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SUMMARY 

Animal behavior is critical to survival and provides a window into how the brain makes 

decisions and integrates sensory information. However, behavior is also a result of complex 

interactions between genes, neural function, anatomy, and the physical environment. A 

simple model organism that allows researchers to more precisely interrogate the 

relationships between behavior and the brain is the nematode C. elegans. Despite its small 

nervous system, the worm demonstrates complex behaviors, and has been used extensively 

to link genes to function of the nervous system. However, current phenotyping tools have 

technical limitations that make observing, intervening in, and quantifying behavior in 

diverse settings difficult.  

This thesis aims to develop enabling technological systems to resolve these challenges. To 

address scaling issues in observation and intervention in long-term behavior, I develop a 

platform for long-term continuous imaging, online behavior quantification, and online 

behavior-conditional intervention. I show that this tool is easy to build and use and can 

operate in an automated fashion for days at a time. I demonstrate that it can be used for 

behavioral phenotyping of individual animals from larval through adult stages. I then use 

this platform to understand the consequences of quiescence deprivation to C. elegans 

health. This tool can enable real-time processing and behavior data compression that will 

both enable novel behavior-conditional perturbation experiments at scale and ease the 

bottleneck of behavior data processing significantly. It may also be readily adapted for 

other model systems and many other types of automated behavior-based interventions.  



 xvii 

To quantify complex animal postures, I develop an app to enable fast, versatile and 

quantitative annotation and demonstrate that it is both ~ 130-fold faster and, in some cases, 

less error-prone than state-of-the-art computational methods. This app is agnostic to image 

content and allows freehand annotation of curves and other complex and non-uniform 

shapes. It enables faster annotation both through ease of use and automated distribution of 

image annotation tasks to many users at once. In addition to annotation of C. elegans 

posture, we demonstrate applications in annotating plant and stem cell aggregate 

morphology. This tool may be used to generate ground truth sets for testing or creating 

automated algorithms. 

Finally, I quantify C. elegans behavior using an automated quantitative analysis to identify 

behaviors and map the worm’s behavioral repertoire across multiple physical environments 

that more closely mimic C. elegans’ natural environment. From this analysis, I identified 

subtle behaviors that are not easily distinguishable by eye and built a tool that allows others 

to explore our video dataset and behaviors in a facile way.  I also use this analysis to 

examine the richness of C. elegans behavior across selected environments and find that 

behavior diversity is not uniform across environments. This has important implications for 

choice of media for behavioral phenotyping, as it suggests that the appropriate media 

choice may increase our ability to distinguish behavioral phenotypes in C. elegans. This 

tool may be useful in phenotyping C. elegans behavior through aging and development or 

large-scale phenotyping of genetic mutants that may exhibit subtle behavioral phenotypes.  

Together, these tools enable novel behavior experiments at a larger scale and with more 

nuanced phenotyping compared to currently available tools. 
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CHAPTER 1. INTRODUCTION 

Behavior is what all animals do. It is a feature of living systems ranging from bacteria to 

humans that allows animals to avoid predation, find nutrients, and reproduce. Animal 

behavior provides a window into the brain, including decision making, sensory integration, 

and learning. Understanding these nervous system functions is an important goal of 

neuroscience. In human medical sciences, behavior is often used to diagnose and 

understand disease 1, and while many psychiatric disorders are understood to be influenced 

by genetics, how genetics and behavior are connected is poorly understood 2. Behavior is 

made of a complex web of interactions between genes, neural function, anatomy, and the 

physical environment that presents many challenges. Chief among these challenges are 

both ethical and technical constraints on how we observe, intervene in, and quantify 

behavior.  

As a result, model organisms such as mice, fruit flies, zebrafish, and worms have assumed 

a prominent role in our understanding of the relationships between behavior and the 

systems that cause it. In these model organisms, many ethical and technical barriers are 

drastically reduced. The small roundworm C. elegans is particularly amenable to 

understanding behavior.  Its compact nervous system consists of just 302 neurons and the 

connections between all neurons have been fully mapped 3. In addition, the ease with which 

the worm may be genetically manipulated has allowed us to better understand neural 

function and behavior and manipulate neural function from the inside out. Importantly, C. 
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elegans is also straightforward to culture isogenically in large numbers, providing 

statistical power that is difficult to achieve even in many other model organisms.  

Despite the advantages of C. elegans as a model organism, technical constraints still exist 

that limit our ability to observe, intervene in, and quantify behavior even in these simple 

animals. First, their physical size can pose a challenge. At about 1 mm in length in 

adulthood, and barely 250 μm at hatching, microscopy methods are required to observe 

their behavior. While advances in efficiently monitoring large populations of animals have 

made it possible to better understand unperturbed animal behavior, intervening on animal 

behavior, particularly in a conditional way, is still highly inefficient 4–7. Second, an 

important part of describing animal behavior is to be able to describe their instantaneous 

posture. While most C. elegans posture is straightforward to interpret and describe from 2-

dimensional video data, more complex postures, particularly those where the worm is self-

occluding, remain challenging to interpret from 2D data 8–10. Lastly, the application of 

computer vision and machine learning techniques have drastically increased our ability to 

quantify and describe behavior 11,12. However, classifying as well as quantifying behavior 

without applying anthropocentric heuristics remains a challenge, especially when 

comparing behavior in different physical environments. In the following section, I will treat 

each of these limitations in greater detail.  

In this thesis, I develop and demonstrate a variety of tools designed to improve our ability 

to observe, intervene in, and quantify C. elegans behavior and applications of these 

technologies to answer specific biological questions. In the remainder of this chapter, I 

provide a brief review of existing behavior technologies and their limitations, followed by 
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the objectives of this thesis. Each chapter of this thesis will provide detailed introduction 

specific to that chapter.  

1.1 General challenges with conventional behavioral tools 

Scientific advances that have already been made through behavior observation and analysis 

demonstrate that there is significant value in systematically characterizing behavior13–15. 

Traditional approaches to characterizing behavior have stemmed from both ethological and 

psychological roots and rely heavily on animal observation, behavior classification and 

description, and frequently intervening on the animals’ environment either in nature or in 

the lab16,17. While these methods have prompted many fundamental theories about animal 

behavior and revealed how important and intricate behavior is even to the most outwardly 

simple animals, observing and describing animal behavior is an incredibly labor-intensive 

task. It is also easily biased by human involvement in description and discrimination of 

behaviors.  

Since digital imaging has taken hold in consumer markets, observation can now frequently 

be performed by a camera rather than a person, with quantitative description and 

classification of the behavior post-hoc18. With these technologies, longer periods of 

continuous observation have become more tractable. However, most scientific cameras still 

easily cost several thousand dollars, and may only be able to observe one or a few animals 

at a time. This presents a particular problem for small model organisms. Equally 

problematic is the ability to quantify much more massive volumes of data produced by 

long-term behavior video18. Many researchers approach this conundrum by either limiting 
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the temporal frequency of behavior observation or limiting the overall timescale of 

behavior observation. While these approaches may be appropriate for understanding 

behaviors either over very long timescales or very short ones, animal behavior itself is 

continuous.  

Another key component of behavior studies is disrupting the animals’ environment and 

studying their response. For example, an impactful early ethological study of gull behavior 

by Niko Tinbergen demonstrated that the gulls preferred to incubate fake, supernormally-

sized eggs over real eggs 16. Today, our methods of intervention have advanced 

significantly, enabling researchers to apply stimuli in highly automated, and even behavior-

responsive ways. Virtual reality systems built to either mimic or distort an animal’s 

perception of the world can provide insight into animal’s conditional responses to visually 

perceived stimuli 19–22. While systems like these enable new types of experiments that were 

previously impossible, technology for behavior-responsive intervention is expensive and 

difficult to scale. 

Significant progress has been made in automating behavior analysis, but the development 

of automated methods requires validating them on hand-annotated data. Even hand-

annotating a small amount of a video data set can require a prohibitive amount of time. 

Tools for hand-annotating images face trade-offs between speed, accuracy, and content of 

the annotation 23–26. Applications requiring free-hand annotation of complex features are 

very difficult (i.e. slow), as most annotation tools are designed for fast annotation of single 

points or regions of interest.  
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Another challenge in ethology is understanding behavior in its natural contexts. However, 

observing animals in their natural habitat is often intractable. Striking the right balance 

between laboratory-derived settings and the natural context of the animals’ behavior can 

yield greater understanding of how animals process information to make decisions. The 

range of environments in which animals behave can vary widely in their natural habitats, 

yet the tools we have for comparing behavior in different environments often presume very 

different classifications of behavior 27,28. Comparing behavior between environments that 

mimic the naturalistic range that animals may find themselves in is therefore easily biased.  

While these challenges are common to behavior paradigms across animal models, other 

common barriers such as the high level of individual-to-individual variability in behavior, 

difficulty in culturing sufficient animals to achieve statistical power, and paucity of genetic 

and neuroscience tools can be resolved through a judicious choice of model organism. 

1.2 C. elegans as a model system for behavioral neuroscience 

When Sydney Brenner popularized the use of a small (~1mm in length), transparent, 

nematode as a model organism in the late 1960s, some of his first studies of Caenorhabditis 

elegans (C. elegans) were forward genetic screens identifying mutant worms based on their 

distinctive behavioral and morphological phenotypes 29. The genes causing these strong 

phenotypes were soon identified, demonstrating that C. elegans could be used to make 

connections between genes and behavior. Several features of the worm’s life cycle also 

play an important role in making it a useful model organism. As behavior is highly 

multigenic, the ability to control for genetic changes is an important characteristic for 
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behavior models to have. C. elegans is simple to culture isogenically at a large scale, as 

each individual hermaphrodite produces approximately 300 nearly isogenic progeny after 

only a short, three-day development period. This short developmental timescale also lends 

itself to nuanced understanding of development. Despite the small number of neurons in 

adult animals, they exhibit complex sensory capabilities and navigational behaviors, 

including chemotaxis, thigmotaxis and aversive olfactory learning 30–34. In addition, 

evolutionary conservation of genes and pathways identified in C. elegans has been 

demonstrated in higher-order organisms and mammals, including humans. Pathways that 

regulate programmed cell death, aging, developmental timing, and stress in the worm all 

have closely related homologs in humans35–38. These key traits allow a level of tractability 

that other model systems are hard-pressed to approach balanced with biological relevance 

to higher animals.   

A diverse collection of resources and tools have also played important roles in 

making C. elegans an excellent model system for behavioral neuroscience. The wiring of 

the C. elegans nervous system has been fully described and C. elegans was the first 

organism to have its genome fully sequenced 3,39. Fluorescent proteins such as GFP and 

RFP can be used to visualize where genes are expressed 40. More recently, genetic tools 

such as CRISPR and optogenetic tools and techniques have allowed C. elegans researchers 

to edit genes more efficiently and read and write to neurons in behaving animals 41,42. The 

development of microfluidics to manipulate C. elegans has also proven incredibly useful 

in understanding how its nervous system functions 28,34,43–45.  These technological advances 
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have all contributed to a powerful ability to link genes, the nervous system, and behavior 

together in C. elegans. 

Despite this powerful ability, understanding C. elegans’ behavior remains 

challenging, in great part due to the same challenges that are present in conventional 

behavorial paradigms. 

1.2.1 Challenges for C. elegans paradigms 

In typical lab culture conditions, C. elegans’ behavior indeed looks very simple. It 

primarily moves in a sinusoidal manner on agarose plates, with occasional reorientations 

it accomplishes by exaggerating its sinusoidal wave pattern. Despite this seeming 

simplicity, as the field’s ability to systematically quantify behavior has grown, so has the 

identification of genetic and environmental factors that influence increasingly subtle 

behaviors of the worm. For example, large-scale phenotyping studies of animal behavior 

on agarose have identified behavioral phenotypes for many mutants with no previously 

described phenotype, and comparing behavior between mutant strains has implicated 

genetic and protein pathway relationships 9,46. The use of microfluidics to deliver spatially 

and temporally defined stimuli while tracking C. elegans behavior revealed genes involved 

in components of olfactory response 28. These examples demonstrate that there is 

significant scientific advantage to be gained by the ability to systematically quantify 

behavior of C. elegans.  

These important advances belie a remaining behavioral phenotyping gap. 85% of C. 

elegans genes have no reported phenotypic effect when knocked down with RNAi although 
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most knockdowns detectably reduce fitness. Subtle behaviors have only recently begun to 

be studied. This is in part because of a lack of statistical power due to individuality and 

stochasticity in animal behavior. 

Yet another challenge is the significant variation in C. elegans’ behavior. The intrinsic 

underlying stochasticity in behavior combined with variations in extrinsically imposed 

environmental conditions creates a complex landscape of potential behavior response even 

in a very well-controlled system. It is therefore important to have a large population of 

animals that are as similar to one another as possible, both genetically and experientially.  

1.2.1.1 Behavior collection and intervention 

For small organisms that require a microscope to see, constant observation of 

behavior is at best expensive and at worst infeasible at the scale needed. Although it is easy 

to culture worms isogenically en masse, recording the behavior of many animals at scale 

is limited by the cost of microscopes and video collection equipment, which often amount 

to more than $10k per system for very simple setups. Thus, many behavior databases for 

C. elegans have been constructed from relatively short-term observation over the course of 

minutes despite the timescales of known C. elegans behaviors like quiescence 9 and the 

hours-long timescale of developmental processes.  

Several more recent approaches have demonstrated an ability to monitor many 

worms in more cost-efficient ways, in some cases even across the entire lifespan 4,6,7,47. 

Although these tools scale more efficiently, they are also lower content compared to 

conventional methods in terms of temporal resolution and image resolution.  
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While interventions in C. elegans behavior is straightforward in comparison with 

other organisms because of the ability to manipulate the worms’ perception precisely using 

microfluidics and optogenetics, systems that are behavior responsive must be applied to 

one individual at a time6,48. Because of the high equipment costs for performing behavior 

responsive assays with current technologies, this class of assays are both expensive and 

low-throughput. 

1.2.1.2 Behavior annotation 

C. elegans behavior is often deceptively simple. The majority of the time, it is a great 

advantage that the worm’s body plan is a pliable cylinder. Overall, this simplifies 

quantitative descriptions of worm posture. However, the extreme flexibility of C. elegans 

also leads to self-collision and often self-occlusion, where the animal’s posture is much 

more difficult to infer. Several methods have been described to address this complication, 

including heuristic-based approaches and more general generative approaches 8,10.  These 

attempts to fill the gaps in worm behavior dynamics remain both slow and inaccurate, 

especially as their performance in non-standard situations is poor. In order to develop 

automated methods for quantifying more complex behaviors in complex environments, we 

first need a way to annotate the posture of the animal in many video frames. However, 

while some tools exist that enable community annotation of images, annotation tools that 

allow freehand annotations are slow, often custom-designed for specific purposes, and 

make it difficult to distribute annotations. 

1.2.1.3 Behavior quantification 
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Conventional methods for quantifying C. elegans behavior have been based upon 

identifying and describing discrete behavior states in the worm, such as forward movement, 

reversals, and reorientation behaviors. With the rise of advanced computer vision 

techniques, a plethora of automated worm trackers have become available that segment 

animals, track them, and quantify behavior to varying degrees of robustness27,49–51. At the 

same time, new methods have evolved to describe continuous features of behavior beyond 

speed and acceleration, most notably C. elegans posture 10,12,52. The most prevalent current 

method of describing C. elegans posture is to express the curvature of the animal in worm-

centric coordinates. It has been shown that close to 95% of the animals posture can be 

described by the linear combination of just five eigenvectors calculated from the worm-

centric curvature.  

Describing posture in this low-dimensional way has been useful in not only quantifying 

posture but also in beginning to define behavior independently from an anthropomorphized 

point of view. Several machine learning based techniques have been demonstrated that 

attempt to define behavioral motifs in C. elegans without reliance on external definitions 

or heuristics 46,53. One such approach that has been extensively demonstrated in fly 

behavior and more recently applied to worm behavior is t-distributed stochastic neighbour 

embedding (t-SNE) of postural frequency data 11,53–55. Applying this technique to fruit flies 

has provided a human-independent quantitative method to classify and compare fly 

behavior and has enabled the behavioral dissection of fly motor control using optogenetics 

55. The application of these methods to classify and compare animal behavior in disparate 
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physical environments has the potential to help us better phenotype animals and understand 

how they adapt to changing environments.  

1.3 Thesis rationale 

Despite the many technical advances that have enhanced our ability to collect, intervene 

in, and analyze behavior data, limitations in scalability presents a behavioral phenotyping 

problem. To overcome these limitations, in this thesis I develop platforms that integrate 

microscopy, computer vision, and machine learning techniques to more efficiently scale 

behavior data collection, intervention, and analysis of C. elegans. To summarize, there are 

three major challenges in behavioral genetics research in C. elegans: 

1. Collecting large amounts of continuous behavioral data cheaply, automatically, and 

with feedback control 

2. Annotating complex images to describe complex posture features 

3. Interpretation of behavior data, particularly in variable environmental conditions 

where dynamics occur at different time scales. 

1.4 Thesis outline 

In this thesis, I address each of the technical challenges laid out above and develop 

improved tools for behavioral phenotyping of C. elegans. It consists of five chapters. 

Chapter two describes the development of a scalable method for long-term continuous 

imaging and online behavior-conditional intervention. I demonstrate an application of this 

platform to understanding the consequences of quiescence deprivation to C. elegans health.  
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Chapter three presents a scalable smartphone-based method for distributing annotation of 

complex image characteristics. We then use this tool to annotate complex postures of C. 

elegans that are difficult to quantify with existing error-prone and time-consuming 

methods. In chapter four, I adapt machine learning methods to quantify and compare worm 

behavior in a variety of environments designed to span the range of environments worms 

may encounter in their natural habitat. We use this to examine the subtlety and richness of 

C. elegans behaviors in different physical environments and as a consequence at different 

time scales. The final chapter provides conclusions and a discussion of future work 

stemming from the results presented.  
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CHAPTER 2. A SCALABLE MICROSCOPY SYSTEM FOR 

ONLINE BEHAVIOR MANIPULATION 

2.1 Introduction 

In this chapter, I demonstrate a scalable microscopy system that enables online behavior 

detection and conditional intervention in the environment of individual animals. I show 

that it can be used to collect long-term continuous behavior data for multiple larval stages 

and the adult stage of C. elegans, and that this data is of sufficient quality for postural 

phenotyping. I then demonstrate a variety of computer vision and machine learning 

techniques that I use on the system for online behavioral phenotyping and data 

compression. Finally, I use the system to create an extreme sleep-deprivation model in C. 

elegans and evaluate the health effects on the model.  

2.2 Background 

Systematic intervention into animal life is a mainstay across biomedical research.  It allows 

us to understand how complex biological systems interact with external factors and is 

critical for understanding how diseases are caused and how to treat them. Just as medical 

doctors may diagnose disease based on behavior, evaluating animal behavior serves as a 

high-level proxy for health.  Pairing behavior monitoring with systematic intervention is 

therefore an important tool across biomedical research and is heavily used in fields ranging 

from drug discovery and aging to neuroscience56–61. 
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However, despite its prevalence, coupling behavior monitoring and external intervention 

is a labor-intensive and expensive process, even in model organisms. In many cases, we 

desire intervention only under certain conditions, such as dosing a drug only when it is 

needed. In these conditions, constant behavior monitoring may be required so that both 

short- and long-timescale behaviors can be effectively observed. This compounds with a 

need to compensate for the great variability in animal behavior by observing and 

intervening in the lives of many animals over long time periods. Under these 

circumstances, human monitoring quickly becomes intractable.  

 

A rich variety of automated laboratory tools offer the ability to systematize exposure to 

varying environmental conditions 28,34,44,53,62–64. However, systems that can respond to the 

behavior of individual animals in real time are costly to implement and require specialized 

tools and knowledge to build. Subsequent higher-depth phenotyping analysis of any 

behavior data collected is further time-limiting. These challenges force researchers to limit 

behavior feedback experiments to short timescales, small numbers of animals, or both.  

This chapter covers a DIY framework (mi-pi, or microscopy-pi) using off-the-shelf 

components that allows users to continuously collect, analyze, and respond to behavior in 

real-time while scaling efficiently to high animal volumes. Our system is at least an order 

of magnitude less expensive than equivalent systems suited for high-content long-term 

behavior analysis. Despite its DIY nature, it is simple to assemble, install, and use, and is 

scalable.  
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I first demonstrate that our system enables high-depth behavioral phenotyping of the small 

roundworm Caenorhabditis elegans, including postural dynamics. We show that we can 

collect continuous behavior data over days-long timescales for much smaller developing 

animals in addition to adults. We then develop several methods for measuring animal 

motion online including neural nets for counting and locating animals. The first of these 

neural networks is well-suited for applications where high accuracy is needed, while the 

second enables animal detection at rates faster than video frame collection. These features 

enable us to track and disrupt developmental quiescence and track health affects in C. 

elegans.   

While here we use C. elegans to demonstrate our system, we expect that it could easily be 

adapted for use with other model organisms, such as fruit flies or their larvae, and 

augmented with hardware for controlling exposure to alternative external sensory cues or 

drugs.  

 

2.3 Materials and Methods 

2.3.1 C. elegans maintenance 

C. elegans strains were maintained under standard conditions at 20°C unless otherwise 

noted 65. Strains used in this work include N2, CB101[unc-9(e101)], DA1814 [ser-

1(ok345)], and GT323 [lite-1(ok530)]. 

2.3.2 Plate assays 
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To prevent animals from leaving the microscope field of view (FoV), we prepared special 

plates. Palmitic acid has been demonstrated as an effective barrier for worms in behavior 

experiments66. It is typically applied as a solution in ethanol to a standard plate and the 

ethanol is allowed to evaporate off. However, it is hard to deposit in a controlled way due 

to the palmitic acid solution wetting the agar. We used an ethanol-sterilized piece of PDMS 

as a negative to prevent a 10 mg/mL palmitic acid in ethanol solution from wetting the 

center of a 5cm NGM plate, allowing the ethanol to evaporate for at least 30 minutes before 

removing the PDMS with tweezers. These plates were subsequently seeded with 10 ul of 

OP50 and incubated at room temperature for about 24 hours to allow a thin lawn to formed. 

Plates were stored at 4°C until an hour before use. For short-term assays on adult animals, 

animals were picked onto plates about an hour before experiments started after the plates 

had warmed to room temperature. For developmental assays, adult animals were bleached 

to obtain eggs. Eggs were allowed to hatch and larvae allowed to reach L1 arrest by 

agitating eggs overnight in M9 buffer. L1s were then pipetted onto an unseeded NGM plate 

and single animals were pipetted onto the prepared seeded palmitic acid plates. These 

plates were then parafilmed and incubated at 20°C until animals reached L3 stage (20 hours 

after plating), when each plate was placed on a mi-pi system. Developmental experiments 

lasted 44 hours, at which point worms have typically reached sexual maturity and plates 

were removed from mi-pi systems. At the 48 hour time point, the number of larvae and 

eggs on each plate were counted. Data from any plates where the original animal could not 

be found, or where any contamination or potential starvation was identified were censored. 

2.3.3 Microfluidic Experiment 
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We cultured animals under standard conditions until they reached day 1 adulthood. We 

then washed animals off of plates with M9 buffer and suspended animals in ~1mL of M9 

buffer with 0.1% Triton-X, a surfactant used to prevent worms from sticking to one 

another. We then loaded animals into microfluidic devices as previously described43.  

Animal behavior was collected with our microscope over the course of an hour.  

2.3.4 Microscope hardware 

The microscope is built from off-the-shelf parts and requires minimal specialized tools or 

skills to build. Almost all of the microscope can be built with hands and screwdrivers, with 

the exception of the LED driver used to drive the bright blue LED string, which requires 

soldering 6 joints. The housing is made from building blocks, which are easily 

reconfigurable (Figure 2-1). Once each microscope is built, it can be operated without a 

keyboard or mouse. The full list of materials and costs at time of writing can be found in 

Appendix A.1  Bill of Materials and at https://github.com/lu-lab/mi-pi. The total 

cost for a single system is ~$400. Extensive step-by-step documentation on building mi-pi 

can be found at https://github.com/lu-lab/mi-pi and in Appendix A.2  Hardware 

setup.  

https://github.com/lu-lab/mi-pi
https://github.com/lu-lab/mi-pi
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Figure 2-1 Building block microscope housing. Four mi-pi enclosures rendered with 

Stud.io 2.0. All parts are standard Lego pieces. 

 

2.3.5 Microscope control software 

Installing the appropriate software packages is often a barrier to using a ‘DIY’ system, so 

we have provided an image of an operating system with all packages installed, including 

the mi-pi software. On the system desktop, there is a shortcut icon that is used to start mi-

pi. On initial start-up, the user is guided through set-up of rclone (https://rclone.org/), a 

cloud storage sync program, and obtaining an authentication key for Google Spreadsheets 

associated with a Google account, which we use to control experiments (Figure 2-2). When 

the mi-pi user interface opens, users can adjust settings that control most aspects of the mi-

https://rclone.org/
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pi system, including the type of image processing, resolution of video, whether to stream 

video to YouTube, as well as annotate experimental metadata such as animal strain or age. 

The full list of settings with descriptions can be found in Appendix A.3  Software 

setup, along with software setup instructions.  

 

Figure 2-2. Mi-pi start-up user decision tree 

There are essentially three functions of the software: (1) to set up experiment parameters 

and metadata and ensure animals are in focus through a touch-based user interface (2) 
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collect video data and process it and (3) read and write experiment parameters and data to 

Google Sheets and use these to update hardware illumination parameters. The software is 

written in Python, using Kivy, an open-source, cross platform Python library for 

developing touch applications, which allows us to avoid requiring mouse and keyboard for 

the operation of each microscope. To process images, we use a combination of OpenCV, 

Tensorflow, and PIL (Python Image Library), and we interface directly with the Google 

Sheets API. A high-level software architecture diagram can be found in Figure 2-3. 

 

Figure 2-3 High-level software architecture of mi-pi. 

We use Google Sheets to allow experimenters to easily update experimental parameters 

remotely. These parameters include the updating interval of the system, as well as LED 
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matrix imaging modes (for example darkfield and brightfield), LED matrix color, and the 

state of the bright blue LEDs used for animal stimulation (Figure 2-4). At each update 

interval, the microscope queries the Google Sheet and relays these parameters to the 

microcontroller. At the update interval, we also read humidity and temperature from the 

sensor connected to the microcontroller.  We chose to use Google Sheets to communicate 

between remote users and the Raspberry Pis because the Google Sheet interface is easy-to-

use, is easily scaled up for many microscope systems, and freely usable. We use the 

command-line program rclone to upload data to any of a variety of cloud services, deleting 

data from the Raspberry Pis once we verify it has been uploaded to the remote to reduce 

the requisite size of the microSD card the Raspberry Pi uses as operating system storage. 

All of these features are easy to configure and parameters are adjustable in the microscope 

interface.  
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Figure 2-4 Google Sheet structure 

2.3.6 Microscope characterization 

We determined the resolution of the microscope using a 1951 USAF Target (ThorLabs). 

The resolving power is estimated by using mi-pi to image the target, which consists of 

series of lines at decreasing spacings. The minimum line spacing for which discrete lines 

were visible was 22.1 µm. The microscope’s field of view is approximately 1.5cm x 2cm 

and the magnification is 0.56x.  
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2.3.7 Post-hoc behavior tracking for system validation 

We used Tierpsy-Tracker (https://github.com/ver228/tierpsy-tracker) for post-hoc 

quantification of speed and posture for mutant and wild-type (N2) animals. To simplify 

processing for long-term experiments, we first concatenated movies into 10 minutes 

movies from the original 20s movie length. After processing data with Tierpsy-Tracker, 

we manually linked tracks from individual animals together over the length of the movie 

and exported velocity (in pixels/s) and posture (represented with ‘eigenworms’12) for 

individual WT and mutant animals. From velocity vectors we took only positive velocity 

values (forward speed) to compare across strains.  

2.3.8 Online motion analysis and feedback 

We used mi-pi to process image frames as they were being collected, while simultaneously 

capturing continuous video to disk. We used several approaches to estimate motion 

between frames. The simplest approach uses OpenCV, an open-source image processing 

software package, to convert the incoming image to grayscale and subtract it from the 

previous image. On this difference image, we perform a morphological opening, and then 

count the total number of pixels above the intensity threshold of image noise, which was 

identified on an individual experiment basis by the experimenter. This gave a reasonable 

estimation of the amount of motion between two frames under uniform lighting conditions 

for adults but performed poorly for much smaller larval animals. We addressed this by 

developing two convolutional neural network models using the Tensorflow Python 

package, one a slower but more accurate model using a Faster R-CNN object detection 

https://github.com/ver228/tierpsy-tracker
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architecture, and one using a much faster Mobilenet v2 object detection architecture 

(characterized below). We annotated images randomly subsampled from development 

experiments on 8 of our systems with labelImg (https://github.com/tzutalin/labelImg). Our 

Faster R-CNN model was trained on a set of 1,008 images that was validated with an 

independent annotated test set of 114 images, while our Mobilenet model was trained on a 

set of 5,109 images and validated with an independent test set of 517 images. 

To estimate motion using these object detectors, we computed the centroid of the bounding 

box of the detected worm with the highest confidence score every minute and calculated 

the Euclidean norm between consecutive centroids. When no worms are detected above a 

confidence threshold of 80%, no centroid is calculated and the next frame where a worm 

is detected is used to estimate motion from the last frame with a detection.  

Once we had quantified motion between two frames, we used the amount of motion to 

determine whether to stimulate the animals with bright blue light. For quiescence 

experiments we used the Faster R-CNN object detector to estimate motion and considered 

the animal in quiescence if its centroid moved less than 5 pixels (about 50 μm). For motion-

coupled systems, at every minute interval, if the animal’s motion did not exceed this 

threshold, it had a chance of being dosed with blue light for 10 seconds out of that interval. 

This chance is adjustable in mi-pi’s settings. In quiescence experiments described here, 

this chance ranged from 30% to 100%. As a control, animals from the same population 

were subjected to the same light dosage uncoupled from their motion. For these systems, 

the animal’s motion is quantified online, however, it is not used to make stimulus decisions. 

https://github.com/tzutalin/labelImg
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Instead, the total stimulus time from a paired motion-coupled system is used to update the 

dosage estimate every 6 hours. 

2.4 Results 

2.4.1 Scalable DIY systems for behavior monitoring 

To enable scalable long-term, high-content behavior phenotyping, we developed a low-

cost, DIY system from off-the-shelf components (Figure 2-5). The system is easy to 

construct (~ 2 hr total build time) and use (guided set-up in about 5 minutes). The main 

components include a Raspberry Pi and Raspberry Pi Camera for video acquisition, 

processing, and transfer, an LED matrix to enable high-contrast imaging, a high-intensity 

LED string for external intervention, and a housing made of building blocks (Figure 2-5a 

& c). The LED matrix, high-intensity LED string, and a humidity and temperature sensor 

are interfaced with the Pi via a serial connection with a microcontroller. We provide a 

detailed guide for constructing each system as well as operating system images for simple 

installation on the Raspberry Pi on our lab GitHub (https://github.com/lu-lab/mi-pi). Its 

building block construction enables a highly modular design that can be assembled or 

modified in minutes while maintaining structural uniformity among systems that exceeds 

that of most hobby-level 3d printers (about 10 micron building block tolerance vs. 200 

micron printer resolution) (Figure 2-5 and Appendix A.2  Hardware setup). The 

independent nature of individual systems enables uninterrupted video monitoring of 

multiple animal populations (strains, biological replicates, or controls) or individual 

animals, concurrently. Each system costs about $400 to assemble and represents a greater 

https://github.com/lu-lab/mi-pi
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than 10-fold reduction in cost over commercially available systems and traditional 

microscope systems (A.1  Bill of Materials). From these readily available and non-

specialist components, individual systems can run independently and collect high-content 

longitudinal behavior of animal populations continuously over days.  
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Figure 2-5 A scalable DIY system for online behavior-state feedback. a) External view 

of system with dimensions. b) Touchscreen interface screenshots. Upper screenshot is from 

settings page, and lower screenshot is from main page after an experiment is started. c) 

Cross-section of a mi-pi system. d) Example images from a plate and a microfluidic 
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experiment on the system, with inset of highlighted animals. e) System information flow 

during experiments. Raspberry Pi controls LED matrix, bright blue LEDs, and video 

capture, and collects and saves video, temperature, and humidity readings. Simultaneously, 

the Raspberry Pi computes motion from image data, uploads video and image data to 

remote cloud services, updates Google Sheets with motion, temperature, and humidity 

levels, and can stream live video to YouTube. 

Our microscope system software is easy-to-use and fully automates operation during 

experiments (Figure 2-2). Experimental set-up is guided by a touchscreen app that captures 

experimental metadata and initializes experimental conditions (Figure 2-2 and Figure 

2-5).  Once experiments are started, the experimenter can allow the system to run 

completely automated or control experimental parameters such as light exposure remotely 

via a Google Sheet during the experiment (Figure 2-4). As experiments run, data is 

recorded to each system’s Google Sheet, including temperature, humidity, and if desired, 

animal motion. Additionally, experimenters can optionally stream live video from their 

experiments to a YouTube live channel. Videos and images collected during experiments 

can be uploaded to most cloud storage platforms as the experiment is on-going, enabling 

remote high-depth phenotyping as videos are uploaded, in addition to online analysis 

capabilities discussed in more detail later. The mi-pi software is written in Python while 

the microcontroller (Teensy 3.6) runs an Arduino script that can communicate bi-

directionally with mi-pi. While here we demonstrate an optical intervention, other 

hardware could be integrated through unused microcontroller pins to intervene with other 

sensory modalities, for example chemo- and mechano-sensation, both of which can be 

minutely controlled through the use of microfluidic systems. 

Each system’s field of view is approximately 1.5cm x 2cm, with a resolution of 22 μm and 

magnification of about 0.5x, making it suitable for many small model organisms. The 
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system field of view and magnification can also be easily modified to observe larger 

organisms by adjusting the lens with a simple hand tool. Observing smaller organisms 

could be accommodated by switching to a higher magnification lens. At the time of writing, 

we have built 12 independent systems that have been actively used for a period over 6 

months to observe and respond to C. elegans behavior, collecting over 9 TB of video and 

image data.   

2.4.2 High-content behavioral phenotyping at population and individual levels 

We sought to show that our system has sufficient image quality and resolution to provide 

both individual and population-level behavioral data at a high phenotyping depth (e.g. 

ranging from discrete categories of movement to dynamic postural information). To do 

this, we selected several mutants with known behavioral phenotypes that would require 

posture and location tracking at the level of individuals. The two mutants we selected were 

ser-1, which encodes a serotonin receptor that is also an ortholog of human HTR2B, and 

unc-9, which encodes a protein involved in ion transmembrane transport67,68. The mutant 

ser-1(ok345) is known to have an increased amplitude of sinusoidal movement, increased 

body posture wavelength, and increased speed. Conversely, the mutant unc-9(e101) is 

known to have a decreased amplitude of sinusoidal movement and no recorded speed 

phenotype. We tracked populations of adult wild-type (N2) animals, as well as populations 

of several mutant strains with known behavioral traits for 20 minutes on standard agar 

plates to replicate these known behavioral phenotypes (Figure 2-6).  
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From these recordings, we extracted speed and posture of individual animals from each 

strain (n=12 animals, 117,400 total tracked frames for N2, n=14 animals, 79,370 total 

tracked frames for ser-1, n=12 animals, 135,480 total tracked frames for unc-9) and found 

that previously identified subtle behavioral phenotypes of tracked mutants were replicated. 

In our tracked dataset, we found that ser-1’s increased speed phenotype compared to WT 

animals was replicated (Wilcoxon rank-sum test with Bonferroni correction, p=2.9x10-22), 

as well as increased amplitude of sinusoidal movement (Wilcoxon rank-sum test with 

Bonferroni correction, p = 1.6x10-28) (Figure 2-6 a-b). Projections of ser-1 posture into the 

‘eigenworm’ space are also consistent with this finding (Figure 2-6  and Figure 2-7 

Posture projections into eigenworm space.). We also examined unc-9 mutants. We found 

that as expected, unc-9 animals had a significant amplitude difference from N2 (Wilcoxon 

rank-sum test with Bonferroni correction, p=0.011) (Figure 2-6).  These data show that 

our low-cost system can capture high-content phenotyping data and replicate known 

behavioral phenotypes. 
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Figure 2-6 Population and individual phenotyping. a) Speed histograms of wild-type 

N2 (WT), unc-9 mutants, and ser-1 mutants animals. b) Maximum bend amplitude 

(measured in pixels) distribution for N2 (WT), unc-9 and ser-1 mutants. c) Example 

eigenworm amplitude traces for N2 (WT), unc-9 and ser-1 mutants. The combination of 

the amplitude of the first five eigenworms has been demonstrated to capture about 95% of 

the variance in C. elegans posture 12.  
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Figure 2-7 Posture projections into eigenworm space. Color indicates density of 

projections into the space of the first and second projection. Worm shapes show the 

‘eigenworm’ associated with each axis (the same eigenworms are used for all data 

projections). 

To track individuals over extended timescales, we used agar plates with palmitic acid 

barriers to retain individuals in the field of view. When animals encounter the resulting 

crystalline structures, they reverse back into the arena. Agar plates were then seeded with 

OP50 bacteria to prevent animals from starving. We imaged a population of animals 

starting at the second larval stage (L2) and recorded their behavior over the course of 30 

hours, through to adulthood, tracking their behavior post-hoc through developmental stages 

(Figure 2-8). As expected, locomotion of animals fluctuates over time, with larva 

frequently moving at faster rates relative to their body length. As animals reached 

adulthood, we found population velocity relative to length dropped drastically as worms 

spent most of their time feeding.   
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Figure 2-8 Longitudinal larval imaging a) Example images of animals in second larval 

stage to adult. b) Post-hoc quantification of population motion levels throughout 

development, measured as average velocity of animals normalized to average length of 

animals through development. Breaks in velocity are a result of interruptions in internet 

connection (using an early version of mi-pi). N = 30 

These experiments demonstrate that (1) both adult and larval behavior can be captured on 

these systems, (2) image quality is high enough to capture and quantify posture and (3) the 

systems can capture behavior continuously over extended timescales. 

2.4.3 Longitudinal on-line behavior tracking through animal development 
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To intervene in each animal’s life depending on that individual’s behavior, we first require 

a way to track behavior over long time periods in a timely way so that the intervention is 

concordant with the behavior’s onset. As a first target, we chose to identify quiescence 

bouts within the lethargus developmental state in C. elegans development. These periodic 

bouts are akin to human sleep and under extreme circumstances deprivation can be lethal 

to worms 69. Each lethargus state typically lasts 2-3 hrs and these are spaced throughout 

the animal’s days-long development 70,71.  During lethargus, worms are less active, and 

when animals are deprived of quiescence by external stimulation, they face an increasing 

pressure to enter a quiescent state 70. Quiescence behavior spans development, while 

switching between quiescent and active states occurs on the timescale of seconds to 

minutes, demanding a need for timely behavior tracking over a period of days in order to 

consistently perturb each individual animal’s quiescence state 71.  

In order to intervene on quiescence behavior, we first developed methods for detecting 

quiescence at relevant timescales.  A simple method that is often used to detect movement, 

image subtraction, can be used to quickly estimate whether animals are quiescent. In short, 

greyscale images are subtracted from the adjacent frame, and a threshold is used to count 

how many pixels change more than a threshold amount. A second threshold for how many 

changed pixels constitutes animal movement can be imposed to estimate the degree of 

animal movement (Figure 2-9 a). This method has been used previously to monitor C. 

elegans healthspan and quiescence 7,70–72. We used the image processing package OpenCV 

to process pairs of images collected at time intervals that can be adjusted in mi-pi’s 
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interface.  Using this motion detection scheme, we processed images at a rate of 1.16 + 

0.32 seconds (mean and standard deviation from 1267 instances) (Figure 2-9).  

2.4.4 High-accuracy near-online animal motion measurement 

While the image subtraction method had more than sufficient temporal resolution to meet 

quiescence detection needs, it was very sensitive to illumination conditions and animal 

contrast from background (particularly bacterial lawn artifacts), making it less robust at 

measuring movement of animals at younger larval stages. When imaging more than one 

animal, this method requires normalization to animal size or alternatively physical isolation 

of each animal.  Lastly, if animals are highly confined, as is common when tracking many 

individuals simultaneously over long timescales, higher temporal resolution may be 

required to detect animal movement, as the animal is more likely to return to its original 

position after moving.   

To address these shortcomings, we trained a convolutional neural network to identify 

worms and track their location. We chose a Faster R-CNN, a model architecture shown to 

have high accuracy on the COCO image dataset 73–75. We used transfer learning to re-train 

the model’s final layer with images collected on our fleet of systems of animals throughout 

development (1,008 annotated images randomly selected). The average precision of this 

detector on our test dataset of 114 representative images was 0.919, and the recall (a 

measure of the false negative rate) was nearly 1 (indicating no false negatives) for precision 

values of 0.94. (Figure 2-9 e and  Figure 2-10). When integrated into the mi-pi system, 

the average speed of inferencing was 82.23 + 35.05 seconds (mean and standard deviation 
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for 22, 280 observations on 8 mi-pis) built with Raspberry Pi 3Bs (Figure 2-9). On a 

Raspberry Pi 4 (4 GB RAM) system, the average speed of detection was 14.58 + 1.55 

seconds (mean and standard deviation for 710 observations on 1 mi-pi) (Figure 2-9 d) .  

While Faster R-CNN object detection was significantly slower than the image differencing 

method, it was much more robust at detecting movement of younger worms, and still met 

speed requirements based on the timescale of quiescence bouts during C. elegans lethargus, 

which occur on the order of minutes in C. elegans 71. We also found it to be remarkably 

resilient to changing and non-uniform lighting, as shown in Figure 2-9 c. This method also 

provides other information useful in understanding the social contexts of behavior, 

including the number of worms detected in the image and the physical location of those 

animals, while requiring no parameter setting on the part of the user.  

2.4.5 Realtime animal motion measurement 

While the Faster R-CNN model was sufficient for detecting quiescence bouts and other 

longer period behavior, many behaviors occur on a much shorter timescale. In addition, 

our continuous recording scheme generated raw video data at a very high rate – with 10 

systems operating, this easily generated 7 GB of video an hour (>300 GB for each set of 

10 experiments over 44 hrs). Any higher-depth post-hoc behavior quantification would 

often take the length of the experiment again to complete. This inefficiency is wide-spread 

throughout behavior imaging and leads to ‘unmined’ behavior data, where despite high-

quality long-term imaging, only the simplest metrics are applied to describe the animal’s 

behavior18. If the worm’s location could be determined faster than the video collection rate, 
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however, we could compress data significantly by saving video data sparsely while at the 

same time enabling more efficient post-hoc analysis, and have more biological applications 

by virtue of a shorter detection latency.  

To see if truly online detection was possible on a low-cost system like mi-pi, we used 

transfer learning to re-train a Mobilenet v2 object detection model, a model commonly 

used on smartphone processors for real-time analysis76. Our training data once again 

consisted of images collected on mi-pis collected throughout animal development, this time 

with a training set of 5,109 total images. On our test set of 518 images, this model 

performed with an average precision of 0.428 (Figure 2-9).  While the average precision 

of this model is lower than our Faster R-CNN model, we qualitatively saw that this lower 

precision resulted primarily from poor detection of larval animals, likely due to the lower 

resolution input images required for the Mobilenet model. Similarly, we also saw 

substantially lower recall, indicating a much higher false negative rate that is likely also 

due to smaller worms and lower resolution images (Figure 2-10).We first deployed this on 

a Raspberry Pi 4 (4 GB RAM) mi-pi system and found that detections took 1.16 + 0.18 

seconds (467 observations on 1 mi-pi) (Figure 2-9 e). Although not yet at the video 

framerate, the speed of this method was comparable with the image differencing method 

we first applied to detect quiescence, and thus sufficient for many applications while also 

providing higher quality information. We then deployed the model on the same system 

with a USB inferencing accelerator (Coral Edge TPU). On this system, we found we were 

able to inference at a speed of 48 frames per second (0.0206 + 0.0076 seconds per frame, 

from 12,053 observations on 1 mi-pi), almost twice the maximum framerate of the camera 
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(Figure 2-9). This is more than sufficient for online speed measurement, and could be used 

to detect instantaneous reversals that start at a sub-second time scale. 
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Figure 2-9 Neural net and computer vision image processing schemes for online 

behavior measurement. a) image differencing motion scheme and example with L4 

worms. b) Convolutional neural net motion scheme and example with L3 worms. c) Faster-

RCNN success in varied illumination conditions. d) Image processing speed for different 

behavior measurement schemes and system configurations. Box indicates quartiles, with 

whiskers extending to 1.5 times the inter-quartile range. Gray diamonds indicate points 

outside of this range. 

 

Figure 2-10. Precision- recall curves for Faster R-CNN and Mobilenet v2 CNN.  

The variety of motion detection modalities we have developed for this system are well-

suited for detecting a wide range of C. elegans’ behavioral states online. For example, 

foraging and dwelling states persist for minutes and could be detected using this system 77. 

We also demonstrated online tracking capabilities that could enable tracking of 

instantaneous features of behavior such as changes in velocity and acceleration. In addition, 

online animal tracking is important in reducing the time burden of post hoc behavior 

analysis. Implementing this in a scalable system is particularly important and represents an 

important technological advancement. In the remainder of this chapter, we will again 

consider the example of C. elegans quiescence to demonstrate an important biological 

question that is addressable through online behavior-based interventions. 
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2.4.6 Quiescence perturbation through scalable online motion analysis 

Sleep is a highly conserved behavior across phyla in the animal kingdom, suggesting that 

it is very important for animal survival 78. Several conserved characteristics of sleep include 

increased sleep pressure when animals are prevented from sleeping and higher response 

thresholds to external stimuli during sleep. These sleep characteristics have also been 

identified in C. elegans lethargus. Because responsiveness is inextricable from sleep 

quality, interrupting sleep regardless of the animal’s present motion state ignores the 

contextual neural state that prompted a particular behavioral response. Perturbing 

quiescence based on motion level, in contrast, would allow us to push animals to their sleep 

deprivation limit and to examine the consequences to animal health. We chose to use 

intense blue light, a strong aversive stimulus and stressor for C. elegans, to interrupt 

quiescence 79,80.  

While there have been previously reported systems that enable quiescence state dependent 

stimuli, they are poorly scalable 7,72,81. Several of these use conventional fluorescence 

microscopes paired with conventional computers to gain optogenetic and calcium imaging 

activity, making them very costly and low-throughput 72,81. Another system that uses a 

conventional computer and scientific camera has been previously shown capable of 

imaging 100s of worms at once to perform high-throughput C. elegans lifespan monitoring 

6. However, while it can detect and interrupt quiescence based on image differencing 

methods, this online perturbation is still limited to a throughput of a single animal at a time 

7. This limitation makes it about an order of magnitude less cost efficient compared to mi-

pi. 
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A challenge that arises from behavior-dependent intervention is constructing the 

appropriate controls. On initial examination it may seem sufficient to provide pairs of 

animals with inverse stimulus conditions, for example one animal receives a stimulus when 

it performs a behavior, while a paired animal receives a stimulus when it does not perform 

that behavior. However, under these conditions, if the behavior does not occur exactly half 

the time, one animal will experience a higher dosage than the other. This control scheme 

neglects the potential effect of the differences in stimulus dosage rather than the specific 

temporal delivery of the dosage. A second complicating factor is the well-documented 

effects of rearing conditions on animal behavioral biases. This suggests that the best 

controls would be isogenic animals reared under the same conditions (i.e. from the same 

parent with synchronized development), then split such that one receives stimulus 

dependent on behavior while the control animal receives an equivalent dosage of the 

stimulus uncoupled from its behavior.   
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Figure 2-11 Dosage-matching scheme. a) Experimental scheme for quiescence 

perturbation experiments. b) Example of a paired system. Upper plot shows the total 

illumination time for the motion-coupled and motion-uncoupled paired system as a 

function of experimental time. At each gray line, the motion-uncoupled system updates its 

estimation of total dosage based on the dosage of the motion-coupled system. Lower heat 

map plots show online motion measurements (capped at 100 pixels moved) for paired 

systems, with the actual illumination profile for each system between the heatmaps. The 

motion-coupled system in shown in dark blue and motion-uncoupled system is shown in 

light blue. Gray sections in heatmap motion plots indicate times where no worm detection 

exceeded the confidence threshold of 80%.  

To implement this, we developed a proportional control scheme to ensure that pairs of 

experimental and control animals reared together experience the same stimulus dosage 

despite experiencing different temporal distributions of the dosage (Figure 2-11 b). We 
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accomplish this by estimating the percent of time animals will spend in quiescence, and 

randomly deciding at each short time interval (here, 1 minute) whether to expose the 

control animal to light with a probability matching our estimation of quiescence proportion. 

At defined intervals (here 6 hours to ensure that stereotypical lethargus time scales are well 

exceeded), the probability of light exposure is updated proportionally to the actual exposure 

of the experimental animal.  

We then evaluated the effect of blue light exposure during C. elegans quiescence on the 

number of progeny (both eggs and larvae) 50 hours after the start of the blue light exposure 

regimen (about 6 hours after blue light regimen was stopped and about 24 hours after 

animals reach maturity). We dynamically perturbed C. elegans sleep by dosing 

experimental animals with intense blue light only when animals were inactive, using the 

Faster R-CNN to measure animal centroid movement at 1 minute intervals. Animals whose 

bounding box centroids moved less than 5 pixels over each interval were deemed to be 

quiescent. To ensure that animals were not dosed at such a high level as to be lethal, we 

built in both a cap on total light exposure via a total percentage of time animals may be 

dosed, i.e. 0% means they are never dosed, even in quiescence, and 100% means that every 

time they meet the quiescence criteria they are dosed. A random number generated at each 

update interval was compared to the total allowable light exposure percentage in order to 

determine the actual blue LED state. In contrast, on systems where animal motion was 

uncoupled from light exposure, the total light exposure measured on the motion-coupled 

system was compared to a randomly-generated number at each update interval to determine 

illumination state.  
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Individual L1 animals were placed on seeded agar plates with barriers to prevent animals 

from leaving the field of view, and grown until L3 stage, at which point each plate was 

aligned on a mi-pi system and experiments were started. In addition to WT animals 

experiencing motion-coupled and motion-uncoupled illumination, we also used animals 

with the light-sensing mutation lite-1 to determine whether any effects on number of 

progeny were related to effects of light exposure other than light sensation, for example 

UV damage 82. This experimental scheme is laid out in Figure 2-11. 

 

Figure 2-12. Progeny counts for sleep-deprivation model. a) Number of larvae counted 

for individual animals as a function of the total dosage of illumination. b) Number of total 
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progeny (eggs and larvae) counted for individual animals as a function of the total dosage 

of illumination. Orange dots represent animals on motion-uncoupled systems and blue dots 

represent worms on motion-coupled systems. Left column is WT animals and right is lite-

1 light insensitive mutants. WT motion-coupled n = 30, WT motion-uncoupled n = 23, lite-

1 motion-coupled N = 43. 

At low light dosages (< 50 minutes total distributed over 44 hrs), we found that progeny 

counts of animals whose light exposure was motion-coupled, motion-uncoupled, and light-

insensitive were not distinguishable, suggesting some tolerance of blue light (Figure 2-12). 

In light of this, we increased the maximum allowable exposure such that every time animals 

move less than the threshold distance, they are exposed to light.  The resulting broad 

variation in larvae and progeny is expected as behavior, including egg-laying is both 

stochastic and individualistic. In addition, we note that motion-uncoupled animals may still 

experience quiescence interruption, since their light dosage is semi-random. Further, 

motion-uncoupled animals exposed to light dosages over about 50 minutes consistently 

bore more progeny by the endpoint time we used. lite-1 animals in motion-coupled 

stimulation also had a strong decrease in larvae and progeny with increasing light dosage. 

This suggests that the sensation of light may not be the only way that our blue light stimulus 

affects animals. It may instead suggest that the blue light is providing a stressor during 

quiescent periods, potentially in addition to eliciting an aversive response from the light 

stimulus. While these results are not yet conclusive, greater numbers of animals exposed 

at these higher dosages will provide greater statistical power upon which to build.  

2.5 Discussion 
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In this work, we have built a scalable system that enables conditional intervention into 

animal life. While intervention into animal life is commonplace in biomedical fields, 

conditional intervention is substantially more challenging, as it requires either human 

judgement or a high level of automation to intervene at the correct point over potentially 

very long time scales. Here, we showed that we can intervene on animal life conditional 

upon their behavior over the time scale of days.  

Our results intervening in C. elegans quiescence so far indicate that quiescence interruption 

impacts animal development. While we are aware of one other system that is theoretically 

capable of closed-loop sleep deprivation, experimental results from this system have not 

been published, because this system scales poorly without a way to illuminate single 

animals selectively 7.  Other limitations of the system are their use of image subtraction as 

the sole online metric they can measure and collect timelapse data instead of continuous 

video data, likely because quiescence behavior occurs on second to minute timescales. In 

contrast, we have demonstrated that we can track animals online using a neural net. Thus, 

our system has potential to identify (and respond to) other behavior that occurs on the order 

of less than a second.  

While here we demonstrate tracking of worms online using an object detection neural net, 

neural nets have also been effectively demonstrated for segmentation of images 83. In 

particular, MobileNet DeepLab architectures allow fast semantic segmentation that would 

likely reach real-time or almost real time processing with the use of a USB accelerators 

such as the one we use here. It is possible to run both neural nets in sequence on each 

image, possibly also in real-time or close to it on a USB accelerator. This has important 
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implications for potential future behavior tracking, as segmentation at high speeds could 

provide a way to track and respond to the worm’s posture. Tracking of animal posture for 

animals with articulated joints has been successfully demonstrated with DeepLabCut and 

could also be adapted for use on the mi-pi system for animals such as bees or ants 84,85. For 

C. elegans, it may also be very useful to track not only where worms are, but where other 

relevant landmarks are, including where eggs are laid, and where the bacterial lawn is. We 

have done several preliminary experiments tracking eggs that suggest that under slightly 

higher contrast or higher magnification conditions, egg counting may be feasible (Figure 

2-13).   

 

Figure 2-13 Faster R-CNN egg detection precision-recall curve. A Faster R-CNN object 

detection network was trained to detect C. elegans eggs from images captured on 

conventional dissecting microscopes. 

In this work we have limited our intervention to a purely light-based stimulus. However, 

other methods of intervention could be incorporated in a straightforward way. As the Lu 

lab has significant expertise in microfluidics and microfluidic control, a natural next step 

might be to use mi-pi to sort animals based on their behavior in droplet microfluidics by 
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using the microcontroller to control a pressure source 62, or to drug animals only under 

certain behavioral conditions. One could also imagine complex tests of C. elegans learning, 

wherein animals are given a choice of two food sources and given aversive stimuli only in 

association with one food source. These applications are currently only possible on very 

complex and expensive systems where they can only be achieved on a small scale.  

This is a very powerful technical tool that changes the scope and scale of conditional 

intervention experiments. We provide extensive documentation on its construction and 

usage and believe that many researchers, including those outside of the C. elegans space, 

will be able to use or adapt it to their needs.  
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CHAPTER 3. FAST, VERSATILE AND QUANTITATIVE 

ANNOTATION OF COMPLEX IMAGES 

3.1 Introduction 

The accelerating ease of collecting very large image data sets (terabytes to 

petabytes) has led to a shift in scientific bottlenecks from image collection to image 

analysis across many disciplines, including connectomics24,86,87, cell lineage tracing88, and 

ethology89–92. Although highly specialized computational pipelines are emerging to address 

this new bottleneck, these pipelines require significant effort to develop, are 

computationally expensive and not error-free, and may still rely on human image 

annotation to establish ground truths. The widespread dependence on human image 

annotation or correction is likely to continue, and yet tools for image annotation, especially 

at large scales, often do not meet the needs of researchers.  

Specifically, tools for quantitative annotation of images are hindered by a trade-off 

between speed, accuracy, and versatility. Some automated tools require extensive tuning 

or parameter optimization prior to annotation to enhance accuracy, and many image 

processing pipelines are not well-suited for heterogeneous image sets. In addition, many 

tools for human annotation limit the way users can define image features of interest, for 

example, via rectangles, polygons, or circles25. Annotation speed is limited by the 

complexity of annotation software, and, ultimately, how quickly annotators can mark 

phenotypes accurately93. Equally critical for efficient annotation of large datasets is ease in 
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distributing annotation tasks, as well as broadness in settings or locations where users can 

annotate. To serve the greatest number of researchers effectively, tools for large scale 

image annotation should be generalizable, fast, and accurate.  

Here we report a highly versatile, fast, and quantitative method for image 

annotation. Features of interest of an arbitrary image can be annotated simply from user’s 

finger- or stylus-tracings. We demonstrate the use of a simple and intuitive smartphone- 

and tablet-based app to annotate complex body postures in Caenorhabditis elegans, 

morphology of stem cell aggregates, and root growth of Oryza sativa (rice) and Zea mays 

(corn). We crowd-sourced annotations of over 16,000 nematode images, 500 stem cell 

aggregate images, and 900 root images, with a total of over 30,000 user annotations 

(Figure 3-1a-e).  
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Figure 3-1 (a) Screen capture of Android interface of worm tracing app, ‘Wurm Paint’. 

See Supplemental Movie 1 for a video of the app in use. (b) User annotations of worm 

posture in binary image, grayscale brightfield image, and grayscale darkfield image. (c) 

User annotations of stem cell aggregate morphology using app with same source code as 

Wurm Paint. (d) User annotations of rice root structure. Left-hand images temporally 

precede right-hand images. (e) User annotations of corn root structure. Left-hand images 

temporally precede right-hand images. 

 

3.2 Materials and Methods 

3.2.1 Development of image annotation app 
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The app is written in Java, utilizing Android Studio to package the app for Android phones. 

Briefly, the app loads images from an online database managed on Google’s Firebase to 

the user’s Android device, on which users draw their best annotation. The structure of our 

database is shown in Figure 3-2. The user then has the option to clear their annotation and 

try annotating again before uploading, to report the image as something they are unable to 

annotate, or to load a new random image from the cloud database. Once the user is satisfied 

with their annotation, they upload their annotated image (as well as vectors of the 

annotation’s trajectory) and are immediately presented with another image from the image 

set. The app conforms to material design and focuses on clean user interfaces for better 

usability and a smoother drawing experience.  

 

Figure 3-2 Top-level (left) and expanded (right) structure of the root tracing app database. 

All apps have similarly structured databases. ‘Bad_images’ contains mapping to user-

reported images. ‘Master_upload’ defines which source image sets are live on the app, as 

well as the number of images in each source set. User feedback is stored in the ‘ratings’ 

structure. Finally, ‘uploads’ maps user annotations (with user id, image name, and date and 

time of annotation) to the source image. In newer app versions available on our Github, we 
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also save line trajectories at the bottom of the ‘uploads’ structure. To initialize the app, 

only the ‘master_upload’ structure is needed. 

3.2.2 Beta-testing of WurmPaint example application 

During beta-testing, we recruited 6 users, 4 of whom work with C. elegans on a daily basis, 

with the other 2 having some general knowledge of the worm. Although we collected more 

annotations from other users, including children, only the annotations from these 6 users 

were used in our behavioral analysis of C. elegans, and make up >90% of the total 

annotations collected. 

 

Several Morningside Elementary School (Atlanta, GA) students tested the usability of the 

app by drawing worm shapes with their finger. Combined, students annotated 

approximately 30 worm images, none of which were used in worm posture analysis (see 

below). All children who annotated using the app did so with the verbal consent of their 

parents, and no demographic or other information was collected from them.  

 

Annotations from users of our example app published on Google Play are not included in 

this study, but we inform users on our Google Play site, on our app information site 

(https://sites.google.com/view/wurm/app-privacy-policy), and within the app itself what 

information we collect: user emails so that they may establish an account; annotations they 

produce; timestamps of when each annotation is updated. No demographic information is 

collected from users and we do not contact users via their email or share their email 

addresses.  

https://sites.google.com/view/wurm/app-privacy-policy
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To familiarize non-expert users with typical worm movement and shapes, we assembled a 

brief tutorial https://sites.google.com/view/wurm/tutorial. As general guidelines, we asked 

users to draw a continuous contour along the midline of the worm, starting at one end of 

the worm to the other end, so that the contour did not contain sharp corners, rather smooth 

bends along the length of the worm.   

3.2.3 Measurement of annotation speed 

We collect timestamps when users upload images and drawing vectors with a 

resolution of 1s, based on the user’s device’s time. To determine a conservative average 

user annotation speed, we grouped all annotations by user and computed the time between 

each upload for that user. All inter-upload times were pooled. Because inter-upload times 

could range from a few seconds to days depending on the user’s usage frequency, we 

imposed an upper threshold of 30s for worm image annotations and an upper threshold of 

90s for root image annotations to determine the average user annotation speed. 

3.2.4 Worm tracking 

We built upon an existing worm tracker10 for our initial image analysis and to 

identify movie frames where worms were partially self-occluded (i.e. ambiguous). A subset 

of these frames was uploaded to our database for annotation. Using the generative 

algorithm included in the existing worm tracker to predict worm posture for occluded 

shapes, we optimized parameters for our data set and found predicted worm postures for 

several full videos from which we had drawn ambiguous postures for our database. The 

https://sites.google.com/view/wurm/tutorial
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worm tracker uses MATLAB software (we used MATLAB version 2017a). To evaluate 

the time required to process individual frames using this worm tracker, we used MATLAB 

to measure how long the point-swarm (PS) optimization (generation of alternative posture 

predictions) required for each ambiguous frame. This step took an average of 776.2 ± 5.2 

s/ ambiguous frame (95% CI, n = 66) with parallel processing (a local pool consisting of 4 

cores). After this generative step, a progressive optimizing interpolation (POI) step 

evaluates the alternative posture predictions to determine which makes sense in the context 

of the worm postures in the surrounding frames. For this step, we timed the total time until 

a solution was generated.  For a movie with 444 ambiguous frames, this step required 155.5 

s/ ambiguous frame (equivalent to the time required for > 20 human annotations). 

Combined, the PS and POI tracking steps required on average 931.7 s/ ambiguous frame, 

or the equivalent of 133 human annotations. The computers used were Dell Precision 

Tower model 5810 with 32 GB RAM and Intel Xeon CPU (model E5-1620 v4, 3.5 GHz). 

3.2.5 Post-processing of annotated worm images 

Although the current version of the app allows us to upload the coordinate 

trajectories of user annotations, the initial version that much of the data presented here 

originates from only the annotation superimposed on the source image. Thus, to extract 

annotations and reconstruct trajectories from uploaded images, some post-processing of 

annotated images was required. Briefly, to identify annotations, we found non-grey pixels 

in each image. We then binarized the annotation alone and skeletonized the image, 

followed by removal of branch points if branch points existed. We then checked the 

curvature of each line segment to ensure it fell in a reasonable range – if it did not, we 
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broke the segment at its point of maximum curvature. Using the resulting line segments, 

we attempted to reconnect them to each other using both the proximity of segment 

endpoints and local segment slope. Once segments had been reconnected, the worm’s 

midline was reconstructed using the projections onto the first five eigenvectors as described 

previously12. Average speed of this post-processing was 0.0597 s/ frame (n = 1000). This 

process is illustrated in Figure 3-3a, and code for these steps is available in our GitHub 

repository. However, we emphasize that other app users need not perform any post-

processing of images. Instead, coordinate trajectories can be accessed by parsing JSON 

files that are downloadable from our Firebase database.  

 

Figure 3-3 Worm annotation characterization (a) Reconstruction pipeline for worm 

midlines. Worm backbone annotations used in the main text were collected as images 

superimposed on the source image, so midlines must be reconstructed. Newer versions of 

the app save the drawn trajectory directly, so reconstruction is unnecessary. We found non-

gray pixels (annotations) within the annotated images and binarized the annotation, 
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followed by breaking the annotation at points of intersection or extreme curvature. Then 

we used local curvature and distance metrics to predict which line segments were 

connected and reconstructed the midline and image. (b) Probability density of similarity 

scores for ambiguous posture predictions compared to ambiguous posture consensus 

annotations. Red dashed line is threshold used for consensus generation. The broader 

similarity score distribution compared to unambiguous annotation to unambiguous ground 

truth comparison is caused partially by user variability and lower user accuracy and 

partially by the predictive nature of the state-of-the-art algorithm that sometimes leads to 

incorrect solutions. N = 449 (c) First four eigenvectors (‘eigenworms’) of the C. elegans 

posture space computed from four annotated videos (>37,000 frames). Computing 

eigenworms from only unambiguous postures or both ambiguous and unambiguous 

postures resulted in little difference, as reported in other work. Compared to eigenworms 

reported in other work, ours are similar, but with different eigenworms capturing a greater 

fraction of the total postural variability. 

3.2.6 Similarity score calculation 

In order to compare two worm annotations, or a worm annotation to ground truth, we 

matched 100 points between two worm midlines and computed the Euclidean distance 

between each pair, summing all of these distances and normalizing the distance by 75% of 

the width of that particular worm at each of the 100 matched points. Mathematically,  

 

1 −∑
||𝑚𝑖𝑑𝑙𝑖𝑛𝑒1𝑖 −𝑚𝑖𝑑𝑙𝑖𝑛𝑒2𝑖||2
0.75 ∗ 𝑤𝑜𝑟𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑖

100

𝑖=1

 

 

(1) 

This metric is equal to one when both worm midlines match exactly at each point. The 

greater the deviation from one, the worse the midline equivalency. 

3.2.7 Consensus contour generation 
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To construct consensus midlines from user annotations, we noted that even for pairs 

of reconstructed midlines that were below a zero similarity score, users were making 

essentially the same annotation. To identify a threshold similarity score below which we 

could consider two annotations to be from distinct groups, we modeled the distribution of 

similarity scores from user-user comparisons (Figure 3-4d) as a mixture of gaussians. The 

primary mode was centered at -0.068 and the secondary mode was centered at -3.260. To 

ensure that most generally similar annotations were grouped together, we computed a 

threshold two standard deviations below the primary mode, a similarity score value of -

0.809. We found that several other methods of identifying this similarity score threshold 

identified thresholds that ranged from slightly positive to slightly negative. These methods 

included the Otsu thresholding method on user-user similarity scores and searching for the 

lowest threshold of the user-user similarity scores for which the Wilcoxon rank-sum test 

failed to reject the null hypothesis that the user-user similarity scores and user-ground truth 

similarity scores were drawn from the same distribution at the 5% significance level. 

Having identified a reasonable threshold, we generated consensus contours. During 

this process, we used the projections of worm backbones into the space of the first five 

eigenvectors. We identified and removed annotations whose eigenvector projections were 

outside of the range of C. elegans posture space. Then, for each source image, we identified 

all annotations of the source image and removed any remaining outlier annotations of that 

image, where an outlier is a value more than three absolute deviations away from the 

median. We computed similarity scores for all pairs of annotations and used our previously 

identified threshold to identify pairs of images that were very similar to one another. We 
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further grouped these pairs into larger groups of similar annotations and identified the 

group of similar annotations with the largest number of members. For example, if image 

pairs (1, 2), (2, 3) and (5,6) all have similarity scores above our threshold, we take the 

union of all pairs that contain images 1, 2 and 3 and, separately, the union of all pairs that 

contain images 5 and 6. If more images belong to the first union set than the second, we 

use the first set to calculate a consensus contour by finding the centroid of this group of 

contours in the five-dimensional space of posture projections. 

3.3 Results 

3.3.1 General operation and versatility 

Our app is indiscriminate to the nature of images or annotations. Worm images on 

our database were derived from brightfield and darkfield microscope configurations, solid 

and liquid imaging environments, and included both processed, binarized images as well 

as unprocessed frames from raw videos (Figure 3-1b). Stem cell aggregate images on our 

database were derived from phase images of both live and fixed aggregates grown in tissue 

culture plates as well as aggregates grown in microfluidic devices 94 (Figure 3-1c). For 

both nematode and stem cell aggregate applications, users are presented with randomized 

images from the full dataset and draw a single contour. This generic annotation scheme 

could also be used to trace individual cells or features of developing organisms (such as 

Drosophila melanogaster, Xenopus, or zebrafish), to name a few. To allow users to 

annotate video frames in a pre-defined order (e.g. when temporal context is critical to 

annotation) and in cases where an image contains multiple features of interest, we created 
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a second version of the app that presents uploaded images in order and allows users to draw 

as many contours as needed. We used this app version to annotate rice and corn root 

systems (Figure 3-1d-e). We expect that these two versions of the app could serve many 

other image annotation problems equally well with little to no changes of the source code. 

3.3.2 Simplicity and Speed 

The app is extremely easy for annotators to use. By using smartphones as the basis 

for our image annotation system, users need only draw with a finger or stylus, as compared 

to the greater difficulty of drawing with a computer mouse, or, as in ImageJ, drawing 

piecewise lines. The interface itself is simple and intuitive compared to popular image 

annotation and analysis tools. We had 7-12 year-olds use the worm tracing app, and found 

that it was simple enough for them to use without help after a brief explanation (Figure 

3-4a). Although the quality of children’s annotations was far more variable than 

annotations by adults, many of the children’s annotations were of indistinguishable quality 

compared to those of adults and annotations inconsistent with other user’s annotations were 

easy to identify. 

We sought to demonstrate that our app enabled fast annotation. For two of our 

applications, we quantified the time between image uploads of single users as a 

conservative estimate of time per annotation. For worm tracing, which always required a 

single user-drawn contour, the average annotation time was 7 ± 0 s/image (95% CI), and 

for root tracing, which often required multiple contours per image, the average annotation 

time was 14 ± 1 s/image (95% CI). To benchmark user annotation speed in our app, we 
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annotated worm images using ImageJ23, which routinely required more time. In addition 

to the importance of individual users’ speed, overall speed is dependent on how many users 

can annotate in parallel. Smartphone-based annotation not only allows us to easily 

distribute image annotation tasks as narrowly (a single expert) or broadly (general public) 

as desired, it also expands geospatial locations and settings where users can annotate95. 

3.3.3 Annotation accuracy 

We assessed the ability of users to trace known shapes accurately.  We did this by 

comparing averaged hand-drawn worm postures to computationally generated ground truth 

postures.  For worms with unambiguous postures, we matched points along the averaged 

hand-drawn worm midlines with points along the corresponding ground truth midline and 

summed the Euclidean norm between all point pairs. To determine an overall similarity 

between any two worm midlines, we reasoned that an acceptably similar midline should 

lie within the center three-quarters of the worm’s total width at any given point.  We 

therefore normalized similarity scores so that a score of one indicated identical midlines, 

any positive score indicated that the midlines were on average less than three-quarters of 

the worm width apart, and negative similarity scores indicated that midlines were further 

than three-quarters of the worm width apart (Figure 3-4b). Most averaged annotations of 

unambiguous postures had similarity scores above zero when compared to their 

corresponding ground truth midline, including data collected from non-expert annotators 

(Figure 3-4c). We concluded that the annotation accuracy was sufficiently high for tracing 

worms. 
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Figure 3-4 (a) Annotations by 7-12 year-olds. (b) Sketch of similarity score calculations. 

For each panel, two worm contours (white overlaid with yellow or blue) are reconstructed 

based on ground truth or annotated midlines. 100 points along the midline are matched, 

and the Euclidean distance between each pair is computed. Here we show this at 10 points 

along the backbone (red lines). Yellow and blue highlight the center three-quarters of the 

worm’s width. (c) Probability density of similarity scores for unambiguous posture 

solutions compared to averaged user annotations of the same unambiguous postures. The 

dashed red line indicates the threshold we use to calculate consensus contours. N = 44. 

3.3.4 Consensus across annotators 

To further demonstrate a practical application of our app, we focused on using 

annotations of ambiguous C. elegans postures to reconstruct the dynamics of worm 

behavior. Ambiguous postures result from segmentation errors, or more frequently, the 

worm partially occluding itself, for example during stereotyped Ω- or δ-turns. A major 

advantage of using human annotators is the ability to quickly generate varied predictions 

for images that humans and algorithms alike struggle to find a ground truth for. C. elegans 

postures are often simplistic and sinusoidal, but ~7% of the worms’ behavior results in 

postures that are impossible to segment using current tools. One approach relies on 
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computationally expensive optimization to attempt a quantitative posture description10,50. 

Although accurate in most instances, this state-of-the-art strategy for predicting ambiguous 

nematode posture requires on average 931.7s (n = 66) per video frame. Based on our 

average worm annotation time, users can make predictions about 130-fold faster than this 

computational strategy. User predictions for individual ambiguous images varied, but 

could typically be grouped into several distinct shapes, indicating that there were often only 

a few reasonable predictions for each ambiguous posture (Figure 3-5a). To characterize 

this variability quantitatively, we calculated pairwise similarity scores comparing different 

annotations of the same image for more than 500 source images and found that similarity 

scores peaked between zero and one and had a left-skewed distribution with a significant 

tail (Figure 3-5b).  This is consistent with our observation that although there is significant 

variability in user annotations, users are frequently in agreement with one another, 

suggesting the utility of a consensus-based approach in identifying a best solution. The 

ease and speed of generating viable predictions based on human intelligence with the app 

gives it particular advantage in analyzing images where a single ‘correct’ solution is non-

existent and several solutions have high likelihood. 



 

 

65 

 

Figure 3-5 (a) Example set of ambiguous images. (b) Probability density of similarity 

scores for comparison between different user annotations of the same ambiguous posture. 

The dotted red line indicates the threshold we use to calculate consensus contours. The 

threshold was determined by modeling probability density as a mixture of two Gaussians 

(see Methods). N =26,098. (c) Illustration of consensus generation scheme. 

To resolve the ambiguities in our postural data set, we used annotations to create a 

consensus prediction for ambiguous images (Figure 3-5c). For each source image, we first 

eliminated annotations that were outliers or that created shapes outside of C. elegans 

postural space, then used pairwise similarity scores to identify groups of similar 

annotations. We chose the group containing the most individual annotations, and averaged 

annotations in this group to come to a consensus contour. We compared these 

disambiguated annotations to predictions generated by the state-of-the-art computational 

method and found that the mode of the similarity score distribution was -1, indicating that 

although consensus contours had somewhat reduced accuracy, they overall agreed well 

with computational predictions (Figure 3-3b). Further, for frames where initial 
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segmentation failed, users could correctly annotate grayscale source images, while 

computational predictions were erroneous.  

3.3.5 Reconstructing C. elegans behavioral dynamics 

C. elegans is a powerful model organism with a large suite of tools for genetic 

manipulation41,96. These tools, along with a fully mapped nervous system3, have enabled 

researchers to identify molecular mechanisms and individual genes associated with 

behavioral phenotypes97–99. However, quantitative analysis of some of the most complex 

behaviors, large-angle turns that commonly include ambiguous postures, remains difficult, 

and gaps in quantifiable behavior prevent dynamic posture analysis altogether. Using our 

consensus worm contours, we recreated the postural repertoire and behavioral dynamics of 

C. elegans. We sought to answer how significantly complex worm postures affect the 

overall shape space of C. elegans.  To answer this, we calculated the first four principle 

components of C. elegans’ shape space12 (‘eigenworms’) using either unambiguous results 

alone or both unambiguous results and consensus contours (Figure 3-6a, Figure 3-3c). 

Consistent with prior reports, we found that the first four principle components were very 

similar with or without ambiguous postures10.  Interestingly, the fractional variance of the 

worm’s posture space captured by these eigenworms is greater when ambiguous postures 

are included (Figure 3-6b). Lastly, we recreated complete timeseries of the first four 

eigenworm amplitudes for individual worms using the consensus contours (Figure 3-6c). 

These traces fill in the gaps left by ambiguous shapes and outperform the computational 

prediction in some cases where the worm is tightly coiled. In addition to adding to our 
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knowledge of C. elegans behavioral dynamics purely through image annotation, this app 

can help improve existing posture prediction algorithms by using these results.   

 

Figure 3-6 Reconstruction of continuous behavior dynamics from annotations. (a) 

Representation of first four principle components of worm posture (‘eigenworms’) 

including both unambiguous and ambiguous postures from four annotated videos in our 

dataset (37,784 frames). As reported in other works, our eigenworms both with and without 

ambiguous postures were very similar (see Figure 3-3). (b) Cumulative variance captured 

by each additional eigenworm (‘mode’) for both unambiguous images only and both 

unambiguous and ambiguous images together. (c) Traces of amplitude of first four 

eigenworms in time for an individual worm. Dark purple lines are amplitudes calculated 

for unambiguous postures via image processing. Gaps in purple lines correspond with 

frames containing ambiguous postures that are usually associated with reorientation of the 

worm. Blue lines are computational predictions for the full video, including ambiguous 

postures. Red dots represent consensus contours for individual frames found using app user 
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annotations. Yellow highlighted regions are time points where computational predictions 

do not match consensus predictions. The top inset image is the unphysical computational 

prediction at the timepoint corresponding to the grey dashed line. The bottom inset image 

is the consensus contour prediction generated from the app at the same timepoint.  For the 

amplitudes of the first eigenworm in particular, the red dots follow two opposing sinusoidal 

contours simultaneously, one contour representing the opposite head orientation of the 

worm compared to the other contour. 

3.4 Discussion 

Our app-based annotation scheme allows researchers from any field to quickly and 

easily annotate complex images in quantitative ways. Here, we demonstrated its flexibility 

and speed in annotating rice root growth and structure, stem cell aggregate morphology, 

and complex worm postures, where we showed that the app is ~ 130-fold faster than state-

of-the-art posture optimization techniques.  We expect that the app will be useful as an 

alternative to creating complex and bespoke computational image processing pipelines, as 

a way to complement and augment existing computational pipelines, and as a simple way 

to generate consensus ground truths towards improving machine learning algorithms for 

image processing. 

As image datasets become larger and the demand for more nuanced analysis of 

complex image features becomes commonplace, human annotation will remain important 

in establishing ground truths and correcting outputs from automated analysis pipelines. We 

will continue to need tools for large-scale human annotation to accomplish these tasks. 

Here, we demonstrated an efficient method for collecting complex annotations; the time 

needed for an individual annotation is shorter than a comparable annotation using other 

software. Thus, this is a useful tool even when the total number of annotations needed is 
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modestly scaled. For applications that require much greater scale, recruitment of more 

annotators may be necessary. Several methods for recruiting annotators include  paying 

annotators a small amount of money for each annotation by integrating with Amazon 

Turk25, gamifying the app100, or creating a citizen science effort86. We envision that this 

type of accurately human-curated images will support (by providing ground truth) and 

complement (in rare and unanticipated scenarios) the machine learning approaches as they 

become dominant in image-based analyses for many fields of scientific inquiry.  

  



 

 

70 

CHAPTER 4. MAPPING THE BEHAVIOR SPACE OF C. 

ELEGANS 

4.1 Introduction 

In this chapter, I adapt a machine learning method for classifying, quantifying and 

comparing C. elegans behavior and use it to map C. elegans’ behavior space. I apply this 

method to a large set of video behavior data collected across a selection of environments 

that span a range of viscosities similar to the worm’s natural environment. From this 

behavioral phenotyping, we identified subtle stereotyped behaviors that are not easily 

distinguishable by eye. In addition, we built a tool for interactive visualization and 

exploration of our video data set that can be repurposed for other datasets where points are 

associated with video data. Finally, we found that the behavioral diversity of C. elegans 

was not uniform across the environments we sampled, suggesting that media choice 

substantially impacts the ability to distinguish between phenotypes. 

4.2 Background 

Many animal species demonstrate behavioral flexibility that enables them to adapt to acute 

shifts in their physical surroundings 101. For example, many mammals and amphibians split 

their time between aqueous and land environments, and the environments of invertebrates 

may fall across a wide range under different seasonal conditions, including broad changes 

in material properties of habitats. How animals adapt their behavior to their environment 
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is governed by physics, neural circuits, and musculature systems that make understanding 

and comparing behavior dynamics in different environments challenging. 

One invertebrate that is naturally found in complex environs is Caenorhabditis elegans. 

These ~1mm long roundworms are a well-studied model system that are cultured in the lab 

on agarose plates with bacterial lawns. Their behavior on agar plates has been consistently 

studied and used to understand the genetic inputs to behavior for over half a century 29,65.  

C. elegans can also be cultured in bulk liquid, suggesting that these worms are capable of 

behavioral plasticity exceeding what is typically perceived in their normal lab culture 65,102. 

This is further borne out by the isolation points of C. elegans, primarily rotting fruit and 

plant matter 103,104. Studies of C. elegans population density in rotting fruit show that later 

stages of decomposition are correlated with greater population size 105. While this 

variability in proliferation can be at least partially explained by the availability of nutritious 

bacteria, it is not well understood whether the physical features of decomposing plant 

matter contribute to advantageous behavioral adaptations on the part of the worm 106. 

Recent evidence has shown that C. elegans navigate preferentially to stiffer and tighter 

spaces (durotaxis and thigmotaxis, respectively), suggesting that some advantage may be 

conferred by migration to more resistive substrates 30,107.  

Based on these observations, we wondered how or whether the C. elegans behavioral 

repertoire might change to suit its physical surroundings. While significant effort has been 

devoted to understanding whether gait changes when moving across different viscous 

media are primarily governed by mechanics or neural processes, there is limited 

comparison of other aspects of C. elegans behavior in these media 108–113. For example, 
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during taxis C. elegans uses both sharp reorientations and gradual steering to navigate 

sensory gradients 32,33. It has also recently been demonstrated that C. elegans uses head 

swings to integrate sensory information for navigation, suggesting that head movements 

are particularly important to the worms’ behavioral capabilities 114. Indeed, several recent 

studies demonstrate that the full breadth of C. elegans behavior is not necessarily well 

known. New behavioral descriptions include a stereotyped large-angle reorientation 

behavior termed a δ-turn, and so-called rolling behaviors that enable the worm to reorient 

in 3-dimensional environments 10,115. 

While it is not possible at present to observe C. elegans in their natural habitat for practical 

reasons, many microfluidic tools have been developed that allow researchers to manipulate 

the environment of small model organisms. Microfluidics are compatible with many 

optical microscopy methods and have been demonstrated as useful tools for constructing 

chemosensory gradients and understanding chemotactic behaviors, as a method for 

applying well-defined amount of force for understanding mechanosensation, and to 

understand thigmotactic behaviors 28,30,34,44. ‘Soil-like’ microfluidic devices have been 

used to help worms behavior in microfluidics conform to similar behaviors to those 

described on agarose media, including forward movement, reversals, and stereotyped high-

angle turning behaviors like Ω- and δ-turns28. To the other extreme, microwell-like 

microfluidic devices can be used to isolate individuals and monitor their behavior in liquid 

at long timescales 43. In order to observe the behavior of many age-synchronized animals 

simultaneously while restricting their movement to the 2-D plane, we chose to use these 
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microchamber devices to isolate animals while immersing them in media of different 

viscosities. 

While using microfluidics allowed us to scale up our behavior monitoring significantly, 

comparing animal behavior across environments is not trivial. Metrics commonly used to 

describe C. elegans behavior, such as velocity or thrashing frequency, are not sufficient to 

describe the potentially complex forms of C. elegans behavioral dynamics. With current 

methodology, it is difficult to categorize animal behavior without imposing biased 

heuristics, in particular across disparate environments.  

Here we apply a machine-learning methodology, t-distributed Stochastic Neighbor 

Embedding (t-SNE), to a behavior dataset consisting of more than 12 million frames of 

data (110 hours of individual animals); we do so over a set of physical environments 

including aqueous media, solid media, and a range of viscous media. This machine-

learning technique has previously been applied to mapping the stereotyped behavior of 

fruit flies and to understand the behavioral effects of optogenetic stimuli in both fruit flies 

and very recently to C. elegans 11,53–55. We chose this technique because it relies solely on 

the postural dynamics of the animal to identify stereotyped behaviors, rather than relying 

on heuristic behavioral definitions based on human inspection. From this set of behavior 

data, we examined the dimensionality of C. elegans posture and behavior in both 

conventional lab environments as well as more complex environments. Our data suggest 

that the worm’s postural dimensionality remains low-dimensional, and that behavior 

dimensionality is dependent on the environment C. elegans is behaving in. From the 

environments sampled, we found that behavioral diversity was greatest at intermediate 
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viscosities that enabled us to identify subtle changes in head movements. This implies that 

the ability to discriminate C. elegans behavioral phenotypes could be enhanced by 

phenotyping worms in the appropriate media. Considering the importance of behavioral 

phenotyping in C. elegans as a tool for understanding how genetics relates to behavior, this 

result should inform the design of behavioral phenotyping studies. 

4.3 Materials and Methods 

4.3.1 C. elegans maintenance 

Unless otherwise noted, C. elegans were cultured under standard conditions at 20°C. 

Strains used in this work include N2 and AQ2334: lite-1(ce314); ljIs123[pmec-

4::ChR2; punc-122::rfp].  

4.3.2 Plate behavior assays 

For optogenetic experiments, OP50 bacterial lawns were supplemented with the ChR2 

cofactor ATR. Stock ATR solution of 50mM was diluted to 200 μM in OP50 suspension 

and used to seed 5cm NGM culture plates (100uL per plate). In parallel, a population of 

animals from the same strain was cultured on plates seeded with 100uL of OP50 suspension 

without ATR from the same batch. Animals were cultured for at least 2 generations on 

either OP50 or OP50 supplemented with ATR before being used in experiments.  

Before all optogenetic experiments, unseeded plates were warmed to room temperature and 

animals were picked onto these plates and allowed to starve for an hour. At the end of the 

hour, animals were picked onto fresh, room temperature plates and allowed to crawl freely. 
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To stimulate the animals, we used a microscope and illumination system described 

previously48. Briefly, a motorized stage and online image processing is used to keep the 

animal in the center of the microscope’s field of view, while a modified projector is used 

to selectively illuminate individual animals with blue light. Videos of animal behavior were 

collected from this system at 30 Hz and a magnification of 10x. 

4.3.3 Microfluidic behavior assays 

For all microfluidic behavior assays, animals were synchronized via hatch-off and cultured 

on plate until they reached day 1 adulthood. These synchronized populations were then 

washed off of culture plates with M9 buffer. Unless otherwise noted, video data was 

collected on a dissecting microscope (Leica MZ16) using a CMOS camera (Thorlabs 

DCC3240M), with a framerate of 30 Hz and a magnification of 1.2x. 

4.3.3.1 In buffer 

Microfluidic devices were fabricated as described previously 43. After fabrication of 

microfluidic devices, devices and tubing and connectors were autoclaved. Animals were 

loaded into devices as described previously after washing worms off plates with M9 buffer. 

Behavior was then recorded over the course of about an hour. Importantly, cavities in 

which worms are loaded in these devices are only slightly greater depth than the width of 

an adult worm, which restricts worms to the focal plane of the microscope and almost 

entirely 2-dimensional behavior. Animals spent a maximum of 2 hours total in buffer 

without food. Figure 4-3 describes the number of animals, percent of frames originating 

from each environment, and total frames analyzed.  
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4.3.3.2 In methylcellulose 

Methylcellulose solutions were prepared at concentrations of 0.5%, 1%, 2%, and 3% 

weight in volume of M9 buffer. For a 50mL total volume of each concentration, we first 

heated 20 mL of M9 on hot plate to > 80°C to aid in dissolving the high concentrations of 

methylcellulose. The methylcellulose was added and stirred with a magnetic stir bar for ~ 

10 min until methylcellulose was wetted and mixed reasonably well. We added the 

remaining 30mL of M9, chilled to 4°C, and removed from the hot plate. The solution was 

moved to a 4°C fridge and put on a stir plate to continue to stir for an hour, at which point 

the solution was no longer cloudy.  

We measured the viscosity of the methylcellulose solutions with a rheometer and 

confirmed that as with previous studies, the methylcellulose solutions are primarily 

Newtonian over the range of shear rates typical of C. elegans in these conditions (Figure 

4-1)108.  
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Figure 4-1 Viscosity of methylcellulose solutions as a function of shear rate. Shear rates 

typical of C. elegans movement are between 5 and 15 Hz. MC stands for methylcellulose. 

The extremely viscous nature of the methylcellulose solutions prevented us from loading 

animals into bonded microfluidic devices; however, we wanted to maintain similar 

conditions compared to buffer and agarose environments, especially confining the animals 

to an almost entirely 2-D plane of behavior. To ensure that single animals could be isolated 

in single chambers of the unbonded microchamber microfluidic device, we first picked 

animals onto a room-temperature, unseeded plate. To ensure that animals were fully 

immersed in methylcellulose mixture, we used a glass pipet to aspirate a small amount of 

methylcellulose solution, and then aspirated animals from the unseeded plate one at a time 

into the methylcellulose solution.  Then, single animals surrounded by methylcellulose 

mixture were pipetted into individual chambers of an unbonded PDMS chamber device. 

The device could then be flipped over onto a sterile 10cm Petri dish and gently pressed 

down until the individual chamber walls came into contact with the Petri dish, preventing 
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animals from leaving their chambers. Animals were then imaged in devices for about 20 

minutes.  

4.3.4 Posture tracking and analysis 

For initial posture tracking we used EigenwormTracker code described in Broekmans et 

al., 2016, to track the midline of worms while in non-occluded, simple postures 10. We 

modified this code to allow us to better segment animals in our darkfield conditions in 

microfluidic devices. Due to the size of our behavioral dataset and time required for 

predicting each occluded frame (close to 30 minutes per frame), we found that using their 

generative tracking algorithm was computationally infeasible. We thus decided to drop 

frames in which worms were self-occluded in our dataset. Frames in which segmentation 

errors could be inferred from inconsistency in the shape and size of the worm were also 

dropped from the dataset. After elimination of these frames, about 88% of total frames 

remained.  

After identifying midlines of animals throughout time, we can then express the posture of 

worms in ‘worm-centric’ coordinates by taking the angle between consecutive, equally-

spaced points along the worm’s midline. Then we used principle component analysis 

(PCA) to identify a low-dimensional vector space in which the worm’s posture can be 

expressed, following methods previously described 12. For each environment considered 

here (agarose, 3% methylcellulose, 2% methylcellulose, 1% methylcellulose, 0.5% 

methylcellulose, and buffer), we first found the PCA vector space for each environment 

separately, and calculated residuals, defined as 1 − 𝜎, where σ is the cumulative variance 
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captured by each additional eigenvector. When embedding all methylcellulose conditions 

and the buffer condition together using t-SNE, we used the eigenvectors computed from 

all methylcellulose and buffer conditions together. The eigenvectors computed from these 

conditions separately were very similar (see Figure 4-3), and the eigenvectors resulting 

from all the methylcellulose and buffer conditions together were nearly identical to the 

eigenvectors computed from these conditions separately.  

Once these eigenvectors (also referred to as ‘eigenworms’) were calculated, we expressed 

all worm postures as a linear combination of the first 10 eigenworms. We chose the first 

10 eigenworms as a conservative cut-off for how many eigenworms represented data signal 

compared to noise. When we shuffled our midline angle data so that correlation between 

position of each angle along the length of the worm’s body was destroyed, we found that 

for each environment at most 6 eigenvectors contributed to signal. For all t-SNE clustering 

that considers only one environment, the animals behavior is expressed as a linear 

combination of the eigenworms calculated for that environment alone. For t-SNE 

clustering that considers more than one environment, the animals behavior is expressed as 

a linear combination of the eigenworms calculated for that combination of environments.  

4.3.5 T-SNE clustering 

To characterize posture dynamics from eigenworm posture descriptions, we followed the 

methodology laid out in Berman et al., 2014 11 (Figure 4-2). Spectrograms were generated 

from eigenworm posture descriptions by applying a Morlet continuous wavelet transform 

at 25 frequencies dyadically spaced between 0.2 Hz and 30 Hz. As the video framerate for 
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all movies was 30 Hz, the Nyquist frequency of the data is 15 Hz, and is therefore the 

meaningful upper bound of the frequency spectra. We therefore do not show any mode 

amplitude maps corresponding to these high frequencies. While the spectrogram does not 

encode the directionality of the animal’s movement (i.e. whether the animal is moving 

forward or backward), in low-viscosity fluids such as buffer there is no clear evidence that 

C. elegans can actively navigate. In addition, microchambers used to house worms have 

diameters only slightly longer than the length scale of the worm itself (adult worms are ~ 

1mm in length, while the microchamber diameter is 1.1mm). We thus decided to ignore 

the directionality of the movement.  

 

 

Figure 4-2. Embedding of behavioral dynamics using t-SNE. First, animals are 

segmented and posture is extracted. Posture is then represented as a timeseries of 

amplitudes by projecting into the eigenworm space. Next, temporal feature vectors are 

generated by creating spectrograms from postural timeseries. Finally, the t-SNE clustering 

algorithm is applied to embed timepoints into clusters that represent stereotyped behavior. 

A PDF of an embedded dataset is shown. 
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To cluster and define behaviors independently of our external definitions, we used t-

distributed stochastic neighbour embedding (t-SNE) to embed our wavelet data into a 2-

dimensional space in which local distances between feature vectors (here wavelets) are 

conserved while distant points may be distorted 116. Our dataset was sufficiently large to 

make it infeasible to embed all data at once, so we used the subsampling method described 

in Berman et al., 2014 to select data for a training embedding into which the remainder of 

our dataset could be projected. Since our movement dataset was not fully continuous due 

to segmentation errors or self-occlusion, we only selected training data from stretches of 

uninterrupted frames longer than 5s. Our full training sets consisted of wavelets from 

35,000 timepoints. For embeddings of individual environments, all training wavelets were 

exclusively from the dataset for that environment. For embedding of behavior from all 

methycellulose and buffer environments together, we sampled equally from wavelets 

originating from each environment (i.e. 7,000 timepoint feature vectors from each of the 5 

environments in the embedding).  

4.3.6 Defining behavior states and a behavior map 

Within t-SNE embeddings, clusters of points close together indicate a well-stereotyped 

behavior, so we use probability density (PDF) maps of the 2-dimensional space to 

visualize where such behaviors exist in each map. We segmented each map by applying a 

watershed function to the corresponding PDF, after smoothing the PDF using an isotropic 

Gaussian filter with sigma equal to 8 to reduce over-segmentation. After segmentation, 

we used video data as well as eigenworm representation across each map to visually 

confirm behaviors and provide descriptions for map regions. 
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In order to visualize how each eigenworm was represented across each behavior map, for 

each frequency and eigenworm we plotted the average amplitude (linear multiplier) for 

the corresponding eigenworm at each point in the behavior map. 

4.3.7 Significance testing for behavior maps 

In order to test which regions in two maps were significantly different from one another, 

we used the hierarchical bootstrapping method described in Saravanan et al., 2019 117. The 

video behavior data collected has several layers of hierarchy, including different days of 

data collection and different animals for each of our environment conditions. While under 

traditional pooled statistical tests, independence between different days or different 

animals is assumed, the hierarchical bootstrapping method allows us to avoid making that 

assumption. For each environment, we first sampled from the different days on which 

experiments were performed with replacement such that the overall distribution of days 

remained the same; then we sampled with replacement from the individual animals on each 

day; finally we sampled with replacement from all embedded points for that animal on that 

day. This hierarchical bootstrap was repeated 1000 times for each environment. From these 

bootstrapped embedding distributions, we calculated 1000 new PDFs.  

At each point in the PDF space for each environment, we then had a distribution of 

densities. We modelled the density distributions as a gaussian mixture model with between 

one and four components (whichever fit best as determined by the AIC metric), and used 

these to compute joint probability distributions for each point in the PDF space for pairs of 

environments. As the null hypothesis that both distributions are the same implies that the 
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joint probability distribution would be a circle lying on y=x, integrating the joint 

probability distribution to one side of the line allows us to test the hypothesis. A volume 

greater than 1-α/2 implies the first group is significantly greater than or equal to the second 

and a volume less than α/2 implies the second group is significantly greater than or equal 

to the first. We applied a Bonferroni correction to correct for multiple testing.  

4.3.8 Data visualization tool 

To visualize our very large set of behavior data, we developed a web-based tool written in 

Java using the D3 visualization library (Figure 4-5). The tool allows interaction with the 

embedded data points that enables intuitive exploration of the data. The full dataset of over 

12 million timepoints was randomly subsampled to 3 million points for faster website 

loading times. From this data, a further subsample of 350 embedded points is displayed so 

that the point density allows users to click on individual points. This selection of points can 

be resampled if desired. Clicking on a point displays metadata including the environment 

of the animal and the proportion of animals captured by any selected filters.  An embedded 

YouTube link to the original worm video allows users to view the raw data starting from a 

timepoint within about one second of the embedded point.  To relate these points to the 

probability density that is indicative of a stereotyped behavior, users can switch between 

display of the sampled points and display of the entire dataset as a heatmap to inspect the 

density of point embeddings. As of Feb 2020, this web-based tool is available at 

https://wurmvis.ebb.gatech.edu/. 

4.3.9 Behavior transitions 

https://wurmvis.ebb.gatech.edu/
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At each timepoint in our data, we identified the corresponding discrete behavior using the 

behavior maps generated by watershedding embedding PDFs. Since frames in our dataset 

have been dropped, we filled stretches less than or equal to 15 frames (half a second) of 

missing data with the same discrete behavior as the last known embedding point. Missing 

data in stretches longer than 15 frames were removed and the resulting behavior vectors 

considered as not contiguous when computing transition behavior. Once discrete behaviors 

were assigned to timepoints, we counted the frequency of each behavior transitioning to 

any behavior other than itself in contiguous portions of data, normalizing the resulting 

matrix of behaviors so that they represent a probability of any behavior transitioning to any 

other. The first transition (τ = 1) represents the first behavior transition after the initial, the 

second transition (τ = 2) represents two transitions after the initial behavior and so forth. 

As τ → ∞, the behavior transition matrix will converge to the probability of being in any 

particular behavior state.  

4.4 Results 

4.4.1 Posture space across environments 

C. elegans posture is conventionally understood to be low-dimensional. Work by Greg 

Stephens and colleagues originally demonstrated that the posture of the worm requires only 

five eigenvectors to capture more than 95% of its postural variance 12. This general result 

of postural low-dimensionality has been replicated many times for animals behaving on 

solid media, both for wild-type animals as well as in behavioral mutants 50. Examination 

of C. elegans posture in three dimensions has also revealed strikingly similar results, with 
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just four 3D eigenworms  capturing 95% of the animals postural variance 118. However, the 

postural dimensionality of C. elegans over a range of environments with varied mechanical 

properties is unknown. We asked whether the dimensionality of C. elegans’ posture would 

increase in physical environments more closely resembling their natural habitat. 

To address this question, we first imaged worm behavior across five environments with 

varying mechanical properties. These physical environments included conventional 

aqueous buffer, 0.5%, 1%, 2%, and 3% methylcellulose, and conventional agarose media 

65. Animal behavior was recorded at 30 Hz in microfluidic devices (for aqueous and 

methylcellulose media) or on typical agarose-filled Petri dishes. For each environment, the 

behavior of up to 190 individuals was recorded for between 4 and 30 minutes. The 

combined data contains more than 12 million video frames and 100 hours of posture data 

for individual animals. 
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Figure 4-3 Postural space across varied environments. a) Example frames from 

behavior recording on agarose (front) and in microfluidic devices (back) b) Data proportion 

from each environment, with n numbers indicating the number of animals assayed in each 

environment. Total frames indicate total segmented frames. c) Pictorial representation of 

the first five eigenworms as calculated from each environment independently from lowest 

viscosity to highest viscosity. d) The remaining unexplained postural variance (residual) as 

a function of each additional eigenworm mode, as calculated for each environment 

independently for the first 10 modes. 

We found that despite the wide range of physical environments, the posture space of C. 

elegans remained relatively small, with four eigenworms capturing over 80% of postural 

variance in all cases (Figure 4-3 d). While the eigenworms we derived from behavior on 

agarose media were similar to those described previously, we found that eigenworms 

derived from behavior in buffer and methylcellulose environments were different from our 

agarose-derived eigenworms as well as eigenworms derived in other works (Figure 4-3 c). 

Typical thrashing or swimming behavior in buffer frequently produces a single large 

amplitude bend over the body of the worm, which the first eigenworm in buffer 

environment captures. However, while this change was intuitive, more surprising was the 

similarity between eigenworms for animals behaving in buffer and all concentrations of 

methylcellulose (Figure 4-3 c).  In addition, we saw that the postural variability that each 

additional eigenworm captured was not uniform across all environments. In fact, while the 

first four eigenworms of animals behaving on agar captured about 90% of the postural 

variability for animals crawling on agar, the first four eigenworms of animals behaving in 

buffer captured 83% of the postural variability for animals swimming in buffer. This may 

suggest that the physical properties of agar limits the postural diversity of C. elegans, 

perhaps due to reduction in the animal’s overall degrees of freedom.  
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Interestingly, we saw a trend indicating that the postural variability captured by the first 

eigenworm in each environment decreased in decreasing viscosity media (Figure 4-3 d). 

For each environment, the slope of the residual changes drastically, after which each 

additional mode only incrementally improves the explanation of postural variability. 

Animals behaving in buffer reached this slope change the fastest after just 2 modes, while 

animals behaving in any methylcellulose media reached this slope change after 3 modes, 

and animals behaving on agar reached this slope change after 4 modes. This observation in 

combination with the observation that overall postural variability captured by ‘buffer only’ 

eigenworms was much lower seemed to suggest that animals behaving in buffer may have 

fewer primary postures with potentially more postural extremes compared to animals 

behaving on agarose.  

The implications of this for behavioral phenotyping are important. Studies that use C. 

elegans to link genes to behavior rely on comparing behavioral phenotypes of mutants. Our 

comparison of postural diversity suggests that selecting an environment to perform postural 

phenotyping, and potentially behavioral phenotyping in is non-trivial and could affect the 

ability to effectively link genes to behavior. In order to better understand whether not just 

postural diversity but behavioral diversity might change in our sampled environments, we 

needed to compare behavioral repertoire between our distinct environments.  

4.4.2 Behavioral space comparison between environments 

While our postural analysis suggested that animals behaving in aqueous and 

methylcellulose solutions had a lower postural complexity than animals behaving on 
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agarose, this does not necessarily imply a change in behavioral complexity across 

environments. To assess whether behavioral complexity was similar across environments, 

we used a machine-learning technique to cluster similar behaviors together 11. Briefly, each 

animals posture can be projected into the eigenworm space at each timepoint, and then the 

spectral features of a timeseries of projections is used as the input for the t-SNE clustering 

technique 11,116. This technique has been previously demonstrated with flies and worms and 

used to dissect neural circuits and understand stereotypy and hierarchy in animal behavior 

53–55,119. Previous application of this technique to C. elegans behavior focused on linking 

behavioral responses to optogenetic stimuli for animals behaving on agarose media. Under 

the assay conditions used in that work, clustering C. elegans’ behavior resulted in a low-

dimensional representation that primarily encoded for the worms’ velocity. However, 

whether this would hold in more diverse environments was not known.  

To initially compare the behavioral complexity of C. elegans in our 6 environments, we 

clustered data from each environment into a behavior map for each environment separately, 

using watershedding as described above (81) to segment the behavior map into discrete, 

stereotyped behaviors. As an initial measure of complexity in each environment, we simply 

counted the number of discrete behaviors identified through watershedding. On agarose, 

we identified 32 discrete behavior regions ( Figure 4-4 a), on 3% methylcellulose 28 

discrete behavior regions (Figure 4-4 b), on 2% methylcellulose 27 discrete behavior 

regions (Figure 4-4 c), on 1% methylcellulose 39 discrete behavior regions (Figure 4-4 

d), on 0.05% methylcellulose 35 discrete behavior regions (Figure 4-4 e), and in aqueous 

media we identified 34 discrete behavior regions (Figure 4-4 f). This suggested some level 
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of similarity in overall complexity of behavior. However, the behavior density maps 

indicated that in some environments just a few stereotyped behaviors dominated. This 

suggested that some environments might enable greater breadth of behavior. However, 

comparing individual maps to each other with this technique prevents us from directly 

comparing behaviors between environments and examining whether or where their 

behavior space overlaps.  
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Figure 4-4 Behavior maps for each environment PDF with behavior regions overlaid 

(first column) and discretized behavior map (second column) for all animals behaving 

on or in the named media. a) agarose, b) 3% methylcellulose, c) 2% methylcellulose, d) 

1% methylcellulose, e) 0.5% methylcellulose, and f) buffer. 

To further probe whether animals in all environments had access to the same breadth of 

behaviors, we examined how each of the first five eigenworms was represented across the 

breadth of the frequency spectrum analysed.  

4.4.3 Tool for visualization and interaction with video data 

A critical challenge of describing behavior data with machine learning is verifying the 

output has meaning. This can be particularly challenging when working with video data, 

which is difficult to explore and interact with, especially at large volumes. In order to aid 

in our own and others understanding of our video data, we built an interactive tool that 

allows users to view the raw video data associated with each timepoint embedded into our 

behavior map (Figure 4-5). As of Feb 2020, this tool is available on the web at 

https://wurmvis.ebb.gatech.edu/.  

The main screen presents a sparse set of points from the united behavior map described 

below. Clicking on a point highlights the point and brings up information about the point, 

including an embedded YouTube video of the raw data starting from within a few seconds 

of the selected point (Figure 4-5 a). Users can also filter the data by environment and 

generate a new sample of sparse points from the larger dataset (Figure 4-5 c). By switching 

to the heatmap tab, users can view an estimate of the PDF of the full dataset (Figure 4-5 

b). 

https://wurmvis.ebb.gatech.edu/
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This tool makes it easier to verify a meaningful output from behavior maps. In addition, it 

makes available all our raw data for other researchers to reuse in a straightforward way via 

YouTube. Finally, it can be modified and used to interact with any video data that is 

associated with a 2D point, not just this method of behavioral embedding.  
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Figure 4-5 WurmVis interactive data exploration. a) Main screen interface with one 

point selected (pink). Right-hand sidebar contains metadata and embedded raw video. b) 

Heatmap that approximates PDF contours of all embedded points. c) Interface filtering 

feature highlights points within a given condition. Purple highlighted points are timepoints 

from animals behaving in 3% methylcellulose. Right-hand sidebar shows proportion of 

total datapoints that the filter applies to. 

4.4.4 Unified behavior map 

We also wanted to examine how much overlap or uniqueness there was in behavior across 

the environments we sampled. In order to examine this, we created a unified behavior map 

of all animals behaving in methylcellulose and aqueous conditions. We excluded animals 

crawling on agarose as the agarose-associated eigenworms were quite different from those 

of animals in our other environments. To make sure each environment was equally 

represented, we subsampled our data as described above to obtain a training embedding, 

and then embedded the remainder of our dataset into the same space. In our unified 

behavior map we identified 25 potentially stereotyped behaviors (Figure 4-6).  

PDF maps of each environment within this unified behavior space depicted sharp 

separation between environments, suggesting that there were indeed distinctive behavioral 

shifts between each (Figure 4-6). The simplest explanation for these behavioral shifts 

would be a change in frequency of a universal behavior. To examine whether this was the 

case, we first used the wavelet feature vector of eigenworm amplitudes across frequencies 

to determine what eigenworms were represented to what extent at each frequency (Figure 

4-7). We found that the first eigenworm was highly represented across the map at low 

frequencies, and at higher frequencies highly represented to the left side of the map. This 

eigenworm is likely to be associated with both deep bends and reorientation behaviors, as 
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these often involve large turning angles. Eigenworms two and four are both well-

represented at the bottom of the map at low frequencies and the top of the map at high 

frequencies, and their shape in addition to their representation pattern suggests that they 

may be involved in crawling behavior. Similar to the first eigenworm, the third eigenworm 

is best represented at high frequencies to the right side of the map, and finally the fifth 

eigenworm is best represented to the bottom right at low frequency. These patterns gave 

some indication of what general behaviors might be present where on the map, and matched 

well with our high-level intuition of dynamics of those behaviors. For example, animals 

behaving in buffer move much faster than those in methylcellulose, and the primary 

measured behavior of worms in buffer in literature is a simple thrashing motion that could 

be well-represented by the first eigenworm. At the highest frequencies, the amplitude of 

the first eigenworm is high near the top of the map, which matches where our buffer 

behaviors lie. Despite these clues as to what behaviors might be where, we could not 

explore whether more nuanced behaviors were also represented without examining the 

video data itself for patterns.  
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Figure 4-6 Unified behavior map a) t-SNE embedding of all methylcellulose and aqueous 

data into a single unified map. b) Color-coded and numbered discrete behavior regions, 

top. PDF overlaid with behavior regions, bottom. c) PDF for animals behaving in the 

environment named.  

To confirm this, we composed short videos of individual animals whose behavior fell 

within each region, and from these were able to annotate broad regions of the unified 

behavior map (Figure 4-8, Figure 4-9). Some sections of this map did represent behaviors 

that are considered to be a continuum of a single behavior, such as the transition from 
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‘thrashing’, the typical descriptor for C. elegans behavior in aqueous media to slower 

thrashing, to crawling to slow crawling that unfolds from the top of the unified map to the 

bottom. We also noted that some regions of the behavioral space described subtler aspects 

of C. elegans behavior, such as regions that were characterized by extreme bends, 

particularly near the worms head (e.g. regions 2 and 3), or short wavelength bends near the 

head combined with long wavelength bends at the tail of the worm (e.g. region 9 ).  

While there was little behavioral overlap between all environments, we noted that all idle 

states regardless of environment shared a region (region 26). Behavioral overlap between 

sets of environments was overall small. Buffer and 0.5% methylcellulose overlap only at a 

narrow band between regions, 0.5% methylcellulose and 1% methylcellulose overlap most 

notably in region 8 (slow thrashing) and 9. The overlap between 1%, 2% and 3% 

methylcellulose, however, is more easily discernable, suggesting that some limits of 

behavior have been reached due to the physical characteristics of the environment and the 

energetic output of the worm. In these more viscous media we observed the emergence of 

much deeper bends, especially near the head of the worm, that overlapped across 

viscosities. To evaluate more rigorously what behaviors were similar between each pair of 

environments, we computed where each pair was significantly different (Figure 4-10). 

Most notably, 2% and 3% methylcellulose were the most similar, with the prevalence of 

regions 2 (a slow, deep bend) and 25 (small head movements with hardly any forward 

movement) similar enough as to not be significant.  

Using the unified behavior map, we were also able to compare the apparent complexity of 

C. elegans behavior in each viscosity range by counting the number of regions represented 
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in each environment. Animal behavior in buffer was almost completely captured in just 4 

regions that were all identified to be animals thrashing at varying frequencies. Animal 

behavior in 0.5% methylcellulose was primarily captured in 8 regions composed of slower 

thrashing behaviors, with notably greater amplitude bending compared to animals in buffer. 

Animal behavior in 1% methylcellulose spanned 15 regions, ranging from behaviors 

similar to crawling to very deep, localized bends at the head. In 2% and 3% 

methylcellulose, 10 regions dominate that range from slow crawling and idle animals to 

high amplitude head bends. The relative breadth of behavior in each environment, both by 

visual inspection and the number of regions defined, suggests that 1% methylcellulose 

provides a richer behavioral environment compared to the other environments sampled.  

 

Figure 4-7 Mode activity across united behavior map. The mean amplitude of each 

eigenworm at each point in the behavior map across 11 frequencies. Pictorial 

representations of the eigenworms used are to the left.  
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Figure 4-8 Behavior map interpretation. PDF annotated with descriptors for several 

regions. Single segmented frames of various animals as they are behaving in each region 

are located near annotations.  
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Figure 4-9 Example animal behaviors from select behavior regions. Frames from 

individuals in selected regions over 0.66 seconds. 
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Figure 4-10 Behavior map environmental differences. Each map compares two 

environments, as noted above each map. The colormap indicates the density difference 

between each pair of environments, where the less viscous environment is always in blue. 

Overlaid in black are contours of regions determined to be significant (p < 0.05) via the 

hierarchical bootstrapping method described above. 

 

4.4.5 Transitional behavior 
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Finally, we wondered whether transitions between behavior regions would present 

interesting patterns, and over what scale these patterns might decay to the underlying 

probability of being in a particular end state given the start state. We found where 

transitions occurred between behavior regions and determined the probability of 

transitioning from any behavior to any other behavior at increasing transition (τ) steps 

(Figure 4-11). The strong diagonal structure of the even transition matrices shows that 

most animals consistently transition back to their starting behavior after transitions out of 

that behavior. This strong preference decays somewhat at higher tau, although several 

behaviors remain very dominant. At 20 transitions from the original behavior, the transition 

probabilities have reached a steady state, and along the diagonal regions 4, 6, 8, and 14 

remain dominant. Regions 4 and 6 are both thrashing behavior in buffer media, 8 is a slower 

thrashing in 0.5% methylcellulose, and 14 is a very slow crawl in 2% and 3% 

methylcellulose. This supports our hypothesis that C. elegans behavior is richer in 1% 

methylcellulose.  
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Figure 4-11 Transitions between unified behaviors. For selected transitions between 1 

and 21, the probability of any end behavior following a given start behavior.  

4.5 Discussion 

Our results here suggest that some physical environments enhance the diversity of C. 

elegans behavior. This finding has important consequences for understanding the role of 

genetics in behavior. It is well-known that there is a behavioral phenotyping gap for C. 

elegans – 85% of genes knocked down by RNAi have no observable behavioral phenotype, 

yet most reduce fitness over generations 120. Despite increasingly high-content and precise 

methods for describing behavior in C. elegans, this gap, although slightly reduced, remains. 

The results we show here suggest that one possible cause of this gap is the ability to 

effectively elicit differential behavioral phenotypes. 

4.5.1 Transitional environments 

While here we only consider behavioral diversity of animals exposed to a single 

environment over the entire experiment, understanding how animal behavior preferences 

change as they navigate through transitions in their physical environment. Previous studies 

on thigmotaxis and durotaxis in C. elegans indicate that a navigation strategy is likely. 

While it is not so straightforward to construct a viscosity gradient in a highly defined way, 

a microfluidic approach could be used to alter the density of pillar spacing in a ‘soil-like’ 

microfluidic device to examine how worm navigation strategy and behavior preferences 

change at transition points (for example, microfluidic devices such as those in Figure 

4-12). The use of microfluidic devices to construct hydrogels with gradients in mechanical 

properties such as elastic modulus has also been demonstrated as a tool for understanding 
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durotaxis in cells 121. These tools could be useful for understanding C. elegans behavior as 

they move through gradients like those they may experience in their natural habitats.  

 

Figure 4-12 Transition and gradient microfluidic devices.  

4.5.2 Occluded posture prediction from annotated grayscale images 

While here we concentrated on understanding the behavior of worms without considering 

self-occluding postures, our own data as well as data from other large-scale behavior assays 

suggest that 7% of the worms total behavior (in terms of time) is composed of turns. While 

the timescale necessary to apply the consensus annotation method discussed in Chapter 3 

was intractable to apply to all frames in this dataset, there are several modifications to the 

annotation approach that may allow us to elucidate posture for self-occluding frames. 

Instead of a consensus approach, where a single contour is eventually produced from many 

annotations from potentially non-expert users, we could instead have only experts annotate. 

This somewhat negates the power of being able to distribute annotation effectively, 

however, sampling more sparsely from continuous stretches of self-occluding frames may 

be sufficient to interpolate worm posture between each annotated frame.  This would likely 

still be faster and less error-prone than applying either the alternative generative method 
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described in Broekmans et al., 2016 or using heuristic-based methods previously described 

for animals behaving on agarose media 8,10,53. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Thesis Contributions 

The objective of this thesis was to build platforms that enable scalable behavioral 

phenotyping of C. elegans. I aimed to use computer vision, machine learning, and 

microscopy tools to create a combination of systems that would enable new experimental 

capabilities. This advances the field of C. elegans neuroethology by making previously 

intractable biological questions possible to address through new types of experiments, new 

annotation tools, and methodology. Several of these tools may be translatable to other 

organismal systems. 

In chapter two, I developed a scalable microscopy platform for collecting long-term 

behavior data and for conditionally intervening in C. elegans development. This tool is 

easy to build and use, with a touch-based interface and days-long automated operation. I 

demonstrate that it can be used for behavioral phenotyping of individual animals from 

larval stages through adult stage, and that it can track motion online using computer vision 

techniques. Finally, I demonstrated that it can be used to intervene on animals conditional 

upon their behavior. This allowed us to create an extreme sleep deprivation model in C. 

elegans and test the health outcomes of sleep-deprived animals. Mi-pi enables a wide range 

of biologically impactful C. elegans experiments. For example, it could be used to better 

understand the role of neuropeptides in lethargus homeostasis and behavioral changes 
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throughout aging or development. This tool could also be adapted for use with other small 

model systems by exchanging imaging lenses to monitor larger or smaller animals and 

adapting the neural networks used for detecting animals online. It may also be useful for 

monitoring social interactions both intra- and interspecies. 

In chapter three, I developed a fast and reliable tool for annotating complex images. 

Annotating images is critical for developing ground truths that can be used for validating 

automated methods, but few freehand annotation tools exist. We built a smartphone app to 

more easily distribute annotations and enable freehand drawing of annotations. We 

demonstrated annotation of stem cell and plant morphology as well as annotation of 

complex C. elegans posture. By crowd-sourcing posture annotations, we were able to 

produce consensus annotations of C. elegans posture that outperformed the state-of-the-art 

algorithm both in terms of time (about 130-fold improvement) and in cases of rare or hard-

to-predict postures. This tool is agnostic to the content of the images, and it is especially 

well-suited for freehand annotation of ambiguous images. We believe it could be used to 

equal effect for building ground truth datasets for any number of applications in addition 

to the applications of posture, plant morphology, and stem cell aggregate morphology we 

demonstrated in chapter three.  

In chapter four, I develop machine learning tools for describing C. elegans behavior and 

use them to compare C. elegans behavior in a variety of media. I used this approach to 

generate a map of C. elegans behavior in a range of environments that are diverse in 

material properties, similar to what C. elegans may encounter in its natural environment. 

From this analysis, we identified subtle behaviors that are not easily distinguishable by eye. 
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We also built an interactive data exploration tool to facilitate understanding of our results 

that is publicly accessible. Finally, we found that the diversity of C. elegans behavior was 

not uniform across the environments we sampled, indicating that there is an optimum 

media that may increase our ability to distinguish behavioral phenotypes in C. elegans. The 

machine learning tool adapted in this work may be useful for phenotyping C. elegans 

behavior throughout aging and developmental processes, where subtle behavioral shifts 

may not be apparent using conventional techniques. It may also be useful for understanding 

the behavioral consequences of complex behavior interventions, such as those that the mi-

pi system enables.  

The behavioral phenotyping tools developed in this thesis were designed to enable novel 

biological experiments and answer specific biological questions about the complexity of 

C. elegans’ behavior and how behavioral outputs can be influenced by external factors. 

These platforms have provided insight into how behavior and health is influenced by 

perturbations in animal environment, and we foresee the application of these tools in a 

broad range of behavioral questions, both within the C. elegans research community and 

outside of it.  

5.2 Future Directions 

5.2.1 Scalable microscopy for optogenetics and online segmentation 

The scalable microscopy platform I developed was used in this thesis to perturb animal 

environment through light. There are several natural extensions to this platform that would 

allow other types of interventions contingent on animal behavior. High-powered LEDs 
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have been demonstrated in other works to scale optogenetic perturbation 122. This could be 

used to more directly interfere with worm quiescence by activating neurons that are sleep-

active. An optogenetic perturbation method in combination with online object detection 

could also enable novel and complex learning paradigms that may otherwise be intractably 

low-throughput. For example, food avoidance as a result of pathogenic learning has been 

demonstrated in C. elegans, but whether C. elegans could learn the same avoidance based 

on other stimuli it encounters proximate to the food is not known31. Using the mi-pi 

platform with optogenetics, it would be possible to test whether C. elegans can learn food 

avoidance from alternative stimuli by tracking the worms location in relationship to food 

location, which can be annotated using the touchscreen app. If C. elegans can learn food 

avoidance as a result of aversive stimuli applied only when animals are on a specific food 

source, it would suggest a degree of sensory integration previously unknown in C. elegans. 

We are currently working on developing such an assay. 

I demonstrated the potential for real-time interventions using this platform through object 

detection neural networks. This level of real-time processing could be furthered in several 

ways that could be useful both for online behavior classification as well as online data 

compression. One important advancement would be semantic segmentation of worms and 

bacterial lawn online. At present, we are working on implementing this and think it 

reasonably probable that fast semantic segmentation methods may be implemented online 

or almost online in series with object detection methods. With segmentation capabilities in 

addition to object detection, we could potentially track individual’s velocity online and 

classify behavior into a few broad categories of behavior based on characteristics of the 
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segmented body, for example turns, forward or backward movement, or pauses. 

Performing these computations online would not only enable new and more complex types 

of experiments, it would also ease the significant burden of video processing that remains 

a bottleneck in analysis. 

5.2.2 Behavior mapping for occluded postures, and navigational behavioral phenotypes 

In this thesis, I used an machine-learning approach to compare non-occluded C. elegans 

behavior in environments with different mechanical properties. Combining analysis of 

complex postures in this dataset alongside non-occluded postures could answer questions 

about the stereotypy and prevalence of turning and coiling behaviors across environments. 

At present, a small portion of our occluded behavior dataset from agarose and 0.5% 

methylcellulose behavior has been annotated, and we intend to combine additional 

annotation of the rest of our dataset with other predictive techniques to better understand 

the diversity in dynamics of these complex behaviors and improve phenotyping. In 

addition, we have collected some data from a more expansive range of microfluidic 

environments in which worms can explore well-defined physical gradients like pillar 

density. We plan to use this to study navigational tactics through physical environments in 

C. elegans and compare these tactics to well-described navigational tactics in response to 

thermal and chemical gradients.  
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APPENDIX A. SUPPLEMENTARY MI-PI DOCUMENTATION 

 This appendix describes hardware and software setup of mi-pi microscopy systems. 

A.1  Bill of Materials 

Table 1. Mi-pi Bill of Materials 

Item #/system

Cost (as of 

1/31/2020) in 

USD Total Cost

Flexible Silicone Neon-Like LED Strip 1-M Blue 0.333333 13.95 4.65

Femtobuck LED Driver 1 7.95 7.95

Screw Terminals 3.5 mm Pitch (2-Pin) 1 0.95 0.95

SparkFun Humidity and Temperature Sensor Breakout - 1 7.95 7.95

Break Away Male Headers - Right Angle 1 1.95 1.95

Jumper Wires Premium 6" M/F Pack of 10 1 3.95 3.95

Female DC Power 1 2 2

Teensy 3.5 without headers 1 24.95 24.95

32x32 RGB LED Matrix Panel - 4mm Pitch 1 49.95 49.95

SmartMatrix SmartLED Shield (V4) for Teensy 1 19.95 19.95

Connective Terminal Strip 1 Circuit 1 1.18 1.18

12V 1A power adapter for LED strip 1 8.95 8.95

SmartiPi Touch 2 1 27.99 27.99

Building block compatible camera case 1 4.99 4.99

Raspberry Pi Camera Board v2 - 8 MP 1 29.95 29.95

Lens Adjustment Tool for Raspberry Pi Camera 1 0.95 0.95

Pi Foundation Display - 7" Touchscreen Display for 1 79.95 79.95

Raspberry Pi 3 - Model B+ 1 35 35

64 GB microSD card 1 11.99 11.99

microSD card reader/writer 1 6.43 6.43

5V 3A power supply for Raspberry Pi 1 13.9 13.9

microUSB to USB A cable (data capable) 1 5.28 5.28

Legos (see legos.csv), approximate cost for most 50

Total 400.81 
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A.2  Hardware setup 

This section describes setup of the hardware, and may also be found at 

https://github.com/lu-lab/mi-pi/blob/master/docs/hardware.md 

 

https://github.com/lu-lab/mi-pi/blob/master/docs/hardware.md
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A.3  Software setup 

This section details how to use the system once all hardware is assembled. This 

documentation can also be found at https://github.com/lu-lab/mi-

pi/blob/master/docs/useit.md 

https://github.com/lu-lab/mi-pi/blob/master/docs/useit.md
https://github.com/lu-lab/mi-pi/blob/master/docs/useit.md


 

 

128 

 



 

 

129 

 



 

 

130 

 



 

 

131 

 



 

 

132 

 



 

 

133 

 

 



 

 

134 

REFERENCES 

1. Kanfer, F. H. & Saslow, G. Behavioral Analysis: An Alternative to Diagnostic 

Classification. Arch. Gen. Psychiatry 12, 529–538 (1965). 

2. Geschwind, D. H. & Flint, J. Genetics and genomics of psychiatric disease. Science 

349, 1489–1494 (2015). 

3. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the 

nervous system of the nematode Caenorhabditis elegans. 314, 1–340 (1986). 

4. Stroustrup, N. et al. The Caenorhabditis elegans Lifespan Machine. Nat. Methods 

10, 665–70 (2013). 

5. Zhang, W. B. et al. Extended Twilight among Isogenic C. elegans Causes a 

Disproportionate Scaling between Lifespan and Health. Cell Syst. 3, 333-345.e4 

(2016). 

6. Churgin, M. A. et al. Longitudinal imaging of Caenorhabditis elegans in a 

microfabricated device reveals variation in behavioral decline during aging. Elife 6, 

e26652 (2017). 

7. Churgin, M. A. et al. Quantitative imaging of sleep behavior in Caenorhabditis 

elegans and larval Drosophila melanogaster. Nat. Protoc. doi:10.1038/s41596-019-

0146-6 

8. Huang, K.-M., Cosman, P. & Schafer, W. R. Machine vision based detection of 

omega bends and reversals in C. elegans. J. Neurosci. Methods 158, 323–336 

(2006). 

9. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W. R. A database 

of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877–879 

(2013). 

10. Broekmans, O. D., Rodgers, J. B., Ryu, W. S. & Stephens, G. J. Resolving coiled 

shapes reveals new reorientation behaviors in C. elegans. Elife 5, 1077–1084 (2016). 



 

 

135 

11. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the stereotyped 

behaviour of freely moving fruit flies. J. R. Soc. Interface 11, 20140672–20140672 

(2014). 

12. Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality and 

dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4, e1000028 (2008). 

13. Tinbergen, N. The study of instinct. (Clarendon Press, 1989). 

14. von Frisch, K. The dancing bees: An account of the life and senses of the honey bee. 

(Harcourt, Brace, 1953). 

15. Lorenz, K. Evolution and modification of behavior. (University of Chicago Press, 

1986). 

16. Tinbergen, N. The herring gull’s world : a study of the social behaviour of birds. 

(Lyons & Burford, 1989). 

17. Skinner, B. The Behavior of Organisms: An Experimental Analysis. (Appleton-

Century, 1938). 

18. Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M. & Mainen, Z. F. Big 

behavioral data: Psychology, ethology and the foundations of neuroscience. Nature 

Neuroscience 17, 1455–1462 (2014). 

19. Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral 

neuroscience. J. Neurosci. Methods 167, 127–139 (2008). 

20. Stowers, J. R. et al. Virtual reality for freely moving animals. Nat. Methods 14, 995–

1002 (2017). 

21. Huang, K. H. et al. A virtual reality system to analyze neural activity and behavior 

in adult zebrafish. Nat. Methods 17, 343–351 (2020). 

22. Hölscher, C., Schnee, A., Dahmen, H., Setia, L. & Mallot, H. A. Rats are able to 

navigate in virtual environments. J. Exp. Biol. 208, 561–569 (2005). 



 

 

136 

23. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years 

of image analysis. Nat. Methods 9, 671–675 (2012). 

24. Boergens, K. M. et al. webKnossos: efficient online 3D data annotation for 

connectomics. Nat. Methods 14, 691–694 (2017). 

25. Hughes, A. J. et al. Quanti.us: a tool for rapid, flexible, crowd-based annotation of 

images. Nat. Methods 15, 587–590 (2018). 

26. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. 

Methods 16, 1226–1232 (2019). 

27. Restif, C. et al. CeleST: Computer Vision Software for Quantitative Analysis of C. 

elegans Swim Behavior Reveals Novel Features of Locomotion. PLoS Comput. 

Biol. 10, e1003702 (2014). 

28. Albrecht, D. R. & Bargmann, C. I. High-content behavioral analysis of 

Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat. 

Methods 8, 599–605 (2011). 

29. Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974). 

30. Han, B. et al. Dopamine signaling tunes spatial pattern selectivity in C. elegans. 

Elife 6, (2017). 

31. Zhang, Y., Lu, H. & Bargmann, C. I. Pathogenic bacteria induce aversive olfactory 

learning in Caenorhabditis elegans. Nature 438, 179–184 (2005). 

32. Suzuki, H. et al. Functional asymmetry in Caenorhabditis elegans taste neurons and 

its computational role in chemotaxis. Nature 454, 114–117 (2008). 

33. Bargmann, C. I. Chemosensation in C. elegans. WormBook 1–29 (2006). 

doi:10.1895/wormbook.1.123.1 

34. Chalasani, S. H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis 

elegans. Nature 450, 63–70 (2007). 



 

 

137 

35. Jeon, M. et al. Similarity of the C. elegans developmental timing protein LIN-42 to 

circadian rhythm proteins. 286, (1999). 

36. Ellis, H. & Horvitz, H. R. Genetic control of programmed cell death in the nematode 

C. elegans. Cell 44, 817–829 (1986). 

37. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related disease 

by DAF-16 and heat-shock factor. Science (80-. ). 300, 1142–1145 (2003). 

38. Rodriguez, M., Basten Snoek, L., De Bono, M. & Kammenga, J. E. Worms under 

stress: C. elegans stress response and its relevance to complex human disease and 

aging. Trends in Genetics 29, 367–374 (2013). 

39. Consortium*, T. C. elegans S. Genome sequence of the nematode C. elegans: A 

platform for investigating biology. Science 282, 2012–2018 (1998). 

40. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green 

fluorescent protein as a marker for gene expression. Science 263, 802–5 (1994). 

41. Friedland, A. E. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 

system. Nat. Methods 10, 741–743 (2013). 

42. Stirman, J. N. et al. Real-time multimodal optical control of neurons and muscles in 

freely behaving Caenorhabditis elegans. Nat. Methods 8, 153–8 (2011). 

43. Chung, K. et al. Microfluidic chamber arrays for whole-organism behavior-based 

chemical screening. Lab Chip 11, 3689 (2011). 

44. Cho, Y. et al. Automated and controlled mechanical stimulation and functional 

imaging: In vivo in C. elegans. Lab Chip 17, 2609–2618 (2017). 

45. Crane, M. M. et al. Autonomous screening of C. elegans identifies genes implicated 

in synaptogenesis. Nat. Methods 9, 977–980 (2012). 

46. Brown, A. E. X., Yemini, E. I., Grundy, L. J., Jucikas, T. & Schafer, W. R. A 

dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis 



 

 

138 

elegans locomotion. Proc. Natl. Acad. Sci. U. S. A. 110, 791–796 (2013). 

47. Stern, S., Kirst, C. & Bargmann, C. I. Neuromodulatory Control of Long-Term 

Behavioral Patterns and Individuality across Development. Cell 171, 1649-1662.e10 

(2017). 

48. Porto, D. A., Giblin, J., Zhao, Y. & Lu, H. Reverse-Correlation Analysis of the 

Mechanosensation Circuit and Behavior in C. elegans Reveals Temporal and Spatial 

Encoding. Sci. Rep. 9, 1–14 (2019). 

49. Husson, S. J., Costa, W. S., Schmitt, C. & Gottschalk, A. Keeping track of worm 

trackers. WormBook 1–17 (2012). doi:10.1895/wormbook.1.156.1 

50. Yemini, E., Jucikas, T., Grundy, L. J., Brown, A. E. X. & Schafer, W. R. A database 

of C. elegans behavioral phenotypes. Nat. Methods 10, 877–879 (2013). 

51. Javer, A. et al. An open-source platform for analyzing and sharing worm-behavior 

data. Nature Methods 15, (2018). 

52. Padmanabhan, V. et al. Locomotion of C. elegans: A Piecewise-Harmonic 

Curvature Representation of Nematode Behavior. PLoS One 7, e40121 (2012). 

53. Liu, M., Sharma, A. K., Shaevitz, J. W. & Leifer, A. M. Temporal processing and 

context dependency in caenorhabditis elegans response to mechanosensation. Elife 

7, (2018). 

54. Berman, G. J., Bialek, W. & Shaevitz, J. W. Predictability and hierarchy in 

Drosophila behavior. Proc. Natl. Acad. Sci. U. S. A. 113, 11943–11948 (2016). 

55. Cande, J. et al. Optogenetic dissection of descending behavioral control in 

Drosophila. Elife 7, (2018). 

56. Silverman, J. L., Yang, M., Lord, C. & Crawley, J. N. Behavioural phenotyping 

assays for mouse models of autism. Nature Reviews Neuroscience 11, 490–502 

(2010). 



 

 

139 

57. Patterson, P. H. Immune involvement in schizophrenia and autism: Etiology, 

pathology and animal models. Behav. Brain Res. 204, 313–321 (2009). 

58. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nature 

Neuroscience 13, 1161–1169 (2010). 

59. Götz, J. & Ittner, L. M. Animal models of Alzheimer’s disease and frontotemporal 

dementia. Nature Reviews Neuroscience 9, 532–544 (2008). 

60. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function 

during development. Science (80-. ). 298, 2398–2401 (2002). 

61. Felkai, S. et al. CLK-1 Controls Respiration, Behavior and Aging in the Nematode 

Caenorhabditis Elegans - PubMed. EMBO J 18, 1783–1792 (1999). 

62. Aubry, G. & Lu, H. Droplet array for screening acute behaviour response to 

chemicals in: Caenorhabditis elegans. Lab Chip 17, 4303–4311 (2017). 

63. Winter, Y. & Schaefers, A. T. U. A sorting system with automated gates permits 

individual operant experiments with mice from a social home cage. J. Neurosci. 

Methods 196, 276–280 (2011). 

64. Wong, B. G., Mancuso, C. P., Kiriakov, S., Bashor, C. J. & Khalil, A. S. Precise, 

automated control of conditions for high-throughput growth of yeast and bacteria 

with eVOLVER. Nat. Biotechnol. 36, 614–623 (2018). 

65. Stiernagle, T. Maintenance of C. elegans. WormBook : the online review of C. 

elegans biology 1–11 (2006). doi:10.1895/wormbook.1.101.1 

66. Fletcher, M. & Kim, D. H. Age-Dependent Neuroendocrine Signaling from Sensory 

Neurons Modulates the Effect of Dietary Restriction on Longevity of 

Caenorhabditis elegans. PLOS Genet. 13, e1006544 (2017). 

67. Starich, T. A., Xu, J., Skerrett, I. M., Nicholson, B. J. & Shaw, J. E. Interactions 

between innexins UNC-7 and UNC-9 mediate electrical synapse specificity in the 

Caenorhabditis elegans locomotory nervous system. Neural Dev. 4, 1–28 (2009). 



 

 

140 

68. Dernovici, S., Starc, T., Dent, J. A. & Ribeiro, P. The serotonin receptor SER-1 

(5HT2ce) contributes to the regulation of locomotion in Caenorhabditis elegans. 

Dev. Neurobiol. 67, 189–204 (2007). 

69. Driver, R. J. J., Lamb, A. L. L., Wyner, A. J. J. & Raizen, D. M. M. DAF-16/FOXO 

Regulates Homeostasis of Essential Sleep-like Behavior during Larval Transitions 

in C. elegans. Curr. Biol. 23, 501–506 (2013). 

70. Raizen, D. M. et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 

451, 569–72 (2008). 

71. Iwanir, S. et al. The Microarchitecture of C. elegans Behavior during Lethargus: 

Homeostatic Bout Dynamics, a Typical Body Posture, and Regulation by a Central 

Neuron. Sleep 36, 385–395 (2013). 

72. Spies, J. & Bringmann, H. Automated detection and manipulation of sleep in C. 

Elegans reveals depolarization of a sleep-active neuron during mechanical 

stimulation-induced sleep deprivation. Sci. Rep. 8, (2018). 

73. Huang, J. et al. Speed/accuracy trade-offs for modern convolutional object 

detectors. in Proceedings - 30th IEEE Conference on Computer Vision and Pattern 

Recognition, CVPR 2017 2017-January, 3296–3305 (Institute of Electrical and 

Electronics Engineers Inc., 2017). 

74. Lin, T. Y. et al. Microsoft COCO: Common objects in context. in Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics) 8693 LNCS, 740–755 (Springer Verlag, 2014). 

75. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks. 

76. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L. C. MobileNetV2: 

Inverted Residuals and Linear Bottlenecks. in Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition 4510–4520 (IEEE 

Computer Society, 2018). doi:10.1109/CVPR.2018.00474 

77. Flavell, S. W. et al. Serotonin and the neuropeptide PDF initiate and extend 

opposing behavioral states in C. Elegans. Cell 154, 1023–1035 (2013). 



 

 

141 

78. Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. 

Nat. Rev. Neurosci. 10, 549–560 (2009). 

79. Edwards, S. L. et al. A Novel Molecular Solution for Ultraviolet Light Detection in 

Caenorhabditis elegans. PLoS Biol. 6, e198 (2008). 

80. Ward, A., Liu, J., Feng, Z. & Xu, X. Z. S. Light-sensitive neurons and channels 

mediate phototaxis in C. elegans. Nat. Neurosci. 11, 916–922 (2008). 

81. Lawler, D. E. et al. Automated analysis of sleep in adult C. elegans with closed-loop 

assessment of state-dependent neural activity. bioRxiv 791764 (2019). 

doi:10.1101/791764 

82. Gong, J. et al. The C. elegans taste receptor homolog LITE-1 is a photoreceptor. 

Cell 167, 1252-1263.e10 (2016). 

83. Guo, Y., Liu, Y., Georgiou, T. & Lew, M. S. A review of semantic segmentation 

using deep neural networks. Int. J. Multimed. Inf. Retr. 7, 87–93 (2018). 

84. Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts 

with deep learning. Nat. Neurosci. 21, (2018). 

85. Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species 

and behaviors. Nat. Protoc. 14, 2152–2176 (2019). 

86. Kim, J. S. et al. Space–time wiring specificity supports direction selectivity in the 

retina. Nature 509, 331–336 (2014). 

87. Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural 

circuit reconstruction. Nat. Methods 10, 501–507 (2013). 

88. Amat, F. et al. Fast, accurate reconstruction of cell lineages from large-scale 

fluorescence microscopy data. Nat. Methods 11, 951–958 (2014). 

89. de Chaumont, F. et al. Computerized video analysis of social interactions in mice. 

Nat. Methods 9, 410–417 (2012). 



 

 

142 

90. Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: 

interactive machine learning for automatic annotation of animal behavior. Nat. 

Methods 10, 64–67 (2013). 

91. Tungtur, S. K., Nishimune, N., Radel, J. & Nishimune, H. Mouse Behavior Tracker: 

An economical method for tracking behavior in home cages. Biotechniques 63, 

(2017). 

92. Pottash, A. E., McKay, R., Virgile, C. R., Ueda, H. & Bentley, W. E. TumbleScore: 

Run and tumble analysis for low frame-rate motility videos. Biotechniques 62, 

(2017). 

93. Carpenter, A. E., Kamentsky, L. & Eliceiri, K. W. A call for bioimaging software 

usability. Nat. Methods 9, 666–70 (2012). 

94. Jackson-Holmes, E. L., McDevitt, T. C. & Lu, H. A microfluidic trap array for 

longitudinal monitoring and multi-modal phenotypic analysis of individual stem cell 

aggregates. Lab Chip 17, 3634–3642 (2017). 

95. Rainie, L. & Zickuhr, K. Americans’ Views on Mobile Etiquette. (2015). 

96. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in 

Caenorhabditis elegans. Nature 391, 806–11 (1998). 

97. Nelson, L. S. et al. Disruption of a neuropeptide gene, flp-1, causes multiple 

behavioral defects in Caenorhabditis elegans. Science 281, 1686–90 (1998). 

98. Mendel, J. et al. Participation of the protein Go in multiple aspects of behavior in C. 

elegans. Science (80-. ). 267, 1652–1655 (1995). 

99. de Bono, M. & Bargmann, C. I. Natural Variation in a Neuropeptide Y Receptor 

Homolog Modifies Social Behavior and Food Response in C. elegans. Cell 94, 679–

689 (1998). 

100. Cooper, S. et al. Predicting protein structures with a multiplayer online game. 

Nature 466, 756–760 (2010). 



 

 

143 

101. Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. 

Behavioral Ecology 26, 665–673 (2015). 

102. Lewis, J. A. & Fleming, J. T. Chapter 1: Basic Culture Methods. Methods Cell Biol. 

48, 3–29 (1995). 

103. Frézal, L. & Félix, M.-A. C. elegans outside the Petri dish. Elife 4, e05849 (2015). 

104. Schulenburg, H. & Félix, M.-A. The Natural Biotic Environment of Caenorhabditis 

elegans. Genetics 206, 55–86 (2017). 

105. Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A. & Ruvkun, G. 

Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. 

Acad. Sci. U. S. A. 113, E3941–E3949 (2016). 

106. Golden, J. W. & Riddle, D. L. A Caenorhabditis elegans dauer-inducing pheromone 

and an antagonistic component of the food supply. J. Chem. Ecol. 10, 1265–1280 

(1984). 

107. Parida, L. & Padmanabhan, V. Durotaxis in Nematode Caenorhabditis elegans. 

Biophys. J. 111, 666–674 (2016). 

108. Korta, J., Clark, D. A., Gabel, C. V., Mahadevan, L. & Samuel, A. D. T. 

Mechanosensation and mechanical load modulate the locomotory gait of swimming 

C. elegans. J. Exp. Biol. 210, 2383–2389 (2007). 

109. Backholm, M., Kasper, A. K. S., Schulman, R. D., Ryu, W. S. & Dalnoki-Veress, 

K. The effects of viscosity on the undulatory swimming dynamics of C. elegans. 

Phys. Fluids 27, 091901 (2015). 

110. Boyle, J. H., Berri, S., Tassieri, M., Hope, I. A. & Cohen, N. Gait Modulation in C. 

Elegans: It’s Not a Choice, It’s a Reflex! Front. Behav. Neurosci. 5, 10 (2011). 

111. Berri, S., Boyle, J. H., Tassieri, M., Hope, I. A. & Cohen, N. Forward locomotion 

of the nematode C. elegans is achieved through modulation of a single gait. HFSP 

J. 3, 186–193 (2009). 



 

 

144 

112. Boyle, J. H., Berri, S. & Cohen, N. Gait Modulation in C. elegans: An Integrated 

Neuromechanical Model. Front. Comput. Neurosci. 6, 10 (2012). 

113. Fang-Yen, C. et al. Biomechanical analysis of gait adaptation in the nematode 

Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 107, 20323–20328 (2010). 

114. Liu, H. et al. Cholinergic Sensorimotor Integration Regulates Olfactory Steering 

Highlights d Sensorimotor integration regulates goal-directed behavioral tasks d 

Two cholinergic signals encode sensory and motor information d Sensory and motor 

cholinergic signals interact to generate integration d Experience-dependent changes 

in sensorimotor integration. Neuron 97, 390-405.e3 (2018). 

115. Bilbao, A., Patel, A. K., Rahman, M., Vanapalli, S. A. & Blawzdziewicz, J. Roll 

maneuvers are essential for active reorientation ofCaenorhabditis elegansin 3D 

media. Proc. Natl. Acad. Sci. U. S. A. 201706754 (2018). 

doi:10.1073/pnas.1706754115 

116. Maaten, L. van der & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 

9, 2579–2605 (2008). 

117. Saravanan, V., Berman, G. J. & Sober, S. J. Application of the hierarchical bootstrap 

to multi-level data in neuroscience. bioRxiv 819334 (2019). doi:10.1101/819334 

118. Shaw, M. et al. Three-dimensional behavioural phenotyping of freely moving C. 

elegans using quantitative light field microscopy. PLoS One 13, e0200108 (2018). 

119. Klibaite, U., Berman, G. J., Cande, J., Stern, D. L. & Shaevitz, J. W. An 

unsupervised method for quantifying the behavior of paired animals. Phys. Biol. 14, 

(2017). 

120. Ramani, A. K. et al. The majority of animal genes are required for wild-type fitness. 

Cell 148, 792–802 (2012). 

121. Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J. & Wong, J. Y. 

Photopolymerization in Microfluidic Gradient Generators: Microscale Control of 

Substrate Compliance to Manipulate Cell Response. Adv. Mater. 16, 2133–2137 

(2004). 



 

 

145 

122. Busack, I., Jordan, F., Sapir, P. & Bringmann, H. The OptoGenBox - a device for 

long-term optogenetics in C. elegans. bioRxiv 2020.01.13.903948 (2020). 

doi:10.1101/2020.01.13.903948 

 

 


