
FRAMEWORK FOR THE GENERATION AND DESIGN OF

NATURALLY FUNCTIONALLY GRADED LATTICE

STRUCTURES

A Dissertation

Presented to

The Academic Faculty

by

Mahmoud Ali Alzahrani

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Mechanical Engineering

Georgia Institute of Technology

August 2020

COPYRIGHT © 2020 BY MAHMOUD ALZAHRANI

FRAMEWORK FOR THE GENERATION AND DESIGN OF

NATURALLY FUNCTIONALLY GRADED LATTICE

STRUCTURES

Approved by:

Dr. Seung-Kyum Choi, Chair

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Steven Liang

School of Mechanical Engineering

Georgia Institute of Technology

Dr. David Rosen

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Graeme Kennedy

School of Aerospace Engineering

Georgia Institute of Technology

Dr. Jarek Rossignac

School of Interactive Computing

Georgia Institute of Technology

 Date Approved: [July 10, 2020]

I dedicate this dissertation to my family for their support and love.

iv

ACKNOWLEDGMENTS

 First, I would like to thank my advisor, Dr. Seung-Kyum Choi, for his support and

guidance to me with his knowledge throughout my graduate studies and school experience.

I would also like to thank the reading committee, Dr. David Rosen, Dr. Jarek Rossignac,

Dr. Steven Liang, and Dr. Graeme Kennedy, for their time to read and provide their

knowledge and expertise in the completion of my Ph.D. dissertation.

 I would also like to thank my family, especially my grandfather and mother, for

their support and sacrificing their time to come here to America so that I can complete my

graduate studies. Special thanks to my professors at King Abdulaziz University, for the

things they taught me during my undergraduate studies and for their support for me to

pursue my graduate degrees.

 Finally, I would like to thank my lab-mates and friends at Georgia Tech, Recep

Gorguluarslan, Sung-Kun Hwang, Ali Alsaibie, and Andrew Carlile for their help along

the way and their support.

 v

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. IV

LIST OF TABLES .. VII

LIST OF FIGURES .. IX

LIST OF SYMBOLS AND ABBREVIATIONS ... XXI

SUMMARY... XXIV

CHAPTER 1. INTRODUCTION .. 1

1.1 Cellular Solids ... 1

1.2 Topology Optimization ... 4

1.3 Functionally Graded Lattice (FGL) .. 11

1.3.1 Naturally Functionally Graded Lattice (NFGL) Structures 19

1.4 Research Objectives .. 28

1.5 Research Questions ... 28

1.6 Dissertation Organization .. 35

CHAPTER 2. CURRENT STATE OF THE ART .. 37

2.1 Error Diffusion .. 37

2.2 Stochastic Nodal Generation method .. 42

2.3 Local Volume Constraint Optimization .. 45

2.4 Adaptive Quadtree Optimization .. 51

2.5 Drawbacks of Existing Methods .. 57

CHAPTER 3. NATURALLY FUNCTIONALLY GRADED LATTICE (NFGL)
FRAMEWORK ... 61

3.1 NFGL Nodes Generation Algorithm (Simplified Sphere Packing) 63

 vi

3.2 NFGL Structure Generation Algorithm ... 70

3.3 Similarity Analysis using MSSIM Index Algorithm .. 77

3.4 Updating 𝑺𝑹 Value Algorithm ... 83

CHAPTER 4. APPLICATION EXAMPLES .. 86

4.1 Comparison of NFGL Framework with other Algorithms in the Literature 86

4.1.1 Computational Cost of Algorithms ... 87

4.1.2 Structural Performance ... 118

4.1.3 Robustness Testing ... 134

4.1.4 Conformity to Design Domain.. 145

4.1.4.1 Circular Design Domain ... 145

4.1.4.2 Curved Path Design Domain .. 153

4.2 Automotive Control Arm Optimization Under Multiple Loading Conditions

 164

4.3 Injection Mold Lattice Cooling Channel Design .. 171

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 184

5.1 Contributions... 184

5.1.1 Addressing the Research Questions .. 184

5.1.2 List of Contributions ... 189

5.2 Future work ... 194

REFERENCES.. 197

 vii

LIST OF TABLES

Table 1 Organization of the Dissertation ...35

Table 2 Advantages and drawbacks of the existing methods ..59

Table 3 Cantilever beam mechanical properties ..88

Table 4 Breakdown of the tasks that each method will perform to generate the NFGL

structures ..90

Table 5 Computational time to generate the NFGL structure of the cantilever beam using

NFGL Framework, Stochastic Nodal Generation, Error Diffusion, Local Volume

Constraint, and Adaptive Quadtree methods ...93

Table 6 Breakdown of the computational cost of the cantilever beam for the NFGL

Framework, Stochastic Nodal Generation and Error Diffusion methods94

Table 7 Number of iterations for each topology optimization method used in the

cantilever beam ..95

Table 8 Computational time to generate the NFGL structure of the simply supported

beam using NFGL Framework, Stochastic Nodal Generation, Error Diffusion, Local

Volume Constraint, and Adaptive Quadtree methods ...107

Table 9 Breakdown of the computational cost of the simply supported beam for the

NFGL Framework, Stochastic Nodal Generation and Error Diffusion methods108

Table 10 Number of iterations for each topology optimization method used in the simply

supported beam ..109

Table 11 Compliance of different NFLG structure for the cantilever beam using the

NFGL Framework, Stochastic Nodal Generation, Error Diffusion, Adaptive Quadtree,

and Local Volume Constraint methods ..120

 viii

Table 12 Determining 𝑺𝑹 for the cantilever beam at different mesh sizes using Algorithm

3 and Algorithm 4 ..126

Table 13 Compliance of different NFLG structure for the simply supported beam using

the NFGL Framework, Stochastic Nodal Generation, Error Diffusion, Adaptive Quadtree,

and Local Volume Constraint methods ..128

Table 14 Determining 𝑺𝑹 for the simply supported beam at different mesh sizes using

Algorithm 3 and Algorithm 4 ..133

Table 15 Computational cost for the generation of NFGL structures at different 𝒏 values

..145

Table 16 Computational cost of the NFGL Framework, Error Diffusion, and Stochastic

Nodal Generation methods for the circular design domain ...152

Table 17 Computational cost for generating the NFGL structure for both curved paths

using NFGL Framework, Error Diffusion, and Stochastic Nodal Generation methods ..164

Table 18 Automotive control arm boundary and loading condition for both load cases .166

Table 19 Automotive control arm material properties ...166

Table 20 Determining 𝑺𝑹 value for the control arm using Algorithm 3 and Algorithm 4

..171

Table 21 Determining 𝑺𝑹 value injection mold cooling channel NFGL structure using

Algorithm 3 and Algorithm 4 ..183

 ix

LIST OF FIGURES

Figure 1 Classification of cellular solids into a) two-dimensional polygons and three

dimensional b) open cells c) closed cells polyhedra ..1

Figure 2 Further classification of cellular solids based on cell configuration [8]3

Figure 3 Example of a uniform and conformal lattice structures [18]4

Figure 4 Topology optimization a) Discrete optimization b) Continuum optimization [25]

..5

Figure 5 An example of a Michell Truss [19]..6

Figure 6 Discrete optimization of a truss structure with Ground Structure optimization a)

Ground structure b) optimized truss design [26] ...6

Figure 7 Homogenization topology optimization for continuum structures [27]8

Figure 8 Topology optimization problem of a generalized shape8

Figure 9 Structure optimization with SIMP method a) Design domain b) Optimization

result c) Solid model obtained from optimization showing a large overhang structure d)

Section view showing enclosed void [35] ...11

Figure 10 Example of functionally graded cellular structures in nature [37, 38, 40]12

Figure 11 Scaffold design with varying radial porosity [41] ...13

Figure 12 a) Topology optimization result under bending loading condition b) Generated

FGL structure from optimization result mapping [43] ..14

Figure 13 Size Matching and Scaling unit-cell library a) MAV loading conditions b)

Stress field results c) Generated FGL structure [44] ...15

 x

Figure 14 Generated FGL structure from mapping SIMP optimization results to unit-cell

porosity [45] ...15

Figure 15 Application of RDM method a) SIMP optimization results b) Generated FGL

structure [46] ..16

Figure 16 Different strategies to generate FGL structures a) Intersected b) Graded c)

Scaled [47] ...17

Figure 17 Experimental compression test on uniform lattice structures and graded lattice

structures [60] ..19

Figure 18 Generated NFGL structures using Function Representation a) Unit-cell type

grading [63] b) Unit-cell size grading [62] ..20

Figure 19 Application of the Error Diffusion method to generate NFGL structures a)

Input density field b) Generated NFGL structure [64] ..21

Figure 20 Generated structure using Error Diffusion a) Stress field b) Generated Voronoi

sites c-d) Two steps of the optimization process e) Optimized graded foam structure [66]

..22

Figure 21 Generation of graded foam structure using Quadtrees and Error Diffusion a)

Deisgn domain b) Input density field c) Generated Quadtree structure d) Quadtree

structure after Error Diffusion e) Generated space-filling structure f) Generated graded

foam structure [67] ...22

Figure 22 A model of a finger generated using randomized Voronoi foam [68]23

Figure 23 Generation of NFGL structure by random nodal displacement a) Uniform

nodes b) Randomly displaced nodes c) Generated NFGL structure [x]24

Figure 24 Structure optimization by using rhombic unit-cells a) Initial structure b)

Optimized structure [70] ..24

Figure 25 Generated hollowed foam structure a) Voronoi diagram with inserted ellipse b)

Insertion of four more ellipses c) Voronoi Diagram with 100 ellipses d) Fabricated part

[71] ...25

 xi

Figure 26 Skin temperature before and after wearing an orthopedic cast design) optimized

cast b) uniform unit-cell cast [72] ..26

Figure 27 Generation of bone-like porous structure using local volume constraint

optimization [73] ..27

Figure 28 Generation of NFGL nodes using Error Diffusion a) Input density field b)

Generated NFGL nodes [64] ..38

Figure 29 The two-dimensional filter proposed by Floyd and Steinberg39

Figure 30 An example of the dithering process using the Error Diffusion method for a

5×5 grid of pixels [64] ...40

Figure 31 Generated NFGL structure from Error Diffusion method a) NFGL nodes b)

Generated NFGL structure using Delaunay triangulation [64] ..41

Figure 32 Change in mean unit-cell edge length as the input density field values are

increased [64] ...42

Figure 33 Generation of NFGL nodes using Stochastic Nodal Generation method a) Input

density field b) Cell subdivision c) generated NFGL nodes ..44

Figure 34 Different NFGL nodes generated with each iteration of the Stochastic Nodal

Generation method ...44

Figure 35 Generated structure using Local Volume Constraint at different local volume

ratios with a radius of 6 a) 𝜶 = 𝟎. 𝟔 b) 𝜶 = 𝟎. 𝟓 c) 𝜶 = 𝟎. 𝟒 [73]49

Figure 36 Generated structure using Local Volume Constraint at different local volume

ratios with a radius of 12 a) 𝜶 = 𝟎. 𝟔 b) 𝜶 = 𝟎. 𝟓 c) 𝜶 = 𝟎. 𝟒 [73]49

Figure 37 Generated structure using Local Volume Constraint at different local volume

ratios with a radius of 6 and 𝜶 = 𝟎. 𝟔 a) No constraint b) 𝜶𝒕𝒐𝒕𝒂𝒍 = 𝟎. 𝟓𝟎 c) 𝜶𝒕𝒐𝒕𝒂𝒍 =
𝟎. 𝟒 [73] ..50

Figure 38 Quadtree grid of a rectangular design domain a) Cell subdivision b) FEM mesh

of the domain [68] ..53

 xii

Figure 39 Generated cantilever beam NFGL structure without the refinement of 𝝌𝒊, 𝒋𝒌

values [68] ..54

Figure 40 Generated cantilever NFGL beam after the refinement filter is applied [68] ...55

Figure 41 Generated cantilever NFGL beam after the balanced Quadtree refinement filter

is applied [68] ..55

Figure 42 Different structures generated using Adaptive Quadtree optimization method

[68] ...56

Figure 43 Framework to generate NFGL structures ..62

Figure 44 Influence sphere radius of three nodes, colored in black, in a density field65

Figure 45 Removal of nodes inside the influence sphere of a colored node if their relative

density is less than the colored node relative density ..66

Figure 46 NFGL nodes generated by the algorithm ..66

Figure 47 Illustration of the simplified sphere packing ...67

Figure 48 Algorithm 1 inputs a) Density field 𝝆𝒇 b) input mesh nodes 𝐍𝒄 ∗67

Figure 49 Generated NFGL nodes 𝐍𝒄 with a) 𝑺𝑹 = 𝟏 b) 𝑺𝑹 = 𝟏. 𝟓 c) 𝑺𝑹 = 𝟐 d) 𝑺𝑹 = 𝟑
..68

Figure 50 Section of a tapered beam with a circular hole a) Beam initial mesh b) Density

field ..69

Figure 51 Generated NFGL nodes at different 𝑺𝑹 values a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c) 𝑺𝑹 =
𝟓 ...69

Figure 52 Interior nodes generation in a tetrahedral unit-cell a) 𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟏 b)

𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟑 c) 𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟗 ..73

 xiii

Figure 53 NFGL nodal diameters based on 𝒅𝒍𝒂𝒕𝒕𝒊𝒄𝒆 values a) using the minimum value

b) using the maximum value ..75

Figure 54 NFGL strut diameters based on 𝒅𝒍𝒂𝒕𝒕𝒊𝒄𝒆 values a) using the maximum value

b) using the minimum value ..75

Figure 55 Generated NFGL structures using nodal diameter a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c)

𝑺𝑹 = 𝟓 ...76

Figure 56 Generated NFGL structures using strut diameter a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c) 𝑺𝑹 =
𝟓 ...76

Figure 57 A close-up view of the generated NFGL struts at 𝑺𝑹 = 𝟓 for a) Nodal diameter

b) Strut diameter ..77

Figure 58 Relative density Array for a generalized shape showing assigned values78

Figure 59 Relative density Array for a generalized shape showing assigned values82

Figure 60 Change in MSSIM index as a function 𝑺𝑹 showing the fitted power curve83

Figure 61 Loading conditions for the a) cantilever beam b) simply supported beam88

Figure 62 Unpenalized SIMP optimization results a) Cantilever beam b) Simply

supported beam ..89

Figure 63 Computational cost of the cantilever beam for the NFGL Framework,

Stochastic Nodal Generation and Error Diffusion methods against the number of FE

elements used ...96

Figure 64 Generated NFGL structures using the Stochastic Nodal Generation method for

the cantilever beam at different sizes ...98

Figure 65 Generated NFGL structures using the Error Diffusion method for the cantilever

beam at different sizes ...99

 xiv

Figure 66 Generated NFGL structures using the Adaptive Quadtree method for the

cantilever beam at different sizes ...100

Figure 67 Generated NFGL structures using the Local Volume Constraint method for the

cantilever beam at different sizes ...101

Figure 68 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 64×32 at different 𝑺𝑹 values ..102

Figure 69 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 128×64 at different 𝑺𝑹 values ..102

Figure 70 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 256×128 at different 𝑺𝑹 values ..103

Figure 71 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 512×256 at different 𝑺𝑹 values ..103

Figure 72 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 640×320 at different 𝑺𝑹 values ..104

Figure 73 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 768×384 at different 𝑺𝑹 values ..104

Figure 74 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 1024×512 at different 𝑺𝑹 values ..105

Figure 75 Generated NFGL structures using the Stochastic Nodal Generation method for

the simply supported beam at different sizes ...110

Figure 76 Generated NFGL structures using the Error Diffusion method for the simply

supported beam at different sizes ...111

Figure 77 Generated NFGL structures using the Adaptive Quadtree method for the

simply supported beam at different sizes ...112

 xv

Figure 78 Generated NFGL structures using the Local Volume Constraint method for the

simply supported beam at different sizes ...113

Figure 79 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 64×32 at different 𝑺𝑹 values ...114

Figure 80 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 128×64 at different 𝑺𝑹 values ...114

Figure 81 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 256×128 at different 𝑺𝑹 values ...115

Figure 82 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 512×256 at different 𝑺𝑹 values ...115

Figure 83 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 640×320 at different 𝑺𝑹 values ...116

Figure 84 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 768×384 at different 𝑺𝑹 values ...116

Figure 85 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 1024×512 at different 𝑺𝑹 values ...117

Figure 86 Computational cost of the simply supported beam for the NFGL Framework,

Stochastic Nodal Generation and Error Diffusion methods against the number of FE

elements used ...117

Figure 87 Change in compliance of the generated NFGL structures for the cantilever

beam using the NFGL Framework as a function 𝑹𝑳 ...121

Figure 88 Change in compliance of the generated NFGL structures for the cantilever

beam using the NFGL Framework as a function 𝑺𝑹 ...121

Figure 89 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 256×128 at 𝑹𝑳 values ...122

 xvi

Figure 90 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 640×320 at 𝑹𝑳 values ...123

Figure 91 Generated NFGL structures using the NFGL Framework for the cantilever

beam of size 768×384 at 𝑹𝑳 values ...124

Figure 92 Change in the MSSIM index as a function of 𝑺𝑹 for the cantilever beam126

Figure 93 Change in compliance of the generated NFGL structures for the simply

supported beam using the NFGL Framework as a function 𝑹𝑳129

Figure 94 Change in compliance of the generated NFGL structures for the simply

supported beam using the NFGL Framework as a function 𝑺𝑹129

Figure 95 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 256×128 at 𝑹𝑳 values ..130

Figure 96 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 640×320 at 𝑹𝑳 values ..131

Figure 97 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 768×384 at 𝑹𝑳 values ..132

Figure 98 Change in the MSSIM index as a function of 𝑺𝑹 for the simply supported

beam ...133

Figure 99 Sinusoidal input density field functions at different frequency values a) 𝒏 =
𝟎. 𝟓 b) 𝒏 = 𝟏 c) 𝒏 = 𝟏. 𝟖 d) 𝒏 = 𝟐 ...135

Figure 100 Generated NFGL nodes using the Stochastic Nodal Generation method with

a) 𝒏 = 𝟎. 𝟓 b) 𝒏 = 𝟏 c) 𝒏 = 𝟏. 𝟖 d)𝒏 = 𝟐 ..136

Figure 101 Generation of NFGL nodes at different steps for the Stochastic Nodal

Generation using 𝒏 = 𝟐 ...137

Figure 102 Cell boundaries for the upper right corner at step 20138

 xvii

Figure 103 Generated NFGL nodes and structures using the Error Diffusion method for

different values of 𝒏 ...139

Figure 104 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 =
𝟎. 𝟓 at different 𝑺𝑹 values ...141

Figure 105 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟏

at different 𝑺𝑹 values ...142

Figure 106 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 =
𝟏. 𝟖 at different 𝑺𝑹 values ...143

Figure 107 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟐

at different 𝑺𝑹 values ...144

Figure 108 Density gradient of the circular design domain ...146

Figure 109 Transformation of the input density image into NFGL nodes using the Error

Diffusion method for the circular design domain ..147

Figure 110 Generated NFGL structure using the Error Diffusion method for the circular

design domain ..147

Figure 111 Close up of the generated NFGL unit-cells using the Error Diffusion method

for the circular design domain ...148

Figure 112 Generated NFGL nodes using Stochastic Nodal Generation for the circular

design domain a) Generated cells b) Generated NFGL nodes ...149

Figure 113 Generated NFGL structure using the Stochastic Nodal Generation method for

the circular design domain ...149

Figure 114 Circular Design domain FEM mesh nodes ..151

Figure 115 Close up of the generated NFGL unit-cells using the NFGL Framework for

the circular design domain with 𝑺𝑹 = 𝟓 ...151

 xviii

Figure 116 Generated NFGL structures using the NFGL Framework for the circular

design domain a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c) 𝑺𝑹 = 𝟓 d) 𝑺𝑹 = 𝟏𝟎 ..152

Figure 117 Curved path design domain a) 𝒏 = 𝟎. 𝟐𝟓 b) 𝒏 = 𝟒153

Figure 118 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the Error

Diffusion method a) Generated NFGL nodes b) Corresponding NFGL structure154

Figure 119 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the Error

Diffusion method a) Generated NFGL nodes b) Corresponding NFGL structure155

Figure 120 Generated NFGL nodes for the curved path for the Stochastic Nodal

Generation method with a) 𝒏 = 𝟎. 𝟐𝟓 b) 𝒏 = 𝟒 ..156

Figure 121 Input FEM mesh for the design domains of the curved paths157

Figure 122 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟐 a) Generated NFGL nodes b) Corresponding

NFGL structure ..158

Figure 123 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟑 a) Generated NFGL nodes b) Corresponding

NFGL structure ..159

Figure 124 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟒 a) Generated NFGL nodes b) Corresponding

NFGL structure ..160

Figure 125 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the NFGL

Framework method with 𝑺𝑹 = 𝟐 a) Generated NFGL nodes b) Corresponding NFGL

structure..161

Figure 126 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the NFGL

Framework method with 𝑺𝑹 = 𝟑 a) Generated NFGL nodes b) Corresponding NFGL

structure..162

 xix

Figure 127 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the NFGL

Framework method with 𝑺𝑹 = 𝟒 a) Generated NFGL nodes b) Corresponding NFGL

structure..163

Figure 128 Automotive control arm that will be optimized using lattice structures165

Figure 129 SIMP optimization results for the automotive control arm167

Figure 130 Generated FGL structure for the automotive control arm167

Figure 131 Generated NFGL structure for the control arm with 𝑺𝑹 = 𝟑169

Figure 132 Automotive control arm combined compliance before and after size

optimization at different 𝑺𝑹 values ...170

Figure 133 Computational cost of conducting size optimization for the control arm lattice

struts at different 𝑺𝑹 values ...170

Figure 134 MSSIM index for the automotive control arm as a function of 𝑺𝑹171

Figure 135 Loading and boundary conditions for one-fourth of the injection mold cooling

channel [55] ...172

Figure 136 Optimized injection mold cooling channel using FGL structures via AH [55]

..174

Figure 137 Optistruct optimization results for the injection mold cooling channel using a

size of 10×10 ..175

Figure 138 Generated NFGL structures for the injection mold cooling channel using a

size of 10×10 with different 𝑺𝑹 values ..176

Figure 139 Relative mechanical compliance of the NFGL structure for the injection mold

cooling channel with a size of 10×10 ..176

Figure 140 Relative thermal compliance of the NFGL structure for the injection mold

cooling channel with a size of 10×10 ..177

 xx

Figure 141 Comparison of the total surface area subjected to convection heat transfer for

two structures with different unit-cell sizes ...177

Figure 142 Optistruct optimization results for the injection mold cooling channel using a

size of 100×100 ..179

Figure 143 Generated NFGL structures for the injection mold cooling channel using a

size of 100×100 with different 𝑺𝑹 values ..180

Figure 144 Relative mechanical compliance of the NFGL structure for the injection mold

cooling channel with a size of 100×100 ..181

Figure 145 Relative thermal compliance of the NFGL structure for the injection mold

cooling channel with a size of 100×100 ..181

Figure 146 MSSIM index for the NFGL structure using a size of 10×10 at different 𝑺𝑹

values ...182

Figure 147 MSSIM index for the NFGL structure using a size of 100×100 at different 𝑺𝑹

values ...182

 xxi

LIST OF SYMBOLS AND ABBREVIATIONS

𝛼 Local volume constraint

𝐴 Area

𝐴𝑒𝑙𝑒𝑚𝑒𝑛𝑡 Solid element area

𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 Lattice unit-cell area

𝐶 Compliance

𝐶𝑚 Mechanical compliance

𝐶𝑇 Thermal compliance

CGAL Computational Geometry Algorithms Library

𝑑 NFGL lattice/node diameter

𝐝 NFGL lattice/node diameter vector

𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒 Unit-cell struts’ diameter

𝑑𝑇 Diameter type

𝑑𝑙𝑎𝑡𝑡𝑖𝑐𝑒 Unit-cell lattice diameter

𝐸 Elastic modulus

𝑛 Frequency

FEA Finite Element Analysis

FEM Finite Element Method

𝐅 Force vector

FGL Functionally Graded Lattice

ℎ Convection coefficient

𝑘 Conductivity

𝐊 Stiffness matrix

 xxii

𝐊𝐦 Mechanical stiffness matrix

𝐊𝐓 Conduction stiffness matrix

𝐊𝒉 Convection stiffness matrix

𝐋𝑐 NFGL structure struts connectivity vector

𝐦 Exterior or interior mesh nodes array

𝑚𝑒 Number of exterior nodes in the mesh

𝑚𝑖 Number of interior nodes in the mesh

𝑀𝑆𝑆𝐼𝑀 Mean Structural Similarity index

𝐍𝑐 NFGL node coordinates array

𝐍𝑐
∗ Base mesh node coordinates array

𝑁𝑒 Number of FEM elements

𝑁𝑙𝑎𝑦𝑒𝑟 Number of layers for 𝑇𝑛

NFGL Naturally Functionally Graded Lattice

Ω Design domain

𝑝 SIMP penalty

𝑃 Force

𝜌 FEM relative density

�̅� Cellular solids relative density

𝜌∗ Interior node relative density

𝛒 Relative density vector

𝜌𝑒𝑓𝑓 Unit-cell effective relative density

𝜌𝑓 Density field function

𝑅 Influence sphere radius

𝑅𝐿 Largest influence sphere radius

 xxiii

𝑅𝑆 Smallest influence sphere radius

𝑆𝑅 Unit-cell size ratio

SSIM Structural Similarity index

𝑇𝑛 Tetrahedral number

𝜃 Temperature

𝐔 Displacement vector

𝑉 Volume

𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡 Solid element volume

𝑉𝑙𝑎𝑡𝑡𝑖𝑐𝑒 Lattice unit-cell volume

𝐱 Relative density local matrix

𝐗 Relative density tensor

𝐲 NFGL local approximate relative density matrix

𝐘 NFGL approximate relative density tensor

 xxiv

SUMMARY

 Functionally Graded Lattice (FGL) Structures have shown improved performance

over uniform lattice structures in different fields. These structures contain unit-cells of

varying porosity based on different functional requirements, which alters the properties of

the structures. Another form of functional grading can be seen in materials in nature, where

the cellular structure can vary in both cell porosity and size. Therefore, to distinguish

between lattice structures that vary in porosity only and lattice structures that vary in both,

we will refer to the latter in this research as Naturally Functionally Graded Lattice (NFGL)

structures. However, research into NFGL structures' performance against FGL structures

in the literature is lacking. Furthermore, the current methods in the literature to generate

these structures are severely limited and suffer from multiple drawbacks, such as being

computationally expensive, generate non-conformal lattice structure, stochastic in

structure, limited in their ability to vary the unit-cell size ratios, and other drawbacks.

 To address these issues, this research aims to develop a framework, namely the

NFGL Framework, to generate NFGL structures without the drawbacks that exist in current

methods and to improve the performance of the generated structures using the NFGL

Framework against existing FGL structures. The NFGL Framework uses a novel method

to generate nodes for NFGL structures from the nodes of a finite element mesh that

conforms to the design domain and a density field input of the domain using a developed

simplified sphere packing algorithm, which are then connected using Delaunay

Triangulations. Furthermore, the NFGL Framework can perform a similarity analysis using

a modified Mean Structural Similarity (MSSIM) index to improve the performance of the

 xxv

generated NFGL structure. The generated structures using the NFGL Framework were

tested against the existing methods and showed to overcome the drawbacks of these

methods with improved performance and computational time. Furthermore, the generated

NFGL structures were tested against FGL structures and the results showed a performance

gain from the use of NFGL structures over FGL structures with a reduced computational

cost.

 1

CHAPTER 1. INTRODUCTION

1.1 Cellular Solids

 Cellular solids are structures made of an interconnected network of plates or struts.

The plates and struts form the faces and the edges of what is called a cell. Cellular solids

are common in nature and can be seen in materials such as wood, bones, and coral [1].

Cellular solids have been recently used to design structures that can provide multi-

functional materials that can fulfill a variety of requirements such as high specific strength,

thermal insulation, heat transfer, energy absorption, and energy harvesting [2-4]. They can

be classified into two types; a two-dimensional array of polygons, and three-dimensional

polyhedra cells as shown in Figure 1-a. Three-dimensional cells are further classified into

open-cells (Figure 1-b) and closed-cells (Figure 1-c).

Figure 1 Classification of cellular solids into a) two-dimensional polygons and three

dimensional b) open cells c) closed cells polyhedra

 The fabrication of these structures varies depending on their type. Two-dimensional

polygons, such as honeycomb structures, can be formed by sheet metal pressing and

extrusion. Three-dimensional structures can be fabricated by foaming and solid-state

processing such as electro-deposition and vapor-deposition [5, 6]. However, the produced

cells are random in their arrangement. Varying the manufacturing parameters of these

 2

processes can alter the shape and the size of the cells but the generated structures still inherit

a stochastic nature in the structure. Moreover, manufacturing processes, such as

deformation forming and investment casting, have been used to fabricate three-

dimensional, non-stochastic, arrangement of cellular structures [7]. However, these

manufacturing processes require precise control, complicated apparatus, and further steps

to assemble the structures.

 Cellular solids can further be classified based on their cells’ configuration into

stochastic and non-stochastic structures as shown in Figure 2 [8]. Stochastic structures are

commonly known as foams and they can be classified into open-cells or closed-cells foams.

Non-stochastic structures are known as lattice structures and the cell is called a unit-cell.

A unit-cell can be defined as a geometric set of points defined by a function, 𝑓(𝑥, 𝑦, 𝑧),

inside a bounding domain, 𝑔(𝑥, 𝑦, 𝑧), such that {𝑓(𝑥, 𝑦, 𝑧) ≥ 0 ∀ 𝑥, 𝑦, 𝑧 ∈ ℝ | 𝑔(𝑥, 𝑦, 𝑧) ≥

0}. The unit-cell can be replicated, scaled, and oriented across the design domain Ω. An

important property of lattice structures is the relative density, �̅�, which is a ratio between

the volume of the cellular solid in the unit-cell and the volume of the bounding domain.

The inverse of the relative density is known as the porosity of the unit-cell. Therefore,

properties that increase with relative density, reduces as the porosity increases.

 With the rise of additive manufacturing (AM) methods [9], the fabrication of

complex lattice structures has gained considerable attention over foams due to their ability

to provide lightweight and stronger structures compared to foams. The deformation of

lattice structures is governed by the stretching of unit-cells, unlike most foams where their

deformation is governed by the bending of the cell faces and edges. This deformation

behavior affects the strength of the cellular structure [10-13]. Furthermore, the strength of

 3

cellular structures is related to their relative density. The strength of foams scales as �̅�1.5

while lattice structures strength scales as �̅�. Therefore, a lattice structure with a relative

density of �̅� = 0.1 is three times stronger than a foam counterpart with the same relative

density. As a result, a lot of commercial software have included options for lattice

generation and design [14, 15] or created their own lattice design platform [16, 17].

Figure 2 Further classification of cellular solids based on cell configuration [8]

 Another important aspect of cellular structures is their ability to generate structures

that conform to the design domain. Such structures are called conformal lattice structures,

which is a term coined in [18] and they provide better stiffness to the structure than uniform

structures. Figure 3 shows an example of a uniform and a conformal lattice structure. The

term conformal will be used in this research in the same manner to denote cellular

structures that conform to the design domain surface.

 4

Figure 3 Example of a uniform and conformal lattice structures [18]

1.2 Topology Optimization

 Topology optimization aims to optimize the material distribution in a given design

domain under specified loading conditions to satisfy design constraints. Topology

optimization can be divided based on the type of structure being optimized into two types:

Discrete and Continuum as shown in Figure 4.

 Discrete topology optimization has been employed mainly to truss and frame

structures. The first study in discrete topology optimization was conducted by Michell in

1904 [19], which showed that the weight of the structure reaches a minimum when all the

members follow the path of maximum strain magnitude. A structure that follows this

optimality criterion is called a “Mitchell Truss”. An example of such a structure is shown

in Figure 5. Following his work, no significant work was done for half a century until 1964

when methods for discrete structures optimization gained traction [20]. These methods can

be categorized into three categories: Geometric, Hybrid, and Ground Structure [21]. In the

geometric method, the design variables are the joint coordinates and the cross-sectional

properties of the members. The number of design variables remains fixed during the

 5

optimization process and the joint coordinates and cross-sectional properties are optimized

at the same time. In the hybrid method, the optimization of the members is carried out first,

then the location of the joints is optimized. As for the ground structure method, a dense

network of members with all potential connections to joints is generated in the design

space, as shown in Figure 6, and the size of the members is then optimized while keeping

the location of the joints fixed. Extensions have been made to the ground structure method

to include the change in joint location and the growth of new members [22-24]. However,

with the increase in the number of design variables, discrete topology optimization methods

become computationally expensive. The complexity of optimizing these structures raises

exponentially with the number of design variables.

Figure 4 Topology optimization a) Discrete optimization b) Continuum optimization

[25]

 6

Figure 5 An example of a Michell Truss [19]

Figure 6 Discrete optimization of a truss structure with Ground Structure

optimization a) Ground structure b) optimized truss design [26]

 The early use of topology optimization in continuum structures traces back to the

homogenization approach by Bendsoe and Kikuchi in 1988 [27]. The homogenization

approach is a multi-scaling optimization, where the design space is partitioned into small

patterned microstructures of a lower scale compared to the actual structure’s scale as shown

in Figure 7. In this optimization method, the design variables are the parameters of the

lower scale composites. This, however, increases the computationally expensive

immensely, which makes it cumbersome if not impossible to evaluate (for optimization

cases other than compliance) the optimal parameters of the microstructure. Furthermore,

 7

there is no definite length-scale associated with the microstructures, making it difficult to

fabricate the generated designs [28, 29]. Due to these drawbacks with the homogenization

approach, Bendsoe proposed a simplified density approach [30], which was named the

Solid Isotropic Material with Penalty (SIMP) approach [31]. The SIMP approach uses the

Finite Element Method (FEM), as shown in Figure 8, to represent the design domain Ω

under specified loading conditions and assumes a relative density value 𝜌 (not to be

confused with the cellular solids relative density �̅�) that is assigned to each element in the

FEM model. The design variables in the SIMP optimization are the relative density values

𝜌𝑖 of each element 𝑖 in which a value of 𝜌𝑖 = 1 denotes a solid region and a value of 𝜌𝑖 =

0 denotes a void region in the design domain. However, using a discrete value for 𝜌𝑖 would

require the use of discrete optimization methods. So, in order use gradient based

optimization methods, the values of 𝜌 are allowed to take any value between 0 and 1. To

avoid any ambiguity on the interpretation of intermediate values of 𝜌, a penalty is imposed

on these values to push them to either 0 or 1.

 8

Figure 7 Homogenization topology optimization for continuum structures [27]

Figure 8 Topology optimization problem of a generalized shape

 9

 A typical SIMP optimization formulation for minimizing compliance has the

following form:

min𝐶(𝛒) =
1

2
∑𝜌𝑖

𝑝
𝐔𝑖

𝑇𝐊𝑖𝐔𝑖

𝑁𝑒

𝑖=1

 (1)

Subject to

 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 1 (2)

 𝐔(𝛒) = 𝐊(𝛒)−𝟏𝐅 (3)

∑𝑉𝑖𝜌𝑖

𝑁𝑒

𝑖=1

≤ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (4)

 Where 𝐶 is the compliance of the structure, 𝛒 is the vector of containing the relative

densities 𝜌 of the FE model, 𝑁𝑒 is the number of FEM elements in the model, 𝑝 is the

penalty exponent of the SIMP formulation, 𝐔 is the vector of nodal displacements, 𝐊 is

global stiffness matrix, 𝜌𝑚𝑖𝑛 is the minimum relative density value to avoid any numerical

instability in the FEM model, 𝑉𝑖 is the volume of the FEM element, 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 is the target

volume. The penalty exponent is typically chosen as 𝑝 = 3 [32] to ensure that a design

with distinct solid and void regions is obtained from the optimization process. However,

the generated structures from topology optimization often resemble organic shapes that are

often difficult if not impossible to manufacture with traditional manufacturing methods,

which might also require shape optimization and manually interpreting the generated

designs [33]. This has moved the attention towards AM to fabricate the generated

 10

structures. However, intermediate densities that still exist are converted into either a solid

or void, which leads to differences between the optimization results and the fabricated part

via AM as can be seen in Figure 9-b. This difference will cause changes in stress

distribution in the part and would also violate the volume constraint, due to the conversion

of elements into solids. Furthermore, even with AM technology, the organic shape of the

generated structure can still pose a problem during fabrication. The overhangs present in

the generated structure require support structures, which increase the build time, cost, and

difficulty in post-machining (Figure 9-c) [34]. Moreover, three-dimensional parts can have

enclosed voids that can trap support material or build materials, which are impossible to

remove without damaging the fabricated part (Figure 9-d) [35]. Another issue with

generated structures from topology optimization is that the obtained design is not optimal

mathematically compared to using lower penalty values. This has directed attention to the

use of lattice structures. Since lattice structures are open cells, they can be fabricated with

AM without excessive use of support materials or creating enclosed voids that can trap

build material inside. Furthermore, lattice structures allow the use of different penalty

values in the optimization process, allowing for a more optimal solution compared to the

solid counterpart [14]. This combination of topology optimization and lattice structures

facilitated the design of structures known as Functionally Graded Lattice structures.

 11

Figure 9 Structure optimization with SIMP method a) Design domain b)

Optimization result c) Solid model obtained from optimization showing a large

overhang structure d) Section view showing enclosed void [35]

1.3 Functionally Graded Lattice (FGL)

 Functionally Graded Lattice (FGL) structures are structures where the density

gradient of the solid material changes over the volume, which leads to changes in the

mechanical properties of the lattice structure [36]. The change in density gradient can be

due to changes in porosity, unit-cell size, or orientation. A similar gradient change can be

seen in cellular structures in nature such as bones and flower stems as shown in Figure 10

[37-39], where the relative density changes based on function and location. The earliest

use of FGL structures can be traced back to the homogenization optimization in [27], where

the patterned composites that constitute the structure have varying relative density. But, as

mentioned in section 1.2, the process was computationally expensive and the fabrication

of such structures had its complications. But, with advances in AM technologies, it

facilitated the fabrication of FGL structures with reasonable time and cost. Thus, directing

researchers’ attention into investigating the performance of FGL structures and their design

and fabrication methods.

 12

Figure 10 Example of functionally graded cellular structures in nature [37, 38, 40]

 Kalita et al. [41] used fused deposition modeling (FDM) to fabricate scaffolds with

segments of varying relative density in the radial direction as shown in Figure 11. However,

the relative density in each segment was determined manually by having the innermost

segment of low density and the outermost of high density. This was due to the lack of

models that relate the lattice grading to the mechanical requirements in the CAD systems

that time to produce a continuous grading in the lattice [42].

 13

Figure 11 Scaffold design with varying radial porosity [41]

 Burblies et al. [43] proposed the use of topology optimization and Selective Laser

Sintering (SLS) to design and fabricate 2D FGL structures to mimic bone tissue porosity.

The FE mesh elements were used as basic unit-cells and the porosity of each unit-cell was

determined by mapping the relative density from the optimization results in Figure 12-a to

each unit-cell in Figure 12-b. However, while the optimization method was similar to the

SIMP optimization, it used discrete porosities that were correlated to the optimization

relative density values.

 Nguyen et al. [44] used FEM stress results in their Size Matching and Scaling

method to generate FGL structures from a library of unit-cells where the diameters were

pre-optimized based on the local stress states for each unit-cell. The method relies on the

observation that the stress distribution in the lattice unit-cell will be similar to that of a

solid FEM element of similar shape. This allowed the method to reduce the massive

number of design variables into two variables, which are the minimum and maximum

 14

diameter values. Thus it can generate FGL structures with a reduced computational cost

compared to using discrete topology optimization algorithms. Figure 13 shows the unit-

cell library and its application on a Micro Air Vehicle (MAV).

 The use of the SIMP method to create NFGL structures was proposed by Brackett

et al. [45] in 2011, where the unit-cell porosity is treated as a continuous variable that is

correlated to optimization results. This allowed for the relaxation of the penalty value

during the optimization process, which allows for the generation of more optimal designs

compared to using a penalty value of 𝑝 = 3. Although a value of 𝑝 = 1 is possible to use,

most of the work in the literature uses a value around 2, which better correlates the stiffness

of the unit-cell with the optimization results and agrees with Gibson and Ashby’s work [1].

Figure 14 shows an example of mapping the SIMP results to an FGL structure for a

cantilever beam subjected to a point load at the bottom corner end.

Figure 12 a) Topology optimization result under bending loading condition b)

Generated FGL structure from optimization result mapping [43]

 15

Figure 13 Size Matching and Scaling unit-cell library a) MAV loading conditions b)

Stress field results c) Generated FGL structure [44]

Figure 14 Generated FGL structure from mapping SIMP optimization results to

unit-cell porosity [45]

 16

 In our lab [46], we developed the Relative Density Mapping (RDM) method, which

used multi-objective SIMP optimization to map the relative density values to a lattice

structure that is larger in scale to the FEM mesh used in the optimization. Unlike the work

done in by Brackett et al., the RDM method was not mapping the relative density values

by an “element to unit-cell” basis, but rather from a collection of elements surrounding the

structure’s struts. The relative densities were also weighted based on their distance to the

strut, thus reducing the influence of elements that are further away from the FGL strut on

the strut’s size. The FGL structure was shown to handle multiple loading conditions with

a reduced computational cost in the design process. Figure 15 shows an application

example of the RDM method.

Figure 15 Application of RDM method a) SIMP optimization results b) Generated

FGL structure [46]

 The approach of using the SIMP method to generate FGL structures was then

implemented by [14] in their software Optistruct. The FE mesh edges are replaced by beam

elements with their diameters determined based on the optimization relative density values.

 17

 Panesar et al. [47] presented in their work different strategies for mapping SIMP

optimization results to design lattice structures. In their work, they used the optimization

results to generate a structure that is mixed between solid and uniform lattice, which they

called intersected; a graded lattice structure; and scaled lattice that uses scaled porosity

values compared to the graded structure as shown in Figure 16. However, the optimization

was unpenalized, which caused discrepancies between the lattice stiffness and the

optimization result. The solid structure in their work had the highest stiffness followed then

by the intersected and graded structure but it required more supporting structures. The

uniform lattice had the lowest stiffness of all lattice structures, which is similar to the

findings in [48].

Figure 16 Different strategies to generate FGL structures a) Intersected b) Graded

c) Scaled [47]

 18

 Other work in the literature used Asymptotic Homogenization (AH) to derive the

material stiffness matrix of the FEM elements as a function of the unit-cell porosity and

then utilizing it in the SIMP optimization to generate FGL structures [49-52]. This allowed

for the optimization to be carried out without having discrepancies between the lattice

properties and the optimization result, but it is limited to the unit-cell configuration that

was homogenized and it increases the computational cost of the optimization process

compared to the SIMP optimization [51, 53]. Further application of AH to design FGL

structures can be seen in [54, 55], where FGL structures were used to optimize the cooling

channels of injection molds. AH was used to derive the thermal and mechanical properties

of stiffness and conductivity matrices for a cubic unit-cell. Similarly, the AH approach was

deployed in [56-58] to design and fabricate different FGL unit-cell types. The approach

was applied to design Face-Centered Cubic (FCC), Body-Centered Cubic (BCC), and Octet

unit-cells in [56, 57] and to design Gyrod FGL structures in [58] and.

 On the experimental work side, Maskery et al. [59] conducted an experimental

investigation on the mechanical behavior of FGL structures compared to non-graded lattice

structures. The experiments have shown that FGL structures are more favorable for energy

absorption due to their predictable deformation behavior. The same findings were observed

in [3, 36, 60, 61] when comparing FGL structures using different unit-cell configurations.

The plateau stress was also notably higher in FGL structures when compared to their non-

graded counterparts and showed better energy absorption as can be seen in Figure 17.

 19

Figure 17 Experimental compression test on uniform lattice structures and graded

lattice structures [60]

 All the work mentioned above focused on FGL structures with a porosity gradient

only while keeping the unit-cell size fixed. However, as seen in Figure 10, structures in

nature tend to not only vary in porosity but also the size of the cells. Therefore, to

differentiate between the research done on FGL structures with only porosity gradient and

FGL structures with both porosity and unit-cell size gradient, we will use the name

Naturally Functionally Gradient Lattice (NFGL) structures in this research to for FGL

structures with both porosity and unit-cell size variation, since these structures are closer

to functionally graded materials in nature.

1.3.1 Naturally Functionally Graded Lattice (NFGL) Structures

 As mentioned in the previous section, the term NFGL will be used to denote FGL

structures with both porosity and unit-cell size variation to differentiate between them and

FGL structures with a porosity gradient only. In this section, a review of the research done

 20

on NFGL structures in the literature will be provided. Detailed on some of the work

regarding this work will be provided in CHAPTER 2 to fully explain

 A parametric approach using Function Representation (Frep) to create lattice

structures with varying unit-cell sizes was proposed by Pasko et al. [62] in 2010 and was

improved upon by Frayazinov et al. [63] in 2013. The unit-cell would be defined using a

continuous real function inside the design domain and replicated using a replication

function. This would allow for the change in porosity, unit-cell size, and even type as

shown in Figure 18. However, this requires parametrizing the unit-cells and determining

an appropriate replicating function for different design domains accordingly. This becomes

an issue when dealing with multiple complex design domains especially when conformal

unit-cells are required and can distort the unit-cells severely.

Figure 18 Generated NFGL structures using Function Representation a) Unit-cell

type grading [63] b) Unit-cell size grading [62]

 Brackett et al. [64] in 2014 used Error Diffusion methods [65] to dither the pixels

of a density field input. These pixels then form the joints or nodes of the NFGL structure,

which then generate the struts of the structure using Delaunay triangulation or Voronoi

tessellation based on a density field input that represents some desired functional gradient

 21

as shown in Figure 19. But since the Error Diffusion method relies on the use of a filter of

a fixed size, it limits the ability to freely set the maximum unit-cell size that can be

generated within the structure. Furthermore, it requires a rectangular domain to dither the

NFGL structure nodes.

Figure 19 Application of the Error Diffusion method to generate NFGL structures

a) Input density field b) Generated NFGL structure [64]

 The Error Diffusion approach was also adapted in the work by Lu et al. [66] and

Kuipers et al. [67]. In [66] the Error Diffusion method was used to create nodes that will

act as sites for Voronoi foam cells based on a stress field input. The number of sites and

the porosity of each site are then optimized to minimize the total weight of the structure

under stress constraints. Figure 20 shows the steps used in generating and optimizing a

foam structure. As for the work in [67], the design domain is first subdivided into cells of

various sizes based on the required density distribution, then Error Diffusion is further

utilized to reduce the discrepancy between the subdivided cells and the density distribution.

The generated cells were then used to create space-filling surfaces accordingly which are

then trimmed to create the foam structure of the design domain as shown in Figure 21. Both

methods rely on creating foam structures that are trimmed in order to fit inside the design

domain as seen in the figures.

 22

Figure 20 Generated structure using Error Diffusion a) Stress field b) Generated

Voronoi sites c-d) Two steps of the optimization process e) Optimized graded foam

structure [66]

Figure 21 Generation of graded foam structure using Quadtrees and Error

Diffusion a) Design domain b) Input density field c) Generated Quadtree structure

d) Quadtree structure after Error Diffusion e) Generated space-filling structure f)

Generated graded foam structure [67]

 Martinez et al. [68] developed a method to use randomly distribute nodes inside

cells based on a desired density field input to generate Voronoi foams as seen in Figure 22.

Although the structure generated is considered a foam structure, the method can still be

used to generate NFGL structures. The generated nodes are then used to generate the

Voronoi cells, which edges will become the structure’s struts. Unlike the Error Diffusion

method, the generated structures with this method are not restricted in the unit-cell size

generated. However, due to the randomness in the algorithm, each realization will have a

deviation in the elastic modulus that was measured to be around 3.3%. This approach was

 23

then used in [68] to generate orthotropic foams by utilizing the stress field to control the

orientation of the struts, and the density field from SIMP optimization to control the

porosity and stretch of the generated cells. The struts are generated by connecting a node

to its k-nearest neighbors in an asymmetrical manner controlled by the orientation and

stretch desired at the node.

Figure 22 A model of a finger generated using randomized Voronoi foam [68]

 Another approach, to generate Voronoi foams with varying unit-cell size, was

proposed by Wang et al. [69]. But it also relies on randomness when distributing nodes

inside the design domain. The nodes are generated in a uniform manner as shown in Figure

23, and then randomly displaced inside a spherical region, which radius is based on the

required spatial variation. The nodes are then used to generate the Voronoi cells that would

become the foam structure. However, the generation of the uniform nodes requires the

distribution function to be known in order to generate the nodes. And this is not always

available, especially when using distributions that are generated from FEM or topology

optimization results, which limits the use of this method.

 24

Figure 23 Generation of NFGL structure by random nodal displacement a) Uniform

nodes b) Randomly displaced nodes c) Generated NFGL structure [69]

 Wu et al. [70] used 2d extruded graded rhombic unit-cells as self-supporting infills.

The generation of the structure was carried out by subdividing each rhombic unit-cell as

needed. This allowed the method to generate size variation in each unit-cell but it required

an optimization process using penalized SIMP optimization with additional constraints,

which affects the computational cost. Figure 24 shows an example of an optimized

structure using this method. The structure in Figure 24-a is the initial shape of the design

domain. The unit-cells are then subdivided through the optimization process until the

objective and constraints are minimized as shown in Figure 24-b.

Figure 24 Structure optimization by using rhombic unit-cells a) Initial structure b)

Optimized structure [70]

 25

 Another approach to create similar graded structures was proposed by Lee et al.

[71] where ellipses were used instead of rhombic cells. The ellipses are created by first

producing a Voronoi diagram of the cross-section with the highest area that is parallel to

the build direction, and then placing a circle approximation of the ellipse at the vertex with

the largest empty circle called the clearance probe. The Voronoi diagram is then

regenerated locally with the new ellipse included and the process is then repeated until a

required amount of ellipses is generated as shown in Figure 25. The ellipses are then

extruded to fill the part that is being fabricated.

Figure 25 Generated hollowed foam structure a) Voronoi diagram with inserted

ellipse b) Insertion of four more ellipses c) Voronoi Diagram with 100 ellipses d)

Fabricated part [71]

 Zhang et al. [72] designed orthopedic casts to be used for thermal comfort, by

distributing Voronoi unit-cells across the surface. The distribution was also carried out

through an optimization process to optimize the location of the cell centroid based on a

thermal distribution map over the design surface. Figure 26 shows a comparison for the

temperature difference between the cast with optimized unit-cell size and a uniform unit-

cell cast. As shown in the figure, the cast with varying unit-cell size showed lower

temperatures compared to the uniform cast.

 26

Figure 26 Skin temperature before and after wearing an orthopedic cast design)

optimized cast b) uniform unit-cell cast [72]

 Wu et al. [73] proposed a method to generate NFGL structures by adding a local

volume constraint to the SIMP optimization algorithm that controls the percentage of solid

material in a given region of elements. This allowed the method to create bone-like porous

structures as shown in Figure 27. However, the largest unit-cell size is restricted by the size

of the region of elements used to determine the percentage of solid material. Furthermore,

the additional constraints increase the computational time for the optimization to converge.

 27

Figure 27 Generation of bone-like porous structure using local volume constraint

optimization [73]

 Wu has also proposed the Adaptive Quadtree optimization approach in [74], which

focused on subdividing cells similar to the work in [70]. But it also relied on conducting a

penalized SIMP optimization process with additional constraints. and the generated

structure does not conform to the design domain surface.

 As can be seen from the above literature, little work has been done in researching

the performance of NFGL structures, and the work shown in the literature to generate

NFGL structures suffers from multiple limitations. It either has a limit on the maximum

unit-cell size, relies on randomness in the distribution of nodes, or require an optimization

process to be carried out in order to generate structures, which increases the computational

cost with the increase in design variables due to the need of conducting FEA in each

iteration. However, the work in the literature that does require the use of optimization

methods tend to generate NFGL structures with varying unit-cell sizes. This shows that

NFGL structures generate structures with improved performance compared to FGL

structures, which is apparent in natural materials also. However, the research done into

 28

generating these NFGL structures for use in practical applications and their performance

compared to FGL structures is still limited and needs further exploration.

1.4 Research Objectives

 The limitations of the existing methods in the literature in generating NFGL

structures and the limited work on investigating the performance of NFGL structures

against FGL structures limit the utilization of these structures in practical applications. The

work in this research aims to overcome these limitations. Thus, the objectives of this

research are:

• The development of a framework to design NFGL structures in a deterministic and

computationally efficient manner.

• To provide the ability to create NFGL structures of varying unit-cell size ratios

without strict limitations or restrictions.

• To provide better structural performances of NFGL structures against existing FGL

structures.

1.5 Research Questions

 In section 1.3.1, it was mentioned that some of the algorithms in the literature rely

heavily on conducting an optimization algorithm to optimize the location of nodes in order

to generate NFGL structures. This requires the use of FEA in each iteration of the

optimization process, which increases the computational cost to generate the structure.

Moreover, some of the algorithms rely on pseudo-random algorithms to generate seeds that

are used to generate the structure nodes. This use of randomly generated nodes to generate

 29

the structure will produce a different structure with each execution of the algorithm,

causing a difference in the properties of the generated structures. This difference will add

to the computational cost when uncertainty quantification is needed for reliability analysis

[75-77]. Furthermore, since the nodal placement is random, it will not generate conformal

NFGL structures. To address these issues, the following research question is formulated

and answered in this research.

Research Question 1:

How can we reduce the computational cost while controlling the randomness in nodal

placements to generate conformal naturally functionally graded lattices?

Hypothesis 1:

If the NFGL nodal placement is determined based on a predetermined uniform grid of

nodes that conforms to the design domain surface in a non-iterative manner, then the

computational cost would be reduced and the NFGL structure would be generated in a

deterministic way and conforming to the design domain.

 Based on hypothesis 1, the algorithm that determines the placement of nodes in the

design domain that will be used to generate the NFGL structure plays a significant role. To

reduce the computational cost, the algorithm should not require the use of an optimization

algorithm to adjust the location of nodes in each iteration. But it can utilize the information

from a density field that can be generated from an unpenalized SIMP optimization or the

solution of an FEA problem, such as temperature or stress distribution.

 30

 Using the solution of an unpenalized SIMP optimization would not cause a

significant increase in the computational cost since the topology optimization problem

would be reduced into a convex optimization [78], which is not as computationally

expensive as penalized SIMP optimization. Furthermore, the same density field can be used

to determine different nodal placements to generate different NFGL structures with varying

unit-cell size ratios without having to regenerate a new density field for each structure, thus

saving more computational time. Moreover, the number of elements used in the

optimization would be would lower. Unlike optimizing the NFGL directly in each iteration,

where the optimization process requires additional constraints, finer mesh, and penalization

to ensure distinct solid/void regions in the other approaches that were proposed in the

literature as discussed earlier. Thus increasing the number of design variables and

computational cost immensely compared to just using the results from unpenalized SIMP

optimization.

 To control the randomness in the generated NFGL structure, the algorithm should

use the information from the density field to determine the placement of nodes without

relying on stochastic approaches. This can be achieved if the nodes were generated from a

uniform grid of predetermined nodes in the structure. As stated in hypothesis 1, if the

placement of these predetermined nodes conforms to the design domain, then the generated

NFGL structure will also conform to the design domain. To generate such a gird, the use

of FE mesh nodes that conform to the design domain is proposed. A similar concept,

although doesn’t work for non-rectangular design domains, can be seen in the work by

Brackett et al. [64] where the density field image pixels were used to generate a uniform

grid of nodes that are transformed into a grid of varying distances between the nodes using

 31

Error Diffusion. However, the use of error diffusion has its limitations on the maximum

unit-cell size ratio that can be generated. The filters used in the process [79] restricts the

size of the maximum unit-cell size based on the filter size [80]. Using a larger filter will

affect the smallest unit-cell size achievable. Furthermore, controlling the unit-cell size ratio

requires modifying the input density field in an iterative process to reach the desired ratio.

From these issues, we formulate the second research question as follows:

Research Question 2:

How can we remove the restriction on the unit-cell size ratio of NFGL structures in a

computationally efficient way?

Hypothesis 2:

If a node can control the presence of other nodes adjacent to it from a normalized density

field input rather than a shared effect of multiple nodes on the existence of a node, then the

unit-cell size ratio can be adjusted.

 From hypothesis 2, the proposed algorithm should allow the nodes in the FE mesh

to control if other nodes should be adjacent to it or not, unlike when using a filter where

the nodes alter the value of other adjacent nodes according to how the filter is set up. The

adjacency to a node should also be controlled by the density field value at the node. A

similar concept can be seen in adaptive meshing [81], where FE elements of varying sizes

are generated based on the concept of ellipse packing [82]. Ellipses in 2D or ellipsoids in

3D of specific size and orientation are generated based on the size and anisotropy

 32

requirements in the elements. Then, these ellipses/ellipsoids are packed in an iterative

process where the ellipses are moved to ensure no overlapping between them. The center

of each ellipse/ellipsoid is then used to generate the nodes to create the FE mesh. In this

manner, adaptive meshing controls the presence of nodes around each other, allowing for

the generation of elements with different size ratios as needed that can be used to generate

different unit-cell size ratios. However, the use of an iterative process to pack the

ellipses/ellipsoids will incur additional computational cost each time the domain is

remeshed and used to generate NFGL structures at different unit-cell size ratios. This led

to the consideration of using sphere packing instead of ellipsoids in this research to reduce

the computational cost associated with the orientation of ellipsoids. But this approach

would also require the packing of spheres to be computed for each NFGL size

requirements.

 A simpler approach is proposed to be used in this research to eliminate the need to

compute the spheres’ packing process and further reduce the associated computational cost.

The approach relies on utilizing the predetermined nodes that conform to the design

domain, as explained in the requirements for the first research question. These nodes are

then either removed or kept from the mesh based on their value in the normalized density

field and the unit-cell size ratio needed. Each node will be treated as a sphere with a radius

that is inversely proportional to the density value of the node. This will convert nodes of

higher density values into spheres of smaller sizes compared to nodes of lower density

values. If a node of lower density value is inside the sphere of a node of higher density

value, then the node with the lower density value will be removed from the mesh. Once the

process removes all the nodes that need to be removed, the resulting grid would be used to

 33

generate the NFGL structure struts. By varying the radii of the spheres, the unit-cell size

ratio can be controlled without the need to regenerate a new mesh or through an iterative

process that requires modifying the density field input for each desired unit-cell size ratio.

CHAPTER 3 will provide a detailed explanation of the algorithms based on hypotheses 1

and 2.

 With the proposed algorithm being able to generate NFGL structures at different

unit-cell size ratios, the performance of the generated structure will vary. Algorithms that

use optimization methods in each iteration tend to generate structures of varying unit-cell

sizes. This shows that the variation in unit-cell size can indeed improve the performance

of structures, which is also similar to materials in nature. But as the variation in unit-cell

size increases, it can reach a point where it does not accurately represent the density field

input. In this case, the performance is most likely to drop. From this issue, the third

research question is formulated as follows:

Research Question 3:

How can we determine an appropriate unit-cell size ratio to improve the performance of

NFGL structures to satisfy multifunctional requirements?

Hypothesis 3:

If we can quantitatively measure the similarity between the NFGL structure and the density

field input that generated it, then we can correlate the variation in unit-cell size to the

structural performance of the NFGL structure.

 34

 Based on hypothesis 3, there needs to be a way to correlate the generated NFGL

structure to the input density field. Since the NFGL structure and density input are different

in terms of the data that each represents, it is necessary to convert the NFGL into an

approximate density field based on its unit-cell size ratio. The approximate density field

should then be compared to the input density field to determine how similar the NFGL

structure is to the input density field. To compare the two density fields, it is proposed in

this research to utilize image quality assessment (IQA) methods [83]. Three methods were

investigated, Root Mean Square (RMS), Peak Signal to Noise Ratio (PSNR) and Mean

Structural Similarity (MSSIM) index [84]. Both RMS and PSNR fail to capture certain

distortions in images compared to the MSSIM index. Images of different distortions could

have the same RMS and PSNR error values even if some of these distortions do not cause

a significant change in similarity to the original image. Furthermore, RMS error values are

calculated such that the higher the error is, the higher the RMS value becomes. Similarly,

PSNR error values are calculated such that the lower the error is, the higher the PSNR

value becomes. So there is no direct relation between the error values and how similar two

images are, since the error values are unbounded. This makes it difficult to measure the

similarity between the density fields and investigate the effects of change in unit-cell size

ratio on the performance of NFGL structures. As for the MSSIM index, the similarity is

calculated as a value between 0 and 1, where 0 means that the images being compared are

totally uncorrelated while 1 means that the images are exactly the same. Furthermore, since

the values are bounded between 0 and 1, this facilitates the investigation of the effects of

change in unit-cell size ratio for different geometries on the performance of NFGL

structures.

 35

 Since the MSSIM index was developed to be used on pixels, the method will be

improved upon in this research to deal with voxels that represent the density fields in 3D.

Furthermore, the MSSIM index will be modified to deal with the density fields of different

geometries. A detailed explanation of the improvement to the MSSIM index will be

provided in CHAPTER 3.

1.6 Dissertation Organization

 The organization of the chapters of this dissertation is shown in Table 1. Chapter 1

provides an introduction to cellular structures and topology optimization methods. A

literature review of FGL and NFGL structures is also provided in the chapter. The chapter

also outlines the objectives of this research and the research questions and hypothesis.

Table 1 Organization of the Dissertation

Chapter 1 Introduction

Chapter 2 Current State of the Art

Chapter 3 Naturally Functionally Graded Lattice (NFGL) Framework

Chapter 4 Application Examples

Chapter 5 Conclusions and Future work

 Chapter 2 outlines the currently existing methods that can generate NFGL

structures and provides a detailed explanation of each method and how they generate

NFGL structures along with the advantages and drawbacks of each method. The chapter

 36

then gives a summarized discussion on the drawbacks of these methods and what are the

expected advantages of this research in generating NFGL structures.

 Chapter 3 will provide a detailed explanation of the framework that will be

developed to generate NFGL structures in this research. Each algorithm that is involved in

the development of the framework will be discussed in detail along with an example

showing how each algorithm work.

 Chapter 4 will demonstrate the application of the developed framework in three

examples. The first example will compare the developed framework with the methods in

chapter 2 to evaluate the performance of the framework. The second example will evaluate

the performance of the developed framework against an FGL structure on the design and

optimization of an automotive control arm. The third example will also evaluate the

performance of the developed framework against an FGL structure but on a

thermomechanical problem.

 In chapter 5, concluding remakers will be provided by addressing the research

questions and determining how the work, done in the research, answers them, and a list of

the contributions this research is providing. Then, a list of the areas on which further future

work can be explored will be presented.

 37

CHAPTER 2. CURRENT STATE OF THE ART

 In this chapter, the common methods that are used to generated NFGL structures

will be discussed in detail and their advantages and drawbacks will be outlined. These

methods are the Error Diffusion method by Bracket et al. [64], Stochastic Nodal Generation

by Martinez et al. [68], Local Volume Constraint Optimization by Wu et al. [73], and

Adaptive Quadtree Optimization by Wu et al. [74]. These methods were chosen since the

other methods in the literature build upon them or are similar in concept to them and can

be used to generate NFGL structures and not just foams. The methods were named based

on the procedure used in order to generate NFGL structures.

2.1 Error Diffusion

 The basic idea of this method is to use dithering to generate NFGL structure nodes

as shown in Figure 28. The figure shows an input density field (Figure 28-a) and the

generated NFGL nodes (Figure 28-b) using Error Diffusion to dither the pixels of the input

density field.

 To generate the NFGL nodes, an array representing the values of the input density

field from 0 to 255 is generated. The values in the array, 𝑝, are then compared to a

predefined value, t, as follows

𝑏𝑖,𝑗 = {

255 𝑖𝑓 𝑝𝑖,𝑗 > 𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

 38

 where 𝑏 represents the values in a separate array that determines if pixel 𝑖, 𝑗 should

be placed or not based on 𝑏 values (255 = white pixel and 0 = black pixel). Once the value

of 𝑏 for a pixel is determined, an error term, 𝑒, is calculated as

 𝑒𝑖,𝑗 = 𝑝𝑖,𝑗 − 𝑏𝑖,𝑗 (6)

Figure 28 Generation of NFGL nodes using Error Diffusion a) Input density field b)

Generated NFGL nodes [64]

 The pixels adjacent to 𝑝 are then modified based on the value of 𝑒 by diffusing the

error to the adjacent pixels, hence the name of the method. The diffuse process is done by

applying a filter on the adjacent pixels as follows

 39

[

𝑝𝑖+1,𝑗
𝑝𝑖+1,𝑗+1
𝑝𝑖,𝑗+1
𝑝𝑖−1,𝑗

] = [

𝑝𝑖+1,𝑗
𝑝𝑖+1,𝑗+1
𝑝𝑖,𝑗+1
𝑝𝑖−1,𝑗

] + 𝑒𝑖,𝑗

[

𝑓𝑖+1,𝑗
𝑓𝑖+1,𝑗+1
𝑓𝑖,𝑗+1
𝑓𝑖−1,𝑗]

 (7)

 Where 𝑓 is a fraction determined by the filter used. The filter used was the one

proposed by Floyd and Steinberg [79] which is shown in Figure 29. The error diffusion

process continues until all the pixels in 𝑝 are used and all the values in 𝑏 are calculated. An

example of this process is shown in Figure 30 for a 5×5 grid.

 𝑝𝑖,𝑗 7/16

3/16 5/16 1/16

Figure 29 The two-dimensional filter proposed by Floyd and Steinberg

 As for the boundary pixels, a one-dimensional Error Diffusion is applied. This is

done by using the same filter but without diffusing the error values to the pixels that are

not on the boundary. Once all NFGL nodes are generated, the NFGL structure is created

using either Delaunay triangulation or Voronoi tessellation. Figure 31 shows the generated

NFGL structure using Delaunay triangulations for the NFGL nodes shown in Figure 28.

 40

Figure 30 An example of the dithering process using the Error Diffusion method for a 5×5 grid of pixels [64]

 41

Figure 31 Generated NFGL structure from Error Diffusion method a) NFGL nodes

b) Generated NFGL structure using Delaunay triangulation [64]

 Based on the steps that the Error Diffusion method conducts, it can be apparent that

there are drawbacks to the method. The first drawback is that it requires an image of the

input density field to use its pixel values, which means that the design domain has to be

rectangular. If a non-rectangular design domain was used, it has to be placed into one so

that it can be used. The second drawback is that the generated NFGL structures will not be

conformal if the design domain is not rectangular, which will be shown later in section

4.1.4. The third drawback is that there is still a restriction on the maximum unit-cell size

ratio that can be achieved by this method. The size of the unit-cells is affected by pixel

density used to represent the input density field and on the values of the density field.

Increasing the pixel density would create smaller unit-cells, but would also reduce the size

of the large unit-cells. Adjusting the input density values would increase the large unit-

cells size, but the increase is limited due to the size of the filter. Figure 32 shows an example

 42

of how the unit-cell edge length is affected as the input density field values are increased.

The values were changed from 0 to 240 as the method produces empty spaces when the

value is close to 255.

Figure 32 Change in mean unit-cell edge length as the input density field values are

increased [64]

 The advantages of this method can be seen in its low computational cost, as it

doesn’t conduct an iterative optimization algorithm when generating NFGL nodes. The

second advantage is that it can deal with any type of density field input as long as it is in a

rectangular domain. The method will place the nodes through the design domain in a

manner that captures the input density distribution requirement.

2.2 Stochastic Nodal Generation method

 This method was used to generate Voronoi foams in the literature. However, it

could be adjusted to generate NFGL structures by triangulating the generated node using

Delaunay triangulation just like in the Error Diffusion method. The key idea of this method

 43

is to subdivide cells based on an input density field. Unlike the Error Diffusion method,

the Stochastic Nodal Generation method generates its own nodes rather than using pre-

placed nodes and turning them on or off. However, the nodes are generated in a stochastic

manner. The node generation process starts by first determining an input cell size, 𝑙, and

center, 𝑠, that will be used in an input density function, 𝜌𝑓. If the value of 𝑙2 × 𝜌𝑓(𝑆) is

greater than 22 in a two-dimensional case, or 𝑙3 × 𝜌𝑓(𝑆) is greater than 23 for a three-

dimensional case, the cell is subdivided and the values of 𝑙 and 𝑆 are changed to reflect the

new cell size and center. This process carries on until the condition is met. Once the

condition is met, nodes are placed randomly inside random subdivisions of the currently

selected cell. The higher the density value, the more subdivisions are needed to meet the

required condition.

 An example of this is shown in Figure 33. The input density field is shown in Figure

33-a, while Figure 33-b shows the cell subdivisions based on the input density field. It is

clear in the figure that the cell has more subdivisions in regions of higher density compared

to regions of lower density. Figure 33-c shows the generated nodes that were placed in

random locations inside of each subdivision while Figure 33-d shows the generated NFGL

structure from the nodes.

 44

Figure 33 Generation of NFGL nodes using Stochastic Nodal Generation method a)

Input density field b) Cell subdivision c) generated NFGL nodes

 The stochastic nature of the method adds uncertainty to the generated NFGL nodes

location as can be seen in Figure 34. Although this behavior could be modified in this

method, it will still be included in order to address the issues associated with random nodal

placement, since there are other methods in the literature that rely on stochastic means to

generate NFGL nodes. This would help in addressing the other issues that this method

exhibits.

Figure 34 Different NFGL nodes generated with each iteration of the Stochastic

Nodal Generation method

 45

 Based on the description of the method, a couple of drawbacks arise when

generating NFGL structures. The first, as stated earlier, is that each iteration of the method

can generate structures with different NFGL nodes. This difference causes deviation in the

mechanical properties of the generated structure which can reach 3.3%, which when added

to uncertainties from manufacturing can add more. The second issue is that the generated

structures will be conformal when creating NFGL structures with Delaunay triangulations.

Using Voronoi tessellations will create foam structures that are bending dominant, which

are weaker as explained in section 1.1 regardless of the node placement, whether it is

random or not. The third and major issue is the dependence of the method on the scale of

the design domain. If condition to place nodes was met without the method adequately

subdividing the cell based on the input density field, the method would generate nodes that

do not represent the input density field at all. This can happen in small-scaled problems

where small values of 𝑙 can create values that are less than 22 or 23. Further discussion on

this issue will be discussed in details in section 4.1.3

 As for the advantages of the method, the first is its low computational cost. This

related to the fact that the method does not require expensive optimization processes when

placing the nodes inside the design domain. The second advantage is that it generates its

own nodes without the need to have an initial grid of nodes.

2.3 Local Volume Constraint Optimization

 This method aims to generate bone-like structures that can be used as infills for 3D

printed parts by introducing additional constraints to the SIMP optimization method. The

 46

additional constraints aim to restrict the local material accumulation in a region

surrounding an element. The optimization formulation is as follows

min𝐶(𝚽) =

1

2
𝐔𝑇𝐊𝐔 (8)

Subject to

 𝐔(𝚽) = 𝐊(𝚽)−𝟏𝐅 (9)

 𝛷 ∈ [0,1] (10)

𝑔1(𝚽) =
(
1
𝑛
∑ 𝜌𝑖

𝑝𝑛𝑀𝑒
𝑖=1)

1
𝑝𝑛

𝛼
− 1 ≤ 0

(11)

 𝑔2 = 𝜌𝑎𝑣𝑔 − 𝛼𝑡𝑜𝑡𝑎𝑙 ≤ 0 (12)

 where 𝛷 is a continuous design variable that is projected to the relative density 𝜌

of the elements, 𝚽 is the vector containing 𝛷 values, 𝑀𝑒 is the group of elements

surrounding element 𝑖 based on a certain distance, 𝑝𝑛 is p-norm exponent, 𝛼 is the total

volume ratio limit for the elements in 𝑀𝑒, 𝜌𝑎𝑣𝑔 is the average relative density of the design

domain, 𝛼𝑡𝑜𝑡𝑎𝑙 is the limit on the volume ratio of the design domain.

 The projection of 𝛷 unto 𝜌 is done in order to ensure a 0-1 value for 𝜌 by first

applying a filter to Φ to prevent checkerboard patterns.

 47

𝛷�̃� =

∑ 𝜔𝑗𝛷𝑗
𝑀𝑒
j=1

∑ 𝜔𝑗
𝑀𝑒
j=1

 (13)

 where 𝛷�̃� is the filtered value of 𝛷 for element 𝑖, 𝜔 is the weight of the effect of

element 𝑗 on element 𝑖.

 After the filtering of 𝛷 is done, the value of �̃� is projected unto 𝜌 as follows

𝜌𝑖(𝛷�̃�) =

tanh (
𝛽
2)
+ tanh(𝛽 (𝛷�̃� −

1
2
))

2 tanh (
𝛽
2)

 (14)

 where 𝛽 is a parameter that controls how sharp 𝜌 value changes from 0 to 1 (chosen

as 16). Once the value of 𝜌 is determined, it is penalized in a similar manner to Eq. 1 to

ensure that intermediate values are pushed further towards 0 and 1.

 The constraint in Eq. 11 controls the local volume in the elements in 𝑀𝑒 to ensure

that it doesn’t go over the local volume ratio limit 𝛼 while the constraint in Eq. 12 ensures

that the total volume of the design domain doesn’t exceed the total volume ratio limit

𝑎𝑡𝑜𝑡𝑎𝑙. This is done by summing up the volume ratio of all elements as

𝜌𝑎𝑣𝑔 =

∑ 𝜌𝑖𝑣𝑖
𝑁𝑒
𝑖=1

∑ 𝑣𝑖
𝑁𝑒
𝑖=1

 (15)

 Where 𝑣𝑖 is the element’s volume. It should be noted that the summation is done

over all of the elements, 𝑁𝑒, in the design domain. If the constraint in Eq. 12 was ignored,

 48

the generated structure will strictly impose the local volume ratio constraint, which will set

an upper limit value of 𝛼.

 After setting up the optimization problem and solving it, the generated design

would have a bone-like shape that resembles NFGL structures. Figure 35 shows three

generated structures after the optimization with different 𝛼 values without imposing the

constraint in Eq. 12. The structures were generated using a radius value of 𝑅 = 6. The size

of the cells in the structure does show a variation across the design domain. As the value

of 𝛼 reduces, the porosity in the structure increases as expected. However, the restriction

on the local volume ratio forces the structure to create porosities across even when not

needed. This can reduce the performance of the structure since the material cannot

accumulate in locations where it can strengthen the structure to form thicker struts.

Increasing the radius to include more surrounding elements helps in increasing the size of

the generated cells and creating thicker struts as shown in Figure 36. However, it will cause

more material to be forced into locations where it’s not needed to satisfy the constraint on

𝛼.

 As for the total volume constraint of the generated structure, imposing the

constraint in Eq. 12 allows the generated structure to satisfy the total volume constraint as

shown in Figure 37-b and c while trying to maintain the local volume constraint.

 49

Figure 35 Generated structure using Local Volume Constraint at different local

volume ratios with a radius of 6 a) 𝜶 = 𝟎. 𝟔 b) 𝜶 = 𝟎. 𝟓 c) 𝜶 = 𝟎. 𝟒 [73]

Figure 36 Generated structure using Local Volume Constraint at different local

volume ratios with a radius of 12 a) 𝜶 = 𝟎. 𝟔 b) 𝜶 = 𝟎. 𝟓 c) 𝜶 = 𝟎. 𝟒 [73]

 50

Figure 37 Generated structure using Local Volume Constraint at different local

volume ratios with a radius of 6 and 𝜶 = 𝟎. 𝟔 a) No constraint b) 𝜶𝒕𝒐𝒕𝒂𝒍 = 𝟎. 𝟓𝟎 c)

𝜶𝒕𝒐𝒕𝒂𝒍 = 𝟎. 𝟒 [73]

 Based on the above description of the method, some drawbacks can be pointed out.

The first is that the method requires topology optimization in each iteration when

generating the NFGL structure. With the additional constraints and increased nonlinearity

of the problem, the computational cost of this approach increases significantly.

Furthermore, when creating different designs at different sizes, the topology optimization

needs to be rerun again, thus increasing the computational cost further. The second

drawback that was pointed out earlier is that the local volume ratio, while it helps in

generating NFGL structures, limits the accumulation of elements in areas where thicker

struts are needed. This can reduce the performance of the generated structure as thinner

struts would be generated in areas where it would require more material. This also causes

a restriction on the unit-cell size ratio across the structure.

 There are a couple of advantages to this method for creating NFGL structures. The

first is the ability of the method to generate structures are conformal to the design domain.

 51

The second advantage is the ability to control the orientation of the struts. The second

advantage is that the generated structures are not limited to a certain cell type. The

generated cells and connectivity between them are generated through the optimization

process.

2.4 Adaptive Quadtree Optimization

 This method shares some similarities with the Stochastic Nodal Generation method,

where the design domain is subdivided to generate the NFGL structure. The key difference

is that the edges of the subdivided cells are what constitutes the NFGL struts and nodes,

rather than placing the nodes inside the cells. Another difference is that the subdivisions

are caused by a modified SIMP topology optimization process rather than relying on an

input density field.

 The modification of the SIMP optimization is done through introducing a design

variable that controls the subdivision of cells in the design domain as follows

min𝐶(𝛒) =

1

2
𝐔𝑇𝐊𝐔 (16)

Subject to

 𝐔(𝛒) = 𝐊−𝟏𝐅 (17)

 𝜒𝑖,𝑗
𝑘 ∈ [0,1], 𝑘 = 1,2… �̅� (18)

 52

∑𝑉𝑖𝜌𝑖

𝑁𝑒

𝑖=1

≤ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (19)

 Where 𝜒𝑖,𝑗
𝑘 is the continuous variable that controls the subdivision of cells 𝑖 and 𝑗

at subdivision level 𝑘, �̅� is the maximum allowable subdivision is related to the size of a

2𝑚 × 2𝑚 square FEM mesh used in the design domain as

 �̅� = 𝑚 − 2 (20)

 Figure 38 shows an illustration of a rectangular design domain showing the cells

and subdivisions with a different color for each level and the underlying FEM mesh

generated. It is apparent that this method imposes a restriction on the number of FEM

elements that will be used in the design domain to allow for appropriate subdivisions to be

included. Based on Eq. 20, the minimum size of the FEM mesh to be used with only one

level would be 8×8.

 To perform the optimization process, the design variable 𝜒𝑖,𝑗
𝑘 has to be mapped to

the relative density of the FEM elements 𝜌. The mapping is doing by using a sparse

transformation matrix 𝑻𝑘 of size 22𝑚𝑛𝑖
0𝑛𝑗

0 × 𝑛𝑖
𝑘𝑛𝑗

𝑘 , where 𝑛𝑖
0 and 𝑛𝑗

0 are the number of

cells before subdivisions in the 𝑖 and 𝑗 direction as already shown in Figure 38, which in

this case would be 𝑛𝑖
0 = 4 and 𝑛𝑗

0 = 2; and 𝑛𝑖
𝑘 and 𝑛𝑗

𝑘 are the number of cells at the 𝑘𝑡ℎ

level in the 𝑖 and 𝑗 direction (for 𝑘 = 2, 𝑛𝑖
2 = 8 and 𝑛𝑗

2 = 4). The values of 𝜌 are then

calculated as

 53

𝛒 =∑ 𝑻𝑘

�̅�

𝑘=0
𝝌𝑘 (21)

 As apparent from the equation, there’s no influence on a cell from its parent cell.

So if the optimization was to be carried out as is, the generated structure would end up with

many suspended struts as shown in Figure 39. To refine the structure, a filtering process

can be applied as follows

�̃�𝑖,𝑗
𝑘 ≈ (

1

𝑘
∑ (𝜒𝑖−1,𝑗−1

𝑘−𝑙)
𝑝𝑛

𝑘−1

𝑙=0
)

1
𝑝𝑛

 (22)

Figure 38 Quadtree grid of a rectangular design domain a) Cell subdivision b) FEM

mesh of the domain [68]

 54

Figure 39 Generated cantilever beam NFGL structure without the refinement of 𝝌𝒊,𝒋
𝒌

values [68]

 By applying the refinement filter on the same cantilever beam in Figure 39, the

suspended struts no longer exist as shown in Figure 40. However, the generated structure

doesn’t show a gradual change in the subdivisions of the cells. This is because the cell is

only affected by its parent cell in the filtering process. By including the influence of cells

that are neighboring the parent cells, the change in subdivisions can become more gradual.

This is done by introducing different filtering on the values of 𝜒𝑖,𝑗
𝑘 that can produce

balanced Quadtree subdivisions.

�̅�𝑖,𝑗
𝑘 =

tanh (𝛽
1
2
) + tanh(𝛽 (𝜒𝑖,𝑗

𝑘 −
1
2
))

tanh (𝛽
1
2
) + tanh(𝛽 (1 −

1
2
))

 (23)

 which is similar to Eq. 14 with 𝛽 controlling how sharp �̅�𝑖,𝑗
𝑘 goes from 0 to 1 in a

continuous manner. The relative density is then updated to

 55

𝛒 =∑ 𝑻𝑘

�̅�

𝑘=0
�̅�𝑘 (24)

 where �̅�𝑘 is the vector of all �̅�𝑘 values.

The generated balanced structure using the filter in Eq. 23 is shown in Figure 41. Allowing

the cells to gradually subdivide increases the robustness of the structure under uncertain

load, but with a sacrifice in the compliance of the structure compared to the unfiltered

structure.

Figure 40 Generated cantilever NFGL beam after the refinement filter [68]

Figure 41 Generated cantilever NFGL beam after the balanced Quadtree

refinement filter is applied [68]

 56

 A couple of drawbacks arise when using this method to create NFGL structures.

The first is that the generated NFGL structures are not conformal as can be seen in the

previous figures and Figure 42. Another issue is the increase in the computational cost

associated with performing the topology optimization process in each iteration. Also, the

method requires that the number of elements has to be a multiple of 2 to the power of 3 or

more and that the struts be of a fixed cross-section of two elements.

 The advantage of the method is its ability to generate NFGL structures with

different cell size ratios by adjusting the number of levels that it can produce. However,

this comes at the cost of increasing the computational time. It should be noted that the size

ratio is an integer since it can only be generated by the subdivision of the parent cells.

Figure 42 Different structures generated using Adaptive Quadtree optimization

method [68]

 57

2.5 Drawbacks of Existing Methods

 This section will summarizer the drawbacks and advantages of all the existing

methods discussed in this chapter highlight the expected advantages of the proposed

method in this research. The proposed method will be named the Naturally Functionally

Graded Lattice (NFGL) Framework, which will be the name that will be used to refer to

the method throughout this research. Table 2 shows the advantages and drawbacks of the

existing methods discussed earlier in this chapter.

 From the table, it is apparent that the Error Diffusion and Stocastich Nodal

Generation methods share the same advantage of being low in computational cost. The

Error Diffusion method has the advantage of being able to handle any type of input density

field (assuming it’s rectangular) compared to the Stochastic Nodal Generation method. But

it requires an input grid of nodes to be generated for it to be used. Also, the filter limits the

possible unit-cell size ratios that the method can attain. Unlike the Stochastic Nodal

Generation method, where it generates its own nodes without requiring an input grid of

nodes. However, the generated nodes are random and introduce uncertainty in the

generated structure. Furthermore, its dependence on the actual scale of the design domain

to generate the nodes can cause issues with its ability to handle different input density

fields. Both methods also share similar drawbacks, such as the need to alter the input

density field if a different size for the unit-cells is required and their inability to generate

conformal NFGL structures. Moreover, if a unit-cell size ratio is desired, it cannot be

achieved intuitively. Different iterations have to be conducted from both methods until the

desired ratio is achieved. But compared to the Adaptive Quadtree and Local Volume

Constraint methods, the Error Diffusion and Stochastic Nodal Generation have the

 58

advantage of not requiring the topology optimization process (if used) to be rerun to

generate different NFGL structures.

 As for the Local Volume Constraint method, it suffers from having a significantly

high computational time compared to the other existing methods due to the added

constraints and high nonlinearity of the objective function being optimized. It also

constrains the size ratio of the cells in the generated structure, so they cannot be controlled

freely and limits the accumulation of materials that can form thicker sturts where needed.

But it has the advantage of being able to generate conformal NFGL structures compared to

the other methods. Furthermore, it doesn’t require a unit-cell type to be assigned to it, since

it generates the cells based on the optimization process. On the other hand, the Adaptive

Quadtree method is able to generate NFGL structures of different unit-cell size ratios by

just increasing the number of subdivision levels. However, this adds up the computational

cost quickly, since it requires adding more elements for the optimization problem. And the

size of the FEM mesh has to be constrained to a power of 2 being 3 or higher. Moreover,

the generated NFGL structures are not conformal to the design domain. Both the Local

Volume Constraint and Adaptive Quad methods share the same drawback of requiring the

topology optimization process to be rerun whenever the design parameters are changed,

further incurring more computational cost.

 59

Table 2 Advantages and drawbacks of the existing methods

Adaptive Quadtree Local Volume Constraint Error Diffusion Stochastic Nodal Generation

Advantages:

• Can generate NFGL

structures with varying

unit-cell size ratios

• Deterministic

Drawbacks:

• High computational cost

• Structures are not

conformal to design

domain

• Constrains used FEM mesh

size

• Requires rerunning the

optimization process when

parameters are changed

• Fixed strut cross-section

Advantages:

• Can generate conformal

NFGL structures

• Controlled strut orientation

• Does not require a unit-cell

type to be assigned

• Deterministic

Drawbacks:

• Significantly high

computational cost.

• The cell size ratio is

constrained

• Requires rerunning the

optimization process when

parameters are changed

Advantages:

• Low computational cost

• Can handle any type of

rectangular density fields

• Deterministic

Drawbacks:

• Structures are not

conformal to the design

domain

• Requires a rectangular

density field

• The unit-cell size ratio is

restricted

• Requires altering the input

density field to adjust the

size of unit-cells

Advantages:

• Low computational cost

• Generates NFGL nodes

without an initial grid of

nodes

Drawbacks:

• Generated nodes and

structure are random

• Structures are not

conformal to the design

domain

• Dependence on the scale of

the design domain

• Requires altering the input

density field to adjust the

size of unit-cells

 60

 The proposed NFGL Framework in this research aims to overcome most of the

drawbacks in generating NFGL structures that exist in the methods discussed in this

chapter. From the research questions and hypotheses in section 1.5, the following

advantages are expected from the NFGL framework:

• Low computational cost

• Can handle any type of density fields regardless of shape

• Can generate Conformal NFGL structures

• Can generate NFGL structures with varying unit-cell size ratios without restrictions

• The generated unit-cell size ratio is intuitive and adjustable

• Does not require altering the input density field or rerunning a topology

optimization process

• Deterministic

 To assess the ability of the NFGL Framework to provide these advantages, the

NFGL Framework will be applied to different application examples in CHAPTER 4. The

next chapter will discuss the NFGL Framework in detail and the underlying algorithms that

will be used to generate NFGL structures.

 61

CHAPTER 3. NATURALLY FUNCTIONALLY GRADED

LATTICE (NFGL) FRAMEWORK

 This chapter will outline the NFGL Framework and discuss the algorithms that are

involved in developing the framework that will be used to generate NFGL structures.

Figure 3 shows a process flowchart of the NFGL Framework and highlights where each

algorithm will be involved. The process starts by the user providing four inputs: the density

field, the base mesh that will be used, the required unit-cell size ratio 𝑆𝑅 and the lattice

diameter type 𝑑𝑇 (further details will be provided in section 3.2). The density field can be

obtained from processes such as topology optimization, FEA, or any user-defined density

field input. Once the density field is obtained, a density field function, 𝜌𝑓, that calculates

the density value based on the coordinates given is created (the function could also be

provided directly to the framework). If the density field is based on scattered points in the

design domain, as in the case from FEA or topology optimization, then 𝜌𝑓 would perform

a linear interpolation between the scattered points to determine the density value. As for

the base mesh, it can either be generated by the user using common FE meshing algorithms

or by utilizing the mesh that was used in topology optimization or FEA to provide the base

mesh node coordinates 𝐍𝑐
∗. The three inputs are then used to generate the NFGL nodes 𝐍𝑐,

and the algorithm to do so will be outlined in detail in section3.1. Once the nodes are

obtained, the corresponding NFGL structure struts, 𝐋𝑐, and diameters, 𝐝, are generated

using the algorithm outlined in section 3.2. The user can then choose whether to conduct a

similarity analysis (section 3.3) or accept the generated NFGL structure data. If the user

decided to conduct the similarity analysis, the MSSIM index is updated (section 3.4) and

 62

if the value is acceptable, the process ends by providing the three NFGL structure output

data 𝐍𝑐 , 𝐋𝑐 and 𝐝. If not, then the value of 𝑆𝑅 is updated using the algorithm in section

until an acceptable MSSIM value is reached to produce the outputs.

Figure 43 Framework to generate NFGL structures

 63

3.1 NFGL Nodes Generation Algorithm (Simplified Sphere Packing)

 This Algorithm is the first component of the NFGL Framework. The focus of this

algorithm is to create the nodes that will be used to generate the NFGL structure by using

the inputs 𝐍𝑐
∗, 𝜌𝑓 and 𝑆𝑅 that were provided by the user. The key idea of this algorithm is

to treat the nodes in 𝐍𝑐
∗ as spheres of varying radii values that can affect the presence of

other nodes around it through a very simplified sphere packing process. Algorithm 1 shows

the steps that will generate the NFGL nodes. The algorithm starts by first calculating the

relative density of all the nodes in 𝜌𝑓(𝐍𝑐
∗) and storing them in 𝛒𝑛. Then the values in 𝛒𝑛

are arranged based on their relative density values in descending order. This arrangement

helps in reducing the computational cost by preventing any calculations to be done on

nodes that will be potentially removed. Once the nodes are organized, the exterior nodes

are assigned to vector 𝐦 of size 𝑚𝑒 × 1, where 𝑚𝑒 is the number of exterior nodes in the

𝐍𝑐
∗, while preserving the ordering of the nodes based on their relative density values. By

starting with the exterior nodes first, the generated NFGL nodes will have the geometrical

boundary of the design domain preserved from being tampered with by an interior node.

The next step starts from the first node in 𝐦, where an influence sphere radius is calculated

based on the relative density value of the node and the unit-cell size ratio that the user

inputs. Figure 44 shows an illustration of the influence sphere of a node in 2D. The

influence sphere radius is calculated as

 𝑅(𝑖) = 𝑅𝐿(1 − 𝛒𝑛(𝑖)) + 𝑅𝑆𝛒𝑛(𝑖) (25)

 where 𝑅(𝑖) is the radius of the influence sphere for node 𝑖, 𝑅𝐿 is the largest

permissible influence sphere radius and 𝑅𝑠 is the smallest influence sphere radius. The

 64

value of 𝑅𝑠 is chosen to be the same as the size of the smallest element in the base mesh,

unless the user wants to change it. The value of 𝑅𝐿 can be calculated from the unit-cell size

ratio as

𝑆𝑅 =

𝑅𝐿
𝑅𝑆

 (26)

 where 𝑆𝑅 is the unit-cell size ratio requested by the user.

Algorithm 1. NFGL nodes generation

Procedure: NFGL_Nodes(𝐍𝑐
∗, 𝜌𝑓, 𝑆𝑅)

Input: Base mesh node coordinates 𝐍𝑐
∗, density field function 𝜌𝑓, Unit-cell size

ratio 𝑆𝑅

Output: NFGL node Coordinates 𝐍𝑐

1: 𝛒𝑛 ← Determine node relative density from 𝜌𝑓(𝐍𝑐
∗)

2: Arrange 𝛒𝑛 in descending order

3: 𝐦 ← Extract exterior nodes from 𝐍𝑐
∗

4: For 𝑖 ← 𝐦 do

5: 𝐣 ← Find all nodes inside the influence radius of 𝐍𝑐
∗(𝑖)

6: 𝐣 ← Find all nodes 𝛒𝑛(𝐣) < 𝛒𝑛(𝑖)
7: Remove 𝐍𝑐

∗(𝐣)
8: End For

9: 𝐦 ← Extract interior nodes from 𝐍𝑐
∗

10: Repeat Steps 4-8

11: 𝐍𝑐 ← 𝐍𝑐
∗

12: Return 𝐍𝑐

 65

Figure 44 Influence sphere radius of three nodes, colored in black, in a density field

 The algorithm then loops across all nodes in 𝐦 finds all the nodes that are inside

the influence sphere of an exterior node. If a node 𝑗 is inside the influence sphere of node

𝑖 with 𝛒𝑛(𝑗) < 𝛒𝑛(𝑖) then that node is flagged for removal. This flagging eliminates the

need to calculate any influence of a node since it shouldn’t exist due to it being flagged for

removal by another node. Hence why the algorithm starts from the nodes of high 𝜌 values.

Once all the nodes in 𝐦 have been cycled through, the algorithm assigns the interior nodes

to 𝐦 of size 𝑚𝑖 × 1, where 𝑚𝑖 is the number of interior nodes. The process is then repeated

for the interior nodes. Once both exterior and interior nodes are processed, the algorithm

finishes and produces the NFGL nodes, 𝐍𝑐, that will be utilized in the next section. The

size of 𝐍𝑐 is 𝑁𝑛 × 𝑁𝐷 where 𝑁𝑛 is the number of NFGL nodes and 𝑁𝐷 is the dimension (2

or 3). Figure 45 shows an illustration of this process. The two marked nodes are considered

for removal since their relative density values are less than that of the colored node. Figure

46 shows the generated NFGL nodes after the algorithm finishes. This process can be

described as a simplified sphere packing of spheres/circles with a radius that is half of the

 66

influence sphere radius for each node. Figure 47 shows the circles generated using half the

radius of the influence sphere and how it looks similar to sphere packing but without the

iterative process of moving the nodes, hence why it can be called a simplified sphere

packing process.

Figure 45 Removal of nodes inside the influence sphere of a colored node if their

relative density is less than the colored node relative density

Figure 46 NFGL nodes generated by the algorithm

 67

Figure 47 Illustration of the simplified sphere packing

 An initial test of the algorithm was performed by supplying a test density input field

𝜌𝑓 and mesh nodes 𝐍𝑐
∗ of a cube as shown in Figure 48. The density field ramps from high

density to low density linearly from bottom to top. Four NFGL nodes were generated with

different values of 𝑆𝑅 = 1, 1.5, 2 and 3 as shown in Figure 49. The generated results show

consistency to the input density field where the bottom nodes remain unaffected while the

spacing for the top nodes changes as 𝑆𝑅 value changes.

a) b)

Figure 48 Algorithm 1 inputs a) Density field 𝝆𝒇 b) input mesh nodes 𝐍𝒄
∗

 68

a) b)

c) d)

Figure 49 Generated NFGL nodes 𝐍𝒄 with a) 𝑺𝑹 = 𝟏 b) 𝑺𝑹 = 𝟏. 𝟓 c) 𝑺𝑹 = 𝟐 d) 𝑺𝑹 =
𝟑

 To further test Algorithm 1, a three-dimensional section of a rectangular tapered

beam with a circular through-hole as shown in Figure 50 will be tested. The density field

of the tapered beam changes as

𝜌𝑓(𝑥, 𝑦) = 2.8539 (√𝑥

2 + 𝑦2)
−0.7565

 (27)

 The resulting NFGL nodes for the beam for different 𝑆𝑅 values are shown in Figure

51. The generated nodes show good agreement with the density field as expected.

 69

a) b)

Figure 50 Section of a tapered beam with a circular hole a) Beam initial mesh b)

Density field

Figure 51 Generated NFGL nodes at different 𝑺𝑹 values a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c)

𝑺𝑹 = 𝟓

 70

3.2 NFGL Structure Generation Algorithm

 This algorithm, shown in Algorithm 2, is the second component of the NFGL

Framework and is used to generate the NFGL structure from the nodes generated from the

algorithm 1. The NFGL structure will be generated from tetrahedral/triangular unit-cells,

since they provide stretch dominated structures and can be generated from any NFGL

nodes. Algorithm 2 will use 𝐍𝑐, 𝑑𝑇, and 𝜌𝑓 as inputs and provide the lattice connectivity

𝐋𝑐 and diameter values 𝐝 based on 𝑑𝑇. The algorithm first starts by creating Delaunay

Triangulations from the NFGL nodes 𝐍𝑐. The reasons for choosing Delaunay

Triangulations is because it is available in almost all commercial software, the available

implementation in Matlab that is based on the Computational Geometry Algorithms

Library (CGAL) implementation can create unique triangulations even with degenerate

cases [85], and most importantly it creates equiangular triangulations that can prevent the

formation of long and thin struts from badly shaped elements. Once the triangulation

process is done, the connectivity list for the triangulations is stored in 𝐔𝑐 which will contain

𝑁𝑈 elements that correspond to the number of unit-cells that will be created using these

elements. Once the unit-cells are created, the connectivity list is used to create lattice struts

between each pair of nodes and is stored in 𝐋𝑐 that will contain 𝑁𝐿 struts. Each strut in 𝐋𝐶

will be treated as a circular rod in this research.

 71

Algorithm 2. NFGL struts generation

Procedure: NFGL_Struts(𝐍𝑐, 𝑑𝑇,𝜌𝑓)

Input: NFGL node Coordinates 𝐍𝑐 with 𝑁𝑛 nodes, diameter type 𝑑𝑇, density field

function 𝜌𝑓

Output: Lattice struts connectivity 𝐋𝑐, struts/nodal diameter 𝐝

1: 𝐔𝑐 with 𝑁𝑈 unit-cells ← Unit-cell connectivity list from Delaunay

Triangulation of 𝐍𝑐
2: 𝐋𝑐 with 𝑁𝐿 struts ← Create strut connectivity list from 𝐔𝑐
3: For 𝑖 ← 1 𝑡𝑜 𝑁𝑈 do

4: If three-dimensional design

5: 𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖) via Eq. (35)

6: Else

7: 𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖) via Eq. (36)

8: End if

9: End For

10: If 𝑑𝑇 = 1

11: For 𝑖 ← 1 𝑡𝑜 𝑁𝑛 do

12: 𝐣 ← Find struts sharing node 𝐍𝑐(𝑖)
13: 𝐝(𝑖) = min (𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝐣))
14: End For

15: Else

16: For 𝑖 ← 1 𝑡𝑜 𝑁𝐿 do

17: 𝐣 ←Find duplicates of 𝐋𝑐(𝑖)
18: 𝐝(𝑖) = max (𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝐣))
19: End For

20: End

21: Remove duplicate struts in 𝐋𝑐

22: Return 𝐋𝑐 and 𝐝

 The next step is to determine the strut diameter values in each unit-cell, 𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒.

This requires the calculation of the effective relative density, 𝜌𝑒𝑓𝑓, for each lattice unit-

cell. The use of Gauss-Legendre quadratures was explored compared to sampling points

inside the unit-cell. But the need to map arbitrary elements to evaluate 𝜌𝑒𝑓𝑓 increases the

computational cost slightly compared to sampling the points inside the unit-cell with a very

small increase in the accuracy of 𝜌𝑒𝑓𝑓 value. So it was decided to sample the points instead.

To do so, interior nodes will be generated in each unit-cell based on the element’s

 72

dimensionality. In the case of tetrahedral elements, layers to facilitate the generation of

these nodes in a uniform manner is created. The number of layers is determined according

to the volume of the unit-cell in the following manner

𝑇𝑛 = ⌈

𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑅𝑆
3 ⌉ (28)

 Where 𝑇𝑛 is the number of interior points, which is also known as the tetrahedral

number in 3D or Triangular number in 2D [86], 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the volume of the solid element

counterpart of the unit-cell. The number of interior points in the unit-cell is then determined

as

𝑇𝑛 = ∑
𝑖(𝑖 + 1)

2

𝑁𝑙𝑎𝑦𝑒𝑟

𝑖=1

 (29)

 where 𝑁𝐿𝑎𝑦𝑒𝑟 is the number of layers. Figure 52 shows an example of three unit-

cells and the interior nodes generated based on 𝑇𝑛 values. In the case of a triangular

element, the area of a solid element counterpart is used to determine 𝑇𝑛.

𝑇𝑛 = ⌈

𝐴𝑒𝑙𝑒𝑚𝑒𝑛𝑡
𝑅𝑆
2 ⌉ (30)

𝑇𝑛 =

𝑁𝐿𝑎𝑦𝑒𝑟(𝑁𝐿𝑎𝑦𝑒𝑟 + 1)

2
 (31)

 73

a) b) c)

Figure 52 Interior nodes generation in a tetrahedral unit-cell a) 𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟏 b)

𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟑 c) 𝑵𝑳𝒂𝒚𝒆𝒓 = 𝟗

 Once the interior points are generated, the value of, 𝜌𝑒𝑓𝑓 is calculated as

𝜌𝑒𝑓𝑓 =
1

𝑇𝑛
∑𝜌𝑖

∗

𝑇𝑛

𝑖=1

 (32)

 Where 𝜌𝑖
∗ is the relative density value of the interior nodes for the unit-cell. The

value of 𝜌𝑒𝑓𝑓 is then used to calculate the required lattice volume 𝑉𝑙𝑎𝑡𝑡𝑖𝑐𝑒 or area 𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒.

 𝑉𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝜌𝑒𝑓𝑓 ∙ 𝑉𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (33)

 𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝜌𝑒𝑓𝑓 ∙ 𝐴𝑒𝑙𝑒𝑚𝑒𝑛𝑡 (34)

 The cross-sectional area of the struts is assumed to be the same in a unit-cell, so the

lattice diameter is determined as follows for 3D and 2D respectively

𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖) = 4√
𝑉𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖)

𝜋 ∑ 𝐿𝑗
6
𝑗=1

 (35)

 74

𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖) = 2

𝐴𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖)

∑ 𝐿𝑗
3
𝑗=1

 (36)

 Where 𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑖) is the cross-sectional area of the lattice struts in unit-cell 𝑖 and 𝐿𝑗

is the length of the strut 𝑗 in the unit-cell. These diameter values are not unique since there

are still duplicate struts between unit-cells. So, a unique value for the diameter must be

determined. The diameter values are either determined as nodal diameters or strut

diameters based on 𝑑𝑇 value. If a nodal diameter is desired (𝑑𝑇 = 1), the minimum value

is chosen from the duplicate diameters of struts 𝐣. Figure 53-a shows an illustration of the

case when the minimum value is used and Figure 53-b shows when the maximum diameter

is used. It is clear from the figure, that using the maximum value would produce struts of

large diameters in areas of low relative density value. Hence, the minimum value is

preferred.

 𝐝(𝑖) = min (𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝐣)) (37)

 where 𝐝 contains the unique diameter values. Alternatively, if a strut diameter is

desired (𝑑𝑇 ≠ 1), the maximum value is chosen from the duplicate diameters of struts 𝐣.

Figure 54a shows an illustration of the case when the maximum value is used and Figure

54b shows when the minimum diameter is used. In this case, using the minimum value

would produce struts of small diameters in areas of high relative density, which is why the

maximum value is preferred.

 𝐝(𝑖) = max (𝐝𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝐣)) (38)

 75

a) b)

Figure 53 NFGL nodal diameters based on 𝒅𝒍𝒂𝒕𝒕𝒊𝒄𝒆 values a) using the minimum

value b) using the maximum value

a) b)

Figure 54 NFGL strut diameters based on 𝒅𝒍𝒂𝒕𝒕𝒊𝒄𝒆 values a) using the maximum

value b) using the minimum value

 To test Algorithm 2, the generated NFGL nodes for the tapered beam in Figure 51

were used to generate the NFGL structure. Figure 55 shows the generated structure using

nodal diameter values (𝑑𝑇 = 1) at different 𝑆𝑅 values and Figure 56 shows the generated

NFGL structures using strut diameter (𝑑𝑇 ≠ 1) at different 𝑆𝑅 values. Figure 57 shows a

close up of two structures from both figures at 𝑆𝑅 = 5 to show how the diameters vary in

the strucures.

 76

Figure 55 Generated NFGL structures using nodal diameter a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c)

𝑺𝑹 = 𝟓

Figure 56 Generated NFGL structures using strut diameter a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c)

𝑺𝑹 = 𝟓

 77

a)

b)

Figure 57 A close-up view of the generated NFGL struts at 𝑺𝑹 = 𝟓 for a) Nodal

diameter b) Strut diameter

3.3 Similarity Analysis using MSSIM Index Algorithm

 This algorithm is optional in the NFGL Framework if the user requires to improve

the performance of the generated NFGL. If the user only requires a certain unit-cell size

ratio, then they can proceed to generate tne NFGL structure from the outputs of algorithm

1 and 2 without utilizing this algorithm or algorithm 4.

 As explained in research question 3, this algorithm will utilize the MSSIM index to

determine the similarity between the generated NFGL structure and density field input. The

algorithm to calculate the MSSIM index will be extended to include three-dimensional

 78

voxels in this research. In the beginning, two tensors 𝐗 and 𝐘 of size 𝑛 × 𝑚 × 𝑙 that

contains the relative density values for both the density field input and the NFGL structure

respectively are created. The values in 𝐗 and 𝐘 are at uniformly distributed points that

cover the design domain. Since the arrays can contain points that are outside of the design

domain, as shown in Figure 58, these points will be assigned a value of -1. The figure

shows a matrix of a two-dimensional generalized shape, where elements inside the domain

are assigned a value, and the elements outside are assigned a value of -1. This will help in

reducing the computational cost of having to calculate the MSSIM index for the entire

design domain and improves the accuracy of the similarity analysis by only focusing on

the points that are in the design domain. Then, 𝐗 and 𝐘 are provided to Algorithm 3 as

inputs. The algorithm starts by choosing the first element in the array and checking if its

value is equal to -1. If the value is -1, then the algorithm cycles to the next element in the

array. Otherwise, the calculation of a local structural similarity (SSIM) index is carried out.

Figure 58 Relative density Array for a generalized shape showing assigned values

 79

Algorithm 3. MSSIM Calculation

Procedure: MSSIM(𝐗, 𝐘)

Input: Input relative density tensors 𝐗, NFGL relative density tensor 𝐘

Output: Mean Structural Similarity MSSIM

1: 𝑀 = 0

2: For 𝑖 ← 1 𝑡𝑜 𝑛

3: For 𝑗 ← 1 𝑡𝑜 𝑚

4: For 𝑘 ← 1 𝑡𝑜 𝑙

5: If 𝐗(𝑖, 𝑗, 𝑘) ≠ −𝟏

6: 𝑀 = 𝑀 + 1

7: 𝐱 ← Select 𝐗(𝑖, 𝑗, 𝑘) and appropriate neighboring points

8: 𝐲 ← Select 𝐘(𝑖, 𝑗, 𝑘) and appropriate neighboring points

9: Apply gaussian filter to 𝐱 and 𝐲

10: SSIM(𝑀) ← Determine using 𝐱 and 𝐲 via Eq. (46)

11: End If

12: End For

13: End For

14: End For

15: MSSIM via Eq. (47)

16: Return MSSIM

 SSIM index is calculated around a local set of points 𝐱 and 𝐲, as shown in Figure

59, in 𝐗 and 𝐘 that are weighted to a circular, symmetric Gaussian filter [87]. To extend

the calculation of SSIM to voxels, a 3D Gaussian filter will be used. The SSIM is defined

as a function of three components: luminance 𝑙(𝐗, 𝐘), contrast 𝑐(𝐗, 𝐘) and structure

𝑠(𝐗, 𝐘). The luminance is defined as

𝑙(𝐱, 𝐲) =

2𝜇𝑥𝜇𝑦 + 𝐶1
𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
 (39)

 Where 𝜇𝑥 and 𝜇𝑦 are the mean intensity values, which corresponds to the mean

relative density value of the points in 𝐱 and 𝐲 respectively, 𝐶1 is constant for stability when

both 𝜇𝑥 and 𝜇𝑦 are zero. The value of 𝜇𝑥, and similarly 𝜇𝑦, is determined as follows

 80

𝜇𝑥 =∑𝜔𝑖𝑥𝑖

𝑚

𝑖=1

 (40)

 Where 𝑚 number of points in 𝐱 and 𝐲 respectively, 𝜔𝑖 is the gaussian weight of

point 𝑖 and 𝑥𝑖 is the relative density value for that point in 𝐱. As for 𝐶1, it is defined as

 𝐶1 = (0.001𝐿)^2 (41)

 Where 𝐿 is the dynamic range of the elements in the arrays, which in the case of

relative density is 1. Therefore, the value of 𝐶1 would be 1 × 10−6.

 The contrast is defined as

𝑐(𝐱, 𝒚) =

2𝜎𝑥𝜎𝑦 + 𝐶1
𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶1
 (42)

 Where 𝜎𝑥 and 𝜎𝑦 are the standard deviations for the points in 𝐱 and 𝐲 respectively

and is defined for 𝜎𝑥 and similarity 𝜎𝑦 as

𝜎𝑥 = √∑𝜔𝑖(𝑥𝑖 − 𝜇𝑥)
2

𝑚

𝑖=1

 (43)

 The structure is defined as

𝑠(𝐱, 𝐲) =

𝜎𝑥𝑦 + 𝐶1
𝜎𝑥𝜎𝑦 + 𝐶1

 (44)

 81

 Where 𝜎𝑥𝑦 is the covariance and is defined as

𝜎𝑥𝑦 =∑𝜔𝑖(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑚

𝑖=1

 (45)

After all three functions are evaluated, the SSIM is calculated by multiplying all three.

 𝑆𝑆𝐼𝑀 = 𝑙(𝐱, 𝐲) ∙ 𝑐(𝐱, 𝐲) ∙ 𝑠(𝐱, 𝐲) (46)

 If 𝐲 was exactly similar to 𝐱, all three components would be equal to 1, thus the

SSIM index would be 1 as well. Once the values of all local SSIM indices for all the

elements in the arrays are calculated, the MSSIM index is then obtained as the mean value

for all local SSIM values calculated.

𝑀𝑆𝑆𝐼𝑀(𝐗, 𝐘) =
1

𝑀
∑𝑆𝑆𝐼𝑀(𝐱𝑗 , 𝐲𝐣)

𝑀

𝑗=1

 (47)

 The value of MSSIM will determine how similar the generated NFGL is to the

density field input. With the increase in the unit-cell size ratio, the value of MSSIM will

decrease. This will help in providing a proper range to the unit-cell size ratio for the NFGL

structure.

 82

a) b)

Figure 59 Relative density Array for a generalized shape showing assigned values

a) Input density field matrix b) NFGL structure density matrix

 To test Algorithm 3, the tapered beam will be used to determine the change in the

MSSIM index values as 𝑆𝑅 value changes. Figure 60 shows the change in the MSSIM index

as 𝑆𝑅 value increases. The figure shows that the MSSIM index value starts to decrease

similar to a power function of the form

 𝑀𝑆𝑆𝐼𝑀 = 𝑎 𝑆𝑅
 −𝑏 (48)

 where a and b are constants. Furthermore, the figure shows the fitted power curve

in Eq. 48 to the data points of the MSSIM index. The fitted curve shows good agreement

to the MSSIM index curve. However, the beginning of the curve appears to have a small

plateau region. So using a higher value of 𝑆𝑅 when fitting the curve would be recommended

to avoid increasing the number of iterations due to the beginning of the curve having a very

small slope. The figure also shows two fitted curves, one with the inclusion of all data

points and one by ignoring the points near the plateau region.

 83

Figure 60 Change in MSSIM index as a function 𝑺𝑹 showing the fitted power curve

 Further examples that will be provided in CHAPTER 4 will show similar behavior.

By utilizing this relation, the value of 𝑆𝑅 could be updated with very few iterations to obtain

a certain MSSIM index threshold.

3.4 Updating 𝑺𝑹 Value Algorithm

 After calculating the MSSIM index value, the NFGL Framework would then have

to update the unit-cell size ratio accordingly. Therefore, if there’s a required similarity

threshold that the user desires, the NFGL Framework should be able to achieve it

accordingly and with the lest computational cost possible. Based on the observations in

section 3.3, the MSSIM index shows a power function relation with the change in 𝑆𝑅 value.

Algorithm 4 utilizies this relation in order to update 𝑆𝑅 value until the MSSIM index falls

into the required threshold. The data points obtained from calculating the MSSIM index

 84

are stored into two vectors, 𝐒𝑅 and MSSIM that holds the values of 𝑆𝑅 and the calculated

MSSIM indices respectively. The algorithm uses the values in 𝐒𝑅 and MSSIM in a

linearized form of Eq. 48 in order to perform a linear regression to obtain the values of a

and b.

 log(𝑀𝑆𝑆𝐼𝑀) = log(𝑎) − 𝑏 log(𝑆𝑅) (49)

𝑏 =

∑(log(𝑆𝑅) − log(𝑆𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅)(log(𝑀𝑆𝑆𝐼𝑀) − log(𝑀𝑆𝑆𝐼𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)

∑(log(𝑆𝑅) − log(𝑆𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
2 (50)

 𝑎 = exp(log(𝑀𝑆𝑆𝐼𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑏 log(𝑆𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅) (51)

 where log(𝑆𝑅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and log(𝑀𝑆𝑆𝐼𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ are the mean values of log(𝑆𝑅) and log(𝑀𝑆𝑆𝐼𝑀)

respectively. To avoid any singularities, arrays will be padded by 1 at the end. These added

values represent the fact that when 𝑆𝑅 = 1, then the MSSIM index would also be 1. Once

the values are obtained from Eqs. 49-51, Eq. 48 is used to determine the new value of 𝑆𝑅

that falls inside the required threshold.

𝑆𝑅 = exp(

log(𝑀𝑆𝑆𝐼𝑀) − log(𝑎)

−𝑏
) (52)

 The obtained 𝑆𝑅 value is then fed back to Algorithm 1 to regenerate the NFGL

structure accordingly. The process is repeated until the generated NFGL structure MSSIM

index value is within the desired threshold. Once that happens, the NFGL Framework

outputs the NFGL structure design parameters and terminates.

 85

Algorithm 4. Updating 𝑆𝑅

Procedure: Update_𝑆𝑅(𝐒𝑅 , 𝐌𝐒𝐒𝐈𝐌)

Input: Vector of previous 𝑆𝑅 values 𝐒𝑅, Vector of previous 𝑀𝑆𝑆𝐼𝑀 values 𝐌𝐒𝐒𝐈𝐌

Output: New 𝑆𝑅

17: Pad 𝐒𝑅 and 𝐌𝐒𝐒𝐈𝐌 with 1 at the end.

18: Calculate 𝑏 using Eq. 50

19: Calculate 𝑎 using Eq. 51

20: Calculate 𝑆𝑅 using Eq. 52

21: Return 𝑆𝑅

 86

CHAPTER 4. APPLICATION EXAMPLES

 This chapter will demonstrate the application of the NFGL Framework on different

examples to compare and demonstrate the ability of the NFGL Framework to design and

Generate NFGL structures. The first example will provide a comparison of the NFGL

Framework against the methods discussed in CHAPTER 2. The second example will

investigate the performance of the NFGL structures generated by the NFGL Framework

against FGL structures in the design and optimization of an automotive control arm under

multiple loading conditions. The third example will investigate the thermomechanical

performance of generated NFGL structures against FGL structures on the design of an

injection mold lattice cooling channel.

4.1 Comparison of NFGL Framework with other Algorithms in the Literature

 In this section, the NFGL Framework will be compared with the Error Diffusion,

Adaptive Quadtree, Local Volume Constraint, and the Stochastic Nodal Generation

methods in generating NFGL structures using four examples. The first and second

examples will evaluate the NFGL Framework’s computational cost and structural

performance respectively against the aforementioned methods in the literature. The third

example will evaluate the robustness of the NFGL Framework against the Stochastic Nodal

Generation and Error Diffusion methods by applying them on a sinusoidal input density

field. The fourth example will evaluate the NFGL Framework’s ability to generate

conformal NFGL structures using a circular design domain and a curved path against the

same methods in the third example.

 87

 These methods were chosen to be compared with the NFGL Framework because

they encompass all of the existing methods in the literature that were used to generate

NFGL structures. However, the reason why the Adaptive Quadtree and Local Volume

Constraint methods were omitted in the third and fourth example, was because they cannot

generate NFGL structures from a given density field. They require running a topology

optimization of a design domain under loading conditions to generate the lattice structure

from the FE mesh.

4.1.1 Computational Cost of Algorithms

 To evaluate the computational cost of the methods, a 2D cantilever and a simply

supported beam will be used to generate NFGL structures using the NFGL Framework and

the other methods. Figure 61 shows the dimensions, the boundary conditions, and the

loading conditions that the beams are subjected to for the cantilever beam (Figure 61-a)

and the right half of the simply supported beam (Figure 61-b). The cantilever beam is

subjected to a unit load on the right side of the beam and is completely fixed on the other

end. While half of the simply supported beam is used, due to symmetry, where the

symmetry line is prevented from movement in the horizontal direction, the upper left corner

is subjected to a point load, and the lower right corner is fixed from movement in the

vertical direction as shown in the figure. The cantilever beam geometry will be generated

with different FE mesh sizes using four noded 2D quadrilateral elements to determine the

computational time needed to generate the lattice structure. The mechanical properties of

the beam are shown in Table 3.

 88

a) b)

Figure 61 Loading conditions for the a) cantilever beam b) simply supported beam

Table 3 Cantilever beam mechanical properties

Property Value

l (mm) 200

w (mm) 100

t (mm) 1

E (MPa) 1

P (N) 1

 where l, w, and t are the beam’s length, width, and thickness respectively; E is the

elastic modulus of the beam; and P is the load on the beam. Furthermore, to generate the

lattice structure for the beam, a topology optimization process will be carried out. The

Local Volume Constraint and Adaptive Quadtree methods will conduct a modified form of

the SIMP optimization, as explained in sections 2.3 and 2.4 respectively, while the other

methods will use unpenalized SIMP optimization to generate the input density field. The

objective of the topology optimization is to minimize the structure’s compliance while

constraining the lattice volume to 52% of the solid beam volume. Figure 62 shows the

results of the unpenalized SIMP optimization for both beams.

 89

a)

b)

Figure 62 Unpenalized SIMP optimization results a) Cantilever beam b) Simply

supported beam

 To calculate the computational cost of each method, the time required to run the

method and generate the NFGL structure will be recorded. Table 4 shows the tasks that

each method will perform in order to generate the NFGL structure. From the table, it can

be noticed that all methods will require the generation of the FE mesh of the design domain

in order to conduct the topology optimization process. The Adaptive Quadtree and Local

Volume Constraint methods rely on their modified topology optimization process to

generate the NFGL structures. As for the other methods, they require a density field input

to generate the NFGL nodes, so the unpenalized topology optimization results in Figure 62

was used. After the NFGL nodes are generated, the NFGL structure would be generated

using Algorithm 2 in section 3.2.

 90

Table 4 Breakdown of the tasks that each method will perform to generate the NFGL structures

Algorithm Task

Adaptive Quadtree Generate design

domain mesh

Conduct Quadtree Optimization to generate NFGL structure

Local Volume

Constraint

Generate design

domain mesh

Conduct Local Volume Constraint Optimization to generate NFGL structure

Stochastic Nodal

Generation

Generate design

domain mesh

Generate density field input

(unpenalized topology Opt.)

Create NFGL nodes using

Stochastic Nodal Generation

Create NFGL structure

using Algorithm 2

Error Diffusion Generate design

domain mesh

Generate density field input

(unpenalized topology Opt.)

Create NFGL nodes using

Error Diffusion

Create NFGL structure

using Algorithm 2

NFGL Framework Generate design

domain mesh

Generate density field input

(unpenalized topology Opt.)

Create NFGL nodes using

Algorithm 1

Create NFGL structure

using Algorithm 2

 91

 To apply the adaptive quadtree method, the number of elements along the beam’s

length and width has to be a multiple of 2 to the power of 3 or more to generate the smallest

unit-cell size in the structure possible through refining larger unit-cells. Therefore, all the

different FE mesh sizes that will be used for the other algorithms will be the same as the

ones used in the Adaptive Quadtree mesh. The sizes that will be used in this example are

64×32, 128×64, 256×128, 512×256, 640×320, 768×384, and 1024×512. Furthermore,

NFGL structures using the NFGL framework will be generated at different 𝑆𝑅 values to

evaluate the effect of changes in 𝑆𝑅 values on the computational cost of the NFGL

Framework. The values of 𝑆𝑅 that will be used are 1, 2, 3, and 30. These values were chosen

to act as an upper and lower bound for the computational cost of the NFGL framework.

The results of the total computational time of each method for the cantilever beam are

shown in Table 5 while Table 6 shows a breakdown of the computational time for the

NFGL Framework, Stochastic Nodal Generation, and Error Diffusion methods.

 From Table 5, it is clear that the Local Volume Constraint method is the most

computationally expensive method followed by the Adaptive Quadtree method. The reason

for that is because these two methods rely on conducting penalized topology optimization

with additional constraints in each iteration during the generation of the NFGL structure.

This agrees with hypothesis 1 that in order to reduce the computational cost, the developed

algorithm should not rely on topology optimization to determine the location of nodes in

the NFGL structure in an iterative manner. Furthermore, since the topology optimization

process in both the Adaptive Quadtree and Local Volume Constraint methods is penalized

and has additional constraints, the complexity of the optimization process increases. This

also increases the number of iterations needed for convergence during optimization as

 92

shown in Table 7. The table shows the number of iterations used in the topology

optimization process for the unpenalized SIMP method against Adaptive Quadtree and

Local Volume Constraint methods.

 Looking back to Table 6, it is clear that the increase in 𝑆𝑅 values causes a reduction

in the computational cost for the NFGL Framework. This reduction in computational cost

is due to the NFGL Framework removing more nodes that are unnecessary for the NFGL

structure, which allows the NFGL Framework to deal with fewer nodes to generate the

NFGL structure. Furthermore, the computational cost of the NFGL Framework is

significantly close to the Error Diffusion method when 𝑆𝑅 = 2. While the computational

cost when 𝑆𝑅 = 1 is the highest, since it doesn’t remove any node during the removal

process. Furthermore, the generated structure with 𝑆𝑅 = 1 would just be a regular FGL

structure without any changes in unit-cell size. Therefore, utilizing the NFGL Framework

for such a case would be pointless. But when using 𝑆𝑅 = 2, the computational cost almost

dropped by half. Therefore, a high value of 𝑆𝑅 is a good recommendation when using the

NFGL framework to significantly reduce the computational cost.

 93

Table 5 Computational time to generate the NFGL structure of the cantilever beam using NFGL Framework, Stochastic

Nodal Generation, Error Diffusion, Local Volume Constraint, and Adaptive Quadtree methods

Time

 NFGL Framework Stochastic Nodal

Generation

Error

Diffusion

Local Volume

Constraint

Adaptive

Quadtree No. elements 𝑆𝑅 = 1 𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 30

64×32 1.85 1.78 1.61 1.55 4.74 1.78 41.00 50.60

128×64 7.28 6.69 6.41 7.15 9.09 6.65 123.55 146.84

256×128 32.36 29.20 28.17 27.80 28.89 29.19 959.16 360.11

512×256 130.85 119.15 116.63 113.04 108.87 119.52 12815 957.72

640×320 272.09 252.23 247.62 243.34 234.48 252.34 16125 1280.85

768×384 389.28 356.12 349.61 342.09 326.97 356.60 95607 2826.77

1024×512 695.58 643.36 633.16 619.78 593.53 645.62 N/A 4524.41

 94

Table 6 Breakdown of the computational cost of the cantilever beam for the NFGL Framework, Stochastic Nodal Generation

and Error Diffusion methods

Time

 Unpenalized

SIMP

NFGL Framework Stochastic Nodal

Generation

Error

Diffusion No. elements 𝑆𝑅 = 1 𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 30

64×32 1.41 0.44 0.37 0.20 0.14 3.33 0.37

128×64 5.61 1.67 1.08 0.79 1.54 3.47 1.04

256×128 25.57 6.79 3.63 2.60 2.23 3.32 3.62

512×256 105.64 25.21 13.51 10.99 7.40 3.23 13.87

640×320 230.95 41.14 21.29 16.67 12.39 3.53 21.39

768×384 323.60 65.67 32.52 26.00 18.49 3.36 32.99

1024×512 590.11 105.48 53.26 43.06 29.68 3.42 55.51

 95

Table 7 Number of iterations for each topology optimization method used in the

cantilever beam

No. elements Unpenalized SIMP Local Volume Constraint Adaptive Quadtree

64×32 32 542 146

128×64 42 505 271

256×128 53 483 296

512×256 54 520 223

640×320 64 519 215

768×384 57 502 269

1024×512 65 N/A 266

 To further investigate the computational cost of the NFGL framework and how it

performs against the Stochastic Nodal Generation and Error Diffusion methods, the

computational cost of each algorithm, excluding the time for performing the SIMP

optimization, is plotted against the number of elements in the beam’s mesh. As for the

Adaptive Quadtree and Local Volume Constraint methods, they were omitted due to their

significantly large computational cost compared to the other algorithms. Figure 63 shows

the computational cost plot against the number of elements for the NFGL Framework,

Stochastic Nodal Generation, and Error Diffusion methods.

 96

Figure 63 Computational cost of the cantilever beam for the NFGL Framework,

Stochastic Nodal Generation and Error Diffusion methods against the number of

FE elements used

 From Figure 63, the computational cost of the Error Diffusion method and NFGL

Framework is almost the same when 𝑆𝑅 = 2 and becomes better as the value of 𝑆𝑅

increases, which is a good indication of how well the NFGL Framework would perform

against the Error Diffusion method with the increase in the number of input elements.

However, the Stochastic Nodal Generation method shows no change in cost as expected.

This is due to the fact that it does not require input nodes to generate the NFGL structure,

so the structure is generated based on the actual scale of the design domain from randomly

placed nodes as explained in section 2.2. But, although this seems to be an advantage to

use the Stochastic Nodal Generation method over the other two, it has significant

drawbacks when generating NFGL structure that will be discussed in-depth in the next

sections.

 97

 The reduction in computational cost, as the values 𝑆𝑅 of increases, is not linear. The

difference in computational cost between 𝑆𝑅 = 2 and 𝑆𝑅 = 3 is almost as much as the

difference between 𝑆𝑅 = 3 and 𝑆𝑅 = 30, which is expected since the algorithm would

reach a point where the number of removed nodes will not increase as much to the point

where the computational cost would go down in a significant manner.

 The generated NFGL structures using all five algorithms are shown in figures 64-

74. As expected, the structures generated using the Stochastic Nodal Generation method in

Figure 64 look similar and the size of the largest unit-cell size is unaffected by the number

of elements since it doesn’t rely on the FE mesh to generate the NFGL structure. However,

the unit-cell size ratio is not controlled by the method, thus it doesn’t change in all the

generated NFGL structures by this method. As for the Error Diffusion structures in Figure

65, they are heavily affected by the number of elements used in the generation process. The

size of the largest unit-cell reduces as the number of elements increases. Similarly, the

Local Volume Constraint method in Figure 67 shows the same behavior. The size of the

largest unit-cell reduces as the number of elements increases in the structure. This is

because of using a fixed region of elements for the local volume to be constrained in the

algorithm. But even with a variable radius, the unit-cell size ratio would still not be

controllable since the algorithm would enforce a porosity equal to α locally. As for the

Adaptive Quadtree method in Figure 66, it does show a change in the unit-cell size ratio as

the number of elements increases in the design domain. However, it is clear that it cannot

create conformal designs since it only subdivides the unit-cells. So the generated design

only contains lattice struts that are either horizontal or vertical.

 98

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 64 Generated NFGL structures using the Stochastic Nodal Generation

method for the cantilever beam at different sizes

 99

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 65 Generated NFGL structures using the Error Diffusion method for the

cantilever beam at different sizes

 100

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 66 Generated NFGL structures using the Adaptive Quadtree method for the

cantilever beam at different sizes

 101

64×32 128×64

256×128 512×256

640×320 768×384

Figure 67 Generated NFGL structures using the Local Volume Constraint method

for the cantilever beam at different sizes

 Unlike the other algorithms, the NFGL Framework (figures 68-74) is able to

generate NFGL structures with different unit-cell size ratios easily. The increase in the

number of elements allows for smaller unit-cells to be generated. And since a fixed 𝑆𝑅

value was used in all the designs, the largest unit-cells become smaller as the number of

elements in the design domain increases. However, larger sizes can still be generated by

higher values of 𝑆𝑅 easily.

 102

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 68 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 64×32 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 69 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 128×64 at different 𝑺𝑹 values

 103

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 70 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 256×128 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 71 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 512×256 at different 𝑺𝑹 values

 104

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 72 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 640×320 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 73 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 768×384 at different 𝑺𝑹 values

 105

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 74 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 1024×512 at different 𝑺𝑹 values

 As for the simply supported beam case, similar behavior is also seen from all

methods. Table 8 shows the computational cost of each method when generating the NFGL

structure. Similar to Table 5, the Local Volume Constraint method was the most

computationally expensive followed by the Adaptive Quadtree method. As explained

previously, this is due to the usage of topology optimization in each iteration during the

process of generating the NFGL structure, unlike the other methods which only used the

unpenalized SIMP optimization that required significantly less time to finish. Table 9

shows the breakdown of the computational cost of the NFGL Framework, Stochastic Nodal

Generation, and Error Diffusion methods. The same trend in Table 6 is also seen here where

the computational cost of the NFGL Framework drops drastically when 𝑆𝑅 = 2 and

becomes slightly better than the Error Diffusion computational cost, which further

strengthens the recommendation that a high value of 𝑆𝑅 is a good starting point for the

 106

NFGL Framework. As for the number of iterations needed for the topology optimization

processes, the results are shown in Table 10. The results show a similar trend to the results

seen in Table 7. The generated NFGL structures from the methods are also shown in figures

75-85. The structures also show a similar trend to that seen in figures 68-74. The Stochastic

Nodal Generation method is unaffected by the mesh size as expected. The Error Diffusion

method shows a reduction in the unit-cell sizes as the mesh size increases, which increases

the number of nodes used. The Adaptive Quadtree method show unit-cell size variation but

with non-conformal unit-cells. The Local Volume Constraint method shows reduced sizes

as the size increases due to the fixed region of elements used. The NFGL Framework shows

different generated structures at different 𝑆𝑅 values and as the value of 𝑆𝑅 increases, the

structure deviates further from the expected shape in the case where the large unit-cells

become too large.

 The computational cost for generating the NFGL structure for the simply supported

beam is shown in Figure 86. Similar to Figure 63, the NFGL Framework and Error

Diffusion showed a similar cost when 𝑆𝑅 = 2 as the number of elements increases, with

the NFGL Framework having lower computational cost as 𝑆𝑅 values increases. The

Stochastic Nodal Generation method was not affected as expected since it doesn’t generate

the NFGL nodes from the input elements but rather based on the scale of the design domain.

 107

Table 8 Computational time to generate the NFGL structure of the simply supported beam using NFGL Framework,

Stochastic Nodal Generation, Error Diffusion, Local Volume Constraint, and Adaptive Quadtree methods

Time

 NFGL Framework Stochastic Nodal

Generation

Error

Diffusion

Local Volume

Constraint

Adaptive

Quadtree No. elements 𝑆𝑅 = 1 𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 30

64×32 2.24 2.08 2.02 1.95 5.05 2.06 95.54 46.77

128×64 7.39 6.60 6.45 6.03 8.90 6.57 167.18 99.93

256×128 29.34 26.07 25.55 24.72 25.99 26.13 1563.09 375.30

512×256 144.82 132.24 130.12 126.33 122.89 133.35 4020.55 1136.27

640×320 256.90 240.12 236.18 230.46 222.33 240.57 11292 2014.41

768×384 393.55 363.71 358.81 350.48 335.73 365.75 29578 2612.05

1024×512 638.98 589.29 580.23 566.30 540.47 593.33 N/A 4800.69

 108

Table 9 Breakdown of the computational cost of the simply supported beam for the NFGL Framework, Stochastic Nodal

Generation and Error Diffusion methods

Time

 Unpenalized

SIMP

NFGL Framework Stochastic Nodal

Generation

Error

Diffusion No. elements 𝑆𝑅 = 1 𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 30

64×32 1.68 0.55 0.40 0.34 0.27 3.37 0.38

128×64 5.55 1.84 1.05 0.90 0.48 3.35 1.02

256×128 22.72 6.63 3.35 2.83 2.01 3.28 3.41

512×256 119.57 25.26 12.67 10.55 6.76 3.32 13.79

640×320 219.00 37.90 21.12 17.18 11.46 3.33 21.57

768×384 332.49 61.06 31.22 26.33 17.99 3.25 33.27

1024×512 537.14 101.84 52.15 43.09 29.16 3.33 56.19

 109

Table 10 Number of iterations for each topology optimization method used in the

simply supported beam

No. elements Unpenalized SIMP Local Volume Constraint Adaptive Quadtree

64×32 35 303 178

128×64 42 331 271

256×128 46 545 300

512×256 54 482 279

640×320 61 504 332

768×384 56 542 273

1024×512 52 N/A 270

 From the results presented in this section, it is clear that the NFGL Framework is

computationally efficient when compared to other methods and can easily adjust the unit-

cell size ratio without additional changes to the input density field or optimization process.

Furthermore, it can out perform the Error Diffusion method in terms of computational cost

as the value of 𝑆𝑅 increases, which further strengthens the recommendation of using higher

values of 𝑆𝑅 when generating NFGL structures. This also makes it a favorable choice to

use when investigating the effects of the unit-cell size ratio on the structures.

 110

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 75 Generated NFGL structures using the Stochastic Nodal Generation

method for the simply supported beam at different sizes

 111

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 76 Generated NFGL structures using the Error Diffusion method for the

simply supported beam at different sizes

 112

64×32 128×64

256×128 512×256

640×320 768×384

1024×512

Figure 77 Generated NFGL structures using the Adaptive Quadtree method for the

simply supported beam at different sizes

 113

64×32 128×64

256×128 512×256

640×320 768×384

Figure 78 Generated NFGL structures using the Local Volume Constraint method

for the simply supported beam at different sizes

 114

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 79 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 64×32 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 80 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 128×64 at different 𝑺𝑹 values

 115

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 81 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 256×128 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 82 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 512×256 at different 𝑺𝑹 values

 116

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 83 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 640×320 at different 𝑺𝑹 values

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 84 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 768×384 at different 𝑺𝑹 values

 117

𝑆𝑅 = 1 𝑆𝑅 = 2

𝑆𝑅 = 3 𝑆𝑅 = 30

Figure 85 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 1024×512 at different 𝑺𝑹 values

Figure 86 Computational cost of the simply supported beam for the NFGL

Framework, Stochastic Nodal Generation and Error Diffusion methods against the

number of FE elements used

 118

4.1.2 Structural Performance

 To evaluate the structural performance of the NFGL Framework with the other

algorithms used in section 4.1.1, the compliance of the generated NFGL structures for the

cantilever beam and simply supported beam, shown in Figure 61, will be calculated.

Furthermore, the effects of changes in the size of the unit-cells on the generated NFGL

structure’s compliance will be investigated. Therefore, different NFGL structures using the

NFGL framework will be generated with different large influence sphere radii, 𝑅𝐿, to

generate a fixed large unit-cell sizes. The initial value of 𝑅𝐿 will the same as 𝑅𝑆, while the

other values that will be used are 2, 3, 5, 15, 30, 50, and 90mm. Furthermore, the MSSIM

index will be calculated for these structures in order to investigate the effects of changes in

the unit-cell size ratio on the compliance of the generated NFGL structures. As for the

number of elements that will be used as in input for each algorithm, due to the high

computational cost of the Adaptive Quadtree and the Local Volume Constraint methods,

only the size 256×128 will be used. This size is similar to the size used in the literature for

these methods. As for the other three methods, only three sizes will be used, which are

256×128, 640×320, and 768×384. The smallest size was chosen such that it uses the same

size as the Adaptive Quadtree and Local Volume Constraint methods, while the largest size

was chosen because it had results produced for the Local Volume Constraint method,

which would aid in comparing the structure performance of all other methods with it.

 Table 11 shows the compliance of the generated NFGL structures at the sizes

mentioned for the cantilever beam. From the table, the Adaptive Quadtree approach has

the worst compliance compared to the other designs. And with its high computational cost,

the Adaptive Quadtree method becomes unfavorable to use. The Local Volume Constraint

 119

method shows better results than the Adaptive Quadtree method, but the improvement in

the compliance compared to the other three methods does not justify the extremely high

computational cost. Thus, the Local Volume Constraint method is also unfavorable to use.

As for the Stochastic Nodal Generation method, the results show that it has worse

compliance compared to the Error Diffusion method. And since the generated structure by

the Stochastic Nodal Generation method is unaffected by the size of the input elements,

the compliance value only fluctuates due to the stochastic nature of the generated NFGL

structure. However, the Error Diffusion compliance seems to get worse as the number of

elements increases. This is due to the size reduction in the size of the largest unit-cells in

the NFGL structure when the number of elements increases. As for the NFGL Framework

results, the compliance when no variation in unit-cell size is introduced (𝑆𝑅 = 1) was high

and gets worse as the number of elements increases. However, when the unit-cell size

variation is introduced into the generated NFGL structure, the compliance results improve

and become better in most cases than the other designs. After a certain increase in 𝑅𝐿

values, the compliance begins to worsen again. This is because the generated NFGL

structure starts to deviate from the input density field distribution. Figure 87 shows how

the compliance changes for the NFGL structure at different 𝑅𝐿 values while Figure 88

shows the compliance change at different 𝑆𝑅 values. From the figure, the compliance value

reduces and plateaus at a certain range of 𝑅𝐿 values. Then as explained earlier, the

compliance increases as the structure deviate more from the input density field distribution.

Figures 89-91 how the generated NFGL structures from the NFGL Framework.

 120

Table 11 Compliance of different NFLG structure for the cantilever beam using the NFGL Framework, Stochastic Nodal

Generation, Error Diffusion, Adaptive Quadtree, and Local Volume Constraint methods

 Compliance (N.m)

No.

elements

NFGL Framework Stochastic

Nodal

Generation

Error

Diffusion

Adaptive

Quadtree

Local

Volume

Constraint
𝑆𝑅=1

𝑅𝐿 (mm)

2 3 5 15 30 50 90

256×128 90.38 84.44 81.97 80.07 79.97 80.00 81.61 101.61 87.61 81.84 121.21 86.02

640×320 86.33 83.07 79.94 79.92 79.13 79.80 82.66 92.02 87.05 88.42 107.21 89.23

768×384 84.85 80.78 80.05 79.77 78.42 78.92 79.17 89.76 90.44 136.11 107.22 91.26

 121

Figure 87 Change in compliance of the generated NFGL structures for the

cantilever beam using the NFGL Framework as a function 𝑹𝑳

Figure 88 Change in compliance of the generated NFGL structures for the

cantilever beam using the NFGL Framework as a function 𝑺𝑹

 122

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 89 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 256×128 at 𝑹𝑳 values

 123

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 90 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 640×320 at 𝑹𝑳 values

 124

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 91 Generated NFGL structures using the NFGL Framework for the

cantilever beam of size 768×384 at 𝑹𝑳 values

 In order to better understand how the structure begins to deviate from the input

density field, the MSSIM index is calculated for all of the generated NFGL structures from

 125

the NFGL Framework. Figure 92 shows the change in the MSSIM index as 𝑆𝑅 values

changes. The change in the MSSIM index shows that it behaves as a power function

relation with 𝑆𝑅 similarly to what was observed in Figure 60 for all three sizes. Based on

these results, an MSSIM index threshold of 70-75% shows to be a good range where the

NFGL structure would show improvements over a regular FGL structure. So this threshold

will be tested on the next examples to observe if it does indeed provide an improvement to

the NFGL structure. Algorithm 3 and Algorithm 4 were applied to investigate how the

NFGL Framework would determine an appropriate 𝑆𝑅 value that falles within the required

threshold. Table 12 shows the results for all three sizes. The time it took to run the

algorithms was 10.9, 107.3, and112.8 seconds for the 256×128, 640×320, and 786×384

sizes respectively. The reason why the 640×320 and 786×384 times were similar, was

because the 786×384 reached the threshold in 3 iterations as shown in the table. The

determined 𝑆𝑅 values in the table do fall within the required, thus showing that a power

function fitting is sufficient to arrive at an appropriate 𝑆𝑅 value.

 126

Figure 92 Change in the MSSIM index as a function of 𝑺𝑹 for the cantilever beam

Table 12 Determining 𝑺𝑹 for the cantilever beam at different mesh sizes using

Algorithm 3 and Algorithm 4

No. elements MSSIM 𝑺𝑹

256×128

0.95 5

0.29 486.5

0.76 14.0

0.73 14.3

640×320

0.97 5

0.35 524.4

0.49 52.9

0.79 14.3

0.74 16.5

768×384

0.95 5

0.31 876.5

0.71 21.5

 127

 Similarly, the same behavior in the cantilever beam case is seen in the simply

supported beam case. Table 13 shows the compliance values for the different methods

while Figure 93 and Figure 94 show the compliance change for the NFGL framework

structures for different 𝑅𝐿 and 𝑆𝑅 values respectively. The generated NFGL structures for

the simply supported beam are shown in figures 95-97. As for the MSSIM index, the results

also show similar behavior to Figure 92. The suggested threshold of 70-75% does show

improvement in the NFGL structure. Thus Algorithm 3 and Algorithm 4 were used to see

if the NFGL Framework can determine the appropriate 𝑆𝑅 values for the three sizes

accordingly. The computational time for using the algorthms was 10.6, 93.1, and 184.6

seconds for the 256×128, 640×320, and 786×384 sizes respectively. Table 14 shows the

results of running the algorithms. The results from the table show that the algorithms did

indeed reach an 𝑆𝑅 value that falls within the threshold of 70-75% without a significant

increase in the computational cost compared to using the Adaptive Quadtree and Local

Volume Constraint Methods and with improved results compared to the Stochastic Nodal

Generation and Error Diffusion methods.

 128

Table 13 Compliance of different NFLG structure for the simply supported beam using the NFGL Framework, Stochastic

Nodal Generation, Error Diffusion, Adaptive Quadtree, and Local Volume Constraint methods

 Compliance (N.m)

No.

elements

NFGL Framework Stochastic

Nodal

Generation

Error

Diffusion

Adaptive

Quadtree

Local

Volume

Constraint
𝑆𝑅=1

𝑅𝐿 (mm)

2 3 5 15 30 50 90

256×128 118.25 109.62 107.76 106.34 107.26 106.83 106.23 111.19 116.77 107.63 139.02 108.29

640×320 115.44 106.82 106.27 105.46 105.89 105.63 111.21 124.39 116.07 122.99 136.70 113.30

768×384 122.52 107.13 106.50 105.85 105.84 105.32 107.41 120.15 115.81 193.96 138.09 114.92

 129

Figure 93 Change in compliance of the generated NFGL structures for the simply

supported beam using the NFGL Framework as a function 𝑹𝑳

Figure 94 Change in compliance of the generated NFGL structures for the simply

supported beam using the NFGL Framework as a function 𝑺𝑹

 130

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 95 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 256×128 at 𝑹𝑳 values

 131

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 96 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 640×320 at 𝑹𝑳 values

 132

𝑆𝑅 = 1 𝑅𝐿 = 2𝑚𝑚

𝑅𝐿 = 3𝑚𝑚 𝑅𝐿 = 5𝑚𝑚

𝑅𝐿 = 15𝑚𝑚 𝑅𝐿 = 30𝑚𝑚

𝑅𝐿 = 50𝑚𝑚 𝑅𝐿 = 90𝑚𝑚

Figure 97 Generated NFGL structures using the NFGL Framework for the simply

supported beam of size 768×384 at 𝑹𝑳 values

 133

Figure 98 Change in the MSSIM index as a function of 𝑺𝑹 for the simply supported

beam

Table 14 Determining 𝑺𝑹 for the simply supported beam at different mesh sizes

using Algorithm 3 and Algorithm 4

No. elements MSSIM 𝑺𝑹

256×128

0.95 5

0.23 456.2

0.80 11.6

0.75 13.4

640×320

0.95 5

0.28 685.4

0.79 13.7

0.73 15.1

768×384

0.95 5

0.29 984.2

0.78 15.4

0.75 16.6

 134

4.1.3 Robustness Testing

 Robustness is the ability of an algorithm to handle a wide range of data, and solve

the problem as requested [88]. To test the robustness of the NFGL Framework, Stochastic

Nodal Generation and Error Diffusion methods, different sinusoidal density fields input

will be provided to the algorithms. The purpose of the test is to assess the ability of each

algorithm to generate NFGL nodes based on the given inputs of varying density

distributions. Eq. 53 describes the input density field function that will be used to generate

the density distributions shown in Figure 99.

𝑓(𝑥, 𝑦) =

𝑐𝑜𝑠(𝑛√(𝑥 − 7.5)2 + (𝑦 − 7.5)2) + 1

2
 (53)

 where n is a factor to adjust the frequency of the function and is of the values 0.5,

1, 1.8, and 2 respectively.

 The first method that will be used is the Stochastic Nodal Generation method. After

applying the method, the drawbacks of the method becomes apparent. Figure 100 shows

the generated NFGL nodes for n = 0.5, 1, 1.8 and 2 respectively. The generated NFGL

nodes do not represent the density field distribution accurately as shown in figures. To

visualize what’s causing the problem with the Stochastic Nodal Generation method, the

steps of generating the subdivisions of the NFGL nodes were tracked as shown in Figure

101 for the case of 𝑛 = 2. In step 8, the method does not further divide the cell because its

center lies in a low-density region. So it is deemed sufficient to generate a node there based

on the value of 𝑙2 × 𝜌𝑓(𝑆). This is also repeated in the remaining four corners as shown in

step 20. Figure 102 also shows the boundaries of the cells of the upper right corner in step

 135

20. Once all subdivisions are completed, the process is completed in step 67 and the

generated NFGL nodes can be seen why they don’t accurately represent the input density

field. Therefore, the Stochastic Nodal Generation method is not robust enough to handle

input density fields with rapidly changing densities.

a) b)

C) d)

Figure 99 Sinusoidal input density field functions at different frequency values a)

𝒏 = 𝟎. 𝟓 b) 𝒏 = 𝟏 c) 𝒏 = 𝟏. 𝟖 d) 𝒏 = 𝟐

 136

a)

b)

c)

d)

Figure 100 Generated NFGL nodes using the Stochastic Nodal Generation method

with a) 𝒏 = 𝟎. 𝟓 b) 𝒏 = 𝟏 c) 𝒏 = 𝟏. 𝟖 d)𝒏 = 𝟐

 137

1 2 3 4 5 6

7 8 9 10 19 20

21 22 23 32 67

Figure 101 Generation of NFGL nodes at different steps for the Stochastic Nodal Generation using 𝒏 = 𝟐

 138

Figure 102 Cell boundaries for the upper right corner at step 20

 The results of the Error Diffusion method using a grid size of 100×100 is shown in

Figure 103. The figure shows the NFGL nodes and the corresponding NFGL structure

generated from the nodes. Even though the NFGL nodes manage to capture a pattern

similar to the input density fields, the generated NFGL structure from these nodes ends up

with undesirable unit-cell shapes. These unit-cells would end up with long struts and very

small cross-sectional sizes, which would create long and thin weak struts in the structure.

This is due to the inability of the Error Diffusion method to freely control the unit-cell size

ratio of the unit-cells. So in regions where the density is very low, the method doesn’t

generate any NFGL nodes at all because of how the error is being diffused in those regions.

This would cause a jump in the unit-cell size ratio in these regions and the neighboring

regions of higher density as seen in the figures. Furthermore, the same can happen when

the boundaries have very low densities as in the case of n = 1. This test shows the

drawbacks of the Error Diffusion method and the effects of its limitations on the unit-cells’

size ratio.

 139

NFGL nodes NFGL structure NFGL nodes NFGL structure

𝑛 = 1.8 𝑛 = 1.8 𝑛 = 2 𝑛 = 2

Figure 103 Generated NFGL nodes and structures using the Error Diffusion method for different values of 𝒏

 140

 The NFGL Framework was used to generate the NFGL structure at the different

density inputs using 𝑆𝑅 values of 2, 3, 4, and 5 using the same grid of 100×100 that as used

in with the Error Diffusion method. The results for the different values of 𝑆𝑅 for the

different n values are shown in figures 104-107. Unlike the Error Diffusion results, the

NFGL structures generated using the NFGL Framework do not exhibit the same drawback

of having badly shaped unit-cells. Furthermore, the NFGL Framework is able to generate

different unit-cell size ratios easily for different n values in a computational time similar or

even better than the Error Diffusion method as shown in Table 15. This is because the

NFGL Framework does not rely on having multiple nodes determine whether a node should

exist or not in the grid but on the node itself controlling the existence of adjacent nodes

around it, unlike the Error Diffusion method. Thus, further supporting hypothesis 2 on the

ability of the Framework to create NFGL structures without restrictions on the unit-cell

size ratio in a computationally efficient manner. Furthermore, the NFGL Framework

showed to be more robust than the other methods when dealing with rapidly changing

density fields. Thus showing the advantages of the NFGL Framework in generating NFGL

structures compared to the other methods.

 141

NFGL Nodes

NFGL structure

𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 4 𝑆𝑅 = 5

Figure 104 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟎. 𝟓 at different 𝑺𝑹 values

 142

NFGL Nodes

NFGL structure

𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 4 𝑆𝑅 = 5

Figure 105 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟏 at different 𝑺𝑹 values

 143

NFGL Nodes

NFGL structure

𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 4 𝑆𝑅 = 5

Figure 106 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟏. 𝟖 at different 𝑺𝑹 values

 144

NFGL Nodes

NFGL structure

𝑆𝑅 = 2 𝑆𝑅 = 3 𝑆𝑅 = 4 𝑆𝑅 = 5

Figure 107 Generated NFGL nodes and structures using the NFGL Framework for 𝒏 = 𝟐 at different 𝑺𝑹 values

 145

 Table 15 Computational cost for the generation of NFGL structures at

different 𝒏 values

n NFGL Framework 𝑆𝑅 Error Diffusion

2 3 4 5

0.5 0.465 0.304 0.227 0.171 0.392

1 0.689 0.561 0.463 0.416 0.697

1.8 0.701 0.645 0.543 0.494 0.700

2 0.693 0.501 0.512 0.484 0.665

4.1.4 Conformity to Design Domain

 In this section, the NFGL framework will be compared with the Stochastic Nodal

Generation and Error Diffusion methods in generating a circular NFGL structure that

conforms to the circular design domain and an NFGL structure that follows a curved path.

4.1.4.1 Circular Design Domain

 Figure 108 shows the density input of the circular design domain that will be used

to generate the NFGL structure and Eq. 54 describes how the density varies across the

design domain. The center of the circle is at (15, 15), with a radius of 15, and has a

maximum density of 1 at the edges of the circle and 0.091 at the center.

 146

Figure 108 Density gradient of the circular design domain

𝑓(𝑥, 𝑦) =

{

0 𝑖𝑓 √(
𝑥

15
− 1)

2

+ (
𝑦

15
− 1)

2

> 1

(
𝑥
15
− 1)

2
+ (

𝑦
15
− 1)

2
+ 0.1

1.1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (54)

 To apply the Error Diffusion method, an image that describes the density field was

generated with a size of 80×80. Thus, the number of pixels is 6,400 with 4,872 of them

inside of the circular design domain. Figure 109 shows the generated image of the density

field and the generated NFGL nodes using the Error Diffusion method. Since the density

field has to be represented in an 80×80 image, the edges of the circular domain become

jagged and also form large straight lines. Figure 110 shows the NFGL structure generated

from the Error Diffusion NFGL nodes. From the figure, it is clear that the edges of the

NFGL structure form large straight lines around the design domain. Furthermore, this is

more noticeable on the top, bottom, and sides of the structure, where the straight edges

were the longest. Moreover, since the NFGL nodes were the pixels of the 80×80 image,

they were not conforming to the design domain, thus the generated structure did not

 147

conform to the design domain as well, which confirms hypothesis 1 that the conformity of

the nodes affects the conformity of the generated NFGL structure. Figure 111 shows a close

up of the NFGL structure, showing how the edges form straight lines and also how the unit-

cells of the NFGL structure do not conform to the circular design domain. This highlights

the drawback of using the Error Diffusion method when used on non-rectangular design

domains.

Figure 109 Transformation of the input density image into NFGL nodes using the

Error Diffusion method for the circular design domain

Figure 110 Generated NFGL structure using the Error Diffusion method for the

circular design domain

 148

Figure 111 Close up of the generated NFGL unit-cells using the Error Diffusion

method for the circular design domain

 As for the Stochastic Nodal Generation method, the generated NFGL nodes are

shown in Figure 112. From the figure, it is clear that, due to the stochastic nature of the

method, the nodes will not be conformal to the design domain. Furthermore, there are nodes

that are laying outside of the design domain region. Figure 113 shows the generated NFGL

structure from the nodes in Figure 112. The structure is not conformal to the design domain

as expected and the generated unit-cells look undesirable. Thus, the Stochastic Nodal

Generation method is unfavorable when generating NFGL structures that require to be

conformal to the design domain.

 149

a) b)

Figure 112 Generated NFGL nodes using Stochastic Nodal Generation for the

circular design domain a) Generated cells b) Generated NFGL nodes

Figure 113 Generated NFGL structure using the Stochastic Nodal Generation

method for the circular design domain

 To apply the NFGL framework, a conformal mesh was generated. Figure 114-a

shows the generated mesh, which took only 0.42 seconds and has 4824 nodes to be as close

as possible to the number of nodes used in the Error Diffusion method. The generated

NFGL structure is shown in Figure 114-b. The NFGL structure in the figure was generated

using an 𝑆𝑅 value of 5. The generated NFGL structure does not suffer from the drawbacks

 150

present in the Error Diffusion and Stochastic Nodal Generation methods. A closeup of the

generated unit-cells is shown in Figure 115. From the figure, it is clear that the uni-cells of

the structure are conformal to the design domain. Furthermore, Figure 116 shows different

NFGL structures that were generated using 𝑆𝑅 values of 2, 3, 5 and 10. The structures were

generated without the need to remesh the design domain or adjusting the density field input.

 Table 16 shows the computational cost for each of the methods when generating

the NFGL structure. The Stochastic Nodal Generation had the lowest time since it had only

464 nodes, which the least number of nodes used to generate the structure among all

methods. But the generated structure is not conformal and the uni-cells’ shape is highly

unfavorable. As for the NFGL Framework, the computational cost in the table does not

include the 0.42 seconds needed to generate the initial mesh, since it is not required to

regenerate the mesh for different 𝑆𝑅 values. The results show that the NFGL framework

can generate different NFGL structures with different size ratios in a computationally

efficient manner when compared with the Error Diffusion method, which can only generate

one NFGL structure with the given size of 80×80 and without altering the density field

input. Thus, further confirming hypothesis 2 in showing that the NFGL Framework can

generate NFGL structures with different unit-cell sizes ratios in a computationally efficient

manner.

 151

a) b)

Figure 114 Circular Design domain FEM mesh nodes

Figure 115 Close up of the generated NFGL unit-cells using the NFGL Framework

for the circular design domain with 𝑺𝑹 = 𝟓

 152

a) b)

c) d)

Figure 116 Generated NFGL structures using the NFGL Framework for the

circular design domain a) 𝑺𝑹 = 𝟐 b) 𝑺𝑹 = 𝟑 c) 𝑺𝑹 = 𝟓 d) 𝑺𝑹 = 𝟏𝟎

Table 16 Computational cost of the NFGL Framework, Error Diffusion, and

Stochastic Nodal Generation methods for the circular design domain

NFGL Framework
Error

Diffusion

Stochastic

Nodal

Generation
𝑆𝑅

2 3 5 10

Time (s) 0.3795 0.2415 0.1920 0.1241 0.3918 0.0965

No. Nodes 4824 4872 464

 153

4.1.4.2 Curved Path Design Domain

 Two curved design domains will be used to further evaluate the performance of the

methods in section 4.1.4.1 on the generation of conformal NFGL structures. The curves

were generated using Bezier curves with the following density distributions along the curve

𝑓(𝑢) =

cos(2𝜋𝑛𝑢) + 1

2
 (55)

 where 𝑢 is the parameter of the Bezier curve, 𝑛 is the frequency of the values 0.25

and 4 as shown in Figure 117

a)

b)

Figure 117 Curved path design domain a) 𝒏 = 𝟎. 𝟐𝟓 b) 𝒏 = 𝟒

 154

 The Error Diffusion method was used on the design domains to generate the NFGL

nodes and corresponding NFGL structure. Figure 118 shows the generated NFGL nodes

and NFGL structure for 𝑛 = 0.25 while Figure 119shows the same but for 𝑛 = 4. From

the figures, it is also apparent that the Error Diffusion method is not able to generate

conformal NFGL structures. This becomes more apparent in regions where the density is

low. But even in higher density regions, the NFGL unit-cells still do not conform to the

design domain. Furthermore, when 𝑛 = 0.25 the end of the design domain have no nodes

generated to form unit-cells. So it ends up being truncated. This further shows the drawback

of using the Error Diffusion method when creating conformal NFGL structures.

a)

b)

Figure 118 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

Error Diffusion method a) Generated NFGL nodes b) Corresponding NFGL

structure

 155

a)

b)

Figure 119 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the

Error Diffusion method a) Generated NFGL nodes b) Corresponding NFGL

structure

 As for the Stochastic Nodal Generation method, it suffered from the same issue

explained in section 4.1.3 and was not able to generate NFGL nodes that can represent the

design domain as shown in Figure 120. Thus, further showing the drawbacks of this

method, which makes it highly unfavorable to use.

 156

a)

b)

Figure 120 Generated NFGL nodes for the curved path for the Stochastic Nodal

Generation method with a) 𝒏 = 𝟎. 𝟐𝟓 b) 𝒏 = 𝟒

 As for the NFGL Framework, both design domains were generated using different

𝑆𝑅 values (𝑆𝑅 = 2, 3, and 4). Figure 121 shows the FEM mesh that was used to generate

the NFGL nodes and structures. The meshing process took 0.32 seconds and generated

12492 elements and 6537 nodes. The generated NFGL nodes and structures are shown in

figures 122-127. The figures show how well the NFGL Framework can produce the NFGL

nodes that are conformal to both curved design domains and how the corresponding NFGL

structures also conform to the design domains. Furthermore, the unit-cell size ratio was

easily adjustable without the need to alter the input density field distributions.

 157

 Table 17 shows the computational time for all three methods for both design

domains. The NFGL Framework had lower computational cost compared to the Error

Diffusion method for both cases.

Figure 121 Input FEM mesh for the design domains of the curved paths

 158

a)

b)

Figure 122 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟐 a) Generated NFGL nodes b)

Corresponding NFGL structure

 159

a)

b)

Figure 123 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟑 a) Generated NFGL nodes b)

Corresponding NFGL structure

 160

a)

b)

Figure 124 Generated NFGL structure for the curved path with 𝒏 = 𝟎. 𝟐𝟓 using the

NFGL Framework method with 𝑺𝑹 = 𝟒 a) Generated NFGL nodes b)

Corresponding NFGL structure

 161

a)

b)

Figure 125 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the

NFGL Framework method with 𝑺𝑹 = 𝟐 a) Generated NFGL nodes b)

Corresponding NFGL structure

 162

a)

b)

Figure 126 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the

NFGL Framework method with 𝑺𝑹 = 𝟑 a) Generated NFGL nodes b)

Corresponding NFGL structure

 163

a)

b)

Figure 127 Generated NFGL structure for the curved path with 𝒏 = 𝟒 using the

NFGL Framework method with 𝑺𝑹 = 𝟒 a) Generated NFGL nodes b)

Corresponding NFGL structure

 164

Table 17 Computational cost for generating the NFGL structure for both curved

paths using NFGL Framework, Error Diffusion, and Stochastic Nodal Generation

methods

 NFGL Framework
Error

Diffusion
 𝑆𝑅

n 2 3 4

Time (s)
0.25 0.777 0.689 0.536 0.994

4 0.770 0.573 0.505 1.277

 The results presented in this section show the advantage of the NFGL Framework

over all of the other existing methods. It confirmed the expected advantages of the NFGL

Framework stated in section 2.5. The generated NFGL structures are conformal,

deterministic, robust, with easily adjustable unit-cell size ratios and at a low computational

cost.

4.2 Automotive Control Arm Optimization Under Multiple Loading Conditions

 This section will demonstrate the application of the NFGL Framework in

optimizing an automotive control arm from an example provided by Optistruct for lattice

optimization [89], shown in Figure 128, and highlighting the benefits of using NFGL

structures over the FGL structure design. The control arm will be optimized and enhanced

with lattice structures to reduce the weight and the generated lattice structures would be

subjected to a sizing optimization after to further enhance the performance of the control

arm. The use of the NFGL structure in the sizing optimization will also be investigated

against regular FGL structures.

 The control arm is subjected to two loading conditions on the control points PA, PB,

PC, PD, and PE that lie in the center of the holes in the geometry and are connected with

rigid beam elements to the surface of the holes. Table 18 shows the loading condition for

 165

both cases and Table 19 shows the material properties for the control arm. The control arm

was optimized using the SIMP optimization in Optistruct with a penalty of 1.8 to minimize

the combined compliances of both load cases under a mass constraint of 11kgs. The

optimization result is shown in Figure 129. Elements with relative densities between 0.05

and 0.8 were replaced by lattice structures and their diameters were calculated based on

their relative density accordingly. Figure 130 shows the generated FGL structure generated

based on the optimization result from [89].

Figure 128 Automotive control arm that will be optimized using lattice structures

 166

Table 18 Automotive control arm boundary and loading condition for both load

cases

 Case 1 Case 2

Load Constraint Load Constraint

N N.mm mm N N.mm mm

PA

x -5.21 2.07 932.90 0.86

y 21.21 0.70 -815.49 -0.18

z 4.25 -2.65 0 438.10 1.49 0

PB

x -1908.82 2.07 881.47 0.86

y -2357.51 0.70 0 2248.27 -0.18 0

z 10.00 -2.65 0 255.80 1.49 0

PC

x 0.59 -0.51

y 0.34 0.24

z -1.82 -1.64

PD

x 0 0

y 0 0

z 0 0

PE

x 1301.31 -923.45

y -313.71 -272.00

z 1019.46 814.81

Table 19 Automotive control arm material properties

Property Value

E (MPa) 160

𝜐 0.25

𝜌𝑠𝑜𝑙𝑖𝑑 (kg/m3) 7100

 167

Figure 129 SIMP optimization results for the automotive control arm

Figure 130 Generated FGL structure for the automotive control arm

 168

 To compare the performance of NFGL structures with the generated FGL structure,

several NFGL structures were generated using 𝑆𝑅 = 2, 3, 4, 5, 8 and 15 (Figure 131 shows

the generated NFGL structure with 𝑆𝑅 = 3). The combined compliances of both structures

were evaluated before and after the sizing optimization was performed. Figure 132 shows

the combined compliance of the control arm before and after size optimization was

performed on the generated lattice structures at different 𝑆𝑅 values. The value of 𝑆𝑅 = 1

corresponds to the regular FGL structure. As shown in the figure, the compliance improves

s the value of 𝑆𝑅 increases and then starts to deteriorate after a certain threshold. This shows

that using NFGL structures indeed provides improvement to the structures. Furthermore,

even after optimization, there is a slight improvement from NFGL structures over FGL

structures. But, the biggest improvement for NFGL structures of FGL structures is the

computational time required to do the size optimization process. Figure 133 shows the

computational time required to run the sizing optimization with and without the

computational time needed to generate the NFGL structure. From the figure, it is clear that

the use of NFGL structures reduces the computational time for size optimization

significantly without incurring any significant increase in the computational cost. This is

due to the reduced number of design variables to be considered as the value of 𝑆𝑅 increases.

 169

Figure 131 Generated NFGL structure for the control arm with 𝑺𝑹 = 𝟑

 The MSSIM index value is shown in Figure 134 as the value of 𝑆𝑅 increases. From

the figure, it can be seen that the threshold of 70-75% does indeed fall into the region where

the NFGL structure shows improvement over the FGL structure. By utilizing Algorithm 3

and Algorithm 4, a suitable 𝑆𝑅 value can be determined. Table 20 shows the adjustments

of 𝑆𝑅 value using Algorithm 4. From the table, a value of 𝑆𝑅 around 3 shows to fall into

the required threshold, which agrees with Figure 134. The time required to conduct this

search was 206.1 seconds, which is not a significant increase.

 170

Figure 132 Automotive control arm combined compliance before and after size

optimization at different 𝑺𝑹 values

Figure 133 Computational cost of conducting size optimization for the control arm

lattice struts at different 𝑺𝑹 values

 171

Figure 134 MSSIM index for the automotive control arm as a function of 𝑺𝑹

Table 20 Determining 𝑺𝑹 value for the control arm using Algorithm 3 and

Algorithm 4

MSSIM 𝑺𝑹

0.8533 2

0.6968 3.5134

0.7401 3.1824

4.3 Injection Mold Lattice Cooling Channel Design

 The performance of NFGL structures will be demonstrated in this section in

handling a thermomechanical problem of designing the cooling channel section of an

injection mold and comparing the results of the NFGL structure with the FGL structure

generated in [55]. Figure 135 shows the boundary and loading conditions of the cooling

channel. One-fourth of the design domain was modeled due to its symmetry and

appropriate symmetry boundary conditions were added. The dimensions of the cooling

channel are 100×100mm and the outside surfaces are subjected to a uniform injection

 172

pressure of 𝑓1 = 2MPa, a side clamping pressure of 𝑓2 = 1MPa, and a surface heat flux of

Γ𝑞 = 1mW/mm
2. The center of the cooling channel is constrained at a temperature of

𝑃𝑇 = 0. A convection coefficient of ℎ = 0.01mW/mm2 was applied normal to the surface

to represent natural convection. The material used had an elastic modulus of E = 1MPa and

thermal conductivity of k = 1W/(mˑk).

Figure 135 Loading and boundary conditions for one-fourth of the injection mold

cooling channel [55]

 The cooling channel in [55] was optimized using the SIMP optimization method by

deriving the elastic and thermal properties matrices in terms of the porosity of a square

lattice unit-cell using Asymptotic Homogenization. However, this method is

computationally expensive due to the increased nonlinearity of the design variables to

describe the stiffness matrices in terms of the unit-cell topology as explained in section 1.3.

Thus, the design domain was meshed using 10×10 quadrilateral elements to reduce the

computational cost. The optimization formulation was as follows:

 173

 min(𝐶) = 𝑤1𝐶𝑀(𝛒) + 𝑤2𝐶𝑇(𝛒) (56)

Subject to

 𝐶𝑀 = 𝐔
𝑇(𝛒)𝐊𝑚(𝛒)𝐔(𝛒) (57)

 𝐶𝑇 = 𝐓(𝛒)
𝑇 (𝐊𝑡(𝛒) + 𝐊𝑡

ℎ(𝛒))𝐓(𝛒) (58)

 𝐊𝒎𝐔 = 𝐅 (59)

 (𝐊𝑡(𝛒) + 𝐊𝑡
ℎ(𝛒))𝐓(𝛒) = 𝐪 (60)

 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 1 (61)

∑𝑉𝑖𝜌𝑖

𝑁𝑒

𝑖=1

≤ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 (62)

 where Cm and CT are the mechanical and thermal compliances of the structure; 𝑤1

and 𝑤2 are the weights for the mechanical and thermal compliance (3 and 1 in this

example); 𝐾𝑚, 𝐾𝑡 and 𝐾𝑡
ℎ are the elastic, conduction, and convection stiffness matrices

respectively; T is the temperature vector and q is the thermal load vector. The target volume

is 41% of the initial volume. The results of the optimization in [55] are shown in Figure

136.

 174

Figure 136 Optimized injection mold cooling channel using FGL structures via AH

[55]

 To apply the NFGL framework, the same optimization problem in Eq. 56 was

solved using the unpenalized SIMP optimization in Optistruct since using the result in

Figure 136 would not be suitable for different types of unit-cells. The same number of unit-

cells was also used to compare the performance of the NFGL structure with the FGL

structure in Figure 136. The optimization process took 4 seconds to finish and the results

are shown in Figure 137. To check how the thermomechanical performance of the

generated NFGL structure varies, 𝑆𝑅 values of 2, 3, 4, 5 and 6 will be used. Figure 138

shows the generated NFGL structures while Figure 139 and Figure 140 show the results of

the mechanical and thermal compliances relative to the FGL structure respectively. The

mechanical compliance shows the expected behavior of improvement until the NFGL

structure begins to deviate from the density input. Then, the compliance starts to worsen

as 𝑆𝑅 values begins to increase. Compared to the optimized FGL structure, the NFGL

structure can reach almost similar compliance relatively without the need to conduct

computationally expensive topology optimization using AH. As for the thermal

 175

compliance of the NFGL structure, a different behavior is noticed. The thermal compliance

starts better in the case of 𝑆𝑅 = 1 comapred to the optimized FGL design, but then starts

to increase until it becomes higher. This behavior is due to the reduction in surface area for

convection heat transfer as 𝑆𝑅 values increases as shown in the illustration in Figure 141.

The figure shows two square structures, with side length l, and thickness t and a porosity

of 64%. The structure in Figure 141-a has four unit-cells while the structure in Figure 141-

b has only one unit-cell. Both have the same top surface area due to having the same

porosity. But the side surface area is higher in the case of Figure 141-a, which increases

the area where convection heat transfer can occur. But despite that, the NFGL structure

with 𝑆𝑅 values between 2-4 and can perform relatively well with the optimized FGL

structure and at a low computational cost, which further shows the benefits of varying the

unit-cells’ size ratio.

Figure 137 Optistruct optimization results for the injection mold cooling channel

using a size of 10×10

 176

𝑺𝑹 = 𝟏 𝑺𝑹 = 𝟐 𝑺𝑹 = 𝟑

𝑺𝑹 = 𝟒 𝑺𝑹 = 𝟓 𝑺𝑹 = 𝟔

Figure 138 Generated NFGL structures for the injection mold cooling channel using

a size of 10×10 with different 𝑺𝑹 values

Figure 139 Relative mechanical compliance of the NFGL structure for the injection

mold cooling channel with a size of 10×10

 177

Figure 140 Relative thermal compliance of the NFGL structure for the injection

mold cooling channel with a size of 10×10

Figure 141 Comparison of the total surface area subjected to convection heat

transfer for two structures with different unit-cell sizes

 Since only a grid of size 10×10 was used to generate the NFGL structure, the

variation in unit-cell size ratio was very limited. To further investigate how the NFGL

 178

structures can behave in this example, the number of elements was increased to 100×100

elements. Figure 142 shows the topology optimization result in Optistruct using 100×100

elements, which took 90 seconds to solve. From the optimization results, the NFGL

structure was generated using 𝑆𝑅 values of 2, 4, 5, 10, 12, 15, 20, 25, 30, 40 and 50 as

shown in Figure 143. Unlike the 10×10 NFGL structures, the 100×100 NFGL structures

outperform the optimized FGL structure in both mechanical and thermal compliances as

shown in Figure 144 and Figure 145. Even though the thermal compliance shows the same

behavior of increasing as 𝑆𝑅 value increases, it is still lower than the optimized FGL

structure and can be obtained at a very efficient computational cost, further showing the

benefits of NFGL structures over FGL structures.

 Figure 146 and Figure 147 show the MSSIM index as the value of 𝑆𝑅 increases for

both the 10×10 and 100×100 cases respectively. The 10×10 case shows jumps in the data

points due to the small number of unit-cells used in the calculation of the MSSIM index.

However, the trend is similar to what is expected. The 100×100 case shows the expected

behavior. Furthermore, the threshold of 70-75% is a viable range where the NFGL structure

shows improvement over the FGL structure, which is similar to previous examples and

further supports the recommendation of using that range. Table 21 shows the results of

applying Algorithm 3 and Algorithm 4 to determine an appropriate 𝑆𝑅 value for the NFGL

structure. The algorithms took 0.2 seconds for the case of 10×10 and 3.7seconds for the

case of 100×100. Based on the results, the value of 𝑆𝑅 = 3 and 𝑆𝑅 = 10 is suitable for the

10×10 and 100×100 cases respectively, which agrees with the results of the compliances.

 179

Figure 142 Optistruct optimization results for the injection mold cooling channel

using a size of 100×100

 180

𝑆𝑅 = 1 𝑆𝑅 = 2 𝑆𝑅 = 4 𝑆𝑅 = 5

𝑆𝑅 = 10 𝑆𝑅 = 12 𝑆𝑅 = 15 𝑆𝑅 = 20

𝑆𝑅 = 25 𝑆𝑅 = 30 𝑆𝑅 = 40 𝑆𝑅 = 50

Figure 143 Generated NFGL structures for the injection mold cooling channel using a size of 100×100 with different 𝑺𝑹 values

 181

Figure 144 Relative mechanical compliance of the NFGL structure for the injection

mold cooling channel with a size of 100×100

Figure 145 Relative thermal compliance of the NFGL structure for the injection

mold cooling channel with a size of 100×100

 182

Figure 146 MSSIM index for the NFGL structure using a size of 10×10 at different

𝑺𝑹 values

Figure 147 MSSIM index for the NFGL structure using a size of 100×100 at

different 𝑺𝑹 values

 183

Table 21 Determining 𝑺𝑹 value injection mold cooling channel NFGL structure

using Algorithm 3 and Algorithm 4

size MSSIM 𝑺𝑹

10×10
0.8493 2

0.7196 4.18

100×100

0.8823 5

0.4405 87.7

0.7554 9.04

0.7323 9.91

 184

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

 This chapter concludes the dissertation and how the work in this dissertation

addresses the research questions and provides the contributions made in section 5.1, the

current limitations of this work in section 5.2, and potential areas for future work to further

improve the NFGL Framework in section 5.3.

5.1 Contributions

 This section will revisit the research questions that were posed in section 1.5 and

discuss how the current research addresses them, based on the results and how it aligns

with the hypotheses. Moreover, a list of the contributions that the current research provides

will be given.

5.1.1 Addressing the Research Questions

 One of the goals of this research was to develop a framework for designing

conformal NFGL structures in a computationally efficient and deterministic manner. The

major issues that were present in existing work in the literature were computational cost,

uncertainty, and non-conformity to the design domain. Existing methods that can overcome

one of these issues suffer from another. So these existing drawbacks led to the first research

question.

Research Question 1:

How can we reduce the computational cost while controlling the randomness in nodal

placements to generate conformal naturally functionally graded lattices?

 185

 Based on hypothesis 1, using an FEM mesh grid that is conformal to the design

domain would allow the generation of NFGL nodes in a deterministic and conformal

manner. This was based on the fact that the Error Diffusion method can generate NFGL

structures at a low computational cost in a deterministic way, but does not generate

conformal structures. So if the nodes were conformal to the design domain, the generated

structure would also be conformal. The results of the generated structures using the NFGL

Framework in CHAPTER 4 agrees with the hypothesis, especially in section 4.1.4. This

was possible due to the fact that the NFGL Framework does not treat the grid nodes as

pixels, but rather as points in space where the distance of each point is taken into

consideration when generating NFGL nodes, which is something that the Error Diffusion

method does not consider. And since the location of the nodes was predetermined in the

grid, and that process of removing nodes is deterministic, the generated NFGL structure

itself would be deterministic.

 Hypothesis 1 also stated that the removal of nodes should not be done in an iterative

manner where a computationally expensive process like topology optimization would be

needed, like in the Local Volume Constraint and Adaptive Quadtree approach. Since the

NFGL Framework does not rely on topology optimization in each iteration when

generating NFGL nodes, the nodes are generated in a computationally low cost that is

similar to the Error Diffusion and even better in some cases based on what unit-cell size

ratio was used as can be seen in the results of section 4.1.1. Thus, it is apparent that the

NFGL Framework addresses the concerns in research question 1.

 Another goal of the research was to provide the ability to freely and easily generate

NFGL structures with different unit-cell size ratios without strict restrictions or limitations.

 186

As seen in existing work, all of the methods, except for the Adaptive Quadtree and similar

methods, impose a restriction on the size ratio that can be generated. This restriction is

placed either explicitly like the Local Volume Constraint or implicitly like the Error

Diffusion and Stochastic Nodal Generation. The Local Volume Constraint method is

restricted by the radius of neighboring elements that account for the local volume

constraint, which as explained earlier prevents the accumulation of elements that can help

in the generation of smaller cells. The Error Diffusion method restricts the largest unit-cell

size because of the filter used and pixel density in the input density field. While the

Stochastic Nodal Generation method restricts it based on the scale of the design domain.

Both methods require adjustments to the density field input in order to change the unit-cell

size ratio, but the attainable size ratios are still restricted, and correlating the intensity of

the input density field is not intuitive to the user. As for methods like the Adaptive Quadtree

that can create different unit-cell size ratios, increasing the number of levels requires

increasing the FEM mesh size, which significantly increases the computational cost

associated with conducting topology optimization. Furthermore, the methods do not

generate conformal NFGL structures. These issues mentioned led to the second research

question.

Research Question 2:

How can we remove the restriction on the unit-cell size ratio of NFGL structures in a

computationally efficient way?

 Hypothesis 2 stated that nodes should have the ability to control if a node should

be adjacent to it or not from the grid proposed in hypothesis 1. This frees the method from

 187

relying on a fixed-sized range to affect the unit-cell size ratio as in the case of the Local

Volume Constraint and Error Diffusion. But rather gives the node the ability to create its

own range of influence. It further frees the node from being restricted to the design domain

scale and makes it easier for the user to adjust the unit-cell size ratio without having to alter

the input density field. This has led to the idea of using a simplified sphere packing process

in the NFGL Framework, which would allow nodes to remove other nodes in their vacancy

if they were inside their influence sphere and of lower density value. The results in

CHAPTER 4 show how the NFGL Framework is able to adjust the unit-cell size ratio of

the generated NFGL structure at a competitive computational cost. Furthermore, as the size

ratio increases, the computational cost reduces. The highest computational cost is when the

𝑆𝑅 value is 1, which just generates a regular FGL structure that can be generated without

the NFGL Framework. This makes the NFGL Framework more favorable when exploring

the effects of the change in the unit-cells size ratio in a computationally efficient manner

and thus showing that the simplified sphere packing process in the NFGL Framework is

sufficient to answer research question 2 and addresses the concerns posed in the question.

 The third goal of this research was to provide better performance of generated

NFGL structures against existing FGL structures since the work in the literature regarding

that is lacking. The work in the literature focused mainly on the generation process of these

NFGL structures without comparing it against FGL structures in terms of their

performance. However, methods like the Adaptive Quadtree and Local Volume Constraint

methods show that variations in unit-cell size do improve the performance of the structure

in their results. The results of these methods are driven by the topology optimization

process in each iteration. So a method like the NFGL Framework that can freely control

 188

the unit-cell size ratio should experience improvement in performance with the increase in

the size ratio. But there would be a point where the performance would start to drop due to

the generated structure no longer representing the input density field. This issue has led to

the third research question.

Research Question 3:

How can we determine an appropriate unit-cell size ratio to improve the performance of

NFGL structures to satisfy multifunctional requirements?

 The third hypothesis states that the performance of the generated NFGL structure

is correlated with how the generated structure relates to the input density field. But since

the input density field and generated NFLG structure are not the same type of data, it was

proposed in this research to convert the NFGL structure into an approximate density field

and utilize the MSSIM index to determine the similarity between the input density field

and the approximate field from the NFGL structure. By observing the value of the MSSIM

index as the value of 𝑆𝑅 increases in multiple examples, it was possible to determine that

the MSSIM index had a power function relation with the value of 𝑆𝑅. This allowed the

integration of the MSSIM index into the NFGL Framework by introducing an algorithm

that updates the value of 𝑆𝑅. The updating process relies on the observation that an MSSIM

index value between 70%-75% shows an improvement in the performance of the NFGL

structure compared to the regular FGL structure. To attain an MSSIM index that lies within

that threshold, a linear regression on a linearized power function is conducted. Even though

this process required regeneration of the NFGL structure for each iteration, the low

computational cost of the NFGL Framework and the low number of iterations needed did

 189

not cause much increase in the overall computational cost as exhibited in the application

examples in CHAPTER 4. This allowed the NFGL Framework to address the third research

question and showed that NFGL structures do provide improved performance compared to

FGL structures.

5.1.2 List of Contributions

In this section, the contributions of this research will be highlighted.

 A novel method for the generation of NFGL nodes in a computationally

efficient way: We presented in this work an algorithm to generate NFGL nodes using a

newly developed simplified sphere packing algorithm that can generate conformal NFGL

structures for any design domain in a deterministic and computationally efficient manner,

which addresses the concerns in research question 1. Furthermore, The developed

algorithm can help generate NFGL structures with varying unit-cell size ratios in a

computationally efficient manner without altering the input density field, which addresses

the issues in research question 2 unlike the existing methods in the literature. Moreover,

the presented examples in section 1.1.14.1 demonstrated the capabilities of the newly

developed algorithm in generating NFGL nodes by evaluating its computational cost,

robustness, and conformity of the generated NFGL structures to the design domain against

other work in the literature.

 A framework for the generation of conformal NFGL structures with low

computational cost in a deterministic way: As seen from existing work in the literature,

they all suffer from multiple drawbacks that limit their capability of truly generating and

investigating the performance of NFGL structures. So the main contribution of this

 190

research is the development of the NFGL Framework to create NFGL structures without

suffering from the limitations that exist in the literature. The NFGL Framework is able to

overcome the limitations of existing work by utilizing a grid of conformal FEM mesh nodes

and a simplified sphere packing algorithm. The examples in the dissertation provided a

comparison of the NFGL Framework with the other methods in the literature and have

shown that the NFGL Framework can create conformal NFGL structures in a deterministic

way and with a computational time that is as efficient as the other methods and even better

when the unit-cell size ratio is increased. Thus the NFGL Framework is the only method

able to achieve that.

 Investigation of the performance of NFGL structures: Because of the

limitations of the other methods in the literature, it hinders the ability of these methods to

fully explore the potential of NFGL structures. The high computational cost of some

methods prevents them from exploring the effects of change in size ratio for different

applications because of the need to rerun the process for each generated NFGL structure.

Methods that place restrictions on the possible size ratios also do not show how NFGL

structures behave as the size ratio changes. Furthermore, the change in the unit-cell size

ratio requires adjusting the input density field pixel intensity values, which is not intuitive

to users. As for methods that rely on stochastic algorithms, the uncertainty in the generated

structures requires multiple runs to quantify the appropriate properties of the structure. And

given that the methods in the literature suffer from more than one of these drawbacks, their

ability to improve the generated structures becomes limited.

 Since the NFGL Framework does not suffer from these drawbacks, it can easily

generate multiple NFGL structures with the required size ratios without incurring an

 191

expensive computational cost or altering the input density field as the examples show. In

the examples, the performance of the generated structures using the NFGL Framework was

investigated, and based on the results of the examples, a threshold was determined that

would produce an improved structural performance. Furthermore, a deterioration in the

performance of the NFGL structure was addressed when the size ratio increases and was

tied to the deviation of the NFGL structure from the input density field.

 Correlation of NFGL structures to input density fields: One of the challenges

in this research was correlating the change in the unit-cell size ratio of the NFGL structures

being generated by the NFGL Framework. This was because the NFGL structure data

represent nodal coordinates, connectivity, and strut geometry; while the input density field

represents relative density values inside the design domain. For this reason, the use of the

MSSIM index was proposed in this research, since the index value ranges from 0 to 1 based

on how similar two images are. However, the implementation of the MSSIM index required

representing the NFGL structure as an approximate density field and modifying the

MSSIM index to be used on different geometrical shapes. The modified MSSIM algorithm

was then implanted in the NFGL Framework to correlate the two density fields based on

the value of the MSSIM index and the change in the unit-cell size ratio. This showed that

there is a power relation between the two density fields as the size ratio increases, which

allowed the NFGL Framework to determine the appropriate size ratio that falls within the

desired threshold as shown in the application examples provided in this research.

 Investigation and improvement of the performance of NFGL structures

against FGL structures: One of the goals of this research was to investigate and improve

the performance of NFGL structures with FGL structures since the research into this topic

 192

was lacking. So in this research, the example in section 4.1.2 focused on investigating the

performance of NFGL structure with FGL structures based on their compliance values.

And the results have shown that NFGL structures do give improved compliance compared

to a regular FGL structure. The control arm example in section 04.2 aimed to also

investigate the performance improvement from using NFGL structures over FGL structures

and have shown similar results to the example in section 4.1.2. Furthermore, it also showed

that performing size optimization on NFGL structures reduced the computational time of

the optimization process significantly compared to FGL structures while producing similar

results. This was because the NFGL structure had a reduced number of design variables as

the unit-cell size ratio increases. Thus showing that NFGL structures are a more favorable

choice when conducting size optimization for lattice structures. The example in section 4.3

investigated the mechanical and thermal compliance of an optimized FGL structure of an

injection mold cooling channel using AH against NFGL structures without any

modification to the SIMP optimization. The NFGL structure showed that it can reach

comparable results to the FGL structure when using the same unit-cell size for the

mechanical compliance and showed better results in some size ratios for the thermal

compliance. Furthermore, when the unit-cell size was reduced and more unit-cells were

generated, the results of the NFGL structure outperformed the FGL structure in both

mechanical and thermal compliances. Thus, showing that structures with high performance

can be generated without using computationally expensive topology optimization with AH.

5.2 Current Limitations

This section will outline the limitations of the work in this dissertation.

 193

 No control over struts orientation: The NFGL Framework currently cannot

control the orientation of the generated struts in the NFGL structure. This would pose an

issue in applications where a certain orientation is required to follow a certain load path, or

in AM processes that require limited orientation angles for the manufactured struts. This is

mainly because the nodes that were removed from the FEM grid were removed by an

influence sphere. Another reason is that the Delaunay triangulation algorithm generates

equiangular triangles as much as possible, so the orientation has no effect on the generated

cells.

 No additional nodes are placed/removed or adjustment of existing nodes: To

reduce the computational cost of the generated NFGL structures, the NFGL Framework

does not currently place or remove additional nodes, nor does it adjust the existing nodes

it generates. This also contributes to the issue of orientation control on the generated NFGL

struts.

 Only tetrahedral or triangular unit-cells can be generated: The NFGL

Framework currently generates tetrahedral or triangular unit-cells. This is because of the

previous limitation of not being able to add or remove nodes in the generated NFGL nodes.

This makes the generated NFGL nodes unsuitable to create quadrilateral or hexahedral

elements. Thus limiting the generated unit-cells to tetrahedral or triangular.

 Requires an iterative process to determine an appropriate unit-cell size ratio:

As seen in the provided examples in this dissertation, the determination of an appropriate

unit-cell size ratio requires an iterative process in which regression analysis is performed.

This requires rerunning the NFGL Framework for each generated size ratio until the desired

 194

similarity threshold is achieved. If the NFGL Framework could determine the appropriate

ratio without the need to iteratively run the generation process, this could save unneeded

computational cost.

 The performance of the generated NFGL structures is not the optimal: In the

current dissertation, the value of 𝑆𝑅 was determined based on the observation that in the

threshold of 70%-75% similarity, the NFGL structure will have an improved performance

compared to an FGL structure. However, the performance of the generated NFGL structure

can still be improved as seen in some examples. So even though the value of 𝑆𝑅 guarantees

improved performance, it is not the optimal performance of the structure.

5.3 Future work

 This research aims to build a platform for the generation of NFGL structures and

close the gap in the research of these types of structures, which would facilitate their

utilization in different engineering applications. The following suggestions can be

beneficial for further research into the field of NFGL structures modeling and design.

 Controlling the orientation of generated struts: One approach for controlling the

orientation of struts that can be suggested is the use of Solid Orthotropic Material

Penalization (SOMP) [90] optimization. SOMP is an extension of the SIMP optimization,

which includes the orientation of a material as a design variable in the optimization process.

The SOMP formulation would have the following modifications to Eqs 1-3.

 195

min𝐶(𝛒, 𝛉) =
1

2
∑𝜌𝑖

𝑝
𝐔𝑖

𝑇𝐊𝑖(𝜃𝑖)𝐔𝑖

𝑁𝑒

𝑖=1

 (63)

Subject to

 𝐔(𝛒, 𝛉) = 𝐊(𝛒, 𝛉)−𝟏𝐅 (64)

 𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 1,−2𝜋 ≤ 𝜃 ≤ 2𝜋 (65)

 where 𝜃 is the orientation of the material.

 The NFGL Framework could be extended to allow for the inclusion of material

orientation results. This further coupled with using ellipsoids rather than spheres could

allow the generation of NFGL structures with struts of controlled orientation, which would

help in addressing this limitation in the current NFGL Framework. A similar approach can

be seen in the work in [68]. But the NFGL nodes are controlled by determining the k-

nearest neighbors inside an ellipse surrounding a node to connect them and the orientation

is only determined from stress fields, which becomes an issue when dealing with multiple

loading conditions. Furthermore, the triangulation is done by considering the k-nearest

neighbors only, which weakens the generated structures.

 Nodal adjustments and generation: In this work, the nodes to generate the NFGL

structure are fixed, so they are not adjusted, and no new nodes are generated. Allowing for

the adjustments of generated nodes or the addition of new nodes can help not only control

the orientation of the struts, but also the generation of hexahedral and quadrilateral

 196

elements. However, the computational cost of such an approach should be considered as to

not drive execution time up.

 The use of other types of unit-cells: The NFGL Framework in this dissertation

only considered using Tetrahedral and triangular unit-cells, as they provide stretch

dominated unit-cells. If the NFGL Framework was extended to include the generation of

hexahedral and quadrilateral elements, these elements can be used as basic unit-cells to

generate different types of stretch dominated unit-cells, such as the Octet unit-cell. This

would further open the research into the effects of different unit-cell sizes on the

performance NFGL structures and the generation of hybrid NFGL structures with multiple

unit-cell types.

 Determining an optimal unit-cell size ratio: In the current dissertation, the value

of 𝑆𝑅 was determined based on the observation that in the threshold of 70%-75% similarity,

the NFGL structure will have improved performance compared to an FGL structure.

However, the performance of the generated NFGL structure can still be improved as seen

in some examples. The suggested threshold to determine the value of 𝑆𝑅 does not guarantee

an optimal solution. Further investigation can be directed into finding the optimal 𝑆𝑅 value.

 197

REFERENCES

[1]. Gibson, L.J. and Ashby, M.F., Cellular Solids: Structure and Properties,

Cambridge University Press, (1999)

[2]. Fleck, N.A., Deshpande, V.S., and Ashby, M.F., “Micro-Architectured Materials:

Past, Present and Future,” Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 466, No. 2121, 2495-2516 (2010).

[3]. Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I., and

Hague, R., “An Investigation into Reinforced and Functionally Graded Lattice

Structures,” Journal of Cellular Plastics, 53, No. 2, 151-165 (2016).

[4]. Brennan-Craddock, J., Brackett, D., Wildman, R., and Hague, R., “The Design of

Impact Absorbing Structures for Additive Manufacture,” Journal of Physics:

Conference Series, 382, (2012).

[5]. Banhart, J., “Manufacture, Characterisation and Application of Cellular Metals

and Metal Foams,” Progress in Materials Science 46, No. 6, 559-632 (2001).

[6]. Ryan, G., Pandit, A., and Apatsidis, D.P., “Fabrication Methods of Porous Metals

for Use in Orthopaedic Applications,” Biomaterials, 27, No. 13, 2651-70 (2006).

[7]. Wadley, H., “Fabrication and Structural Performance of Periodic Cellular Metal

Sandwich Structures,” Composites Science and Technology, 63, No. 16, 2331-

2343 (2003).

[8]. Tao, W. and Leu, M.C., Design of Lattice Structure for Additive Manufacturing,

in International Symposium on Flexible Automation (ISFA). 2016: Cleveland,

OH.

[9]. Gibson, I., Rosen, D.W., and Stucker, B., Additive Manufacturing Technologies,

Springer,

[10]. Deshpande, V.S., Fleck, N.A., and Ashby, M.F., “E&Ective Properties of the

Octet-Truss Lattice Material,” (2001).

 198

[11]. Ashby, M.F., “The Properties of Foams and Lattices,” Philos Trans A Math Phys

Eng Sci, 364, No. 1838, 15-30 (2006).

[12]. Austermann, J., Redmann, A.J., Dahmen, V., Quintanilla, A.L., Mecham, S.J.,

and Osswald, T.A., “Fiber-Reinforced Composite Sandwich Structures by Co-

Curing with Additive Manufactured Epoxy Lattices,” Journal of Composites

Science, 3, No. 2, (2019).

[13]. Deshpande, V.S., Ashby, M.F., and Fleck, N.A., “Foam Topology Bending

Versus Stretching Dominated Architectures,” Acta Materalia, 49, No. 6, 1035-

1040 (2001).

[14]. Dias, W. Design and Optimization of Lattice Structures for 3d Printing Using

Altair Optistruct. 2015; Available from:

https://insider.altairhyperworks.com/design-and-optimization-of-lattice-

structures-for-3d-printing-using-altair-optistruct/. Retrieved November 1, 2019

[15]. Materialise. Materialise 3-Matic Lattice Module. Available from:

https://www.materialise.com/en/software/3-matic/modules/lattice-module.

Retrieved November 6, 2019

[16]. Autodesk Netfabb. Available from:

https://www.autodesk.com/products/netfabb/overview. Retrieved November 1,

2019

[17]. ntopology. Available from: https://ntopology.com/. Retrieved November 9, 2019

[18]. Nguyen, J., Park, S.-i., Rosen, D., Folgar, L., and Williams, J., “Conformal

Lattice Structure Design and Fabrication,” Solid Freeform Fabrication

Proceedings, 138-161 (2012).

[19]. Michell, A.G.M. and Melbourne, M.C.E., “The Limits of Economy of Material in

Frame-Structures,” 8, No. 47, 589-597 (1904).

[20]. Zargham, S., Ward, T.A., Ramli, R., and Badruddin, I.A., “Topology

Optimization: A Review for Structural Designs under Vibration Problems,”

Structural and Multidisciplinary Optimization, 53, No. 6, 1157-1177 (2016).

https://insider.altairhyperworks.com/design-and-optimization-of-lattice-structures-for-3d-printing-using-altair-optistruct/
https://insider.altairhyperworks.com/design-and-optimization-of-lattice-structures-for-3d-printing-using-altair-optistruct/
https://www.materialise.com/en/software/3-matic/modules/lattice-module
https://www.autodesk.com/products/netfabb/overview
https://ntopology.com/

 199

[21]. Rozvany, G.I.N., Bendsøe, M.P., and Kirsch, U., “Layout Optimization of

Structures,” Applied Mechanics Reviews, 48, No. 2, 41-119 (1995).

[22]. Achtziger, W., “On Simultaneous Optimization of Truss Geometry and

Topology,” Structural and Multidisciplinary Optimization, 33, No. 4-5, 285-304

(2007).

[23]. Hagishita, T. and Ohsaki, M., “Topology Optimization of Trusses by Growing

Ground Structure Method,” Structural and Multidisciplinary Optimization, 37,

No. 4, 377-393 (2008).

[24]. Wang, D., Zhang, W.H., and Jiang, J.S., “Truss Shape Optimization with Multiple

Displacement Constraints,” Computer Methods in Applied Mechanics and

Engineering, 191, No. 33, 3597-3612 (2002).

[25]. Jamariya, V.N., Panchal, D.D., and Tare, S.R., Structural Optimization of Truss

Using Finite Element Analysis, in 2018 International Conference on Smart City

and Emerging Technology (ICSCET). 2018, IEEE: Mumbai, India.

[26]. Von Buelow, P., “Suitability of Genetic Based Exploration in the Creative Design

Process,” Digital Creativity, 19, No. 1, 51-61 (2008).

[27]. Bendsøe, M.P. and Kikuchi, N., “Generating Optimal Topologies in Structural

Design Using a Homogenization Method,” Computer Methods in Applied

Mechanics and Engineering, 71, No. 2, 197-224 (1988).

[28]. Sigmund, O., “A 99 Line Topology Optimization Code Written in Matlab,”

Structural and Multidisciplinary Optimization, 21, 120-127 (2001).

[29]. Nagai, K., Igarashi, M., Gea, H.C., and Kikuchi, N., Automotive Applications of

Integrated Structural Optimization, in Computational Mechanics ’95. 1995:

Berlin, Heidelberg.

[30]. Bendsøe, M.P., “Optimal Shape Design as a Material Distribution Problem,”

Structural optimization, 1, No. 4, 193-202 (1989).

[31]. Rozvany, G.I.N., Zhou, M., and Birker, T., “Generalized Shape Optimization

without Homogenization,” Structural optimization, 4, No. 4, 250-252 (1992).

 200

[32]. Bendsøe, M.P. and Sigmund, O., “Material Interpolation Schemes in Topology

Optimization,” Archive of Applied Mechanics, 69, No. 10, 635-654 (1999).

[33]. Norato, J.A., “Topology Optimization with Supershapes,” Structural and

Multidisciplinary Optimization, 58, No. 2, 415-434 (2018).

[34]. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B.,

Wang, C.C.L., Shin, Y.C., Zhang, S., and Zavattieri, P.D., “The Status,

Challenges, and Future of Additive Manufacturing in Engineering,” Computer-

Aided Design, 69, 65-89 (2015).

[35]. Cheng, L., Bai, J., and To, A.C., “Functionally Graded Lattice Structure Topology

Optimization for the Design of Additive Manufactured Components with Stress

Constraints,” Computer Methods in Applied Mechanics and Engineering, 344,

334-359 (2019).

[36]. Al-Saedi, D.S.J. and Masood, S.H., “Mechanical Performance of Functionally

Graded Lattice Structures Made with Selective Laser Melting 3d Printing,” IOP

Conference Series: Materials Science and Engineering, 433, (2018).

[37]. Ramírez-Gil, F.J., Murillo-Cardoso, J.E., Silva, E.C.N., and Montealegre-Rubio,

W., “Optimization of Functionally Graded Materials Considering Dynamical

Analysis,” Computational Modeling, Optimization and Manufacturing Simulation

of Advanced Engineering Materials 49, 205-237 (2016).

[38]. Spricigo, P.C., Trento, J.P., Bresolin, J.D., Soares, V.F., Ferraz, L.F., and Ferreira,

M.D., “Methods of Preparing Flower Stem Samples for Scanning Electron

Microscopy,” Ornamental Horticulture, 21, No. 1, 17-26 (2015).

[39]. Liu, Z., Meyers, M.A., Zhang, Z., and Ritchie, R.O., “Functional Gradients and

Heterogeneities in Biological Materials: Design Principles, Functions, and

Bioinspired Applications,” Progress in Materials Science, 88, 467-498 (2017).

[40]. Harrison, N.M. and McHugh, P.E., “Comparison of Trabecular Bone Behavior in

Core and Whole Bone Samples Using High-Resolution Modeling of a Vertebral

Body,” Biomech Model Mechanobiol, 9, No. 4, 469-80 (2010).

[41]. Kalita, S.J., Bose, S., Hosick, H.L., and Bandyopadhyay, A., “Development of

Controlled Porosity Polymer-Ceramic Composite Scaffolds Via Fused Deposition

Modeling,” Materials Science and Engineering: C, 23, No. 5, 611-620 (2003).

 201

[42]. Leong, K.F., Chua, C.K., Sudarmadji, N., and Yeong, W.Y., “Engineering

Functionally Graded Tissue Engineering Scaffolds,” J Mech Behav Biomed

Mater, 1, No. 2, 140-52 (2008).

[43]. Burblies, A. and Busse, M., Computer Based Porosity Design by Multi Phase

Topology Optimization, in Multiscale & Functionally Graded Materials

Conference (FGM2006). 2006: Honolulu, HW.

[44]. Nguyen, J., Park, S.-i., and Rosen, D., “Heuristic Optimization Method for

Cellular Structure Design of Light Weight Components,” International Journal of

Precision Engineering and Manufacturing, 14, No. 6, 1071-1078 (2013).

[45]. Brackett, D., Ashcroft, I., and Hague, R., Topology Optimization for Additive

Manufacturing, in Solid freeform fabrication symposium. 2011: Austin, TX. p.

348-362.

[46]. Alzahrani, M., Choi, S.-K., and Rosen, D.W., “Design of Truss-Like Cellular

Structures Using Relative Density Mapping Method,” Materials & Design, 85,

349-360 (2015).

[47]. Panesar, A., Abdi, M., Hickman, D., and Ashcroft, I., “Strategies for Functionally

Graded Lattice Structures Derived Using Topology Optimisation for Additive

Manufacturing,” Additive Manufacturing, 19, 81-94 (2018).

[48]. Menses, G.A., Pereira, A., and Menezes, I.F.M., “Lattice Structures Design by

Means of Topology Optimization,” Mecánica Computacional, 36, 2111-2120

(2018).

[49]. Arabnejad Khanoki, S. and Pasini, D., “Fatigue Design of a Mechanically

Biocompatible Lattice for a Proof-of-Concept Femoral Stem,” J Mech Behav

Biomed Mater, 22, 65-83 (2013).

[50]. Arabnejad, S., Johnston, B., Tanzer, M., and Pasini, D., “Fully Porous 3d Printed

Titanium Femoral Stem to Reduce Stress-Shielding Following Total Hip

Arthroplasty,” J Orthop Res, 35, No. 8, 1774-1783 (2017).

[51]. Arabnejad, S. and Pasini, D., “Mechanical Properties of Lattice Materials Via

Asymptotic Homogenization and Comparison with Alternative Homogenization

Methods,” International Journal of Mechanical Sciences, 77, 249-262 (2013).

 202

[52]. Masoumi Khalil Abad, E., Arabnejad Khanoki, S., and Pasini, D., “Fatigue

Design of Lattice Materials Via Computational Mechanics: Application to

Lattices with Smooth Transitions in Cell Geometry,” International Journal of

Fatigue, 47, 126-136 (2013).

[53]. Matsui, K., Terada, K., and Yuge, K., “Two-Scale Finite Element Analysis of

Heterogeneous Solids with Periodic Microstructures,” Computers & Structures,

82, No. 7-8, 593-606 (2004).

[54]. Wu, T., Liu, K., and Tovar, A., “Multiphase Topology Optimization of Lattice

Injection Molds,” Computers & Structures, 192, 71-82 (2017).

[55]. Wu, T., Upadhyaya, N., Acheson, D., and Tovar, A., Structural Optimization of

Injection Molds with Lattice Cooling, in Volume 2B: 43rd Design Automation

Conference. 2017.

[56]. Jin, X., Li, G.X., and Zhang, M., “Optimal Design of Three-Dimensional Non-

Uniform Nylon Lattice Structures for Selective Laser Sintering Manufacturing,”

Advances in Mechanical Engineering, 10, No. 7, (2018).

[57]. Kang, D., Park, S., Son, Y., Yeon, S., Kim, S.H., and Kim, I., “Multi-Lattice

Inner Structures for High-Strength and Light-Weight in Metal Selective Laser

Melting Process,” Materials & Design, 175, (2019).

[58]. Li, D., Liao, W., Dai, N., Dong, G., Tang, Y., and Xie, Y.M., “Optimal Design

and Modeling of Gyroid-Based Functionally Graded Cellular Structures for

Additive Manufacturing,” Computer-Aided Design, 104, 87-99 (2018).

[59]. Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A., Wildman,

R.D., and Hague, R.J.M., “A Mechanical Property Evaluation of Graded Density

Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting,”

Materials Science and Engineering: A, 670, 264-274 (2016).

[60]. Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A., and

Ponnusamy, P., “Mechanical Properties and Energy Absorption Capability of

Functionally Graded F2bcc Lattice Fabricated by Slm,” Materials & Design, 144,

32-44 (2018).

 203

[61]. Choy, S.Y., Sun, C.-N., Leong, K.F., and Wei, J., “Compressive Properties of

Functionally Graded Lattice Structures Manufactured by Selective Laser

Melting,” Materials & Design, 131, 112-120 (2017).

[62]. Pasko, A., Vilbrandt, T., Fryazinov, O., and Adzhiev, V., Procedural Function-

Based Spatial Microstructures, in 2010 Shape Modeling International

Conference. 2010. p. 47-56.

[63]. Fryazinov, O., Vilbrandt, T., and Pasko, A., “Multi-Scale Space-Variant Frep

Cellular Structures,” Computer-Aided Design, 45, No. 1, 26-34 (2013).

[64]. Brackett, D.J., Ashcroft, I.A., Wildman, R.D., and Hague, R.J.M., “An Error

Diffusion Based Method to Generate Functionally Graded Cellular Structures,”

Computers & Structures, 138, 102-111 (2014).

[65]. Lou, Q. and Stucki, P., Fundamentals of 3d Halftoning, in 7th International

conference on electronic publishing. 1998: St. Malo, France. p. 224-39.

[66]. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C.,

Cohen-Or, D., and Chen, B., “Build-to-Last,” ACM Transactions on Graphics, 33,

No. 4, 1-10 (2014).

[67]. Kuipers, T., Wu, J., and Wang, C.C.L., “Crossfill: Foam Structures with Graded

Density for Continuous Material Extrusion,” Computer-Aided Design, 114, 37-50

(2019).

[68]. Martínez, J., Dumas, J., and Lefebvre, S., “Procedural Voronoi Foams for

Additive Manufacturing,” ACM Transactions on Graphics, 35, No. 4, 1-12

(2016).

[69]. Wang, G., Shen, L., Zhao, J., Liang, H., Xie, D., Tian, Z., and Wang, C., “Design

and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on

Voronoi-Tessellation and for Additive Manufacturing,” ACS Biomaterials

Science & Engineering, 4, No. 2, 719-727 (2018).

[70]. Wu, J., Wang, C.C.L., Zhang, X., and Westermann, R., “Self-Supporting

Rhombic Infill Structures for Additive Manufacturing,” Computer-Aided Design,

80, 32-42 (2016).

 204

[71]. Lee, M., Fang, Q., Cho, Y., Ryu, J., Liu, L., and Kim, D.-S., “Support-Free

Hollowing for 3d Printing Via Voronoi Diagram of Ellipses,” Computer-Aided

Design, 101, 23-36 (2018).

[72]. Zhang, X., Fang, G., Dai, C., Verlinden, J., Wu, J., Whiting, E., and Wang,

C.C.L., "Thermal-Comfort Design of Personalized Casts," Proceedings of the

30th Annual ACM Symposium on User Interface Software and Technology,

Québec City, Canada, 243-254 (2017).

[73]. Wu, J., Aage, N., Westermann, R., and Sigmund, O., “Infill Optimization for

Additive Manufacturing-Approaching Bone-Like Porous Structures,” IEEE Trans

Vis Comput Graph, 24, No. 2, 1127-1140 (2018).

[74]. Wu, J., “Continuous Optimization of Adaptive Quadtree Structures,” Computer-

Aided Design, 102, 72-82 (2018).

[75]. Choi, S.-K., Grandhi, R.V., and Canfield, R.A., Reliability-Based Structural

Design, Springer, London (2006)

[76]. Gorguluarslan, R.M., Choi, S.K., and Saldana, C.J., “Uncertainty Quantification

and Validation of 3d Lattice Scaffolds for Computer-Aided Biomedical

Applications,” J Mech Behav Biomed Mater, 71, 428-440 (2017).

[77]. Mangado, N., Piella, G., Noailly, J., Pons-Prats, J., and Ballester, M.A., “Analysis

of Uncertainty and Variability in Finite Element Computational Models for

Biomedical Engineering: Characterization and Propagation,” Front Bioeng

Biotechnol, 4, 85 (2016).

[78]. Rozvany, G.I.N., “A Critical Review of Established Methods of Structural

Topology Optimization,” Structural and Multidisciplinary Optimization, 37, No.

3, 217-237 (2008).

[79]. Floyd, R.W. and Steinberg, L., “An Adaptive Algorithm for Spatial Grayscale,”

Proceedings of the Society of Information Display, 17, No. 2, 75-77 (1976).

[80]. Huang, P., Li, Y., Chen, Y., and Zeng, J., "A Digital Material Design Framework

for 3d-Printed Heterogeneous Objects," ASME IDETC/CIE 2016 Charlotte, NC,

(2016).

 205

[81]. Lo, S.H., Finite Element Mesh Generation, CRC Press, London (2014)

[82]. Lo, S.H. and Wang, W.X., “Generation of Anisotropic Mesh by Ellipse Packing

over an Unbounded Domain,” Engineering with Computers, 20, No. 4, 372-383

(2005).

[83]. Wang, Z. and Bovik, A.C., Modern Image Quality Assessment, Modern Image

Quality Assessment, (2006)

[84]. Wang, Z., Bovik, A.C., Sheikh, H.R., and Simoncelli, E.P., “Image Quality

Assessment: From Error Visibility to Structural Similarity,” IEEE Trans Image

Process, 13, No. 4, 600-12 (2004).

[85]. Yvinec, M. Cgal 5.0.2 - 2d Triangulation. 2020; Available from:

https://doc.cgal.org/latest/Triangulation_2/. Retrieved April 7th 2020

[86]. Avanesov, E.T., “Solution of a Problem on Figurate Numbers,” Acta Arithmetica,

12, 409-420 (1967).

[87]. Jain, R.C., Katsuri, R., and Schunck, B.G., Machine Vision, McGraw-Hill

Science/Engineering/Math, (1995)

[88]. Gentle, J.E., Numerical Linear Algebra for Applications in Statistics, Springer,

New York, NY (1998)

[89]. Aldous, M. Lattice Optimisation Setup. 2015; Available from:

https://connect.altair.com/CP/SA/hwhelp/2019.1/os/topics/solvers/os/control_arm

_with_draw_direction_constraints_r.htm?zoom_highlightsub=control+arm.

Retrieved October 20, 2019

[90]. Jia, H.P., Jiang, C.D., Li, G.P., Mu, R.Q., Liu, B., and Jiang, C.B., “Topology

Optimization of Orthotropic Material Structure,” Materials Science Forum, 575,

978-989 (2008).

https://doc.cgal.org/latest/Triangulation_2/
https://connect.altair.com/CP/SA/hwhelp/2019.1/os/topics/solvers/os/control_arm_with_draw_direction_constraints_r.htm?zoom_highlightsub=control+arm
https://connect.altair.com/CP/SA/hwhelp/2019.1/os/topics/solvers/os/control_arm_with_draw_direction_constraints_r.htm?zoom_highlightsub=control+arm

