

INVESTIGATING OPPORTUNITIES AND CHALLENGES IN MODELING

AND DESIGNING SCALE-OUT DNN ACCELERATORS

 A Dissertation

Presented to

The Academic Faculty

By

Vineet Nadella

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2020

Copyright © Vineet Nadella 2020

INVESTIGATING OPPORTUNITIES AND CHALLENGES IN MODELING

AND DESIGNING SCALE-OUT DNN ACCELERATORS

Approved by:

 Dr. Tushar Krishna, Advisor

 School of Electrical and Computer

 Engineering

 Georgia Institute of Technology

Dr. Saibal Mukhopadhyay

 School of Electrical and Computer

 Engineering

 Georgia Institute of Technology

Dr. Alexandros Daglis

 School of Computer Science

 Georgia Institute of Technology

 Date Approved: April 24, 2020

Do not go where the path may lead, go instead where there is no path and leave a trail.

Ralph Waldo Emerson

This work is dedicated to my parents, my grandparents, and my brother.

v

ACKNOWLEDGEMENTS

I have gained so much knowledge and have experienced so many wonders of technology

over the last 5 years. Firstly, I would like to thank Dr. Tushar Krishna who has inspired me

to pursue interesting research topics and for advising me on my journey as a researcher.

Even while being one of the prominent Computer Architecture researchers in the world,

Dr. Krishna always finds the time to answer questions and provide valuable mentoring.

Furthermore, I am grateful for the leadership of Ananda Samajdar, a doctoral student at

Georgia Tech for his willingness to teach and give insight on complex subjects even during

his busy schedule. He has published multiple paper over the last 3 years earning him status

as a top researcher. I wish to see more success from him as he transitions into completing

his degree. Additionally, I want to express my gratitude for the opportunity to work with

Eric Qin on his groundbreaking publication of SIGMA. He was extremely crucial as I

started my journey as a researcher. I would also like to thank Amrita Mathuriya from

Kepler Computing for her guidance on my work to develop NoC modeling in SCALE-Sim.

She has a strong reputation as a leader and researcher in the industry and has provided me

with valuable support. Finally, I would like to thank my family for instilling in me the

importance of education and to value learning at a young age. Many of the lesson I learned

from my family throughout my life have helped me mature into a strong researcher,

engineer, and leader. Even after I graduate, the selfless support presented to me will

continue to shape my path to a promising future.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... ix

LIST OF FIGURES... x

SUMMARY ... xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 Definition of Deep Learning, Accelerator, and NoC Terms: 3

1.2 History of Deep Neural Network Accelerators ... 5

1.3 The Problem .. 7

CHAPTER 2: BACKGROUND WORK AND DESIGN CONSIDERATIONS 8

2.1 Systolic Array.. 8

2.2 Dataflows .. 9

2.3 Convolution Translation.. 11

2.4 Memory Policies ... 14

2.5 DNN Layers .. 17

2.6 Partitioning .. 20

2.7 NoC Considerations .. 22

CHAPTER 3: SCALE-SIM-V2: CNN ACCELERATOR SIMULATOR 24

3.1 SCALE-Sim .. 24

3.2 Simulator Environment ... 25

vii

3.3 Software Organization .. 25

3.4 SCALE-Sim Inputs ... 26

3.5 Operand Matrix Creation .. 28

3.5.1 Calculated Hyperparameters ... 28

3.5.2 Address Mapping ... 29

3.5.3 Batching .. 30

3.5.4 MNK Operands ... 30

3.6 SRAM Trace Generation... 31

3.6.1 Output Stationary Trace .. 32

3.6.2 Weight Stationary Trace ... 34

3.6.3 Input Stationary Trace ... 36

3.6.4 Dataflow Comparisons .. 37

3.7 DRAM Trace Generation .. 38

3.8 NoC Model .. 39

3.8.1 NoC Modeling Framework ... 39

3.9 Experiments ... 42

3.9.1 GPT2 & ResNet-50 Performance Evaluations using NMF 43

3.9.2 GPT2 & ResNet-50 NoC Congestion Evaluation ... 49

CHAPTER 4: SIGMA BUILDING BLOCKS ... 52

4.1 Multiplier... 53

viii

4.2 Adder ... 53

4.3 Local Buffer .. 54

4.4 Control Unit .. 54

4.5 Flexible Interconnects ... 55

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 57

5.1 Future Work .. 58

5.1.1 C++ Syntax Porting ... 58

5.1.2 Versatile Compute Architecture Support .. 58

REFERENCES .. 59

ix

LIST OF TABLES

Table 2.1: Reuse characteristics of frequently used DNN accelerator dataflows 10

Table 3.1: Example architecture parameters in configuration file 26

Table 3.2: AlexNet CNN with 5 CONV layers ... 27

Table 3.3: Example network topology .. 32

Table 3.4: MESH Adjacency Matrix ... 41

x

LIST OF FIGURES

Figure 1.1: Architecture of systolic array based DNN accelerator [38] 6

Figure 2.1: High-level architecture for compute and memory stack 8

Figure 2.2: Read operand elements pulled from left and top of systolic array and write

operand elements pushed out from bottom ... 9

Figure 2.3: Read and write operands after convolution translation 12

Figure 2.4: Ifmap operand after skewing (rotated 90° right) .. 13

Figure 2.5: Initial Prefetch before process execution .. 15

Figure 2.6: Partial flush and replenish of active buffer ... 17

Figure 2.7: Network of systolic arrays each with a perfect interconnect to external memory

(DRAM) [21] ... 21

Figure 3.1: Schematic depicting the inputs needed and the outputs generated by SCALE-

Sim [2]. ... 25

Figure 3.2: High level code organization and flow in SCALE-Sim simulator environment.

Arrows provide a rough view of the sequential flow of the tool and do not necessarily

represent I/O movement .. 26

Figure 3.3: (𝑖𝑓𝑚𝑎𝑝ℎ𝑒𝑖𝑔ℎ𝑡 = 4, 𝑖𝑓𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ = 4) & (𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔ℎ𝑡 =

3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ = 3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑛𝑢𝑚 = 4) with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 .. 29

Figure 3.4: An example activation map with addresses prioritized based on the [Channel,

Height, Width] scheme .. 30

Figure 3.5: Operands compatible with GEMM operations [6] ... 30

Figure 3.6: 1-fold SRAM trace for output stationary (OS) dataflow. Header represents the

division in elements from each operand. By convention, ifmap and filter elements are read

xi

from SRAM and ofmap elements are written to SRAM. Reference Figure 3.7 and 3.8 for

comparison. ... 34

Figure 3.7: 1-fold SRAM trace for weight stationary (WS) dataflow. Reference Figure 3.6

and 3.8 for comparison. .. 36

Figure 3.8: 1-fold SRAM trace for input stationary (IS) dataflow. Reference Figure 3.6 and

Figure 3.7 for comparison. .. 37

Figure 3.9: Direct mesh NoC topology with 16 PEs each acting as a router in the network.

... 40

Figure 3.10: NoC Memory Hierarchy ... 42

Figure 3.11: GPT2 Partitioning Evaluation over BW Sweep ... 44

Figure 3.12: GPT2 ABP Evaluation over BW Sweep .. 46

Figure 3.13: GPT2 ABP evaluation over partitioning for a mesh and fully connected

topology with remote bandwidth of 1000 bytes ... 47

Figure 3.14: Resnet-50 Layers evaluation over partitioned configuration for execution on

a mesh.. 48

Figure 3.15: Resnet-50 Layers evaluation over partitioned configuration for execution on

a fully connected topology .. 49

Figure 3.16: Resnet congestion evaluation using heat map .. 50

Figure 3.17: Link load distribution for GPT2 and Resnet50 layers 51

Figure 4.1: bfloat16 bit layout with most significant bit (MSB) on left representing the

decimal value 5.0 = −1𝑠𝑖𝑔𝑛𝑏𝑖𝑡 ∗ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 − 127 ∗ 1 +

𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒128; 𝑠𝑖𝑔𝑛𝑏𝑖𝑡 = 0, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 = 129, & 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒 = 32 .. 54

xii

Figure 4.2: FAN topology with 32 multipliers, 31 adders, and flexible interconnects for

data forwarding in a 32 − 𝑠𝑖𝑧𝑒𝑑 Flex-DPE.. 56

xiii

SUMMARY

The rapid growth of deep learning used in practical applications such as speech recognition,

computer vision, natural language processing, robotics, any many other fields has opened

the gate to new technology possibilities [1]. Unfortunately, traditional hardware systems

are being stretched to the maximum to accommodate the intense workloads presented by

state-of-the-art deep learning processes in a time when transistor technology is not scaling.

To serve the demand for better computational power and more specialized computations,

specialized hardware needs to be developed that provides better latency and bandwidth

specifications for various demanding applications.

 The trend in the semi-conductor industry is to move towards heterogenous System-On-

Chip (SoC) thereby choosing application specific performance vs. generality seen in most

CPU architectures today. In most situations, hardware engineers are left to construct

systems that serve the needs of various applications, often needing to predict the use-cases

of the system. As with any field, the ability to predict and act on the future innovation

trends of the industry is the difference between success and failure.

 A novel simulator for the design of convolutional neural network accelerators is

presented and described in detail named SCALE-Sim (Systolic CNN Accelerator

Simulator). The simulator is available as an open-sourced repository and has 2 primary

use-cases in which computer architects can extract significant results. The first use-case is

for system designers who would like to integrate an existing DNN accelerator architecture

into a larger SoC and would be interested in system-level characterization results. The

second use-case is for an accelerator architect who would like to use the tool to explore the

accelerator design space by sweeping through design parameters [2].

1

 CHAPTER 1

INTRODUCTION

Deep learning is a fast-growing field of study that has potential for application in many

fields such as AI robotics, natural language processing, computer vision [1, 3, 4, 5, 6].

Unfortunately, the present suite of general-purpose processors used in servers and client

computing do not have the hardware resources to build complex deep learning networks

that achieve near flawless accuracy. Effectively, this means that hardware is the bottleneck

in this growing field. To serve the demand for better computational power and more

specialized computations, specialized hardware needs to be developed that provides better

latency and bandwidth requirements for various applications.

 General matrix to matrix multiplication (GEMM) operations are at the essence of neural

network processing [7, 8]. Though GPUs have been found to be well-suited for GEMM

operations, the regular dataflows pushed to the processor by a deep neural network (DNN)

introduces the idea of using specialized hardware. A custom hardware chip used in DNN

processing is known as a DNN accelerator. To further discuss the characteristics of a DNN

accelerator, it is important to note that custom hardware is achieved using primarily MAC

(Multiply and Accumulate) units which are extremely popular for GEMM operations.

Moreover, these MAC units are used to exploit algorithmic parallelism and achieve high

throughput while performing inference [7].

 The question left to analyze for a DNN accelerator is how an architect can organize the

compute and memory components on-chip and off-chip to fully take advantage of the

specific networks used in inference. Unfortunately, this is a non-trivial question and

involves many workload and architecture specific parameters making it much too difficult

2

to answer without a tool that can analyze the suite of variables before delivering

performance results.

 Convolution Neural Networks (CNN) have been found to be extremely useful in image

classification and analysis, natural language processing, recommender systems, financial

time series, and many more applications [9]. A single convolutional layer in a larger CNN

has three primary components in execution. Two of the components are read into

execution: ifmap (input feature map) and the filter. The filter is used to convolve the ifmap

in a series of sliding GEMM operations to produce the ofmap which is either the final

output of the CNN or the intermediate resulting ifmap for the next layer. Since CNNs are

arguably the most popular and most compute and memory intensive neural network, focus

of the team efforts were placed in solving the question posed above specifically for this

subset of DNNs.

3

1.1 Definition of Deep Learning, Accelerator, and NoC Terms:

Many terms and acronyms are referenced in the detailed discussion throughout this

document. This section can be referenced for clarity on specific technical term and

acronym definitions.

• Deep Neural Networks (DNN): A class of neural network techniques with multiple

hidden layers between input and output layers in the field of deep learning (DL) which

is part of the larger field of machine learning (ML).

• Convolutional Neural Network (CNN): A subset of deep neural networks which have

been found useful in visual data learning and inference. CNNs have multiple layers

consisting of convolutional (CONV) layers, activation layers (RELU, POOL) and fully

connected (FC) layers [10].

• Fully Connected Layer (FC): An execution layer used in DNNs whose output size

corresponds to the number of classification labels. This is usually the last layer in a

classification task.

• Multiply-Accumulate (MAC): A combination of multiplication operations followed

by the accumulation of the multiplication products into a single sum which is the

basis of matrix multiplication [1].

• General Matrix-Matrix Multiplication (GEMM): Common algorithm in machine

learning that can be executed on MAC units.

• Single Instruction Multiple Data (SIMD): A class of parallel computers performing the

same operation on multiple data elements.

• Arithmetic Logic Unit (ALU): A microprocessor component used for the

implementation of arithmetic and logic operations [11].

4

• Field Programming Gate Array (FPGA): An integrated circuit designed to be

configured by a hardware designer after the manufacturing stage [12].

• Input Feature Map (Ifmap): A set of structured 2-D maps or channels consisting of

input activations of a layer [1].

• Output Feature Map (Ofmap): A set of structured 2-D maps or channels consisting of

output activations of a layer [1].

• Filter: A structured 3-D map consisting of weights of a layer with one or more channels

of activations [1].

• Weight Stationary (WS): A dataflow designed to minimize energy consumption of

reading weights by maximizing weight reuse [1].

• Input Stationary (IS): A dataflow designed to minimize energy consumption of

reading input activations [1].

Output Stationary (OS): A dataflow designed to minimize the energy consumption of

reading and writing partial sums [1].

• Non-Uniform Memory Access (NUMA): Phenomenon that memory at various points

in the address space of the processor have different performance characteristics [13].

• Network-on-Chip (NoC): A network-based data communication subsystem between

on-chip nodes [14].

• Packet & Flit: Packet is a data container containing a header and payload used for

data sharing in computer networks. Packets can be broken down into link-level

messages called flits [15].

5

1.2 History of Deep Neural Network Accelerators

The idea to create highly efficient systems intended to accelerate deep neural network

processes has been relevant since the 1990s. One of the first DNN accelerators was

presented in 1991 named ANNA. The chip used mixed analog/digital computation

techniques to speed up ALU computations while still retaining the advantages of digital

interfacing to various components. Even with an archaic CMOS technology capable of

about 100 times less transistor power compared to a present-day chip, the advantages of

creating a specialized chip to attack the problem of neural network processing outweighed

computational power to researchers. As transistor technology continued to scale up

exponentially and the neural network computing required stayed virtually even, many of

the advantages of specialized hardware started to fade while general CPUs and FPGA

platforms gained interest. One example of an early attempt was for the implementation of

Hofield neural neural network processing in FPGAs in 1996. Many architectures have been

presented in the 2000s, leveraging the programmability of FPGAs with the speed and

throughput available in more specialized systems.

 Interestingly, in the late 2000s and in the bulk of 2010s, the applications for which

modern neural network processes could be applied to greatly increased in number.

Previously thought of as a method to learn simple processes, deep neural networks were

proven to learn complex functions many times without any real context to the function

other than ample amount of training data to learn from. With the increased demand in

complex neural network processing, the same FPGA and CPU systems popular early on

did not have the latency and throughput requirements needed to perform learning and

6

inference tasks in real-time. Parallel computing on SIMD computers became increasingly

popular, arguably the most popular being GPU by Nvidia.

 Today SIMD processing is the mainstay for most DNN processing; however,

convolutional layers in CNNs have been shown to require exponentially more computing

power than provided on even the best GPU designs. Systems focusing on convolution

inference acceleration have been the topic of interest among DNN acceleration researchers.

DianNao was introduced in 2014 as a highly efficient, small footprint DNN accelerator

capable of performing convolutional inference at the edge [16]. Industry leaders such as

Google and Xilinx have taped-out DNN accelerators named Google TPU and Xilinx FPGA

overlays xNN, respectively, using the compute architecture known as a systolic array for

convolutional inference [17, 8].

 As more advanced designs are the focus of industry and academia, the demand to speed

up the process of innovation is robust. The future sections will describe the tool (SCALE-

Sim) developed to speed up the process of accelerator design as well as the results found

from preliminary simulator use.

Figure 1.1: Architecture of systolic array based DNN accelerator [38]

7

1.3 The Problem

As described in the introduction, a key aim of researchers and computer architects is

designing architectures that optimize for high performance at low cost. For architectures

involving only a few design parameters, an empirical procedure can be used to conceive a

strong solution; however, as the number of variables is scaled up, this becomes a difficult

problem to solve empirically.

 In computer architecture, parameters such as memory placement, memory sizing,

processor design, instruction-set-architecture are modified depending on architectural

constraints and workload specifications [18]. Specifically, for deep learning workloads,

optimization of architectural parameters is crucial for an effective design because of high

memory bandwidth and compute requirements [19]. Unfortunately, an open-sourced tool

for optimization does not exist for the deep learning community to model workloads on

accelerator architectures. This predicament is one of the reasons for difficulty in accelerator

developments in a time of high demand.

 The beforementioned problem is the reason for the introduction of SCALE-Sim. As

Chapter 2 describes, the process of creating the tool required a substantial amount of

background work and simulator tool considerations before leading to a developed product.

8

CHAPTER 2

BACKGROUND WORK AND DESIGN CONSIDERATIONS

The goal of SCALE-Sim is to provide as much valuable information to a computer designer

as possible. For this objective to be realized, much background work needed to be done by

the entire team that worked on the project to understand the true nature of DNN workloads

and how workloads are translated to execute an architecture. Furthermore, as illustrated in

Figure 2.1, all computer architectures require the ability to efficiently read and write from

memory leading to considerations of memory policies and memory hierarchy during

workload execution. These previously mentioned topics and various other technical

considerations are vital to the strength of SCALE-Sim and to user experience (UX) design.

This section will cover the detailed background work performed to create the scalable,

modular simulator.

Figure 2.1: High-level architecture for compute and memory stack

2.1 Systolic Array

Systolic array is the architecture of concern for this simulator. A systolic array is a

collection of processing engines (PEs) with each element connected via a mesh topology.

Each PE reads data from its neighbors, computes a mathematical function and stores the

result in its local memory [20]. In our applications, the PEs are MAC units are tightly

9

coupled with store and forward units to accommodate data passing. One advantage of

systolic arrays lies in the simplicity of design making it relatively easier to build by

microprocessor designers over competing compute architectures.

 Though modeling a systolic array might seem simple in practice, the highly configurable

nature of the array dimensions or whether the model accommodates for output planes that

can retrieve output values from middle MAC units instead of waiting for the result to

forward to the bottom of the array creates some modeling challenges. Figure 2.2 illustrates

a method to read in the input operands from top and left and write out the output operands

to the bottom assuming no output planes.

Figure 2.2: Read operand elements pulled from left and top of systolic array and write

operand elements pushed out from bottom

2.2 Dataflows

In many systems running state-of-the-art DNNs, energy and performance challenges arise

from the large amount of activations and weights required for operations that are fetched

from far-away memory banks [3]. These highly expensive fetches lead to orders of

magnitude higher latency and energy requirements compared to local fetches, not to

mention the added bandwidth challenges associated with greater memory accesses [21, 22].

Fortunately, the translation of input/output operands for a convolutional layer into

10

input/output operands for a systolic array architecture is programmable, and there exists an

optimal mapping for the best energy efficiency, which depends on the shape configuration

of the DNN and the constraints on hardware resources such as the number of PEs and the

size of memory in the hierarchy [1]. For this reason, dataflow approaches with data-reuse

are preferred to give us optimal efficiency. The most widely used subset of these

approaches are illustrated in Table 2.1. The five forms that are investigated involve the

reuse of elements in a convolution operation. The first approach is labeled as input

stationary (IS) which maximizes reuse of the input activations or input feature map. The

second dataflow is weight stationary (IS) reusing the weights in the filter. The third

approach is output stationary (OS) dataflow which reuses the partial sums that are

accumulated to create the ofmap.

 The fourth dataflow is row stationary which is a novel approach concerned on

maximizing reuse on all the above-mentioned components. The premise of the dataflow is

to keep the most recently used input and output data in the register file of the ALU

maximizing nearby accesses [23]. This approach would essentially lead to maximum reuse

from the most local memory location (RF) and would minimize SRAM and DRAM

accesses [4]. The disadvantage of this dataflow is that a systolic array architecture cannot

support a row by row computation required by a single PE. Finally, the last and most

obvious approach would be to choose no local reuse leading to limited energy expended in

the preprocessing stage to run workloads. Still, the disadvantages of constantly reading and

writing values from higher level memory provides little optimism for this approach in a

general convolution layer workload based on earlier discussion.

Table 2.1: Reuse characteristics of frequently used DNN accelerator dataflows

11

2.3 Convolution Translation

Although a convolution operation does not resemble a matrix multiplication operation at

first glance, the operands are translated into MAC operations friendly format to be executed

on a compute array. The process of convolution translation involves all 3 operands in a

convolutional layer: input activations (ifmap), weights, and output activations (ofmap) as

shown in Figure 2.3 into a Toeplitz matrix, a specific matrix in which each descending

diagonal from left to right is constant [1].

a. Convolution operands

Dataflows Input

Stationary

Weight

Stationary

Output

Stationary

Row

Stationary

No Local

Reuse

Ifmap Reuse

Weights Reuse

Partial Sums

Reuse

12

b. Matrix Multiplication operands (Toeplitz matrix)

Figure 2.3: Read and write operands after convolution translation

 As illustrated in Figure 2.3, the translation of the operands in a convolution operation

does not preserve the ordering of data elements or the dimensions of operands. In this case,

the weight matrix changes from (3, 3) to (9, 1) while the ifmap matrix transforms from

(5, 5) to (9, 9). At first glance, it might seem that the total elements are being preserved

after translation, but this is not the case. The translation does not guarantee unique elements

in the resulting matrices thereby creating reuse opportunities.

 After translation, the operand matrices are in a format compatible with dot product

matrix multiplication: 𝑂 = 𝐼 ⋅ 𝑊𝑇. This can be proven by testing that the number of

columns in the ifmap operand and the number of rows in the filter operand are equal after

translation. Therefore, the ofmap (rows, columns) dimensions are calculated as (9, 1).

 To add more complexity to translation, each input operand may need to be skewed

before reading into a compute array to achieve proper timing in the dataflow. By the nature

of the dataflows analyzed in Section 2.2, input skews also result in output skews. Therefore,

the final input activation operand looks like the illustration in Figure 2.4. The filter and

ofmap from Figure 2.3 are not presented since skewing would have no effect on a 1-

dimensional matrix.

13

 Figure 2.4: Ifmap operand after skewing (rotated 90° right)

 The process of skewing does not alter the number of elements in the operand and

changes only 1 dimension of the operand. To prove these statements, a comparison is made

between Figure 2.3 operands after translation and Figure 2.4 after skewing. Since the

process of skewing is no more than a matrix manipulation, software tricks enable us to

model this effect.

 The two steps of translation and skewing in order is performed for all operands to satisfy

the condition of dataflow over a systolic array for the OS dataflow; however, other

dataflows such as IS and WS do not skew the ifmap and the weight matrix, respectively.

This is because the stationary operand is first positioned into the compute array before the

non-stationary operand is fed into the MACs in IS and WS dataflows. It is important to keep

in mind that this still results in a skewed output since the ofmap is still computed with a

skew. The specific nature of the workload translations and how this affects the reads and

writes from SRAM is extremely critical for accurate modeling; for more in depth analysis,

Section 3.6 describes the specific nature of the dataflows using a read/write trace.

14

2.4 Memory Policies

Once the process of translating operand matrices to the hardware is finalized, the memory

policy used to fetch data elements from off-chip memory into local memory need to be

analyzed. Assumption is made that no intermediate memory between off-chip and local

memory and that off-chip memory is held in DRAM and local memory is in SRAM.

 In an ideal case, the SRAM would be big enough to hold exactly enough elements

needed to perform the computation for a DNN layer without needing fetches from off-chip

during compute processing. Unfortunately, memory is extremely expensive especially on

edge computing (e.g., IoT or mobile) leading to considerations of memory policies at a

hardware level [1]. This challenge is one that is at the crux of all modern NUMA systems

and will be important to model [24].

 Many caching or memory policies exist within modern processors to decrease latency

of misses in local memory. Three policies stand out as most important to model considering

the nature of each in the context of the memory problem. In each scheme, a double buffer

SRAM allocation procedure is used. In other words, the SRAM is separated into an inactive

and active buffer based on a ratio defined by the architect that can be defined as active

buffer percentage (ABP). The active buffer contains elements that are accessed by compute

elements at any point in the execution of the workload while the inactive buffer is used for

fetching elements from off-chip DRAM. For simplicity, each buffer is assumed to be the

same size meaning the true size of the accessible SRAM by the compute region is 50% of

the entire SRAM capacity if 𝐴𝐵𝑃 = 0.5. Next, each memory policy is described in detail.

15

Figure 2.5: Initial Prefetch before process execution

 In the demand fetch scheme, the SRAM active buffer is initially filled fully to contain

the elements for the first set of accesses from the compute region. This process illustrated

in Figure 2.5 is performed to ensure no stalls are needed to start execution of a workload.

Once the first miss occurs in the active buffer during an access, the active buffer is flushed

out and designated inactive while the current inactive buffer is filled with fetches from off-

chip DRAM and designated as the active buffer. This process of flushing and fetching

consumes stall cycles in computing due to latency and bandwidth constraints.

Unfortunately, only once the inactive buffer is filled and designated as active, compute

execution resumes. This process of flushing and fetching is repeated each time a miss

occurs in the active buffer. As can be assumed, the stall cycles from fetching can add

substantial delays in execution due to the lack of a preemptive fetching mechanism or

prefetching. Furthermore, the inactive buffer in this setting is sitting idle for most of

execution other than the time in which fetching occurs. One way to make use of the

capacity of the SRAM is to reserve use the entire buffer for accesses using a single buffer

scheme which is equivalent to using the entire SRAM space as the active buffer (𝐴𝐵𝑃 =

1.0). The inevitable stall cycles in this method is empirically calculated using the equation

below with 𝐶 = 𝑆𝑅𝐴𝑀 𝑚𝑒𝑚𝑜𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝐵𝑊 = 𝑜𝑓𝑓 − 𝑐ℎ𝑖𝑝 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ,

and 𝐿 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑓𝑓 − 𝑐ℎ𝑖𝑝 𝑎𝑐𝑐𝑒𝑠𝑠.

16

𝐷𝑎𝑡𝑎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝐶 × 𝐴𝐵𝑃 ; 𝑆𝑡𝑎𝑙𝑙 𝐶𝑦𝑐𝑙𝑒𝑠 = (
𝐷𝑎𝑡𝑎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝐵𝑊
) + 𝐿

 Due to the severe limitations of the demand fetch scheme especially when the workload

memory accesses requirement is much larger than the size of the local SRAM, a prefetch

scheme is analyzed in which DRAM bandwidth is predefined [5]. In this scheme, the active

buffer is prefilled to the maximum capacity before execution begins according to the

predefined bandwidth requirements. During the accesses of the active buffer by the

compute region, the inactive buffer prefetches elements from DRAM to serve future

requests. Once the first miss occurs in the active buffer, the active buffer is flushed out

while the inactive buffer is treated as the new active buffer. In an ideal case, the active

buffer is instantly refilled with new elements to service the SRAM miss while the inactive

buffer is emptied for future prefetches. Therefore, this process prevents stall cycles leading

from SRAM misses. Unfortunately, prefetching is not always perfect since the active buffer

flush and refill only occurs once the inactive buffer is filled fully by elements from DRAM.

The condition exists in which an active buffer miss occurs before the inactive buffer is fully

filled. In this case, stall cycles are incurred until the inactive buffer is finished filling. Only

once filling is complete, the inactive buffer is treated as the new active buffer and execution

resumes. This edge condition is the primary reason for stall cycles in this scheme.

 Since the stall cycles in the previous prefetching scheme are attributed to the limited

predefined bandwidth of a SRAM to DRAM link, a new scheme is considered that does

not define a bandwidth. In this scheme, the logic of prefetching and flushing is maintained

to achieve the same functionality of the bandwidth-fixed prefetch scheme; however, the

bandwidth is shrunken or enlarged each cycle to accommodate the exact fetching

requirement over the SRAM to DRAM link. This logic would always ensure a perfectly

17

stall-free process. As evident from the description of shrinking and enlarging bandwidth, a

bandwidth-variable scheme is not practical in an actual architecture; instead, the bandwidth

of a link is a design-time metric. The primary advantage of this scheme would be simulator

analysis of bandwidth requirements before designing and taping-out the architecture.

 In the above memory policies, the inactive and active buffer are assumed to be equal in

size; however, this should not be a fixed parameter since buffer allocation strategies make

big differences in the execution of a workload. Instead the ABP parameter should be

available to an architect in the range of [0.5, 1.0] to achieve peak performance. If the

inactive and active buffer sizes are not even as shown in Figure 2.6, the flushing process

would only result in a partially flushed active buffer to replenish new elements from the

inactive buffer. In this example, active buffer is 75% of the total buffer meaning only 50%

of the active buffer is flushed every time a flush is performed. Interesting results are

possible with variable buffer ratios which is important to model.

Figure 2.6: Partial flush and replenish of active buffer

2.5 DNN Layers

DNNs are built using a series of input, hidden, and output layers. A convolutional layer

involves input activations and weights which are read and output activations which are

18

written by the convolution. Convolutional layers (CONV) are often interleaved by pooling

(POOL) and other activation layer such as rectifier logic unit (RELU) [3]. These operations

are interesting at a deep learning level since the layers change the spatial characteristics or

the element values of the output activations which affects the subsequent layers; however,

the memory demand for each of these layers is zero and the compute demand is not very

high relative to CONV and FC layers. For this reason, activation layers are not vital to

model for performance measures. It should be noted that activation layers execution is

often handled by a post processing unit (PPU) in a DL accelerator architectures which takes

the SRAM output activation buffer elements as inputs and outputs elements back into the

input SRAM buffers reserved for input activation elements and weights [3].

 Finally, a DNN uses a fully connected layer (FC) to compute the likelihood of each

inference label. Modeling a FC layer in a compute array is virtually the same as a CONV

layer since each layer involves the same inputs and outputs. The most significant difference

is the size of the input and output elements since the output activations of a FC layer must

dimensionally match the number of labels, a requirement which does apply for a CONV

layer.

 Focusing on CONV layers, the convolution process is standard for an ifmap with a

single channel and a filter with a single channel since the ofmap will always be a single

channel as well. The variances occur when the number of channels is > 1. In this situation,

2 types of convolution are be performed. Depth-wise convolution is a technique in which

each channel is broken into separate elements. Then, the convolution is performed

independently for each sub-element (ifmap and filter) pair. Once the independent ofmap

are computed for each sub-element pair, the ofmaps are concatenated to form the final

19

ofmap which ensures the number of output channels is equal to the number of input

channels. The issue with depth wise convolution is the restriction against multiple filters

in the CONV layer. This problem is not obvious at first glance; however, it can be

rationalized by the fact that multiple filters would lead to concatenation the ofmap results,

thereby repeating the concatenation process for two separate logical purposes. To solve

this problem, pointwise convolution is used. In this convolution operation, the number of

channels in the ifmap and filter are not preserved meaning the ofmap is always a single

channel map in the result of execution of a single ifmap and single filter convolution

operation. Pointwise convolution can be thought of as a convolution across the entire depth

of the ifmap. Since concatenation is not required in the ofmap of a resulting convolution

with only a single filter, concatenation of the result from convolution of each of 𝑁𝑓 filters

is performed without loss of generalization. Because of this advantage, point-wise

convolution is more prevalent in practice.

 Another form of convolution is depth-wise separable convolution (DWSC). This method

involves a 2 − 𝑠𝑡𝑎𝑔𝑒 process in which a depth-wise convolution is first performed

followed by a pointwise convolution. Using this method, depth-wise convolution logic is

mixed with the advantage of allowing multiple filters. Furthermore, the total computational

complexity of this method is lower than the complexity of performing a pointwise

convolution directly [25]. To prove this claim, let us assume 512 (𝑁𝑓) kernels of

dimensions (𝐹ℎ = 5, 𝐹𝑤 = 5, 𝐹𝑑 = 3), ifmap of dimensions (𝐼ℎ = 12, 𝐼𝑤 = 12, 𝐼𝑑 = 3),

resulting in ofmap of height and width dimensions (𝑂ℎ = 8, 𝑂𝑤 = 8). Total multiplication

operations (𝑀𝑝𝑤) for a pointwise convolution given these convolution parameters:

𝑀𝑝𝑤 = 𝑁𝑓𝐹ℎ𝐹𝑤𝐹𝑑𝑂ℎ𝑂𝑤 = 512 ∗ 5 ∗ 5 ∗ 3 ∗ 8 ∗ 8 = 5,529,600

20

 If the same convolution parameters are used for DWSC, total multiplications (𝑀𝑑𝑤):

𝑀𝑑𝑤 = 𝐹ℎ𝐹𝑤𝐹𝑑𝑂ℎ𝑂𝑤 + 𝑁𝑓𝐹𝑑𝑂ℎ𝑂𝑤 = 5 ∗ 5 ∗ 3 ∗ 8 ∗ 8 + 512 ∗ 3 ∗ 8 ∗ 8 = 103,104

 As evident from the calculations in the example above, the number of operations in

convolution drops significantly for DWSC compared to pointwise convolution.

2.6 Partitioning

In previous discussions, a single systolic array of MAC unit is assumed to be used for

compute by the entire workload. Therefore, the dimension of the array constrains the

number of MMs at any given time by a workload. For example, if the compute array had

dimensions of (8, 8), the maximum matrix multiplications in one cycle is 64. Using a tiling

or partitioning scheme, the workload is split into partitions each independent in

computation. Therefore, each partition is executed in parallel assuming enough compute

arrays to support compute requirements. One major benefit of a partitioned scheme is to

achieve better utilization of compute elements. For example, in the case in which the per

filter elements are much greater than the number of filters ([𝐹𝑤 ∗ 𝐹ℎ ∗ 𝐹𝑑] ≫ 𝑁𝑓), the filter

operand is dimensionally biased after translation. This leads to low utilization of a square

shaped compute array for sequential execution. By partitioning the workload over

independent compute arrays that match operand dimensions, utilization improves thereby

improving energy and execution time [21]. The idea of partitions can be translated to

hardware systems as illustrated in Figure 2.7. Each node in the graphic consists of a systolic

21

array with SRAM buffer and a shared link to DRAM executing independent partitions.

Figure 2.7: Network of systolic arrays each with a perfect interconnect to external memory

(DRAM) [21]

 Partitioning the workload can be performed using three approaches: input-parallel,

filter-parallel, and input-on-filter-parallel. As the names suggest, partitioning can be

attributed to the operands partitioned against. In the input-parallel scheme, the ifmap

operand is divided in a uniform manner for up to the number of partitions requested while

keeping the filter static. The reason the requested partitions may not be possible is because

keeping the filter static requires specific partitioning to ensure convolution correctness. In

the filter-parallel scheme, the filter operand is divided in a uniform manner while keeping

the ifmap static also leading to less than the requested partitions since keeping the ifmap

static requires a specific distribution of filter. To counter-act the less than ideal nature of

the previous two schemes, input-on-filter parallel scheme can be used to flexibly partition

against the ifmap and filter. This leads to greater partitioning granularity and evenly

partitioned workloads. It should be kept in mind that the ofmap operand is dependent on

the partitioning of the input operands resulting in ofmap partitioning for each of the

schemes listed above.

22

2.7 NoC Considerations

In the partitioned scheme described above, independent nodes are responsible for execution

of a single partition in a larger workload. In this configuration, each node is a separate

compute element in a larger network. The main disadvantage of this design is the

assumption that each PE has a perfect interconnect with external memory leading to ideal

bandwidth and latency. In larger networks, each node cannot satisfy the requirement of a

perfect interconnect leading to enormous differences in bandwidth, latency, and energy

between on-chip PE communication [3]. Therefore, another approach is examined in which

L2 SRAM buffers are allocated within the network to be used for data sharing. This design

gives rise to the idea of Network-on-Chip (NoC) communication systems, widely used in

Chip Multi-Processors (CMP). The primary advantage of a NoC is the ability to scale to

support large-scale inference. This is due to the energy efficiency and latency improvement

for on-chip accesses to L1 or local or remote L2 SRAM compared to off-chip accesses to

DRAM [22]. This added performance in latency, energy, and throughput measures makes

NoC architectures the de facto fabric for application specific SoCs [26].

 Many DL platforms today are built by interconnecting multiple accelerators together

such as Google’s TPU that uses multiple TPUs interconnected in a 3D Torus [27]. For this

reason, it is important that SCALE-Sim can be wrapped around framework that supports

NoC architecture modeling. Specifically, the framework needs to support NoC parameters

such as topology, link bandwidth, L2 SRAM memory mapping, and additional parameters

discussed below.

 Supporting versatile NoC topologies would include mesh, torus, ring, fully connected

graph or any other direct topology as an input parameter with variable number of nodes in

23

the NoC [28]. Additionally, indirect topologies such as memory-centric networks should

be supported [29]. To model the constrained nature of data sharing that occurs within a

NoC, the modeling framework should have an idea of link and/or port bandwidth which

can model real-time congestion and bandwidth requirements anywhere in the NoC. Finally,

the allocation of data elements within the NoC should be modeled leading to interesting

considerations of mapping. For example, every node in the NoC could contain a L2 SRAM

bank, or instead a specific number could represent the data sources. Moreover, each L2

SRAM bank could contain a non-uniform amount of data elements specified by a memory

map.

 Chapter 3 presents the final design choices and implementation work performed to

develop SCALE-Sim and the NoC modeling framework as an extension to the base

simulator.

24

CHAPTER 3

SCALE-SIM-V2: CNN ACCELERATOR SIMULATOR

3.1 SCALE-Sim

The background research and consideration effort performed in Chapter 2 gave rise to the

development of SCALE-Sim, the configurable systolic array-based cycle accurate CNN

accelerator simulator [2]. The tool was developed as illustrated in Figure 3.1 to perform

DNN inference on systolic arrays and to generate on-chip memory access, runtime, and

DRAM bandwidth requirements for a given workload [2]. The tool performed fundamental

operand matrix creation, followed by SRAM trace generation, and ending with a DRAM

memory policy that calculates the bandwidth requirement. The key logic contributions of

the effort in SCALE-Sim-v2 can be broken down into three phases illustrated in Figure 3.2.

Support for depth-wise convolution, batching, and MNK operands was added during

operand matrix creation. Further key additions include support for trace generation without

an output plane on the systolic array, and separate traces for all three operands during

SRAM trace generation. Lastly, contributions to DRAM trace generation include support

for a fixed bandwidth prefetch memory policy, support for a NoC model memory policy,

and the ability to generate multiple traces for each memory source in a NoC. Encompassing

the entire simulator framework for SCALE-Sim, much of the end-to-end logic was not

organized in a format consistent with efficient debugging and extended development. For

this reason, all current logic was revamped and modularized before the additions above

were incorporated to allow for continued development efforts from the design community.

This chapter provides specific insights on the overhauled framework and the last section

25

of this chapter focuses on experiments conducted using SCALE-Sim-v2 and possible novel

experiments for future studies.

Figure 3.1: Schematic depicting the inputs needed and the outputs generated by SCALE-

Sim [2].

3.2 Simulator Environment

 The simulator logic is written in Python3 for the rich suite libraries for simulator design,

quicker time to development, and faster time to usage for users. The primary python

dependencies used are numpy, configparser, math for simulator logic and tqdm for

debugging. The top-level directory is SCALE-Sim with subdirectories: configs,

scale_sim_simulator, topologies.

3.3 Software Organization

26

Figure 3.2: High level code organization and flow in SCALE-Sim simulator environment.

Arrows provide a rough view of the sequential flow of the tool and do not necessarily

represent I/O movement

SCALE-Sim is broken down into 3 main modules illustrated in Figure 3.2. 1st module is

Operand Matrix Creation which handles the conversion of convolutional layer operands

into operands to be mapped onto a compute array of MAC units. 2nd module is SRAM

Trace Generation which creates a trace representing the reads and writes from SRAM for

the specific dataflow selected. 3rd module is DRAM Trace Generation which creates a trace

representing the reads and writes from DRAM as well as the cycle accurate adjustment of

the SRAM trace. The 3rd module also handles statistics such as average SRAM and DRAM

bandwidth as well as more detailed analysis. The top-level file for the simulator is scale.py.

This file takes in the inputs listed in Section 3.4 and parses these values into parameters of

logical consequence.

3.4 SCALE-Sim Inputs

The architecture parameters are presented in a .cfg file included in the configs directory.

The 10 architecture parameters are listed under the section: architecture_presets. The 10

parameters are shown in Table 3.1.

Table 3.1: Example architecture parameters in configuration file

Array

Height

Array

Width

Ifmap

SRAM

Size

Filter

SRAM

Size

Ofmap

SRAM

Size

Ifmap

Offset

Filter

Offset

Ofmap

Offset

Bandwidth Dataflow

32 32 524,288 524,288 524,288 0 10000000 20000000 1,000 OS

27

Array height (𝐴𝐻) and array width (𝐴𝑊) represent the row and column dimensions of the

systolic array PEs. The ifmap, filter and ofmap SRAM size represent the available on-chip

memory in bytes for each operand. The offset for each operand represents the first address

in the address space for each operand. The bandwidth value is the available bandwidth per

cycle in a unidirectional link between the on-chip SRAM and off-chip DRAM. Finally, the

dataflow represents the mapping of elements onto the compute array.

 Convolutional and/or fully connected layers are presented in a csv file included in the

topology directory. Each file has a header line with the data labels followed by lines

representing each layer and its characteristics. For any CONV or FC layer, 7 parameters

are needed to describe the inputs and convolution process: ifmap height and width, filter

height and width, depth of ifmap and filter given as channels, number of filters, and the

stride of convolution. An example of a csv file representing AlexNet CNN, most popular

for its accuracy in image prediction during the ImageNet Challenge in 2012 leading to the

revolution of CNN adoption, is presented in Table 3.2. AlexNet has 8 layers: 5 convolution

layers and 3 fully connected layers; only the 5 CONV layers are shown here with the layer

characteristics [30].

Table 3.2: AlexNet CNN with 5 CONV layers

Layer

Name

IFMAP

Height

IFMAP

Width

Filter

Height

Filter

Width

Channels Number

of Filters

Strides

Conv1 224 224 11 11 3 96 4

Conv2 207 207 5 5 96 256 1

Conv3 13 13 3 3 256 384 1

Conv4 13 13 3 3 384 384 1

28

Conv5 13 13 3 3 384 256 1

3.5 Operand Matrix Creation

Operand matrix creation is the process of translating convolutional layer operands into

compute array operands. This process is described in Section 2.5 for ifmap, filter, and

ofmap operands.

3.5.1 Calculated Hyperparameters

 Because of the deterministic nature of the ofmap operand, the dimensions are calculated

using the formula listed below:

𝑂ℎ = 𝑐𝑒𝑖𝑙[(𝐼ℎ − 𝐹ℎ + 𝑆ℎ)/𝑆ℎ]; 𝑂𝑤 = 𝑐𝑒𝑖𝑙[(𝐼𝑤 − 𝐹𝑤 + 𝑆𝑤)/𝑆𝑤]

 𝑂ℎ and 𝑂𝑤 represent the ofmap height and width, respectively. 𝐼ℎ and 𝐼𝑤 represent the

ifmap height and width, respectively. 𝐹ℎ and 𝐹𝑤 represent the filter height and width,

respectively. 𝑆ℎ and 𝑆𝑤 represent the stride height and width, respectively.

 Oftentimes, it can be assumed that the height and width of the layer parameters are

equal. Therefore, the ofmap height and width will also be equal. For example, Conv1 in

AlexNet satisfies this condition; therefore, 𝑂ℎ and 𝑂𝑤 are each 55. The reason for using

the ceiling function is because non-integer real number dimensions are not allowed and

because taking the result of the floor function would result in loss of information in

convolutions involving stride values > 1. The ceiling function is necessary to ensure a

symmetry in convolution by adding padding in the ifmap operand. An example of this

29

scenario is presented in Figure 3.3. The red portion of the operand represents the padding

required to ensure a symmetric convolution given 𝑠𝑡𝑟𝑖𝑑𝑒 = 2.

Figure 3.3: (𝑖𝑓𝑚𝑎𝑝ℎ𝑒𝑖𝑔ℎ𝑡 = 4, 𝑖𝑓𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ = 4) & (𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔ℎ𝑡 = 3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ =

3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑛𝑢𝑚 = 4) with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2

3.5.2 Address Mapping

During the process of operand matrix creation, mapping of addresses to the operand

dimensions is important to consider. There are 4 logical mapping algorithms that can be

deployed in operand matrix creation (each placed in order of sequential priority): [Channel,

Height, Width], [Height, Channel, Width], [Channel, Width, Height], [Width, Channel,

Height]. After considering the various the most widely used priority structures in practice,

[Channel, Height, Width] is the preferred solution [1, 3]. An example of an ifmap

implemented with the address mapping scheme is shown in Figure 3.4.

30

Figure 3.4: An example activation map with addresses prioritized based on the [Channel,

Height, Width] scheme

3.5.3 Batching

In practical applications, a technique called batching is deployed to continuously execute

multiple ifmap convolutions over a filter [1]. In order to set up the batch for convolution,

the “batch” of ifmaps is first translated independently into ifmap operand matrices and row

concatenated. This process ensures the batch is executed in the same dataflow execution

resulting in a single ofmap operand matrix. The matrix is then translated back into

individual ofmap by separating the “batch” of ofmaps based on the calculated dimensions

of the final output.

3.5.4 MNK Operands

Operand matrix creation is not performed if DNN operands are given in an MNK format

as illustrated in Figure 3.5 since the operands are already GEMM compatible. This

consistency ensures all types of DNN layers involving matrix multiplications can be used

as input topologies to SCALE-Sim including the layers in a multilayer perceptron (MLP),

the recursive layers in a long short-term memory network (LSTM), or any other generic

DNN with input, hidden, and output layers.

Figure 3.5: Operands compatible with GEMM operations [6]

31

3.6 SRAM Trace Generation

In the best case, the SRAM trace represents a cycle accurate trace in which there are no

stall cycles in computation. In a general case, the SRAM trace is a non-cycle accurate

representation of the dataflow in/out of the compute array. The process of generating the

SRAM trace requires knowledge of the dataflow used to map elements to MAC units. Out

of the 5 dataflows discussed in the background Section 2.2, 4 dataflows are achievable

using a systolic array architecture while only 3 are worth considering due to their reuse

capabilities eliminating no local reuse dataflow. The 3 dataflows are output stationary

(OS), weight stationary (WS), and input stationary (IS), one of which is provided by the

user in the input config file. The top-level file for this module is trace_per_layer.py which

takes the operands at the output of operand matrix creation, the dataflow, and compute

array dimensions as inputs. The logic within this file chooses which trace generation file

to call based on the dataflow: os_trace_per_fold.py, ws_trace_per_fold.py, or

is_trace_per_fold.py each of which handles its dataflow-specific trace logic. Each

dataflow, first, separates the operand matrices into folds. This process is crucial if the

operands are larger than the compute array dimensions since entire operands cannot be

executed in one process. Then, each fold is skewed and executed on the systolic array

independently over parallel compute arrays or sequentially over one. In the analysis and

examples provided, a single compute array is assumed for workload execution eliminating

workload parallelization possibilities.

32

 Before each dataflow trace is analyzed in depth, a few terms need to be clarified:

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 and 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 are the input feature map operand dimensions, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠 and

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 are the filter operand dimensions, and 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 and 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 are the output

feature map operand dimensions. By definition, 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 =

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, and 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠. Additionally, folding is the idea that the full

execution of a network may not be possible in one iteration on a compute array as can be

demonstrated with a layer that requires a 64 ∗ 45 physical PE array; however, the compute

used contains a 32 ∗ 32 PE array. In this case, the execution of the layer can be broken up

into 𝑁𝑓𝑜𝑙𝑑𝑠 = 2 of 32 ∗ 32 and 32 ∗ 13 [1].

 For the examples illustrated in Figures 3.6, 3.7, and 3.8, the network topology shown in

Table 3.3 is executed on a (𝐴𝐻 = 4, 𝐴𝑊 = 4) compute array.

Table 3.3: Example network topology

Layer

Name

IFMAP

Height

IFMAP

Width

Filter

Height

Filter

Width

Channels Number

of Filters

Strides

BASE1 5 5 3 3 1 4 1

3.6.1 Output Stationary Trace

In the output stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 = 𝐶𝑒𝑖𝑙 (
𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
). The first

term (𝑣_𝑓𝑜𝑙𝑑𝑠) represents the folds in the ifmap and the second term (𝑣_𝑓𝑜𝑙𝑑𝑠) represents

the number of folds in the filter. The dataflow is processed by iterating over 𝑣_𝑓𝑜𝑙𝑑𝑠 and

ℎ_𝑓𝑜𝑙𝑑𝑠 in no specific priority. For each iteration, the fold specific operands are extracted

from the larger operands by indexing the 𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠

33

for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠, ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and ℎ𝑓𝑜𝑙𝑑𝑠, respectively. The 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠

retain the same characteristics as their larger operand counterparts regardless of fold. The

fold specific operands ifmap, filter, ofmap, are skewed independently before being pushed

into the compute array. The skew appears from left to right in the trace as illustrated in

Figure 3.6.

 A notable trace characteristic of the OS dataflow is that writing of the sums to the ofmap

does not occur until at least the cycle after all reads are made into the systolic array. This

is due to the delay in forwarding the sums down towards the bottom MAC unit to escape

the compute array since this configuration does not assume an output plane. Therefore,

even if the sums at the top row of the compute array are calculated by cycle α, the sum can

only be forwarded down to the bottom of the compute array in β cycles at the minimum, a

term that represents the total time to forward from top to bottom of the compute array. In

the best case, forwarding would happen instantly after calculated the sum resulting in

writing to SRAM in the α + β cycle assuming no stalls; however, this case assumes no

sums are calculated lower down the compute array. In the worst case, sums are calculated

lower down the compute array and would take forwarding precedent over the top row sums

meaning writing to SRAM would occur in the α + 2β − 1 cycle assuming no stalls. As

evident from the worst-case scenario, the taller the compute array, the worse the delay is

for writing. Fortunately, this delay is a direct result of the minimal or zero delay in the

lower sums meaning the average delay for each sum converges to α + β cycles for a

general sum anywhere in the compute array.

 In total, 3 folds are needed to complete execution using this dataflow using the 𝑁𝑓𝑜𝑙𝑑𝑠

equation listed above.

34

Figure 3.6: 1-fold SRAM trace for output stationary (OS) dataflow. Header represents the

division in elements from each operand. By convention, ifmap and filter elements are read

from SRAM and ofmap elements are written to SRAM. Reference Figure 3.7 and 3.8 for

comparison.

 Adding an output plane could be experimented with leading to an offset of the ofmap

portion of the trace in Figure 3.6 by −β rows. An output plane could also allow a flip on

input activation and filter values so that address 𝑎 is written earlier than 𝑏, address 𝑏 is

written earlier than 𝑐 and so on.

3.6.2 Weight Stationary Trace

In the weight stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 = 𝐶𝑒𝑖𝑙 (
𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
). The first

term is denoted as 𝑣𝑓𝑜𝑙𝑑𝑠 and the second term as ℎ𝑓𝑜𝑙𝑑𝑠. Specific to the WS dataflow, folds

are dependent on both dimensions of the filter operand. For each fold, the fold specific

operands are extracted from the larger operands by indexing the 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠,

𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠, and 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠 , ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and ℎ𝑓𝑜𝑙𝑑𝑠, respectively.

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 retain the same characteristics regardless of fold. In this dataflow,

35

only the ifmap and ofmap operands are skewed since the filter is pushed into the compute

array to start each fold. The specific nature of this dataflow is illustrated in Figure 3.7.

 A notable observation from the WS dataflow in the example below is that the first output

element is pushed out 4 cycles after the cycle in which the first ifmap element is read in.

This is contrary to the behavior in OS dataflow since output elements are pushed out before

all input elements are read in in the WS dataflow even without an output plane. This is due

to the nature of the dataflow in which the MAC units residing in the higher rows forward

down partial sums for accumulation with the output at the succeeding MAC units until the

bottom of the compute array is reached leading to the first output element calculated in

the𝐴𝐻 cycle, at a minimum. Note that the output elements do not necessarily constitute the

final ofmap elements since the entire filter needs to be read into the compute array for the

final sum of the partial sums to be calculated. This is evident from Figure 3.7 since

elements [E, … , I] are missing from the filter trace.

 In total, 3 folds are needed to complete execution using this dataflow using the 𝑁𝑓𝑜𝑙𝑑𝑠

equation listed above.

36

Figure 3.7: 1-fold SRAM trace for weight stationary (WS) dataflow. Reference Figure 3.6

and 3.8 for comparison.

3.6.3 Input Stationary Trace

In the input stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 = 𝐶𝑒𝑖𝑙 (
𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
), the first term

is designated as 𝑣𝑓𝑜𝑙𝑑𝑠 and the second term as ℎ𝑓𝑜𝑙𝑑𝑠. In contrast to the OS dataflow, folds

are dependent on the two dimensions of the ifmap operand in the IS dataflow. For each

fold, the fold specific operands are extracted from the larger operands by indexing

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠 for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠, ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and

ℎ𝑓𝑜𝑙𝑑𝑠, respectively. Only 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 and 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 retains the same characteristics

regardless of fold. In this dataflow, only the filter and ofmap operands are skewed since

the ifmap is pushed into the compute array to start each fold. The specific nature of this

dataflow is illustrated in Figure 3.8.

37

Figure 3.8: 1-fold SRAM trace for input stationary (IS) dataflow. Reference Figure 3.6 and

Figure 3.7 for comparison.

 Interestingly, the fold shown above in Figure 3.8 takes a minimum of 15 𝑐𝑦𝑐𝑙𝑒𝑠 to

execute while the folds shown in Figure 3.6 and Figure 3.7 take a minimum of 19 𝑐𝑦𝑐𝑙𝑒𝑠

and 20 𝑐𝑦𝑐𝑙𝑒𝑠, respectively. This result could lead architects to prefer IS dataflow over the

field; however, a more complete discussion is required to converge on a stronger result.

3.6.4 Dataflow Comparisons

Though each fold is executed based on the same network layer, the difference in dataflow

is what leads to this difference. As is calculated using the𝑁𝑓𝑜𝑙𝑑𝑠 equation above, the IS

dataflow leads to 9 𝑓𝑜𝑙𝑑𝑠 much greater than the 3 𝑓𝑜𝑙𝑑𝑠 for each OS and WS dataflows.

Using a 1st order (semi-accurate) comparison tool to compare the minimum runtime for

each of the 3 dataflows, it is obvious that IS dataflow (135 = 9 ∗ 15 cycles) leads to by far

the worst performance followed by WS (57 = 3 ∗ 19 cycles) and OS dataflow (60 = 3 ∗

20 cycles).

38

 Unfortunately, greater depth comparisons are still needed to gain a true idea of the

effectiveness of each dataflow for a workload. Even though an analysis into total runtime

might lead to preference for an OS dataflow over the field, implementing a stall free OS

dataflow architecture is difficult due to the larger SRAM buffer requirements. On the

contrary, WS and IS dataflows require half the amount of SRAM buffer for square operand

arrays [2]. Therefore, it is vital to model the complete system with considerations to higher

level memory accesses and the latency and bandwidth requirements associated with these

accesses to effectively compare various dataflows. This serves as the motivation for

DRAM and NoC modeling described in Section 3.7 and Section 3.8, respectively.

3.7 DRAM Trace Generation

As detailed in Section 2.4, the data required to process a convolution layer in real-time is

too high to store in local memory. Even with data reuse techniques, the ability to prefetch

data into on-chip SRAM buffers before execution eliminates the additional latency due to

off-chip accesses to DRAM. A cycle-accurate trace of prefetch requests for reads and

writes to DRAM is created to analyze the data movement required for a layer execution

based on the memory policy, fixed bandwidth prefetch or variable bandwidth prefetch.

In each memory policy, user parameters for active buffer percentage (ABP), DRAM

bandwidth, DRAM access round-trip latency, bytes per data element can be modified

depending on user preference leading to variable DRAM trace characteristics.

39

3.8 NoC Model

The base version of SCALE-Sim models a single PE with memory fetching from on-chip

SRAM and off-chip DRAM. In the Section 2.6, partitioning is introduced as a mechanism

to achieve parallel execution of workloads by multiple PEs. In Section 2.7, the popularity

of NoC architectures is presented as a reason to model NoC compute and memory. The

two concepts are integrated to give rise to a NoC modeling framework with partitioned

execution across various PEs in the NoC. This framework is implemented on top of the

SCALE-Sim infrastructure and has the advantage of providing the flexibility to model a

suite of NoC architectures depending on the configuration the architect is interested in.

3.8.1 NoC Modeling Framework

The framework to model NoC architectures was developed to handle data requests from

PEs in the NoC. The framework has 4 primary parameters that are specified as inputs by

the user: NoC topology, remote bandwidth, number of partitions, active buffer percentage.

 The NoC topology is the number of nodes in a network as well as the intra-node links

between the nodes. The user creates an adjacency matrix using the convention illustrated

in Table 3.4 to create a 4 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ shown in Figure 3.9 and store the values

in a .csv format. In this convention, the left-most column and the top-most row indicate the

nodes in the NoC. A value of 1 in the table defines a link between the two nodes and a

value of − is equivalent to no link between the two nodes. It should be noted that the bottom

left elements and the top right elements are identical in the adjacency matrix. Therefore, a

value in the adjacency matrix corresponding to the pair of nodes (𝑎, 𝑏) will always be the

same as the value for the pair (𝑏, 𝑎). The file path is then given as an input to the simulator

40

before execution. The simulator parses the matrix at run-time and determines the number

of hops between any pair of nodes to calculate the latency of accesses for each source,

destination pair communication. Because of the flexible nature of network creation using

the adjacency matrix format, any and every irregular and symmetric network can be created

and be supported. 3 topologies files were created for use in experiments representing mesh,

flattened butterfly, and fully connected topologies [31].

Figure 3.9: Direct mesh NoC topology with 16 PEs each acting as a router in the network.

 Remote bandwidth is specified as an input parameter by the user and is used to

determine the maximum allowed packets to be requested from remote L2 caches each

cycle. The remote bandwidth specified acts as the total bandwidth accepted each cycle by

the remote port of a node on the network. This is independent from the local bandwidth

which is reserved for accesses from/to local L2 cache. Assumptions are made in this model

including no off-chip DRAM accesses, an ideal data sharing network with no contention,

no real-time NoC issues such as deadlocks and flit blocking. Furthermore, an assumption

41

is made that bandwidth is not specific to links but rather attached to the remote and local

port of the node. So, in effect, infinite packets can traverse the NoC each cycle but only the

specified remote bandwidth can enter/exit the node from the remote port illustrated in

Figure 3.10.

Table 3.4: MESH Adjacency Matrix

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 - - 1 - - - - - - - - - - -

1 1 1 1 - - 1 - - - - - - - - - -
2 - 1 1 1 - - 1 - - - - - - - - -
3 - - 1 1 - - 1 - - - - - - - -
4 1 - - - 1 1 - - 1 - - - - - - -
5 - 1 - - 1 1 1 - - 1 - - - - - -
6 - - 1 - - 1 1 1 - - 1 - - - - -
7 - - - 1 - - 1 1 - - - 1 - - - -
8 - - - - 1 - - - 1 1 - - 1 - - -
9 - - - - - 1 - - 1 1 1 - - 1 - -

10 - - - - - - 1 - - 1 1 1 - - 1 -
11 - - - - - - - 1 - - 1 1 - - - 1
12 - - - - - - - - 1 - - - 1 1 - -
13 - - - - - - - - - 1 - - 1 1 1 -
14 - - - - - - - - - - 1 - - 1 1 1
15 - - - - - - - - - - - 1 - - 1 1

 Number of partitions is specified as an input in the config file to SCALE-Sim to divide

the execution of DNN layers. Each partition is executed on a distinct PE in the network,

and in the scenario of a L1 SRAM buffer miss, a request for data read and/or write is placed

to any of the nodes in the network containing L2 SRAM buffers depending on the memory

map. Note that number of partitions do not have to be the same as the number of nodes in

the NoC. In the case of a 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ topology, partitioning on 30 PEs would

lead to only the first 30 PEs (0𝑡ℎ − 29𝑡ℎ 𝑃𝐸) executing the DNN layers while all 64 nodes

act as L2 SRAM buffer sources.

42

 Figure 3.10: NoC Memory Hierarchy

 Active buffer percentage (ABP) is a parameter that affects the prefetching policy into

L1 local SRAM by controlling the ratio of active and inactive buffer. ABP can be anywhere

from a 50% − 50% even ratio to a biased 99% − 1% active buffer-inactive buffer ratio.

By sweeping through the possible ratios, interesting evaluations can be made to compare

architectural parameters.

3.9 Experiments

The vast array of interesting evaluations of SCALE-Sim have yet to be observed since the

tool adoption is still in its infancy. Papers have already been written on experiments

performed by the developers of SCALE-Sim detailing the ability to test sweeps of

architecture configurations on a suite of workloads [2, 21]. One of the most interesting

results observed so far is that at scale, if the compute array is fully utilized, the memory

bandwidth remains the prime bottleneck to performance irrespective of how much on-chip

memory is allocated [21]. This bottleneck is most obvious when running large loads on the

43

hardware which demonstrates that the choice of interface bandwidth from memory is the

most likely indicator of throughput no matter the efficiency in compute such as element

reuse and/or high utilization.

For evaluations with respect to NoC designs, NoC Modeling Framework (NMF) is used

to create a network of nodes containing L2 SRAM data banks and/or systolic arrays

running independent partitions each acting as a PE in the NoC. In the experiments

presented below, differences in performance metrics for popular DNNs used for DL

inference are compared using various configurations to gain insight into the importance of

certain architectural and controller parameters.

3.9.1 GPT2 & ResNet-50 Performance Evaluations using NMF

GPT2 is a large transformer-based language model with 1.5 billion parameters trained on

a dataset of 8 million web pages [32]. The model contains 6 CONV layers labeled Linear1,

QKT, QKTV, Linear2, PW-FF-L1, and PW-FF-L2. Furthermore, ResNet-50 a residual

DNN that rose to fame after winning the ImageNet challenge in 2015 for its ability to

effectively train a large number of layers [33]. ResNet-50 consists of 5 stages, conv1,

conv2_x, conv3_x, conv4_x, conv5_x, and a fully connected layer. Each of these two

models can be used as input DNNs to SCALE-Sim in conjunction with NMF to gather

performance loss due to stall cycles.

 To provide motivation for experiments involving these two DNNs, Linear1 from GPT2

has a base requirement of 7,680,094 cycles without partitioning for an output stationary

dataflow on a 32𝑥32 systolic array compute architecture. Therefore, the greatest

optimization possibility is 43,894 stall cycles which is . 568% of the total runtime.

Meanwhile, conv2a_1 has a base requirement of 65,630 cycles with the same

44

configurations. In this case, the greatest optimization possibility is 495,543 stall cycles

which is 88.3% of the total runtime. The substantial optimization possibility differences

indicate an underlying pattern in NoCs that is analyzed in Section 3.9.2 while this section

provides experiments evaluating configuration parameters such as active buffer percentage

(ABP) and partitioning (P).

 An experiment is performed to gain insight on the effect of P on a GPT2 workload

executed in a NoC. Six independent configurations are swept across various bandwidths

assuming 𝐵𝑊𝑙𝑜𝑐 for a PE is 10000 𝑏𝑦𝑡𝑒𝑠/𝑐𝑦𝑐𝑙𝑒 and the sum of remote BW accesses is

𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒 = (𝑛 − 1) ∗ 𝐵𝑊𝑙𝑜𝑐. Each of the 6 configurations is a combination of NoC

topology: 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ, 8 − 𝑎𝑟𝑦 4 − 𝑓𝑙𝑎𝑡 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦, or

64 𝑛𝑜𝑑𝑒 𝑓𝑢𝑙𝑙𝑦 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, and partitions: 𝑃 = 1 or 𝑃 = 10. The 6

configurations are executed independently on SCALE-Sim and the results for Linear1 are

presented in Figure 3.11.

Figure 3.11: GPT2 Partitioning Evaluation over BW Sweep

1

10

100

1000

10000

100000

50 500 5000 50000 500000

S
ta

ll
 C

y
cl

es

Remote Port Bandwidth (Bytes)

GPT2 Inference Stalls for Partitioned Workload

MESH Linear1 ABP=0.7, P=1 FC Linear1 ABP=0.7, P=1 FB Linear1 ABP=0.7,P=1

MESH Linear1 ABP=0.7, P=10 FC Linear1 ABP=0.7, P=10 FB Linear1 ABP=0.7,P=10

45

 For the configurations with 𝑃 = 10, no differences are found among each topology, and

performance loss due to stalls falls to 0 with remote bandwidth greater than 500. The same

cannot be observed for 𝑃 = 1 since mesh continues to incur stall cycles even at high

bandwidths. This would lead us to surmise that the latency of a mesh traversal is much too

great to recover from even while using large bandwidths. Meanwhile, the results for

flattened butterfly and fully connected are almost identical with a net difference of 6 stall

cycles added across bandwidths tested. Based on these differences, a possible claim is that

partitioning removes the need for high bisection bandwidth and low diameter in a NoC. By

evenly distributing the workload among the NoC and using a communication aware data

placement, the need for robust NoC designs can be eliminated [3].

 The results above showcase the importance of partitioning in a NoC, however, in many

cases, partitioning is not possible because of the added overhead and lack of resources in

the architecture. In the next experiment, the differences between active buffer percentages:

𝐴𝐵𝑃 = 0.7 and 𝐴𝐵𝑃 = 0.5 are compared. For consistency in experiments, same

topologies from the last experiment are used to gain insight into differences the double

buffer memory policy configuration can make on performance.

 Figure 3.12 illustrates the resulting stall cycles for the experiment conducted over the

sweep of remote port bandwidths. The overarching take-away is that a more balanced

buffer scheme has real benefits to counter-act performance loss due to remote fetches. The

results for 𝐴𝐵𝑃 = 0.5 were always at least equal and in many cases better than the results

for 𝐴𝐵𝑃 = 0.7. Furthermore, the performance results for various topologies matched with

𝐴𝐵𝑃 = 0.5 configuration. Based on this result, the claim can be made that the active and

46

inactive buffer ratio allocation is a consequential architectural parameter for which

performance gains are possible.

Figure 3.12: GPT2 ABP Evaluation over BW Sweep

 To follow up previous evaluations, an experiment is performed to reveal insights as to

the effect an optimized set of active buffer percentage (ABP) and partitioning (P) can have

on performance. A sweep is performed across ABP from 0.5 − 0.9 for one of 2

configurations with 𝑃 = 1 or 𝑃 = 10 over NoC topologies: 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ,

64 𝑛𝑜𝑑𝑒 𝑓𝑢𝑙𝑙𝑦 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 illustrated in Figure 3.13.

1

10

100

1000

10000

100000

50 500 5000 50000 500000

S
ta

ll
 C

y
cl

es

Remote Port Bandwidth (Bytes)

GPT2 Inference Stalls for ABP configurations

MESH Linear1 ABP=0.5, P=1 FC Linear1 ABP=0.5, P=1

FB Linear1 ABP=0.5,P=1 MESH Linear1 ABP=0.7, P=1

FC Linear1 ABP=0.7, P=1 FB Linear1 ABP=0.7,P=1

47

Figure 3.13: GPT2 ABP evaluation over partitioning for a mesh and fully connected

topology with remote bandwidth of 1000 bytes

 As previously expected, an even ABP leads to lesser sensitivity to prefetch latency.

𝐴𝐵𝑃 = 0.5, 0.6, & 0.7 lead to no stalls for partitioned workloads. Using no partitions,

𝐴𝐵𝑃 = 0.5 is the only configuration without stall cycles. Furthermore, the differences in

NoC topology are more pronounced at more biased ABP ratios while more even ratios mask

the latency of the network. For 𝐴𝐵𝑃 < 0.8, average variance between topologies is less

than 0.01; however, for 𝐴𝐵𝑃 ≥ 0.8, variance between topologies is 797.78 cycles. Based

on these results, a claim can be made that an optimized set of both parameters ABP and P

leads to strong performance and that priority in design among the two parameters should

be given to partitioning workloads. This claim can be strengthened with experiments

covering a suite of workloads which are not present in these evaluations.

 Next, an experiment is performed using Resnet-50 to distinguish the difference in

performance between a partitioned vs. a non-partitioned workload for various layers. Using

NMF with a mesh and fully connected topology, 2 sets of charts are generated evaluating

0
200
400
600
800

1000
1200
1400

S
ta

ll
 C

y
cl

es

Active Buffer and Partitioning Configurations

GPT2 Stall Cycles For Remote BW: 1000

MESH Linear1 1000 FC Linear1 1000

48

topologies individually. Mesh topology results are shown in Figure 3.14 and fully

connected topology results are shown in Figure 3.15.

 The resulting chart for mesh topology shows the substantial increase in timing

performance for a partitioned workload versus a sequential workload without partitioning.

9 layers incurred no stall cycles before partitioning including the FC layer which are not

included in comparison. Averaging the performance increase for the consequential layers,

99.24% stall cycles reduction is observed.

Figure 3.14: Resnet-50 Layers evaluation over partitioned configuration for execution on

a mesh

 Results for a fully connected topology show the substantial increase in timing

performance for a partitioned workload versus a sequential workload without partitioning.

Averaging the performance increase for the consequential layers, 99.28% stall cycles

reduction is observed.

1

10

100

1000

10000

100000

1000000

C
B

2
a_

1

C
B

2
a_

3

C
B

2
s

IB
2

b
_
1

IB
2

b
_
3

IB
2

c_
1

IB
2

c_
3

C
B

3
a_

1

C
B

3
a_

2

C
B

3
a_

3

C
B

3
s

IB
3

b
_
2

IB
3

b
_
3

C
B

4
a_

1

C
B

4
a_

2

C
B

4
a_

3

C
B

4
s

IB
4

b
_
1

IB
4

b
_
2

IB
4

b
_
3

IB
4

c_
1

IB
4

c_
2

IB
4

c_
3

C
B

5
a_

1

C
B

5
a_

2

C
B

5
a_

3

IB
5

b
_
1

IB
5

b
_
2

IB
5

b
_
3

IB
5

c_
1

S
ta

ll
 C

y
cl

es

DNN Layers

Resnet50 Select Layers Performance vs. Partitioning for Mesh

BW: 1000, P=64 BW: 1000, P=1

49

Figure 3.15: Resnet-50 Layers evaluation over partitioned configuration for execution on

a fully connected topology

 The base performance increase for 𝑃 = 1 and remote bandwidth of 1000 𝑏𝑦𝑡𝑒𝑠 was

13.99% for a fully connected topology over a mesh topology executing ResNet-50.

Nevertheless, the similarity in performance increase between the two topologies indicates

a possible correlation into the effects of partitioning on various layers regardless of

differences in base performance. Another interesting observation is that stage 2 layers had

the smallest improvement with 98.49% loss reduction for both topologies while stage 5

layers had the greatest improvement with 99.7% loss reduction for both topologies. This

is likely due to the differences in network congestion which is investigated in Section 3.9.2.

3.9.2 GPT2 & ResNet-50 NoC Congestion Evaluation

Since NMF has real disadvantages due to its granularity in modeling an entire NoC during

run-time experiencing contention and deadlock possibilities, experiments are performed to

gain insight on the complete network bandwidth sensitivity to various workloads using

1

10

100

1000

10000

100000

1000000

C
B

2
a_

1

C
B

2
a_

3

C
B

2
s

IB
2

b
_
1

IB
2

b
_
3

IB
2

c_
1

IB
2

c_
3

C
B

3
a_

1

C
B

3
a_

2

C
B

3
a_

3

C
B

3
s

IB
3

b
_
2

IB
3

b
_
3

C
B

4
a_

1

C
B

4
a_

2

C
B

4
a_

3

C
B

4
s

IB
4

b
_
1

IB
4

b
_
2

IB
4

b
_
3

IB
4

c_
1

IB
4

c_
2

IB
4

c_
3

C
B

5
a_

1

C
B

5
a_

2

C
B

5
a_

3

IB
5

b
_
1

IB
5

b
_
2

IB
5

b
_
3

IB
5

c_
1

S
ta

ll
 C

y
cl

es

DNN Layers

Resnet50 Select Layers Performance vs. Partitioning for Fully

Connected

BW: 1000, P=64 BW: 1000, P=1

50

various NoC configurations [34]. ResNet-50 is the subject of the initial evaluations before

moving to link load analysis comparing ResNet-50 and GPT2.

 In this experiment, (source, destination) pairs are generated for the input operand

communications throughout a 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ NoC and the resulting average

injection rates are map over the total execution of each layer. Here we assume each data

transfer packet is 1 byte. A visual representation of the evaluation is presented using heat

maps illustrated in Figure 3.16. Each layer of each stage provides unique and interesting

congestion results; however, only layers in stage 2 and stage 5 are analyzed, for brevity.

Here the NoC congestion for layer conv2a_1 (layer 1) in stage 2 and conv5a_1 (layer 43)

in stage 5 are compared.

Figure 3.16: Resnet congestion evaluation using heat map

 The heat map comparison indicates a much higher potential for congestion in conv2a_1

over conv5a_1. The greatest congestion link running conv2a_1 has a link load of 2.19

bytes while link loads in conv5_a are maxed at 1.21 bytes. The likely explanation for this

result is advantageous data placement for conv5_a which results in closer communication

pairs while conv2_a suffers from similar challenges as uniform random traffic which serves

uniform communication for all (source, destination) pair combinations throughout the

51

network leading to bottlenecks around the bisection lines. Tracing the underlying reason

for the difference in congestion, the difference can be attributed the differences in

parameters between the two layers. Parameters are set as 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

1024 for conv5a_1 which reduces the number of accesses throughout the address space of

the ifmap and prioritizes sequential addresses along the depth of a channel while conv2a_1

does not have benefit from advantageous parameters with 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

64.

 A potential solution to congestion would be communication-aware data placement using

an iterative algorithm similar to the proposed ideas in Simba architecture [3]. Another

approach would be to design a NoC that purposefully sizes link bandwidths to serve

specific workload traffic, thereby restricting optimal performance to a few workloads.

 Figure 3.17: Link load distribution for GPT2 and Resnet50 layers

Taking a closer look at the distribution of channel load for Resnet-50 and GPT2 in

Figure 3.17 reveals a generally random distribution of link loads with a mode of about 0.8.

For both DNNs, the potential for congested links exists with link loads reaching up to 2.37

for some layers in Resnet-50. This evaluation gives added motivation to design custom

heterogenous NoCs in chip-multiprocessors specific to application requirements.

52

 CHAPTER 4

SIGMA BUILDING BLOCKS

Chapter 2 and 3 describes SCALE-Sim, a tool used to model scale-out DNN inference on

systolic arrays. Unfortunately, emerging GEMMs in DL are highly irregular and sparse,

which lead to poor data mappings on systolic architectures. A microarchitecture of a

flexible and scalable GEMM accelerator is proposed that can handle arbitrary amounts of

sparsity, arbitrary irregularity in GEMM dimensions, while guaranteeing close to full

compute utilization named SIGMA. SIGMA performs 5.7 × better than systolic array

architectures for irregular sparse matrices and roughly 3 × better than state-of-the-art

sparse accelerators [6].

 The fundamental building block and key novelty of SIGMA’s compute fabric is a

processor named Flexible Dot Product Engine (Flex-DPE) that can map GEMMs of

arbitrary shapes and sparsity distributions via rich interconnect fabric. Within each Flex-

DPE includes a novel reduction tree microarchitecture named Forwarding Adder Network

(FAN) and a distribution network supporting flexible dataflows into the architecture. A k-

sized Flex-DPE consists of k multipliers, k-1 adders, local buffers, a control unit, and

flexible interconnects [6]. The design for the Flex-DPE was composed in Verilog RTL,

synthesized using Synopsys Design Compiler on a 28 nm process, and place & routed using

Cadence Innovus.

 The next sections describe the logic design of the Flex-DPE which was conceived and

developed in collaboration with Eric Qin. Individually, my contribution to this work was

Verilog implementation of the Multiplier, Adder, Multiplier Local Buffer, Control Unit,

and Flexible Interconnects in the FAN.

53

4.1 Multiplier

The multiplier was designed in Verilog to support bfloat16, a numerical format being

adopted industrywide for neural networks [35]. In this format, 16 bits are used to represent

a floating-point value. Bit 15 is the sign of the value, bit 14 − 7 is the exponent value, and

bit 6 − 0 is the fraction or mantissa value illustrated in Figure 4.1. This format is a

truncated version of the 32-bit binary32 format losing precision in the fraction. To ensure

the output of the multiplier is consistent with the bfloat16 format, a multiplication

normalizer is used to ensure accuracy while removing the extra precision mantissa bits

reducing to 7 bits. To preserve timing integrity, a stand-alone multiplication computation

always occurs in a single cycle.

4.2 Adder

The adder was designed in Verilog as a float32 data format adder. This format is consistent

with the binary32 format which preserves extra precision by adding 16 extra bits to the

bfloat16 mantissa in Figure 4.1. An addition normalizer is used to ensure the output of the

adder is consistent with the bfloat32 format. The addition is computed in a single cycle to

preserve system integrity. The output of the multiplier is concatenated with 16 bits of 0’s

to form the 32-bit input to the adder. The extra bits ensure greater precision from the adder

operations since the chain of adder operations can cause exponential precision loss

54

Figure 4.1: bfloat16 bit layout with most significant bit (MSB) on left representing the

decimal value 5.0 = (−1)𝑠𝑖𝑔𝑛𝑏𝑖𝑡 ∗ 2(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒−127) ∗ (1 +
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒

128
) ; 𝑠𝑖𝑔𝑛𝑏𝑖𝑡 =

0, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 = 129, & 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒 = 32

4.3 Local Buffer

Each multiplier has a local buffer associated with it which stores a stationary value. This

buffer is used to maximize data reuse for a stationary element (input activation or weight)

while the non-stationary element is streamed in. If the input stationary bit is toggled on,

the stationary buffer value is used for computation. If the reset bit is turned on, the local

buffer element is cleared, and the new input value is stored acting as the new stationary

value. This process would lead to an invalid multiplier output which is handled by turning

off the output valid bit. The management of the reset bit is performed by the control unit

described in Section 4.4

4.4 Control Unit

A control unit is used to determine how the multiplier or adder input and/or outputs are

forwarded down the reduction tree. Each compute block: bfp16_mult.v and fp32_adder.v

has a switch framework named mult_switch.v and adder_switch.v, respectively, that

interfaces with the control unit.

The control unit toggles the valid bit of the input and/or the reset bit of the local buffer.

Using the input valid bits, the multiplier switch toggles the valid bit of the output of the

multiplier. If the valid signal is switched off, the adders down the path line will continue

to invalidate the output valid bits as the values are streamed through the reduction tree.

The reduction tree incorporates the concept of a virtual neuron (VN) which allows for

output buffers at each stage to be filled and pipelined down the tree. The control unit

55

controls the forwarding logic in the adder switch and the VN completion logic by selecting

out of 5 options for non-edge adders described in the pseudo-code below:

Algorithm A pseudo-code for adder switch logic for non-edge adders

4.5 Flexible Interconnects

Each adder which is not located in the final level and is not an edge adder, has two

interconnects in the FAN for data forwarding illustrated in Figure 4.2. The control unit

manages the data forwarding pattern ensuring a spatial reduction requiring 𝑂(log2 𝑚)

cycles for a m-sized dot product [6].

56

Figure 4.2: FAN topology with 32 multipliers, 31 adders, and flexible interconnects for

data forwarding in a 32 − 𝑠𝑖𝑧𝑒𝑑 Flex-DPE

57

 CHAPTER 5

CONCLUSION AND FUTURE WORK

Current innovation in deep learning accelerator development is hindered by the lack of

open-sourced resources to the design and research community. SCALE-Sim-v2 gives us

the ability to explore novel accelerator designs on systolic array substrates in a fast and

convenient manner. Furthermore, the SCALE-Sim-v2 interface is highly modular allowing

for greater tool developments from the open-sourced development community.

Based on current experiments exploring partitioning, double buffered prefetch memory

policies, and remote bandwidth using the NoC Modeling Framework, real insights are

gained as to the performance bottlenecks in accelerators and Chip Multi-Processors. Based

on experimental results, architectural parameters targeting increased partitioning,

partitioning scheme, and balanced double buffer ratios are arguably more vital to high

performance than using a NoC topology with a high bisection bandwidth and low diameter.

Furthermore, in the complete NoC link load evaluation, experimental results show that

congestion due to high channel loads is dependent on the workload. Therefore, two

approaches can be used to improve performance. One solution is to use communication-

aware data placement to restrict high diameter communication. An alternative solution is

creating custom NoC designs with adjusted bandwidths on links suiting application

requirements.

58

5.1 Future Work

5.1.1 C++ Syntax Porting

The current simulator repository is restricted to Python 3 compatibility. For future

integration with various architecture simulator tools and to speed up execution of the base

simulator, a C++ compatible syntax would be required with parallel execution capabilities

provided by CUDA and Nvidia GPUs or with C++ compatible libraries such as PASL [36].

5.1.2 Versatile Compute Architecture Support

Systolic array is presently the most widely explored design for compute architectures

concerned with DNN inference because of the simplicity of design and easily translatable

dataflows leading to low overhead. The disadvantage of this approach is the poor mapping

of highly irregular and sparse operands. For this reason, architectures such as SIGMA have

been proposed that use a flexible architecture offering higher utilization and better

performance than systolic array architectures [6].

 SCALE-Sim should be able to support modeling various types of compute architectures

and the full-suite of dataflows mapped on the compute architectures such as row stationary

dataflow on Eyeriss architecture [4].

59

REFERENCES

[1] V. Sze, Y.-H. Chen, T. Yang and J. S. Emer., "Efficient processing of deep neural

networks: a tutorial and survey," in IEEE-HPCA, 2017.

[2] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina and T. Krishna, "SCALE-Sim:

Systolic CNN Accelerator Simulator," arXiv: 1811.02883 [cs.DC], 2018.

[3] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik and N. Jiang, "Simba:

Scaling deep-learning inference with multi-chip-module-based architecture," in

MICRO, 2019.

[4] Y. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks," in ISSCC, 2016.

[5] H. Kwon, A. Samajdar and T. Krishna, "Enabling flexible dataflow mapping over

dnn accelerators via reconfigurable interconnects," in ASPLOS, 2018.

[6] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul and T.

Krishna, "SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible

Interconnects for DNN Training," in IEEE-HPCA, 2020.

[7] https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/,

2015.

[8] Xilinx, "FPGA Acceleration of Matrix Multiplication for Neural Networks," 27

February 2020. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp1332-

neural-networks.pdf. [Accessed 25 March 2020].

[9] H. H. Aghdam and E. J. Heravi, Guide to Convolutional Neural Networks: A

Practical Application to Traffic-Sign Detection and Classification, Cham: Spring

International Publishing AG, 2017.

[10] S. Jothilakshmi and V. N. Gudivada, "H," Handbook of Statistics, vol. 35, pp. 301-

340, 2016.

[11] G.-M. Tang, D.-R. Fan, X.-C. Ye and P.-Y. Qu, "Logic Design of a 16-bit Bit-Slice

Arithmetic Logic Unit for 32-/64 bit RSFQ Microprocessors," IEEE Transactions on

Applied Superconductivity, vol. 28, no. 4, pp. 1-5, 2018.

60

[12] C. Zhuang, H. Su, Q. Yang, J. Shen, M. Wen and C. Zhang, "P4 to FPGA-A Fast

Approach for Generating Efficient Network Processors," IEEE Access, vol. 8, pp.

23440-23456, 2020.

[13] C. Lameter, "An Overview of Non-Uniform Memory Access," Communications of

the ACM, vol. 56, no. 9, pp. 59-65, 2013.

[14] N. E. Jerger, T. Krishna and L.-S. Peh, On-Chip Networks: Second Edition, San

Rafael: Morgan & Claypool, 2017.

[15] J. Lee, C. Nicopoulos, S. J. Park, M. Swaminathan and J. Kim, "Do we need wide

flits in Networks-on-Chip?," in 2013 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), Natal, 2013.

[16] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, "DianNao: A

Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning,"

in ASPLOS '14, Salt Lake City, 2014.

[17] "Cloud tpu," 2019. [Online]. Available: https://cloud.google.com/tpu.

[18] C. Abzug, "Computer Architecture," AccessScience, 2019.

[19] F. Schuiki, M. Schaffner, F. K. Gürkaynak and L. Benini, "A scalable near-memory

architecure for training deep neural networks on large in-memory datasets," IEEE

Trans. Comput., vol. 68, no. 4, pp. 484-497, 2019.

[20] K. Cho, I. Lee, H. Lim and S. Kang, "Efficient Systolic-Array Redundancy

Architecture for Offline/Online Repair," Electronics, vol. 9, no. 2, p. 338, 2020.

[21] A. Samajdar, A. Himanshu, N. Raina, V. Nadella, A. Mathuriya, S. Maniputruni and

T. Krishna, "Technology and Architecture Opportunities for Breaking the Bandwidth

Ceiling to Accelerate Billion Operand AI Inference," in DAC, 2020.

[22] M. McKeown, A. Lavrov, M. Shahrad, P. J. Jackson, Y. Fu, J. Balkind, M. Nguyen,

K. Lim, Y. Zhou and D. Wentzlaff, "Power and energy characterization of an open

source 25-core manycore processor," 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA), pp. 762-775, 2018.

[23] L. Peh, T. Krishna and W. Kwon, "Locality-oblivious cache organization leveraging

single-cycle multi-hop NoCs," Architectural support for programming languages

and operating systems (ASPLOS 14), vol. 49, no. 4, pp. 715-728, 2014.

61

[24] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma, R. Lachaize and

M. Roth, "Challenges of Memory Management on Modern NUMA Systems,"

Communications of the ACM, vol. 58, no. 12, pp. 59-66, 2015.

[25] http://cs231n.github.io/convolutional-networks/, 2015.

[26] R. S. Ramanujam, V. Soteriou, B. Lin and L.-S. Pen, "Extending the Effective

Throughput of NoCs With Distributed Shared-Buffer Routers," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 4, pp.

548-561, April 2011.

[27] S. Rashidi, S. Sridharan, S. Srinivasan and T. Krishna, "ASTRA-SIM: Enabling

SW/HW Co-Design Expoloration for Distributed DL Training Platforms," in In Proc

of the IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), Boston, 2020.

[28] S. Chattopadhyay and S. Kundu, Network-on-Chip: The Next Generation of System-

on-Chip Integration, Boca Raton: CRC Press, 2018.

[29] G. Kim, J. Kim, J. H. Ahn and J. Kim, "Memory-centric system interconnect design

with Hybring Memory Cubes," in 22nd International Conference on Parallel

Architectures and Compilation Techniques, Edinburgh, 2013.

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep

Convolutional Neural Networks," Communication of the ACM, vol. 60, no. 6, pp. 84-

90, 2017.

[31] J. Kim, W. J. Dally and D. Abts, "Flattened Butterfly: A Cost Efficient Topology for

High-Radix Networks," in The 34th International Symposium on Computer

Architecture, San Diego, 2007.

[32] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, "Language

models are unsupervised multitask learners," Technical Report, 2018.

[33] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, 2016.

[34] A. K. Mishra, O. Mutlu and C. R. Das, "A Heterogeneous Multiple Network-On-

Chip Design: A Application-Aware Approach," in DAC '13, Austin, 2013.

[35] C. Kloss, "Intel Nervana Neural Network Processor: Architecture Update," 03 March

2020. [Online]. Available: https://www.intel.com/content/www/us/en/artificial-

62

intelligence/posts/intel-nervana-neural-network-processor-architecture-update.html.

[Accessed 10 April 2020].

[36] U. A. Acar, A. Charguerand and M. Rainey, "Parallel Computing in C++ with

PASL," April 2014. [Online]. Available:

http://www.cs.cmu.edu/afs/cs/academic/class/15210-

s15/www/lectures/pasl.html#_preface. [Accessed 11 April 2020].

[37] N. Agarwal, T. Krishna, L.-S. Peh and N. K. Jka, "Garnet: A detailed on-chip network

model inside a full-system simulator," ISPASS, 2009.

[38] J. Z, K. Rangineni, Z. Ghodsi and S. Garg, Thundervolt: enabling aggressive voltage

underscaling and timing error resilience for energy efficient deep learning

accelerators, 2018.

[39] P. Lotfi-Kamran, B. Grot and B. Falsafi, "NOC-Out: Microarchitecting a Scale-Out

Processor," in 45th Annual IEEE/ACM International Symposium on

Microarchitecture, Vancouver, 2012.

