke statistics—2020 update: a report from the
American Heart Association,” Circulation, E139–E596, 2020.

117



[52] S. Chen, M. Kuhn, K. Prettner, and D. E. Bloom, “The macroeconomic
burden of noncommunicable diseases in the United States: Estimates and
projections,” PloS One, vol. 13, no. 11, e0206702, 2018.

[53] G. M. Felker, K. F. Adams Jr, M. A. Konstam, C. M. O’Connor, and M.
Gheorghiade, “The problem of decompensated heart failure: Nomencla-
ture, classification, and risk stratification,” American Heart Journal, vol. 145,
no. 2, S18–S25, 2003.

[54] S. M. Joseph, A. M. Cedars, G. A. Ewald, E. M. Geltman, and D. L. Mann,
“Acute decompensated heart failure: Contemporary medical management,”
Texas Heart Institute Journal, vol. 36, no. 6, p. 510, 2009.

[55] S. Patil, M. Shah, B. Patel, M. Agarwal, P. Ram, and V. M. Alla, “Readmis-
sions among patients admitted with acute decompensated heart failure
based on income quartiles,” in Mayo Clinic Proceedings, Elsevier, vol. 94,
2019, pp. 1939–1950.

[56] M. Packer, W. T. Abraham, M. R. Mehra, C. W. Yancy, C. E. Lawless, J. E.
Mitchell, F. W. Smart, R. Bijou, C. M. O’Connor, B. M. Massie, et al., “Utility
of impedance cardiography for the identification of short-term risk of clin-
ical decompensation in stable patients with chronic heart failure,” Journal
of the American College of Cardiology, vol. 47, no. 11, pp. 2245–2252, 2006.

[57] I. S. Anand, W. W. Tang, B. H. Greenberg, N. Chakravarthy, I. Libbus, R. P.
Katra, M. Investigators, et al., “Design and performance of a multisensor
heart failure monitoring algorithm: results from the multisensor monitor-
ing in congestive heart failure (MUSIC) study,” Journal of Cardiac Failure,
vol. 18, no. 4, pp. 289–295, 2012.

[58] O. T. Inan, M. Baran Pouyan, A. Q. Javaid, S. Dowling, M. Etemadi, A.
Dorier, J. A. Heller, A. O. Bicen, S. Roy, T. De Marco, et al., “Novel wearable
seismocardiography and machine learning algorithms can assess clinical
status of heart failure patients,” Circulation: Heart Failure, vol. 11, no. 1,
e004313, 2018.

[59] J. Stehlik, C. Schmalfuss, B. Bozkurt, J. Nativi-Nicolau, P. Wohlfahrt, S.
Wegerich, K. Rose, R. Ray, R. Schofield, A. Deswal, et al., “Continuous
wearable monitoring analytics predict heart failure hospitalization: The
LINK-HF multicenter study,” Circulation: Heart Failure, vol. 13, no. 3, e006513,
2020.

[60] V. B. Aydemir, S. Nagesh, M. M. H. Shandhi, J. Fan, L. Klein, M. Etemadi,
J. A. Heller, O. T. Inan, and J. M. Rehg, “Classification of decompensated

118



heart failure from clinical and home ballistocardiography,” IEEE Transac-
tions on Biomedical Engineering, vol. 67, no. 5, pp. 1303–1313, 2019.

[61] C. P. Green, C. B. Porter, D. R. Bresnahan, and J. A. Spertus, “Development
and evaluation of the Kansas City Cardiomyopathy Questionnaire: a new
health status measure for heart failure,” Journal of the American College of
Cardiology, vol. 35, no. 5, pp. 1245–1255, 2000.

[62] K. E. Flynn, L. Lin, S. J. Ellis, S. D. Russell, J. A. Spertus, D. J. Whellan, I. L.
Piña, L. J. Fine, K. A. Schulman, and K. P. Weinfurt, “Relationships between
patient-reported outcome measures and clinical measures in outpatients
with heart failure,” American Heart Journal, vol. 158, no. 4 Suppl, S64, 2009.

[63] N. Palmius, M. Osipov, A. Bilderbeck, G. Goodwin, K. Saunders, A. Tsanas,
and G. Clifford, “A multi-sensor monitoring system for objective mental
health management in resource constrained environments,” in Appropriate
Healthcare Technologies for Low Resource Settings (AHT 2014).

[64] A. S. Cakmak, E. Reinertsen, H. A. Taylor, A. J. Shah, and G. D. Clifford,
“Personalized heart failure severity estimates using passive smartphone
data,” in 2018 IEEE International Conference on Big Data (Big Data), IEEE,
2018, pp. 1569–1574.

[65] A. S. Cakmak, H. J. Lanier, E. Reinertsen, A. Harzand, A. M. Zafari, M. A.
Hammoud, A. Alrohaibani, C. Wakwe, M. Appeadu, G. D. Clifford, et al.,
“Passive smartphone actigraphy data predicts heart failure decompensa-
tion,” Circulation, vol. 140, no. Suppl 1, A15444–A15444, 2019.

[66] A. S. Cakmak, S. Densen, G. Najarro, P. Rout, C. J. Rozell, O. T. Inan,
A. J. Shah, and G. D. Clifford, “Late fusion of machine learning mod-
els using passively captured interpersonal social interactions and motion
from smartphones predicts decompensation in heart failure,” arXiv preprint
arXiv:2104.01511, 2021.

[67] S. S. Coughlin, “Post-traumatic stress disorder and cardiovascular dis-
ease,” The Open Cardiovascular Medicine Journal, vol. 5, p. 164, 2011.

[68] B. A. Wentworth, M. B. Stein, L. S. Redwine, Y. Xue, P. R. Taub, P. Clopton,
K. R. Nayak, and A. S. Maisel, “Post-traumatic stress disorder: A fast track
to premature cardiovascular disease?” Cardiology in Review, vol. 21, no. 1,
pp. 16–22, 2013.

[69] H. K. Kang, T. A. Bullman, and J. W. Taylor, “Risk of selected cardiovascu-
lar diseases and posttraumatic stress disorder among former World War II
prisoners of war,” Annals of Epidemiology, vol. 16, no. 5, pp. 381–386, 2006.

119



[70] E. M. Yiu, A. J. Kornberg, et al., “Duchenne muscular dystrophy,” Neurol-
ogy India, vol. 56, no. 3, p. 236, 2008.

[71] C. Bloetzer, P.-Y. Jeannet, B. Lynch, and C. J. Newman, “Sleep disorders
in boys with Duchenne muscular dystrophy,” Acta Paediatrica, vol. 101,
no. 12, pp. 1265–1269, 2012.

[72] E. M. Yiu and A. J. Kornberg, “Duchenne muscular dystrophy,” Journal of
Paediatrics and Child Health, vol. 51, no. 8, pp. 759–764, 2015.

[73] Z. E. Davidson, M. M. Ryan, A. J. Kornberg, K. Z. Walker, and H. Truby,
“Strong correlation between the 6-minute walk test and accelerometry
functional outcomes in boys with Duchenne muscular dystrophy,” Jour-
nal of Child Neurology, vol. 30, no. 3, pp. 357–363, 2015.

[74] S. Kimura, S. Ozasa, K. Nomura, K. Yoshioka, and F. Endo, “Estimation of
muscle strength from actigraph data in Duchenne muscular dystrophy,”
Pediatrics International, vol. 56, no. 5, pp. 748–752, 2014.

[75] M. Tsai, A. M. Mori, C. W. Forsberg, N. Waiss, J. L. Sporleder, N. L. Smith,
and J. Goldberg, “The Vietnam era twin registry: A quarter century of
progress,” Twin Research and Human Genetics, vol. 16, no. 1, pp. 429–436,
2013.

[76] S. A. McLean, K. Ressler, K. C. Koenen, T. Neylan, L. Germine, T. Jo-
vanovic, G. D. Clifford, D. Zeng, X. An, S. Linnstaedt, et al., “The AURORA
Study: a longitudinal, multimodal library of brain biology and function af-
ter traumatic stress exposure,” Molecular Psychiatry, vol. 25, no. 2, pp. 283–
296, 2020.

[77] N. Palmius, M. Osipov, A. C. Bilderbeck, G. M. Goodwin, K. Saunders, A.
Tsanas, and G. D. Clifford, “A multi-sensor monitoring system for objec-
tive mental health management in resource constrained environments,” in
Appropriate Healthcare Technologies for Low Resource Settings, 2014.

[78] B. L. Lan, E. V. Yeoh, and J. A. Ng, “Distribution of detrended stock market
data,” Fluctuation and Noise Letters, vol. 9, no. 03, pp. 245–257, 2010.

[79] Z. Wu, N. E. Huang, S. R. Long, and C.-K. Peng, “On the trend, detrending,
and variability of nonlinear and nonstationary time series.,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 104,
no. 38, pp. 14 889–94, 2007.

[80] L. E. Raffalovich, “Detrending time series: A cautionary note,” Sociological
Methods & Research, vol. 22, no. 4, pp. 492–519, May 1994.

120



[81] C. R. Nelson and H. Kang, “Spurious periodicity in inappropriately de-
trended time series,” Econometrica, vol. 49, no. 3, pp. 741–51, 1981.

[82] P. Bernaola-Galván, P. Ivanov, L. Nunes Amaral, and H. Stanley, “Scale
invariance in the nonstationarity of human heart rate,” Physical Review Let-
ters, vol. 87, no. 16, p. 168 105, Oct. 2001.

[83] P. E. McSharry, G. D. Clifford, L. Tarassenko, and L. A. Smith, “Method
for generating an artificial RR tachogram of a typical healthy human over
24-hours,” in Computers in Cardiology, IEEE, 2002, pp. 225–228.

[84] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,
“Physiobank, Physiotoolkit, and Physionet,” Circulation, vol. 101, no. 23,
e215–e220, 2000.

[85] P. Bernaola-Galván, J. L. Oliver, M. Hackenberg, A. V. Coronado, P. C.
Ivanov, and P. Carpena, “Segmentation of time series with long-range frac-
tal correlations.,” The European Physical Journal. B, vol. 85, no. 6, Jun. 2012.

[86] K. Fukuda, H. E. Stanley, and L. A. N. Amaral, “Heuristic segmentation
of a nonstationary time series,” Physical Review E, vol. 69, no. 2, p. 021 108,
2004.

[87] J. D. Scargle, J. P. Norris, B. Jackson, and J. Chiang, “Studies in astronomical
time series analysis. VI. Bayesian block representations,” The Astrophysical
Journal, vol. 764, no. 2, p. 167, Feb. 2013.

[88] J. Chen and A. K. Gupta, Parametric statistical change point analysis: with
applications to genetics, medicine, and finance. Springer Science & Business
Media, 2011.

[89] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of change-
points with a linear computational cost,” Journal of the American Statistical
Association, vol. 107, no. 500, pp. 1590–1598, 2012.

[90] R. P. Adams and D. J. C. MacKay, “Bayesian Online Changepoint Detec-
tion,” University of Cambridge, Cambridge, UK, Tech. Rep., 2007.

[91] R. Turner, Y. Saatci, and C. E. Rasmussen, Adaptive Sequential Bayesian
Change Point Detection, Dec. 2009.

[92] K. P. Murphy, “Conjugate Bayesian analysis of the Gaussian distribution,”
DEF, vol. 1, no. 2σ2, p. 16, 2007.

121



[93] A. S. Cakmak, G. Da Poian, A. Willats, A. Haffar, R. Abdulbaki, Y.-A. Ko,
A. J. Shah, V. Vaccarino, D. L. Bliwise, C. Rozell, et al., “An unbiased, ef-
ficient sleep–wake detection algorithm for a population with sleep disor-
ders: Change point decoder,” Sleep, 2020.

[94] J. W. Pillow, Y. Ahmadian, and L. Paninski, “Model-based decoding, infor-
mation estimation, and change-point detection techniques for multineuron
spike trains,” Neural Computation, vol. 23, no. 1, pp. 1–45, 2011.

[95] A. N. Vest, G. Da Poian, Q. Li, C. Liu, S. Nemati, A. J. Shah, and G. D. Clif-
ford, “An open source benchmarked toolbox for cardiovascular waveform
and interval analysis,” Physiological Measurement, vol. 39, no. 10, p. 105 004,
2018.

[96] G. Welch, G. Bishop, et al., “An introduction to the Kalman filter,” 1995.

[97] Q. Li, R. G. Mark, and G. D. Clifford, “Robust heart rate estimation from
multiple asynchronous noisy sources using signal quality indices and a
Kalman filter,” Physiological Measurement, vol. 29, no. 1, p. 15, 2007.

[98] M. Borazio, E. Berlin, N. Kucukyildiz, P. Scholl, and K. V. Laerhoven,
“Towards benchmarked sleep detection with inertial wrist-worn sensing
units,” IEEE International Conference on Healthcare Informatics, 2014.

[99] M. Yoneyama, Y. Okuma, H. Utsumi, H. Terashi, and H. Mitoma, “Human
turnover dynamics during sleep: Statistical behavior and its modeling,”
Physical Review E, vol. 89, no. 3, p. 032 721, 2014.

[100] A. Kosmadopoulos, C. Sargent, D. Darwent, X. Zhou, and G. D. Roach,
“Alternatives to polysomnography (PSG): a validation of wrist actigra-
phy and a partial-PSG system,” Behavior Research Methods, vol. 46, no. 4,
pp. 1032–1041, 2014.

[101] K. Lichstein, H. Durrence, D. Taylor, A. Bush, and B. Riedel, “Quantita-
tive criteria for insomnia,” Behaviour Research and Therapy, vol. 41, no. 4,
pp. 427–445, 2003.

[102] G. Cornelissen, “Cosinor-based rhythmometry,” Theoretical Biology and Med-
ical Modelling, vol. 11, no. 1, pp. 1–24, 2014.

[103] A. Michaels, C. Michaels, C. Moon, M. A. Zimmerman, C. Peterson, and
J. L. Rodriguez, “Psychosocial factors limit outcomes after trauma,” Journal
of Trauma and Acute Care Surgery, vol. 44, no. 4, pp. 644–648, 1998.

122



[104] A. Brunet, D. S. Weiss, T. J. Metzler, S. R. Best, T. C. Neylan, C. Rogers, J. Fa-
gan, and C. R. Marmar, “The Peritraumatic Distress Inventory: a proposed
measure of PTSD criterion A2,” American Journal of Psychiatry, vol. 158,
no. 9, pp. 1480–1485, 2001.

[105] M. J. Bovin, B. P. Marx, F. W. Weathers, M. W. Gallagher, P. Rodriguez, P. P.
Schnurr, and T. M. Keane, “Psychometric properties of the PTSD check-
list for diagnostic and statistical manual of mental disorders–fifth edition
(PCL-5) in veterans.,” Psychological assessment, vol. 28, no. 11, p. 1379, 2016.

[106] F. W. Weathers, B. T. Litz, T. M. Keane, P. A. Palmieri, B. P. Marx, and P. P.
Schnurr, “The PTSD checklist for DSM-5 (PCL-5),” Scale available from the
National Center for PTSD at www. ptsd. va. gov, vol. 10, 2013.

[107] A. Germain, M. Hall, B. Krakow, M. K. Shear, and D. J. Buysse, “A brief
sleep scale for posttraumatic stress disorder: Pittsburgh Sleep Quality In-
dex Addendum for PTSD,” Journal of Anxiety Disorders, vol. 19, no. 2,
pp. 233–244, 2005.

[108] S. P. Insana, M. Hall, D. J. Buysse, and A. Germain, “Validation of the
Pittsburgh Sleep quality index addendum for posttraumatic stress disorder
(PSQI-A) in US Male military veterans,” Journal of Traumatic Stress, vol. 26,
no. 2, pp. 192–200, 2013.

[109] J. A. Teresi, K. Ocepek-Welikson, K. F. Cook, M. Kleinman, M. Ramirez,
M. C. Reid, and A. Siu, “Measurement equivalence of the patient reported
outcomes measurement information system®(PROMIS®) pain interference
short form items: Application to ethnically diverse cancer and palliative
care populations,” Psychological Test and Assessment Modeling, vol. 58, no. 2,
p. 309, 2016.

[110] E. J. van Someren, E. E. Hagebeuk, C. Lijzenga, P. Scheltens, S. E. de
Rooij, C. Jonker, A.-M. Pot, M. Mirmiran, and D. F. Swaab, “Circadian
rest—activity rhythm disturbances in Alzheimer’s disease,” Biological Psy-
chiatry, vol. 40, no. 4, pp. 259–270, 1996.

[111] E. J. Van Someren, D. F. Swaab, C. C. Colenda, W. Cohen, W. V. McCall, and
P. B. Rosenquist, “Bright light therapy: Improved sensitivity to its effects
on rest-activity rhythms in Alzheimer patients by application of nonpara-
metric methods,” Chronobiology International, vol. 16, no. 4, pp. 505–518,
1999.

[112] Y.-L. Huang, R.-Y. Liu, Q.-S. Wang, E. J. Van Someren, H. Xu, and J.-N.
Zhou, “Age-associated difference in circadian sleep–wake and rest–activity
rhythms,” Physiology & Behavior, vol. 76, no. 4-5, pp. 597–603, 2002.

123



[113] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V.
Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas,
A. Joly, B. Holt, and G. Varoquaux, “API design for machine learning soft-
ware: Experiences from the scikit-learn project,” in ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, 2013, pp. 108–122.

[114] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[115] T. H. Monk, C. F. REYNOLDS III, D. J. Kupfer, D. J. Buysse, P. A. Coble,
A. J. Hayes, M. A. Machen, S. R. Petrie, and A. M. Ritenour, “The Pitts-
burgh sleep diary,” Journal of Sleep Research, vol. 3, no. 2, pp. 111–120, 1994.

[116] C. M. Morin, G. Belleville, L. Bélanger, and H. Ivers, “The insomnia sever-
ity index: Psychometric indicators to detect insomnia cases and evaluate
treatment response,” Sleep, vol. 34, no. 5, pp. 601–608, 2011.

[117] C. A. Blevins, F. W. Weathers, M. T. Davis, T. K. Witte, and J. L. Domino,
“The posttraumatic stress disorder checklist for DSM-5 (PCL-5): Devel-
opment and initial psychometric evaluation,” Journal of Traumatic Stress,
vol. 28, no. 6, pp. 489–498, 2015.

[118] D. Amtmann, J. Kim, H. Chung, A. M. Bamer, R. L. Askew, S. Wu, K. F.
Cook, and K. L. Johnson, “Comparing CESD-10, PHQ-9, and PROMIS de-
pression instruments in individuals with multiple sclerosis.,” Rehabilitation
Psychology, vol. 59, no. 2, p. 220, 2014.

[119] J. E. Ware Jr, M. Kosinski, and S. D. Keller, “A 12-item short-form health
survey: Construction of scales and preliminary tests of reliability and va-
lidity,” Medical Care, pp. 220–233, 1996.

[120] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. Berger, and R. J.
Cohen, “Power spectrum analysis of heart rate fluctuation: A quantitative
probe of beat-to-beat cardiovascular control,” Science, vol. 213, no. 4504,
pp. 220–222, 1981.

[121] P. A. Dennis, L. Watkins, P. S. Calhoun, A. Oddone, A. Sherwood, M. F.
Dennis, M. B. Rissling, and J. C. Beckham, “Posttraumatic stress, heart-
rate variability, and the mediating role of behavioral health risks,” Psycho-
somatic Medicine, vol. 76, no. 8, p. 629, 2014.

124



[122] D. McDuff, S. Gontarek, and R. Picard, “Remote measurement of cognitive
stress via heart rate variability,” in 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, IEEE, 2014, pp. 2957–
2960.

[123] A. Hernando, J. Lazaro, E. Gil, A. Arza, J. M. Garzón, R. Lopez-Anton,
C. de la Camara, P. Laguna, J. Aguiló, and R. Bailón, “Inclusion of res-
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