
EFFICIENT WINDOWS APPLICATION FUZZING WITH FORK-SERVER

A Dissertation
Presented to

The Academic Faculty

By

Stephen Tong

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science in Computer Science in the
School of Computer Science

College of Computing

Georgia Institute of Technology

December 2020

© Stephen Tong 2020

ACKNOWLEDGEMENTS

Although I am just an undergraduate student, I am truly grateful to everyone I have met

during my research.

First, I must thank Prof. Taesoo Kim for everything he has done during my studies. He

was the perfect advisor for me. I first met Prof. Kim was before I enrolled at the university,

while touring the campus. I found him at his office in Klaus, but I didn’t realize how busy

he is until later. Prof. Kim still took the time to show me, a prospective student, around the

lab and introduce me. I felt that he saw potential in me, and that experience shaped how I

felt about college.

I am grateful for all of the opportunities Prof. Kim has provided to me. He introduced

me to the world of academia. I always felt included in the group and that I was treated like

any other student despite being an undergrad. Whenever we chatted, he always provided

helpful perspectives and insightful advice. Overall, Prof. Kim left a huge impact on my time

at the university: in research, in lecture, and outside the lab. I hope that I can be as kind to

others as he has been to me.

I am also grateful to my collaborators, especially Jinho Jung and Prof. Hong Hu. Jinho

showed me the ropes for performing research, and Hong taught me all of the tricks of the

trade in academia. Working with them, I felt like I went from a total beginner to a seasoned

veteran. Jinho’s diligence and dedication kept us focused, even when we were discouraged.

Hong’s sense of humor and witty remarks were always there to cheer us up. I felt that

together we could tackle any obstacle in our way. I’m glad that I had the opportunity to

learn from and work with them.

Thanks to my fellow researchers for their patience, kindness, and respect: Yechan Bae,

Insu Yun, Mansour Alharthi, Dr. Daehee Jang, Prof. Sanidhya Kashyap, Dr. Kevin Koo,

Ammar Askar, Fan Sang, Seulbae Kim, Hanqing Zhao, Jungwon Lim, Yonghwi Jin, Sujin

Park, Wen Xu, Soyeon Park, Ren Ding, Meng Xu, Yu-Fu Fu, and Dr. Steffen Maass. Thank

ii

you everyone for everything you taught me. Also, I’m sorry for falling asleep during the

group meetings!

Thank you to my faculty readers, Dr. Taesoo Kim and Dr. Mustaque Ahamad.

Thanks to Transfer Learning for always being there and for making college such a

wonderful and exciting journey. I can’t describe how grateful I am to have met everyone.

Lastly, thanks to my mom, dad, and brother for their unconditional support.

iii

TABLE OF CONTENTS

Chapter 1: Introduction . 1

Chapter 2: Related work . 4

2.1 Improving fuzzer performance . 4

2.1.1 Improving input generation . 5

2.2 Novel applications of fuzzing . 5

2.3 Exploring new fuzzing targets . 6

Chapter 3: Towards a Practical Windows Fuzzer 8

3.1 Fork on Windows . 9

3.2 Fuzzing Commercial Windows Applications 13

3.3 Improved Instrumentation . 16

Chapter 4: Evaluation . 18

Chapter 5: Conclusion . 21

References . 22

iv

SUMMARY

Fuzzing is an effective technique for automatically uncovering bugs in software. Since

it was introduced, it has found thousands of vulnerabilities. Nowadays, fuzzing is an

indispensable tool in security researchers’ arsenal.

Unfortunately, most fuzzing research has been concentrated on Linux systems, and

Windows fuzzing has been largely neglected by the fuzzing community. Windows systems

still represent a large market share of desktop computers, and as they are end-user systems,

they are valuable targets to attackers. Windows fuzzing is still difficult-to-setup, slow, and

generally troublesome. There exists a chicken-egg problem: because Windows fuzzing

is challenging, little effort is invested in it; yet, because little effort is invested, Windows

fuzzing remains challenging. We aim to break this cycle by attacking one of the root

problems blocking easy and effective Windows fuzzing.

A key difference between Linux and Windows systems for fuzzing is the lack of a

fork() functionality on Windows systems. Without a suitable fork() API, a fuzzer cannot

quickly and reliably clone processes, an operation that fuzzing relies heavily upon. Existing

Windows fuzzers such as WinAFL rely on persistent-mode fuzzing as a work-around for the

lack of fast process cloning, unlike Linux fuzzers which rely on a fork-server.

In this work, we developed a fork() implementation that provides the necessary fast

process cloning machinery and built a working fork-server on top of it. We integrated this

fork-server into WinAFL, and applied several other key improvements and insights to bypass

the difficulties of fuzzing typical Windows applications. In our evaluation, we ran our fuzzer

against 59 fuzzing harnesses for 37 applications, and found 61 new bugs. Comparing the

performance of our fork() implementation against other similar APIs on Windows, we found

that our implementation was the most suitable and efficient. We believe that this marks the

first Windows fork implementation suitable for fuzzing.

v

CHAPTER 1

INTRODUCTION

Software vulnerabilities are a leading cause of computer misuse and exploitation. Vulnera-

bilities are usually caused by simple programming errors or mistakes, called bugs. In the

past few years, the activity of locating bugs, or bug hunting, has become a high-profile

and even lucrative endeavor for computer security professionals. Both the defensive and

offensive computer security communities place great emphasis on bug hunting due to the

potential of new vulnerabilities to enable and unleash serious cyber-attacks. If an attacker

is able to find a previously-unknown bug and weaponize it, millions of computer systems

could be compromised. Likewise, if a defensive security analyst is able to locate and patch

the bug before attackers can exploit it, such an attack would be thwarted. Therefore, the

ability to quickly and efficiently locate bugs is paramount to computer security.

Fuzzing, a technique to automatically find software bugs, has been the focus of a

significant body of recent research. When fuzzing a piece of computer software, random

data is fed into the program as input, and the behavior of the program is closely monitored

for errors or instabilities, such as program crashes or infinite loops (“hangs”). Although the

overall idea dates back to the 1990s [1], fuzzing received increased attention following the

release of the fuzzer American Fuzzy Lop (AFL) in 2013 [2]. Due in large part to AFL’s

practical success in discovering new bugs in well-known, widely-deployed software like

Adobe Flash and Mozilla Firefox, fuzzing thus became a widespread technique employed

by many security researchers.

AFL’s revolutionary success is due to its use of coverage feedback-guided greybox

fuzzing. In this mode of fuzzing, inputs that elicit new, previously-unseen behavior from the

program are prioritized for further mutation in future iterations. Thus, the fuzzer “learns” to

generate meaningful inputs over time that are more likely to trigger software bugs, rather

1

➀

➂

➅

➁

➃

fuzzer

cull

select

insert

mutate

➄coverage

main

func
fuzzed execution

entry
fork

server

main

func

main

func

target

Figure 1.1: An overview of the popular fuzzer AFL. (1) The fuzzer maintains a queue of inputs.
Each cycle, (2) it picks one input from the queue and (3) modifies it to generate a new input. (4) It
feeds the new input into the fuzzed program and (5) records the code coverage. (6) If the execution
triggers more coverage, the new input is added back into the queue. Figure reproduced from [8].

than random noise that is easily rejected and does not significantly test the program’s logic.

Several other fuzzers have been developed that also adopt AFL’s principle of coverage-

guided fuzzing. These projects aim to improve on AFL’s shortcomings and include LLVM’s

LibFuzzer [3], Google’s honggFuzz [4], and several others. Nevertheless, AFL’s legacy

remains strong in the research community today: a large amount of research still bases their

work off of AFL as a starting point [5, 6, 7].

Unfortunately, because AFL’s overwhelming popularity has dominated the research

community, most recent research has focused on fuzzing Linux software. AFL was designed

to target programs built for Linux systems [2], and Windows software is not compatible

with Linux. Thus, Windows software, which represents a large portion of the consumer

and desktop software market, has been mostly neglected by the fuzzing community. The

current state-of-the-art for Windows fuzzing research is WinAFL, a port of AFL to Windows

systems [9]. However, WinAFL suffers from several problems, including slow execution

speeds, poor stability, and inaccurate instrumentation for coverage feedback. Moreover,

since most commercial Windows software is closed-source, security researchers must expend

tedious efforts reverse-engineering the software before they are able to fuzz it.

In this thesis, we aim to address these shortcomings by: 1 introducing a new user-

space fork() mechanism to facilitate fast and reliable fuzzing, 2 developing new fuzzing

2

techniques to cope with the challenges of fuzzing complex, real-world software, and

3 implementing coverage feedback with “full-speed” instrumentation.

This work was published as part of “WINNIE: Fuzzing Windows Applications with

Harness Synthesis and Fast Cloning” in NDSS’21 [8].

3

CHAPTER 2

RELATED WORK

Fuzzing, a technique which automatically finds software bugs by testing random inputs

against programs, was first introduced in 1990 by Miller et al [1]. However, the technique

was not popularized until the release of American Fuzzy Lop (AFL) by Michal Zalewski

in 2015 [2]. Since the release of AFL, many researchers have expanded the body of

research surrounding fuzzing. Many other fuzzers have been developed, such as LLVM’s

LibFuzzer [3] and Google’s honggfuzz [4]. In general, the goal of a fuzzer is to find as

many bugs as possible, as quickly as possible. However, today’s fuzzers still miss many

bugs. The large majority of fuzzing research attempts to address this in three main ways:

1 improving the performance of fuzzers, 2 applying fuzzing in a new and interesting

fashion, and 3 fuzzing previously-untested target applications.

2.1 Improving fuzzer performance

The first category of fuzzing research, improving fuzzer performance, has received the most

attention of the three. This category can be broken down into two main sub-categories:

optimizing the fuzzer’s raw performance and optimizing the fuzzer’s input generation

strategy. One technique developed to improve AFL’s performance is full-speed coverage [10].

Under full-speed coverage, basic blocks are instrumented only once, and new code coverage

is only reported when a new basic block is encountered. This is a drastic shift from past

research which emphasized edge coverage and per-run block coverage. Full-speed fuzzing

argues that the trade-off in execution speed over coverage granularity is economical. Another

example of research aimed at improving fuzzer performance is AFLFast [11], which extends

AFL using power schedules to improve its search strategy.

4

2.1.1 Improving input generation

The task of optimizing fuzzer input generation has received more attention from the research

community than improving fuzzers’ raw performance. The major breakthroughs in this

area of research so far have been concolic or hybrid fuzzing [12], machine learning-guided

fuzzing [13, 14, 15], multi-dimensional fuzzing [16, 17], and grammar-based fuzzing [18,

19, 20]. Hybrid fuzzing seeks to blend dynamic coverage information that traditional

grey-box fuzzers like AFL rely on with white-box information gleaned from symbolic

execution. These concolic (concrete and symbolic) fuzzers are thus able to solve branches

and conditionals that would otherwise stump unequipped grey-box fuzzers. Machine

learning-assisted fuzzing seeks to improve the fuzzer’s input generation by using neural

networks. Some approaches try to improve the mutation selection strategy [15], while others

try to generate more meaningful inputs by training neural networks to recognize which

inputs are interesting and which are not [13, 14]. Multi-dimensional fuzzing targets complex

applications, like filesystems, by expanding the definition of “input” past files to also include

holistic information about the execution environment such as API call sequences and thread

scheduling order [16, 17]. Grammar-based fuzzing is a well-known fuzzing technique which

generates inputs using grammar specifications to guarantee that inputs are well-formed [19].

They are typically used to tackle the challenge of fuzzing language parsers, such as C

compilers [18] or Javascript interpreters [20].

2.2 Novel applications of fuzzing

The second main research direction, applying fuzzing in new ways or to new domains,

is arguably the most diverse of the three categories. Researchers have noted that fuzzing

can be modeled as a state-space exploration problem. Following this line of reasoning,

some researchers have even used AFL to play Super Mario [21]. By doing so, they showed

that fuzzing can have novel and interesting applications not just in the narrow realm of

5

computer security. Google created ClusterFuzz [22], an attempt to massively scale AFL

up by leveraging Google’s enormous compute power. ClusterFuzz backs the OSS-Fuzz

project which helps find bugs in open-source software [23, 24]. Running AFL at such large

scales presents its own set of interesting challenges and rewards. Lastly, Fuzzcoin [25]

is a new exciting project that aims to match Cluster-fuzz in computing power parity by

crowdsourcing computing power to commodity hardware owned by ordinary consumers.

2.3 Exploring new fuzzing targets

The last main category of fuzzing research aims to bring fuzzing to new targets that have

not been thoroughly fuzz tested before. One shining example of research in this direction is

Syzkaller [7]. While AFL is designed to fuzz Linux user-mode applications, Syzkaller was

the first fuzzer to prove that kernel fuzzing is viable. It fuzzed the kernel by making random

Linux system calls, in the hopes of triggering a crash or hang. Since Syzkaller, kAFL [6] has

also tried to address the kernel fuzzing problem. kAFL improves on Syzkaller by improving

the fuzzer’s coverage feedback. Using Intel PT instrumentation, they improved the fuzzer by

leveraging innovative hardware features. Meanwhile, FuzzGen [26] and FUDGE [27] aim

to fuzz new targets by generating fuzzing harnesses based on static analysis of code which

uses the fuzzed libraries. Lastly, WinAFL [9] attempts to address Windows applications,

whereas previous research had focused on Linux applications.

Extending fuzzing to new targets is important because it allows security researchers

to test and correct bugs in code that has never been fuzz tested before. Fuzzing is a

phenomenally successful technique that has found bugs in virtually every code-base that it

has been applied against. Fuzzing has even found bugs in formally-verified code [17]. Until

code has been fuzz tested, it is overwhelmingly likely that there are bugs or edge-cases that

the programmer has forgotten to consider, which would have otherwise been quickly rooted

out by fuzzing.

This research aims to bring fuzzing to closed-source Windows binaries, many of which

6

have never been fuzz tested before. These applications represent a vast portion of the

consumer desktop application market and have millions of users. For example, since Adobe

Photoshop is closed-source, it is likely that no one has ever fuzzed it because closed-source

Windows applications are very difficult to fuzz. Our aim is to bring fuzzing to popular

commercial applications like Photoshop and eliminate the “low-hanging fruit” that attackers

would exploit to compromise end-user systems.

7

CHAPTER 3

TOWARDS A PRACTICAL WINDOWS FUZZER

Windows closed-source applications pose two major challenges for fuzzing. First, they

are difficult to instrument. Second, many of them behave problematically—for example:

complex initialization code, self-termination, and file handle leaks all hinder fuzzing. To mit-

igate these problems, we propose a new Windows fuzzer that uses an injected fuzzing agent.

Our fuzzer consists of two main components: the fuzzing engine, and the injected fuzzing

agent. The fuzzing engine is responsible for processing code coverage information, updating

coverage maps, and generating new inputs via mutation. The fuzzing agent performs the

low-level work required to collect code coverage and also deals with various runtime issues

that may arise in the target application, which we elaborate on below. To coordinate and

communicate with the fuzzing engine, the agent uses a bidirectional pipe. This design

enables the fuzzing agent to perform its work directly within the target application while

also neatly separating the fuzzers’ mutation and instrumentation functionality.

To implement our fuzzer, we build on top of WinAFL, a port of AFL for Windows

systems. We offer three key improvements over WinAFL, which we expand on below: 1 we

introduce a new implementation of fork() suitable for high-speed Windows application

fuzzing (§3.1); 2 we provide fuzzing techniques that overcome the challenges of fuzzing

real-world, commercial software (§3.2); and 3 we adopt modern instrumentation methods,

sidestepping hurdles caused by existing methods (§3.3). These improvements combined

significantly improve the applicability, practicality, and performance of Windows fuzzing.

In the following sections, we will discuss each of these contributions in further detail.

8

hit new BB,
or actual crash

agent.dll
(forkserver)

❺ status,
exec cmd

Entry Point

Fuzzing target

NtCreateFile,
TerminateProc

❷ install
function hook

Target Program

Custom
exception handler

PIPE

❻ new cov,
crash

❹ forked processes

...fork

update
coveragefuzzing input

❸ instrument BBs

Mutator Selector Queue Monitor

❶ inject
agent

Figure 3.1: Overview of our fuzzer. We inject a fuzzing agent into the target. The injected agent
spawns the fork-server, instruments basic blocks, and hooks several functions. This improves
performance and sidesteps various instrumentation issues. Figure reproduced from [8].

3.1 Fork on Windows

Contemporary fuzzers such as AFL [2] adopt a fork-server architecture, which is extremely

useful for fuzzing. When fuzzing under a fork-server, the fuzzed application runs normally

until right before the input is read and processed. At this point, the application enters

the fork-server, which spawns pre-initialized processes on-demand. Each forked child

process executes a single input, and the fuzzer records the execution’s outcome. The benefit

of using a fork-server is two-fold: first, it improves performance by avoiding costly re-

executions, and second, it improves stability by isolating the effects of an execution to a

single process. Without a fork server, the fuzzer wastes a significant amount of time on

irrelevant initialization code, as the program must be re-executed from scratch for each

input.

One solution to avoid slow re-executions is to use persistent-mode fuzzing [9, 28, 29],

in which multiple inputs are executed in the same fully-initialized process. However, this

harms stability: unless the fuzzing target function is perfectly pure (i.e., without side-

effects), differences in the program state will gradually accumulate across many executions,

eventually leading to divergence. However, for Windows applications, most target functions

9

Program initalization (1000ms)

CreateProcess (20ms) Parsing (100ms)

Re-execution overhead

Figure 3.2: Execution timeline for a complex Windows application. The startup and program
initialization often dominate execution times of Windows applications when fuzzing. Before reaching
any parsing logic, an application must first run uninteresting initialization code, including GUI setup.

Overhead

Overhead

Re-execution

Fork-server

Overhead Overhead Overhead

Figure 3.3: Cost of re-execution when fuzzing. Effective fuzzing campaigns require thousands
or millions of repeated executions. As shown, frequent re-executions severely degrade fuzzing
performance. Hence, it is crucial to minimize re-executions by the fuzzer.

have side-effects. For example, an application may handle errors by simply terminating itself.

Thus, reliance on persistent mode severely limits the applicability of fuzzing. Meanwhile,

using a fork-server avoids this problem altogether. Because each input is executed in a

separate process, any possible side-effects that can obstruct fuzzing are safely contained,

such as timeouts, crashes, and hangs. This greatly improves the stability and scalability of

fuzzing. Nevertheless, existing Windows fuzzers cannot use a fork-server. Overall, having a

fork-server is extremely beneficial to fuzzing, but depends on the existence of a fork() API.

Unfortunately, the Windows kernel does not expose a fork() API suitable for fuzzing.

Thus, this work sets out to implement such process cloning machinery to aid Windows

fuzzing. To clone a process, all data structures and memory owned by the process must be

duplicated, including page contents, page tables, file descriptor tables, etc. It is possible to

crudely approximate this behavior manually [30]; however, this approach has serious flaws.

Not only is manual process cloning unreliable, it is also slow. We will elaborate on both

these issues below.

First, manual process cloning is unreliable. The kernel maintains more information

about processes than is accessible from user space: for example, references to kernel objects.

It would not be possible to faithfully recreate these aspects of the program state, leading

10

to incorrect behavior or corruption. In general, operating systems are designed so that the

kernel is the one responsible for loading and running processes; manually cloning processes

would require making many assumptions about the cloned process. However, we cannot

afford to make assumptions about our fuzzed application: recall that our goal is to fuzz

commercial, off-the-shelf Windows software. Thus, to expand the applicability of fuzzing,

we need a process cloning mechanism that is native to the Windows kernel.

Second, manual process cloning is slow. Modern operating systems that expose fork()

do so using a technique called Copy-on-Write (CoW) [31]. When a process is cloned as

CoW, only the bare-bones data structures holding process metadata are copied, such as page

tables and process list entries. The actual full memory contents of the process are not copied

when fork() is called. Instead, both processes share the same memory pages until one of

them writes to a page. Thus, only the pages that are modified by the forked child process

are copied, greatly improving performance. Since successful fuzzing campaigns involve

millions of executions, a high-speed fork implementation is crucial to the scalability of

fuzzing. For a heavy application (for example, with memory footprint >50MB), a manual

process cloning method would have to copy all process memory each execution, seriously

degrading performance. Thus, we need a fork implementation that is also Copy-on-Write.

In short, we need a fork implementation that is both native to the Windows kernel and

also Copy-on-Write (CoW). To create our fork() implementation, we reverse-engineered

several undocumented Windows APIs and subsystems. We extracted several key func-

tionalities that are required to create a stable fork() implementation suitable for Windows

fuzzing. Namely, we analyzed the function CreateUserProcess in ntdll and the CSRSS

(Client/Server Runtime Subsystem) and found several key magic values that they require.

This API is an undocumented, but first-party API that is exposed directly by the kernel to

ordinary user programs, and it accurately clones processes. To implement the CoW fork

functionality, we call NtCreateUserProcess with a NULL section handle argument. This

satisfies both of the requirements outlined above.

11

Win32 subsystem (csrss.exe)

❷ report creation

❻ acknowledge

Parent process

stack

code

data, handle

heap

fork()

❶ create suspended process

❹ de-initialize variables

❺ connects to CSRSS

❸ resume execution
stack

code

data, handle

heap

Child process

Figure 3.4: Overview of fork() on Windows. We analyzed various Windows APIs and services to
achieve a CoW fork() functionality suitable for fuzzing. Fixing up the CSRSS is essential for fuzzing
COTS Windows applications: if the CSRSS is not re-initialized, the child process will crash when
accessing Win32 APIs. Figure reproduced from [8].

Next, whenever we fork a new child process, we must connect it to the CSRSS so

that it may function properly. The CSRSS is a user-mode daemon which manages several

underlying Windows components, such as console Windows. Newly-created processes

must be connected to the CSRSS to work properly. Otherwise, operations like opening or

saving a file may lead to a crash. Connecting to the CSRSS is normally done by Windows

automatically, but we must do this ourselves. We begin by calling CsrClientCallServer in

the parent process with message BasepCreateProcess. Next, because the child process was

forked from a fully-initialized parent process, several variables in the child’s address space

in ntdll, such as CsrServerApiRoutine, must be de-initialized. Lastly, the child process

calls CsrClientConnectToServer. These steps connect a newly-forked child process to the

CSRSS and allow it to behave normally.

We tested the fork implementation for the following properties: 1 robustness, 2 speed,

and 3 copy-on-write. To test the fork implementation’s robustness, we created several

simple programs that perform basic operations such as file I/O, printing console output,

etc. We then forked these programs before the behavior and validated that they worked

correctly in the child process. We also tested that global state was preserved properly during

forking, by checking the value of a global counter variable that we incremented before

12

forking each time. To test the fork implementation’s speed, we measured how quickly the

fork implementation could run in executions per second. Lastly, to verify that the fork

implementation was indeed Copy-on-Write (CoW), we compared the time taken to fork a

process with large and small memory footprints and ensured they were similar.

3.2 Fuzzing Commercial Windows Applications

Next, we will describe how our fuzzer mitigates problematic behaviors common in commer-

cial, off-the-shelf (COTS) Windows applications. To fuzz an application, the fuzzer needs to

be able to easily call the target functionality repeatedly and automatically. For example, to

fuzz a PDF reader, the fuzzer needs to be able to call the reader’s PDF parsing functions in

the fuzzing loop. For command-line (CLI) applications, this is simple: the fuzzer can simply

re-run the program each time, passing the fuzzing input file as an argument or via standard

input. However, many popular Windows applications only expose GUIs (graphical user

interfaces), and it is much more difficult to fuzz GUI applications as they cannot be easily

automated. Although it is possible to directly simulate keyboard and mouse inputs [32], this

is slow and not scalable. A good fuzzer should run at speeds of at least 100 execs/sec, but

using automation tools would limit speeds to less than 3 exec/sec. Thus, we need a way to

bypass the GUIs obstructing the functionality we wish to fuzz.

One popular method to fuzz GUI applications is to create a fuzzing harness. A fuzzing

harness essentially converts a GUI application into a CLI application and acts like an adaptor.

The harness exposes a convenient command-line interface directly to the functionality we

wish to fuzz. However, creating fuzzing harnesses is a challenging problem even for first-

party, open-source software [27, 26]. For us, the situation is even more dire: we wish to fuzz

third-party, commercial software. It is very difficult to create accurate fuzzing harnesses for

COTS Windows software, and most of them are not designed to be fuzzed. We will now

discuss the specific reasons as to why harness generation is challenging.

The ultimate source of the difficulty is that the problem of accurately extracting code

13

fragments from binary applications is fundamentally hard. The harness generation problem

at its core boils down to a code extraction problem: the fuzzing harness must selectively

extract necessary driver code for calling the target functionality, while excluding irrelevant

GUI code. For example, Windows applications often have a lot of initialization and setup

code, which must all be faithfully reproduced in a fuzzing harness, making generating

valid harnesses difficult. Another serious obstacle for harness synthesis is the existence

of call-back functions [33, 34]. Call-back functions are interface bindings provided to the

fuzzed code that the harness must also reimplement accurately. Overall, the underlying

code extraction problem is not just difficult; in general, it is undecidable. Notwithstanding

theoretical concerns, in practice most simple cases can still be solved heuristically. Therefore,

to expand the scope of fuzzing to commercial, off-the-shelf Windows applications, we need

a way to simplify and reduce the harness generation problem to minimize the amount of

code that must be extracted.

We propose a technique, the injected fork-server, that obviates complex harness synthesis.

Rather than trying to completely extract all of the setup or call-back behavior, we simply

run the application binary itself. The fuzzing agent is injected as soon as the program

loads, before any application code has begun executing. Once injected, the fuzzing agent

first hooks a function specified by the harness, and promptly returns control to the target

application. Then, the target application is allowed to initialize itself. Once the hook is

called, the application is halted and the fuzzing agent spins up the fork-server. In our

experience, this technique resolves many problems caused by difficult-to-extract setup code.

Meanwhile, since we spin up the fork-server only at some point deep within the program,

this massively improves performance because the initialization code only runs once.

Windows applications also exhibit a myriad of miscellaneous problems that impede

fuzzing efforts. These problems typically manifest during harness generation. Our fuzzer

employs several strategies to mitigate these issues:

Surviving Process Termination. Many applications implement error handling by simply

14

Initialization

Main
functionality

Normal control flow

Hook after initialization

Fuzzing loop

Figure 3.5: Injected fork-server technique. The target program is started normally and allowed to
self-initialize. We place a hook immediately after the initialization code, before the program begins
its main functionality (e.g., a GUI). We then hijack and redirect the control flow to our fuzzing loop.

terminating the program. Because most inputs generated during fuzzing are invalid, this

would demand constant re-executions from scratch, severely degrading performance. Our

fuzzer sidesteps this problem, since we can readily spawn pre-initialized child processes

thanks to our new implementation of fork() (see §3.1).

Sharing the input file. Since the fuzzer must be able to overwrite the input file for each

iteration, the input file must be opened non-exclusively. To resolve the issue, we hook the

function NtCreateFile, a sink for file-related operations. By hooking the function, we can

check whether the file being opened is the input file, and if so, add the write-sharing flag

to the parameters before resuming. This solves the common issue of the target application

locking the file, blocking the fuzzer.

Resolving Self-unpacking Code. Our fuzzer supports binaries which employ self-

unpacking code as an anti-reverse-engineering tactic. We do so by employing guard

pages, which are similar to memory breakpoints. By setting the target function’s page

protection to be inaccessible, our exception handler is notified whenever it is accessed by the

target application. We do not install our instrumentation hooks until the target application

begins executing that page; e.g., after it has finished unpacking itself. This deals with

self-unpacking code in an elegant and target-agnostic fashion.

15

3.3 Improved Instrumentation

Effective fuzzing relies on the availability of practical, reliable program instrumentation

to profile the fuzzed program’s runtime execution. Existing Windows instrumentation

solutions and fuzzers suffer from serious stability and performance penalties. DynamoRIO

suffers from reliability issues and is prone to crashes when fuzzing with WinAFL [35, 36].

WinAFL relies on the debug API. Using the debug API frequently causes errors, since many

applications do not behave normally when they detect they are under a debugger. This

is especially true when the target application uses software protection mechanisms (e.g.,

third-party packers or obfuscators [37, 38]). Generally speaking, these external solutions

are often unwieldy and unreliable. Instead, we propose an internal solution by injecting the

fuzzing functionality directly into the target program. We integrate the fork-server, binary

instrumentation, and exception handling code into one library, the fuzzing agent, which is

forcibly loaded into the target application at startup. Because it can perform its work directly

inside the target application’s process address space, the fuzzing agent avoids using any

debug APIs and can instrument the binary more effectively.

To collect coverage, we use fullspeed fuzzing [10] and a custom exception handler

in place of the problematic debug API. Fullspeed fuzzing collects boolean basic block

coverage, meaning that new coverage is only reported when new basic blocks are reached.

To be precise, each basic block receives a single-shot breakpoint, which yields control to

the fuzzing agent when reached. The fuzzing agent then records coverage information

before removing the breakpoint. Thus, the breakpoint is excluded from any future runs.

When the basic block is reached during subsequent executions, it is un-instrumented and

execution proceeds uninterrupted. Thus, since new coverage is rare, the target application

runs nearly at native speed during fuzzing. Moreover, breakpoints need only be installed

once thanks to the fork-server: child processes inherit the same set of breakpoints as the

parent. Since applications may easily contain as many as 100,000 basic blocks, this is a

16

crucial optimization as instrumenting all of the basic blocks takes a considerable amount of

initialization time.

17

CHAPTER 4

EVALUATION

To evaluate our fuzzer, we conducted end-to-end experiments on real-world applications

as well as individual experiments on our Windows fork implementation. The end-to-end

experiments were run on Intel Xeon E5-2670 v3 CPUs, and the fork implementation tests

we run on an Intel i7-7700 CPU.

In our end-to-end evaluation [8], we constructed 59 fuzzing harnesses for 37 applications.

We were able to fuzz all of these harnesses using our fuzzer, and we found 61 vulnerabilities

from 32 binaries across 16 applications. WinAFL in Intel PT mode failed to run 33 out of

the 59 harnesses; WinAFL in DynamoRIO mode failed to run 30 of the 59 harnesses. We

chose 6 harnesses that WinAFL was able to run for an in-depth side-by-side comparison.

In 4 of those 6 harnesses, we noticed major issues such as memory or handle leaks, or

unacceptably slow performance (i.e., < 1.0 executions/second). On those 6 harnesses, our

fuzzer improved raw fuzzing speed by 31.3x and coverage by 4.0x on average. Thus, our

fuzzer significantly expands the scope, efficacy, and practicality of Windows fuzzing.

We compared several process spawning and cloning APIs against our new fork() im-

plementation. The closest comparison in terms of functionality would be Cygwin’s fork()

implementation; nevertheless, we also included CreateProcess, the Windows Subsystem

on Linux (WSL)’s fork implementation, and finally Linux’s native fork.

We compared our fork implementation against a similar mechanism from the Cygwin

project which also provides process cloning functionality. In terms of speed, our fork

implementation achieved speeds of around 300 forked processes per second, whereas

Cygwin achieved only 72.8. Unlike Cygwin, our implementation is Copy-on-Write (CoW),

and also directly supported by the kernel. These factors contribute to our implementation’s

improved performance. As discussed in §3.1, manual fork implementations like Cygwin’s

18

are undesirable for fuzzing purposes. In short, manual process cloning methods scale poorly

as they are not CoW. They are also less versatile because they are not directly supported by

the operating system and can only perform user-mode operations. Hence, in summary, our

fork implementation outperforms Cygwin’s in terms of both speed and versatility.

We compared our fork implementation against process spawning APIs. CreateProcess

is the standard Windows function used to spawn new processes with a default program

state. In terms of speed, CreateProcess achieves speeds of roughly 100 new processes

per second. This is slower than our fork implementation because the operating system

must allocate, prepare, and initialize an entire new process for each CreateProcess call.

Considering the complicated steps required to properly load a Windows executable (dynamic

linking, resolving relocations, etc.), this incurs a heavy overhead. On the other hand, forking

a pre-initialized process with CoW is simple: all that must be copied are auxiliary data

structures such as page tables and file descriptor lists. Unlike APIs that spawn new processes

such as CreateProcess, our fork implementation clones existing processes. As discussed in

§3.1, this difference is paramount for fuzzing. The ability to quickly clone pre-initialized

processes enables fuzzers to cleanly and efficiently re-execute the target functionality across

many different inputs. Thus, not only does our fork implementation outperform creating

new processes from scratch, it also provides essential functionality for Windows fuzzing.

We compared our fork implementation against the one used by the Windows Subsystem

for Linux (WSL). The Windows Subsystem for Linux is a syscall translation layer that allows

Windows systems to run Linux binaries directly, roughly the opposite effect of projects

like WINE [39, 40]. As a POSIX implementation, WSL features a fully-functional fork

implementation. WSL’s fork outperforms ours in terms of raw speed, achieving about 400

forked processes per second, whereas ours achieved only 300. Internally, WSL leverages

similar kernel functions as our fork implementation to direct the kernel to clone a user-

space process [41], leading to roughly comparable speeds. However, WSL achieves better

speeds because it can make more assumptions about the processes to be forked; namely,

19

they are special WSL processes, which are like a subclass of general Windows processes.

Nevertheless, WSL’s fork implementation is incompatible with Windows fuzzing. WSL is

designed only to run native Linux ELF binaries, whereas our goal is to fuzz typical Windows

PE binaries. Overall, our fork implementation enjoys speeds comparable to WSL’s fork

implementation but supports native Windows applications instead.

Lastly, we compared our fork implementation against Linux’s native fork implementation.

For process creation, Linux greatly outperforms Windows in terms of raw speed: Linux’s

fork implementation could prepare 5,000 forked processes per second, whereas ours could

only prepare 300. There is little we can do about this problem. The Linux kernel hosts a

completely different operating system and is architected differently from the Windows NT

kernel. It could be that the Linux process creation process is simpler or more efficient than

its counterpart on Windows, or both. In any case, although it may be more efficient to fuzz

cross-platform applications using their Linux version, many popular applications are limited

to Windows platforms only. Thus, albeit imperfect, our fork implementation fills the gap

on Windows systems and fulfills the need for a Windows fork implementation suitable for

fuzzing purposes.

Our fork implementation has a few idiosyncrasies that must be taken into account, pri-

marily due to the design of the Windows operating system. Similar to its Linux counterpart,

if a multi-threaded program calls fork(), only the calling thread is cloned. Also similar to

Linux, any handles (similar to file descriptors) a process has open when forking are not

inherited by the child process by default. However, we can sidestep this issue by manually

enumerating and marking all handles as inheritable before calling fork().

20

CHAPTER 5

CONCLUSION

Fuzzing is a proven technique for uncovering software bugs that has enjoyed success and

attention in both industry and academia. Unfortunately, most existing fuzzing efforts are

centered around Linux systems, and can therefore only fuzz applications that support Linux

platforms. Current fuzzing efforts are also heavily focused on open-source projects. As a

result, many popular Windows applications like Adobe Photoshop or Steam have not been

thoroughly fuzzed. Thus, there are likely many “low-hanging fruit” vulnerabilities that are

waiting to be exploited, that otherwise would have been eliminated through fuzzing.

Fuzzing Windows applications is difficult. There exists a negative feedback loop, in

that Windows applications are un-fuzzed because Windows fuzzing is difficult; meanwhile,

Windows fuzzing is difficult because there has been little effort invested in it. The fundamen-

tal difficulty comes from two primary reasons: 1 the closed-source Windows ecosystem

prevalent with GUI applications, and 2 the lack of a fork-like API for efficiently cloning

processes. These two halves can be thought as two complementary problems: the harness

synthesis problem and the fuzzer implementation problem [8]. This work aims to tackle the

second problem: the lack of an effective and versatile Windows fuzzer implementation.

In this thesis, we proposed the following: 1 we introduced a new implementation

of fork() suitable for high-speed Windows application fuzzing; 2 we provided fuzzing

techniques that can overcome the challenges of fuzzing real-world, commercial software;

and 3 we implemented new instrumentation methods, sidestepping hurdles caused by

existing methods. We evaluated our fuzzer on real-world programs and found that our fork

implementation sidesteps many common fuzzing obstacles. Furthermore, comparisons with

other implementations showed that our fork implementation is competitive and well-suited

to Windows fuzzing.

21

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix
utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

[2] M. Zalewski, American fuzzy lop, http://lcamtuf.coredump.cx/afl/, 2015.

[3] K. Serebryany, “Libfuzzer–a library for coverage-guided fuzz testing,” LLVM project,
2015.

[4] Google, Honggfuzz, https://github.com/google/honggfuzz, 2010.

[5] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz, “Redqueen:
Fuzzing with input-to-state correspondence.,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[6] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “KAFL: Hardware-
assisted feedback fuzzing for OS kernels,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, Canada, Aug. 2017.

[7] Google, Syzkaller: an unsupervised, coverage-guided kernel fuzzer, https://github.
com/google/syzkaller, 2018.

[8] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim, “WINNIE: Fuzzing Windows
Applications with Harness Synthesis and Fast Cloning (to appear),” in Proceedings
of the 2021 Annual Network and Distributed System Security Symposium (NDSS),
Virtual, Feb. 2021.

[9] A. Souchet, I. Fratric, J. Vazquez, and S. Denbow, AFL For Fuzzing Windows Binaries,
https://github.com/ivanfratric/winafl, 2016.

[10] S. Nagy and M. Hicks, “Full-speed Fuzzing: Reducing Fuzzing Overhead Through
Coverage-guided Tracing,” in Proceedings of the 40th IEEE Symposium on Security
and Privacy (Oakland), San Francisco, CA, May 2019.

[11] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based Greybox Fuzzing
as Markov Chain,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[12] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A Practical Concolic Execution
Engine Tailored for Hybrid Fuzzing,” in Proceedings of the 29th USENIX Security
Symposium (Security), Aug. 2020.

22

http://lcamtuf.coredump.cx/afl/
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/ivanfratric/winafl

[13] Y. Wang, Z. Wu, Q. Wei, and Q. Wang, “Neufuzz: Efficient fuzzing with deep neural
network,” IEEE Access, vol. 7, pp. 36 340–36 352, 2019.

[14] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte sieve for
fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

[15] K. Böttinger, P. Godefroid, and R. Singh, “Deep reinforcement fuzzing,” in 2018
IEEE Security and Privacy Workshops (SPW), IEEE, 2018, pp. 116–122.

[16] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File Systems
via Two-Dimensional Input Space Exploration,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA, May 2019.

[17] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding Semantic Bugs in
File Systems with an Extensible Fuzzing Framework (to appear),” in Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP), Ontario, Canada,
Oct. 2019.

[18] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c
compilers,” in Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), San Jose, CA, Jun. 2011.

[19] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in Proceedings
of the 21st USENIX Security Symposium (Security), Bellevue, WA, Aug. 2012.

[20] W. Syndder and M. Shaver, “Building and breaking the browser,” Black Hat USA
Briefings (Black Hat USA), 2007.

[21] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring deep state
spaces via fuzzing,” in 2020 IEEE Symposium on Security and Privacy (SP), IEEE,
2020, pp. 1597–1612.

[22] Google, Fuzzing for Security, https://blog.chromium.org/2012/04/fuzzing- for-
security.html, 2012.

[23] ——, OSS-Fuzz - continuous fuzzing of open source software, https://github.com/
google/oss-fuzz, 2016.

[24] O. Chang, A. Arya, K. Serebryany, and J. Armour, OSS-Fuzz: Five months later, and
rewarding projects, https://opensource.googleblog.com/2017/05/oss- fuzz-five-
months-later-and.html, 2017.

[25] D. Jang and A. Askar, “FuzzCoin: A Digital Currency with Fuzzing as a Proof-of-
Work,” 2020.

23

https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

[26] K. K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen: Automatic Fuzzer
Generation,” in Proceedings of the 29th USENIX Security Symposium (Security), Aug.
2020.

[27] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano, C. Lemieux, L. Szekeres,
and W. Wang, “FUDGE: Fuzz Driver Generation At Scale,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ACM, 2019, pp. 975–985.

[28] M. Zalewski, New In AFL: Persistent Mode, https://lcamtuf.blogspot.com/2015/06/
new-in-afl-persistent-mode.html, 2015.

[29] A. Souchet, I. Fratric, J. Vazquez, and S. Denbow, How to Select A Target Function,
https://github.com/googleprojectzero/winafl#how-to-select-a-target-function, 2016.

[30] Highlights of Cygwin Functionality, https://cygwin.com/cygwin-ug-net/highlights.
html, 1996.

[31] A. Baumann, J. Appavoo, O. Krieger, and T. Roscoe, “A fork() in the road,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, ACM, 2019,
pp. 14–22.

[32] AutoIt Consulting Ltd, AutoIt Scripting Language, https://www.autoitscript.com/site/
autoit/, 2019.

[33] Y. Alon and N. Ben-Simon, 50 CVEs In 50 Days: Fuzzing Adobe Reader, https:
//research.checkpoint.com/50-adobe-cves-in-50-days/, 2018.

[34] R. Schaefer, Fuzzing Adobe Reader For Exploitable Vulns, https://kciredor.com/
fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html, 2018.

[35] WinAFL issue tracker #125, https://github.com/googleprojectzero/winafl/issues/125,
2018.

[36] WinAFL issue tracker #172, https://github.com/googleprojectzero/winafl/issues/172,
2019.

[37] Oreans Technology, Themida: Windows software protection system, https://www.
oreans.com/themida.php, 2020.

[38] VMProtect Software, VMProtect Software Protection, https://vmpsoft.com/, 2020.

[39] Microsoft, Frequently Asked Questions about Windows Subsystem for Linux, https:
//docs.microsoft.com/en-us/windows/wsl/faq, 2018.

24

https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://github.com/googleprojectzero/winafl#how-to-select-a-target-function
https://cygwin.com/cygwin-ug-net/highlights.html
https://cygwin.com/cygwin-ug-net/highlights.html
https://www.autoitscript.com/site/autoit/
https://www.autoitscript.com/site/autoit/
https://research.checkpoint.com/50-adobe-cves-in-50-days/
https://research.checkpoint.com/50-adobe-cves-in-50-days/
https://kciredor.com/fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html
https://kciredor.com/fuzzing-adobe-reader-for-exploitable-vulns-fun-not-profit.html
https://github.com/googleprojectzero/winafl/issues/125
https://github.com/googleprojectzero/winafl/issues/172
https://www.oreans.com/themida.php
https://www.oreans.com/themida.php
https://vmpsoft.com/
https://docs.microsoft.com/en-us/windows/wsl/faq
https://docs.microsoft.com/en-us/windows/wsl/faq

[40] WineHQ, Wine Project, https://www.winehq.org/, 2020.

[41] Microsoft, WSL architectural overview, https://docs.microsoft.com/en-us/previous-
versions/windows/desktop/cmdline/wsl-architectural-overview, 2019.

25

https://www.winehq.org/
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cmdline/wsl-architectural-overview
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cmdline/wsl-architectural-overview

	Title Page
	Table of Contents
	1 | Introduction
	2 | Related work
	Improving fuzzer performance
	Novel applications of fuzzing
	Exploring new fuzzing targets

	3 | Towards a Practical Windows Fuzzer
	Fork on Windows
	Fuzzing Commercial Windows Applications
	Improved Instrumentation

	4 | Evaluation
	5 | Conclusion
	References

