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SUMMARY 

 

The rapid growth of deep learning used in practical applications such as speech recognition, 

computer vision, natural language processing, robotics, any many other fields has opened 

the gate to new technology possibilities [1]. Unfortunately, traditional hardware systems 

are being stretched to the maximum to accommodate the intense workloads presented by 

state-of-the-art deep learning processes in a time when transistor technology is not scaling. 

To serve the demand for better computational power and more specialized computations, 

specialized hardware needs to be developed that provides better latency and bandwidth 

specifications for various demanding applications. 

 The trend in the semi-conductor industry is to move towards heterogenous System-On-

Chip (SoC) thereby choosing application specific performance vs. generality seen in most 

CPU architectures today. In most situations, hardware engineers are left to construct 

systems that serve the needs of various applications, often needing to predict the use-cases 

of the system. As with any field, the ability to predict and act on the future innovation 

trends of the industry is the difference between success and failure. 

 A novel simulator for the design of convolutional neural network accelerators is 

presented and described in detail named SCALE-Sim (Systolic CNN Accelerator 

Simulator). The simulator is available as an open-sourced repository and has 2 primary 

use-cases in which computer architects can extract significant results. The first use-case is 

for system designers who would like to integrate an existing DNN accelerator architecture 

into a larger SoC and would be interested in system-level characterization results. The 

second use-case is for an accelerator architect who would like to use the tool to explore the 

accelerator design space by sweeping through design parameters [2].  
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                                                            CHAPTER 1 

INTRODUCTION 

Deep learning is a fast-growing field of study that has potential for application in many 

fields such as AI robotics, natural language processing, computer vision [1, 3, 4, 5, 6]. 

Unfortunately, the present suite of general-purpose processors used in servers and client 

computing do not have the hardware resources to build complex deep learning networks 

that achieve near flawless accuracy. Effectively, this means that hardware is the bottleneck 

in this growing field. To serve the demand for better computational power and more 

specialized computations, specialized hardware needs to be developed that provides better 

latency and bandwidth requirements for various applications.  

  General matrix to matrix multiplication (GEMM) operations are at the essence of neural 

network processing [7, 8]. Though GPUs have been found to be well-suited for GEMM 

operations, the regular dataflows pushed to the processor by a deep neural network (DNN) 

introduces the idea of using specialized hardware. A custom hardware chip used in DNN 

processing is known as a DNN accelerator. To further discuss the characteristics of a DNN 

accelerator, it is important to note that custom hardware is achieved using primarily MAC 

(Multiply and Accumulate) units which are extremely popular for GEMM operations. 

Moreover, these MAC units are used to exploit algorithmic parallelism and achieve high 

throughput while performing inference [7].  

  The question left to analyze for a DNN accelerator is how an architect can organize the 

compute and memory components on-chip and off-chip to fully take advantage of the 

specific networks used in inference. Unfortunately, this is a non-trivial question and 

involves many workload and architecture specific parameters making it much too difficult 
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to answer without a tool that can analyze the suite of variables before delivering 

performance results. 

 Convolution Neural Networks (CNN) have been found to be extremely useful in image 

classification and analysis, natural language processing, recommender systems, financial 

time series, and many more applications [9]. A single convolutional layer in a larger CNN 

has three primary components in execution. Two of the components are read into 

execution: ifmap (input feature map) and the filter. The filter is used to convolve the ifmap 

in a series of sliding GEMM operations to produce the ofmap which is either the final 

output of the CNN or the intermediate resulting ifmap for the next layer. Since CNNs are 

arguably the most popular and most compute and memory intensive neural network, focus 

of the team efforts were placed in solving the question posed above specifically for this 

subset of DNNs.  
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1.1 Definition of Deep Learning, Accelerator, and NoC Terms: 

Many terms and acronyms are referenced in the detailed discussion throughout this 

document. This section can be referenced for clarity on specific technical term and 

acronym definitions.  

• Deep Neural Networks (DNN): A class of neural network techniques with multiple 

hidden layers between input and output layers in the field of deep learning (DL) which 

is part of the larger field of machine learning (ML). 

• Convolutional Neural Network (CNN):  A subset of deep neural networks which have 

been found useful in visual data learning and inference. CNNs have multiple layers 

consisting of convolutional (CONV) layers, activation layers (RELU, POOL) and fully 

connected (FC) layers [10]. 

• Fully Connected Layer (FC): An execution layer used in DNNs whose output size 

corresponds to the number of classification labels. This is usually the last layer in a 

classification task. 

• Multiply-Accumulate (MAC): A combination of multiplication operations followed 

by the accumulation of the multiplication products into a single sum which is the 

basis of matrix multiplication [1]. 

• General Matrix-Matrix Multiplication (GEMM): Common algorithm in machine 

learning that can be executed on MAC units.  

• Single Instruction Multiple Data (SIMD): A class of parallel computers performing the 

same operation on multiple data elements.  

• Arithmetic Logic Unit (ALU): A microprocessor component used for the 

implementation of arithmetic and logic operations [11]. 
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• Field Programming Gate Array (FPGA): An integrated circuit designed to be 

configured by a hardware designer after the manufacturing stage [12]. 

• Input Feature Map (Ifmap): A set of structured 2-D maps or channels consisting of 

input activations of a layer [1]. 

• Output Feature Map (Ofmap): A set of structured 2-D maps or channels  consisting of 

output activations of a layer [1]. 

• Filter: A structured 3-D map consisting of weights of a layer with one or more channels 

of activations [1].  

• Weight Stationary (WS): A dataflow designed to minimize energy consumption of 

reading weights by maximizing weight reuse [1]. 

• Input Stationary (IS): A dataflow designed to minimize energy consumption of 

reading input activations [1].  

Output Stationary (OS): A dataflow designed to minimize the energy consumption of 

reading and writing partial sums [1].  

• Non-Uniform Memory Access (NUMA): Phenomenon that memory at various points 

in the address space of the processor have different performance characteristics [13].  

• Network-on-Chip (NoC): A network-based data communication subsystem between 

on-chip nodes [14]. 

• Packet & Flit: Packet is a data container containing a header and payload used for 

data sharing in computer networks. Packets can be broken down into link-level 

messages called flits [15]. 
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1.2 History of Deep Neural Network Accelerators 

The idea to create highly efficient systems intended to accelerate deep neural network 

processes has been relevant since the 1990s. One of the first DNN accelerators was 

presented in 1991 named ANNA. The chip used mixed analog/digital computation 

techniques to speed up ALU computations while still retaining the advantages of digital 

interfacing to various components. Even with an archaic CMOS technology capable of 

about 100 times less transistor power compared to a present-day chip, the advantages of 

creating a specialized chip to attack the problem of neural network processing outweighed 

computational power to researchers. As transistor technology continued to scale up 

exponentially and the neural network computing required stayed virtually even, many of 

the advantages of specialized hardware started to fade while general CPUs and FPGA 

platforms gained interest. One example of an early attempt was for the implementation of 

Hofield neural neural network processing in FPGAs in 1996. Many architectures have been 

presented in the 2000s, leveraging the programmability of FPGAs with the speed and 

throughput available in more specialized systems.  

 Interestingly, in the late 2000s and in the bulk of 2010s, the applications for which 

modern neural network processes could be applied to greatly increased in number. 

Previously thought of as a method to learn simple processes, deep neural networks were 

proven to learn complex functions many times without any real context to the function 

other than ample amount of training data to learn from. With the increased demand in 

complex neural network processing, the same FPGA and CPU systems popular early on 

did not have the latency and throughput requirements needed to perform learning and 
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inference tasks in real-time. Parallel computing on SIMD computers became increasingly 

popular, arguably the most popular being GPU by Nvidia.  

 Today SIMD processing is the mainstay for most DNN processing; however, 

convolutional layers in CNNs have been shown to require exponentially more computing 

power than provided on even the best GPU designs. Systems focusing on convolution 

inference acceleration have been the topic of interest among DNN acceleration researchers. 

DianNao was introduced in 2014 as a highly efficient, small footprint DNN accelerator 

capable of performing convolutional inference at the edge [16]. Industry leaders such as 

Google and Xilinx have taped-out DNN accelerators named Google TPU and Xilinx FPGA 

overlays xNN, respectively, using the compute architecture known as a systolic array for 

convolutional inference [17, 8].  

 As more advanced designs are the focus of industry and academia, the demand to speed 

up the process of innovation is robust. The future sections will describe the tool (SCALE-

Sim) developed to speed up the process of accelerator design as well as the results found 

from preliminary simulator use.  

 

 

 

 

 

 

 

Figure 1.1: Architecture of systolic array based DNN accelerator [38] 
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1.3 The Problem 

As described in the introduction, a key aim of researchers and computer architects is 

designing architectures that optimize for high performance at low cost. For architectures 

involving only a few design parameters, an empirical procedure can be used to conceive a 

strong solution; however, as the number of variables is scaled up, this becomes a difficult 

problem to solve empirically. 

  In computer architecture, parameters such as memory placement, memory sizing, 

processor design, instruction-set-architecture are modified depending on architectural 

constraints and workload specifications [18]. Specifically, for deep learning workloads, 

optimization of architectural parameters is crucial for an effective design because of high 

memory bandwidth and compute requirements [19]. Unfortunately, an open-sourced tool 

for optimization does not exist for the deep learning community to model workloads on 

accelerator architectures. This predicament is one of the reasons for difficulty in accelerator 

developments in a time of high demand. 

  The beforementioned problem is the reason for the introduction of SCALE-Sim. As 

Chapter 2 describes, the process of creating the tool required a substantial amount of 

background work and simulator tool considerations before leading to a developed product.  
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CHAPTER 2 

BACKGROUND WORK AND DESIGN CONSIDERATIONS 

The goal of SCALE-Sim is to provide as much valuable information to a computer designer 

as possible. For this objective to be realized, much background work needed to be done by 

the entire team that worked on the project to understand the true nature of DNN workloads 

and how workloads are translated to execute an architecture. Furthermore, as illustrated in 

Figure 2.1, all computer architectures require the ability to efficiently read and write from 

memory leading to considerations of memory policies and memory hierarchy during 

workload execution. These previously mentioned topics and various other technical 

considerations are vital to the strength of SCALE-Sim and to user experience (UX) design. 

This section will cover the detailed background work performed to create the scalable, 

modular simulator.  

  

Figure 2.1: High-level architecture for compute and memory stack 

2.1 Systolic Array 

Systolic array is the architecture of concern for this simulator. A systolic array is a 

collection of processing engines (PEs) with each element connected via a mesh topology. 

Each PE reads data from its neighbors, computes a mathematical function and stores the 

result in its local memory [20]. In our applications, the PEs are MAC units are tightly 
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coupled with store and forward units to accommodate data passing. One advantage of 

systolic arrays lies in the simplicity of design making it relatively easier to build by 

microprocessor designers over competing compute architectures.  

 Though modeling a systolic array might seem simple in practice, the highly configurable 

nature of the array dimensions or whether the model accommodates for output planes that 

can retrieve output values from middle MAC units instead of waiting for the result to 

forward to the bottom of the array creates some modeling challenges. Figure 2.2 illustrates 

a method to read in the input operands from top and left and write out the output operands 

to the bottom assuming no output planes.  

 

Figure 2.2: Read operand elements pulled from left and top of systolic array and write 

operand elements pushed out from bottom 

2.2 Dataflows 

In many systems running state-of-the-art DNNs, energy and performance challenges arise 

from the large amount of activations and weights required for operations that are fetched 

from far-away memory banks [3]. These highly expensive fetches lead to orders of 

magnitude higher latency and energy requirements compared to local fetches, not to 

mention the added bandwidth challenges associated with greater memory accesses [21, 22]. 

Fortunately, the translation of input/output operands for a convolutional layer into 
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input/output operands for a systolic array architecture is programmable, and there exists an 

optimal mapping for the best energy efficiency, which depends on the shape configuration 

of the DNN and the constraints on hardware resources such as the number of PEs and the 

size of memory in the hierarchy [1]. For this reason, dataflow approaches with data-reuse 

are preferred to give us optimal efficiency. The most widely used subset of these 

approaches are illustrated in Table 2.1. The five forms that are investigated involve the 

reuse of elements in a convolution operation. The first approach is labeled as input 

stationary (IS) which maximizes reuse of the input activations or input feature map. The 

second dataflow is weight stationary (IS) reusing the weights in the filter. The third 

approach is output stationary (OS) dataflow which reuses the partial sums that are 

accumulated to create the ofmap.  

 The fourth dataflow is row stationary which is a novel approach concerned on 

maximizing reuse on all the above-mentioned components. The premise of the dataflow is 

to keep the most recently used input and output data in the register file of the ALU 

maximizing nearby accesses [23]. This approach would essentially lead to maximum reuse 

from the most local memory location (RF) and would minimize SRAM and DRAM 

accesses [4]. The disadvantage of this dataflow is that a systolic array architecture cannot 

support a row by row computation required by a single PE. Finally, the last and most 

obvious approach would be to choose no local reuse leading to limited energy expended in 

the preprocessing stage to run workloads. Still, the disadvantages of constantly reading and 

writing values from higher level memory provides little optimism for this approach in a 

general convolution layer workload based on earlier discussion.  

Table 2.1: Reuse characteristics of frequently used DNN accelerator dataflows 
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2.3 Convolution Translation 

Although a convolution operation does not resemble a matrix multiplication operation at 

first glance, the operands are translated into MAC operations friendly format to be executed 

on a compute array. The process of convolution translation involves all 3 operands in a 

convolutional layer: input activations (ifmap), weights, and output activations (ofmap) as 

shown in Figure 2.3 into a Toeplitz matrix, a specific matrix in which each descending 

diagonal from left to right is constant [1].   

 
a. Convolution operands 

Dataflows Input 

Stationary 

Weight 

Stationary 

Output 

Stationary 

Row 

Stationary 

No Local 

Reuse 

Ifmap Reuse 

 

     

Weights Reuse 

 

     

Partial Sums 

Reuse 
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b. Matrix Multiplication operands (Toeplitz matrix) 

Figure 2.3: Read and write operands after convolution translation 

 As illustrated in Figure 2.3, the translation of the operands in a convolution operation 

does not preserve the ordering of data elements or the dimensions of operands. In this case, 

the weight matrix changes from (3, 3) to (9, 1) while the ifmap matrix transforms from 

(5, 5) to  (9, 9). At first glance, it might seem that the total elements are being preserved 

after translation, but this is not the case. The translation does not guarantee unique elements 

in the resulting matrices thereby creating reuse opportunities. 

 After translation, the operand matrices are in a format compatible with dot product 

matrix multiplication: 𝑂 = 𝐼 ⋅ 𝑊𝑇. This can be proven by testing that the number of 

columns in the ifmap operand and the number of rows in the filter operand are equal after 

translation. Therefore, the ofmap (rows, columns) dimensions are calculated as (9, 1).  

 To add more complexity to translation, each input operand may need to be skewed 

before reading into a compute array to achieve proper timing in the dataflow. By the nature 

of the dataflows analyzed in Section 2.2, input skews also result in output skews. Therefore, 

the final input activation operand looks like the illustration in Figure 2.4. The filter and 

ofmap from Figure 2.3 are not presented since skewing would have no effect on a 1-

dimensional matrix. 
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              Figure 2.4: Ifmap operand after skewing (rotated 90° right) 

 The process of skewing does not alter the number of elements in the operand and 

changes only 1 dimension of the operand. To prove these statements, a comparison is made 

between Figure 2.3 operands after translation and Figure 2.4 after skewing. Since the 

process of skewing is no more than a matrix manipulation, software tricks enable us to 

model this effect.  

 The two steps of translation and skewing in order is performed for all operands to satisfy 

the condition of dataflow over a systolic array for the OS dataflow; however, other 

dataflows such as IS and WS do not skew the ifmap and the weight matrix, respectively. 

This is because the stationary operand is first positioned into the compute array before the 

non-stationary operand is fed into the MACs in IS and WS dataflows. It is important to keep 

in mind that this still results in a skewed output since the ofmap is still computed with a 

skew. The specific nature of the workload translations and how this affects the reads and 

writes from SRAM is extremely critical for accurate modeling; for more in depth analysis, 

Section 3.6 describes the specific nature of the dataflows using a read/write trace. 
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2.4 Memory Policies 

Once the process of translating operand matrices to the hardware is finalized, the memory 

policy used to fetch data elements from off-chip memory into local memory need to be 

analyzed. Assumption is made that no intermediate memory between off-chip and local 

memory and that off-chip memory is held in DRAM and local memory is in SRAM.  

 In an ideal case, the SRAM would be big enough to hold exactly enough elements 

needed to perform the computation for a DNN layer without needing fetches from off-chip 

during compute processing. Unfortunately, memory is extremely expensive especially on 

edge computing (e.g., IoT or mobile) leading to considerations of memory policies at a 

hardware level [1]. This challenge is one that is at the crux of all modern NUMA systems 

and will be important to model [24].  

 Many caching or memory policies exist within modern processors to decrease latency 

of misses in local memory. Three policies stand out as most important to model considering 

the nature of each in the context of the memory problem. In each scheme, a double buffer 

SRAM allocation procedure is used. In other words, the SRAM is separated into an inactive 

and active buffer based on a ratio defined by the architect that can be defined as active 

buffer percentage (ABP). The active buffer contains elements that are accessed by compute 

elements at any point in the execution of the workload while the inactive buffer is used for 

fetching elements from off-chip DRAM. For simplicity, each buffer is assumed to be the 

same size meaning the true size of the accessible SRAM by the compute region is 50% of 

the entire SRAM capacity if 𝐴𝐵𝑃 = 0.5. Next, each memory policy is described in detail. 
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Figure 2.5: Initial Prefetch before process execution 

 In the demand fetch scheme, the SRAM active buffer is initially filled fully to contain 

the elements for the first set of accesses from the compute region. This process illustrated 

in Figure 2.5 is performed to ensure no stalls are needed to start execution of a workload. 

Once the first miss occurs in the active buffer during an access, the active buffer is flushed 

out and designated inactive while the current inactive buffer is filled with fetches from off-

chip DRAM and designated as the active buffer. This process of flushing and fetching 

consumes stall cycles in computing due to latency and bandwidth constraints. 

Unfortunately, only once the inactive buffer is filled and designated as active, compute 

execution resumes. This process of flushing and fetching is repeated each time a miss 

occurs in the active buffer. As can be assumed, the stall cycles from fetching can add 

substantial delays in execution due to the lack of a preemptive fetching mechanism or 

prefetching. Furthermore, the inactive buffer in this setting is sitting idle for most of 

execution other than the time in which fetching occurs. One way to make use of the 

capacity of the SRAM is to reserve use the entire buffer for accesses using a single buffer 

scheme which is equivalent to using the entire SRAM space as the active buffer (𝐴𝐵𝑃 =

1.0). The inevitable stall cycles in this method is empirically calculated using the equation 

below with 𝐶 = 𝑆𝑅𝐴𝑀 𝑚𝑒𝑚𝑜𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝐵𝑊 = 𝑜𝑓𝑓 − 𝑐ℎ𝑖𝑝 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 

and 𝐿 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑜𝑓𝑓 − 𝑐ℎ𝑖𝑝 𝑎𝑐𝑐𝑒𝑠𝑠. 
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𝐷𝑎𝑡𝑎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 = 𝐶 × 𝐴𝐵𝑃 ;    𝑆𝑡𝑎𝑙𝑙 𝐶𝑦𝑐𝑙𝑒𝑠 = (
𝐷𝑎𝑡𝑎 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝐵𝑊
) + 𝐿 

 Due to the severe limitations of the demand fetch scheme especially when the workload 

memory accesses requirement is much larger than the size of the local SRAM, a prefetch 

scheme is analyzed in which DRAM bandwidth is predefined [5]. In this scheme, the active 

buffer is prefilled to the maximum capacity before execution begins according to the 

predefined bandwidth requirements. During the accesses of the active buffer by the 

compute region, the inactive buffer prefetches elements from DRAM to serve future 

requests. Once the first miss occurs in the active buffer, the active buffer is flushed out 

while the inactive buffer is treated as the new active buffer. In an ideal case, the active 

buffer is instantly refilled with new elements to service the SRAM miss while the inactive 

buffer is emptied for future prefetches. Therefore, this process prevents stall cycles leading 

from SRAM misses. Unfortunately, prefetching is not always perfect since the active buffer 

flush and refill only occurs once the inactive buffer is filled fully by elements from DRAM. 

The condition exists in which an active buffer miss occurs before the inactive buffer is fully 

filled. In this case, stall cycles are incurred until the inactive buffer is finished filling. Only 

once filling is complete, the inactive buffer is treated as the new active buffer and execution 

resumes. This edge condition is the primary reason for stall cycles in this scheme.  

 Since the stall cycles in the previous prefetching scheme are attributed to the limited 

predefined bandwidth of a SRAM to DRAM link, a new scheme is considered that does 

not define a bandwidth. In this scheme, the logic of prefetching and flushing is maintained 

to achieve the same functionality of the bandwidth-fixed prefetch scheme; however, the 

bandwidth is shrunken or enlarged each cycle to accommodate the exact fetching 

requirement over the SRAM to DRAM link. This logic would always ensure a perfectly 
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stall-free process. As evident from the description of shrinking and enlarging bandwidth, a 

bandwidth-variable scheme is not practical in an actual architecture; instead, the bandwidth 

of a link is a design-time metric. The primary advantage of this scheme would be simulator 

analysis of bandwidth requirements before designing and taping-out the architecture.  

 In the above memory policies, the inactive and active buffer are assumed to be equal in 

size; however, this should not be a fixed parameter since buffer allocation strategies make 

big differences in the execution of a workload. Instead the ABP parameter should be 

available to an architect in the range of [0.5, 1.0] to achieve peak performance. If the 

inactive and active buffer sizes are not even as shown in Figure 2.6, the flushing process 

would only result in a partially flushed active buffer to replenish new elements from the 

inactive buffer. In this example, active buffer is 75% of the total buffer meaning only 50% 

of the active buffer is flushed every time a flush is performed. Interesting results are 

possible with variable buffer ratios which is important to model.  

 

Figure 2.6: Partial flush and replenish of active buffer 

2.5 DNN Layers 

DNNs are built using a series of input, hidden, and output layers. A convolutional layer 

involves input activations and weights which are read and output activations which are 
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written by the convolution. Convolutional layers (CONV) are often interleaved by pooling 

(POOL) and other activation layer such as rectifier logic unit (RELU) [3]. These operations 

are interesting at a deep learning level since the layers change the spatial characteristics or 

the element values of the output activations which affects the subsequent layers;  however, 

the memory demand for each of these layers is zero and the compute demand is not very 

high relative to CONV and FC layers. For this reason, activation layers are not vital to 

model for performance measures. It should be noted that activation layers execution is 

often handled by a post processing unit (PPU) in a DL accelerator architectures which takes 

the SRAM output activation buffer elements as inputs and outputs elements back into the 

input SRAM buffers reserved for input activation elements and weights [3].  

 Finally, a DNN uses a fully connected layer (FC) to compute the likelihood of each 

inference label. Modeling a FC layer in a compute array is virtually the same as a CONV 

layer since each layer involves the same inputs and outputs. The most significant difference 

is the size of the input and output elements since the output activations of a FC layer must 

dimensionally match the number of labels, a requirement which does apply for a CONV 

layer.  

 Focusing on CONV layers, the convolution process is standard for an ifmap with a 

single channel and a filter with a single channel since the ofmap will always be a single 

channel as well. The variances occur when the number of channels is > 1. In this situation, 

2 types of convolution are be performed. Depth-wise convolution is a technique in which 

each channel is broken into separate elements. Then, the convolution is performed 

independently for each sub-element (ifmap and filter) pair. Once the independent ofmap 

are computed for each sub-element pair, the ofmaps are concatenated to form the final 
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ofmap which ensures the number of output channels is equal to the number of input 

channels. The issue with depth wise convolution is the restriction against multiple filters 

in the CONV layer. This problem is not obvious at first glance; however, it can be 

rationalized by the fact that multiple filters would lead to concatenation the ofmap results, 

thereby repeating the concatenation process for two separate logical purposes. To solve 

this problem, pointwise convolution is used. In this convolution operation, the number of 

channels in the ifmap and filter are not preserved meaning the ofmap is always a single 

channel map in the result of execution of a single ifmap and single filter convolution 

operation. Pointwise convolution can be thought of as a convolution across the entire depth 

of the ifmap. Since concatenation is not required in the ofmap of a resulting convolution 

with only a single filter, concatenation of the result from convolution of each of 𝑁𝑓 filters 

is performed without loss of generalization. Because of this advantage, point-wise 

convolution is more prevalent in practice. 

 Another form of convolution is depth-wise separable convolution (DWSC). This method 

involves a 2 − 𝑠𝑡𝑎𝑔𝑒 process in which a depth-wise convolution is first performed 

followed by a pointwise convolution. Using this method, depth-wise convolution logic is 

mixed with the advantage of allowing multiple filters. Furthermore, the total computational 

complexity of this method is lower than the complexity of performing a pointwise 

convolution directly [25]. To prove this claim, let us assume 512 (𝑁𝑓) kernels of 

dimensions (𝐹ℎ = 5, 𝐹𝑤 = 5, 𝐹𝑑 = 3), ifmap of dimensions (𝐼ℎ = 12, 𝐼𝑤 = 12,  𝐼𝑑 = 3), 

resulting in ofmap of height and width dimensions (𝑂ℎ = 8, 𝑂𝑤 = 8). Total multiplication 

operations (𝑀𝑝𝑤) for a pointwise convolution given these convolution parameters: 

𝑀𝑝𝑤 = 𝑁𝑓𝐹ℎ𝐹𝑤𝐹𝑑𝑂ℎ𝑂𝑤 =  512 ∗ 5 ∗ 5 ∗ 3 ∗ 8 ∗ 8 =  5,529,600 
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 If the same convolution parameters are used for DWSC, total multiplications (𝑀𝑑𝑤):  

𝑀𝑑𝑤 = 𝐹ℎ𝐹𝑤𝐹𝑑𝑂ℎ𝑂𝑤 +  𝑁𝑓𝐹𝑑𝑂ℎ𝑂𝑤 = 5 ∗ 5 ∗ 3 ∗ 8 ∗ 8 + 512 ∗ 3 ∗ 8 ∗ 8 =  103,104 

 As evident from the calculations in the example above, the number of operations in 

convolution drops significantly for DWSC compared to pointwise convolution.  

2.6 Partitioning  

In previous discussions, a single systolic array of MAC unit is assumed to be used for 

compute by the entire workload. Therefore, the dimension of the array constrains the 

number of MMs at any given time by a workload. For example, if the compute array had 

dimensions of (8, 8), the maximum matrix multiplications in one cycle is 64. Using a tiling 

or partitioning scheme, the workload is split into partitions each independent in 

computation. Therefore, each partition is executed in parallel assuming enough compute 

arrays to support compute requirements. One major benefit of a partitioned scheme is to 

achieve better utilization of compute elements. For example, in the case in which the per 

filter elements are much greater than the number of filters ([𝐹𝑤 ∗ 𝐹ℎ ∗ 𝐹𝑑] ≫  𝑁𝑓), the filter 

operand is dimensionally biased after translation. This leads to low utilization of a square 

shaped compute array for sequential execution. By partitioning the workload over 

independent compute arrays that match operand dimensions, utilization improves thereby 

improving energy and execution time [21].  The idea of partitions can be translated to 

hardware systems as illustrated in Figure 2.7. Each node in the graphic consists of a systolic 
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array with SRAM buffer and a shared link to DRAM executing independent partitions.

 

Figure 2.7: Network of systolic arrays each with a perfect interconnect to external memory 

(DRAM)  [21] 

 Partitioning the workload can be performed using three approaches: input-parallel, 

filter-parallel, and input-on-filter-parallel. As the names suggest, partitioning can be 

attributed to the operands partitioned against. In the input-parallel scheme, the ifmap 

operand is divided in a uniform manner for up to the number of partitions requested while 

keeping the filter static. The reason the requested partitions may not be possible is because 

keeping the filter static requires specific partitioning to ensure convolution correctness. In 

the filter-parallel scheme, the filter operand is divided in a uniform manner while keeping 

the ifmap static also leading to less than the requested partitions since keeping the ifmap 

static requires a specific distribution of filter. To counter-act the less than ideal nature of 

the previous two schemes, input-on-filter parallel scheme can be used to flexibly partition 

against the ifmap and filter. This leads to greater partitioning granularity and evenly 

partitioned workloads. It should be kept in mind that the ofmap operand is dependent on 

the partitioning of the input operands resulting in ofmap partitioning for each of the 

schemes listed above.  
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2.7 NoC Considerations 

In the partitioned scheme described above, independent nodes are responsible for execution 

of a single partition in a larger workload. In this configuration, each node is a separate 

compute element in a larger network. The main disadvantage of this design is the 

assumption that each PE has a perfect interconnect with external memory leading to ideal 

bandwidth and latency. In larger networks, each node cannot satisfy the requirement of a 

perfect interconnect leading to enormous differences in bandwidth, latency, and energy 

between on-chip PE communication [3]. Therefore, another approach is examined in which 

L2 SRAM buffers are allocated within the network to be used for data sharing. This design 

gives rise to the idea of Network-on-Chip (NoC) communication systems, widely used in 

Chip Multi-Processors (CMP). The primary advantage of a NoC is the ability to scale to 

support large-scale inference. This is due to the energy efficiency and latency improvement 

for on-chip accesses to L1 or local or remote L2 SRAM compared to off-chip accesses to 

DRAM [22]. This added performance in latency, energy, and throughput measures makes 

NoC architectures the de facto fabric for application specific SoCs [26].  

 Many DL platforms today are built by interconnecting multiple accelerators together 

such as Google’s TPU that uses multiple TPUs interconnected in a 3D Torus [27]. For this 

reason, it is important that SCALE-Sim can be wrapped around framework that supports 

NoC architecture modeling. Specifically, the framework needs to support NoC parameters 

such as topology, link bandwidth, L2 SRAM memory mapping, and additional parameters 

discussed below. 

 Supporting versatile NoC topologies would include mesh, torus, ring, fully connected 

graph or any other direct topology as an input parameter with variable number of nodes in 
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the NoC [28]. Additionally, indirect topologies such as memory-centric networks should 

be supported [29]. To model the constrained nature of data sharing that occurs within a 

NoC, the modeling framework should have an idea of link and/or port bandwidth which 

can model real-time congestion and bandwidth requirements anywhere in the NoC. Finally, 

the allocation of data elements within the NoC should be modeled leading to interesting 

considerations of mapping. For example, every node in the NoC could contain a L2 SRAM 

bank, or instead a specific number could represent the data sources. Moreover, each L2 

SRAM bank could contain a non-uniform amount of data elements specified by a memory 

map. 

 Chapter 3 presents the final design choices and implementation work performed to 

develop SCALE-Sim and the NoC modeling framework as an extension to the base 

simulator.  
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CHAPTER 3 

SCALE-SIM-V2: CNN ACCELERATOR SIMULATOR 

3.1 SCALE-Sim 

The background research and consideration effort performed in Chapter 2 gave rise to the 

development of SCALE-Sim, the configurable systolic array-based cycle accurate CNN 

accelerator simulator [2]. The tool was developed as illustrated in Figure 3.1 to perform 

DNN inference on systolic arrays and to generate on-chip memory access, runtime, and 

DRAM bandwidth requirements for a given workload [2]. The tool performed fundamental 

operand matrix creation, followed by SRAM trace generation, and ending with a DRAM 

memory policy that calculates the bandwidth requirement. The key logic contributions of 

the effort in SCALE-Sim-v2 can be broken down into three phases illustrated in Figure 3.2. 

Support for depth-wise convolution, batching, and MNK operands was added during 

operand matrix creation. Further key additions include support for trace generation without 

an output plane on the systolic array, and separate traces for all three operands during 

SRAM trace generation. Lastly, contributions to DRAM trace generation include support 

for a fixed bandwidth prefetch memory policy, support for a NoC model memory policy, 

and the ability to generate multiple traces for each memory source in a NoC. Encompassing 

the entire simulator framework for SCALE-Sim, much of the end-to-end logic was not 

organized in a format consistent with efficient debugging and extended development. For 

this reason, all current logic was revamped and modularized before the additions above 

were incorporated to allow for continued development efforts from the design community. 

This chapter provides specific insights on the overhauled framework and the last section 
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of this chapter focuses on experiments conducted using SCALE-Sim-v2 and possible novel 

experiments for future studies.  

 

Figure 3.1: Schematic depicting the inputs needed and the outputs generated by SCALE-

Sim [2]. 

3.2 Simulator Environment 

 The simulator logic is written in Python3 for the rich suite libraries for simulator design, 

quicker time to development, and faster time to usage for users. The primary python 

dependencies used are numpy, configparser, math for simulator logic and tqdm for 

debugging. The top-level directory is SCALE-Sim with subdirectories: configs, 

scale_sim_simulator, topologies.  

3.3 Software Organization 
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Figure 3.2: High level code organization and flow in SCALE-Sim simulator environment. 

Arrows provide a rough view of the sequential flow of the tool and do not necessarily 

represent I/O movement  

SCALE-Sim is broken down into 3 main modules illustrated in Figure 3.2. 1st module is 

Operand Matrix Creation which handles the conversion of convolutional layer operands 

into operands to be mapped onto a compute array of MAC units. 2nd module is SRAM 

Trace Generation which creates a trace representing the reads and writes from SRAM for 

the specific dataflow selected. 3rd module is DRAM Trace Generation which creates a trace 

representing the reads and writes from DRAM as well as the cycle accurate adjustment of 

the SRAM trace. The 3rd module also handles statistics such as average SRAM and DRAM 

bandwidth as well as more detailed analysis. The top-level file for the simulator is scale.py. 

This file takes in the inputs listed in Section 3.4 and parses these values into parameters of 

logical consequence.  

3.4 SCALE-Sim Inputs 

The architecture parameters are presented in a .cfg file included in the configs directory. 

The 10 architecture parameters are listed under the section: architecture_presets. The 10 

parameters are shown in Table 3.1.  

Table 3.1: Example architecture parameters in configuration file  

Array 

Height 

Array 

Width 

Ifmap 

SRAM 

Size 

Filter 

SRAM 

Size 

Ofmap 

SRAM 

Size 

Ifmap 

Offset 

Filter 

Offset 

Ofmap 

Offset 

Bandwidth Dataflow 

32 32 524,288 524,288 524,288 0 10000000 20000000 1,000 OS 
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Array height (𝐴𝐻) and array width (𝐴𝑊) represent the row and column dimensions of the 

systolic array PEs. The ifmap, filter and ofmap SRAM size represent the available on-chip 

memory in bytes for each operand. The offset for each operand represents the first address 

in the address space for each operand. The bandwidth value is the available bandwidth per 

cycle in a unidirectional link between the on-chip SRAM and off-chip DRAM. Finally, the 

dataflow represents the mapping of elements onto the compute array.  

  Convolutional and/or fully connected layers are presented in a csv file included in the 

topology directory. Each file has a header line with the data labels followed by lines 

representing each layer and its characteristics. For any CONV or FC layer, 7 parameters 

are needed to describe the inputs and convolution process: ifmap height and width, filter 

height and width, depth of ifmap and filter given as channels, number of filters, and the 

stride of convolution. An example of a csv file representing AlexNet CNN, most popular 

for its accuracy in image prediction during the ImageNet Challenge in 2012 leading to the 

revolution of CNN adoption, is presented in Table 3.2. AlexNet has 8 layers: 5 convolution 

layers and 3 fully connected layers; only the 5 CONV layers are shown here with the layer 

characteristics [30]. 

Table 3.2: AlexNet CNN with 5 CONV layers 

Layer 

Name 

IFMAP 

Height 

IFMAP 

Width 

Filter 

Height 

Filter 

Width 

Channels Number 

of Filters 

Strides 

Conv1 224 224 11 11 3 96 4 

Conv2 207 207 5 5 96 256 1 

Conv3 13 13 3 3 256 384 1 

Conv4 13 13 3 3 384 384 1 



28 

 

Conv5 13 13 3 3 384 256 1 

 

3.5 Operand Matrix Creation 

Operand matrix creation is the process of translating convolutional layer operands into 

compute array operands. This process is described in Section 2.5 for ifmap, filter, and 

ofmap operands.   

3.5.1    Calculated Hyperparameters 

 Because of the deterministic nature of the ofmap operand, the dimensions are calculated 

using the formula listed below: 

𝑂ℎ = 𝑐𝑒𝑖𝑙[(𝐼ℎ − 𝐹ℎ + 𝑆ℎ)/𝑆ℎ]; 𝑂𝑤 = 𝑐𝑒𝑖𝑙[(𝐼𝑤 − 𝐹𝑤 + 𝑆𝑤)/𝑆𝑤] 

 𝑂ℎ and 𝑂𝑤 represent the ofmap height and width, respectively. 𝐼ℎ and 𝐼𝑤 represent the 

ifmap height and width, respectively. 𝐹ℎ and 𝐹𝑤 represent the filter height and width, 

respectively. 𝑆ℎ and 𝑆𝑤 represent the stride height and width, respectively.  

 Oftentimes, it can be assumed that the height and width of the layer parameters are 

equal. Therefore, the ofmap height and width will also be equal. For example, Conv1 in 

AlexNet satisfies this condition; therefore, 𝑂ℎ and 𝑂𝑤 are each 55. The reason for using 

the ceiling function is because non-integer real number dimensions are not allowed and 

because taking the result of the floor function would result in loss of information in 

convolutions involving stride values > 1. The ceiling function is necessary to ensure a 

symmetry in convolution by adding padding in the ifmap operand. An example of this 
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scenario is presented in Figure 3.3. The red portion of the operand represents the padding 

required to ensure a symmetric convolution given 𝑠𝑡𝑟𝑖𝑑𝑒 = 2. 

 

Figure 3.3: (𝑖𝑓𝑚𝑎𝑝ℎ𝑒𝑖𝑔ℎ𝑡 = 4, 𝑖𝑓𝑚𝑎𝑝𝑤𝑖𝑑𝑡ℎ = 4) & (𝑓𝑖𝑙𝑡𝑒𝑟ℎ𝑒𝑖𝑔ℎ𝑡 = 3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑤𝑖𝑑𝑡ℎ =

3, 𝑓𝑖𝑙𝑡𝑒𝑟𝑛𝑢𝑚 = 4) with 𝑠𝑡𝑟𝑖𝑑𝑒 = 2  

3.5.2   Address Mapping 

During the process of operand matrix creation, mapping of addresses to the operand 

dimensions is important to consider. There are 4 logical mapping algorithms that can be 

deployed in operand matrix creation (each placed in order of sequential priority): [Channel, 

Height, Width], [Height, Channel, Width], [Channel, Width, Height], [Width, Channel, 

Height]. After considering the various the most widely used priority structures in practice, 

[Channel, Height, Width] is the preferred solution [1, 3]. An example of an ifmap 

implemented with the address mapping scheme is shown in Figure 3.4.  
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Figure 3.4: An example activation map with addresses prioritized based on the [Channel, 

Height, Width] scheme 

3.5.3    Batching 

In practical applications, a technique called batching is deployed to continuously execute 

multiple ifmap convolutions over a filter [1]. In order to set up the batch for convolution, 

the “batch” of ifmaps is first translated independently into ifmap operand matrices and row 

concatenated. This process ensures the batch is executed in the same dataflow execution 

resulting in a single ofmap operand matrix. The matrix is then translated back into 

individual ofmap by separating the “batch” of ofmaps based on the calculated dimensions 

of the final output. 

3.5.4    MNK Operands 

Operand matrix creation is not performed if DNN operands are given in an MNK format 

as illustrated in Figure 3.5 since the operands are already GEMM compatible. This 

consistency ensures all types of DNN layers involving matrix multiplications can be used 

as input topologies to SCALE-Sim including the layers in a multilayer perceptron (MLP), 

the recursive layers in a long short-term memory network (LSTM), or any other generic 

DNN with input, hidden, and output layers.  

 

Figure 3.5: Operands compatible with GEMM operations [6] 
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3.6 SRAM Trace Generation 

In the best case, the SRAM trace represents a cycle accurate trace in which there are no 

stall cycles in computation. In a general case, the SRAM trace is a non-cycle accurate 

representation of the dataflow in/out of the compute array. The process of generating the 

SRAM trace requires knowledge of the dataflow used to map elements to MAC units. Out 

of the 5 dataflows discussed in the background Section 2.2, 4 dataflows are achievable 

using a systolic array architecture while only 3 are worth considering due to their reuse 

capabilities eliminating no local reuse dataflow. The 3 dataflows are output stationary 

(OS), weight stationary (WS), and input stationary (IS), one of which is provided by the 

user in the input config file. The top-level file for this module is trace_per_layer.py which 

takes the operands at the output of operand matrix creation, the dataflow, and compute 

array dimensions as inputs. The logic within this file chooses which trace generation file 

to call based on the dataflow: os_trace_per_fold.py, ws_trace_per_fold.py, or 

is_trace_per_fold.py each of which handles its dataflow-specific trace logic. Each 

dataflow, first, separates the operand matrices into folds. This process is crucial if the 

operands are larger than the compute array dimensions since entire operands cannot be 

executed in one process. Then, each fold is skewed and executed on the systolic array 

independently over parallel compute arrays or sequentially over one. In the analysis and 

examples provided, a single compute array is assumed for workload execution eliminating 

workload parallelization possibilities.  
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  Before each dataflow trace is analyzed in depth, a few terms need to be clarified:  

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 and 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 are the input feature map operand dimensions, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠 and 

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 are the filter operand dimensions, and 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 and 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 are the output 

feature map operand dimensions. By definition, 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 =

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, and 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 = 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠. Additionally, folding is the idea that the full 

execution of a network may not be possible in one iteration on a compute array as can be 

demonstrated with a layer that requires a 64 ∗ 45 physical PE array; however, the compute 

used contains a 32 ∗ 32 PE array. In this case, the execution of the layer can be broken up 

into 𝑁𝑓𝑜𝑙𝑑𝑠 =  2 of  32 ∗ 32 and 32 ∗ 13 [1].   

  For the examples illustrated in Figures 3.6, 3.7, and 3.8, the network topology shown in 

Table 3.3 is executed on a (𝐴𝐻 = 4, 𝐴𝑊 = 4) compute array.  

Table 3.3: Example network topology 

Layer 

Name 

IFMAP 

Height 

IFMAP 

Width 

Filter 

Height 

Filter 

Width 

Channels Number 

of Filters 

Strides 

BASE1 5 5 3 3 1 4 1 

  

3.6.1    Output Stationary Trace 

In the output stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 =  𝐶𝑒𝑖𝑙 (
𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
). The first 

term (𝑣_𝑓𝑜𝑙𝑑𝑠) represents the folds in the ifmap and the second term (𝑣_𝑓𝑜𝑙𝑑𝑠) represents 

the number of folds in the filter. The dataflow is processed by iterating over 𝑣_𝑓𝑜𝑙𝑑𝑠 and 

ℎ_𝑓𝑜𝑙𝑑𝑠 in no specific priority. For each iteration, the fold specific operands are extracted 

from the larger operands by indexing the 𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 
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for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠, ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and ℎ𝑓𝑜𝑙𝑑𝑠, respectively. The 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠 

retain the same characteristics as their larger operand counterparts regardless of fold. The 

fold specific operands ifmap, filter, ofmap, are skewed independently before being pushed 

into the compute array. The skew appears from left to right in the trace as illustrated in 

Figure 3.6. 

  A notable trace characteristic of the OS dataflow is that writing of the sums to the ofmap 

does not occur until at least the cycle after all reads are made into the systolic array. This 

is due to the delay in forwarding the sums down towards the bottom MAC unit to escape 

the compute array since this configuration does not assume an output plane. Therefore, 

even if the sums at the top row of the compute array are calculated by cycle α, the sum can 

only be forwarded down to the bottom of the compute array in β cycles at the minimum, a 

term that represents the total time to forward from top to bottom of the compute array. In 

the best case, forwarding would happen instantly after calculated the sum resulting in 

writing to SRAM in the α + β cycle assuming no stalls; however, this case assumes no 

sums are calculated lower down the compute array.  In the worst case, sums are calculated 

lower down the compute array and would take forwarding precedent over the top row sums 

meaning writing to SRAM would occur in the α +  2β − 1 cycle assuming no stalls. As 

evident from the worst-case scenario, the taller the compute array, the worse the delay is 

for writing. Fortunately, this delay is a direct result of the minimal or zero delay in the 

lower sums meaning the average delay for each sum converges to α +  β cycles for a 

general sum anywhere in the compute array.  

 In total, 3 folds are needed to complete execution using this dataflow using the 𝑁𝑓𝑜𝑙𝑑𝑠 

equation listed above. 
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Figure 3.6: 1-fold SRAM trace for output stationary (OS) dataflow. Header represents the 

division in elements from each operand. By convention, ifmap and filter elements are read 

from SRAM and ofmap elements are written to SRAM. Reference Figure 3.7 and 3.8 for 

comparison. 

  Adding an output plane could be experimented with leading to an offset of the ofmap 

portion of the trace in Figure 3.6 by −β rows. An output plane could also allow a flip on 

input activation and filter values so that address 𝑎 is written earlier than 𝑏, address 𝑏 is 

written earlier than 𝑐 and so on.  

3.6.2    Weight Stationary Trace 

In the weight stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 =  𝐶𝑒𝑖𝑙 (
𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
). The first 

term is denoted as 𝑣𝑓𝑜𝑙𝑑𝑠 and the second term as ℎ𝑓𝑜𝑙𝑑𝑠. Specific to the WS dataflow, folds 

are dependent on both dimensions of the filter operand. For each fold, the fold specific 

operands are extracted from the larger operands by indexing the 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 

𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠, and 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠 , ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and ℎ𝑓𝑜𝑙𝑑𝑠, respectively. 

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠 retain the same characteristics regardless of fold. In this dataflow, 
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only the ifmap and ofmap operands are skewed since the filter is pushed into the compute 

array to start each fold. The specific nature of this dataflow is illustrated in Figure 3.7. 

 A notable observation from the WS dataflow in the example below is that the first output 

element is pushed out 4 cycles after the cycle in which the first ifmap element is read in. 

This is contrary to the behavior in OS dataflow since output elements are pushed out before 

all input elements are read in in the WS dataflow even without an output plane. This is due 

to the nature of the dataflow in which the MAC units residing in the higher rows forward 

down partial sums for accumulation with the output at the succeeding MAC units until the 

bottom of the compute array is reached leading to the first output element calculated in 

the𝐴𝐻 cycle, at a minimum. Note that the output elements do not necessarily constitute the 

final ofmap elements since the entire filter needs to be read into the compute array for the 

final sum of the partial sums to be calculated. This is evident from Figure 3.7 since 

elements [E, … , I] are missing from the filter trace.  

 In total, 3 folds are needed to complete execution using this dataflow using the 𝑁𝑓𝑜𝑙𝑑𝑠 

equation listed above. 
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Figure 3.7: 1-fold SRAM trace for weight stationary (WS) dataflow. Reference Figure 3.6 

and 3.8 for comparison.  

3.6.3    Input Stationary Trace 

In the input stationary dataflow, 𝑁𝑓𝑜𝑙𝑑𝑠 =  𝐶𝑒𝑖𝑙 (
𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠

𝑆𝐴𝑟𝑜𝑤𝑠
) ∗ 𝐶𝑒𝑖𝑙(

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠

𝑆𝐴𝑐𝑜𝑙𝑠
), the first term 

is designated as 𝑣𝑓𝑜𝑙𝑑𝑠 and the second term as ℎ𝑓𝑜𝑙𝑑𝑠. In contrast to the OS dataflow, folds 

are dependent on the two dimensions of the ifmap operand in the IS dataflow. For each 

fold, the fold specific operands are extracted from the larger operands by indexing 

𝑖𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑖𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠, 𝑜𝑓𝑚𝑎𝑝𝑟𝑜𝑤𝑠, 𝑓𝑖𝑙𝑡𝑒𝑟𝑟𝑜𝑤𝑠 for each fold by 𝑣𝑓𝑜𝑙𝑑𝑠, ℎ𝑓𝑜𝑙𝑑𝑠, 𝑣𝑓𝑜𝑙𝑑𝑠, and 

ℎ𝑓𝑜𝑙𝑑𝑠, respectively. Only 𝑜𝑓𝑚𝑎𝑝𝑐𝑜𝑙𝑠 and 𝑓𝑖𝑙𝑡𝑒𝑟𝑐𝑜𝑙𝑠 retains the same characteristics 

regardless of fold. In this dataflow, only the filter and ofmap operands are skewed since 

the ifmap is pushed into the compute array to start each fold. The specific nature of this 

dataflow is illustrated in Figure 3.8. 
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Figure 3.8: 1-fold SRAM trace for input stationary (IS) dataflow. Reference Figure 3.6 and 

Figure 3.7 for comparison.  

  Interestingly, the fold shown above in Figure 3.8 takes a minimum of 15 𝑐𝑦𝑐𝑙𝑒𝑠 to 

execute while the folds shown in Figure 3.6 and Figure 3.7 take a minimum of 19 𝑐𝑦𝑐𝑙𝑒𝑠 

and 20 𝑐𝑦𝑐𝑙𝑒𝑠, respectively. This result could lead architects to prefer IS dataflow over the 

field; however, a more complete discussion is required to converge on a stronger result.  

3.6.4    Dataflow Comparisons 

Though each fold is executed based on the same network layer, the difference in dataflow 

is what leads to this difference. As is calculated using the𝑁𝑓𝑜𝑙𝑑𝑠 equation above, the IS 

dataflow leads to 9 𝑓𝑜𝑙𝑑𝑠 much greater than the 3 𝑓𝑜𝑙𝑑𝑠 for each OS and WS dataflows. 

Using a 1st order (semi-accurate) comparison tool to compare the minimum runtime for 

each of the 3 dataflows, it is obvious that IS dataflow (135 = 9 ∗ 15 cycles) leads to by far 

the worst performance followed by WS  (57 =  3 ∗ 19 cycles) and OS dataflow (60 = 3 ∗

20 cycles). 
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  Unfortunately, greater depth comparisons are still needed to gain a true idea of the 

effectiveness of each dataflow for a workload. Even though an analysis into total runtime 

might lead to preference for an OS dataflow over the field, implementing a stall free OS 

dataflow architecture is difficult due to the larger SRAM buffer requirements. On the 

contrary, WS and IS dataflows require half the amount of SRAM buffer for square operand 

arrays [2]. Therefore, it is vital to model the complete system with considerations to higher 

level memory accesses and the latency and bandwidth requirements associated with these 

accesses to effectively compare various dataflows. This serves as the motivation for 

DRAM and NoC modeling described in Section 3.7 and Section 3.8, respectively. 

3.7 DRAM Trace Generation 

As detailed in Section 2.4, the data required to process a convolution layer in real-time is 

too high to store in local memory. Even with data reuse techniques, the ability to prefetch 

data into on-chip SRAM buffers before execution eliminates the additional latency due to 

off-chip accesses to DRAM. A cycle-accurate trace of prefetch requests for reads and 

writes to DRAM is created to analyze the data movement required for a layer execution 

based on the memory policy, fixed bandwidth prefetch or variable bandwidth prefetch.  

In each memory policy, user parameters for active buffer percentage (ABP), DRAM 

bandwidth, DRAM access round-trip latency, bytes per data element can be modified 

depending on user preference leading to variable DRAM trace characteristics.  
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3.8 NoC Model 

The base version of SCALE-Sim models a single PE with memory fetching from on-chip 

SRAM and off-chip DRAM. In the Section 2.6, partitioning is introduced as a mechanism 

to achieve parallel execution of workloads by multiple PEs. In Section 2.7, the popularity 

of NoC architectures is presented as a reason to model NoC compute and memory. The 

two concepts are integrated to give rise to a NoC modeling framework with partitioned 

execution across various PEs in the NoC. This framework is implemented on top of the 

SCALE-Sim infrastructure and has the advantage of providing the flexibility to model a 

suite of NoC architectures depending on the configuration the architect is interested in. 

3.8.1    NoC Modeling Framework 

The framework to model NoC architectures was developed to handle data requests from 

PEs in the NoC. The framework has 4 primary parameters that are specified as inputs by 

the user: NoC topology, remote bandwidth, number of partitions, active buffer percentage.  

 The NoC topology is the number of nodes in a network as well as the intra-node links 

between the nodes. The user creates an adjacency matrix using the convention illustrated 

in Table 3.4 to create a 4 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ shown in Figure 3.9 and store the values 

in a .csv format. In this convention, the left-most column and the top-most row indicate the 

nodes in the NoC. A value of 1 in the table defines a link between the two nodes and a 

value of − is equivalent to no link between the two nodes. It should be noted that the bottom 

left elements and the top right elements are identical in the adjacency matrix. Therefore, a 

value in the adjacency matrix corresponding to the pair of nodes (𝑎, 𝑏) will always be the 

same as the value for the pair (𝑏, 𝑎). The file path is then given as an input to the simulator 
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before execution. The simulator parses the matrix at run-time and determines the number 

of hops between any pair of nodes to calculate the latency of accesses for each source, 

destination pair communication. Because of the flexible nature of network creation using 

the adjacency matrix format, any and every irregular and symmetric network can be created 

and be supported. 3 topologies files were created for use in experiments representing mesh, 

flattened butterfly, and fully connected topologies [31].  

 

Figure 3.9: Direct mesh NoC topology with 16 PEs each acting as a router in the network. 

 Remote bandwidth is specified as an input parameter by the user and is used to 

determine the maximum allowed packets to be requested from remote L2 caches each 

cycle. The remote bandwidth specified acts as the total bandwidth accepted each cycle by 

the remote port of a node on the network. This is independent from the local bandwidth 

which is reserved for accesses from/to local L2 cache. Assumptions are made in this model 

including no off-chip DRAM accesses, an ideal data sharing network with no contention, 

no real-time NoC issues such as deadlocks and flit blocking. Furthermore, an assumption 
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is made that bandwidth is not specific to links but rather attached to the remote and local 

port of the node. So, in effect, infinite packets can traverse the NoC each cycle but only the 

specified remote bandwidth can enter/exit the node from the remote port illustrated in 

Figure 3.10.  

Table 3.4: MESH Adjacency Matrix 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 1 - - 1 - - - - - - - - - - - 

1 1 1 1 - - 1 - - - - - - - - - - 
2 - 1 1 1 - - 1 - - - - - - - - - 
3 - - 1 1  - - 1 - - - - - - - - 
4 1 - - - 1 1 - - 1 - - - - - - - 
5 - 1 - - 1 1 1 - - 1 - - - - - - 
6 - - 1 - - 1 1 1 - - 1 - - - - - 
7 - - - 1 - - 1 1 - - - 1 - - - - 
8 - - - - 1 - - - 1 1 - - 1 - - - 
9 - - - - - 1 - - 1 1 1 - - 1 - - 

10 - - - - - - 1 - - 1 1 1 - - 1 - 
11 - - - - - - - 1 - - 1 1 - - - 1 
12 - - - - - - - - 1 - - - 1 1 - - 
13 - - - - - - - - - 1 - - 1 1 1 - 
14 - - - - - - - - - - 1 - - 1 1 1 
15 - - - - - - - - - - - 1 - - 1 1 

 Number of partitions is specified as an input in the config file to SCALE-Sim to divide 

the execution of DNN layers. Each partition is executed on a distinct PE in the network, 

and in the scenario of a L1 SRAM buffer miss, a request for data read and/or write is placed 

to any of the nodes in the network containing L2 SRAM buffers depending on the memory 

map. Note that number of partitions do not have to be the same as the number of nodes in 

the NoC. In the case of a 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ topology, partitioning on 30 PEs would 

lead to only the first 30 PEs (0𝑡ℎ −  29𝑡ℎ  𝑃𝐸) executing the DNN layers while all 64 nodes 

act as L2 SRAM buffer sources.   
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 Figure 3.10: NoC Memory Hierarchy 

 Active buffer percentage (ABP) is a parameter that affects the prefetching policy into 

L1 local SRAM by controlling the ratio of active and inactive buffer. ABP can be anywhere 

from a 50% −  50% even ratio to a biased 99% −  1% active buffer-inactive buffer ratio. 

By sweeping through the possible ratios, interesting evaluations can be made to compare 

architectural parameters.  

3.9 Experiments 

The vast array of interesting evaluations of SCALE-Sim have yet to be observed since the 

tool adoption is still in its infancy. Papers have already been written on experiments 

performed by the developers of SCALE-Sim detailing the ability to test sweeps of 

architecture configurations on a suite of workloads [2, 21]. One of the most interesting 

results observed so far is that at scale, if the compute array is fully utilized, the memory 

bandwidth remains the prime bottleneck to performance irrespective of how much on-chip 

memory is allocated [21]. This bottleneck is most obvious when running large loads on the 
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hardware which demonstrates that the choice of interface bandwidth from memory is the 

most likely indicator of throughput no matter the efficiency in compute such as element 

reuse and/or high utilization. 

For evaluations with respect to NoC designs, NoC Modeling Framework (NMF) is used 

to create a network of nodes containing L2 SRAM data banks and/or systolic arrays 

running independent partitions each acting as a PE in the NoC. In the experiments 

presented below, differences in performance metrics for popular DNNs used for DL 

inference are compared using various configurations to gain insight into the importance of 

certain architectural and controller parameters.  

3.9.1    GPT2 & ResNet-50 Performance Evaluations using NMF 

GPT2 is a large transformer-based language model with 1.5 billion parameters trained on 

a dataset of 8 million web pages [32].  The model contains 6 CONV layers labeled Linear1, 

QKT, QKTV, Linear2, PW-FF-L1, and PW-FF-L2. Furthermore, ResNet-50 a residual 

DNN that rose to fame after winning the ImageNet challenge in 2015 for its ability to 

effectively train a large number of layers [33]. ResNet-50 consists of 5 stages, conv1, 

conv2_x, conv3_x, conv4_x, conv5_x, and a fully connected layer. Each of these two 

models can be used as input DNNs to SCALE-Sim in conjunction with NMF to gather 

performance loss due to stall cycles.  

 To provide motivation for experiments involving these two DNNs, Linear1 from GPT2 

has a base requirement of 7,680,094 cycles without partitioning for an output stationary 

dataflow on a 32𝑥32 systolic array compute architecture. Therefore, the greatest 

optimization possibility is 43,894 stall cycles which is . 568% of the total runtime. 

Meanwhile, conv2a_1 has a base requirement of 65,630 cycles with the same 
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configurations. In this case, the greatest optimization possibility is 495,543 stall cycles 

which is 88.3% of the total runtime. The substantial optimization possibility differences 

indicate an underlying pattern in NoCs that is analyzed in Section 3.9.2 while this section 

provides experiments evaluating configuration parameters such as active buffer percentage 

(ABP) and partitioning (P). 

  An experiment is performed to gain insight on the effect of P on a GPT2 workload 

executed in a NoC. Six independent configurations are swept across various bandwidths 

assuming 𝐵𝑊𝑙𝑜𝑐 for a PE is 10000 𝑏𝑦𝑡𝑒𝑠/𝑐𝑦𝑐𝑙𝑒 and the sum of remote BW accesses is 

𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒 =  (𝑛 − 1) ∗ 𝐵𝑊𝑙𝑜𝑐. Each of the 6 configurations is a combination of NoC 

topology: 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ, 8 − 𝑎𝑟𝑦 4 − 𝑓𝑙𝑎𝑡 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑒𝑑 𝑏𝑢𝑡𝑡𝑒𝑟𝑓𝑙𝑦, or 

64 𝑛𝑜𝑑𝑒 𝑓𝑢𝑙𝑙𝑦 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, and partitions: 𝑃 = 1 or 𝑃 = 10. The 6 

configurations are executed independently on SCALE-Sim and the results for Linear1 are 

presented in Figure 3.11.  

  

Figure 3.11: GPT2 Partitioning Evaluation over BW Sweep 
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 For the configurations with 𝑃 = 10, no differences are found among each topology, and 

performance loss due to stalls falls to 0 with remote bandwidth greater than 500. The same 

cannot be observed for 𝑃 = 1 since mesh continues to incur stall cycles even at high 

bandwidths. This would lead us to surmise that the latency of a mesh traversal is much too 

great to recover from even while using large bandwidths. Meanwhile, the results for 

flattened butterfly and fully connected are almost identical with a net difference of 6 stall 

cycles added across bandwidths tested. Based on these differences, a possible claim is that 

partitioning removes the need for high bisection bandwidth and low diameter in a NoC. By 

evenly distributing the workload among the NoC and using a communication aware data 

placement, the need for robust NoC designs can be eliminated [3].  

 The results above showcase the importance of partitioning in a NoC, however, in many 

cases, partitioning is not possible because of the added overhead and lack of resources in 

the architecture. In the next experiment, the differences between active buffer percentages: 

𝐴𝐵𝑃 = 0.7 and 𝐴𝐵𝑃 = 0.5 are compared. For consistency in experiments, same 

topologies from the last experiment are used to gain insight into differences the double 

buffer memory policy configuration can make on performance. 

 Figure 3.12 illustrates the resulting stall cycles for the experiment conducted over the 

sweep of remote port bandwidths. The overarching take-away is that a more balanced 

buffer scheme has real benefits to counter-act performance loss due to remote fetches. The 

results for 𝐴𝐵𝑃 = 0.5 were always at least equal and in many cases better than the results 

for 𝐴𝐵𝑃 = 0.7. Furthermore, the performance results for various topologies matched with 

𝐴𝐵𝑃 = 0.5 configuration. Based on this result, the claim can be made that the active and 
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inactive buffer ratio allocation is a consequential architectural parameter for which 

performance gains are possible.  

 

Figure 3.12: GPT2 ABP Evaluation over BW Sweep 

 To follow up previous evaluations, an experiment is performed to reveal insights as to 

the effect an optimized set of active buffer percentage (ABP) and partitioning (P) can have 

on performance. A sweep is performed across ABP from 0.5 − 0.9 for one of 2 

configurations with 𝑃 = 1 or 𝑃 = 10 over NoC topologies: 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ, 

64 𝑛𝑜𝑑𝑒 𝑓𝑢𝑙𝑙𝑦 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 illustrated in Figure 3.13.  
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Figure 3.13: GPT2 ABP evaluation over partitioning for a mesh and fully connected 

topology with remote bandwidth of 1000 bytes 

 As previously expected, an even ABP leads to lesser sensitivity to prefetch latency. 

𝐴𝐵𝑃 = 0.5, 0.6, & 0.7 lead to no stalls for partitioned workloads. Using no partitions, 

𝐴𝐵𝑃 = 0.5 is the only configuration without stall cycles. Furthermore, the differences in 

NoC topology are more pronounced at more biased ABP ratios while more even ratios mask 

the latency of the network. For 𝐴𝐵𝑃 <  0.8, average variance between topologies is less 

than 0.01; however, for 𝐴𝐵𝑃 ≥  0.8, variance between topologies is 797.78 cycles. Based 

on these results, a claim can be made that an optimized set of both parameters ABP and P 

leads to strong performance and that priority in design among the two parameters should 

be given to partitioning workloads. This claim can be strengthened with experiments 

covering a suite of workloads which are not present in these evaluations.  

 Next, an experiment is performed using Resnet-50 to distinguish the difference in 

performance between a partitioned vs. a non-partitioned workload for various layers. Using 

NMF with a mesh and fully connected topology, 2 sets of charts are generated evaluating 
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topologies individually. Mesh topology results are shown in Figure 3.14 and fully 

connected topology results are shown in Figure 3.15. 

  The resulting chart for mesh topology shows the substantial increase in timing 

performance for a partitioned workload versus a sequential workload without partitioning. 

9 layers incurred no stall cycles before partitioning including the FC layer which are not 

included in comparison. Averaging the performance increase for the consequential layers, 

99.24% stall cycles reduction is observed.  

  

Figure 3.14: Resnet-50 Layers evaluation over partitioned configuration for execution on 

a mesh 

  Results for a fully connected topology show the substantial increase in timing 

performance for a partitioned workload versus a sequential workload without partitioning. 

Averaging the performance increase for the consequential layers, 99.28% stall cycles 

reduction is observed.  
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Figure 3.15: Resnet-50 Layers evaluation over partitioned configuration for execution on 

a fully connected topology 

  The base performance increase for 𝑃 = 1 and remote bandwidth of 1000 𝑏𝑦𝑡𝑒𝑠 was 

13.99% for a fully connected topology over a mesh topology executing ResNet-50. 

Nevertheless, the similarity in performance increase between the two topologies indicates 

a possible correlation into the effects of partitioning on various layers regardless of 

differences in base performance. Another interesting observation is that stage 2 layers had 

the smallest improvement with 98.49% loss reduction for both topologies while stage 5 

layers had the greatest improvement with 99.7% loss reduction for both topologies. This 

is likely due to the differences in network congestion which is investigated in Section 3.9.2. 

3.9.2    GPT2 & ResNet-50 NoC Congestion Evaluation 

Since NMF has real disadvantages due to its granularity in modeling an entire NoC during 

run-time experiencing contention and deadlock possibilities, experiments are performed to 

gain insight on the complete network bandwidth sensitivity to various workloads using 
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various NoC configurations [34]. ResNet-50 is the subject of the initial evaluations before 

moving to link load analysis comparing ResNet-50 and GPT2. 

 In this experiment, (source, destination) pairs are generated for the input operand 

communications throughout a 8 − 𝑎𝑟𝑦 2 − 𝑐𝑢𝑏𝑒 𝑚𝑒𝑠ℎ NoC and the resulting average 

injection rates are map over the total execution of each layer. Here we assume each data 

transfer packet is 1 byte. A visual representation of the evaluation is presented using heat 

maps illustrated in Figure 3.16. Each layer of each stage provides unique and interesting 

congestion results; however, only layers in stage 2 and stage 5 are analyzed, for brevity. 

Here the NoC congestion for layer conv2a_1 (layer 1) in stage 2 and conv5a_1 (layer 43) 

in stage 5 are compared.  

 
 

Figure 3.16: Resnet congestion evaluation using heat map 

 The heat map comparison indicates a much higher potential for congestion in conv2a_1 

over conv5a_1. The greatest congestion link running conv2a_1 has a link load of 2.19 

bytes while link loads in conv5_a are maxed at 1.21 bytes. The likely explanation for this 

result is advantageous data placement for conv5_a which results in closer communication 

pairs while conv2_a suffers from similar challenges as uniform random traffic which serves 

uniform communication for all (source, destination) pair combinations throughout the 
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network leading to bottlenecks around the bisection lines. Tracing the underlying reason 

for the difference in congestion, the difference can be attributed the differences in 

parameters between the two layers. Parameters are set as 𝑠𝑡𝑟𝑖𝑑𝑒 = 2  and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

1024 for conv5a_1 which reduces the number of accesses throughout the address space of 

the ifmap and prioritizes sequential addresses along the depth of a channel while conv2a_1 

does not have benefit from advantageous parameters with  𝑠𝑡𝑟𝑖𝑑𝑒 = 1  and 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

64. 

 A potential solution to congestion would be communication-aware data placement using 

an iterative algorithm similar to the proposed ideas in Simba architecture [3]. Another 

approach would be to design a NoC that purposefully sizes link bandwidths to serve 

specific workload traffic, thereby restricting optimal performance to a few workloads. 

 

  

  Figure 3.17: Link load distribution for GPT2 and Resnet50 layers 

Taking a closer look at the distribution of channel load for Resnet-50 and GPT2 in 

Figure 3.17 reveals a generally random distribution of link loads with a mode of about 0.8. 

For both DNNs, the potential for congested links exists with link loads reaching up to 2.37 

for some layers in Resnet-50. This evaluation gives added motivation to design custom 

heterogenous NoCs in chip-multiprocessors specific to application requirements.  
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                                                   CHAPTER 4 

SIGMA BUILDING BLOCKS 

Chapter 2 and 3 describes SCALE-Sim, a tool used to model scale-out DNN inference on 

systolic arrays. Unfortunately, emerging GEMMs in DL are highly irregular and sparse, 

which lead to poor data mappings on systolic architectures. A microarchitecture of a 

flexible and scalable GEMM accelerator is proposed that can handle arbitrary amounts of 

sparsity, arbitrary irregularity in GEMM dimensions, while guaranteeing close to full 

compute utilization named SIGMA. SIGMA performs 5.7 × better than systolic array 

architectures for irregular sparse matrices and roughly 3 × better than state-of-the-art 

sparse accelerators [6]. 

 The fundamental building block and key novelty of SIGMA’s compute fabric is a 

processor named Flexible Dot Product Engine (Flex-DPE) that can map GEMMs of 

arbitrary shapes and sparsity distributions via rich interconnect fabric. Within each Flex-

DPE includes a novel reduction tree microarchitecture named Forwarding Adder Network 

(FAN) and a distribution network supporting flexible dataflows into the architecture. A k-

sized Flex-DPE consists of k multipliers, k-1 adders, local buffers, a control unit, and 

flexible interconnects [6]. The design for the Flex-DPE was composed in Verilog RTL, 

synthesized using Synopsys Design Compiler on a 28 nm process, and place & routed using 

Cadence Innovus.  

 The next sections describe the logic design of the Flex-DPE which was conceived and 

developed in collaboration with Eric Qin. Individually, my contribution to this work was 

Verilog implementation of the Multiplier, Adder, Multiplier Local Buffer, Control Unit, 

and Flexible Interconnects in the FAN.  
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4.1 Multiplier 

The multiplier was designed in Verilog to support bfloat16, a numerical format being 

adopted industrywide for neural networks [35]. In this format, 16 bits are used to represent 

a floating-point value. Bit 15 is the sign of the value, bit 14 − 7 is the exponent value, and 

bit 6 − 0 is the fraction or mantissa value illustrated in Figure 4.1. This format is a 

truncated version of the 32-bit binary32 format losing precision in the fraction. To ensure 

the output of the multiplier is consistent with the bfloat16 format, a multiplication 

normalizer is used to ensure accuracy while removing the extra precision mantissa bits 

reducing to 7 bits. To preserve timing integrity, a stand-alone multiplication computation 

always occurs in a single cycle. 

4.2 Adder 

The adder was designed in Verilog as a float32 data format adder. This format is consistent 

with the binary32 format which preserves extra precision by adding 16 extra bits to the 

bfloat16 mantissa in Figure 4.1. An addition normalizer is used to ensure the output of the 

adder is consistent with the bfloat32 format. The addition is computed in a single cycle to 

preserve system integrity. The output of the multiplier is concatenated with 16 bits of 0’s 

to form the 32-bit input to the adder. The extra bits ensure greater precision from the adder 

operations since the chain of adder operations can cause exponential precision loss  
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Figure 4.1: bfloat16 bit layout with most significant bit (MSB) on left representing the 

decimal value 5.0 =  (−1)𝑠𝑖𝑔𝑛𝑏𝑖𝑡 ∗ 2(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒−127) ∗ (1 +
𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒

128
) ; 𝑠𝑖𝑔𝑛𝑏𝑖𝑡 =

0, 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 = 129, & 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑣𝑎𝑙𝑢𝑒 = 32 

4.3 Local Buffer 

Each multiplier has a local buffer associated with it which stores a stationary value. This 

buffer is used to maximize data reuse for a stationary element (input activation or weight) 

while the non-stationary element is streamed in. If the input stationary bit is toggled on, 

the stationary buffer value is used for computation. If the reset bit is turned on, the local 

buffer element is cleared, and the new input value is stored acting as the new stationary 

value. This process would lead to an invalid multiplier output which is handled by turning 

off the output valid bit. The management of the reset bit is performed by the control unit 

described in Section 4.4  

4.4 Control Unit 

A control unit is used to determine how the multiplier or adder input and/or outputs are 

forwarded down the reduction tree. Each compute block: bfp16_mult.v and fp32_adder.v 

has a switch framework named mult_switch.v and adder_switch.v, respectively, that 

interfaces with the control unit.  

The control unit toggles the valid bit of the input and/or the reset bit of the local buffer. 

Using the input valid bits, the multiplier switch toggles the valid bit of the output of the 

multiplier. If the valid signal is switched off, the adders down the path line will continue 

to invalidate the output valid bits as the values are streamed through the reduction tree.  

The reduction tree incorporates the concept of a virtual neuron (VN) which allows for 

output buffers at each stage to be filled and pipelined down the tree. The control unit 
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controls the forwarding logic in the adder switch and the VN completion logic by selecting 

out of 5 options for non-edge adders described in the pseudo-code below:  

Algorithm A pseudo-code for adder switch logic for non-edge adders 

4.5 Flexible Interconnects 

Each adder which is not located in the final level and is not an edge adder, has two 

interconnects in the FAN for data forwarding illustrated in Figure 4.2. The control unit 

manages the data forwarding pattern ensuring a spatial reduction requiring 𝑂(log2 𝑚) 

cycles for a m-sized dot product [6].   
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Figure 4.2: FAN topology with 32 multipliers, 31 adders, and flexible interconnects for 

data forwarding in a 32 − 𝑠𝑖𝑧𝑒𝑑 Flex-DPE 
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                                                    CHAPTER 5 

CONCLUSION AND FUTURE WORK 

Current innovation in deep learning accelerator development is hindered by the lack of 

open-sourced resources to the design and research community. SCALE-Sim-v2 gives us 

the ability to explore novel accelerator designs on systolic array substrates in a fast and 

convenient manner. Furthermore, the SCALE-Sim-v2 interface is highly modular allowing 

for greater tool developments from the open-sourced development community.  

Based on current experiments exploring partitioning, double buffered prefetch memory 

policies, and remote bandwidth using the NoC Modeling Framework, real insights are 

gained as to the performance bottlenecks in accelerators and Chip Multi-Processors. Based 

on experimental results, architectural parameters targeting increased partitioning, 

partitioning scheme, and balanced double buffer ratios are arguably more vital to high 

performance than using a NoC topology with a high bisection bandwidth and low diameter. 

Furthermore, in the complete NoC link load evaluation, experimental results show that 

congestion due to high channel loads is dependent on the workload. Therefore, two 

approaches can be used to improve performance. One solution is to use communication-

aware data placement to restrict high diameter communication. An alternative solution is 

creating custom NoC designs with adjusted bandwidths on links suiting application 

requirements.  
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5.1 Future Work 

5.1.1    C++ Syntax Porting 

The current simulator repository is restricted to Python 3 compatibility. For future 

integration with various architecture simulator tools and to speed up execution of the base 

simulator, a C++ compatible syntax would be required with parallel execution capabilities 

provided by CUDA and Nvidia GPUs or with C++ compatible libraries such as PASL [36].  

5.1.2    Versatile Compute Architecture Support 

Systolic array is presently the most widely explored design for compute architectures 

concerned with DNN inference because of the simplicity of design and easily translatable 

dataflows leading to low overhead. The disadvantage of this approach is the poor mapping 

of highly irregular and sparse operands. For this reason, architectures such as SIGMA have 

been proposed that use a flexible architecture offering higher utilization and better 

performance than systolic array architectures [6]. 

  SCALE-Sim should be able to support modeling various types of compute architectures 

and the full-suite of dataflows mapped on the compute architectures such as row stationary 

dataflow on Eyeriss architecture [4]. 
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