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SUMMARY

This thesis discusses the new progress in (1) hot-spots detection in spatial-temporal

data, (2) partial-differential-equation-based (PDE-based) model identification, and (3) op-

timization in the Least Absolute Shrinkage and Selection Operator (Lasso) type problem.

In this thesis, we have four main works. Chapter 1 and Chapter 2 fall in the first area,

i.e., hot-spots detection in spatio-temporal data. Chapter 3 belongs to the second area,

i.e., PDE-based model identification. Chapter 4 is for the third area, i.e., optimization in

the Lasso-type problem. The detailed description of these four chapters is summarized as

follows.

In Chapter 1, we aim at detecting hot-spots in multivariate spatio-temporal dataset that

are non-stationary over time. To realize this objective, we propose a statistical method

to under the framework of tensor decomposition and our method has three steps. First,

we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model

that serves as a dimension reduction and de-noising technique: it is an additive model

that decomposes the original data into three components: smooth but non-stationary global

mean, sparse local anomalies, and random noises. Next, we estimate the model parameters

by the penalized framework that includes a combination of Lasso and fused Lasso penalty

to address the spatial sparsity and temporal consistency, respectively. Finally, we apply a

Cumulative Sum (CUSUM) Control Chart to monitor the model residuals, which allows

us to detect when and where the hot-spot event occurs. To demonstrate the usefulness of

our proposed SSD-Tensor method, we compare it with several other methods in extensive

numerical simulation studies and a real crime rate dataset. The material of this chapter is

published in Journal of Applied Statistics in January, 2021 under the title “Rapid Detection

of Hot-spots via Tensor Decomposition with Applications to Crime Rate Data” with co-

authors Hao Yan, Sarah E. Holte and Yajun Mei.

In Chapter 2, we improve the methodology in Chapter 1 both statistically and compu-

xviii



tationally. The statistical improvement is the new methodologies to detect hot-spots with

temporal circularity, instead of temporal continuity as in Chapter 1. This helps us handle

many bio-surveillance and healthcare applications, where data sources are measured from

many spatial locations repeatedly over time, say, daily/weekly/monthly. The computational

improvement is the development of a more efficient algorithm. The main tool we use to ac-

celerate the calculation is the tensor decomposition, which is similar to the matrix context

where it might be difficult to compute the inverse of a large matrix in general, but it will be

straightforward to calculate the inverse of a large block diagonal matrix through the inverse

of sub-matrices in the diagonal. The usefulness of the improved methodology is validated

through numerical simulations and a real-world dataset in the weekly number of gonorrhea

cases from 2006 to 2018 for 50 states in U.S.. The material of this chapter is accepted as

a book chapter in Frontiers in Statistical Quality Control 13 in February 2021 under the

title “Rapid Detection of Hot-spot by Tensor Decomposition with Application to Weekly

Gonorrhea Data” with co-authors Hao Yan, Sarah E. Holte, Roxanne P. Kerani and Yajun

Mei.

In Chapter 3, we propose a two-stage method called Spline Assisted Partial Differen-

tial Equation involved Model Identification (SAPDEMI) method to efficiently identify the

underlying PDE models from the noisy data. In the first stage – functional estimation

stage – we employ the cubic spline to estimate the unobservable derivatives, which serve

as candidates of the underlying PDE models. The contribution of this stage is that, it is

computational efficient because it only requires the computational complexity of the linear

polynomial of the sample size, which achieves the lowest possible order of complexity. In

the second stage – model identification stage – we apply Lasso to identify the underlying

PDE model. The contribution of this stage is that, we focus on the model selections, while

the existing literature mostly focuses on parameter estimations. Moreover, we develop sta-

tistical properties of our method for correct identification, where the main tool we use is

the primal-dual witness (PDW) method. Finally, we validate our theory through various
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numerical examples.

In Chapter 4, we focus on developing an algorithm to solve the optimization with a `1

regularization term, namely the Lasso-type problem. The algorithm developed in this chap-

ter can greatly reduce the computational complexity in Chapter 1, Chapter 2 and Chapter

3, where we try to realize sparse identification. The challenge to develop an efficient algo-

rithm for the Lasso-type problem is that the objective function of the Lasso-type problem

is not strictly convex when the number of samples is less than the number of features. This

special property of the Lasso-problem leads the existing Lasso-type estimator, in general,

cannot achieve the optimal rate due to the undesirable behavior of the absolute function

at the origin. To overcome the above challenge, we develop a homotopic method, where

we use a sequence of surrogate functions to approximate the `1 penalty that is used in the

Lasso-type of estimators. The surrogate functions will converge to the `1 penalty in the

Lasso estimator. At the same time, each surrogate function is strictly convex, which en-

ables a provable faster numerical rate of convergence. In this chapter, we demonstrate that

by meticulously defining the surrogate functions, one can prove a faster numerical con-

vergence rate than any existing methods in computing for the Lasso-type of estimators.

Namely, the state-of-the-art algorithms can only guarantee O(1/ε) or O(1/
√
ε) conver-

gence rates, while we can prove an O([log(1/ε)]2) for the newly proposed algorithm. Our

numerical simulations show that the new algorithm also performs better empirically.

In Chapter 5, we summarize the contributions of the above four chapters. These four

chapter fall in the three areas: (1) hot-spots detection in spatial-temporal data, (2) PDE-

based model identification, and (3) optimization in the Lasso-type problem. In particular,

the above three areas shares the similar technique, i.e., they are all involved with the sparse

identification problem. The first area aims at sparse hot-spots detection. The second area

focuses on identifying a few underlying derivatives among lots of candidates of derivatives.

The third area targets on the computation with the `1 regularization term. In addition to the

contributions, we also discuss the future research of these three areas.
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CHAPTER 1

RAPID DETECTION OF HOT-SPOTS VIA TENSOR DECOMPOSITION WITH

APPLICATIONS TO CRIME RATE DATA

1.1 Introduction

In many real-world applications such as biosurveillance, epidemiology, and sociology, mul-

tiple data sources are often measured from many spatial locations repeatedly over time, say,

daily, monthly, or annually. This is commonly referred as multivariate spatio-temporal

data. When such data are non-stationary over time, compared with detecting the global

or system-wise changes as in the traditional statistical process control (SPC) or sequential

change-point detection literature, we would be more interested in detecting hot-spots with

spatially-sparsity and temporally-consistency. Here, we define hot-spots as the anomalies

that can occur in the temporal and spatial domains among the multivariate spatio-temporal

data.

The primary objective of this paper is to develop an efficient method for hot-spots detec-

tion and localization for multivariate spatio-temporal data. From the viewpoint of monitor-

ing non-stationary multivariate spatial-temporal data, there are two kinds of changes: one

is the change on the global-level trend (e.g., the first-order changes), and the other is the

local-level hot-spot (e.g., second-order changes). Here we focus on detecting the latter one,

and assume that local-level hot-spots have the following two properties: (1) spatial sparsity,

i.e., the local changes are sparse in the spatial domain; and (2) temporal consistency, i.e.,

the local changes last for a reasonable period of time.

Little research has been done on the hot-spot detection for multivariate spatio-temporal,

although there are two major related existing research areas for detection in multivariate

spatio-temporal data: one is the spatio-temporal cluster detection, and the other is change-
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point detection. In the first area, the famous representative is the scan statistics based

method, which was first developed in the 1960s in [1] and later extended by [2] to detect

anomalous clusters in spatio-temporal data. The main idea of scan statistics is to detect

the abnormal clusters by utilizing maximal log-likelihood ratio (more mathematical details

are provided in subsection 1.8.3). It is worth noting that the scan statistics-based method

is a parametric method, in which the parametric families of data distributions are made.

For instance, [3] assumes the negative binomial distribution, [2, 4, 5, 6] investigate the

Poisson distribution. A limitation of scan statistics is that it assumes that the background

is independent and identically distributed (i.i.d.) or follows a rather simple probability

distribution, which might not be suitable to handle non-stationary spatio-temporal data.

The second category of existing research is the change-point detection problem for

the spatio-temporal data. Below we will further review two approaches that are related

to our context: the Least Absolute Shrinkage and Selection (Lasso) based methods and

dimension-reduction-based methods. Note that Lasso has been demonstrated to be an ef-

fective method for variable selection to address sparsity issues for high-dimensional data

in the past decades since its developments in [7], and thus it is natural to apply it to detect

sparse changes in high-dimensional data, see [8, 9, 10, 11, 12, 13]. While the sparse change

of Lasso is similar to the hot-spots, unfortunately, as our extensive simulation studies will

demonstrate, the Lasso-based control chart is unable to separate the local hot-spots from

the non-stationary global trend mean in the spatio-temporal data.

For the dimension-reduction-based change-point detection method, Principal Compo-

nent Analysis (PCA) or other dimension reduction methods are often used to extract the

features from the high-dimensional data. More specifically, [14] reduces the dimensional-

ity in the spatio-temporal data by constructing T 2 and Q charts separately. [15] combines

multivariate functional PCA with change-point models to detect the hot-spots. For other

dimension-reduction-methods, please see [16, 17, 18, 19, 20, 21] for more details. The

drawbacks of PCA or other dimension-reduction-based methods are the restriction of the
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change-point detection problem and the failure to consider the spatial sparsity and temporal

consistency of hot-spots.

Our proposed method is essential to the application of the Lasso-based method and

dimension-reduction-based method for SPC or change-point detection over a model based

on tensor, which is a multi-dimensional array. It is worth noting that the multivariate

spatio-temporal data can often be represented in 3-dimensional tensor format as “Spatial

dimension × Temporal dimension × Attributes dimension”. Therefore, we propose to

use tensor to represent the original data, and consider the additive model that decomposes

this tensor into three components: (1) smooth but non-stationary global trend mean, (2)

sparse local hot-spots, and (3) residuals. We term our proposed decomposition model as

Smooth Sparse Decomposition-Tensor (SSD-Tensor). Besides, when fitting the raw data to

the SSD-Tensor model, we propose to add two penalty functions: the first one is the Lasso

type penalty to guarantee the spatial sparsity of hot-spots, and the second one is the fused-

Lasso penalty [see 22] to guarantee the temporal consistency of hot-spots. This allows

us to not only detect when the hot-spot happens over the temporal domain (i.e., hot-spot

detection problem) but also localize where and which types/attributes of the hot-spots occur

if the change happens (i.e., hot-spot localization problem).

It is useful to highlight the novelty of our proposed method as compared to the existing

research on spatio-temporal data. First, our proposed SSD-Tensor method can detect hot-

spots when the global trend of the spatio-temporal data is dynamic (i.e., non-stationary

or non-i.i.d). That is, our method is robust to the global trend, in the sense that it can

detect hot-spots with positive or negative mean shifts on top of the global trend of raw

data, no matter whether it is decreasing or increasing. In comparison, the existing SPC or

change-point detection methods often assume that the background is i.i.d. and focus on

detecting the anomalies under the static and i.i.d. background. Second, we should clarify

that the primary goal of our proposed method is not the prediction or model fitting. Instead,

we focus on hot-spots detection and localization among the dynamic spatio-temporal data.
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Of course, good fitting or estimation of the global trend will be useful to detect hot-spots

accurately. Finally, while our paper focuses only on a 3-dimensional tensor arising from our

motivating application in crime rates, our proposed hot-spot method can easily be extended

to any d-dimensional tensor (d ≥ 3), as we can simply add corresponding dimensions and

bases in the tensor analysis. The capability of extending to high-dimensional tensor data is

one of the main advantages of our proposed SSD-Tensor method.

The remainder of this paper is described as follows. In section 1.2, we introduce and

visualize the crime rate dataset, which will be used as our motivating example. In sec-

tion 1.3, we present our proposed SSD-Tensor model and discuss how to estimate model

parameters from data. In section 1.4, we describe how to use our proposed SSD-Tensor

model to detect and localize hot-spots. In section 1.5, we compare our proposed method

with several benchmark methods and demonstrate its usefulness through extensive simula-

tions. In section 1.6, we represent the application of our proposed method in a real crime

rate dataset.

1.2 Motivating Example & Background

This section gives a detailed description of the crime rate dataset that is available from the

U.S. Department of Justice Federal Bureau of Investigation (see https://www.ucrdatatool.

gov/Search/Crime/State/StateCrime.cfm). The crime rates are recorded from 1965 to 2014

for 51 states in the United States annually. In each year and for each state, three types of

crime crates are reported: (1) murder and non-negligent manslaughter; (2) legacy rape;

and (3) revised rape. Table 1.1 shows the head of the dataset, and the value in the table is

the crime rate per 100,000 population in each state.

It is worth noting that the crime rate dataset has three dimensions: (1) the temporal

dimension (i.e., years), (2) the spatial dimension (i.e., states), and (3) the attribute/category

dimension (i.e., three different types of crime rates). For a visual representation, we plot

several figures that show the characteristics of each dimension.
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Table 1.1: Head of the crime rate dataset from 1965 to 2014 for 51 states in the U.S. an-
nually. The dataset is publicly available from https://www.ucrdatatool.gov/Search/Crime/
State/StateCrime.cfm. The recorded three types of crime rates are murder and non-
negligent manslaughter, legacy rape, and revised rape. The value in the table is the crime
rate per 100,000 population of each state, and the states are ordered in alphabetical order.

Year State Murder and non-negligent manslaughter Legacy rape Revised rape
1965 Alabama 11.4 10.6 28.7
1965 Alaska 6.3 17.8 39.9
1965 Arkansas 5.9 10.4 23.7

...
...

...
...

...
1965 Wyoming 2.9 11.5 17.9
1966 Alabama 10.9 9.7 32
1966 Alaska 12.9 19.5 36

...
...

...
...

...

To begin with, we first illustrate the temporal dimension (i.e., years), where we plot the

time series of the sum of all states’ crime rates in the logarithm scale in Figure 1.1(a). The

x-axis is the year ranging from 1965 to 2014, and the y-axis is the sum of all states’ crime

rates in the logarithm scale. We acknowledge that this summation is different from the

actual annual crime rate in the United States, which needs to take into account the different

population sizes of each state at different years. Here, we use this notation to refer it as

the annual crime rate of the United States for simplicity, since our purpose here is only for

demonstration of the overall temporal trends. Figure 1.1(a) suggests that the crime rates are

increasing in the first 10 years (1965-1975), then become stationary during 1975-1995, and

finally have a decreasing trend during 1995-2014. Furthermore, it is interesting to point out

the two peaks around 1980 and 1992, since we are interested in finding out whether they

are caused by global trends or local hot-spots.

Next, we show the characteristics of the crime rate dataset on the attribute/category

dimension (i.e., three types of the crime rates) in Figure 1.1(b), where different bars rep-

resents the different types of the crime rates, and the height of the bar represents the cu-

mulative crime rate from 1965 to 2014 in the United States. It can be seen that these three

crime rates overall happen with similar frequencies. This can possibly make it challenging
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to detect the hot-spots if we analyze the three-dimension data as a whole.
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(a) Time Series plot (b) Bar plot

Figure 1.1: (a) Time series of annual crime rates in the United States from1965 to 2014
& (b) Bar plot of three cumulative rates from 1965 to 2014. For (a), the x-axis plot is
the year ranging from 1965 to 2014, and the y-axis is the annual crime rate of the U.S. in
the logarithm scale. Because the value of the crime rate is the number of crime cases per
100,000 population, it is reasonable for the annual crime rate to be larger than 100 during
some years. For plot (b), different bars represent different types of crime rates, and the
height of the bar represents the cumulative crime rate from 1965 to 2014 in the U.S. in the
logarithm scale.

Finally, we illustrate the crime rate data in the spatial dimension (i.e., states) in Fig-

ure 1.2. In Figure 1.2, each map shows the spatial information of the crime rates in six

different years. The selected six years are starting from 1965 with a ten-year interval, and

the only exception is the sixth map, which uses the year 2014 data, as the data in the year

2015 is not available yet as of August 2020. If a state has a very dark color in Figure 1.2,

it has very high crime rates. We can see from the spatial plot in Figure 1.2 that the spatial

patterns of crime rates are generally very smooth.

From Figure 1.1 and Figure 1.2, there seems to be a brief increasing trend during 1984-

1995, but it is difficult to conclude whether this is due to the global trend or local hot-spots

without refined analysis. Note that the global trend might be caused by the U.S. federal

governments’ policies or the world-wise economic or political situations that are out of

control of any local state or certain government branches. However, it is possible that the

issues from local hot-spots can be addressed by borrowing other states’ successful strategies
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(a) 1965 (b) 1975 (c) 1985

(d) 1995 (e) 2005 (f) 2014

Figure 1.2: Each map shows the spatial information of the crime rates in six different years.
Darker color represents a higher crime rate. We can see that the spatial patterns of crime
rate are generally very smooth.

or policies.

Below we provide the technical background on tensor through the crime rate dataset.

Note that we can store our data set as a tensor of order three, denoted by Y = (Yi,j,t),where

an element Yi,j,t represents the j-th crime rate of state i in year t with i = 1, . . . , 51 for 51

states, j = 1, 2, 3 for three different type of crime rate and t = 1, . . . , 50 for 50 years from

1965 to 2014.

We are now ready to introduce some basic tensor notation and algebra that are useful in

this paper. For the notations throughout the paper, scalars are denoted by lowercase letters

(e.g., θ), vectors are denoted by lowercase boldface letters (θ), matrices are denoted by

uppercase boldface letter (Θ), and tensors by curlicue letter (ϑ). For example, a tensor of

order N is represented by ϑ ∈ RI1×...×IN , where In represent the mode-n dimension of ϑ

for n = 1, . . . , N .

Next, we introduce the notation of slice, which is a two-dimensional section of a

tensor by fixing all but two indices. Let us take tensor Y ∈ Rn1×n2×n3 as an exam-
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ple. Figure 1.3 visualizes its horizontal, lateral, and frontal slides, which are denoted by

Yi::(∀i = 1, . . . , n1),Y:j:(∀j = 1, . . . , n2), and Y::t(∀t = 1, . . . , n3), respectively.

(a) the original tensor: (b) horizontal slices: (c) lateral slices: (d) frontal slices:
Yn1×n2×n3 Yi:: ∀i = 1, . . . , n1 Y:j: ∀j = 1, . . . , n2 Y::t ∀t = 1, . . . , n3

Figure 1.3: Slices of 3-dimension tenor

Moreover, we introduce the mode-n product between a tensor and a matrix. For a given

tensor of order N , i.e., ϑ ∈ RI1×...×IN and a given matrix B ∈ RJn×In , the mode-n product

between ϑ and B, denoted by ϑ×nB, is a new tensor of dimension RI1×...In−1×Jn×In+1×...IN ,

where its (i1, . . . , in−1, jn, in+1, . . . , iN)-th entry can be computed as
∑

in
ϑi1,...,iNBjn,in .

Here we use the notation Bjn,in to refer the (jn, in)-th entry in matrix B, and ϑi1,...,iN to

refer the (i1, . . . , iN)-th entry tensor ϑ.

Finally, we discuss the Tucker decomposition, which is a useful technique in tensor

algebra. Its main idea is to decompose a tensor Y ∈ RI1×...×IN into a core tensor multiplied

by matrices along each dimension:

Y = ϑ×1 B(1) ×2 B(2) . . .×N B(N),

where B(n) ∈ RIn×In is an orthogonal matrix for n = 1, . . . , N . The above equation can

be equivalently represented by a Kronecker product, i.e.,

vec(Y) = (B(N) ⊗B(N−1) . . .⊗B(1))vec(θ),

where vec(·) is the vectorized operator. Here the Kronecker product⊗ is defined as follow:

suppose B1 ∈ Rm×n and B2 ∈ Rp×q are matrices, the Kronecker product of these matrices
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is an mp× nq block matrix defined by

B1 ⊗B2 =


b11B2 . . . b1nB2

... . . . ...

bm1B2 . . . bmnB2

 .

The Kronecker product has been shown to have excellent computational efficiency for ten-

sor data [see 23].

1.3 Our Proposed SSD-Tensor Model

This section presents our proposed SSD-Tensor model and its parameter estimation, whereas

the discussion of hot-spot detection and localization will be postponed to the next section.

The main advantage of using tensor is not only to characterize the complicated “within-

dimension” or “between-dimension” correlations but also to simplify the computations.

The latter is similar to the matrix context where it might be difficult to compute the inverse

of a large matrix in general, but it will be straightforward to calculate the inverse of a large

block diagonal matrix through the inverse of sub-matrices in the diagonal.

To better present our main ideas, we split this section into three subsections. In subsec-

tion 1.3.1, we present the mathematical formulation of our proposed SSD-Tensor model,

and subsection 1.3.2 develops the optimization algorithm for the parameter estimation

problem of the model when fitting the observed data. Since the choice of basis in the

tensor decomposition plays an important role in representing spatial or temporal patterns,

we devote subsection 1.3.3 to discuss the choice of basis in our context.

1.3.1 Our Proposed Model

In this section, we present the mathematical formulation of our proposed SSD-Tensor

model. Here let us focus on our motivating data with three-dimension tensorY ∈ Rn1×n2×n3 ,

where the (i, j, t)-th entry indicate the j-th crime rate in i-th state in year t, with i =
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1, . . . , n1 = 51, j = 1, . . . , n2 = 3, and t = 1, . . . , n3 = 50.

At the high level, our proposed SSD-Tensor model is to decompose a raw data Yi,j,t into

three components: the smooth global trend mean Ui,j,t, local hot-spots Hi,j,t, and residuals

Ei,j,t. Mathematically, it is an additive model with the form

Yi,j,t = Ui,j,t +Hi,j,t + Ei,j,t,

where the residuals Ei,j,t are i.i.d. with N(0, σ2). Under the tensor notation, we denote

U ,H, E as the corresponding tensors of dimension Rn1×n2×n3 . Then our proposed model

can be rewritten as Y = U +H + E .

It remains to discuss two main components of our model in more detail. For the global

trend mean U , our main idea is to adopt the basis decomposition framework that allows us to

address the complicated within-dimension correlation and between-dimension correlations.

To be more specific, we propose to decompose the global trend mean tensor U as

U = ϑm ×1 Bm,1 ×2 Bm,2 ×3 Bm,3,

where ϑm ∈ Rn1×n2×n3 is an unknown tensor parameter to be estimated, and matrices

Bm,1 ∈ Rn1×n1 ,Bm,2 ∈ Rn2×n2 ,Bm,3 ∈ Rn3×n3 are pre-specified bases to describe the

within-state correlation, within-rate correlation, and within-year correlation in U , respec-

tively. The choices of the base matrices, i,e., Bm,1,Bm,2 and Bm,3, are very important

in practice, and we will discuss them in more details in subsection 1.3.3. In our tensor

decomposition, the operator ×1,×2,×3 is the mode-n product reviewed in the previous

section, where n = 1, 2, 3. This mode-n product is used to model the between-dimension

correlations in U .

Since some readers might not be familiar with the basis decomposition in tensor, let us

provide a little more background. Loosely speaking, the basis decomposition for tensor is

an extension of the matrix decomposition and is similar to the singular value decomposition
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(SVD) in the sense of representing a matrix or tensor as the product of several specialized

matrices or tensors. The main difference is that the bases Bm1 ,Bm,2,Bm,3 are known in

the basis decomposition. Figure 1.4 illustrates the relationship between SVD and basis

decomposition.

(a) SVD (b) basis decomposition

Figure 1.4: The relationship between SVD and the basis decomposition. The plot (a)
is the SVD of matrix U ∈ Rn1×n2 . The plot (b) is the basis decomposition of tensor
U ∈ Rn1×n2×n3 .

Next, for the local hot-spot tensorH, we follow the similar basis decomposition way as

U :

H = ϑh ×1 Bh,1 ×2 Bh,2 ×3 Bh,3,

where ϑh ∈ Rn1×n2×n3 is the unknown tensor to be estimated. And matrices Bh,1 ∈

Rn1×n1 ,Bh,2 ∈ Rn2×n2 ,Bh,3 ∈ Rn3×n3 are pre-specified bases to describe the within-state

correlation, within-rate correlation, and within-year correlation in H, respectively. For

the selection of these bases, i,e., Bh,1,Bh,2,Bh,3, a detailed discussion can be found in

subsection 1.3.3. The operator ×1,×2,×3 is the mode-n (n = 1, 2, 3) product (see the

definition of mode-n product in the end of section 1.2) to model the between-dimension

correlations inH.

In summary, our proposed SSD-Tensor model can be written in the following tensor

format:

Y = ϑm ×1 Bm,1 ×2 Bm,2 ×3 Bm,3 + ϑh ×1 Bh,1 ×2 Bh,2 ×3 Bh,3 + E . (1.1)

This tensor representation above allows us to develop computationally efficient methods for
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estimation and prediction. The detailed reason why tensor is more computational efficient

can be found in subsection 1.3.2 and subsection 1.8.2. By introducing tensor algebra, the

above format of our model can be written equivalently:

y = (Bm,1 ⊗Bm,2 ⊗Bm,3)︸ ︷︷ ︸
Bm

θm + (Bh,1 ⊗Bh,2 ⊗Bh,3)︸ ︷︷ ︸
Bh

θh + e, (1.2)

where vector y = vec(Y), vector θm = vec(ϑm), vector θh = vec(ϑh), and vector e =

vec(E). The residual vector e is assumed to be the Gaussian white noise, i.e., e∼N(0, σ2I).

In our proposed SSD-Tensor model in Equation 1.2, it is crucial to estimate the global

mean parameter θm and the local hot-spots parameter θh when fitting to the observed data.

Here we propose to estimate them by the penalized likelihood-function framework. To be

more concrete, we propose to add two penalties in our parameter estimation. The first one

is the Lasso penalty term on θh to ensure the sparsity property of hot-spots: R1(θh) =

λ1 ‖θh‖1 . The second penalty is the fused Lasso penalty [see 22] on θh to encourage the

temporal consistency of the hot-spots: R2(θh) = λ2

∑n3

t=2 ‖θh,t − θh,t−1‖1 , where θh,t =

vec(ϑh,::t).

Thus, by combining these two penalties, we propose to estimate the parameters (θm,θh, e)

via the following optimization problem:

arg minθm,θh,e ‖e‖
2
2 + λ1 ‖θh‖1 + λ2

∑n3

t=2 ‖θh,t − θh,t−1‖1

s.t. y = (Bm,1 ⊗Bm,2 ⊗Bm,3)θm + (Bh,1 ⊗Bh,2 ⊗Bh,3)θh + e.
(1.3)

We will discuss how to efficiently solve this optimization problem in the next section.

1.3.2 Optimization Algorithm for Estimation

In this section, we develop an efficient computational algorithm to solve the optimization

problem in Equation 1.3. To emphasize the tuning parameters λ1 and λ2 in the penalty

terms in Equation 1.3, we rewrite θm and θh as θm,λ1,λ2 and θh,λ1,λ2 , respectively.

12



Our proposed optimization algorithm to solve Equation 1.3 contains two main steps.

The first one is to estimate θm,λ1,λ2 and e for a given θh,λ1,λ2 . The second step is to esti-

mate θh,λ1,λ2 by using the fast iterative shrinkage thresholding algorithm (FISTA) in [24]

that iteratively updates the estimators. When implementing the FISTA algorithm to our

context, at each iteration, we face an optimization problem that involves both Lasso and

fused Lasso penalty parameters λ1 and λ2. To make the computation feasible, we apply an

useful proposition that establishes the relationship of the optimal solutions between λ1 = 0

and general λ1 6= 0.

Let us first discuss the estimation of θm,λ1,λ2 and e for a given θh,λ1,λ2 . It turns out that

we have a closed-form solution, as shown in the following proposition.

Proposition 1.3.1. In the optimization problem in Equation 1.3, for a given θ̂h,λ1,λ2 , the

optimal solution of θ̂m,λ1,λ2 is given by:

θ̂m,λ1,λ2 = (B>mBm)−1
(
B>my −B>mBhθ̂h,λ1,λ2

)
. (1.4)

The proof of Proposition 1.3.1 follows the standard argument in the method of least

squares in linear regression and thus omitted. Moreover, since Bm ∈ Rn1n2n3×n1n2n3 can

have huge dimension when n1, n2, n3 is large, it might be computationally expensive to

solve the inverse of matrix B>mBm. By using the tensor algebra, we can greatly simplify

the computations, see subsection 1.8.2 for the details.

Next, we discuss the estimation of θh,λ1,λ2 , which is highly non-trivial. By Proposition

1.3.1, the original optimization problem in Equation 1.3 becomes

arg min
θh,λ1,λ2

‖y∗ −Xθh,λ1,λ2‖
2
2 + λ1 ‖θh,λ1,λ2‖1 + λ2 ‖Dθh,λ1,λ2‖1 , (1.5)

where y∗ = [I−Hm] y,X = [I−Hm] Bh with Hm = Bm(B>mBm)−1B>m. Here the ma-

trix D is defined to make λ2 ‖Dθh,λ1,λ2‖1 equivalent to λ2

∑n3

t=2 ‖θh,λ1,λ2,t − θh,λ1,λ2,t−1‖1

(see subsection 1.8.1 for the explicit definition of D).
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It suffices to solve the new optimization problem in Equation 1.5. Note that Equa-

tion 1.5 is a generalized Lasso problem, and there are many optimization methods available

in the literature. For instance, [25] solves a generalized Lasso problem through transforma-

tion to a common Lasso problem, but unfortunately, it is computationally heavy. [26] uses

the alternating direction methods of multipliers (ADMM) algorithm to solve a generalized

Lasso problem, but its convergence rate is of O(1/k) as shown in [27], where k indicat-

ing the iterations. Another popular method is iterative shrinkage thresholding algorithms

(ISTA) proposed by [28], which also has a convergence rate of O(1/k). Later, researchers

in [24] proposed a faster version of the ISTA, called FISTA, and shown that it has a conver-

gence rate O(1/k2). Thus in our paper, we decide to choose the FISTA algorithm in [24]

as the primary tool to solve Equation 1.5 due to its fast convergence rate.

There is a technical challenge to apply the FISTA algorithm to Equation 1.5. In the

FISTA algorithm, each iteration is based on the proximal mapping of the loss function

F (θh,λ1,λ2) = ‖y∗ −Xθh,λ1,λ2‖
2
2 . To be more concrete, the updating rule from i-th FISTA

iteration to (i+ 1)-th FISTA iteration is given by

θ
(i+1)
h,λ1,λ2

= arg minθ F (η(i)) + ∂F (η(i))
∂θh,λ1,λ2

(
θ − η(i)

)
+ Lθ

2
‖θ − η(i)‖2

2 + λ1‖θ‖1 + λ2‖Dθ‖1

, πλ1
λ2

(v(i))

where η(i) is the auxiliary variable, i.e, η(i) = θ
(i)
h,λ1,λ2

+ ti−1
ti+1

(θ
(i)
h,λ1,λ2

− θ(i−1)
h,λ1,λ2

) with

t0 = 1, ti+1 =
1+
√

1+4t2i
2

, v(i) = η(i) − ∂
Lθ∂θ

F (η(i)) and Lθ is the stepsize which is fixed as

the maximal eigenvalue of matrix X>X (see subsection 1.8.4 for more details).

The challenge of applying the FISTA algorithm is because it is difficult to solve πλ1
λ2

(v(i))

directly, as it involves two penalties with parameters λ1 and λ2. To overcome this challenge,

we propose to combine a nice theoretical result in [29] with an augmented ADMM algo-

rithm in [30]. Specifically, [29] shows that there is a closed-form relationship between

πλ1
λ2

(v(i)) and π0
λ2

(v(i)). Thus we can easily compute πλ1
λ2

(v(i)) if we know how to solve

π0
λ2

(v(i)). The latter can be solved by the augmented ADMM algorithm in [30], which is
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an extension of the regular ADMM method.

Proposition 1.3.2 summarizes that, in the i-th FISTA iteration, how to derive πλ1
λ2

(v(i))

from π0
λ2

(v(i)), whose iterative applications lead to the estimation of θh,λ1,λ2 in Equa-

tion 1.5:

Proposition 1.3.2. Assume that

1. there is a diagonal matrix Q ∈ Rn1n2n3×n1n2n3 satisfying Q � D>D, i.e., Q−D>D

is a positive semidefinite matrix;

2. there is a scaler ρ > 0, which is a positive penalty parameter;

The updating procedure of augmented ADMM algorithm from k-th augmented ADMM

iteration to the (k + 1)-th augmented ADMM iteration is

π0
λ2
(v(i))(k+1) = arg min

θ∈Rn1n2n3
[F (θ) + (2α(k) −α(k−1))>Dθ+

ρ
2(θ − π

0
λ2
(v(i))(k+1))>Q(θ − π0

λ2
(v(i))(k+1))];

γ(k+1) = arg min
θ∈Rn3−1

[
Dγ + ρ

2

∥∥∥Dθ(k+1) − γ + 1
ρα

(k)
∥∥∥2

2

]
;

α(k+1) = α(k) + ρ(Dθ(k+1) − γ(k+1)).

(1.6)

Suppose the above updating procedure lasts for M2 iterations with M2 as the number of

augmented ADMM iterations, then we have can well approximate π̂0
λ2

(v(i)) as π0
λ2

(v(i))(M2).

Then π̂λ1
λ2

(v(i)) can be solved as

π̂λ1
λ2

(v(i)) = sign(π̂0
λ2

(v(i)))�max
{
|π̂0
λ2

(v(i))| − λ1, 0
}
, (1.7)

where � is an operator, which multiply two vectors in an element-wise fashion. For exam-

ple, for two vectors a,b, the i-th operator of a⊗ b is aibi.

The proof of Proposition 1.3.2 is omitted, as the update rule in Equation 1.6 is an

application of the augmented ADMM algorithm of [30], and Equation 1.7 follows directly

from Theorem 1 of [29].
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Combining the above two propositions, our optimization algorithm to solve the opti-

mization problem in Equation 1.3 can be summarized as the pseudocode in algorithm 1.

Algorithm 1: Algorithm summary for estimation
Input: y,Bm,Bh, λ1, λ2,M1,M2, Lθ, ρ,Q
Output: θ̂h,λ1,λ2 , θ̂m,λ1,λ2

1 initialization: θ(0)
h,λ1,λ2

, t0 = 1

2 for i = 0, . . . ,M1 do
3 η(i) = θ

(i)
h,λ1,λ2

+ ti−1
ti+1

(θ
(i)
h,λ1,λ2

− θ(i−1)
h,λ1,λ2

)

4 v(i) = η(i) − ∂
Lθ∂θ

F (η(i))

5 π̂0
λ2

(v(i)) = argADMM(v(i))

6 π̂λ1
λ2

(v(i)) = sign(π̂0
λ2

(v(i)))�max{|π̂0
λ2

(v(i))| − λ1, 0}
7 θ

(i+1)
h,λ1,λ2

= π̂λ1
λ2

(v(i))

8 ti+1 =
1+
√

1+4t2i
2

9 θ̂h,λ1,λ2 = θ
(M1)
h,λ1,λ2

10 θ̂m,λ1,λ2 = (B>mBm)−1
(
B>my −B>mBhθ̂h,λ1,λ2

)
Function argADMM() refers to the augmented ADMM algorithm with the updating rule in Equation 1.6. M1

is the number of the FISTA iterations, and M2 is the number of augmented ADMM iterations. The choice of
Lθ, ρ,Q can be found in subsection 1.8.4.

1.3.3 Selection of Bases in Our Context

This section discusses how to choose the bases Bm,1, Bm,2, Bm,3, Bh,1, Bh,2, Bh,3 in our

contexts. In general, these bases can be Gaussian kernels, Cosine kernels, etc., depending

on the nature or characteristics of the data. When one has little to no prior knowledge of

the data structure, a simple choice of basis can be an identity matrix.

Let us now discuss our choices of these bases in our simulation studies and case study

of the crime rate dataset. For the bases of the global trend mean, it involves the selection of

Bm,1, Bm,2, Bm,3, where Bm,1 is the basis in the state dimension of the global trend, Bm2

is the basis in the crime rate dimension of the global trend, Bm3 is the basis in the temporal

dimension of the global trend. By Figure 1.2, the data are spatially smooth in the state

dimension, and thus we propose to choose Bm,1 as the Gaussian kernel matrix whose (i, j)-

th element is defined by exp{−d2/(2c2)}, where d is the distance between the center of i-th
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state and j-th state. Here the bandwidth constant c is chosen by Silverman’s Rule of thumb

of [31]: c = (4σ̂5/(3n3))1/5, where σ̂ is the estimated variance of y1, . . . ,yn3 . Meanwhile,

we set Bm,2 and Bm,3 as the identity matrix, since we have little prior knowledge in the

crime rate dimension and the temporal dimension.

For the selection of the hot-spots basis, i.e., Bh,1, Bh,2, Bh,3, we propose to set all

of them as the identity matrix, since there is no prior knowledge of the hot-spots. It is

informative to mention that while the identify matrix seems to lack the temporal consistency

of the hot-spots, our optimization problem adds the fused Lasso penalty that might have

already addressed the temporal consistency of the hot-spots.

1.4 Detection and Localization of Hot-spots

In this section, we discuss the detection and localization of the hot-spots. For the ease of

presentation, we first discuss the detection of the hot-spots, i.e., detect when a hot-spot

occurs in subsection 1.4.1. Then, in subsection 1.4.2, we consider the localization of the

hot-spot, i.e., determine which states and which crime types are involved in the detected

hot-spots.

1.4.1 Detect When Hot Spots Occur?

To detect when hot-spots occur, we develop a control chart based on the following hypoth-

esis test problem:

H0 : rt(λ1, λ2) = 0 v.s. H1 : rt(λ1, λ2) = δĥt(λ1, λ2) (δ > 0), (1.8)

where

rt(λ1, λ2) = yt(λ1, λ2)− µ̂t(λ1, λ2)

is the residual after removing the global trend mean under the penalty parameters λ1, λ2,

and the vector µ̂t(λ1, λ2) = vec
(
Û::t(λ1, λ2)

)
, ĥt(λ1, λ2) = vec

(
Ĥ::t(λ1, λ2)

)
are the
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estimated global trend mean and local hot-spots in t-th year. Here, we add (λ1, λ2) to em-

phasize that, µ̂t(λ1, λ2), ĥt(λ1, λ2) are the global trend mean and local hot-spots estimation

under penalty parameter λ1, λ2, respectively.

The motivation of the above hypothesis test is described as follows. When there are

no hot-spots, the residual rt(λ1, λ2) is exactly the model noises. However, when hot-spots

exist, the residual rt includes both hot-spots and noises. By including the hot-spot infor-

mation of ĥt(λ1, λ2) in the alternative hypothesis, we hope to provide a direction in the

alternative hypothesis space, which allows one to construct a test with more power [see 8].

Next, we construct the likelihood ratio test in the above-mentioned hypotheses testing

problem. By [32], the test statistics monitoring upward shift is

P+
t (λ1, λ2) = ĥ+

t (λ1, λ2)> rt(λ1, λ2)

/√
ĥ+
t (λ1, λ2)> ĥ+

t (λ1, λ2)

where ĥ+
t (λ1, λ2) only takes the positive part of ĥt(λ1, λ2) with other entries as zero, be-

cause our objective is to detect positive hot-spots. The superscript “+” emphasizes that we

aim at detecting upward shifts. In other words, we focus on the hot-spots that have increas-

ing means, partly because increasing crime rates are generally more harmful to societies

and communities. If one is also interested in detecting decreasing mean shifts, one could

modify it by using a two-sided test.

It remains to discuss how to choose (λ1, λ2) suitably in our test. We propose to follow

[8] to calculate a series of P+
t (λ1, λ2) under different combination of (λ1, λ2) ∈ Γ =

{(λ(1)
1 , λ

(1)
2 ) . . . (λ

(nλ)
1 , λ

(nλ)
2 )} and then select the combination of (λ1, λ2) with the largest

power. The final chosen test statistics, denoted as P̃+
t (λ∗1,t, λ

∗
2,t), can be computed by

P̃+
t (λ∗1,t, λ

∗
2,t) = max

(λ1,λ2)∈Γ

P+
t (λ1, λ2)− E(P+

t (λ1, λ2))√
Var(P+

t (λ1, λ2))
, (1.9)

whereE(P+
t (λ1, λ2)), Var(P+

t (λ1, λ2)) respectively are the mean and variance of P+
t (λ1, λ2)

under H0 (e.g., for phase-I in-control samples). Here (λ∗1,t, λ
∗
2,t) ∈ Γ is the penalty param-
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eter maximizing the above equation.

With the test statistic available, we detect when hot-spots occur based on the widely

used cumulative sum (CUSUM) control chart [see 33, 34]. At each time t, we recursively

compute the CUSUM statistics as

W+
t = max{0,W+

t−1 + P̃+
t (λ∗1,t, λ

∗
2,t)− d∗}, (1.10)

with the initial value W+
t=0 = 0, where d∗ is a constant and can be chosen according to the

degree of the shift that we want to detect. Then we declare that a hot-spot might occurs

whenever W+
t > L for some pre-specified control limit L.

Note that the CUSUM statistics W+
t leads to the optimal control chart to detecting a

mean shift from µ0 to µ1 = 2d∗ − µ0 for normally distributed data [see 34]. When the data

are not normally distributed, the optimality properties might not hold, but it can still be a

reasonable control chart. Also, it is important to choose the control limit L in the CUSUM

control chart suitably, and the detailed discussion will be presented in section 1.5 for our

simulation studies and in section 1.6 for our case study.

1.4.2 Localize Where and Which the Hot Spots Occur?

In this section, we discuss how to localize the hot-spots if the CUSUM control chart in

Equation 1.10 raises an alarm at year t∗. In other words, we want to determine where and

which crime rates may account for the hot-spots. To do so, we propose to utilize the matrix

Ĥ::t∗(λ1,t∗ , λ2,t∗), which is the hot-spot estimation in t∗-th year. If the (i, j)-th entry in

Ĥ::t∗(λ1,t∗ , λ2,t∗) is non-zero, then we declare that there is a hot-spot for the j-th crime rate

type in the i-th state at the t∗-th year.

The mathematical procedure to derive Ĥ::t∗(λ1,t∗ , λ2,t∗) is described as follows. First,

Ĥ(λ1,t∗ , λ2,t∗) is the tensor format of ĥ(λ1,t∗ , λ2,t∗) = Bhθ̂h(λ1,t∗ , λ2,t∗), where θ̂h(λ1,t∗ , λ2,t∗)

is the minimizer in Equation 1.2 under the penalty parameter λ1,t∗ , λ2,t∗ . Second, Ĥ::t∗(λ1,t∗ , λ2,t∗)
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is the t∗ slices along the temporal dimension of Ĥ(λ1,t∗ , λ2,t∗).

As one reviewer points out, this approach might lead to a relatively high false positive

rate (FPR), since some non-zero entries might not be statistically significant. Two possible

ways to improve our approach are (1) to conduct the significant test, or (2) to set up a pre-

specified threshold and only keep the positive entries that are larger than the threshold. It is

useful to investigate how to improve our approach, which is an interesting topic for future

research. Here we focus on our main ideas of using tensor decomposition for hot-spots and

adopt the simple approach for hot-spots localization.

1.5 Simulation Study

In this section, we report the numerical simulation results of our proposed method as well

as its comparison with several benchmark methods in the literature. To better present our

results, we divide this section into several subsections. In subsection 1.5.1, we introduce

the data generation mechanism for our simulation studies, and subsection 1.5.2 presents the

benchmark methods for the comparison purpose. The performance of hot-spot detection

and localization are reported in subsection 1.5.3, and the fitness of the global trend mean is

evaluated in subsection 1.5.4.

1.5.1 Data Generation

In our simulation, we detect the hot-spots on the complete data, i.e., Y ∈ Rn1×n2×n3 . In

order to shed light on the case study, we match the tensor dimension of the crime rate

dataset and choose n1 = 51, n2 = 3, n3 = 250 in our simulation. To generate the data

Y , we generate it by generating its front slices Y::t for t = 1 . . . n3. Mathematically, we

generate yt = vec(Y::t) by

yi,t = (Bθt)i + δ1{t ≥ τ}1{i ∈ Sh}+ wi,t, (1.11)
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where yi,t denotes the i-th entry in the vector yt ∈ Rn1n2 . The last term on the right hand

side of the above equation, i.e., wi,t, is the i-th entry in the white noise vector wt ∈ Rn1n2 .

And wt is a vector whose entries are independent and follow N(0, 0.12) distribution. Note

that while we generate the data sequentially over time t, our proposed SSD-Tensor method

is actually an off-line method that analyzes the complete tensor.

The first term on the right-hand side of the above equation, i.e., (Bθt)i, is the global

mean, where the subscript (·)i denotes the i-th entry. The matrix B is a fixed B-spline basis

with the degree of three and fifty knots evenly spacing on the interval [1, 50]. Note that the

B-spline basis is only used in the generative model in simulation to generate data, but is

not used in our proposed methodologies. Vector θt is a constant parameter controlling the

trend of the global mean. We set θt in two different ways, so we discuss 2 scenarios:

• Scenario 1: The global trend mean is stationary, in which θt,i = 1+sin
(

2π
470

(106.75 + i)
)

for i = 1, . . . n1n2 and t = 1, . . . , n3. Here θt,i is the i-th entry in θt.

• Scenario 2: The global trend mean is decreasing over time, in which θt = 0.995θt−1

for t = 1, 2, . . . , n3. And θ0,i = 1 + sin
(

2π
470

(106.75 + i)
)

for i = 1, . . . n1n2.

The second term on the right side hand of Equation 1.11, i.e., δ1{t ≥ τ}1{i ∈ Sh} is

the local hot-spot, where 1(A) is the indicator function, which has the value 1 for all ele-

ments of A and the value 0 for all elements not in A. First, 1{t ≥ τ} indicates that the hot-

spots only occur after the hot-spot τ . This ensures that the simulated hot-spot is temporal

consistent. The second indicator function 1{i ∈ Sh} shows that only those entries whose

location index belongs set Sh are assigned as local hot-spots. This ensures that the simu-

lated hot-spot is sparse. Here we assume the change happens at τ = 200 and the hot-spots

index set Sh = {3, 15, 16, 19, 20, 23, 31, 35, 42, 48, 54, 66, 67, 70, 71, 72, 74, 82, 86, 92, 105,

118, 121, 122, 125, 133, 137, 140, 144, 151}. The hot-spots only account for around 20%, so

it is sparse. Parameter δ ∈ R denotes the change magnitude. In our simulation studies, two

change magnitudes are considered, one is δ/σ = 1 (small shift) and the other is δ/σ = 5
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(large shift). Here we follow the existing research [see 12, 35] to set the variance of the

white noise as 0.12. Note that the white noise standard deviation σ = 0.1 might seem

to be small, but we want to emphasize that the σ value itself is not crucial here, and the

signal-to-noise-ratio (SNR), i.e., δ/σ, is more fundamental.

Here is the detailed implementation of our proposed SSD-Tensor method. For the se-

lection of basis, we use the same bases as in subsection 1.3.3. For the penalty parameters

(λ1, λ2) ∈ Γ, we set Γ = {(λ1, λ2) : λ1 ∈ {10−4, 10−3, 10−2, 10−1, 1, 10} and λ2 ∈

{10−6, 10−5, 10−4, 10−3, 10−2, 10−1}}. Since our proposed method is an off-line method

that uses the complete data, our simulation setting on the average run length under the

out-of-control status (ARL1) is slightly different from the standard SPC literature. In

standard SPC literature, ARL1 of a procedure with the stopping time N is defined as

Eτ (N − τ + 1|N ≥ τ) when the true change occurs at a given time τ = 1. While in

our paper, we choose τ = 200 to better illustrate real-world applications. To be more spe-

cific, in each Monte Carlo run for ARL1, we simulate a complete tensor data with n3 = 250

years and the change-time τ = 200 years. Next, we focus only those runs that the control

chart raises an alarm at T ≥ 200 (if T < 200 it will be counted as false alarm), and then

define the detection delay, or ARL1, as Eτ (T−τ+1|T ≥ τ) with the change time τ = 200.

1.5.2 Benchmark Methods

In this section, we present the description and implementation of benchmark methods that

will be used to compare with our method.

The first benchmark method is the scan statistics method in [6], which is a Bayesian

extension of Kulldorff’s scan statistic. The reason for us to choose [6] is that it has large

power to detect clusters and it has a fast runtime. In our paper, we use the a R func-

tion called scan bayes negbin() from the package scanstatistics. To implement this func-

tion, the population size is needed. For a fair comparison, we will not give more data to

scan-stat, and simply assume that the population is 100, 000 for all states and all years.
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Because scan bayes negbin() can only handle one type of crime rate one time, we apply

scan bayes negbin() to three crime rates separately and set the probability of an outbreak

as 0.02/3. Because the scan-statistics-based method does not give the clear calculation of

average run length under the in-control status (ARL0) and ARL1, so we can only use the

probability of an outbreak as 0.02/3 to define the control limit to achieve similar ARL0

with other benchmarks.

The second benchmark method is the Lasso-based method in [8]. The main idea of [8]

is to integrate the multivariate exponentially weighted moving average (EWMA) charting

scheme. Under the assumption that the hot-spots are sparse, the Lasso model is applied

to the EWMA statistics. If the Mahalanobis distance between the expected response (the

Lasso estimator) and observed values is larger than a pre-specified control limit, temporal

hot-spots are detected, with non-zero entries of the Lasso estimator are declared as spatial

hot-spots. For the control limits and the penalty parameters of the Lasso-based method, we

use the same criterion as our proposed SSD-Tensor method.

The third benchmark is the dimension-reduction method of [17] that uses PCA to ex-

tract a set of uncorrelated new features that are linear combinations of original variables.

Note that [17] fails to localize the spatial hot-spots, and it can only detect the temporal

change-point when the PCA-projected Mahalanobis distance is larger than a pre-specified

control limit. For this control limit, we set it by using the same criterion as our proposed

SSD-Tensor method. In both our simulations and case study, we select three principle com-

ponents, since they can explain more than 90% cumulative percentage of variance (CPV).

Finally, the fourth benchmark is the traditional T2 control chart [see 36] method with

the control limit set using the same criterion as our proposed SSD-Tensor method. Since

the T2 control chart method is well-defined, we skip the detailed description, and more

details can be found in [36].
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1.5.3 Performance on Hot-spot detection and localization

In this section, we compare our proposed SSD-Tensor method with four benchmark meth-

ods with the focus on the performance of hot-spots detection and localization. The four

benchmark methods are scan-statistics method proposed by [6] (denoted as ‘scan-stat’),

Lasso-based control chart proposed by [8] (denoted as ‘ZQ-Lasso’), PCA-based control

chart proposed by [17] (denoted as ‘PCA’), and the traditional Hotelling T 2 control chart

in [36] (denoted as ‘T2’). All simulation results below are based on 1000 Monte Carlo

replications.

Let us first compare the performance of hot-spots detection over the time domain, i.e.,

when the hot-spots occur. The criterion we use to measure the performance of detection is

ARL1. Because ARL1 measures the delay after the change occurs, the smaller the ARL1,

the better detection performance. The results can be found in Table 1.2, Table 1.4. For

our proposed SSD-Tensor, it has a small ARL1 under all scenarios, no matter there is a

stable or decreasing global trend. This illustrates that our proposed SSD-Tensor method

can provide a rapid alarm after the hot-spots occur, even if there are stable or unstable

global trends. This good behavior is due to the ability to capture both temporal consistency

and spatial sparsity of the hot-spots. For the scan-statistics method, it is hard to estimate the

exact ARL1 because it focuses on the hot-spots localization, not sequential change point

detection. So we will not report the ARL1 of it. For ZQ-Lasso, it successfully detects the

hot-spots when the global trend is stable, but unfortunately, it fails to do so when there is a

decreasing global trend. The latter is not surprising because ZQ-Lasso is unable to separate

the global trend and local hot-spots. For PCA and T2, both of them fail to detect the hot-

spots in all scenarios within the entire n3 = 250 (simulated) years, as their ARL1 = 50.

The reason for the unsatisfying results of PCA and T2 is that they are designed based on a

multivariate hypothesis test on the global mean change, which cannot take into account the

non-stationary global mean trend and the sparsity of the hot-spots.

We visualize the hot-spots detection results in Figure 1.5, which illustrates the trend
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of the detection delay, ARL1, of all methods, as δ changes from 0.1 to 0.5 with the step

size of 0.1. Because scan-stat does not represent the ARL1 and PCA, T2 fail to detect

hot-spots in all scenarios, we only plot the ARL1 of SSD-Tensor and ZQ-Lasso. From the

plot, our proposed SSD-Tensor method, compared with ZQ-Lasso, shares similar detection

delays when there is a stable global trend. However, our proposed SSD-Tensor method

has much smaller detection delays than ZQ-Lasso, particularly when there is a decreasing

global trend mean and the magnitude of the hot-spot is small. Also, it is interesting to note

that the detection delays of all methods are decreasing as the magnitude of the hot-spot is

increasing, which is consistent with our intuition that it is easier to detect larger changes.

SSD-tensor under stable global trend

ZQ-LASSO under stable global trend

SSD-tensor under decreasing global trend

ZQ-LASSO under decreasing global trend

(a) ARL1 under a stable global trend (b) ARL1 under a decreasing global trend

Figure 1.5: (a) ARL1 under a stable global trend, (b) ARL1 under a decreasing global trend.

Next, let us compare the performance on hot-spots localization of these methods, i.e.,

localize where the hot-spots occur. To evaluate the localization performance of all the meth-

ods, we will compute the following four criteria: (1) precision, defined as the proportion

of detected hot-spots that are true hot-spots; (2) recall, defined as the proportion of the hot-

spots that are correctly identified; (3) F-measure, a single criterion that combines the pre-

cision and recall by calculating their harmonic mean. Moreover, we also compare the true

positive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false negative

rate (FNR). The localization performance measuring in precision, recall, F-measure can be

found in Table 1.2, Table 1.4, and the localization performance measuring in TPR, TNR,
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FPR, FNR can be found in Table 1.3, Table 1.5. For our proposed SSD-Tensor method, its

localization performance is satisfactory no matter there is a stable or unstable global trend.

For instance, when there is a decreasing global trend and δ = 0.5, our method has 32.42%

precision and 99.78% recall, which outperforms those of scan-stat and ZQ-Lasso. The only

weakness of our proposed SSD-Tensor method is that it has a relatively high FPR: this is

consistent with our expectation since we did not conduct the significance test of the posi-

tive entry in Ĥ::t∗ . For scan-stat, it has very similar precision as our proposed SSD-Tensor

method (both are around 30%), but its recall is much lower. This is because scan-stat tends

to detect clustered hot-spots, which results in detecting fewer hot-spots and missing some

true hot-spots. This might also explain why scan-stat has low TPR, but high FNR. It is

worth noting that the precision/recall/F-measure might be overestimated for scan-stat: we

record all the Monte Carlo runs, even if it is a false alarm since scan-stat fails to report

ARL1. For ZQ-Lasso, it has 19.61% precision and 100% recall when the global trend is

stable, but it has a very high FPR. This is because ZQ-Lasso fails to detect the significance

of the non-zero entries, and declares all non-zero entries as hot-spots. However, when

there is a decreasing global trend, ZQ-Lasso fails to detect hot-spots, so we represent its

localization performance as 0. This unsatisfactory performance is due to the inability of

ZQ-Lasso to separate the global trend and local hot-spots, particularly in Scenario 2 (de-

creasing global trend mean). For PCA and T2, they cannot localize hot-spots, and thus

we do not report the corresponding values on the precision, recall, F-measure, TPR, TFR,

FPR, and FNR.

Moreover, we also visualize the hot-spot localization results in Figure 1.6. In the first

row, the blue states are the true hot-spots (true positive), whereas the white states are the

normal states (true negative). In the second row, the red states are the detected hot-spots

(true positive + false positive) by scan-stat. In the third row, the red states are the detected

hot-spots by our proposed SSD-Tensor method. Different color represents how likely it is

hot-spot: the darker red, the more likely it is. From Figure 1.6, we can see that scan-stat
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Table 1.2: Scenario 1 (stable global trend mean): Comparison of hot-spot detection under
small and large hot-spots with 4 criterions: precision, recall, F measure and ARL1

methods
large shift δ/σ = 5 small shift δ/σ = 1

precision recall F measure ARL precision recall F measure ARL
SSD-Tensor 0.3210 0.9898 0.6554 1.2680 0.3217 0.9890 0.6553 2.0970

(0.0345) (0.0893) (0.0599) (0.3321) (0.0362) (0.0946) (0.0634) (0.8979)
Scan-stat 0.3109 0.4664 0.3887 - 0.2242 0.3364 0.2803 -

(0.0020) (0.0030) (0.0025) (-) (0.0301) (0.0451) (0.0376) (-)
ZQ-Lasso 0.1961 1.0000 0.5980 1.0000 0.1961 1.0000 0.5980 1.9750

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (2.1291)
PCA - - - 50.0000 - - - 50.0000

- - - (0.0000) - - - (0.0000)
T2 - - - 50.0000 - - - 50.0000

- - - (0.0000) - - - (0.0000)

Table 1.3: Scenario 1 (stable global trend mean): Comparison of hot-spot detection under
small and large hot-spots under 4 criteria: TPR, TNR, FPR, FNR.

methods
large shift δ/σ = 5 small shift δ/σ = 1

TPR TNR FPR FNR TPR TNR FPR FNR
SSD-Tensor 0.9898 0.4848 0.5072 0.0022 0.9890 0.4865 0.5045 0.0020

(0.0893) (0.0616) (0.0630) (0.0085) (0.0946) (0.0635) (0.0648) (0.0080)
Scan-stat 0.4664 0.7479 0.2521 0.5336 0.3364 0.7162 0.2838 0.6636

(0.0030) (0.0007) (0.0007) (0.0003) (0.0451) (0.0110) (0.0110) (0.0451)
ZQ-Lasso 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Table 1.4: Scenario 2 (decreasing global trend mean): Comparison of hot-spot detection
under small and large hot-spots with 4 criterions: precision, recall, F measure and ARL1

methods
large shift δ/σ = 5 small shift δ/σ = 1

precision recall F measure ARL precision recall F measure ARL1

SSD-Tensor 0.3242 0.9978 0.6610 1.3490 0.3245 0.9978 0.6612 3.4120
(0.0184) (0.0085) (0.0105) (0.4762) (0.0188 ) (0.0085) (0.0108) (0.8217)

Scan-stat 0.3111 0.4666 0.3889 - 0.2567 0.3851 0.3209 -
(0.0007) (0.0011) (0.0009) (-) (0.0307) (0.0460) (0.0383) (-)

ZQ-Lasso 0.0000 0.0000 0.0000 50.0000 0.0000 0.0000 0.0000 50.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

PCA - - - 50.0000 - - - 50.0000
- - - (0.0000) - - - (0.0000)

T2 - - - 50.0000 - - - 50.0000
- - - (0.0000) - - - (0.0000)
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Table 1.5: Scenario 2 (decreasing global trend mean): Comparison of hot-spot detection
under small and large hot-spots under 4 criteria: TPR, TNR, FPR, FNR.

methods
large shift δ/σ = 5 small shift δ/σ = 1

TPR TNR FPR FNR TPR TNR FPR FNR
SSD-Tensor 0.9978 0.4903 0.5097 0.0022 0.9978 0.4909 0.5091 0.0022

(0.0085) (0.0422) (0.0422) (0.0085) (0.0085) (0.0431) (0.0431) (0.0085)
Scan-stat 0.4666 0.7480 0.2520 0.5334 0.3851 0.7281 0.2719 0.6149

(0.0011) (0.0003) (0.0003) (0.0011) (0.0460) (0.0112) (0.0112) (0.0460)
ZQ-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

tends to detect clustered hot-spots. Meanwhile, there is no clear pattern for the hot-spots

detected by our proposed SSD-Tensor method. We need to acknowledge that while our

proposed method can detect most of the true hot-spots (the blue states), but there are some

false alarms. We should emphasize that this kind of false alarm is reasonable on the hot-

spot localization, which is related to the multiple hypothesis testing in the high-dimensional

data.

1.5.4 Background Fitness

In this section, we illustrate that our proposed SSD-Tensor method leads to a reasonably

well estimation for the global trend mean. To do this, we compare the squared-root of

mean square error (SMSE) of the fitness of a global trend mean in Table 1.6. Here we only

show our proposed method, since other baseline methods (scan-stat, ZQ-Lasso, PCA, and

T2) cannot model the global trend mean. It is clear from Table 1.6 that our proposed SSD-

Tensor method performs well in terms of the background fitness, especially in Scenario 2

(decreasing global trend).

Table 1.6: SMSE in two scenarios under different δ/σ of the hot-spot.

methods δ/σ = 1 δ/σ = 2 δ/σ = 3 δ/σ = 4 δ/σ = 5
Scenario 1 (stationary global trend mean)

SSD-Tensor 0.0075 0.0076 0.0075 0.0077 0.0077
(7.1331e-04) (3.4049e-04) (8.0032e-04) (1.0799e-05) (6.9222e-04)

Scenario 2 (decreasing global trend mean)
SSD-Tensor 0.0039 0.0039 0.0039 0.0039 0.0039

(1.2357e-05) (1.2647e-05) (1.1054e-05) (1.1845e-05) (1.2619e-05)
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(a.1) true hot-spots in r1 (a.2) true hot-spots in r2 (a.3) true hot-spots in r3

(b.1) estimated by (b.2) estimated by (b.3) estimated by
scan-stat in r1 scan-stat in r2 scan-stat in r3

(c.1) estimated by (c.2) estimated by (c.3) estimated by
SSD-Tensor in r1 SSD-Tensor in r2 SSD-Tensor in r3

Figure 1.6: Hot-spots detection performance by SSD-Tensor and scan-stat in Scenario 2
(decreasing global trend mean) with large hot-spots (δ = 0.5). In the first row, the blue
states are the true hot-spots (true positive), whereas the white states are the normal states
(true negative). In the second row, the red states are the detected hot-spots (true positive
+ false positive) by scan-stat. In the third row, the red states are the detected hot-spots
by our proposed SSD-Tensor method. Different color represents how likely it is hot-spot:
the darker red, the more likely it is. In these figures, r1, r2, r3 represent the first, second,
third category, respectively. To match the dimension of our motivating data set, we choose
three categories to match the three types of crime rates in our motivating crime rate dataset,
namely legacy rape rate, murder and non-negligent manslaughter, and revised rape rate.
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1.6 Case Study

In this section, we apply our proposed SSD-Tensor method to detect and localize hot-spots

in the crime rate dataset described in section 1.2, and compare its performance with other

benchmarks.

First, we compare the performance of the detection delay of the hot-spot. For all the

methods, we set the control limits so that the average run length to false alarm constraint

ARL0 = 50 via Monte Carlo simulation under the assumption that data from the first 20

years are in control. For the setting of the parameters and the selection of basis, they are

the same as that in section 1.5. For our proposed SSD-Tensor method, we build a CUSUM

control chart utilizing the test statistic in section 1.4, which is shown in Figure 1.7(a). From

this figure, we can see that the hot-spots are detected in 2012 by our proposed SSD-Tensor

method. For the benchmark methods for comparison, we also apply scan-stat [see 6], ZQ-

Lasso [see 8], PCA [see 17] and T2 [see 36] to the crime rate dataset and summarize the

performance of the detection of a hot-spot in Table 1.7. Note that the value in Table 1.7

is the first year that raises alarm, i.e, mint=1986,...,2014{t : W+
t > L}. Our proposed SSD-

Tensor method raises an alarm of hot-spots in the year 2012, while other benchmarks fail

to detect any hot-spots (we do not represent the hot-spots year of scan-stat, as it does not

report the hot-spots). While nobody knows the true hot-spots of the real dataset such as

the crime rate data, our numerical simulation experiences suggest that year 2012 is likely a

hot-spot.

Table 1.7: Detection of change-point year in crime rate dataset. The label “Year when an
alarm is raised” is first year that raises alarm, i.e, mint=1986,...,2014{t : W+

t > L}, where
W+
t is the CUSUM statistics defined in Equation 1.10, and L is control limits to achieve

the average run length to false alarm constraint ARL0 = 50 via Monte Carlo simulation
under the assumption that data from the first 20 years are in control.

methods SSD-Tensor scan-stat ZQ-Lasso PCA T2
Year when an alarm is raised 2012 - None None None

Next, after the detection of hot-spots, we need to further localize the hot-spots in the
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(a) temporal change-point detection (b) observed data points and fitted mean curve

Figure 1.7: (a) Hot-spot detection by SSD-Tensor. Since the CUSUM test statistics of
2012, 2013 and 2014 exceed the threshold (red dashed line), we declare that year 2012 is
the first change-points. (b) Fitted global trend mean and the observed annual data points.
Each point (blue circle) is an actual observed annual data in logarithm scale, which is fitted
by a fitted mean curve (blue line).

sense of determining which state and which type of crime rates may lead to the occur-

rence of a hot-spot. Because the baseline methods, PCA and T2, can only detect when the

changes happen and ZQ-Lasso fails to detect any changes, we only show the localization

of hot-spot by SSD-Tensor and scan-stat, where the results are visualized in Figure 1.8. We

also represent the raw crime rates in 2012 in the first row of Figure 1.8, where the darker

the blue, the high value of the crime rates. The first row (a.1)-(a.3) in this figure represents

the raw data, where we can see that all three types of crime rates share a very smooth back-

ground, so it becomes difficult to find out the hot-spots directly from the raw data. The

second row (b.1)-(b.3) and third (c.1)-(c.3) in this figure represents the hot-spots (TP + FP)

detected by scan-stat [see 6] and SSD-Tensor, respectively. Scan-stat tends to detect clus-

tered hot-spots, while there is no obvious pattern of the hot-spots detected by our proposed

SSD-Tensor method. Thus, as compared to scan-stat, our proposed SSD-Tensor method

seems to detect sparse hot-spots, which might be useful in practice when identifying where

the sudden increase of crime happens.

Finally, we also represent the fitted global trend mean curve in 7(b), where the blue

line is the fitted mean curve, and the blue circle is the observed annual data points in the

31



(a.1) raw data in R1 (a.2) raw data in R2 (a.3) raw data in R3

(b.1) scan-stat in R1 (b.2) scan-stat in R2 (b.3) scan-stat in r3

(c.1) SSD-Tensor in R1 (c.2) SSD-Tensor in R2 (c.3) SSD-Tensor in R3

Figure 1.8: Localization of hot-spot. (a.1)-(a.3): the raw data of the three crime rates in
2012. (b.1)-(b.2): the detected hot-spots by scan-stat. (c.1)-(c.3): the detected hot-spots by
SSD-Tensor. The red color of the states means that this is a hot-spot state. And the deeper
the color, the larger the hot-spots size. In these figures, R1 is the legacy rape rate, R2 is the
murder and non-negligent manslaughter, and R3 is the revised rape rate.
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logarithm scale. Note that the actual observed data in 2012 is a little bit higher than the

fitted mean curve, which may lead to hot-spots detection in 2012. Overall, the fitness of

our proposed method works very well, which can help us greatly remove the effect of the

global trend.

1.7 Conclusion

In this paper, we propose the SSD-Tensor method for hot-spot detection and localization

in multivariate spatio-temporal data, which is an important problem in many real-world

applications. The main idea is to represent the multi-dimension data as a tensor, and then

to decompose the tensor into the global trend mean, local hot-spots, and residuals. The

estimation of model parameters and hot-spots is formulated as an optimization that includes

the sum of residual squares with both Lasso and fused Lasso penalties, which control the

sparsity and the temporal consistency of the hot-spots, respectively. Moreover, we develop

an efficient algorithm to solve these optimization problems for parameter estimation by

using the FISTA algorithm. In addition, we compare our proposed SSD-Tensor method

with other benchmarks through Monte Carlo simulations and the case study of the crime

rate dataset.

Clearly, there are many opportunities to improve the algorithms and methodologies.

First, it would be interesting to investigate the confounding between the global trend and

local hot-spots in future research. In our paper, we assume that they are additive, but it is

possible that the increasing global trend yields an increased number of hot-spots. Second,

the significance test of the non-zero entries of Ĥ::t∗ can be promising future research, so we

can reduce the false positive rate (FPR) in localizing the hot-spots. Third, it will be useful

to extend our method to the context of missing or incomplete data. We feel it is straightfor-

ward to combine our method with the imputation method when missing is (completely) at

random, but it remains an open problem if missing is not at random. Fourth, in this paper,

we fix the tensor basis, and it will be useful to investigate the robustness effects of different
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tensor bases, or better yet, to adopt some data-driven method to learn the bases from the

data. Fifth, a promising research direction is to combine our proposed SSD-Tensor method

with the spatially adaptive method in [37] for trend filtering. Finally, it will be interest-

ing to derive the theoretical properties of our proposed method including the sufficient or

necessary conditions under which our hot-spot estimation properties.

1.8 Supplementary Material

1.8.1 Construction of Matrix D

The main idea to construct matrix D is to make

λ2 ‖Dθh,λ1,λ2‖1 = λ2

n3∑
t=2

‖θh,λ1,λ2,t − θh,λ1,λ2,t−1‖1 .

Here are more details. Matrix D can be constructed as:

D = D1 ⊗D2 ⊗D3,

where matrix D1 ∈ Rn1×n1 ,D2 ∈ Rn2×n2 are the identity matrix. And matrix D3 ∈

R(n3−1)×n3 is defined as

D3,i,j =


−1 if i = j

1 if i = j − 1

0 otherwise

,

where D3,i,j is the (i, j)-th entry in matrix D3.
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1.8.2 Proof of Fast Calculation of y∗ via Tensor Algebra

Proof.

y∗ = [I−Bm(B>mBm)−1B>m]y

= y −Bm((B>m,1 ⊗B>m,2 ⊗B>m,3)(Bm,1 ⊗Bm,2 ⊗Bm,3))−1)B>my

= y −Bm((B>m,1Bm,1)⊗ (B>m,2Bm,2)⊗ (B>m,3Bm,3))−1)B>my

= y −Bm((B>m,1Bm,1)−1 ⊗ (B>m,2Bm,2)−1 ⊗ (B>m,3Bm,3)−1)B>my

= y − (Bm,1(B>m,1Bm,1)−1B>m,1)⊗ (Bm,2(B>m,2Bm,2)−1B>m,2)

⊗(Bm,3(B>m,3Bm,3)−1B>m,3)y

= y − vec(Y ×1 (Bm,1(B>m,1Bm,1)−1B>m,1)×2 (Bm,2(B>m,2Bm,2)−1B>m,2)

×3(Bm,3(B>m,3Bm,3)−1B>m,3))

1.8.3 Review of All Benchmarks

For the scan-stat-based method, we select [6] as the representative. The goal of [6] is

to find regions (a collection of location index) which has a high posterior probability to

be an anomalous cluster. To realize this objective, [6] compare the null hypothesis H0

is no anomalous clusters with a set of alternative H1(S), each representing a cluster in

some region S. The anomalous cluster S∗ is declared as the one with the highest posterior

probabilities P (H1(S)|D), i.e.,

S∗ = arg max
S

P (Dj|H1(S))

P (Dj|H0)
,

where dataset Dj = {Ci,j,t}i=1,...,n1,t=1,...,n3 with Ci,j,t as the number of crime counts in in-

dex (i, j, t). And Ci,j,t is assumed to follow Poisson distribution, i.e., Ci,j,t ∼ Poisson(qBi,j,t),
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where Bi,j,t represents the (known) population of index (i, j, t) and q is the (unknown) un-

derlying crime rate. To calculate the posterior probability P (H1(S)|Dj), a hierarchical

Bayesian model is used, where q are drawn from Gamma distribution. For selection of

prior parameters of the Gamma distribution, please see [6] for the detailed description. For

each j in {1, . . . , n2}, the above procedure is repeated to find anomalous regions in all type

of rates.

For Lasso-based methods, we select [8] as the representative. In a given time t, [8]

builds a multivariate exponentially weighted moving average (EWMA) on data xt = (Y1,1,t,

. . . ,Yn1,1,t,Y1,2,t, . . . ,Yn1,n2,t)
>: ut = αxt+(1−α)ut−1, for t = 1, . . . , n3 where u0 = 0

and α is a weighting parameter in (0, 1]. For each ut, a Lasso estimator µ̂ is derived from

the penalized likelihood function (ut − µ)>Σ−1(ut − µ) + λ
∑n1n2

k=1
|µk|
uk,t

, where Σ is the

covariance matrix of the normal distribution which xt follows. Temporal change point is

detected when

max
k=1,...,q

Wt,λ∗ − E(Wt,λ∗)√
Var(Wt,λ∗)

> LLASSO,

where LLASSO > 0 is the control limit chosen to achieve a given in-control average run

length. Wt,λ∗ = maxλ∈{λ1,...,λq}
Wt,λ−E(Wt,λ)√

Var(Wt,λ)
and Wt,λ = 2−α

α[1−(1−λ)2t]

(u>t Σ−1µ̂)2

µ̂>Σ−1µ̂
. The spatial

hot-spots are localized at non-zero entries of µ̂.

For the dimension-reduction methods, we select [17] as the representative. The main

tool of this method is PCA, which defines a linear relationship between the original vari-

ables of the data set, mapping them to a set of uncorrelated variables. [17] fails to localize

the spatial hot-spots, and it can only realize detecting the temporal change-point when

(xt − x̄)>PkΛ
−1
k P>k (xt − x̄) > Lpca,

where Lpca is the control limit chosen to achieve a given in-control average run length.

Vector x̄ = 1
n1n2

X>1 with X = (x1, . . . , xn3) and 1 = (1, 1, . . . , 1)>n1n2
. Matrix Pk,Λk is

derived from the covariance matrix of X, i.e., S = 1
n1n2−1

(X−1x̄>)>(X−1x̄>) = PΛP>,
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where P is the loading vectors of S and Λ = diag(λ1, . . . , λn1n2) contains the eigenvalues

of S in descending order. The correlation of P and Pk is that Pk contains only the first k

columns of P, where k is the number of components selected. The selection criterion is the

cumulative percentage of variance (CPV), and in our case, we select k = 3. The correlation

of Λ and Λk is that, Λk = diag(λ1, . . . , λk). Also, we select the traditional T2 control chart

[36] method as a benchmark. Because the T2 control chart method is very well-defined, we

ignore the detailed description of it in this paper, and the details of it can be found in [36].

1.8.4 Choice of Lθ,Q, ρ, in Algorithm 1

For the choice of Lθ, the theoretical value can set as the Lipschitz constant of F (θ) =

‖y∗ −Xθ‖2
2. In practice, researchers often use the maximal eigenvalue of the Hessian

matrix of F (θ) as the fixedLθ [see 24], i.e., the maximal eigenvalue of matrix X>X. Please

note that the value of Lθ is fixed throughout our algorithm, and guarantees the convergence

of the algorithm.

For choice of Q, a simple choice to ensure Q � D>D would be Q = δI, where I is the

identity matrix and δ ≥ ‖D‖2
op with ‖D‖op denoting the operator norm of matrix D [see

30]. Please note that Q is fixed throughout our algorithm, and guarantees the convergence

of the algorithm.

For the choice of ρ, it has been theoretically proved that any choice of ρ will lead

to the convergence of the algorithm, but a good choice of ρ would help us realize faster

convergence [see 30]. In practice, a good choice of ρ is to start with an initial value ρ(0) = 5

and then update it in each iteration. The updating rule from ρ(k−1) to ρ(k) is:

ρ(k) =

 η̃ρ(k−1) if ‖R(k)‖2/ε̈ ≥ µ̃‖S(k+1)‖2/ε̇

η̃−1ρ(k−1) if ‖S(k)‖2/ε̇ ≥ µ̃‖R(k)‖2/ε̈.
,

where R(k) = Dπ0
λ2

(v(i))(k) − γ(k) and S(k) = ρ(k)D>
(
γ(k) − γ(k−1)

)
. The explicit

format of π0
λ2

(v(i))(k),γ(k) can be found in Equation 1.6. Besides, ε̇, ε̈ is the dual and
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primal feasibility, i.e., ‖R(k)‖2 ≤ ε̈ and
∥∥R(k)

∥∥
2
≤ ε̇. In practice, ε̇, ε̈ can be set as

10−2, 10−4, 10−6, 10−8, depending on the desired precision. The parameter η̃, µ̃ are set

to be 2 and 10 as suggested by [38]. More details about the setting of ρ can be found in

Section 2.3 in [30] and [38].
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CHAPTER 2

RAPID DETECTION OF HOT-SPOT BY TENSOR DECOMPOSITION WITH

APPLICATION TO WEEKLY GONORRHEA DATA

2.1 Introduction

In many bio-surveillance and healthcare applications, data sources are measured from many

spatial locations repeatedly over time, say, daily, weekly, or monthly. In these applications,

we are typically interested in detecting hot-spots, which are defined as some structured

outliers that are sparse over the spatial domain but persistent over time. A concrete real-

world motivating application is the weekly number of gonorrhea cases from 2006 to 2018

of 50 states in the United States, also see the detailed data description in the next section.

From the monitoring viewpoint, there are two kinds of changes: one is the global-level

trend, and the other is the local-level outliers. Here we are more interested in detecting the

so-called hot-spots, which are local-level outliers with the following two properties: (1)

spatial sparsity, i.e., the local changes are sparse over the spatial domain; and (2) temporal

persistence, i.e., the local changes last for a reasonably long period of time unless one takes

some actions.

Generally speaking, the hot-spot detection can be thought of as detecting sparse anoma-

lies in the spatio-temporal data, and there are three different categories of methodologies

and approaches in the literature. The first one is the least absolute shrinkage and selec-

tion operator (Lasso) based control chart that integrates Lasso estimators for change point

detection and declares non-zero components of the Lasso estimators as the hot-spot [see

10, 11, 39]. Unfortunately, the Lasso-based control chart cannot separate the local hot-

spots from the global trend of the spatio-temporal data. The second category of methods

is the dimension reduction-based control chart where one monitors the features from PCA
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or other dimension reduction methods [see 17, 18, 19]. The drawback of PCA or other

dimension reduction methods is that it fails to detect sparse hot-spots and cannot take full

advantage of the spatial location of hot-spots. The third category of anomaly detection

methods is the decomposition-based method that uses the regularized regression methods

to separate the hot-spots from the background event, see [12, 40, 41]. However, these ex-

isting approaches investigate structured images or curve data under the assumption that the

hot-spots are independent over the time domain.

In this paper, we propose a decomposition-based anomaly detection method for spatial-

temporal data when the hot-spots are autoregressive, which is typical for time series data.

Our main idea is to represent the raw data as a 3-dimensional tensor: states, weeks, years.

To be more specific, at each year, we observe a 50 × 52 data matrix that corresponds to

50 states and 52 weeks (we ignore the leap years). Next, we propose to decompose the

3-dimension tensor into three components: Smooth global trend, Sparse local hot-spot, and

Residuals, and term our proposed decomposition model as SSR-Tensor. When fitting the

observed raw data to our proposed SSR-Tensor model, we develop a penalized likelihood

approach by adding two penalty functions: one is the Lasso type penalty to guarantee the

sparsity of hot-spots, and the other is the fused-Lasso type penalty for the autoregressive

properties of hot-spots. By doing so, we are able to (1) detect when the hot-spots occur

(i.e., the change point detection problem); and (2) localize where and which type of the

hot-spots occur (i.e., the spatial localization problem).

We would like to acknowledge that much research has been done on modeling and

prediction of the spatio-temporal data. Some popular time series models are auto-regressive

(AR), moving-average (MA), auto-regressive-moving-average (ARMA) model, etc., and

the parameters can be estimated by Yule-Walker method [see 42], maximum likelihood

estimation or least square method [see 43]. In addition, spatial statistics have also been

extensively investigated on its own right [see 44, 45, 46, 47, 48]. When one combines time

series with spatial statistics, the corresponding spatio-temporal models generally become
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more complicated, [see 49, 50, 51].

In principle, it is possible to represent the spatio-temporal process as a sequence of

random vector yt with weekly observation t, where yt is a p-dimensional vector that char-

acterizes the spatial domain (i.e., spatial dimension p = 50 in our case study).

However, such an approach might not be computationally feasible in the context of

hot-spot detection, in which one needs to specify the covariance structure of yt, not only

over the spatial domain, but also over the time domain. If we write all data into a vector,

then the dimension of such vector is 50 × 52 × 13 = 33, 800, and thus the covariance

matrix is of dimension 33, 800×33, 800,which is not computationally feasible [see 52, 53].

Meanwhile, under our proposed SSR-Tensor model, we essentially conduct a dimensional

reduction by assuming that such a covariance matrix has a nice sparsity structure, as we

reduce the dimensions 50, 52 and 13 to much smaller numbers, e.g., AR(1) model over the

week or year dimension, and local correlation over the spatial domain.

It is useful to point out that while our paper focuses only on 3-dimensional tensor due

to our motivating application in gonorrhea, our proposed SSR-Tensor model can easily

be extended to any d-dimensional tensor or data with d ≥ 3, e.g., when we have further

information, such as the unemployment rates, economic performance, and so on. As the di-

mension d increases, we can simply add more corresponding bases, as our proposed model

uses basis to describe correlation within each dimension, and utilizes tensor product for

interaction between different dimensions. The capability of extending to high-dimensional

data is one of the main advantages of our proposed SSR-Tensor model. Furthermore, our

proposed SSR-Tensor model essentially involves a block-wise diagonal covariation ma-

trix, which allows us to develop computationally efficient methodologies by using tensor

decomposition algebra, see subsection 2.5.2 for more technical details.

The remainder of this paper is described as follows. In section 2.2, we discuss and

visualize the gonorrhea dataset, which is used as our motivating example and in our case

study. In section 2.3, we present our proposed SSR-Tensor model, and discuss how to
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estimate model parameters from the observed data. In section 2.4, we describe how to use

our proposed SSR-Tensor model to find hot-spots, both for temporal detection and spatial

localization. Efficient numerical optimization algorithms are discussed in section 2.5. Our

proposed methods are then validated through extensive simulations in section 2.6 and a

case study in the gonorrhea dataset in section 2.7.

2.2 Data Description

To protect Americans from serious diseases, the National Notifiable Disease Surveillance

System (NNDSS) at the Centers for Disease Control and Prevention (CDC) helps public

health monitor, control, and prevent about 120 diseases (see its website https://wwwn.cdc.

gov/nndss/infectious-tables.html). One disease that receives intensive attention in recent

years is gonorrhea, due to the possibility of multi-drug resistance. Historically the instances

of antibiotic resistance (in gonorrhea) have first been in the west and then move across the

country. Since 1965, the CDC has collected the number of cumulative new infected patients

every week in a calendar year. There are several changes to report policies or guidelines,

and the latest one is the year 2006. As a result, we focus on the weekly numbers of new

gonorrhea patients during January 1, 2006, and December 31, 2018. The new weekly

gonorrhea cases are computed as the difference of the cumulative cases in two consecutive

weeks. The last week is dropped during this calculation.

Let us first discuss the spatial patterns of the gonorrhea data among 50 states. For this

purpose, we consider the cumulative number of gonorrhea cases from week 1 to week 52

by summing up all data during the years 2006-2018. Figure 2.1 plots some selected weeks

(#1, #11, #21, #31, #41, #51). In Figure 1, if the state has a deeper and bluer color, then

it experiences a higher number of gonorrhea cases. One obvious pattern is that California

and Texas have generally higher number of gonorrhea cases as compared to other states.

In addition, the number of gonorrhea cases in the northern US is smaller than that in the

southern US.
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week 1 week 11 week 21

week 31 week 41 week 51

Figure 2.1: The cumulative number of gonorrhea cases at some selected weeks during years
2006-2018. The deeper the color, the higher number of gonorrhea cases.
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Next, we consider the temporal pattern of the gonorrhea data set. Figure 2.2 plots the

annual number of gonorrhea cases over the years 2006-2018 in the US. It can be seen that

there is a decrease during 2007- 2009, and then the number of gonorrhea cases increases.

The increasing trend from 2010 to 2014 is very gentle, but the increasing trend after 2015

becomes severe. One possible explanation for the different increase speed is the Affordable

Care Act, which was signed into law by President Barack Obama on March 23, 2010. This

policy may help to stabilize the increase of gonorrhea disease. As we mentioned before,

we are not interested in detecting this type of global changes, and we focus on the detection

of the changes in the local patterns, which are referred to as hot-spots in our paper.
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Figure 2.2: Annual number of gonorrhea cases (in thousands) over the years 2006-2018 in
the US

Moreover, the gonorrhea data consists of weekly data, and thus it is necessary to address

the circular patterns over the direction of “week”. Figure 2.3 shows the country-scaled

weekly gonorrhea case in the form of a “rose” diagram for some selected years. In this

figure, each direction represents a given week, and the length represents the number of

gonorrhea cases for a given week. Figure 2.3 reveals differences in the number of gonorrhea

cases across a different week of the year. For instance, in July and August (in the direction

of 8 o’clock on the circle), the number of gonorrhea cases tends to be larger than in other

weeks.
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Figure 2.3: Circular histograms of the number of gonorrhea cases of the year 2006, 2010,
2014, 2018. The y-axis is the number of gonorrhea cases, and the circular x-axis is 51
weeks. Each bar represents a given week, and the length represents the number of gonor-
rhea cases for a given week in the US.

2.3 Proposed Model

In this section, we present our proposed SSR-Tensor model and postpone the discussion

of hot-spot detection methodology to the next section. Owing to the fact that the gonor-

rhea data is of three dimensions, namely, {state, week, year}, it will likely have complex

“within-dimension” correlation and “between-dimension” interaction. Within-dimension

correlation includes within-state correlation, within-week correlation, and within-year cor-

relation. The between-dimension relationship includes between-state-and-week interac-

tion, between-state-and-year interaction, as well as between-week-and-year interaction. In

order to handle these complex “within” and “between” interaction structures, we propose to

use the tensor decomposition method, where bases are used to address “within-dimension”

correlation, and the tensor product is used for “between-dimension” interaction. Here, the

basis is a very important concept where different bases can be chosen for different dimen-

sions. Detailed discussions of the choice of bases are presented in subsection 2.6.2.
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For the convenience of notation and easy understanding, we first introduce some ba-

sic tensor algebra and notation in subsection 2.3.1. Then subsection 2.3.2 presents our

proposed model that is able to characterize the complex correlation structures.

2.3.1 Tensor Algebra and Notation

In this section, we introduce basic notations, definitions, and operators in tensor (multi-

linear) algebra that are useful in this paper. Throughout the paper, scalars are denoted by

lowercase letters (e.g., θ), vectors are denoted by lowercase boldface letters (θ), matrices

are denoted by uppercase boldface letter (Θ), and tensors by curlicue letter (ϑ). For ex-

ample, an order-N tensor is represented by ϑ ∈ RI1×···×IN , where In represent the mode-n

dimension of ϑ for n = 1, . . . , N .

The mode-n product of a tensor ϑ ∈ RI1×...×IN by a matrix B ∈ RJn×In is a tensor

A ∈ RI1×...In−1×Jn×In+1×...IN , denoted as A = ϑ ×n B, where each entry of A is de-

fined as the sum of products of corresponding entries in A and B: Ai1,...,in−1,jn,in+1,...,iN =∑
in
ϑi1,...,iNBjn,in . Here we use the notation Bjn,in to refer the (jn, in)-th entry in matrix B.

The notation ϑi1,...,iN is used to refer to the entry in tensor ϑwith index (i1, . . . , iN). The no-

tationAi1,...,in−1,jn,in+1,...,iN is used to refer the entry in tensorA with index (i1, . . . , in−1, jn

, in+1, . . . , iN).

The mode-n unfold of tensor ϑ ∈ RI1×...×IN is noted by ϑ(n) ∈ RIn×(I1×...In−1×In+1×IN ),

where the column vector of ϑ(n) are the mode-n vector of ϑ. The mode-n vector of ϑ are

defined as the In dimensional vector obtained from ϑ by varying the index in while keeping

all the other indices fixed. For example, ϑ:,2,3 is a model-1 vector.

A very useful technique in the tensor algebra is the Tucker decomposition, which

decomposes a tensor into a core tensor multiplied by matrices along with each mode:

Y = ϑ ×1 B(1) ×2 B(2) · · · ×N B(N), where B(n) is an orthogonal In × In matrix and

is a principal component mode-n for n = 1, . . . , N . Tensor product can be represented

equivalently by a Kronecker product, i.e., vec(Y) = (B(N) ⊗ · · · ⊗ B(1))vec(ϑ), where
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vec(·) is the vectorized operator. Finally, the definition of Kronecker product is as follow:

Suppose B1 ∈ Rm×n and B2 ∈ Rp×q are matrices, the Kronecker product of these matrices,

denoted by B1 ⊗B2, is an mp× nq block matrix defined by

B1 ⊗B2 =


b11B2 · · · b1nB2

... . . . ...

bm1B2 · · · bmnB2

 .

2.3.2 Our Proposed SSR-Tensor Model

Our proposed SSR-Tensor model is built on tensors of order three, as it is inspired by

the gonorrhea data, which can be represented as a three-dimension tensor Y ∈ Rn1×n2×T

with n1 = 50 states, n2 = 51 weeks, and T = 13 years. Note that the i-th, j-th, and

k-th slice of the 3-D tensor along the dimension of state, week, and year can be achieved

as Yi::,Y:j:,Y::k correspondingly, where i = 1 · · ·n1, j = 1 · · ·n2 and k = 1 · · ·T . For

simplicity, we denote Yk = Y::k. We further denote yk as the vectorized form of Yk, and

y as the vectorized form of Y .

The key idea of our proposed model is to separate the global trend from the local pat-

tern by decomposing the tensor y into three parts, namely the smooth global trend µ, local

hot-spot h, and residual e, i.e. y = µ + h + h. For the first two of the components

(e.g. the global trend mean µ and local hot-spots h), we introduce the basis decomposi-

tion framework to represent the structure of the within-dimension correlation in the global

background and local hot-spot [see 12].

To be more concrete, we assume that global trend mean and local hot-spot can be repre-

sented as µ = Bmθm and h = Bhθh, where Bm and Bh are two bases that will discussed

below, and θm and θh are the model coefficients vector of length n1n2T and needed to be

estimated (see section 2.5). Here the subscript of m and h are abbreviations for mean and

hot-spot. Next, it is useful to discuss how to choose the bases Bm and Bh, so as to charac-
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terize the complex “within-dimension” correlation and “between-dimension” interaction.

For the “within-dimension” correlation structures, we propose to use pre-specified bases,

Bm,s and Bh,s, for within-state correlation in global trend and hot-spot, where the subscript

of s is an abbreviation for states. Similarly, Bm,w and Bh,w are the pre-specified bases for

within-correlation of the same week, whereas Bm,y and Bh,y are the bases for within-time

correlation over year. As for the “between” interaction, we use tensor product to describe

it, i.e, Bm = Bm,s⊗Bm,w ⊗Bm,y and Bh = Bh,s⊗Bh,w ⊗Bh,y. This Kronecker product

has been proved to have better computational efficiency in the tensor response data [see

54]. Mathematically speaking, all these bases are matrices, which is pre-assigned in our

paper. And the choice of bases in shown in subsection 2.6.2.

With the well-structured “within-dimension” correlation and “between-dimension” in-

teraction, our proposed model can be written as:

y = (em,s ⊗Bm,w ⊗Bm,y)θm + (Bh,s ⊗Bh,w ⊗Bh,y)θh + e, (2.1)

where e∼N(0, σ2I) is the random noise. Mathematically speaking, both Bm,s and Bh,s are

n1 × n1 matrix, Bm,w and Bh,w are n2 × n2 matrix and Bm,y and Bh,y are T × T matrix,

respectively.

Mathematically, our proposed model in Equation 2.1 can be rewritten into a tensor

format:

Y = ϑm ×3 Bm,y ×2 Bm,w ×1 Bm,s + ϑh ×3 Bh,y ×2 Bh,w ×1 Bh,s + e, (2.2)

where ϑm and ϑh is the tensor format of θm and θh with dimensional n1×n2×T . The tensor

representation in Equation 2.2 allows us to develop computationally efficient methods for

estimation and prediction.

48



2.3.3 Estimation of Hot-spots

With the proposed SSR-Tensor model above, we can now discuss the estimation of hot-

spot parameters θ’s (including θm, θh) in our model in Equation 2.1 or Equation 2.2 from

the data via the penalized likelihood function. We propose to add two penalties in our

estimation. First, because hot-spots rarely occur, we assume that θh is sparse and the

majority of entries in the hot-spot coefficient θh are zeros. Thus we propose to add the

penalty R1(θh) = λ1‖θh‖1 to encourage the sparsity property of θh. Second, we as-

sume there is temporal continuity of the hot-spots, as the usual phenomenon of last year

is likely to affect the performance of the hot-spot in this year. Thus, we add the sec-

ond penalty R2(θh) = λ2‖Dθh‖1 to ensure the yearly continuity of the hot-spot, where

D = Ds ⊗ Dw ⊗ Dy with Ds as an identical matrix of dimension n1 × n1, and matrix

Dy =



1 −1

. . . . . .

1 −1

1


∈ RT×T , matrix Dw =



1 −1

. . . . . .

1 −1

−1 1


∈

Rn2×n2 . With the formula of Dy, the hot-spot has the property of yearly continuity. By the

formula of Dw, the hot-spot has a weekly circular pattern.

By combining both penalties, we propose to estimate the parameters via the following

optimization problem:

arg min
θm,θh

‖e‖2 + λ1‖θh‖1 + λ2‖Dθh‖1 (2.3)

subject to y = (Bm,s ⊗Bm,w ⊗Bm,y)θm + (Bh,s ⊗Bh,w ⊗Bh,y)θh + e,

where θm = vec(θm,1, . . . ,θm,t, . . . ,θm,T ) and θh = vec(θh,1, , . . . ,θh,t, . . . ,θh,T ). The

choice of the turning parameters λ1, λ2 will be discussed in section 2.4.

Note that there are two penalties in Equation 2.3: λ1‖θh‖1 is the Lasso penalty to con-

trol both the sparsity of the hot-spots and λ2‖Dθh‖1 is the fused Lasso penalty to control
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the temporal consistency of the hot-spots. Traditional algorithms often involve the storage

and computation of the matrix Bm and Bh, which is of the dimension n1n2T×n1n2T. Thus

they might work to solve the optimization problem in Equation 2.3 when the dimensions are

small, but they will be computationally infeasible as the dimensions grow. To address this

computational challenge, we propose to simplify the computational complexity by modi-

fying the matrix algebra in traditional algorithm into tensor algebra and will discuss how

to optimize the problem in Equation 2.3 computationally efficiently in section 2.5.

2.4 Hot-spot Detection

This section focuses on the detection of the hot-spot, which includes the detection and iden-

tification of the year (when), the state (where), and the week (which) of the hot-spots. In

our case study, we focus on the upward shift of the number of gonorrhea cases, since the in-

creasing gonorrhea is generally more harmful to societies and communities. Of course, one

can also detect the downward shift with a slight modification of our proposed algorithms

by multiplying −1 to the raw data.

For the purpose of easy presentation, we first discuss the detection of the hot-spot, i.e.,

detect when the hot-spot occurs in subsection 2.4.1. Then, in subsection 2.4.2, we consider

the localization of the hot-spot, i.e., determine which states and which weeks are involved

for the detected hot-spots.

2.4.1 Detect When the Hot Spot Occurs

To determine when the hot-spot occurs, we consider the following hypothesis test and set

up the control chart for the hot-spot detection in Equation 2.4.

H0 : r̃t = 0 v.s. H1 : r̃t = δĥt (δ > 0), (2.4)
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where r̃t is the expected residuals after removing the mean. The essence of this test is that,

we want to detect whether r̃t has a mean shift in the direction of ĥt, estimated in section 2.5.

To test this hypothesis, the likelihood ratio test is applied to the residual rt at each time t, i.e.

rt = yt−µt, where it assumes that the residuals rt is independent after removing the mean

and its distribution before and after the hot-spot remains the same. Accordingly, the test

statistics monitoring upward shift is designed as P+
t = ĥ+>

t rt/

√
ĥ+>
t ĥ+

t [see 32], where

ĥ+
t only takes the positive part of ĥt with other entries as zero. Here we put a superscript

“+” to emphasize that it aims for an upward shift.

The choices of the penalty parameters λ1, λ2 are described as follows. In order to select

the one with the most power, we propose to calculate a series of P+
t under different com-

bination of (λ1, λ2) from the set Γ = {(λ(1)
1 , λ

(1)
2 ) · · · (λ(nλ)

1 , λ
(nλ)
2 )}. For better illustration,

we denote the test statistics under penalty parameter (λ1, λ2) as P+
t (λ1, λ2). The test statis-

tics [see 39] with the most power to detect the change, noted as P̃+
t , can be computed by

P̃+
t = max

(λ1,λ2)∈Γ

P+
t (λ1, λ2)− E(P+

t (λ1, λ2))√
V ar(P+

t (λ1, λ2))
, (2.5)

whereE(P+
t (λ1, λ2)), V ar(P+

t (λ1, λ2)) respectively are the mean and variance of Pt(λ1, λ2)

under H0 (e.g. for phase-I in-control samples).

Note that the penalty parameter (λ1, λ2) to realize the maximization in Equation 2.5 is

generally different under different time t. To emphasize such dependence of time t, denote

by (λ∗1,t, λ
∗
2,t) the parameter pair that attains the maximization in Equation 2.5 at time t, i.e,

(λ∗1,t, λ
∗
2,t) = arg max

(λ1,λ2)∈Γ

P+
t (λ1, λ2)− E(P+

t (λ1, λ2))√
V ar(P+

t (λ1, λ2))
. (2.6)

Thus, the series of the test statistics for the hot-spot at time t is P̃+
t (λ∗1,t, λ

∗
2,t) where t =

1 · · ·T .

With the test statistic available, we design a control chart based on the CUSUM pro-

cedure due to the following reasons: (1) we are interested in detecting the change with
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the temporal continuity, therefore, aligns with the objective of CUSUM. (2) In the view of

social stability, we want to keep gonorrhea at a target value without sudden changes, which

makes the CUSUM chart is a natural better fit.

To be more specific, in the CUSUM procedure, we compute the CUSUM statistics

recursively by

W+
t = max{0,W+

t−1 + P̃+
t (λ∗1,t, λ

∗
2,t)− d},

and W+
t=0 = 0, where d is a constant and can be chosen according to the degree of the

shift that we want to detect. Next, we set the control limit L to achieve a desirable ARL

for in-control samples. Finally, whenever W+
t > L at some time t = t∗, we declare that a

hot-spot occurs at time t∗.

2.4.2 Localize Where and Which the Hot Spot Occurs?

After the hot-spot t∗ has been detected by the CUSUM control chart in the previous section,

the next step is to localize where and which week may account for this hot-spot. To do so,

we propose to utilize the vector

ĥλ∗
1,t∗ ,λ

∗
2,t∗

= Bhθ̂h,λ∗
1,t∗ ,λ

∗
2,t∗

at the declared hot-spot time t∗ and the corresponding parameter λ∗1,t∗ , λ
∗
2,t∗ in Equation 2.6.

For the numerical computation purpose, it is often easier to directly work with the tensor

format of the hot-spot ĥλ∗
1,t∗ ,λ

∗
2,t∗

, denoted as Ĥλ∗
1,t∗ ,λ

∗
2,t∗

, which is a tenor of dimension

n1× n2× T . If the (i, j, t∗)-th entry in Ĥλ∗
1,t∗ ,λ

∗
2,t∗

is non-zero, then we declare that there is

a hot-spot for the j-th week in the i-th state in t∗-th year.

2.5 Optimization Algorithm

In this section, we will develop an efficient optimization algorithm for solving the opti-

mization problem in Equation 2.3. For notion convenience, we adjust the notation above a
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little bit. Because θm,θh in Equation 2.3 is solved under penalty λ1R1(θh) + λ2R2(θh),

we change θm, θh into θm,λ1,λ2 ,θh,λ1,λ2 to emphasize the penalty parameter λ1 and λ2.

Accordingly, θh,0,λ2 refers to the estimator only under the second penalty λ2R2(θh), i.e,

θh,0,λ2 = arg min
θm,θh

{
‖e‖2

2 + λ2R2(θh)
}
. (2.7)

The structure of this section is that, we first develop the procedure of our proposed method

in subsection 2.5.1 and then give the computational complexity in subsection 2.5.2.

2.5.1 Procedure of Our Algorithm

In the optimization problem shown in Equation 2.3, there are two unknown vectors, namely

θm,λ1,λ2 , θh,,λ1,λ2 . To simplify the optimization above, we first figure out the closed-form

correlation between θm,λ1,λ2 and θh,λ1,λ2 . Then, we solve the optimization by modifying

the matrix algebra in the fast iterative shrinkage-thresholding algorithm (FISTA) [see 24]

into tensor algebra. The key to realize it is the proximal mapping of λ1R1(θh,λ1,λ2) +

λ2R2(θh,λ1,λ2). To address it, we first aims at the proximal mapping of λ2R2(θh,0,λ1),

where SFA via gradient descent [see 29] is used. And then the proximal mapping of

λ1R1(θh,λ1,λ2) + λ2R2(θh,λ1,λ2) can be solved with a closed-form correlation between it

and the proximal mapping of λ2R2(θh,0,λ2).

There are three subsections in this section, where each subsection represents one step

in our proposed algorithm.

Estimate the mean parameter

To begin with, we first simplify the optimization problem in Equation 2.3, i.e., figure out

the closed-form correlation between θm,λ1,λ2 and θh,λ1,λ2 .

Although there are two sets of parameters θm,λ1,λ2 and θh,λ1,λ2 in the model, we note

that given θh,λ1,λ2 , the parameter θm,λ1,λ2 is involved in the standard least squared estima-

53



tion and thus can be solved in the closed-form solution, see Equation 2.8 in the proposition

below.

Proposition 2.5.1. Given θh,λ1,λ2 , the closed-form solution of θm,λ1,λ2 is given by:

θm,λ1,λ2 = (B>mBm)−1(B>my −B>mBhθh,λ1,λ2) (2.8)

It remains to investigate how to estimate the parameter θh,λ1,λ2 .After plugging in Equa-

tion 2.8 into Equation 2.3, the optimization problem for estimating θh,λ1,λ2 becomes

arg min
θh,λ1,λ2

‖y∗ −Xθh,λ1,λ2‖2
2 + λ1‖θh,λ1,λ2‖1 + λ2‖Dθh,λ1,λ2‖1, (2.9)

where y∗ = [I−Hm] y , X = [I−Hm] Bh and Hm = Bm(B>mBm)−1B>m.

Due to the high dimension, we need to develop an efficient and precise optimization al-

gorithm to optimize Equation 2.9. Obviously, Equation 2.9 is a typical sparse optimization

problem. However, most of the sparse optimization frameworks focus on optimizing:

arg min
θh,0,λ2

‖y∗ −Xθh,λ1,0‖
2
2 + λ1 ‖θh,λ1,0‖1 , (2.10)

for instance [24, 55, 56], where the iterative updating rule is used based either on the

gradient information or the proximal mapping. In most cases, the algorithms above works,

however, two challenges occur in our paper:

1. When the dimension of X (of size n1n2T × n1n2T ) becomes increasingly large, it is

difficult for the computer to store and memorize it.

2. When the penalty term is λ1‖θh,λ1,λ2‖1+λ2‖Dθh,λ1,λ2‖1, instead of only λ1‖θh,λ1,λ2‖1,

direct application of the proximal mapping of λ1‖θh,λ1,λ2‖1 is not workable.

Therefore, directly applying these above algorithms [see 24, 55, 56] to our case is

not feasible. To extend the existing research, we propose an iterative algorithm in algo-
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rithm 2 and we explain the approach to solve the proximal mapping of λ1‖θh,λ1,λ2‖1 +

λ2‖Dθh,λ1,λ2‖1 in the next subsection.

Proximal Mapping

The main tool we use to solve the optimization problem in Equation 2.9 is a variation of

proximal mapping. Denote that F (θh,λ1,λ2) = 1
2
‖y∗ − Xθh,λ1,λ2‖2

2. And in the i-th itera-

tion, the according recursive estimator of θh,λ1,λ2 is noted as θ(i)
h,λ1,λ2

. Besides,an auxiliary

variable η(i) is introduced to update from θ
(i)
h,λ1,λ2

to θ(i+1)
h,λ1,λ2

through

θ
(i+1)
h,λ1,λ2

= arg min
θ
F (η(i)) +

∂

∂θh,λ1,λ2

F (η(i))
(
θ − η(i)

)
+

λ1‖θ‖1 + λ2‖Dθ‖1 +
L

2
‖θ − η(i)‖2

2

= arg min
θ

[
1

2

[
θ −

(
η(i) − ∂

L∂θ
F (η(i))

)]2

+ λ1‖θ‖1 + λ2‖Dθ‖1

]
, πλ1

λ2
(v)

where v = η(i)− ∂
L∂θ

F (η(i)), η(i) = θ
(i)
h,λ1,λ2

+ ti−2−1
ti−1

(θ
(i)
h,λ1,λ2

−θ(i−1)
h,λ1,λ2

) and t−1 = t0 = 1,

ti+1 =
1+
√

1+4t2i
2

Because it is difficult to solve πλ1
λ2

(v) directly, we aim to solve π0
λ2

(v) first. And proved

by [29], there is a closed-form correlation between πλ1
λ2

(v) and π0
λ2

(v), which is shown in

Proposition 2.5.2.

Proposition 2.5.2. The closed-form relationship between πλ1
λ2

(v) and π0
λ2

(v) is

πλ1
λ2

(v) = sign(π0
λ2

(v))�max{|π0
λ2

(v)| − λ1, 0}. (2.11)

where � is an element-wise product operator.

With the proximal mapping function in Proposition 2.5.2, we can now develop the

algorithm shown in algorithm 2.
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Algorithm 2: Iterative updating based on tensor decomposition
Input: y∗,Bs,Bw,By,Ds,Dw,Dy, K, L, λ1, λ2, L0,M1,M2

Output: θh,λ1,λ2

1 initialization;
2 Θ(1) = Θ(0), t−1 = 1, t0 = 1, L = L0

3 for i = 1 · · ·M1 do
4 N (i) = N (i) + ti−2−1

ti−1
(Θ(i) −Θ(i−1))

V = N (i) − 1

L
N (i) ×1 (P>s Ps)×2 (P>wPw)×3 (P>y Py)−

1

L
Y∗ ×1 P>s ×2 P>w ×3 P>y

for j = 0 · · ·M2 do
5

G(i) =
(
Z(j) ×1 (D>s Ds)×2 (D>wDw)×3 (D>y Dy))

)
−

(V ×1 Ds ×2 Dw ×3 Dy)

Z(j+1) = P
(
Z(j) − G(j)/L

)
6 π0

λ2
(V) = V − (Z(M2))×1 Ds ×2 Dw ×3 Dy

7 πλ1
λ2

(V) = sign(π0
λ2

(V))�max{
∣∣π0
λ2

(V)
∣∣− λ1, 0}

8 ti+1 =
1+
√

1+4t2i
2

9 Θ̂h,λ1,λ2 = πλ1
λ2

(V)

10 θ̂h,λ1,λ2 = vector(Θ̂h,λ1,λ2) v = vector(V)

vector(·) is a function that unfolding a order-3 tensor of dimension n1×n2×T into a vector of lengthn1n2T
.
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2.5.2 Computational Complexity

This section discusses the computational complexity of our proposed algorithm. The com-

putation complexity of our propose method is of order O (n1n2T max{n1, n2, T}) (see

Proposition 2.5.3).

Proposition 2.5.3. The computational complexity of our proposed algorithm (see algo-

rithm 2) is of order O (n1n2T max{n1, n2, T}).

The proof of the above proposition can be found in subsection 2.8.1.

2.6 Simulation

In this section, we conduct simulation studies to evaluate our proposed methodologies by

comparing it with several benchmark methods in the literature. The structure of this section

is described as follows. We first present the data generation mechanism for our simulations

in subsection 2.6.1, then discuss the performance of hot-spot detection and localization in

subsection 2.6.2.

2.6.1 Generative Model in Simulation

In our simulation, at each time index t(t = 1 · · ·T ), we generate a vector yt of length n1n2

by

yi,t = (Bθt)i + δ1{t ≥ τ}1{i ∈ Sh}+ wi,t. (2.12)

To match the dimension in the case study, we choose n1 = 50, n2 = 51. We use yi,t to

denote the i-th entry in the vector yt, and (Bθt)i denotes the i-th entry in the vector Bθt,

where the matrix B = Bm,s ⊗ Bm,w ⊗ Bm,y is calculated with the same choice as that

in subsection 2.3.2. The scalar δ measures the change magnitude. We further consider

two sub-cases, depending on the value of change magnitude δ in Equation 2.12: one is

δ = 0.1 (small shift) and the other is δ = 0.5 (large shift). For the anomaly setup, 1(A)
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is the indicator function, which has the value 1 for all elements of A and the value 0 for

all elements not in A. Accordingly, 1{t ≥ τ} indicates that the spatial hot-spots only

occur after the temporal hot-spot τ . This ensures that the simulated hot-spot is temporal

consistent. Here we assume the change happens at τ = 50 among total T = 100 years. The

second indicator function 1{i ∈ Sh} shows that only those entries whose location index

belongs set Sh are assigned as local hot-spots. This ensures that the simulated hot-spot is

sparse. Here we assume that the spatial hot-spots index set is formed by the combination of

states Conn, Ohio, West Va, Tex, Hawaii, and the week from 1-10 and 41-51. And wi,t is

the i-th entry in the white noise vector whose entries are independent and followN(0, 0.12)

distribution.

2.6.2 Hot-spot Detection Performance

In this section, we compare the performance of our proposed method (denoted as ‘SSR-

tensor’) for the detection of hot-spot with some benchmark methods. Specifically, we

compare our proposed method with Hotelling T 2 control chart [see 36] (denoted as ‘T2’),

Lasso-based control chart proposed by [39] (denoted as ‘ZQ Lasso’), PCA-based control

chart proposed by [17] (denoted as ‘PCA’) and SSD proposed by [12] (denoted as ‘SSD’).

Note that there are two main differences between our SSR-tensor method and the SSD

method in [12]. First, SSR-Tensor has the autoregressive or fussed Lasso penalty in Equa-

tion 2.3 to ensure the temporal continuity of the hot-spot. Second, SSD uses the Shewhart

control chart to monitor temporal changes, while SSR-Tensor utilizes CUSUM instead,

which is more sensitive for a small shift.

For the basis choices of our proposed method, to model the spatial structure of the

global trend, we choose Bm,1 as the kernel matrix to describe the smoothness of the back-

ground, whose (i, j) entry is of value exp{−d2/(2c2)} where d is the distance between the

i-th state and j-th state and c is the bandwidth chosen by cross-validation. In addition, we

choose identical matrices for the yearly basis and weekly basis since we do not have any
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prior information. Moreover, we use the identity matrix for the spatial and temporal basis

of the hot-spots. For SSD in [12], we will use the same spatial and temporal basis in order

to have a fair comparison.

For evaluation, we will compute the following four criteria: (i) precision, defined as

the proportion of detected anomalies that are true hot-spots; (ii) recall, defined as the pro-

portion of the anomalies that are correctly identified; (iii) F measure, a single criterion

that combines the precision and recall by calculating their harmonic mean; and (iv) the

corresponding average run length (ARL1), a measure of the average detection delay in the

special scenario when the change occurs at time t = 1. All simulation results below are

based on 1000 Monte Carlo simulation replications.

Table 2.1 shows the merits of our methodology mainly lies on the higher precision

and shorter ARL1. For example, when the shift is very small, i.e., δ = 0.1, the ARL1 of

our SSR-Tensor method is only 1.6420 compared with 7.4970 of SSD and 9.5890 of ZQ-

Lasso. The reason for SSR-Tensor has shorter ARL1 than that of SSD is that SSD uses the

Shewhart control chart to detect temporal changes, which makes it insensitive for a small

shift. While for SSR-Tensor, it applies the CUSUM control chart, which is capable to detect

the shift of small size. The reason for both SSR-Tensor and SSD have shorter ARL1 than

that of ZQ-Lasso, PCA, and T2 is that ZQ-Lasso fails to capture the global trend mean. Yet,

the data generated in our simulation has both decreasing and circular global trend, which

makes it hard for ZQ-Lasso to model well.

2.7 Case Study

In this section, we apply our proposed SSR-tensor model and hot-spot detection/localization

method to the weekly gonorrhea dataset in section 2.2. For the purpose of comparison, we

also consider other benchmark methods mentioned in section 2.6, and consider two perfor-

mance criteria: one is the temporal detection of hot-spots (i.e., which year it occurs) and

the other is the localization of the hot-spots (i.e., which state and which week might involve

59



Table 2.1: Scenario 1 (decreasing global trend): Comparison of hot-spot detection under
small shift and large shift

methods
small shift δ = 0.1 large shift δ = 0.5

precision recall F measure ARL1 precision recall F measure ARL1

SSR-tensor 0.0824 0.9609 0.5217 1.6420 0.0822 0.9633 0.5228 1.0002
(0.0025) (0.0536) (0.0270) (0.7214) (0.0022) (0.0549) (0.0277) (0.0144)

SSD 0.0404 0.9820 0.5112 7.4970 0.0412 1.0000 0.5206 1.0000
(0.0055) (0.1330) (0.0692) (9.4839) (0.0000) (0.0000) (0.0000) (0.0000)

ZQ Lasso 0.0412 1.000 0.5206 9.5890 0.0412 1.0000 0.5206 8.8562
(0.0000) (0.0000) (0.0000) (7.5414) (0.0000) (0.0000) (0.0000) (7.1169)

PCA - - - 28.7060 - - - 32.0469
- - - (16.9222) - - - (17.4660)

T2 - - - 50.0000 - - - 50.0000
- - - (0.0000) - - - (0.0000)

the alarm).

2.7.1 When the temporal changes happen?

Here we consider the performance on the temporal detection of hot-spots of our proposed

method and other benchmark methods. For our proposed SSR-Tensor method, we build

a CUSUM control chart utilizing the test statistic in subsection 2.4.1, which is shown in

Figure 2.4. From this plot, we can see that the hot-spots are detected at 10-th year, i.e.,

2016.
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Figure 2.4: CUSUM Control chart of gonorrhea dataset during years 2006-2018.

For the purpose of comparison, we also apply the benchmark methods, SSD [see 12],

ZQ Lasso [see 39], PCA [see 17] and T2 [see 36], into the gonorrhea dataset. Unfortunately,

all benchmark methods are unable to raise any alarms, but our proposed SSR-tensor method
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raises the first hot-spot alarm in the year 2016.

2.7.2 In Which State and Week Do the Spatial Hot-spots Occur?

After the temporal detection of hot-spots, we need to further localize the hot-spots in the

sense that we need to find out which state and which week may lead to the occurrence of

the temporal hot-spot. Because the baseline methods, ZQ-Lasso, PCA, and T2, can only

realize the detection of temporal changes, and SSD fails to detect the temporal changes,

we only show the localization of spatial hot-spot by SSR-Tensor, which is visualized in

Figure 2.5.

week 8 week 19 week 30 week 42 week 51

Figure 2.5: Hot-spot detection result of circular pattern of W.S. CENTRAL(Arkansas,
Louisiana, Oklahoma, Texas)

There are some circular patterns in specific areas. For example, CENTRAL(Ark, La,

Okla, Tex) tends to have a circular pattern every 11 weeks, which is shown in Figure 2.5.

Besides, there is also some circular pattern for a certain state, for instance, Kansas has

the bi-weekly pattern as shown in Figure 2.6. To validate the bi-weekly circular pattern

of Kansas, we plot the time series plot of Kansas in 2016 as well as the auto-correlation

function plot in Figure 2.5. Besides, the auto-correlation function plot in the left panel of

Figure 2.6 serves as a baseline. It can be seen from the middle and right plot of Figure 2.6

that, Kansas has some bi-weekly or tri-weekly circular pattern.
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Figure 2.6: Auto-correlation of all US (left) & Kans.(middle) in 2016 and time series plot
of Kansas in 2016 (right)

2.8 Supplementary Material

2.8.1 Proof of Proposition 2.5.3

Proof. The main computational load in algorithm 2 is on the calculation of v (line 4),

g(i)(line 5) and π0
λ2

(v) (line 7). We will take the calculation of v in line 4 in the algorithm

as an example. To begin with, we focus on the computational complexity of

N (i) ×1 (P>s Ps)×2 (P>wPw)×3 (P>y Py)). (2.13)

For better illustration, we denote tensor(η(i)) as N (i) and N (i) ×1 (P>s Ps) as tensor L1.

According to the tensor algebra [see 54, Section 2.5],

L1 = N (i) ×1 (P>s Ps)⇐⇒ L1(1) = P>s PsN (i)
(1).

Therefore, the computational complexity of Equation 2.13 is the same as two-matrix mul-

tiplication with order n1 × n1 and n1 × n1n2, which is of order O (n1n2T (2n1 − 1)).

After the calculation of L1, Equation 2.13 is reduced to

L1 ×2 (P>wPw)×3 (P>y Py)). (2.14)
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Similarly, denotes L2 = L1 ×2 (P>wPw), then

L2 = L1 ×2 (P>wPw)⇐⇒ L2(2) = P>wPwN(2).

Therefore, the computational complexity of Equation 2.14 is the same as two-matrix mul-

tiplication with order n2 × n2 and n2 × n1T , which is of order O (n1n2T (2n2 − 1)).

After the calculation of L2,Equation 2.14 is reduced to

L2 ×3 (P>y Py)). (2.15)

Similarly, denotes L3 = L2 ×2 (P>y Py), then

L3 = L2 ×3 (P>y Py)⇐⇒ L3(3) = P>wPwN(3).

Therefore, the computational complexity of Equation 2.14 is the same as two-matrix mul-

tiplication with order T × T and T × n1n2, which is of order O (n1n2T (2T − 1)).

By combining all these blocks built above, we conclude that the computational com-

plexity of Equation 2.13 is of order O(n1n2T (max{n1, n2, T})).

In the same way, the computational complexity in line 5 and 7 of algorithm 2 is also of

order O(n1n2T (max{n1, n2, T})). Thus, the computational complexity of Algorithm is of

order O(n1n2T (max{n1, n2, T})).
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CHAPTER 3

IDENTIFICATION OF UNDERLYING DYNAMIC SYSTEM FROM NOISY DATA

WITH SPLINES

3.1 Introduction

In practice, one is often encountered with noisy data coming from an unknown partial

differential equation (PDE):

D = {(xi, tn, uni ) : xi ∈ (0, Xmax) ⊆ R, ∀ i = 0, . . . ,M − 1,

tn ∈ (0, Tmax) ⊆ R, ∀ n = 0, . . . , N − 1} ∈ Ω.
(3.1)

Here tn ∈ R is the temporal variable with tn ∈ (0, Tmax) for n = 0, 1, . . . , N − 1, and we

call N the temporal resolution. And xi ∈ R is the spatial variable with xi ∈ (0, Xmax) for

i = 0, 1, . . . ,M − 1, and we call M the spatial resolution. We use Tmax, Xmax to denote

the upper bound of the temporal variable and spatial variable, respectively.

In the above dataset D, the variable uni is a representation of ground truth u(xi, tn)

contaminated by noise following normal distribution with zero mean and stand deviation

σ:

uni = u(xi, tn) + εni εni
i.i.d∼ N(0, σ2), (3.2)

where u(x, t) is the underlying PDE model from where D is generated.

For this type of noisy datasetD, we are typically interested in identifying its underlying

PDE model:

∂
∂t
u(x, t) = β∗00 +

qmax∑
k=0

pmax∑
i=1

β∗ki
[
∂k

∂kx
u(x, t)

]i
+∑

i+j≤pmax
i,j>0

∑
0<k<l
l≤qmax

β∗ki,lj
[
∂k

∂kx
u(x, t)

]i [
∂l

∂lx
u(x, t)

]j
,

(3.3)
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where the left-hand side of the above equation is the partial derivative with respect to the

temporal variable t, while the right side hand is the pmaxth order polynomial of the deriva-

tives with respect to the spatial variable x up to the qmaxth order. For notation simplifi-

cations, we denote the ground truth coefficient vector β∗ = (β∗00, β
∗
01 , β∗11 , . . . , β∗qpmax

max
) as

β∗ = (β∗1 , β
∗
2 , β

∗
3 , . . . , β

∗
K)> where K = 1 + (pmax + 1)qmax + 1

2
qmax(qmax + 1)(pmax− 1)!.

It should be noted that, in practice, the majority of the entries in β∗ are zero. For instance,

in the transport equation ∂
∂t
u(x, t) = a ∂

∂x
u(x, t) with any a 6= 0, we only have β∗3 6= 0 and

β∗i = 0 for any i 6= 3 [see 57, Section 2.2]. So we know the coefficient β∗ in Equation 3.3

is sparse.

To identify the above model, one needs to overcome two technical issues. First, deriva-

tives are unobservable from D and have to be estimated from noisy observations of the

values of the function. Second, there could be lots of data-driven PDE models that suit

the noisy data very well. Among all these models, a simple model would be desirable.

However, it is not clear how can we identify the simple model.

In this paper, we propose a two-stage method – Spline Assisted Partial Differential

Equation involved Model Identification (SAPDEMI) – to efficiently identify the underlying

PDE models from the noisy data D. The first stage is called functional estimation stage,

where we estimate all the derivatives from the noisy data D, including ∂
∂t
u(x, t), ∂

∂x
u(x, t)

and so on. In this stage, the main tool we use is the cubic spline, where we first use

the cubic spline to fit the noisy data, and then we approximate the derivatives of the true

dynamic models as the derivatives of the cubic splines. The second stage is called model

identification stage, where we identify the underlying PDE models from the noisy data D.

In this stage, we apply the Least Absolute Shrinkage and Selection Operator (Lasso) [see

7] to identify the derivatives (or their combinations) that are included in the underlying

models. To ensure the correctness of the identification, we develop sufficient conditions

for correct identification and the asymptotic properties of the identified models, where the

main tool we use is the primal-dual witness (PDW) method [see 58, Chapter 11].
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The structure of the rest of this section is described as follows. In subsection 3.1.1,

we survey the existing methods to solve the above PDE identification problem. In subsec-

tion 3.1.2, we articulate our contributions of this paper.

3.1.1 Literature Review

The pioneering representative work to identify the underlying dynamic models from the

noisy data is [59]. This method is also a two-stage method, where in the functional estima-

tion stage, [59] use the local polynomial regression to estimate the value of the function and

its derivatives. Then, in the model identification stage, [59] use the least squares model.

Following this pioneering work, other researchers conduct various extensions.

The first type of extension is to modify the function estimation stage of [59], and we

classify the existing extensions into two categories: (1) the numerical differentiation, and

(2) the basis expansion.

In the numerical differentiation category [see 60, 61, 62], the derivative ∂
∂x
u(x, t) is

naively approximated as

∂

∂x
u(x, t) ≈ u(x+ ∆x, t)− u(x−∆x, t)

2∆x
,

where (x + ∆x, t), (x − ∆x, t) are the two closest points of (x, t) in the x-domain. The

essence of numerical differentiation is to approximate the first-order derivative as the slope

of a nearby secant line. Although the implementation of numerical differentiation is very

easy, it could be highly biased because its accuracy is highly dependent on the value of

∆x. On the one hand, if ∆x is too small, the subtraction will yield a large rounding error

[see 63, 64]. In fact, all the finite-difference formulae are ill-conditioned [see 65] and due

to cancellation will produce a value of zero if ∆x is small enough [see 66]. On the other

hand, if ∆x is too large, though the calculation of the slope of the secant line will be more

accurately calculated, the estimation of the slope of the tangent by using the secant line
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could be poor. However, in our case, the size of ∆x is decided by the noisy data D, which

could be very small or very large. So if we naively use numerical differentiation to estimate

the derivatives from the noisy data D, it could be highly possible that we will get biased

estimations.

In the basis expansion category, researchers first approximate the unknown dynamic

curves by basis expansion and then approximate the derivatives of underlying dynamic

curves as the derivatives of the approximation curves. As for the choice of basis in the

basis expansion, there are multiple choices in the existing literature. The most popular ba-

sis is the polynomial basis, which is already used by [59]. Other examples of polynomial

basis can be found in [67, 68, 69, 70, 71]. One popular choice of basis is spline basis [see

72, 73, 60, 74, 75]. The major limitation of the above method is that it evolves with high

computational complexity. For instance, the local polynomial basis requires computational

complexity of order max{O(M2N), O(MN2)} in the functional estimation stage. How-

ever, our proposed SAPDEMI method only requires computational complexity of order

O(MN). This is the lowest possible bound in theory in the functional estimation stage

because it is the complexity of reading in the data set D.

The second type of extension is to modify the model identification stage of [59]. The

existing methods fall in the framework of the (penalized) least squares method, and we

mainly divide them into three categories: (1) the least squares method, (2) the `2-penalized

least squares method, and (3) the `1-penalized least squares method.

In the least squares method category, [76] use the least squares method to estimate the

parameters in unknown ordinary differential equation (ODE) models. [67] and [60] use the

least squares to estimate the parameters in unknown PDE models. The major limitation of

this method is that it can lead to overfitting models.

In the `2-penalized least squares method category, [74, 77] and [75] penalize the smooth-

ness of the unknown PDE models, which shares similar ideas with the reproducing kernel

Hilbert space (RKHS). And essentially speaking, this method falls in the framework of the
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`2-penalized least squares method. Although this method can avoid overfitting by intro-

ducing the `2-penalty, it has limited power to do “model selection” instead of “parameter

estimation”. Specifically, they assume that the form of the dynamic models (either ODE

or PDE) is known, and their goal is to estimate the coefficients in the given model. How-

ever, in real practice, the form of the dynamic model is potentially unknown. Under this

scenario, instead of “parameter estimation”, we also need to do “model selection”.

In the `1-penalized least squares method category, [68] identifies the unknown dynamic

models through the `1-penalized least squares method, and later the author discusses the

design of an efficient algorithm with proximal mapping method. But the authors do not

discuss the asymptotic statistical property of the identified model. Recently, [78] utilize the

similar method as [68] to identify the unknown dynamic models. Although [78] demon-

strated some empirical successes, the rigorous theoretical justification still remains vague.

So this category is not fully explored in terms of the statistical property.

During the investigation of the literature of ODE/PDE identification, we also find some

research work published outside the statistical journals. These researchers investigate the

importance of the ODE/PDE identification problem, but they do not develop a statistical

theory on their methods, which is what we do in this paper. For instance, [79] assume that

the derivatives are already known in the functional estimation stage and then they utilize the

Akaike information criterion (AIC) to realize the model selection in the model identifica-

tion stage. But the theoretical property of the selected model is not analyzed. Another ex-

ample is [69], wherein the model identification stage, the authors first use the `2-penalized

least squares method to estimate the parameter β, and then manually shrinkage the small

coefficients to zero by applying the hard-threshold method to realize the model selection.

Other similar papers include [61, 62, 80, 81]. The methods in the above papers may work

in special cases, but their statistical properties are not established, and the rigorous proofs

remain an open question in these papers.
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3.1.2 Our Contribution

In this section, we discuss the contributions of our proposed SAPDEMI method.

First, our proposed SAPDEMI method is computationally efficient in the functional es-

timation stage. Specifically, we only require computationally complexity of orderO(MN),

which is the lowest possible order in this stage. And the popularly used local polynomial

regression requires computational complexity of order max{O(M2N), O(MN2)}, which

is more computationally expensive than our proposed SAPDEMI method.

Second, our proposed SAPDEMI method realizes “model selection”, instead of to “pa-

rameter estimations” in the model identification stage. The existing methods, for instance

[67, 76, 60, 74, 77, 75], can only realize “parameter estimation”, where they always assume

that the form of the underlying PDE models is known. However, our proposed SAPDEMI

method can identify the underlying PDE models without knowing the form of the underly-

ing PDE models.

Finally, we develop sufficient conditions for correct identification, and we also establish

the statistical properties of our identified models, which has not been seen in the literature.

The remaining of the paper is organized as follows. In section 3.2, we develop the tech-

nical details of our proposed SAPDEMI method. In section 3.3, we present our main theory,

including the sufficient conditions for correct identification, and the statistical properties of

our identified models. In section 3.4, we conduct numerical experiments to validate the

main theory in section 3.3. In section 3.5, we summarize this paper and discuss the future

research.

3.2 Proposed Method: SAPDEMI

In this section, we develop an efficient statistical method called SAPDEMI to identify the

underlying PDE model from noisy dataD. Our proposed SAPDEMI method is a two-stage

method to identify the unknown PDE models. The first stage is called functional estimation
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stage, where we estimate the function values and their derivatives from the noisy data D in

Equation 3.1. These functional values and their derivatives serve as the input values in the

second stage. The second stage is called model identification stage, where we identify the

underlying PDE model.

For the notations throughout the paper, scalars are denoted by lowercase letters (e.g.,

β). Vectors are denoted by lowercase bold face letters (e.g., β), and its ith entry is denoted

as βi. Matrices are denoted by uppercase boldface letter (e.g., B), and its (i, j)th entry is

denoted asBij . For the vector β ∈ Rp, its kth norm is defined as ‖β‖k :=
(∑p

i=1 |βi|k
)1/k

.

For the matrix B ∈ Rm×n, its Frobenius norm is defined as ‖B‖F =
√∑m

i=1

∑n
j=1 |Bij|2,

and its p, qth norm is defined as ‖B‖p,q = maxx 6=0
‖Bx‖q
‖x‖p . We write f(n) = O(g(n)), if

there exists a positive real number G and a real number n0 such that |f(n)| ≤ Gg(x) for

all n > n0.

The structure of this section is described as follows. In subsection 3.2.1, we introduce

the function estimation stage. In subsection 3.2.2, we describe the model identification

stage.

3.2.1 Functional Estimation Stage

In this section, we discuss the functional estimation stage of our proposed SAPDEMI

method, i.e., estimating the functional values and their derivatives from the noisy data D in

Equation 3.1. These derivatives include the derivatives with respect to the spatial variable

x and the derivatives with respect to the temporal variable t. In this section, we will take

the derivatives with respect to spatial variable x as an example, and the derivatives with

respect to the temporal variable t can be derived similarly.

The main tool we use is the cubic spline. Suppose there is a cubic spline s(x) over the

knots {(xi, uni )}i=0,1,...,M−1 satisfying the following properties [see 82]:

1. s(x) ∈ C2[x0, xM−1], where C2[x0, xM−1] denotes the sets of function whose 0th,

first and second derivatives are continuous in the domain [x0, xM−1] with the as-
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sumption that x0 < x1 < . . . < xM−1;

2. For any i = 1, . . . ,M − 1, s(x) is a polynomial of degree 3 on the subinterval

[xi−1, xi];

3. For the two end-point x0, xM−1, we have s′′(x0) = s′′(xM−1) = 0, where s′′(x) is

the second derivative of s(x).

By fitting data {(xi, uni )}i=0,1,...,M−1 (with a general fixed n ∈ {0, 1, . . . , N − 1}) into the

above cubic spline s(x), one can solve s(x) as the minimizer of the following optimization

problem:

Jα(s) = α
M−1∑
i=0

wi[u
n
i − s(xi)]2 + (1− α)

∫ xM−1

x0

s′′(x)2dx, (3.4)

where the first term α
∑M−1

i=0 wi[u
n
i − s(xi)]

2 is the weighted sum of squared residuals,

and we take the weight w0 = w1 = . . . = wM−1 = 1 in our paper. In the second term

(1−α)
∫ xM−1

x0
s′′(x)2dx, s′′(x) is the second derivative of s(x), and this term is the penalty

of smoothness. In the above optimization problem, the parameter α ∈ (0, 1] trades off

the goodness of fit and the smoothness of the cubic spline. By minimizing the above op-

timization problem with respect to s(x), we can get the estimate of s(x), its first deriva-

tive s′(x) and its second derivative s′′(x). If the cubic spline approximates the underlying

PDE curves very well, then we could declare that the derivatives of the underlying dy-

namic system can be approximated by the derivatives of the cubic spline s(x), i.e., we have

û(x, tn) ≈ ŝ(x), ̂∂
∂x
u(x, tn) ≈ ŝ′(x), ̂∂2

∂x2u(x, tn) ≈ ŝ′′(x) [see 83, 84, 85].

For the above optimization problem, there is a closed-form solution, which is summa-

rized as follows. First of all, the value of cubic spline s(x) at the point {x0, x1, . . . , xM−1},

i.e., ŝ =
(
ŝ(x0), ŝ(x1), . . . , ̂s(xM−1)

)>
, can be solved as

ŝ = [αW + (1− α)A>MA]−1αWun: , (3.5)

which can be used to approximate the 0th order derivative of the underlying PDE models,
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i.e., ŝ ≈ f̂ =
(

̂u(x0, tn), ̂u(x1, tn), . . . , ̂u(xM−1, tn)
)>

.Here the matrix W = diag(w0, w1, . . . , wM−1) ∈

RM×M , the vector un: =
(
un0 , . . . , u

n
M−1

)> ∈ RM , and the matrix A ∈ R(M−2)×M ,M ∈

R(M−2)×(M−2) are defined as

A =



1
h0
− 1
h0
− 1

h1

1
h1

0 . . . 0 0 0

0 1
h1

− 1
h1
− 1

h2

1
h2

. . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . 1
hM−3

− 1
hM−3

− 1
hM−2

1
hM−2


, (3.6)

M =



h0+h1

3
h1

6
0 . . . 0 0

h1

6
h1+h2

3
h2

6
. . . 0 0

0 h2

6
h2+h3

3
. . . 0 0

...
...

... . . . ...
...

0 0 0 . . . hM−4+hM−3

3

hM−3

6

0 0 0 . . . hM−3

6

hM−3+hM−2

3


. (3.7)

with hi = xi+1 − xi for i = 0, 1, . . . ,M − 2. For the mathematical details on how to

derive Equation 3.5 from Equation 3.4, please refer to subsection 3.6.1. Similarly, we can

derive the first order derivatives and second order derivatives, which can also be found in

subsection 3.6.1.

The advantage of the cubic spline in the functional estimation stage is that, its com-

putational complexity is only a linear polynomial of the sample size. See the following

proposition.

Proposition 3.2.1. Given dataD in Equation 3.1, if we use the cubic spline in the functional

estimation stage, i.e., estimate X ∈ RMN×K via the cubic spline in Equation 3.18 with

α ∈ (0, 1] and ∇tu ∈ RMN from the cubic spline with ᾱ ∈ (0, 1] similar in Equation 3.4,
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then the computation complexity in this stage is of order

max{O(pmaxMN), O(K3)},

where pmax is the highest polynomial order in Equation 3.3, M is the spatial resolution, N

is the temporal resolution and K is the number of columns of X.

The proof of the above proposition can be found in subsubsection 3.6.5.

As suggested by Proposition 3.2.1, when pmax, K � M,N (which is often the case in

practice), it only requires O(MN) numerical operations of the functional estimation stage.

This is the lowest possible order of complexity in this stage because MN is exactly the

number of the sample size and reading the data is an order O(MN) task. So it can be

concluded that it is very efficient to use cubic spline because its computational complexity

achieves the lowest possible order of complexity.

For comparison, we discuss the computational complexity of the local polynomial re-

gression, which is widely used in existing literature [see 59, 67, 68, 69, 70, 71].

Proposition 3.2.2. Given dataD in Equation 3.1, if we use the local polynomial regression

in the functional estimation stage, i.e., estimate X ∈ RMN×K ,∇tu ∈ RMN via the local

polynomial regression described as in subsubsection 3, then the computation complexity

of this stage is of order

max{O(q2
maxM

2N), O(MN2), O(q3
maxMN), O(pmaxMN), O(K3)},

where pmax is the highest polynomial order in Equation 3.3, qmax is the highest order of

derivatives in Equation 3.3, M is the spatial resolution, N is the temporal resolution, and

K is the number of columns of X.

If we set qmax = 2 to match the derivative order of the local polynomial regression to
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the cubic spline, then the computation complexity is of order

max{O(M2N), O(MN2), O(pmaxMN), O(K3)}.

As suggested by Proposition 3.2.2, the computational complexity of local polynomial

regression is much higher than that in the cubic spline. But the advantage of local polyno-

mial regression is that it can derive any order of derivatives, i.e., qmax ≥ 0 in Equation 3.3,

while for the cubic spline, qmax = 2. In applications, this should be sufficient because most

of the PDE models are governed by derivatives up to the second derivative, for instance,

heat equation, wave equation, Laplace’s equation, Helmholtz equation, Poisson’s equation,

and so on. In our paper, we mainly use cubic spline as an illustration example due to its

simplification and computational efficiency. Readers can extend our proposed SAPDEMI

method to the higher-order spline with qmax > 2 if they are interested in higher-order

derivatives. We summarize the pros and cons of the cubic spline and the local polynomial

regression in Table 3.1.

Table 3.1: Pros and cons of the cubic spline and the local polynomial regression in the
functional estimation stage

method cubic spline local polynomial regression
pros only requires computational complexity

O(MN) in the functional estimation stage
can solve derivatives up to any order

cons can only solve derivatives up to second or-
der. If higher-order derivatives are required,
extensions from cubic spline to higher-order
splines are needed.

requires computational complex-
ity max{(M2N), O(MN2)} in the
functional estimation stage

1 In this table, we assume that pmax, qmax,K � M,N for simplification, where pmax is the highest polynomial
order in Equation 3.3, qmax is the highest order of derivatives desirable in Equation 3.3, and K is the number of
columns of X in Equation 3.9.
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3.2.2 Model Identification Stage

In this section, we discuss the model identification stage of our proposed SAPDEMI method,

where we want to identify the PDE model in Equation 3.3.

The model in Equation 3.3 can be regarded as a linear regression model whose response

variable is the derivative with respect to temporal variable t, i.e., ∂u(x,t)
∂t

, and the covariates

involve with the derivative with respect to spatial variable x, including ∂
∂x
u(xi, tn), ∂2

∂x2u(xi, tn),

. . . ,
(
∂2

∂x2u(xi, tn)
)pmax

. Because we have MN observations in the dataset D in Equa-

tion 3.1, the response vector is of length MN :

∇tu

= ( ∂̂u(x0,t0)
∂t

, ∂̂u(x1,t0)
∂t

, . . . ,
̂∂u(xM−1,t0)

∂t
, ∂̂u(x0,t1)

∂t
, . . . ,

̂∂u(xM−1,tN−1)

∂t
)> ∈ RMN ,

(3.8)

and design matrix is of dimension MN ×K:

X = ( x̂0
0, x̂0

1, . . . , x̂0
M−1, x̂0

1, . . . , x̂N−1
M−1 )> ∈ RMN×K , (3.9)

where the nN + i+ 1st row of the above matrix X is

x̂ni =

(
1, ̂u(xi, tn), ̂∂

∂x
u(xi, tn), ̂∂2

∂x2u(xi, tn),
(

̂u(xi, tn)
)2

, ̂u(xi, tn) ̂∂
∂x
u(xi, tn),

̂u(xi, t0) ̂∂2

∂x2u(xi, tn), . . . ,

(
̂∂2

∂x2u(xi, tn)

)pmax
)>
∈ RK .

The K components of x̂ni are candidate terms in the PDE model. And all the derivatives

listed in Equation 3.8, Equation 3.9 are estimated from the functional estimation stage in

subsection 3.2.1.

After figuring out the response vector ∇tu and the design matrix X, we use Lasso to

identify the non-zero coefficients in Equation 3.3:

β̂ = arg min
β

1

2MN
‖∇tu−Xβ‖2

2 ,+λ‖β‖1 (3.10)
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where λ > 0 is a turning parameter that controls the trade off of the sparsity of β and the

goodness of fit. Given the `1 penalty in Equation 3.10, β̂ will be sparse, i.e., only a few of

its entries will likely be non-zero. Accordingly, we can identify the underlying PDE model

as
∂

∂t
u(x, t) = x>β̂. (3.11)

where

x =

(
1, u(x, t), ∂

∂x
u(x, t), ∂2

∂x2u(x, t), (u(x, t))2 , u(xi, t)
∂
∂x
u(x, t),

u(x, t) ∂2

∂x2u(x, t), . . .
(
∂2

∂x2u(x, t)
)pmax

)>
∈ RK .

It remains to discuss the numerical method to solve the optimization problem in Equa-

tion 3.10. It is noted that there is no closed-form solution for Equation 3.10 due to the `1

penalty. The existing algorithms to solve Equation 3.10 is to iteratively update the esti-

mator until convergence. One of the widely used algorithm to solve Equation 3.10 is the

coordinate descent, because it is well established in R within a package named glmnet [see

86] and Matlab within a function called lasso(·). The main idea of the coordinate descent

is to update the estimator in a coordinate-wise fashion, which is the main difference be-

tween the coordinate descent and regular gradient descent. And the convergence rate of the

coordinate descent to solve Equation 3.10 is O(1/k), where k is the number of iteration

executed [see 87, 88].

The implementation of the coordinate descent to Equation 3.10 is presented in algo-

rithm 3 and the detailed description of coordinate gradient descent to solve Equation 3.10

can be found in subsection 3.6.2.

3.2.3 Overview of Our Proposed SAPDEMI method

In this section, we summarized our proposed SAPDEMI method into pseudo-code showing

in algorithm 4.
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Algorithm 3: Algorithm for the coordinate descent to minimize F (β)

Input: response vector∇tu, design matrix X, and number of iterations M
Output: coefficient estimation β̂

1 Initialize β(0)

2 for ` = 1, . . . ,L do
3 for j = 1, . . . , K do

4 β
(`)
j = S

(
∇tu

>Xej −
∑

l 6=j(X
>X)jlβ

(`−1)
l ,MNλ

)/
(X>X)jj

5 β̂ = β(L)

The soft-thresholding function S(x, α) = (x− α)1{x ≥ α}+ (x+ α)1{x ≤ −α}+ 0× 1{x ∈ (−α, α)}
where 1{x ∈ A} is an indicator function, i.e., 1{x ∈ A} = 1 if x ∈ A, and otherwise 1{x ∈ A} = 0.

Algorithm 4: Pseudo code of our proposed SAPDEMI method
Input:

1. Data from the unknown PDE model as in Equation 3.1;

2. Penalty parameter used in the Lasso identify model: λ > 0;

3. Smoothing parameter used in the cubic spline: α, ᾱ ∈ (0, 1].

Output: The identified/recovered PDE model.
1 Functional estimation stage:
2 Estimate X,∇tu by cubic spline with α, ᾱ ∈ (0, 1].

3 Model identification stage:
4 The unknown PDE system is recovered as: ∂

∂t
u(x, t) = x>β̂, where

β̂ = arg minβ
1

2MN
‖∇tu−Xβ‖2

2 + λ‖β‖1 and

x =
(

1, u(x, t), ∂u(x,t)
∂x

, ∂2u(x,t)
∂x2 , (u(x, t))2 , . . . ,

(
∂2u(x,t)
∂x2

)pmax
)>

.
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3.3 Recovery Theory

In this section, we present our main theorems. These two main theorems serve to evaluate

the statistical prosperity of our identified PDE model. The evaluation is done from two

aspects.

First, we check if our identified PDE model contains derivatives included in the under-

lying PDE models. This is the so-called support set recovery. Mathematically speaking,

it is to check if supp(β̂) ⊆ supp(β∗), where β̂ is the minimizer of Equation 3.10, β∗ is

the ground truth, and supp(·) is an operator that collects the sets of indices of the non-zero

entries of the input variable, i.e., supp(β) = {i : βi 6= 0, ∀ i, 1 ≤ i ≤ K} for a gen-

eral vector β ∈ RK . However, the support recovery depends on the choice of the penalty

parameter λ. If we choose λ too large, then accordingly β̂ would be a vector of all zero en-

tries, which leads to supp(β̂) = ∅ (empty set). On the other hand, if we choose λ too small,

then β̂ is not sparse enough, which makes it fail to identify the PDE models. The proper

way to select λ hopefully leads to correct recovery of the support set recovery, i.e., we have

supp(β̂) ⊆ supp(β∗). We will discuss the selection of λ to realize the above objective in

Theorem 3.3.1.

Second, we are interested in the estimation error bound of our estimator, i.e.,
∥∥∥β̂S − β∗S∥∥∥∞ ,

where S = supp(β∗), vector β̂S is the subvector of β̂ only containing elements whose in-

dices are in S, and vector β∗S is the subvector of β∗ only contains elements whose indices

are in S. The upper bound of the above estimation error will be discussed in Theorem

3.3.2.

The structure of this section is described as follows. In subsection 3.3.1, we present the

conditions for our main theorems. In subsection 3.3.2, we state our two main theorems.
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3.3.1 Our Conditions for the Theorems

In this section, we introduce some key conditions used in our paper. We begin with three

frequently used conditions in `1-regularized regression models. They were typically used

to provide sufficient conditions for exact sparse recovery [see 58, Chapter 11]. Besides, we

also introduce some conditions from cubic splines, which serve for bounding the estimation

error of the cubic splines [see 89, (2.5)-(2.8)]. For the verification of these conditions,

please refer to subsection 3.4.4 for more details.

Condition 3.3.1 (Invertibility Condition). Suppose for the design matrix X defined in

Equation 3.9 which is constructed by candidates of derivatives, we have that matrix X>SXS

is invertible almost surely, where XS is the columns of X whose indices are in S. Here

S = supp(β∗) where β∗ is the ground truth and supp(β∗) = {i : β∗i 6= 0, ∀ i, 1 ≤ i ≤ K}.

Condition 3.3.2 (Mutual Incoherence Condition). For some incoherence parameter µ ∈

(0, 1] and Pµ ∈ [0, 1], we have

P
(∥∥X>ScXS(X>SXS)−1

∥∥
∞ ≤ 1− µ

)
≥ Pµ ,

where the matrix XS is the columns of X whose indices are in S and the matrix XSc is the

complement of XS .

Condition 3.3.3 (Minimal Eigenvalue Condition). There exists some constant Cmin > 0

such that:

Λmin

(
1

NM
X>SXS

)
≥ Cmin,

almost surely. Here Λmin(A) denotes the minimal eigenvalue of a square matrix A ∈ Rn×n.

This condition can be considered as a strengthened version of Condition 3.3.1.

Condition 3.3.4 (Knots c.d.f. Convergence Condition). Suppose for the sequence of the

empirical distribution function over the design points x0 < x1 < . . . < xM−1 with different
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sample size M is denoted as FM(x), i.e., FM(x) = 1
M

∑M−1
i=0 1{xi ≤ x}, there exists an

absolutely continuous distribution function F on [x0, xM−1] such that FM → F uniformly

as M → +∞. Here 1{A} is the indicator of event A. Suppose for the sequence of the

empirical distribution function over the design points t0 < t1 < . . . < tN−1 with differ-

ent sample size N is denoted as GN(x), there exists an absolutely continuous distribution

function G on [t0, tN−1] such that GN → G uniformly as N → +∞.

Condition 3.3.5 (Knots p.d.f. Convergence Condition). Suppose the first derivative of the

function F,G (defined in Condition 3.3.4) is denoted as f, g, respectively, then we have

0 < inf
[x0,xM−1]

f ≤ sup
[x0,xM−1]

f < +∞ and 0 < inf
[t0,tN−1]

g ≤ sup
[t0,tN−1]

g < +∞,

and f, g also have bounded first derivatives on [x0, xM−1], [t0, tN−1], respectively.

Condition 3.3.6 (Gentle Decrease of Smoothing Parameter in Splines Condition). Suppose

that ζ(M) = sup[x0,xM−1] |FM−F |, ζ̄(N) = sup[t0,tN−1] |GN−G|,where FM , GM , F,G are

defined in Condition 3.3.4. The smoothing parameter α, ᾱ in Equation 3.4, which are used

to estimate the derivatives with respective to x, t, respectively, depend on M,N in such a

way that α → 0 and α−1/4ζ(M) → 0 as M → +∞. and ᾱ → 0 and ᾱ−1/4ζ̄(N) → 0 as

N → +∞.

3.3.2 Main Theory

In this section, we present our main theory, where Theorem 3.3.1 develops the lower bound

of λ to realize the correct recovery of the support set, and Theorem 3.3.2 develops the upper

bound of the estimation error.

First, we develop the theory on the lower bound of λ to realize the correct recovery of

the support set, i.e., S(β̂) ⊆ S(β∗), where S(β̂) = {i : β̂i 6= 0, ∀ i, 1 ≤ i ≤ K} and

S(β∗) = {i : β∗i 6= 0, ∀ i, 1 ≤ i ≤ K}. And β̂ is the optimum of Equation 3.10, β∗ is the

ground truth of the underlying PDE models.
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Theorem 3.3.1. Provided with the data in Equation 3.1 and suppose the conditions in

Lemma 3.6.1 and Corollary 3.6.1 hold and Condition 3.3.1 - 3.3.6 also hold, if we take

M = O(N), then there exists a constant C(σ,‖u‖L∞(Ω)) > 0, which is independent of spatial

resolution M and temporal resolution N , such that if we set the cubic spline smoothing pa-

rameter with the spatial variable x in Equation 3.4 as α = O
((

1 +M−4/7
)−1
)
, set the cu-

bic spline smoothing parameter with the temporal variable t as ᾱ = O
((

1 +N−4/7
)−1
)
,

and set the turning parameter

λ ≥ C (σ, ‖u‖L∞(Ω))

√
K log(N)

µN3/7−r , (3.12)

to identify the PDE model in Equation 3.10 for some r ∈
(
0, 3

7

)
with sufficient large N ,

then with probability greater than Pµ −O
(
Ne−N

r)︸ ︷︷ ︸
P ′

, we can have

S(β̂) ⊆ S(β∗).

Here K is the number of columns of the design matrix X in Equation 3.10, and µ, Pµ are

defined in Condition 3.3.2.

The proof of the above theorem can be found in subsubsection 3. To ease the under-

standing of the proofs of main theorems, readers can refer to some lemmas in subsec-

tion 3.6.3.

The above theorem states the lower bound of λ to realize the correct recovery of the

support set recovery. And this lower bound in Equation 3.12 is affected by several factors.

First, it is affected by the temporal resolution N : as N increases, there is more flexibility in

tuning this penalty parameter λ. Second, the lower bound in Equation 3.12 is affected by

the incoherence parameter µ: if µ is small, then the lower bound increases. This is because

small µ means that the group of feature variable candidates are similar to each other. It

should be noted that µ is decided by the dataset D itself (see Condition 3.3.2). Third, this
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lower bound in Equation 3.12 is affected by the number of columns of the matrix X. If the

number of columns in X is very large, then it requires larger λ to identify the significant

feature variables among lots of feature variable candidates.

We also point out that, the large probability Pµ−P ′ converges to Pµ asN → +∞. This

limiting probability Pµ is determined by the dataD (see Condition 3.3.2). So we know that

when N is very large, our proposed SAPDEMI method can realize S(β̂) ⊆ S(β∗).

Now, we develop the theorem to obtain the estimation error bound.

Theorem 3.3.2. Suppose the conditions in Theorem 3.3.1 hold, then with probability

greater than 1 − O(Ne−N
r
) → 1, there exist a Ṅ > 0, such that when N > Ṅ , we

have

∥∥∥β̂S − β∗S∥∥∥∞ ≤ √KCmin

(√
KC(σ,‖u‖L∞(Ω))

log(N)

N3/7−r + λ

)
,

where K is the number of columns of the matrix X, S is the support set of β∗, i.e., S :=

{i : β∗i 6= 0, ∀i = 1, . . . , K} and vector β̂S ,β
∗
S are the subvector of β̂,β∗ only contains

elements whose indices are in S. Viewing from this theorem, we can see that when N →

+∞, the error bound will convergence to 0.

The proof of the above theorem can be found in subsubsection 3.

From the above theorem, we can see that, the estimation error bound for the `∞-norm of

the coefficient error in 3.13 consists of two components. The first component is affected by

the temporal resolutionN , and the number of feature variable candidatesK. AsN → +∞,

this first component convergence to 0 without explicit dependence on the choice of feature

variable selected from Equation 3.10. The second component is
√
KCminλ. When N

increases to +∞, this second component will also converge to 0. This is because, as stated

in Theorem 3.3.1, we find that when N → +∞, the lower bound of λ – which realizes

correct support recovery – converges to 0. So the accuracy of the coefficient estimation

will improve if we increase the temporal resolution N .
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By combining statements in Theorem 3.3.1 and Theorem 3.3.2 together, we find that

when the minimum absolute value of the nonzero entries of β∗ is large enough, then with

the adequate choice of lambda, the exact recovery can be guaranteed. Mathematically

speaking, when mini∈S |(β∗S)i| >
√
KCmin

(√
KC(σ,‖u‖L∞(Ω))

log(N)

N3/7−r + λ
)
, the vector β̂

will have a correct signed-support, where (β∗S)i refers to the ith element in vector β∗S . This

helps for the selection of the penalty parameters λ. Besides, the solution paths plot also

helps with the selection of the penalty parameters λ, and we will discuss it in section 3.4

under concrete examples.

3.4 Numerical Examples

In this section, we conduct numerical examples to verify the computational efficiency and

the statistical accuracy of our proposed SAPDEMI method. The computational efficiency

refers to the computational complexity of the functional estimation stage is of a linear

polynomial of the sample sizeMN ; The statistical accuracy meas our proposed SAPDEMI

can correctly identify the underlying PDE models with high probability.

The numerical examples include (1) the transport equation, (2) the inviscid Burgers’

equation and (3) the viscous Burgers’ equation. We select these three PDE models as

representatives because all these PDE models play fundamental roles in modeling physical

phenomenon and demonstrate characteristic behaviors shared by a more complex system,

such as dissipation and shock-formation [see 90]. Besides, the difficultly to identify the

above PDE models increase from the first example — the transport equation – to the last

example – the viscous Burgers’ equation..

For the computational efficiency, the results of these three examples are the nearly

same, because the computational complexity only depends on the dimension of the noisy

data, i.e., the dimension of X,∇tu, and it is independent of which type of PDE model it

comes from. So we only present a detailed discussion of the computational efficiency in

the first example – the transport equation.
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3.4.1 Example 1: Transport Equation

The PDE problem we used in this subsection is the transport equation [see 57, Section 2.2]:


∂
∂t
u(x, t) = a ∂

∂x
u(x, t) ∀ 0 ≤ x ≤ Xmax, 0 ≤ t ≤ Tmax;

u(x, 0) = f(x);
(3.13)

where we set f(x) = 2 sin(4x), a = −2, Xmax = 1, Tmax = 0.1. From the above seetings,

we know there is a closed-form solution, which is u(x, t) = 2 sin(4x− 8t).

The dynamic pattern of the above transport equation is visualized in Figure 3.1. In this

figure, (a),(b),(c) are the ground truth, noisy observation under σ = 0.05 and σ = 0.1,

respectively. From this figure, we can see that the larger the noise, the more un-smoothed

the shape of the transport equation would be, which potentially leads to more difficulties in

the PDE model identification.

(a) true (b) σ = 0.05 (c) σ = 0.1

Figure 3.1: The curves of the transport equation (M = N = 100)

First of all, let us take a look at the computational complexity of the functional esti-

mation stage. To show the efficiency of the cubic spline, which is used in our SAPDEMI

method, we select the local polynomial regression as a benchmark, whose detailed descrip-

tions can be found in subsubsection 3. We visualize the number of numerical operations in

the functional estimation stage of the above two methods in Figure 3.2, where the x-axis

is the logarithm of M or N , and the y-axis is the logarithm of the number of numerical

operations. The numbers to plot this figure is summarized in Table 3.2 in subsection 3.6.4.

In Figure 3.2, two scenarios are discussed: (1) M is fixed as 20 and N varies from 200 to
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2000; (2) N is fixed as 20 and M varies from 200 to 2000. As we can see from Figure 3.2

that, as M or N increases, the number of numerical operations in the functional estima-

tion stage becomes larger. And cubic spline needs fewer numerical operations, compared

with local polynomial regression. Furthermore, if we conduct a simple linear regression

of the four lines in Figure 3.2, we find that in (a), the slope of the cubic spline (blue solid

line) is 0.9998, and as N goes to infinity, the slope will get closer to 1. This validates that

the computational complexity of cubic spline is of order O(N) when M is fixed (given

K, pmax � N ). Besides, in (b) the slope of the cubic spline (blue solid line) is 1.274,

and as M goes to infinity, the slope will get closer to 1. This validates that the computa-

tional complexity of cubic spline is of order O(M) when N is fixed (given K, pmax �M ).

Therefore, we numerically verify that when K � M,N and pmax � M,N , the computa-

tional complexity of cubic spline is of order O(MN) (given K, pmax � N ). Similarly, for

local polynomial ( see Proposition 3.2.2), we know that when M is fixed (Figure 3.2(a)),

the slope of the local polynomial regression (pink dashed line) is 1.822, which validates

that the computational complexity of the local polynomial is of order O(N2) when M is

fixed. And as N goes to infinity, the slope gets closer to 2. Besides, when N is fixed

(Figure 3.2(b)), the slope of the local polynomial regression (pink dashed line) is 1.960,

which validate that the computational complexity of local polynomial regression when N

is fixed is of order O(M2). And as M goes to infinity, the slope will get closer to 2. This

validates that the computational complexity of the local polynomial regression method is

max{O(M2N), O(MN2)} when K, pmax � N .

Second, we numerically verify that with high probability, our proposed SAPDEMI can

correctly identify the underlying PDE models. From the formula of the transport equation

in Equation 3.13, we know that the correct feature variable is only ∂
∂x
u(x, t), which should

be identified. While other feature variables, for examples, u(x, t), ∂2

∂x2u(x, t) etc., should

not be identified. We discuss the identification accuracy our proposed SAPDEMI under

different sample size (M = N = 100,M = N = 150,M = N = 200) and different
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(a) (b)

Figure 3.2: (a) Computational complexity of cubic spline (blue solid line) & local poly-
nomial regression (red dash line) with fixed M=20, (b) computational complexity of cubic
spline (blue solid line) & local polynomial regression (red dashed line) with fixed N=20

magnitude of noise level (σ = {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.8, 0.9, 1}). We find that,

for this transport equation, the accuracy stays at 100% under the different magnitude of σ

and sample size M,N . To explain the high accuracy, we plot the solution paths in Fig-

ure 3.3 under different magnitude of σ, i.e., σ = 0.01, 0.1, 1. The x-axis of Figure 3.3 is λ,

which increases from a very small number to a large number. The y-axis of Figure 3.3 is

the coefficients corresponding to all candidates of feature variables. The red lines present

the coefficient corresponding to ∂
∂x
u(x, t), which is the correct feature variable. While

the black dashed lines present the coefficient corresponding to other incorrect feature vari-

ables, which shouldn’t be selected. It can be seen from Figure 3.3 that, though large noise

increases the difficulty to realize correct identification, we can increase λ to overcome this

difficulty, and thus realize correct PDE identification. This solution paths plot can help with

the selection of the penalty parameters λ. For (a),(b) in Figure 3.3, we find there is only one

solution path that keeps non-zero as λ increase, then this covariate should be identified. For

Figure 3.3(c), there are several solution paths that keep non-zero, then the selection of λ

depends on (1) how many covariates desirable in the model, (2) the change-points of λ. The

change-points refer to the value of λ where the support set changes. For instance, in Fig-

ure 3.3(c), the change-points are λ1 = 0.2, λ2 = 0.4, λ3 = 1. Since the distance between

λ1, λ2 is very close, we would much prefer to select λ3 for correct support recovery.
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(a) σ = 0.01 (b) σ = 0.1 (c) σ = 1

Figure 3.3: The solution paths of the identification in the transport equation under different
magnitude of noise levels, i.e., σ = 0.01, 0.1, 1. The red lines present the coefficient corre-
sponding to ∂

∂x
u(x, t), which is the correct feature variable. While the black dashed lines

present the coefficient corresponding to other incorrect feature variables, which shouldn’t
be selected. Here we set M = N = 100, and ux is the simplification of ∂

∂x
u(x, t).

3.4.2 Example 2: Inviscid Burgers’ Equation

In this section, we take a little more challenging example – the inviscid Burgers’ equation

[see 57, Section 8.4], whose definition is shown as follows:


∂
∂t
u(x, t) = −1

2
u(x, t) ∂

∂x
u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (3.14)

where we set f(x) = sin(2πx), Xmax = 1, Tmax = 0.1. Figure 3.4(a),(b),(c) show the

shape of its ground truth, noisy observation under σ = 0.05, σ = 0.1, respectively.

(a) true (b) σ = 0.05 (c) σ = 0.1

Figure 3.4: The curves of the inviscid Burgers’ equation (M = 50, N = 50)

For this inviscid Burgers’ equation, we declare that with high probability, our proposed
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SAPDEMI can correctly identify it. The simulation results are summarized in Figure 3.8(a)

and . From this figure, we find the accuracy stays above 99% when σ ranges from 0.01 to

1. Also, as suggested by Figure 3.8(a), the accuracy decrease as σ increase, which makes

sense because large noise makes it more difficult to realize correct identification. The effect

of noise to PDE identification can be found in the solution paths plot in Figure 3.5, where

we can see that the length of λ-interval for correct identification decreases as σ increases.

(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 3.5: The solution paths of the identification in the inviscid Burger’s equation un-
der different magnitude of noise levels, i.e., σ = 0.01, 0.5, 1. The red lines present the
coefficient corresponding to u(x, t) ∂

∂x
u(x, t), which is the correct feature variable. While

the black dashed lines present the coefficient corresponding to other incorrect feature vari-
ables, which shouldn’t be selected. Here we set M = N = 100 and t he label u, ux are the
simplification of to u(x, t), ∂

∂x
u(x, t), respectively.

3.4.3 Example 3: Viscous Burgers’ Equation

In this section, we take a more challenging example, i.e., viscous Burgers’ equation [see

57, Section 8.4]:


∂
∂t
u(x, t) = −1

2
u(x, t) ∂

∂x
u(x, t) + ν ∂2

∂x2u(x, t)

u(x, 0) = f(x) 0 ≤ x ≤ Xmax

u(0, t) = u(1, t) = 0 0 ≤ t ≤ Tmax

, (3.15)

where we set f(x) = sin2(4πx) + sin3(2πx), Xmax = 1, Tmax = 0.1, ν = 0.1. Figure 3.6

shows the shape of the viscous Burgers’ equation, where (a),(b),(c) are the ground truth,

noisy observation under σ = 0.05 and σ = 0.1, respectively.
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(a) true (b) σ = 0.05 (c) σ = 1

Figure 3.6: The curves of the viscous Burgers’ equation (M = 50, N = 50)

Based on the simulation results in Figure 3.8(b) and Table 3.3, we conclude that with

high probability, our proposed SAPDEMI can correctly identify the underlying viscous

Burgers’ equation, with the reasons given as follows. When M = N = 200, the accuracy

stays at 100% for all levels of σ ∈ [0.01, 1]. WhenM = N = 150, the accuracy stays above

90% for all levels of σ ∈ [0.01, 1]. WhenM = N = 100, the accuracy are above 70% when

σ ∈ [0.01, 0.5], and reduces to around 50% when σ = 1, which makes sense because as

reselected by Figure 3.7, when σ increase from 0.01 to 1, the length of λ-interval for correct

identification decreases, which make it more difficult to realize correct identification. So if

we encounter a heavily noised dataset D, a larger sample size is preferred.

(a) σ = 0.01 (b) σ = 0.5 (c) σ = 1

Figure 3.7: The solution paths of the identification in the viscous Burger’s equation under
different magnitude of noise levels, i.e., σ = 0.01, 0.5, 1 The red and blue lines present
the coefficient corresponding to ∂2

∂x2u(x, t) and u(x, t) ∂
∂x
u(x, t), respectively, which are the

correct feature variables, while the black dashed lines present the coefficient corresponding
to other incorrect feature variables, which shouldn’t be selected. Here M = N = 100 and
the label uxx, uux are the simplification of u(x, t) ∂

∂x
u(x, t), ∂2

∂x2u(x, t), respectively.
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(a) example 2: inviscid Burgers equation (b) example 3: viscous Burgers equation

Figure 3.8: The successful identification probability curves under different magnitude of
σ and sample size M,N . The successful identification probability of the example 1 –
transport equation – stays in 100% for σ ∈ [0.01, 1] and M,N ∈ {100, 150, 200}, and
we neglect the figure for this 100% accuracy. Seeing from these figures, we can find that
example 3 – viscous Burgers equation – is the hardest, and example 1 – transport equation –
is the easiest. (The numbers to plot this figure can be found in Table 3.3 in subsection 3.6.4.)

3.4.4 Checking Conditions of Example 1,2,3

In this section, we check Condition 3.3.1 - Condition 3.3.6 of the above three examples:

(1) example 1 (the transport equation), (2) example 2 (the inviscid Burgers’ equation) and

(3) example 3 (the viscous Burgers’ equation).

Verification of Condition 3.3.1, 3.3.2, 3.3.3

In this section, we check the Condition 3.3.1 - Condition 3.3.3 under example 1,2,3, though

the applicability of the results is by no means restricted to these.

The verification results can be found in Figure 3.9 and Figure 3.10, where (a),(b),(c) are

the box plot of
∥∥X>ScXS(X>SXS)−1

∥∥
∞ and the minimal eigenvalue of matrix 1

NM
X>SXS

of these three examples under σ = 0.01, 0.1, 1, respectively. From Figure 3.9, we find

the value of
∥∥X>ScXS(X>SXS)−1

∥∥
∞ is smaller than 1, so there exist a µ ∈ (0, 1] such

that Condition 3.3.2 is met. From Figure 3.10, we find the minimal eigenvalue of matrix

1
MN

X>SX are all strictly larger than 0, so we declare Condition 3.3.3 is satisfied, and thus

its weak version – Condition 3.3.1 – is also satisfied.
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(a) example 1: (b) example 2: (c) example 3:
transport equation inviscid Burgers’ equation viscous Burgers’ equation

Figure 3.9: Box plots of
∥∥X>ScXS(X>SXS)−1

∥∥
∞ under σ = 0.01, 0.1, 1 when M = N =

100.

(a) example 1: (b) example 2: (c) example 3:
transport equation inviscid Burgers’ equation viscous Burgers’ equation

Figure 3.10: Box plots of the minimal eigenvalue of matrix 1
NM

X>SXS under σ =
0.01, 0.1, 1 when M = N = 100.
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Verification of Condition 3.3.4 and Condition 3.3.5

In example 1,2,3, the design points x0, x1, . . . , xM−1 and t0, t1, . . . , tN−1 are equally spaced,

i.e., x0 = 1/M, x1 = 2/M, . . . , xM−1 = 1 and t0 = 0.1/N, t1 = 0.2/N, . . . , tN−1 =

0.1. Under this scenario, there exist an absolutely continuous distribution F (x) = x for

x ∈ [1/M, 1] and G(t) = 0.1t for t ∈ [0.1/N, 0.1], where the empirical c.d.f. of the

design points x0, x1, . . . , xM−1 and t0, t1, . . . , tN−1 will converge to F (x), G(t), respec-

tively, as M,N → +∞. For the F (x), G(t), we know their first derivatives is bounded for

x ∈ [1/M, 1] and t ∈ [0.1/N, 0.1], respectively. In the simulation of this paper, we take

the equally spaced design points as an illustration example, and its applicability is by no

means restricted to this case.

Verification of Condition 3.3.6.

The Condition 3.3.6 ensures that the smoothing parameter does not tend to zero too rapidly.

[89] shows that for the equally spaced design points, this condition meets. For other types

of design points, for instance, randomly and independently distributed design points, it can

also be verified that Condition 3.3.6 is satisfied [see 89, Section 2].

3.5 Conclusion

In this paper, we propose a two-stage method called SAPDEMI to efficiently identify the

underlying PDE models from the noisy data in D. In the first stage – functional estimation

stage – we employ the cubic spline to estimate the unobservable derivatives, which serve

as input variables for the second stage. In the second stage – model identification stage

– we apply the Lasso to identify the underlying PDE model. The contributions of our

proposed SAPDEMI method are: (1) it is computationally efficient because it only requires

the computational complexity of order O(MN), which achieves the lowest possible order

of complexity; (2) we focus on the model selections, while the existing literature mostly
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focuses on parameter estimations; (3) we develop asymptotic properties of our method for

correct identification, which is not reported by the existing literature.

After developing this SAPDEMI method, we realize there are lots of promising future

research directions. First, in our paper, we take x ∈ R as an illustration example, and it

would be interesting to investigate the case when the spatial variable x ∈ Rd (d ≥ 2) due

to its wide existence in practice. Second, future research could consider the interaction

between the spatial variable and the temporal variable. For instance, we can explore the

time-varying coefficient β(t) = (β1(t), . . . , βK(t))> in Equation 3.3. Besides, we can also

consider the case when the εni in Equation 3.2 has spatial-temporal patterns. In our paper,

because we aim at showing the methodology to solve the PDE identification problem, we do

not discuss the above future research directions in detail and hopefully, our paper provides

a good starting point for further research.

3.6 Supplementary Material

3.6.1 Derivation of the 0-th, First, Second Derivative of the Cubic Spline

In this section, we focus on solving the derivatives of u(x, tn) with respective to x, i.e.,{
u(xi, tn), ∂

∂x
u(xi, tn), ∂2

∂x2u(xi, tn)
}
i=0,1...,M−1

for any n = 0, 1, . . . , N − 1. To realize

this objective, we first fix t as tn for a general n ∈ {0, 1, . . . , N − 1}. Then we use cubic

spline to fit data {(xi, uin)}i=0,1,...,M−1.

Suppose the cubic polynomial spline over the knots {(xi, uin)}i=0,1,...,M−1 is s(x). So

under good approximation, we can regard s(x), s′(x), s′′(x) as the estimators of u(xi, tn),

∂
∂x
u(x, tn), ∂2

∂x2u(x, tn), where s′(x), s′′(x) is the first and second derivatives of s(x), re-

spectively.

Let first take a look at the zero-order derivatives of s(x). By introducing matrix algebra,

the objective function in Equation 3.4 can be rewritten as

Jα(s) = α(un: − f)>W(un: − f) + (1− α)f>A>M−1Af (3.16)
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where vector

f =



s(x0)

s(x1)

...

s(xM−1)


,



f0

f1

...

fM−1


,un: =



un0

un1
...

unM−1


and matrix W = diag(w0, w1, . . . , wM−1) and matrix A is defined in Equation 3.6. By

taking the derivative of Equation 3.16 with respective to f and set it as zero, we have

f̂ = [αW + (1− α)A>MA]−1αWun: . (3.17)

Then we solve the second-order derivative with respective to x. Let us first suppose that

the cubic spline s(x) in [xi, xi+1] is denoted si(x), and we denote s′′i (xi) = σi, s
′′
i (xi+1) =

σi+1. Then we have ∀x ∈ [xi, xi+1] (0 ≤ i ≤M − 2),

s′′i (x) = σi
xi+1 − x

hi
+ σi+1

x− xi
hi

,

where matrix M is defined in Equation 3.7. This is because s′′i (x) with x ∈ [xi, xi+1] is a

linear function. By taking a double integral of the above equation, we have

si(x) =
σi
6hi

(xi+1 − x)3 +
σi+1

6hi
(x− xi)3 + c1(x− x1) + c2(xi+1 − x), (3.18)

where c1, c2 is the unknown parameters to be estimated. Because si(x) interpolates two

endpoints (xi, fi) and (xi+1, fi+1) , if we plug xi, xi+1 into the above si(x), we have

 fi = si(xi) = σi
6
h2
i + c2hi

fi+1 = si(xi+1) = σi+1

6
h2
i + c1hi,
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where we can solve c1, c2 as

 c1 = (fi+1 − σi+1

6
h2
i )/hi

c2 = (fi − σi
6
h2
i )/hi.

By plugging in the value of c1, c2 into Equation 3.18, we have ( 0 ≤ i ≤M − 2)

si(x) =
σi
6hi

(xi+1−x)3+
σi+1

6hi
(x−xi)3+

(
fi+1

hi
− σi+1hi

6

)
(x−xi)+

(
fi
hi
− σihi

6

)
(xi+1−x)

with its first derivative as

s′i(x) = − σi
2hi

(xi+1 − x)2 +
σi+1

2hi
(x− xi)2 +

fi+1 − fi
hi

− hi
6

(σi+1 − σi). (3.19)

Because s′i−1(xi) = s′i(xi), we have ( 1 ≤ i ≤M − 2 )

1

6
hi−1σi−1 +

1

3
(hi−1 + hi)σi +

1

6
hiσi+1 =

fi+1 − fi
hi

− fi − fi−1

hi−1

. (3.20)

Equation Equation 3.20 gives M − 2 equations. Recall σ0 = σM−1 = 0, so totally we get

M equations, which is enough to solve M parameters, i.e., σ0, σ1, . . . , σM−1. We write out

the above system of linear equations, where we hope to identify a fast numerical approach

to solve it. The system of linear equations is:

1
3 (h0 + h1)σ1 + 1

6h1σ2 =
un
2−u

n
1

h1
− f1−u0

h0

1
6h1σ1 + 1

3 (h1 + h2)σ2 + 1
6h2σ3 = f3−f2

h1
− f2−f1

h0

...

1
6hM−4σM−4 + 1

3 (hM−4 + hM−3)σM−3 + 1
6hM−3σM−2 = fM−2−fM−3

hM−3
− fM−3−fM−4

hM−4

1
6hM−3σM−3 + 1

3 (hM−3 + hM−2)σM−2 = fM−1−fM−2

hM−2
− fM−2−fM−3

hM−3

.

From the above system of equation, we can see that the second derivative of cubic spline

s(x) can be solved by the above system of linear equation, i.e.,

σ̂ = M−1Af̂ (3.21)
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where vector f̂ is defined in Equation 3.17, matrix A ∈ R(M−2)×M is defined in Equa-

tion 3.6, and matrix M ∈ R(M−2)×(M−2) is defined as Equation 3.7.

Finally, we focus on solving the first derivative of cubic spline s(x). Let θi = s′(xi) for

i = 0, 1, . . . ,M − 1, then we have

si(x) = θi
(xi+1−x)2(x−xi)

h2
i

− θi+1
(x−xi)2(xi+1−x)

h2
i

+ fi
(xi+1−x)2[2(x−xi)+hi]

h3
i

+

fi+1
(x−xi)2[2(xi+1−x)+hi]

h3
i

s′i(x) = θi
(xi+1−x)(2xi+xi+1−3x)

h2
i

− θi+1
(x−xi)(2xi+1+xi−3x)

h2
i

+ 6
uni+1−uni

h3
i

(xi+1 − x)(x− xi)

s′′i (x) = −2θi
2xi+1+xi−3x

h2
i

− 2θi+1
2xi+xi+1−3x

h2
i

+ 6
uni+1−uni

h3
i

(xi+1 + xi − 2x)

By plugging xi into s′′i (x) and s′′i−1(x), we have

 s′′i (x) = −2θi
2xi+1+xi−3x

h2
i

− 2θi+1
2xi+xi+1−3x

h2
i

+ 6fi+1−fi
h3
i

(xi+1 + xi − 2x)

s′′i−1(x) = −2θi−1
2xi+xi−1−3x

h2
i−1

− 2θi
2xi−1+xi−3x

h2
i−1

+ 6fi−fi−1

h3
i−1

(xi + xi−1 − 2x)

which gives  s′′i (x) = −4
hi
θi + −2

hi
θi+1 + 6fi+1−fi

h2
i

s′′i−1(x) = 2
hi−1

θi−1 + 4
hi−1

θi − 6fi−fi−1

h2
i−1

.

Because s′′i (xi) = s′′i−1(xi), we have (∀i = 1, 2, . . . ,M − 2)

−4
hi
θi + −2

hi
θi+1 + 6fi+1−fi

h2
i

= 2
hi−1

θi−1 + 4
hi−1

θi − 6fi−fi−1

h2
i−1

⇔ 2
hi−1

θi−1 + ( 4
hi−1

+ 4
hi

)θi + 2
hi
θi+1 = 6fi+1−fi

h2
i

+ 6fi−fi−1

h2
i−1

⇔ 1
hi−1

θi−1 + ( 2
hi−1

+ 2
hi

)θi + 1
hi
θi+1 = 3fi+1−fi

h2
i

+ 3fi−fi−1

h2
i−1

.

By organizing the above system of equation into matrix algebra, we have
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

1
h0

2
h0

+ 2
h1

1
h1

0 . . . 0 0 0

0 1
h1

2
h1

+ 2
h2

0 . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . 1
hM−3

2
hM−3

+ 2
hM−2

1
hM−2





θ0

θ1

θ2

...

θM−1



=



3f2−f1

h2
1

+ 3f1−f0

h2
0

3
f3−fn2
h2

2
+ 3f2−f1

h2
1

...

3fM−1−fM−2

h2
M−2

+ 3
fnM−2−fM−3

h2
M−3


.

For the endpoint θ0, because s′′0(x0) = 0, we have

s′′0(x) = −2θ0
2x1 + x0 − 3x

h2
0

− 2θ1
2x0 + x1 − 3x

h2
0

+ 6
f1 − f0

h3
0

(x1 + x0 − 2x).

When we take the value of x as x0, we have

s′′0(x0) = −2θ0
2x1+x0−3x0

h2
0

− 2θ1
2x0+x1−3x0

h2
0

+ 6f1−f0

h3
0

(x1 + x0 − 2x0)

= −4
h0
θ0 + −2

h0
θ1 + 6f1−f0

h2
0

= 0

For the two endpoint θM−1, because s′′M−2(xM−1) = 0, we have

s′′M−2(x) = −2θM−2
2xM−1+xM−2−3x

h2
M−2

− 2θM−1
2xM−2+xM−1−3x

h2
M−2

+

6fM−1−fM−2

h3
M−2

(xM−1 + xM−2 − 2x)

97



When we take the value of x as xM−1, we have

s′′M−2(xM−1) = −2θM−2
2xM−1+xM−2−3xM−1

h2
M−2

− 2θM−1
2xM−2+xM−1−3xM−1

h2
M−2

+

6fM−1−fM−2

h3
M−2

(xM−1 + xM−2 − 2xM−1)

= 2
hM−2

θM−2 + 4
hM−2

θM−1 − 6fM−1−fM−2

h2
M−2

= 0.

So the first order derivative θ = (θ0, θ1, . . . , θM−1)> can be solved by



2
h0

1
h0

0 0 . . . 0 0 0

1
h0

2
h0

+ 2
h1

1
h1

0 . . . 0 0 0

0 1
h1

2
h1

+ 2
h2

0 . . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . 1
hM−3

2
hM−3

+ 2
hM−2

1
hM−2

0 0 0 0 . . . 0 1
hM−2

2
hM−2


︸ ︷︷ ︸

Q∈RM×M



θ0

θ1

θ2

θ3

θ4

...

θM−1


︸ ︷︷ ︸

θ

=



3f1−f0

h2
0

3f2−f1

h2
1

+ 3f1−f0

h2
0

3f3−f2

h2
2

+ 3f2−f1

h2
1

...

3fM−1−fM−2

h2
M−2

+ 3fM−2−fM−3

h2
M−3

3fM−1−fM−2

h2
M−2


︸ ︷︷ ︸

q

In matrix algebra, the first order derivative θ = (θ0, θ1, . . . , θM−1)> can be solved by

θ̂ = Q−1q̂ = Q−1Bf̂ , (3.22)
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where f̂ is defined in Equation 3.17, and matrix B ∈ RM×M is defined as

B =



−3
h2

0

3
h2

0
0 0 . . . 0 0 0

−3
h2

0

3
h2

0
− 3

h2
1

3
h2

1
0 . . . 0 0 0

0 −3
h2

1

3
h2

1
− 3

h2
2

3
h2

2
. . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 −3
h2
M−3

3
h2
M−3
− 3

h2
M−2

3
h2
M−2

0 0 0 0 0 −3
h2
M−2

3
h2
M−2


.

3.6.2 Coordinate Gradient Descent Used in the Model Identification Stage

In this section, we briefly review the implement of the coordinate descent algorithm in [86]

to solve Equation 3.10. The main idea of the coordinate descent is to update the estimator in

a coordinate-wise fashion, which is the main difference between the coordinate descent and

regular gradient descent. For instance, in the k-th iteration, the coordinate descent updates

the iterative estimator β(k) by using partial of the gradient information, instead of the whole

gradient information. Mathematically speaking, in the k-th iteration, the coordinate descent

optimizes F (β) = 1
2MN
‖∇tu−Xβ‖2

2 + λ‖β‖1 with respective to β by

β
(k+1)
j = arg min

βj
F ((β

(k)
1 , β

(k)
2 , . . . , β

(k)
j−1, βj, β

(k)
j+1, . . . , β

(k)
K ))

for all j = 1, 2, . . . , K. To minimize the above optimization problem, we can derive the

first derivative and set it as 0:

∂

∂βj
F (β(k)) =

1

MN

(
e>j X>Xβ(k) −∇tu

>Xej

)
+ λsign(βj) = 0,
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where ej is a vector of length K whose entries are all zero expect the j-th entry is 1. By

solving the above equation, we can solve β(k+1)
j by

β
(k+1)
j = S

(
∇tu

>Xej −
∑
l 6=j

(X>X)jlβ
(k)
l ,MNλ

)/
(X>X)jj,

where S(·) is the soft-thresholding function defined as

S(x, α) =


x− α if x ≥ α

x+ α if x ≤ −α

0 otherwise

.

The detailed procedure of this algorithm is summarized in algorithm 3.

3.6.3 Some Important Lemmas

In this section, we present some important preliminaries, which are important blocks for

the proofs of the main theories. To begin with, we first give the upper bound of û(x, tn)−

u(x, tn) for x ∈ {x0, x1, . . . , xM−1}, which is distance between the ground truth u(x, tn)

and the estimated zero-order derivatives by cubic spline û(x, tn).

Lemma 3.6.1. Assume that

1. for any fixed n = 0, 1, . . . , N − 1, we have the spatial variable x is sorted in nonde-

creasing order, i.e., x0 < x1 . . . < xM−1;

2. for any fixed n = 0, 1, . . . , N − 1, we have the ground truth function f ∗(x) :=

u(x, tn) ∈ C4, whereC4 refers to the set of functions that is forth-time differentiable;

3. for any fixed n = 0, 1, . . . , N − 1, we have ∂2

∂x2u(x0, tn) = ∂2

∂x2u(xM−1, tn) = 0, and

∂3

∂x3u(x0, tn) 6= 0, ∂3

∂x3u(xM−1, tn) = 0;

4. for any fixed n = 0, 1, . . . , N − 1, the value of third order derivative of function

f ∗(x) := u(x, tn) at point x = 0 is bounded, i.e., d3

dx3f
∗(0) < +∞;
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5. for any Un
i generated by the underlying PDE system Un

i = u(xi, tn) + wni with

wni
i.i.d∼ N(0, σ2), we have η2 := maxi=0,...,M−1,n=0,...,N−1E(Un

i )2 is bounded;

6. for function K(x) = 1
2
e−|x|/

√
2
[
sin(|x|

√
2) + π/4

]
, we assume that it is uniformly

continuous with modulus of continuity wK and of bounded variation V (K) and we

also assume that
∫
|K(x)|dx,

∫
|x|1/2|dK(x)|,

∫
|x log |x||1/2|dK(x)| are bounded

and denote Kmax := maxx∈maxx∈[0,Xmax]∪[0,Tmax]
K(x);

7. the smoothing parameter in Equation 3.4 is set as α =
(
1 +M−4/7

)−1;

8. the Condition 3.3.4 - Condition 3.3.5 hold.

Then there exist finite positive constant C(σ,‖u‖L∞(Ω)) > 0, C(σ,‖u‖L∞(Ω)) > 0, C̃(σ,‖u‖L∞(Ω)) >

0, Q(σ,‖u‖L∞(Ω)) > 0, γ(M) > 0, ω(M) > 1, such that for any ε satisfying

ε > C(σ,‖u‖L∞(Ω)) max
{

4KmaxM
−3/7, 4AM−3/7, 4

√
2 d3

dx3f
∗(0)M−3/7,

16
[
C(σ,‖u‖L∞(Ω)) log(M)+γ(M)

]
log(M)

M3/7 ,

16
√

ω(M)

7
C̃(σ,‖u‖L∞(Ω))

√
log(M)

M3/7

}
,

there exist a Ṁ > 0, such that when M > Ṁ , we have

P

[
sup

x∈[0,Xmax]

∣∣∣∣ ∂k∂xk û(x, tn)− ∂k

∂xk
u(x, tn)

∣∣∣∣ > ε

]

< 2Me−
(M3/7−‖u‖L∞(Ω))2

2σ2 +

Q(σ,‖u‖L∞(Ω))e
−Lγ(M) + 4

√
2η4M−ω(M)/7

for k = 0, 1, 2. Here A = supα
∫
|u|sfM(α, u)du×

∫
x∈[0,Xmax]

|K(x)|dx.

Proof. See subsubsection 3.

In the above lemma, we add (σ, ‖u‖L∞(Ω)) as the subscript of constants C , C, C̃, Q to

emphasize that these constant are independent of the temporal resolution N and spatial
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resolution M , and only depends on the noisy data D in Equation 3.1 itself. We add M as

the subscript of constants γ, ω to emphasize that γ, ω are function of the spatial resolution

M , and we will discuss the value of γ, ω in Lemma 3.6.2.

The above lemma show the closeness between ∂k

∂xk
û(x, tn) and ∂k

∂xk
u(x, tn) for k =

0, 1, 2. This results can be easily extend of the closeness between ∂
∂t
û(xi, t) and ∂

∂t
u(xi, t),

which is shown in the following corollary.

Corollary 3.6.1. Assume that

1. for any fixed i = 0, 1, . . . ,M − 1, we have the spatial variable t is sorted in nonde-

creasing order, i.e., t0 < t1 . . . < tN−1;

2. for any fixed i = 0, 1, . . . ,M − 1, we have the ground truth function f ∗(t) :=

u(xi, t) ∈ C4, where C4 refers to the set of functions that is forth-time differentiable;

3. for any fixed i = 0, 1, . . . ,M − 1, we have ∂2

∂t2
u(xi, t0) = ∂2

∂t2
u(xi, tN−1) = 0, and

∂3

∂t3
u(xi, t0) 6= 0, ∂

3

∂t3
u(xi, tN−1) = 0;

4. for any fixed i = 0, 1, . . . ,M − 1, the value of third order derivative of function

f̄ ∗(x) := u(xi, t) at point t = 0 is bounded, i.e., d3

dt3
f̄ ∗(0) < +∞;

5. for any Un
i generated by the underlying PDE system Un

i = u(xi, tn) + wni with

wni
i.i.d∼ N(0, σ2), we have maxi=0,...,M−1,n=0,...,N−1E(Un

i )2 is bounded;

6. for functionK(x) = 1
2
e−|x|/

√
2
[
sin(|x|

√
2) + π/4

]
,we haveK(x) is uniformly con-

tinuous with modulus of continuity wK and of bounded variation V (K), and we

also assume that
∫
x∈[0,Xmax]

|K(x)|dx,
∫
|x|1/2|dK(x)|,

∫
|x log |x||1/2|dK(x)| are

bounded and denote Kmax := maxx∈[0,Xmax]∪[0,Tmax] K (x) ;

7. the smoothing parameter in Equation 3.4 is set as ᾱ = O
((

1 +N−4/7
)−1
)

;

8. the Condition 3.3.4 - Condition 3.3.5 hold.
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then there exist finite positive constant C(σ,‖u‖L∞(Ω)) > 0, C(σ,‖u‖L∞(Ω)) > 0, C̃(σ,‖u‖L∞(Ω)) >

0, Q(σ,‖u‖L∞(Ω)) > 0, γ(N) > 0, ω(N) > 1, such that for any ε satisfying

ε > C(σ,‖u‖L∞(Ω)) max
{

4KmaxN
−3/7, 4ĀN−3/7, 4

√
2 d3

dx3f
∗(0)N−3/7,

16
[
C(σ,‖u‖L∞(Ω)) log(N)+γ(N)

]
log(N)

N3/7 ,

16
√

ω(N)

7
C̃(σ,‖u‖L∞(Ω))

√
log(N)

N3/7

}
,

there exist a Ṅ > 0, such that when N > Ṅ , we have

P

[
sup

t∈[0,Tmax]

∣∣∣∣ ∂∂tû(xi, t)−
∂

∂t
u(xi, t)

∣∣∣∣ > ε

]
< 2Ne−

(N3/7−‖u‖L∞(Ω))2

2σ2 +

Q(σ,‖u‖L∞(Ω))e
−Lγ(N) + 4

√
2η4N−ω(N)/7.

Here Ā = supα
∫
|u|sf̄N(α, u)du×

∫
t∈[0,Tmax]

|K(x)|dx.

After bounding the error of all the derivatives, we then aim to bound ‖∇tu−Xβ∗‖∞.

It is important to bound ‖∇tu −Xβ∗‖∞, with the reason described as follows in Lemma

3.6.2.

Lemma 3.6.2. Suppose the conditions in Lemma 3.6.1 and Corollary 3.6.1 hold and we

set M = O(N), then there exist finite positive constant C(σ,‖u‖L∞(Ω)) > 0 such that for any

ε satisfying

ε > C(σ,‖u‖L∞(Ω))
log(N)

N3/7−r ,

and any r ∈
(
0, 3

7

)
, there exist Ṅ > 0, such that when N > Ṅ , we have

P (‖∇tu−Xβ∗‖∞ > ε) < Ne−N
r

,

where C(σ,‖u‖L∞(Ω)) is a constant which do not depend on the temporal resolution M and

spatial resolution N .

Proof. See subsubsection 3.
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3.6.4 Tables to Draw the Curves in the Numerical Examples

In this section, we present the table to draw the curves in Figure 3.2,Figure 3.8 in Table 3.2,

Table 3.3, respectively.

Table 3.2: Computational complexity of the functional estimation by cubic spline and local
polynomial regression in transport equation

M = 20
N=200 N=400 N=800 N=1000 N=1200 N=1600 N=2000

cubic spline 374,389 748,589 1,496,989 1,871,189 2,245,389 2,993,789 3,742,189
local poly 14,136,936 45,854,336 162,089,136 246,606,536 348,723,936 605,758,736 933,193,536

N = 20
M=200 M=400 M=800 M=1000 M=1200 M=1600 M=2000

cubic spline 398,573 875,773 207,0173 2,787,373 3,584,573 5,418,973 7,573,373
local poly 33,046,336 125,596,136 489,255,736 760,365,536 1,090,995,336 1,930,814,936 3,008,714,536

Table 3.3: Correct identification probability of transport equation, inviscid Burgers equa-
tion and viscous Burgers’s equation

σ
0.01 0.05 0.1 0.25 0.3 0.4 0.5 0.7 0.75 0.8 0.9 1

transport equation
M = N = 100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
M = N = 150 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
M = N = 200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

inviscid Burgers equation
M = N = 100 100% 100% 100% 100% 100% 100% 100% 99.9% 99.8% 99.8% 99.8% 99.1%
M = N = 150 100% 100% 100% 100% 100% 100% 100% 100% 99.8% 99.7% 99.7% 99.7%
M = N = 200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

viscous Burgers equation
M = N = 100 100% 99.4% 89.8% 78.0% 71.4% 82.0% 91.6% 72.8% 79.0% 72.9% 57.9% 51.3%
M = N = 150 100% 100% 100% 97.3% 96.5% 96.2% 97.6% 95.6% 93.3% 86.6% 79.9% 73.6%
M = N = 200 100% 100% 100% 100% 99.6% 99.6% 98.2% 98.8% 98.2% 97.0% 94.3% 91.3%

1 The simulation results are based on 1000 times of simulations.

3.6.5 Proofs

Proof of Proposition 3.2.1

Proof. The computational complexity in the functional estimation stage lies in calculating

all elements in matrix X and vector∇tu, including

{
̂u(xi, tn),

̂∂
∂x
u(xi, tn),

̂∂2

∂x2
u(xi, tn),

̂∂
∂t
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

.

by cubic spline in Equation 3.4.
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We divide our proof into two scenarios: (1) α = 1 and (2) α ∈ (0, 1).

• First of all, we discuss a very simple case, i.e., α = 1. When α = 1, we call the cubic

spline as interpolating cubic spline since there is no penalty on the smoothness.

For the zero-order derivative, i.e.,
{

̂u(xi, tn)
}
i=0,...,M−1,n=0,...,N−1

, it can be esti-

mated as ̂u(xi, tn) = uni for i = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1. So there is no

computational complexity involved.

For the second order derivatives, i.e.,
{

∂2

∂x2
̂u(xi, tn)

}
i=0,...,M−1

,with n ∈ {0, . . . , N−

1} fixed, it can be solved in a closed-form, i.e.,

σ̂ = M−1Aun:

where σ̂ =

(
̂∂2

∂x2u(x0, tn), ̂∂2

∂x2u(x1, tn), . . . , ̂∂2

∂x2u(xM−1, tn)

)>
. So the main com-

putational load lies in the calculation of M−1. Recall M ∈ R(M−2)×(M−2) is a tri-

diagonal matrix:

M =



h0+h1

3
h1

6
0 . . . 0 0

h1

6
h1+h2

3
h2

6
. . . 0 0

0 h2

6
h2+h3

3

. . . 0 0

...
... . . . . . . . . . ...

0 0 0
. . . hM−4+hM−3

3

hM−3

6

0 0 0 . . . hM−3

6

hM−3+hM−2

3


.

For this type of tri-diagonal matrix, there exist a fast algorithm to calculate its in-

verse. The main idea of this fast algorithm is to decompose M through Cholesky

decomposition as

M = LDL>,
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where L ∈ R(M−2)×(M−2),D ∈ R(M−2)×(M−2) has the form of

L =



1 0 0 . . . 0

l1 1 0 . . . 0

0 l2 1 . . . 0

...
... . . . . . . ...

0 0 0 lM−3 1


,D =



d1 0 . . . 0

0 d2 . . . 0

...
... . . . ...

0 0 . . . dM−2


.

After decomposing matrix M into LDL>, the second derivatives σ̂ can be solved as

σ̂ = (L>)−1D−1L−1 Aun:︸︷︷︸
ξ

.

In the remaining of the proof in this scenario, we will verify the following two issues:

1. the computational complexity to decompose M into LDL> is O(M) with n ∈

{0, . . . , N − 1} fixed;

2. the computational complexity to compute σ̂ = (L>)−1D−1L−1ξ is O(M) with

n ∈ {0, . . . , N − 1} fixed and L,D available.

For the decomposition of M = LDL>, its essence is to derive l1, . . . lM−3 in matrix L

and d1, . . . , dM−2 in matrix D. By utilizing the method of undetermined coefficients

106



to inequality M = LDL>, we have:



d1 d1l1 0 . . . 0 0

d1l1 d2 d2l2 . . . 0 0

0 d2l2 d3 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . dM−3lM−3 dM−3l
2
M−3 + dM−2



=



M11 M12 . . . 0

M21 M22 . . . 0

0 M32 . . . 0

...
... . . . ...

0 0 . . . MM−2,M−2


,

where Mi,j is the (i, j)th entry in matrix M. Through the above method of undeter-

mined coefficients, we can solve the exact value of the entries in matrix L,D, which

is summarized in algorithm 5. It can be seen from algorithm 5 that, the computational

complexity of solve L,D is of order O(M).

For the calculation of σ̂ = (L>)−1D−1L−1ξ with matrix L,D available, we will first

verify that the computational complexity to solve ξ̄ = L−1ξ is O(M). Then, we will

verify that the computational complexity to solve ¯̄ξ = D−1ξ̄ is O(M). Finally, we

will verify that the computational complexity to solve ¯̄̄
ξ = (L>)−1¯̄ξ is O(M). First,

the computational complexity of calculating ξ̄ = L−1ξ is O(M), this is because by

Lξ̄ = ξ, we have the following system of equations:



ξ1 = ξ̄1

ξ2 = ξ̄2 + l1ξ̄1

...

ξM−2 = ξ̄M−2 + lM−3ξ̄M−3
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where ξi, ξ̄i is the i-th entry in ξ, ξ̄ ,respectively. Through the above system of equa-

tions, we can solve the values of all entries in ξ̄, which is summarized in algorithm 6.

From algorithm 6, we know that the computational complexity of solving L−1ξ is

O(M). Next, it is obvious that the computational complexity of ¯̄ξ = D−1ξ̄ is O(M),

because D is a diagonal matrix. Finally, with the similar logic flow, we can verify that

the computational complexity of ¯̄̄
ξ = (L>)−1¯̄ξ is still O(M). So, the computational

complexity is to calculate σ̂ = (L>)−1D−1L−1ξ, with known L,D is O(M).

As a summary, the computational complexity is to calculate
{

̂∂2

∂x2u(xi, tn)

}
i=0,...,M−1

with a fixed n ∈ {0, 1, . . . , N − 1} is O(M). Accordingly, the computational com-

plexity to solve
{

̂∂2

∂x2u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

is O(MN).

For the first order derivatives, i.e.,
{
∂
∂x
u(xi, tn), ∂

∂x
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

,we

can verify the computational complexity to solve them is also O(MN) with the sim-

ilar logic as that in the second order derivatives.

Algorithm 5: Pseudo code to solve L,D

Input: matrix M
Output: matrix L,D

1 Initialize d1 = M1,1

2 for i = 1, 2, . . . ,M − 3 do
3 li = Mi,i+1/di
4 di+1 = Mi+1,i+1 − dil2i

Algorithm 6: Pseudo code to solve L−1ξ

Input: matrix L, ξ
Output: matrix ξ̄

1 Initialize ξ̄1 = ξ1

2 for i = 2, . . . ,M − 2 do
3 ξ̄i = ξi − li−1ξ̄i−1

• Next, we discuss the scenario when α ∈ (0, 1).

Since all the derivatives has similar closed-form formulation as shown in Equa-

tion 3.5, Equation 3.22, Equation 3.21, we take the zero-order derivative
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{u(xi, tn)}i=0,...,M−1,n=0,...,N−1 as an illustration example, and other derivatives can

be derived similarly.

Recall that in subsection 3.2.1, the zero-order derivative {u(xi, tn)}i=0,...,M−1 with

n ∈ {0, 1, . . . , N−1} fixed can be estimated through cubic spline as in Equation 3.5:

f̂ = [αW + (1− α)A>MA︸ ︷︷ ︸
Z

]−1 αWun:︸ ︷︷ ︸
y

,

where α ∈ (0, 1) trades off the fitness of the cubic spline and the smoothness of

the cubic spline, vector f̂ =
(

̂u(x0, tn), ̂u(x1, tn), . . . , ̂u(xM−1, tn)
)>

, vector un: =(
un0 , . . . , u

n
M−1

)>
,matrix W = diag(w0, w1, . . . , wM−1),matrix A ∈ R(M−2)×M ,M ∈

R(M−2)×(M−2) are defined as

A =



1
h0
− 1
h0
− 1

h1

1
h1

0 . . . 0 0 0

0 1
h1

− 1
h1
− 1

h2

1
h2

. . . 0 0 0

...
...

...
... . . . ...

...
...

0 0 0 0 . . . 1
hM−3

− 1
hM−3

− 1
hM−2

1
hM−2


,

M =



h0+h1

3
h1

6
0 . . . 0 0

h1

6
h1+h2

3
h2

6
. . . 0 0

0 h2

6
h2+h3

3
. . . 0 0

...
...

... . . . ...
...

0 0 0 . . . hM−4+hM−3

3

hM−3

6

0 0 0 . . . hM−3

6

hM−3+hM−2

3


with hi = xi+1 − xi for i = 0, 1, . . . ,M − 2.

By simple calculation, we know that matrix Z = αW + (1 − α)A>MA ∈ RM×M
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is a symmetric seventh-diagonal matrix:

Z =



z11 z12 z13 z14 0 . . .

z21 z22 z23 z24 z25 . . .

z31 z32 z33 z34 z35
. . .

z41 z42 z43 z44 z45
. . .

0 z52 z53 z54 z55
. . .

...
... . . . . . . . . . . . .


By applying Cholesky decomposition to matrix Z as Z = PΣP>, we can calculate

f̂ as

f̂ = Z−1y = (P>)−1Σ−1P−1y,

where P ∈ RM×M ,Σ ∈ RM×M has the form of

P =



1 0 0 0 . . . 0 0

`1 1 0 0 . . . 0 0

γ1 `2 1 0 . . . 0 0

η1 γ2 `3 1 . . . 0 0

0 η2 γ3 `4
. . . 0 0

...
... . . . . . . . . . 1 0

0 0 . . . ηM−3 γM−2 `M−1 1



,Σ =



s1 0 0 . . . 0

0 s2 0 . . . 0

0 0 s3 . . . 0

...
...

... . . . 0

0 0 0 . . . sM


.

In the remaining of the proof in this scenario, we will verify the following two issues:

1. the computational complexity to decompose Z into PΣP> is O(M) with n ∈

{0, . . . , N − 1} fixed;

2. the computational complexity to compute (P>)−1Σ−1P−1y is O(M) with n ∈

{0, . . . , N − 1} fixed.
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First of all, we verify that the computational complexity to decompose Z into PΣP>

is O(M) when n ∈ {0, . . . , N − 1} fixed By applying method of undetermined

coefficients to equality Z = PΣP>, we have PΣP> as



s1 s1`1 s1γ1 . . . 0

s1`1 s1`
2
1 + s2 s1`1γ1 + s2`2 . . . 0

s1γ1 s1`1γ1 + s2`2 s1γ
2
1 + s2`

2
2 + s3 . . . 0

s1η1 s1η1`1 + s2γ2 s1η1γ1 + s2γ2`2 + s3`3 . . . 0

0 s2η2 s2η2`2 + s3γ3 . . . 0

0 0 s3η3 . . . 0

...
...

... . . . ...

0 0 0 . . . sM−3η
2
M−3 + sM−2γ

2
M−2

+sM−1γM−1`
2
M−1 + sM



,

which is equivalent to matrix Z. Through the above method of undetermined coeffi-

cients, we can solve the explicit value of all entries in matrix P,Σ, i.e., `1, . . . , `M−1,

γ1, . . . , γM−2, η1, . . . , ηM−3 in matrix P and s1, . . . , sM in matrix Σ, which is sum-

marized in algorithm 7. From algorithm 7, we can see that the computational com-

plexity to decompose Z into PΣP> is O(M) with n ∈ {0, . . . , N − 1} fixed.

Second, we verify the computational complexity to compute (P>)−1Σ−1P−1y is

O(M) with n ∈ {0, . . . , N − 1} fixed and matrix P,Σ available. To realize this ob-

jective, we will first verify that the computational complexity to calculate ȳ = P−1y

is O(M). Then, we will first verify that the computational complexity to calculate

¯̄y = Σ−1ȳ is O(M). Finally, we will first verify that the computational complexity

to calculate ¯̄̄y = (P>)−1 ¯̄y is O(M). First of all, let us verify the computational com-

plexity to compute ȳ = P−1y is O(M) with n ∈ {0, . . . , N − 1} fixed. Because we
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have a system of equations derived from Pȳ = y:



ȳ1 = y1

ȳ2 = y2 − `1ȳ1

ȳ3 = y3 − γ1ȳ1 − `2ȳ2

ȳ4 = y4 − η1ȳ1 − γ2ȳ2 − `3ȳ3

ȳ5 = y5 − η2ȳ3 − γ3ȳ3 − `4ȳ4

...

ȳM = yM − ηM−3ȳM−3 − γM−2ȳM−2 − `M−1ȳM−1

,

we can solve vector ȳ = (ȳ1, ȳ2, . . . , ȳM)> explicitly through algorithm 8, which

only requires O(M) computational complexity. After deriving ȳ = P−1y, we can

easily verify that the computational complexity to derive ¯̄y = Σ−1ȳ is still O(M)

because σ is a diagonal matrix. Finally, after deriving ¯̄y = Σ−1ȳ, we can verify that

the computational complexity to derive ¯̄̄y = (P>)−1 ¯̄y is still O(M) with the similar

logic as that in ȳ = P−1y.

From the above discussion, we know that the computational complexity to calculate

f̂ = ( ̂u(x0, tn), ̂u(x1, tn), . . . , ̂u(xM−1, tn))>, is O(M) with n ∈ {0, 1, . . . , N − 1}

fixed. In other words, the computational complexity to derive
{

̂u(xi, tn)
}
i=0,...,M−1

is O(M). According, the computational complexity to derive{
̂u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

is O(MN).

Algorithm 7: Pseudo code to solve P,Σ

Input: matrix Z
Output: matrix P,Σ

1 Initialize sj = ηj = γj = `j = 0 ∀j ≤ 0
2 for i = 1, 2, . . . ,M do
3 si = zii − si−3η

2
i−3 − si−2γ

2
i−2 − si−1`

2
i−1

4 `i = (zi,i+1 − si−2γi−2ηi−2 − si−1γi−1`i−1)/si
5 ηi = ai,i+3/si
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Algorithm 8: Pseudo code to solve P−1y

Input: matrix P,y
Output: vector ȳ

1 Initialize ηi = γi = `i = 0 ∀i ≤ 0
2 for i = 1, . . . ,M do
3 ȳi = yi − ηi−3ȳi−3 − γi−2ȳi−2 − `i−1ȳi−1

Proof of Proposition 3.2.2

Proof. In subsection 3.6.1, we discuss how to use cubic spline to derive derivatives of

u(x, t). In this section, we discuss how to use local polynomial regression to derive deriva-

tives, as a benchmark method.

Recall that the derivatives can be estimated by local polynomial regression includes

u(xi, tn), ∂
∂x
u(xi, tn), ∂2

∂x2u(xi, tn), . . . . And here we take the derivation ∂l

∂xl
u(x, tn) as an

example (l = 0, 1, 2, . . .), and the other derivatives can be derived with the same logic

flow. To derive the estimation of ∂l

∂xl
u(x, tn), we fix the temporal variable tn for a gen-

eral n ∈ {0, 1, . . . , N − 1}. Then we locally fit a degree p̌ polynomial over the data

{(xi, uni )}i=0,...,M−1 , i.e.,



u(x0, tn) = u(x, tn) + ∂
∂x
u(x, tn)(x0 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(x0 − x)p̌

u(x1, tn) = u(x, tn) + ∂
∂x
u(x, tn)(x1 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(x1 − x)p̌

...
...

u(xM−1, tn) = u(x, tn) + ∂
∂x
u(x, tn)(xM−1 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(xM−1 − x)p̌

.

For the choice of p̌, we choose p̌ = l+3 to realize minmax efficiency [see 91]. If we denote

b(x) =
(
u(x, tn), ∂

∂x
u(x, tn), . . . , ∂

p̌

∂xp̌
u(x, tn)

)>
, then ∂l

∂xl
u(x, tn) can be obtained as the

(l + 1)-th entry of the vector b̂(x), and b̂(x) is obtained by the following optimization
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problem:

b̂(x) = arg min
b(x)

M−1∑
i=0

[
uni −

p̌∑
j=0

∂j

∂xj
u(x, tn)(xi − x)j

]2

K
(
xi − x
h

)
, (3.23)

where h is the bandwidth parameter, and K is a kernel function, and in our paper, we use

the Epanechikov kernel K(x) = 3
4

max{0, 1− x2} for x ∈ R. Essentially, the optimization

problem in Equation 3.23 is a weighted least squares model, where b(x) can be solved in a

close form:

b(x) =
(
X>spaWspaXspa

)−1
X>spaWspau

n
: , (3.24)

where

Xspa =



1 (x0 − x) . . . (x0 − x)p̌

1 (x1 − x) . . . (x1 − x)p̌

...
... . . . ...

1 (xM−1 − x) . . . (xM−1 − x)p̌


,un: =



un0

un1
...

unM−1


and Wspa = diag

(
K
(
x0−x
h

)
, . . . ,K

(xM−1−x
h

))
.

By implementing the local polynomial in this way, the computational complexity is

much higher than our method, and we summarize its computational complexity in the fol-

lowing proposition.

Following please find the proof.

Similar to the proof of the computational complexity in cubic spline, the proof of

the computational complexity of local polynomial regression in the funcational estimation

stage lies in calculating all elements in matrix X and vector∇tu, including

{
̂u(xi, tn),

̂∂
∂x
u(xi, tn),

̂∂2

∂x2
u(xi, tn),

̂∂
∂t
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

.

We will take the estimation of ̂∂p

∂xp
u(xi, tn) with a general p ∈ N as an example. To

solve
{

̂∂p

∂xp
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

, we first focus on
{

̂∂p

∂xp
u(xi, tn)

}
i=0,...,M−1

, with
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n ∈ {0, . . . , N − 1} fixed. To solve it, the main idea of local polynomial regression is to

do Taylor expansion:



u(x0, tn) = u(x, tn) + ∂
∂x
u(x, tn)(x0 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(x0 − x)p̌

u(x1, tn) = u(x, tn) + ∂
∂x
u(x, tn)(x1 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(x1 − x)p̌

...
...

u(xM−1, tn) = u(x, tn) + ∂
∂x
u(x, tn)(xM−1 − x) + . . .+ ∂p̌

∂xp̌
u(x, tn)(xM−1 − x)p̌

,

where p̌ is usually set as p̌ = p + 3 to obtain asymptotic minimax efficiency [see 91]. In

the above system of equations, if we denote

b(x) =

(
u(x, tn),

∂

∂x
u(x, tn), . . . ,

∂ p̌

∂xp̌
u(x, tn)

)>
,

then we can solve b(x) through the optimization problem in Equation 3.23 with a closed-

form solution shown in Equation 3.24:

b(x) =
(
X>spaWspaXspa

)−1
X>spaWspau

n
: , (3.25)

where

Xspa =



1 (x0 − x) . . . (x0 − x)p̌

1 (x1 − x) . . . (x1 − x)p̌

...
... . . . ...

1 (xM−1 − x) . . . (xM−1 − x)p̌


,un: =



un0

un1
...

unM−1


and Wspa = diag

(
K
(
x0−x
h

)
, . . . ,K

(xM−1−x
h

))
.

The main computational complexity to derive b(x) lies in the computation of inverse
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of matrix X>spaWspaXspa ∈ R(p̌+1)×(p̌+1), where

X>spaWspaXspa =

M−1∑
i=0

wi
M−1∑
i=0

wi(xi − x)
M−1∑
i=0

wi(xi − x)2 . . .
M−1∑
i=0

wi(xi − x)p̌

M−1∑
i=0

wi(xi − x)
M−1∑
i=0

wi(xi − x)2
M−1∑
i=0

wi(xi − x)3 . . .
M−1∑
i=0

wi(xi − x)p̌+1

M−1∑
i=0

wi(xi − x)2
M−1∑
i=0

wi(xi − x)3
M−1∑
i=0

wi(xi − x)4 . . .
M−1∑
i=0

wi(xi − x)p̌+2

...
...

... . . . ...
M−1∑
i=0

wi(xi − x)p̌
M−1∑
i=0

wi(xi − x)p̌+1
M−1∑
i=0

wi(xi − x)p̌+2 . . .
M−1∑
i=0

wi(xi − x)2p̌


and

X>spaWspau
n
: =



M−1∑
i=0

wiu
n
i

M−1∑
i=0

wi(xi − x)uni

M−1∑
i=0

wi(xi − x)2uni

M−1∑
i=0

wi(xi − x)3uni

M−1∑
i=0

wi(xi − x)4uni


,

we know that for a fixed n ∈ {0, . . . , N − 1} and x ∈ {x0, . . . , xM−1}, the computa-

tional complexity of computing X>spaWspaXspa and X>spaWspau
n
: is O(p̌2M). Besides, the

computational complexity to derive (X>spaWspaXspa)
−1 is O(p̌3). So we know that for a

fixed n ∈ {0, . . . , N − 1} and x ∈ {x0, . . . , xM−1}, the computational complexity of

computing ∂p

∂xp
u(xi, tn) is max{O(p̌2M), O(p̌3)} with p̌ usually set as p̌ = p + 3. Ac-

cordingly, the computational complexity of computing
{
∂p

∂xp
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

is max{O(p̌2M2N), O(p̌3MN)}. Because p ≤ qmax, we know that the computational

complexity of computing all derivatives with respective to x with highest order as qmax is

max{O(q2
maxM

2N), O(q3
maxMN)}. Similarly, the computational complexity of computing

the first order derivatives with respective to t is max{O(MN2), O(MN)}. In conclusion,
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the computational complexity to derive all elements in matrix X and vector∇tu, including

{
̂u(xi, tn),

̂∂
∂x
u(xi, tn),

̂∂2

∂x2
u(xi, tn),

̂∂
∂t
u(xi, tn)

}
i=0,...,M−1,n=0,...,N−1

.

by local polynomial regression in Equation 3.4 is max{O(q2
maxM

2N), O(MN2), O(q3
maxMN)},

where qmax is the highest order of derivatives desired in Equation 3.3.

Proof of Lemma 3.6.1

Proof. In this proof, we take k = 0 as an illustration example, i.e., prove that when

ε > C (σ, ‖u‖L∞(Ω)) max
{

4Kmax

M3/7 , 4AM
−3/7, 4

√
2 d3

dx3f
∗(0)M−3/7, 16(C logM+γ) log(M)

M3/7 ,

16
√

ω
7
C̃(σ, ‖u‖L∞(Ω))

√
log(M)

M3/7

}
,

we have

P

[
sup

x∈[0,Xmax]

∣∣∣û(x, tn)− u(x, tn)
∣∣∣ > ε

]
< 2Me−

M2/7

2σ2 +Qe−Lγ + 4
√

2η4M− 2
7
ω

for a fixed tn with n ∈ {0, 1, . . . , N − 1}. For k = 1, 2, it can be derived with the same

logic flow.

Recall in subsection 3.2.1, the fitted value of the smoothing cubic spline s(x) is the

minimizer of the optimization problem in Equation 3.4. From Theorem A in [89] (also

mentioned by [92] in the Section 1, and equation (2.2) in [93]) that when Condition 3.3.4 -

Condition 3.3.5 hold and for large M and small λ̃ = 1−α
α

, we have

f̂i =
1

Mλ̃1/4

M−1∑
j=0

K

(
xi − xj
λ̃1/4

)
unj ,

where f̂i = ̂u(xi, tn), λ̃ trades off the goodness-of-fit and smoothness of the cubic spline in
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Equation 3.4 and K(·) is a fixed kernel function defined as

K(x) =
1

2
e−|x|/

√
2
[
sin(|x|/

√
2 + π/4)

]
.

For a general spatial variable x and fixed n ∈ {0, 1, . . . , N − 1}, we denote

f ∗(x) = u(x, tn),

which is the ground truth of the underlying dynamic function u(x, tn) with tn fixed. Be-

sides, we denote f̂(x) = û(x, tn), which is an estimation of the ground truth of f ∗(x) =

u(x, tn) with tn fixed. Accordingly to the above discussion, this estimation of f̂(x) can be

written as

f̂(x) =
1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj ,

where f̂i = f̂(xi) for i ∈ {0, 1, . . . ,M − 1}

In order to bound P
(

sup |f̂(x)− f ∗(x)| > ε
)

for a general x, we decompose it as

follows:

P
(

sup |f̂(x)− f ∗(x)| > ε
)

= P
(

sup |f̂(x)− f̂B(x) + f̂B(x)− f̂ ∗(x)| > ε
)

= P
(

sup |f̂(x)− f̂B(x)− E(f̂(x)− f̂B(x)) + E(f̂(x)− f̂B(x))+

f̂B(x)− f̂ ∗(x)| > ε
)

= P

sup | f̂(x)− f̂B(x)︸ ︷︷ ︸
A

−E(f̂(x)− f̂B(x))︸ ︷︷ ︸
B

+

E(f̂(x))− f ∗(x)︸ ︷︷ ︸
C

+ f̂B(x)− E(f̂B(x))︸ ︷︷ ︸
D

| > ε


≤ P

(
sup |A| > ε

4

)
+ P

(
sup |B| > ε

4

)
+ P

(
sup |C| > ε

4

)
+ P

(
sup |D| > ε

4

)

,

(3.26)
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where the f̂B(x) in (Equation 3.26) the truncated estimator defined as

f̂B(x) =
1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj 1{unj < BM}.

Here {BM} is an increasing sequence and BM → +∞ as M → +∞, i.e., BM = M b with

constant b > 0, and we will discuss the value of b at the end of this proof.

In the remaining of the proof, we work on the upper bound of the four decomposed

terms, i.e., P
(
sup |A| > ε

4

)
, P
(
sup |B| > ε

4

)
, P
(
sup |C| > ε

4

)
, P
(
sup |D| > ε

4

)
.

First, let us discuss the upper bound of P
(
sup |A| > ε

4

)
.

Because

P
(

sup |A| > ε

4

)
= P

(
sup

∣∣∣f̂(x)− f̂B(x)
∣∣∣ > ε

4

)
= P

(
sup

∣∣∣∣∣ 1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj 1{unj ≥ BM}

∣∣∣∣∣ > ε

4

)

≤ P

(
sup

∣∣∣∣∣ Kmax

Mλ̃1/4

M−1∑
j=0

unj 1{unj ≥ BM}

∣∣∣∣∣ > ε

4

)
,

where Kmax = maxx∈[0,Xmax]∪[0,Tmax] K(x). If we let ε
4
> Kmax

Mλ̃1/4
BM , then we have

P
(

sup |A| > ε

4

)
≤ P (∃ i = 0, . . . ,M − 1, s.t. |uni | ≥ BM)

= P

(
max

i=0,...,M−1
|uni | ≥ BM

)

Let CM = BM − ‖U‖L∞(Ω), where U is the random variable generated from the unknown
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dynamic system, i.e., U = u(x, t) + ε with ε ∼ N(0, σ2). Then we have

P
(

sup |A| > ε

4

)
= P

(
sup

∣∣∣f̂(x)− f̂B(x)
∣∣∣ > ε

4

)
≤ P

(
max

i=0,...,M−1
|Un

i − uni | ≥ CM

)
≤ 2Me−C

2
M/(2σ

2)

Next, let us discuss the upper bound of P
(
sup |B| > ε

4

)
.

B = E
(
|f̂(x)− f̂B(x)|

)
= E

(∣∣∣∣∣ 1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj 1{unj ≥ BM}

∣∣∣∣∣
)

≤ E

(
1

Mλ̃1/4

M−1∑
j=0

∣∣∣∣K (x− xj
λ̃1/4

)∣∣∣∣ |unj |1{unj ≥ BM}

)

=
1

λ̃1/4

∫ ∫
|u|≥BM

∣∣∣∣K (x− a
λ̃1/4

)∣∣∣∣ |u|dFM(a, u) (3.27)

≤
∫
|K(ξ)|dξ × sup

α

∫
|u|≥BM

|u|fM(α, u)du︸ ︷︷ ︸
V

(3.28)

Here in Equation 3.27, FM(·, ·) is the empirical c.d.f. of (x, u)’s, and in Equation 3.28,

fM(·, ·) is the empirical p.d.f. of (x, u)’s.

Now let us take a look at the upper bound of V . For any s > 0, we have

sup
α

∫
|u|≥BM

|u|
BM

fM(α, u)du ≤ sup
α

∫
|u|≥BM

(
|u|
BM

)s
fM(α, u)du

≤ sup
α

∫ (
|u|
BM

)s
fM(α, u)du,
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which gives

V := sup
α

∫
|u|≥BM

|u|fM(α, u)du ≤ B1−s
M sup

α

∫
|u|sfM(α, u)du︸ ︷︷ ︸

πs

.

From the lemma statement we know that when s = 2, we have πs := supα
∫
|u|sfM(α, u)du <

+∞. If we set A = πs
∫
|K(ξ)|dξ, then we have

B ≤ AB1−s
M

So when ε
4
> AB1−s

M , we have

P
(

sup |B| > ε

4

)
= P

(
E
(
|f̂(x)− f̂B(x)|

)
≥ ε

4

)
= 0.

Then, let us discuss the upper bound of P
(
sup |C| > ε

4

)
. According to Lemma 5 in

[94], when

f ∗(x) ∈ C4, d2

dx2f
∗(x0) = d2

dx2f
∗(xM−1) = 0 and d3

dx3f
∗(x0) 6= 0, d3

dx3f
∗(xM−1) = 0, we

have

E(f̂(x))− f ∗(x)

=
√

2
d3

dx3
f ∗(0)λ̃3/4 exp

(
−x√

2
λ̃−1/4

)
cos

(
x√
2
λ̃−1/4

)
+ `(x),

where the error term `(x) satisfies

∫
[`(x)]2dx = o

(∫ [
E(f̂(x))− f ∗(x)

]2

dx

)
.

121



So when ε
4
>
√

2 d3

dx3f
∗(0)λ̃3/4 and M is sufficiently large then we have

P
(

sup |C| > ε

4

)
= 0

Finally, let us discuss the upper bound of P
(
sup |D| > ε

4

)
.

In order to bound P
(
sup |D| > ε

4

)
, we further decomposeD into two components, i.e.,

D := f̂B(x)− E(f̂B(x)) = eM(x, tn) +
1√
M
ρM(x, tn).

The decomposition procedure and the definition of eM(x, tn), ρM(x, tn) are described in

the following system of equations [see 95, Proposition 2]:

D = f̂B(x)− E(f̂B(x))

=
1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj 1{unj < BM} −

E

(
1

Mλ̃1/4

M−1∑
j=0

K

(
x− xj
λ̃1/4

)
unj 1{unj < BM}

)

=
1

√
Mλ̃1/4

∫
a∈R

∫
|u|<BM

K

(
x− a
λ̃1/4

)
u d
(√

M(FM(a, u)− F (a, u))
)

︸ ︷︷ ︸
ZM (a,u)

(3.29)

=
1

√
Mλ̃1/4

∫
a∈R

K

(
x− a
λ̃1/4

)∫
|u|<BM

u d(ZM(a, u))

=
1

√
Mλ̃1/4

∫
a∈R

K

(
x− a
λ̃1/4

)[∫
|u|<BM

u d(ZM(a, u)−B0(T (a, u)))+∫
|u|<BM

u dB0(T (a, u))

]
(3.30)

=
1

√
Mλ̃1/4

∫
a∈R

∫
|u|<BM

K

(
x− a
λ̃1/4

)
u d(ZM(a, u)−B0(T (a, u)))︸ ︷︷ ︸

eM (x,tn)

+
1√
M

1

λ̃1/4

∫
a∈R

∫
|u|<BM

K

(
x− a
λ̃1/4

)
u dB0(T (a, u))︸ ︷︷ ︸

ρM (x,tn)

.
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In Equation 3.29, FM(·, ·) := FM(·, ·|tn) is the empirical c.d.f of (x, u) with a fixed tn,

and ZM(a, u) =
√
M(FM(a, u) − F (a, u)) is a two-dimensional empirical process [see

96, 95]. In Equation 3.30, B0(T (a, u)) is a sample path of two-dimensional Brownian

bride. And T (a, u) : R2 → [0, 1]2 is the transformation defined by [97], i.e., T (a, u) =

(FA(x), FU |A(u|a)), where FA is the marginal c.d.f of A and FU |A is the conditional c.d.f

of U given A [see 95, Proposition 2].

Through the above decomposition of D, we have

P
(

sup |D| > ε

4

)
≤ P

(
sup |eM(x, tn)| > ε

8

)
+ P

(
sup

1√
M
|ρM(x, tn)| > ε

8

)
.

For eM(x, tn), we have

P
(

sup |eM(x, tn)| > ε

8

)
= P

(
sup

∣∣∣∣ 1
√
Mλ̃1/4

∫
a∈R

∫
|u|<BM

K

(
x− a
λ̃1/4

)
u d(ZM(a, u)−B0(T (a, u)))

∣∣∣∣ > ε

8

)
≤ P

(
2BMKmax√
Mλ̃1/4

sup
a,u
|ZM(a, u)−B0(T (a, u))| > ε

8

)
.

Proved by Theorem 1 in [96], we know that, for any γ, we have

P

(
sup
a,u
|ZM(a, u)−B0(T (a, u))| > (C logM + γ) logM√

M

)
≤ Qe−Lγ,

where C,Q,L are absolute positive constants which is independent of temporal resolution

N and spatial resolution M . Thus, when ε
8
≥ 2BMKmax√

Mλ̃1/4

(C logM+γ) logM√
M

, we have

P
(

sup |eM(x, tn)| > ε

8

)
< Qe−Lγ.
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For ρM(x, tn), by equation (7) in [95], we have

λ̃1/8 sup |ρM (x,tn)|√
log(1/λ̃1/4)

≤ 16(log V )1/2S1/2

(
log

(
1

λ̃1/4

))−1/2 ∫
|ξ|1/2|dK(ξ)|︸ ︷︷ ︸

W1,M

+

16
√

2λ̃−1/8

(
log

(
1

λ̃1/4

))−1/2 ∫
q(Sλ̃1/4|τ |)|d(K(τ))|︸ ︷︷ ︸

W2,M

,

where V is a random variable satisfyingE(V ) ≤ 4
√

2η4,with η2 = maxi=0,...,M−1,n=0,...,N−1

E(Un
i )2, S = supx

∫
u2f(x, u)du with f(·, ·) as the distribution function of (xi, u

n
i ), and

q(z) =
∫ z

0
1
2

√
1
y

log
(

1
y

)
dy. So we have the following system of equations:

P

(
sup

1√
M
|ρM(x, tn)| > ε

8

)

= P

 λ̃1/8 sup |ρM(x, tn)|√
log(1/λ̃1/4)

>

√
Mλ̃1/8ε

8

√
log(1/λ̃1/4)


≤ P

W1,M +W2,M >

√
Mλ̃1/8ε

8

√
log(1/λ̃1/4)


≤ P

W1,M ≥
√
Mλ̃1/8ε

16

√
log(1/λ̃1/4)

+ P

W2,M ≥
√
Mλ̃1/8ε

16

√
log(1/λ̃1/4)

 (3.31)

Now let us bound P
(
W1,M ≥

√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)

)
, P

(
W2,M ≥

√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)

)
in Equa-

tion 3.31 separately.
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1. For the first term in Equation 3.31, we have

P

W1,M ≥
√
Mλ̃1/8ε

16

√
log(1/λ̃1/4)


= P

16(log V )1/2S1/2

(
log

(
1

λ̃1/4

))−1/2 ∫
|ξ|1/2|dK(ξ)| ≥

√
Mλ̃1/8ε

16

√
log(1/λ̃1/4)


= P

(
(log V )1/2 ≥

√
Mλ̃1/8ε

162S1/2
∫
|ξ|1/2|dK(ξ)|

)

= P

log V ≥

( √
Mλ̃1/8ε

162S1/2
∫
|ξ|1/2|dK(ξ)|

)2


= P

V ≥ exp

( √
Mλ̃1/8ε

162S1/2
∫
|ξ|1/2|dK(ξ)|

)2


≤ E(V )

exp

[( √
Mλ̃1/8ε

162S1/2
∫
|ξ|1/2|dK(ξ)|

)2
] (3.32)

≤ 4
√

2η4

exp

[( √
Mλ̃1/8ε

162S1/2
∫
|ξ|1/2|dK(ξ)|

)2
] (3.33)

= 4
√

2η4λ̃ω/4 (3.34)

Here inequality Equation 3.32 is due to Markov’s inequality, and inequality Equa-

tion 3.33 is due to the fact that E(V ) ≤ 4
√

2η4. Equality Equation 3.34 is because

we set
√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)
=
√
ωC̃(tn, σ, ‖u‖L∞(Ω)), where

C̃(tn, σ, ‖u‖L∞(Ω)) := 16
√
S

∫
|ξ|1/2|dK(ξ)|

and ω > 1 is an arbitrary scaler.

2. For the second term of Equation 3.31, it converges to C̃(tn, σ, ‖u‖L∞(Ω)) by using

arguments similar to [98] (page. 180-181) under the condition in Lemma 3.6.1 that∫ √
|x log(|x|)||dK(x)| < +∞. Here we add (tn, σ, ‖u‖L∞(Ω)) after C̄ to emphasize
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that the constant C̄(tn, σ, ‖u‖L∞(Ω)) is dependent on tn, σ, ‖u‖L∞(Ω).

It should be noted that

C̃(tn, σ, ‖u‖L∞(Ω)) < +∞, (3.35)

given the reasons listed as follows. First, it can be easily verified that the term∫
|ξ|1/2|dK(ξ)| in C̃(tn, σ, ‖u‖L∞(Ω)) is bounded. Second, for S = supx

∫
u2f(x, u)du,

it is also bounded. The reasons are described as follows. For a general % > 0, we

have

sup
x∈[0,Xmax]

∫
|u|%f(x, u)du

= sup
x∈[0,Xmax]

∫
|u|% 1√

2πσ2
exp

(
−(u− u(x, tn))2

2σ2

)
du

= sup
x∈[0,Xmax]

1√
2
σ22%/2Γ

(
1 + %

2

)
G

(
−%

2
,
1

2
,−1

2

(
u(x, tn)

σ

)2
)
,

where G(a, b, z) is Kummer’s confluent hypergeometric function of z ∈ C with pa-

rameters a, b ∈ C [see 99]. Because G
(
−%

2
, 1

2
, ·
)

is an entire function for fixed

parameters, we have

sup
x∈[0,Xmax]

∫
|u|%f(x, u)du

≤ sup
x∈[0,Xmax]

1√
2
σ22%/2Γ

(
1 + %

2

)
sup

z∈
[
−maxt∈Ω u2(x,t)

2σ2 ,−mint∈Ω u2(x,t)

2σ2

]G
(
−%

2
,
1

2
, z

)
< +∞.

So we can bound supx∈[0,Xmax]

∫
|u|%f(x, u)du by a constant. If we take % = 2, we

can obtain S = supx
∫
u2f(x, u)du bounded by a constant. So we can declare the

statement in Equation 3.35.

We would also like to declare that there exist a constant C̃(σ, ‖u‖L∞(Ω)) > 0 such
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that for any N ≥ 1, we have

max
n=0,...,N−1

C̃(tn, σ, ‖u‖L∞(Ω)) ≤ C̃(σ, ‖u‖L∞(Ω)),

where C̄(σ, ‖u‖L∞(Ω)) is independent of tn, xi,M,N , and only depends on the noisy

data D itself.

From the above discussion, we learn that W2,M converges to C̃(tn, σ, ‖u‖L∞(Ω)),

which can be bounded by C̃(σ, ‖u‖L∞(Ω)). If we set
√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)
>
√
ωC̃(σ, ‖u‖L∞(Ω))

with ω > 1, then there exists a positive integer Ṁ(ω) such that as long as M >

Ṁ(ω), we have P
(
W2,M ≥

√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)

)
= 0.

For the value of ω, we set it as ω = M2r with r > 0. And we will discuss the value

of r later.

By combining P
(
W1,M ≥

√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)

)
, P

(
W2,M ≥

√
Mλ̃1/8ε

16
√

log(1/λ̃1/4)

)
together, we have

when ε
16
>
√
ωC̃(σ, ‖u‖L∞(Ω))

√
log(1/λ̃1/4)

Mλ̃1/4
and M > Ṁ(ω), we have

P

(
sup

∣∣∣∣ 1√
M
ρM(x, tn)

∣∣∣∣ > ε

8

)
< 4
√

2η4λ̃ω/4.

By combining the discussion on P
(
sup |A| > ε

4

)
, P
(
sup |B| > ε

4

)
, P
(
sup |C| > ε

4

)
,

and P
(
sup |D| > ε

4

)
, we can conclude that when

• ε
4
> Kmax

Mλ̃1/4
BM

• ε
4
> AB1−s

M (s = 2)

• ε
4
>
√

2 d3

dx3f
∗(0)λ̃3/4

• ε
8
> 2BMKmax(C logM+γ) logM

λ̃1/4M

• ε
16
>
√
ωC̃(σ, ‖u‖L∞(Ω))

√
log(1/λ̃1/4)

Mλ̃1/4
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we have

P (sup |A+ B + C +D| > ε) < 2Me−
C2
M

2σ2︸ ︷︷ ︸
Z1

+Qe−Lγ︸ ︷︷ ︸
Z2

+ 4
√

2η4λ̃ω/4︸ ︷︷ ︸
Z3

. (3.36)

Let 

E1 = 4Kmax

Mλ̃1/4
BM

E2 = 4AB1−s
M

E3 = 4
√

2 d3

dx3f
∗(0)λ̃3/4

E4 = 16BMKmax(C logM+γ) logM

λ̃1/4M

E5 = 16
√
ωC̃(σ, ‖u‖L∞(Ω))

√
log(1/λ̃1/4)

Mλ̃1/4

,

by setting λ̃ = M−a, BM = M b with a, b > 0, we have



E1 = 4Kmax

Mλ̃1/4
BM = 4Kmax

M1−a/4−b

E2 = 4AB1−s
M = 4A 1

Mb(s−1)

E3 = 4
√

2 d
dx
f ∗(0)λ̃3/4 = 4

√
2 d
dx
f ∗(0)M−3a/4

E4 = 16BMKmax(C logM+γ) logM

λ̃1/4M
= 16Kmax(C logM+γ) log(M)

M1−a/4−b

E5 = 16
√
ωC̃(σ, ‖u‖L∞(Ω))

√
log(1/λ̃1/4)

Mλ̃1/4
= 8
√
aωC̃(σ, ‖u‖L∞(Ω))

√
log(M)

M1−a/4 .

To guarantee that E1, E2, E3, E4, E5 → 0 as M → +∞, we can set



1− a/4− b = 3a/4

b(s− 1) > 0

1
2
(1− a/4) = 3a/4

a, b > 0

s = 2

.
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then we have 
a = 4/7

b = 3/7

s = 2

.

Accordingly, we have



E1 = 4Kmax

M3/7

E2 = 4AM−3/7

E3 = 4
√

2 d3

dx3f
∗(0)M−3/7

E4 = 16Kmax(C logM+γ) log(M)

M3/7

E5 = 16
√

ω
7
C̃(σ, ‖u‖L∞(Ω))

√
log(M)

M3/7

,

where

E1, E2, E3, E5 . E4

as M → +∞. Here, the operator . means that when M → +∞, the order of the left side

hand of . will be much smaller than that on the right side hand. So we can declare that

when M is sufficiently large and

ε > max
{

4Kmax

M3/7 , 4AM
−3/7, 4

√
2 d3

dx3f
∗(0)M−3/7, 16Kmax(C logM+γ) log(M)

M3/7 ,

16
√

ω
7
C̃(σ, ‖u‖L∞(Ω))

√
log(M)

M3/7

}

we have

P (sup |A+ B + C +D| > ε) ≤ 2Me−
C2
M

2σ2 +Qe−Lγ + 4
√

2η4λ̃ω/4

= 2Me−
(M3/7−‖U‖L∞(Ω))2

2σ2 +Qe−Lγ + 4
√

2η4M−ω/7
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Proof of Lemma 3.6.2

Proof. For the estimation error ‖∇tu−Xβ∗‖∞, we have

‖∇tu−Xβ∗‖∞ = ‖∇tu−∇tu
∗ +∇tu

∗ −Xβ∗‖∞

= ‖∇tu−∇tu
∗ + X∗β∗ −Xβ∗‖∞

≤ ‖∇tu−∇tu
∗‖∞ + ‖(X∗ −X)β∗‖∞. (3.37)

So accordingly, we have

P (‖∇tu−Xβ∗‖∞ > ε) ≤ P
(
‖∇tu−∇tu

∗‖∞ >
ε

2

)
+ P (‖(X∗ −X)β∗‖∞) .

In the remaining of the proof, we will discuss the bound of P
(
‖∇tu−∇tu

∗‖∞ > ε
2

)
and P (‖(X∗ −X)β∗‖∞) separately.

• First let us discuss the bound of P
(
‖∇tu−∇tu

∗‖∞ > ε
2

)
. Because

P
(
‖∇tu−∇tu

∗‖∞ >
ε

2

)
≤ P

(
max

i=0,...,M−1
sup

t∈[0,Tmax]

∣∣∣∣∣ ̂∂
∂t
u(xi, t)−

∂

∂t
u(xi, t)

∣∣∣∣∣ > ε

2

)

≤
M−1∑
i=0

P

(
sup

t∈[0,Tmax]

∣∣∣∣∣ ̂∂
∂t
u(xi, t)−

∂

∂t
u(xi, t)

∣∣∣∣∣ > ε

2

)
,

if we set

ε
2

> C(σ,‖u‖L∞(Ω)) max
{

4KmaxN
−3/7, 4ĀN−3/7, 4

√
2 d3

dx3 f̄
∗(0)N−3/7,

16Kmax

[
C(σ,‖u‖L∞(Ω)) log(N)+γ(N)

]
log(N)

N3/7 ,

16
√

ω(N)

7
C̃(σ,‖u‖L∞(Ω))

√
log(N)

N3/7

}
,

(3.38)
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then we have

P
(
‖∇tu−∇tu

∗‖∞ >
ε

2

)
≤ M

[
2Ne−

(N3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(N)

+4
√

2η4N−ω(N)/7
]
, (3.39)

where inequity Equation 3.39 is derived according to Corollary 3.6.1.

• Second, let us discuss the bound of P (‖(X∗ −X)β∗‖∞) . Because

P
(
‖(X∗ −X)β∗‖∞ >

ε

2

)
≤ P

(
‖β∗‖∞ max

n=0,...,N−1
sup

x∈[0,Xmax]

K∑
k=1

‖(X∗k(x, tn)−Xk(x, tn))‖∞ >
ε

2

)

= P

(
max

n=0,...,N−1
sup

x∈[0,Xmax]

K∑
k=1

‖(X∗k(x, tn)−Xk(x, tn))‖∞ >
ε

2‖β∗‖∞

)

≤
N−1∑
n=0

K∑
k=1

P

(
sup

x∈[0,Xmax]

‖(X∗k(x, tn)−Xk(x, tn))‖∞ >
ε

2K‖β∗‖∞

)
,

if we set

ε
2K‖β∗‖∞ > C(σ,‖u‖L∞(Ω)) max

{
4KmaxM

−3/7, 4AM−3/7, 4
√

2 d3

dx3f
∗(0)M−3/7,

16
[
C(σ,‖u‖L∞(Ω)) logM+γ(M)

]
log(M)

M3/7 ,

16
√

ω(M)

7
C̃(σ, ‖u‖L∞(Ω(M)))

√
log(M)

M3/7

}
,

(3.40)

then we have

P
(
‖(X∗ −X)β∗‖∞ >

ε

2

)
≤ NK

[
2Me−

(M3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(M)

+4
√

2η4M−ω(M)/7
]
. (3.41)
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Inequality Equation 3.41 is derived by Lemma 3.6.1.

By combining the results in Equation 3.38, Equation 3.39, Equation 3.40, Equation 3.41,

we have that when

ε
2

> C(σ,‖u‖L∞(Ω)) max
{

4KmaxM
−3/7, 4KKmax‖β∗‖∞N−3/7,

4AM−3/7, 4K‖β∗‖∞ĀN−3/7,

4
√

2 d3

dx3f
∗(0)M−3/7, 4

√
2K‖β∗‖∞ d3

dx3 f̄
∗(0)N−3/7,

16KKmax‖β∗‖∞
[
C(σ,‖u‖L∞(Ω)) log(M)+γ(M)

]
log(M)

M3/7 ,

16Kmax

[
C(σ,‖u‖L∞(Ω)) log(N)+γ(N)

]
log(N)

N3/7 ,

16
√

ω(M)

7
C̃(σ,‖u‖L∞(Ω))

√
log(M)

M3/7 ,

16K‖β∗‖∞
√

ω(N)

7
C̃(σ,‖u‖L∞(Ω))

√
log(N)

N3/7

}
,

we have

P (‖∇tu−Xβ∗‖∞ > ε)

≤ M

[
2Ne−

(N3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(N) + 4

√
2η4N−ω(N)/7

]
+

NK

[
2Me−

(M3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(M) + 4

√
2η4M−ω(M)/7

]

Now, let us do some simplification of the above results. Let M = Nκ, γ(M) = γ(N) =
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1
L
N r, ω(M) = ω(N) = N2r, and



J1 = 4KKmax‖β∗‖∞N−3κ/7

J ′1 = 4KmaxN
−3/7

J2 = 4AK‖β∗‖∞N−3κ/7

J ′2 = 4ĀN−3/7

J3 = 4
√

2K‖β∗‖∞ d3

dx3f
∗(0)N−3κ/7

J ′3 = 4
√

2 d3

dx3 f̄
∗(0)N−3/7

J4 =
16KKmax‖β∗‖∞

[
C(σ,‖u‖L∞(Ω))(log(κ)+log(N))+Nr/L

]
(log(κ)+log(N))

N3κ/7

J ′4 =
16Kmax

[
C(σ,‖u‖L∞(Ω)) log(N)+Nr

]
log(N)

N3/7

J5 = 16K‖β∗‖∞
√

N2r

7
C̃(σ,‖u‖L∞(Ω))

√
log(κ)+log(N)

N3κ/7

J ′5 = 16
√

N2r

7
C̃(σ,‖u‖L∞(Ω))

√
log(N)

N3/7

.

To guarantee that J1,J ′1,J2,J ′2,J3,J ′3,J4,J ′4,J5,J ′5 → 0, as N → +∞, we need

 3κ/7− r > 0

3/7− r > 0
,

where the optimal κ is κ = 1. Accordingly, we have

J1,J ′1,J2,J ′2,J3,J ′3,J5,J ′5 . J4,J ′4.

Based on the above discussion, we can declare that when N is sufficiently large, with

ε > C(σ,‖u‖L∞(Ω))
log(N)

N3/7−r
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for any r ∈
(
0, 3

7

)
and M = O(N), we have

P ‖∇tu−Xβ∗‖∞ > ε)

≤ M

[
2Ne−

(N3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(N) + 4

√
2η4N−ω(N)/7

]
+

NK

[
2Me−

(M3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Lγ(M) + 4

√
2η4M−ω(M)/7

]
= M

[
2Ne−

(N3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Nr

+ 4
√

2η4N−N
2r/7

]
+

NK

[
2Me−

(M3/7−‖U‖L∞(Ω))2

2σ2 +Q(σ,‖u‖L∞(Ω))e
−Nr

+ 4
√

2η4M−N2r/7

]
= O(Ne−N

r

)

Thus, we finish the proof of the theorem.

Proof of Theorem 3.3.1

Proof. By KKT-condition, any minimizer β of Equation 3.10 must satisfies:

− 1

MN
X>(∇tu−Xβ) + λz = 0 for z ∈ ∂‖β‖1,

where ∂‖β‖1 is the sub-differential of ‖β‖1. The above equation can be equivalently trans-

formed into

X>X(β − β∗) + X> [(X−X∗)β∗ − (∇tu−∇tu
∗)] + λMNz = 0. (3.42)

Here matrix X ∈ RMN×K is defined in Equation 3.9, and matrix X∗ ∈ RMN×K is defined

as

X∗ = ( x0
0 x0

1 . . . x0
M−1 x0

1 . . . xN−1
M−1 )> ,
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with

xni =

(
1, u(xi, tn), ∂u(xi,tn)

∂x
, ∂2u(xi,tn)

∂x2 ,
(

̂u(xi, tn)
)2

, . . . ,
(
∂2u(xi,tn)

∂x2

)pmax

)>
.

And vector β∗ = (β1, . . . , βK) ∈ RK is the ground truth coefficients. Besides, vector

∇tu ∈ RMN is defined in Equation 3.8, and vector∇tu
∗ ∈ RK is the ground truth, i.e.,

∇tu
∗ =

(
∂u(x0,t0)

∂t
, ∂u(x1,t0)

∂t
, . . . , ∂u(xM−1,t0)

∂t
, ∂u(x0,t1)

∂t
, . . . , ∂u(xM−1,tN−1)

∂t

)>
.

Let us denote S = {i : β∗i 6= 0 ∀ i = 0, 1, . . . , K}, then we can decompose X into XS

and XSc , where XS is the columns of X whose indices are in S and XSc is the complement

of XS . And we can also decompose β into βS and βSc , where βS is the subvector of β

only contains elements whose indices are in S and βSc is the complement of βS .

By using the decomposition, we can rewrite Equation 3.42 as

0

0

 =

X>SXS X>SXSc

X>ScXS X>ScXSc


βS − β∗S

βSc

+

X>S

X>Sc

 [(X−X∗)Sβ
∗
S − (∇tu−∇tu

∗)] + λMN

 zS

zSc


(3.43)

Suppose the primal-dual witness (PDW) construction gives us an solution (β̌, ž) ∈ RK ×

RK , where β̌Sc = 0 and ž ∈ ∂‖β̌‖1. By plugging (β̌, ž) into the above equation, we have

žSc = X>ScXS(X>SXS)−1zS −

X>Sc (I−XS(X>SXS)−1X>S )︸ ︷︷ ︸
HXs

[(X−X∗)Sβ
∗
S − (∇tu−∇tu

∗)]

λMN

= X>ScXS(X>SXS)−1zS −
1

λMN
X>ScHXs (XSβ

∗
S −∇tu)︸ ︷︷ ︸
τ

(3.44)
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From Equation 3.44, we have

P (‖žSc‖∞ ≥ 1) = P

(∥∥∥∥X>ScXS(X>SXS)−1zS −
1

λMN
X>ScHXsτ

∥∥∥∥
∞
> 1

)
≤ P

(∥∥X>ScXS(X>SXS)−1zS
∥∥
∞ > 1− µ

)
+

P

(∥∥∥∥ 1

λMN
X>ScHXsτ

∥∥∥∥
∞
> µ

)
.

If we denote Z̃j = 1
λMN

(XSc)
>
j HXsτ , where (XSc)j is the j-th column of XSc , then we

have

P (‖žSc‖∞ ≥ 1) ≤ P
(∥∥X>ScXS(X>SXS)−1

∥∥
∞ > 1− µ

)
+ P

(
max
j∈Sc
|Z̃j| > µ

)
. (3.45)

Now let us discuss the upper bound of the second term, i.e., P
(

maxj∈Sc |Z̃j| > µ
)
. Be-

cause

P

(
max
j∈Sc
|Z̃j| > µ

)
= P

(∥∥∥∥ 1

λMN
X>ScHXsτ

∥∥∥∥
∞
> µ

)
≤ P

(∥∥∥∥ 1

λMN
X>ScHXsτ

∥∥∥∥
2

> µ

)
≤ P

(∥∥∥∥ 1

λMN
X>HXsτ

∥∥∥∥
2

> µ

)
≤ P

(
1

λMN
‖X‖2 ‖τ‖2 > µ

)
≤ P

(
‖τ‖2 > λµ

√
MN

K

)

≤ P

(
‖τ‖∞ > λµ

1√
K

)
(3.46)

By Lemma 3.6.2, we know when

λµ
1√
K

> C (σ, ‖u‖L∞(Ω))
log(N)

N3/7−r ,
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we have

P (‖∇tu−Xβ∗‖∞ > ε) < Ne−N
r

.

So we know that

P

(
‖τ‖∞ > λµ

1√
K

)
= P

(
‖∇tu−XSβ

∗
S‖∞ > λµ

1√
K

)
≤ P

(
‖∇tu−Xβ∗‖∞ > λµ

1√
K

)
< Ne−N

r

(3.47)

By plugging the results in Equation 3.46 and Equation 3.47 into Equation 3.45, we have

P (‖žSc‖∞ ≥ 1) ≤ P
(∥∥X>ScXS(X>SXS)−1

∥∥
∞ > 1− µ

)
+ P

(
max
j∈Sc
|Z̃j| > µ

)
≤ P

(∥∥X>ScXS(X>SXS)−1
∥∥
∞ > 1− µ

)
+ P

(
‖τ‖∞ > λµ

1√
K

)
≤ P

(∥∥X>ScXS(X>SXS)−1
∥∥
∞ > 1− µ

)
+Ne−N

r

The probability for proper support set recovery is

P (‖žSc‖∞ < 1) = 1− P (‖žSc‖∞ ≥ 1)

≥ 1−
[
P
(∥∥X>ScXS(X>SXS)−1

∥∥
∞ > 1− µ

)
+Ne−N

r]
= P

(∥∥X>ScXS(X>SXS)−1
∥∥
∞ ≤ 1− µ

)
−Ne−Nr

≤ Pµ −Ne−N
r

.

Thus, we finish the proof.

Proof of Theorem 3.3.2

Proof. By Equation 3.43, we can solve βS − β∗S as

βS − β∗S = (X>SXS)−1
[
−X>S (XS −X∗S)β∗S + X>S (∇tu−∇tu

∗)− λMNzS
]
.
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Thus, we have the following series of equations:

max
k∈S
|βk − β∗k|

≤
∥∥(X>SXS)−1

∥∥
∞

∥∥X>S [∇tu−∇tu
∗ − (XS −X∗S)β∗S ]− λMNzS

∥∥
∞

≤
∥∥(X>SXS)−1

∥∥
∞

[∥∥X>S [∇tu−∇tu
∗ − (XS −X∗S)β∗S ]

∥∥
∞ + λMN ‖zS‖∞

]
=

∥∥(X>SXS)−1
∥∥
∞

[∥∥X>S (∇tu−XSβ
∗
S)
∥∥
∞ + λMN ‖zS‖∞

]
(3.48)

≤

∥∥∥∥∥
(

X>SXS
MN

)−1
∥∥∥∥∥
∞

(∥∥X>S (∇tu−XSβ
∗)
∥∥
∞

MN
+ λ

)
(3.49)

≤
√
KCmin

(∥∥X>S (∇tu−XSβ
∗)
∥∥
∞

MN
+ λ

)
(3.50)

≤
√
KCmin

(
‖XS‖∞,∞ ‖∇tu−XSβ

∗‖∞
MN

+ λ

)
(3.51)

≤
√
KCmin

(
‖XS‖F ‖∇tu−XSβ

∗‖∞√
MN

+ λ

)
≤
√
KCmin

(√
MNK ‖∇tu−XSβ

∗‖∞√
MN

+ λ

)
(3.52)

=
√
KCmin

(√
K ‖∇tu−XSβ

∗‖∞ + λ
)

≤
√
KCmin

(√
KC(σ,‖u‖L∞(Ω))

log(N)

N3/7−r + λ

)
(3.53)

Equation 3.48 is because ∇tu
∗ = XSβS . Equation 3.49 is because ‖zS‖∞ = 1. Equa-

tion 3.50 is because of Condition 3.3.3. Inequality Equation 3.51 is because for a ma-

trix A and a vector x, we have ‖Ax‖q ≤ ‖A‖p,q‖x‖p. Here the matrix norm for ma-

trix A ∈ Rm×n in ‖A‖∞,∞ = ‖vector(A)‖∞. In inequality Equation 3.52, the norm

of matrix A ∈ Rm×n is that ‖A‖F =
√∑m

i=1

∑n
j=1 |Aij|2, and the norm of vector

a ∈ Rd is ‖a‖∞ = max1≤i≤d |ai|. Inequality Equation 3.52 is because we normalized

columns of X. Inequality Equation 3.53 is due to Lemma Lemma 3.6.2 under probability

1−O(Ne−N
r
)→ 1.
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CHAPTER 4

A HOMOTOPIC METHOD TO SOLVE THE LASSO PROBLEMS WITH AN

IMPROVED UPPER BOUND OF CONVERGENCE RATE

4.1 Introduction

Lasso [see 7] has demonstrated to be an effective methods in model estimation and selection

in the past decades. Lasso aims to enable sparsity during the estimation process when the

dimension becomes increasingly large. We review the formulation of Lasso-type estimator

in the following. Let y ∈ Rn denote a response vector and X ∈ Rn×p be a model matrix

(of predictors), and vector β∗ is the true regression coefficients. We want to estimate β.

Vector w contains white-noise entries, which are independently and identically distributed

following the Normal distribution N(0, σ2). Accordingly, the data generation mechanism

in the classical linear regression model can be written as

y = Xβ∗ + w.

The Lasso estimator β̂ is commonly written as

β̂ = arg min
β

{
1

2n
‖y −Xβ‖2

2 + λ‖β‖1

}
, (4.1)

where parameter λ controls the trade-off between the sparsity and model’s goodness of

fit. Essentially, solving Equation 4.1 is an optimization problem, where many research

in operations research and optimization have devoted to. For simplicity, we denote the

objective function as follows:

F (β) =
1

2n
‖y −Xβ‖2

2 + λ‖β‖1. (4.2)
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In this paper, we don’t consider the selection of parameter λ, which by itself has a large

literature; consequently, we don’t include λ in the notation F (β). Lasso-algorithms are

these algorithms that aim to solve Lasso problems with an objective function as in Equa-

tion 4.2. This paper considers a Lasso-algorithm that has a better provable upper bounds

in its convergence rate. The convergence rate will be derived in terms of order of compu-

tational complexity. Because there is no closed form solution of the minimizer β̂ (unless

subgradient is utilized), most Lasso-algorithms are iterative with an iteration index k. For

an iterative estimator/minimizer, their distance to the optimal estimator/minimizer can be

measured by ε-precision, whose definition is listed below.

Defination 4.1.1. Suppose β(k) is the kth iterative estimator in a certain Lasso-algorithm

and β̂ is the global minimizer that is defined as β̂ = arg minβ F (β). Recall that F (β) is

defined in Equation 4.2. For any pre-fixed ε > 0, if we have

F (β(k))− F (β̂) ≤ ε, (4.3)

then we declare that β(k) achieves the ε-precision.

The order of complexity will be utilized to measure how fast an iterative algorithm con-

verges to the global minimum. Recall that our optimization problem is to minimize the

function F (β). We obtain the iterative estimator β(k) at the kth iteration. Recall that β̂

denotes the global minimum as in Definition 4.1.1. The order of complexity measures

the number of operations needed to achieve the ε-precision defined in Definition 4.1.1.

More specifically, we adopt the big O notation as follows. The order of complexity of

a Lasso-algorithm is O
(
np1

ε

)
, if in order to achieve the ε-precision, the number of all

needed numeric operations can be upper bounded by a constant multiplies np1
ε
. Notice

that the order of complexity gives an upper bound of the number of numerical operations

in order to achieve certain precision. It does not say anything on the average performance

of the algorithm. It is possible that an algorithm with larger upper bounds performs better

140



in some cases than an algorithm with lower upper bounds. In this paper, we consider a

numerical strategy that can lead to an iterative algorithm that can achieve the aforemen-

tioned ε-precision with a lower order of complexity. Recall that ε > 0 is typically small.

In theory, an O
(
np 1√

ε

)
Lasso-algorithm has a lower order of complexity than an O

(
np1

ε

)
Lasso-algorithm. Moreover, an O

(
np log(1

ε
)
)

Lasso-algorithm has an even lower order of

complexity. We will then use numerical simulations to compare with some representative

algorithms in some well-studied cases.

Due to the nature of the objective function in the Lasso problem, which is F (β) =

1
2n
‖y−Xβ‖2

2 +λ‖β‖1, the first-order method is often used. The first term in F (β) is a nice

quadratic function, which is numerically amenable. The challenge is rooted in the second

term of F (β), the `1 regularization term ‖β‖1, which is not differentiable at the origin.

We review some state-of-the-art Lasso-algorithms, which will serve as the benchmarks of

our algorithm. [55] proposes a Lasso-algorithm using the first-gradient and the Hessian

matrix of the first term in F (β). [55] approximate 1
2n
‖y − Xβ‖2

2 by its second-order

Taylor expansion. It is computationally expensive to directly calculate the Hessian matrix

of 1
2n
‖y −Xβ‖2

2, i.e., X>X/n, especially when p is large. To avoid the time-consuming

calculation of the Hessian matrix, a key idea in [55] is to approximate the Hessian matrix

by a diagonal matrix, whose diagonal entries are the maximal eigenvalue of X>X/n. After

the quadratic approximate of the objective function, a proximal mapping is formed, where

the soft-thresholding operator can be easily applied.

Proximal gradient descent is adopted in [55]. See additional mathematical review in

subsection 4.6.1. Early foundational work on proximal gradient descent can be found in

[100, 101, 102]. As the techniques matures, they became widely used in different fields.

As a result, they have been referred to by a diverse set of names, including proximal algo-

rithm, proximal point, and so on. In the survey of [103], it can be seen that, many other

widely-known statistical methods – including, the Majorization-Minimization (MM) [see

104, 105], and the Alternating Direction Method of Multipliers (ADMM) [see 106] – fall
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into the proximal framework. In the review of the present paper, many Lasso-algorithms

follow the proximal gradient descent as well.

The classical first-order method use the gradient at the immediate previous solution. To

learn from the “history,” [24] proposes a Lasso-algorithm, which takes advantage of the

gradients at previous two solutions. Since it uses the historic information, it is also referred

as the momentum algorithm. Essentially, [24] falls into the framework of the Accelerate

Gradient Descent (AGD), which is proposed by [107], and later widely applied into many

optimization problems to speed up the convergence rate, seeing examples in [24, 108, 109,

110, 111], and many more. The mathematical details of the aforementioned two Lasso-

algorithms (as well as the coming ones) are provided in subsection 4.6.1.

The above two Lasso-algorithms update their estimates globally. On the contrary, the

third Lasso-algorithm utilizes coordinate descent to update the estimate. This method is

widely used and an corresponding R package named glmnet [see 56] has fueled its adop-

tion. The coordinate descent method has been proposed for the Lasso problem for a number

of times, but only after [56], was its power fully appreciated. Early research work on the

coordinate descent include the discovery by [112] and [113], and the convergence analysis

by [114]. There are research work done on the applications of coordinate descent on Lasso

problems, such as [115, 116, 117, 118], and so on. We choose [56] as a method to compare,

since its implementation in the R package, glmnet, is very well-known by statisticians.

The aforementioned three Lasso-algorithms do not use a surrogate for the `1 regulariza-

tion term. Different from them, the fourth Lasso-algorithm aims to find a surrogate of the

`1 penalty term. Recall that the non-differentiability of the `1 penalty at the origin makes

it hard to enable fast convergence rate when applying the gradient descent method. [119]

proposes a surrogate function of the `1 penalty by taking advantage of the non-negative

projection operator (seeing equation (2) and (3) in [119] for more details), where the sur-

rogate function is twice differentiable. Consequently, the expectation?maximization (EM)

algorithms [see 120] are used for the optimization. Among this type of Lasso-algorithms,
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we select Smooth Lasso (SL) [see 121] as a benchmark, because it is developed recently

and is an improved version of [119]. The difference from our proposed algorithm is that,

we design a homotopic path (i.e., a sequence of surrogate functions) to make the surrogate

functions closer and closer to the `1 penalty.

Another famous Lasso-algorithm utilizes the path-following idea [see 122, 123, 124].

The main idea of path-following Lasso-algorithm is described as follows. It begins with a

large penalty parameter λ, which leads all the estimated coefficients to 0. Then it tries to

identify a sequence of decreasing penalty parameter λ, such that when λ is between two

kink point, support set (the set of non-zero entries of estimated β) remains unchanged.

Moreover, the estimated β elementwisely is a linear function of λ. However, when one

is over the kink point, the support is changed. This type of algorithms have two major

drawbacks. First, it is not guaranteed to work in general cases. As of now, the work in

the current literature only establishes the path following Lasso-algorithm in special situ-

ations (see subsubsection 4.6.2 for a concrete counter example where the path following

Lasso-algorithm fails). Second, the contemporary literature indicates that determining the

number of iterations in a path following algorithm is an open question [see 122, 123]. This

indicates that there is no theoretical guarantee that the order of complexity of a path fol-

lowing approach is low, considering that the maximum number of iterations can be as large

as 2p, where p is the number of predictors (see subsubsection 4.6.2 for a detailed discus-

sion). Given the above two drawbacks, we think that our paper offers significant value to

the advancement of the existing literature. We will design a two-layer iteration algorithm

to achieve a provable faster convergence rate. To the best of our knowledge, such a faster

rate has not appeared in the literature.

4.1.1 Contribution

We propose a new Lasso-algorithm that has a better provable upper bounds in its conver-

gence rate, in terms of the order of complexity. The state-of-the-art Lasso-algorithms we
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Table 4.1: The available orders of complexity of four existing Lasso-algorithms and ours
(in the last column) for achieving the ε-precision. The common factor that involves n (the
sample size) and p (the dimensionality of the parameter) is omitted for simplicity.

method ISTA FISTA CD SL Ours
Order of complexity O(1/ε) O(1/

√
ε) O(1/ε) O(1/ε) O

(
[log(1/ε)]2

)
compare include

1. the Iterative Shrinkage-Thresholding Algorithm (ISTA) [see 55],

2. the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [see 24],

3. a Coordinate Descent (CD) algorithm[see 56] and

4. the Smooth Lasso [see 121].

These algorithms are representative in the literature. See subsection 4.6.1 for technical

details on the above four benchmark algorithms. Since the path-following Lasso-algorithm

doesn’t work for general cases and there is no theoretical guarantee of its computational

complexity is low, we exclude it from our benchmark algorithms. To show the advantage

of our proposed method, in Table 4.1, we list the provable upper bounds in convergence

rate of four benchmark algorithms and our algorithm.

We see that our algorithm achieves an order of complexity of log-polynomial of 1/ε,

while other benchmarks have order of complexity of polynomial of 1/ε. The order of

complexity of our proposed algorithm is established in Theorem 4.3.3.

4.1.2 Organization of this Paper

The organization of the rest of the paper is as follows. We develop our Lasso-algorithm in

section 4.2. The related main theory is established in section 4.3. Numerical examples are

shown in section 4.4. Some discussion are presented in section 4.5. In subsection 4.6.1, we

summarize some necessary technical details of these benchmark algorithms. A useful the-

orem on the accelerated gradient descents is restated in subsection 4.6.3. All the technical
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proofs are relegated to subsection 4.6.4.

For the notations throughout the paper, scalars are denoted by lowercase letters (e.g.,

β). Vectors are denoted by lowercase boldface letters (β) and its ith element is noted as βi.

Matrices are denoted by uppercase boldface letter (B) and its (i, j)th element is noted as

Bi.

4.2 The Proposed Algorithm

To circumvent the undesirable behavior of the `1 penalty function (‖β‖1) at the origin, we

design an algorithm that solves a sequence of optimization problem: in each subproblem,

the `1 penalty function is replaced by a surrogate function. The surrogate functions ulti-

mately converge to the `1 penalty function. Our approach falls into the general framework

of homotopic methods, therefore, we name our algorithm a Homotopy-Shrinkage (HS) al-

gorithm. Its connection to shrinkage becomes evident when we describe the algorithm in

details.

This section is organized as follows. A general description of the proposed HS algo-

rithm is shown in subsection 4.2.1. In subsection 4.2.2, we describe how to choose the

initial value of the hyper-parameter t, as well as its updating scheme. In subsection 4.2.3,

we present our design of early stopping in the inner loop, which is critical to achieve the

lower order of complexity. The design of the surrogate functions (to approximate the `1

penalty) is provided in subsection 4.2.4.

4.2.1 Overview of the Proposed Algorithm

We design our Homotopy-Shrinkage algorithm that has two layer of loops: an outer-loop

and an inner-loop. In an outer-iteration (in the outer-loop), the following objective function

is minimized

Ft(β) =
1

2n
‖y −Xβ‖2

2 + λft(β)
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where ft(β) is a surrogate function of the target function ‖β‖1. Here t > 0 is a parameter

in the function, which controls the closeness between ‖β‖1 and ft(β). More specifically, if

t decreases to zero, the function ft(β) converges to ‖β‖1. As mentioned earlier, the design

of function ft(β) is postponed to subsection 4.2.4. Each outer-iteration takes the previous

stopping position (from the previous outer-iteration) as the starting point of this iteration.

In the outer-loop, we start with a large t initially, and then gradually decrease the value of

t until the desired accuracy ε is reached. The way to decrease the value of t is a non-trivial

task to make the designed algorithm has a provable lower order of complexity. The details

on how to decrease the value of t are given later.

In an inner-loop, for a fixed t, we employ the accelerated gradient descent (AGD) to

minimize the current surrogate objective function Ft(β). Note that by design, the surrogate

function Ft(β) will be strongly convex and well conditioned, consequently a lower order

of complexity becomes achievable in the inner-loop. In particular, one can prove an log-

polynomial computational complexity for this algorithm. To summarize the above key

idea of our proposed algorithm, we present the pseudo code in algorithm 9. Details of the

Algorithm 9: Pseudo code of the proposed Homotopy-Shrinkage algorithm
Input: A response vector y, a model matrix X, a parameter λ that relates to the

Lasso.
Output: an estimator of β, which satisfies the ε-precision.

1 Hypter-parameter initialization (See subsection 4.2.2)
2 I Outer-Iteration: J while the precision ε is not achieved do
3 shrink t; /* For detailed shrinkage procedure, please refer to line 13 in algorithm 10. */
4 I Inner-Iteration: J use AGD to minimize Ft(β) until the precision of

the inner-iteration is achieved
/* Ft(β) =

1
2n ‖y −Xβ‖22 + λft(β) */

/* For detailed procedure of AGD, please refer to the inner-iteration in algorithm 10. */

proposed algorithm are discussed in the remainder of this section.
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4.2.2 Value of the Hyper-parameter in the Proposed Algorithm

The first detail we would like to discuss is the choice of the initial value of the hyper-

parameter t, which is denoted as t0. A well-designed initial point t0 is important, because

starting with an unnecessarily large t0 would end up with more shrinkage steps (i.e., the

outer-iterations), which in turns costs more numerical operations. We derive a minimal

value of t0 in Equation 4.4 in Lemma 4.2.1.

Lemma 4.2.1. Suppose in a Lasso problem, we have the response vector y ∈ Rn and a

model matrix X ∈ Rn×p. For our proposed algorithm, there exist a value t0 that satisfies

the following:

t0 ∈

{
t :

∣∣∣∣∣
p∑
j=1

M(t)ij(X
>y/n)j

∣∣∣∣∣ ≤ t

}
, ∀i = 1, . . . , p, (4.4)

where M(t) =
(

X>X
n

+ λ
3t3

[log(1 + t)]2 I
)−1

. Here X> represents the transpose of ma-

trix X, and we use this notation in the remaining of this chapter. When one chooses the

aforementioned t0 as the initial point in the proposed algorithm, we have
∣∣∣β(0)
i

∣∣∣ ≤ t0 for

any 1 ≤ i ≤ p, where β(0)
i denotes the ith entry in the vector β(0) = M(t0)X>y/n.

Proof. See subsubsection 4.6.4.

The motivation of the above lemma is to ensure that when t = t0 in our proposed

algorithm, the initial estimator β(0) is going to be bounded by t0 entry-wise.

The second detail we would like to discuss is the design of the shrinkage path of t in

line 3 in algorithm 9. This is designed as follows. First, we start with a relative large t0,

which has already been discussed above. Then, in the kth outer-iteration (k ≥ 0), we shrink

the tk to tk+1 = tk(1 − h), where h is set to be a predetermined values. In our proofs, we

will show that this can lead to a provable lower bound in the order of complexity.
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4.2.3 Early Stopping in the Inner-Loop and the Complete Algorithm

To achieve a better order of complexity, it is critical to stop the inner iteration early. Specif-

ically speaking, in the kth outer-iteration, the inner-iteration is stopped when

Ftk(β
(k)[s])− Fmin,k < ε̃k,

where β(k)[s] denotes the iterative estimator in the sth inner-iteration of the kth outer itera-

tion, and we have

Fmin,k = min
β
Ftk(β).

Here, we set ε̃k = λp
3B

[log(1 + tk)]
2, where B is the upper bound of

∣∣∣β(k)
i

∣∣∣ for all i =

1, 2, . . . , p and k = 1, 2, . . .. The justification of our choice of ε̃k is elaborated in our

proof; its detailed derivation can be found in subsubsection 4.6.4. It is worth noting that,

theoretically, our algorithm can achieve the order of complexity of O
(
(log(1/ε))2), yet,

in practice, it may not be implementable. We may have to use some alternative, such as

stopping the inner-iteration after a fixed number of steps. The matter of fact is that, the

stoping rule in the inner-iteration of our algorithm requires knowing the value of Fmin,k,

which is not possible. In simulations, it seems that we can get around it by setting a fixed

number of inner iterations.

We re-describe algorithm 9 in algorithm 10, including some of the additional details that

are discussed above. In particular, we elaborate the detailed steps of the inner-iteration,

which used to be the line 4 of algorithm 9; recall that this is an implementation of an

accelerated gradient descent algorithm.

4.2.4 Design of the replacement function ft(β)

This section discuss the design of the surrogate function ft(β), which is to replace the `1

penalty in the original objective function that is in Equation 4.2. It is widely acknowledge
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Algorithm 10: A detailed version of our proposed algorithm
Input: y ∈ Rn,X ∈ Rn×p, λ, t0, h, ε, B
Output: an estimator of β, noted as β(k), which achieves the ε-precision.

1 initialization t0, h, k = 1, β(0) =
[
X>X + 2nλ[log(1+t0)]2

3t20
I
]−1

X>y

2 I Outer-Iteration: J while F (β(k−1))− Fmin > ε do
3 s = 1

4 β(k)[0] = β(k−1)

5 β̄
(k)[0]

= β(k−1)

6 ε̃k = λp
3B

[log(1 + tk)]
2

7 I Inner-Iteration: J while Ftk(β̄
(k)[s−1]

)− Fmin,k > ε̃k do
8 β(k)[s] = (1− qs)β̄

(k)[s−1]
+ qsβ

(k)[s−1]

9 β(k)[s] =

arg minβ

{
γs

[
β>∇Ftk(β

(k)[s]) + µkV (β(k)[s],β)
]

+ V (β(k)[s−1],β)
}

10 β̄
(k)[s]

= (1− αs)β̄
(k)[s−1]

+ αsβ
(k)[s]

11 s = s+ 1

12 β(k) = β̄
(k)[s]

13 tk = tk−1(1− h)
14 k = k + 1

In line 2, Fmin = minβ F (β).
In line 4 and the rest of this paper, we use parenthesis (k) to denote the kth outer-iteration, and we use
bracket [s] to denote the sth inner-iteration.
In line 7, Fmin,k = minβ Ftk(β).

In line 8, in this paper, we choose qs as qs = q = αk−µk/Lk

1−µk/Lk
for s = 1, 2, . . ., where αk =

√
µk

Lk
. And Lk, µk

is defined as ‖∇Ftk(x)−∇Ftk(y)‖
2
2 ≤ Lk ‖x− y‖2 , Ftk(y) ≥ Ftk(x)+∇Ftk(x)(y−x)+

µk

2 ‖y − x‖22 .
In line 9, we choose γs as γs = γ = α

µk(1−αk)
for s = 1, 2, . . .. Here V (x, z) is defined as

V (x, z) = v(z)−
[
v(x) +∇v(x)>(z− x)

]
, with v(x) = ‖x‖22 /2.
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that, if the objective function is strongly convex and well conditioned, then the gradient

descent method can achieve very fast convergence rate. It is also known that the `1 norm

(‖β‖1 in our paper) is not strongly convex, while the quadratic function (such as ‖β‖2
2) can

be easily proved to be strongly convex. Motivated by these facts, we try to replace the `1

penalty (‖β‖1 in F (β) = 1
2n
‖y − Xβ‖2

2 + λ‖β‖1 ) by ft(β), which is quadratic near 0

and almost linear outside. By making this replacement, the surrogate objective function

Ft(β) = 1
2n
‖y − Xβ‖2

2 + λft(β) can achieve strongly convex. It is nontrivial to find a

good surrogate function ft(β). We list the requirements of ft(β) in Condition 4.2.1.

Condition 4.2.1. Assume function ft(x) satisfies the following conditions.

1. When t→ 0, we have f0(x) = |x|, where |x| is the absolute value function.

2. For fixed t > 0, function x 7→ ft(x) is quadratic on [−t, t], here 7→ indicates that the

left hand side (i.e., x) is the variable in the function in the right hand side (i.e., ft(x)).

We following this convention in the rest of this paper.

3. Function x 7→ ft(x) is C1. Here C1 is the set of all continuously differentiable

functions.

4. Function ft(x) has the second derivative with respective to x.

Following the requirements in Condition 4.2.1, we design ft(x) in the following equa-

tion, where the input variable x is a scalar.

ft(x) =


1

3t3
[log(1 + t)]2 x2, if |x| ≤ t,[

log(1+t)
t

]2

|x|+ 1
3|x| [log(1 + t)]2 − 1

t
[log(1 + t)]2 , otherwise.

(4.5)

Figure 4.1 displays this surrogate function ft(x) and its derivatives when the parameter

t takes different values. The first row in Figure 4.1 shows the closeness between ft(x) and

|x| when t changes, and the second and third rows present their first and second derivatives,
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respectively. It can be seen that, when t → 0, both ft(x), its first and second derivative

become closer to the counterparts of the function |x|.
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Figure 4.1: The red solid line in the first, second, third row represents the function ft(x),
its first derivative, and its second derivatives, respectively, under the scenario when t =
1, t = 0.1 and t = 0.01. The blue dashed line in the first, the second, and the third row
represents |x|, its first derivative, and its second derivatives, respectively, under the same
scenarios. For function |x|, the first and second derivatives are not defined at the origin.
This figure shows the closeness between ft(x) and |x| when t converges to zero.

It is also worth noting that when the input variable is a vector instead of a scaler, for

example if we have β = (β1 · · · βp)>, then ft(β) can be defined accordingly: ft(β) =∑p
i=1 ft(βi).

Remark 4.2.1. The design of ft(x) in Equation 4.5 is not unique but needs to satisfy some

special requirements. Generally speaking, we can assume that ft(x) has the following
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format:

ft(x) =

 d(t)x2, if |x| ≤ t,

a(t)|x|+ b(t)g(x) + c(t), otherwise.
(4.6)

The requirement in Condition 4.2.1 is equivalently transformed into :

1. both x 7→ ft(x) and t 7→ ft(x) are C1.

2. a(0) = 1, b(0) = 0, c(0) = 0, so that f0(x) = |x|.

Besides, we wish the second derivative of ft(x) has the format of f ′′t (x) = h(t) max{t, |x|}υ,

where h(t) is a function of t and υ is a constant. Accordingly, it is reasonable to suppose

that g(x) = 1
(1−υ)(2−υ)

x2−υ. Combining all the requests above, one has

a(t) =
υ

1 + υ
t1+υb(t).

Since a(0) = 1, we choose b(t) = 1+υ
υ

[log(1 + t)]1+υ. Other choice of b(t) can be sin(·)

function or other functions, which makes t1−υb(t) as an constant when t = 0.

The purpose of designing ft(β) is to replace the `1 penalty (‖β‖1) and then shrink t in

each iteration k, i.e., tk = tk−1(1 − h), where h is a parameter controlling the shrinking

degree of t. Because of the first statement in Condition 4.2.1, the replacement ft(β) gets

more and more close to ‖β‖1 as t→ 0.

Remark 4.2.2. Our idea is similar to [125] in appearance, however, the differences are as

follows.

1. [125] aims at `p penalty, where p /∈ {1, 2,+∞}, while we focus on the p = 1,

which is not discussed in [125] and the theory in [125] is not easily-extendable to the

situation when p = 1.

2. [125] minimizes a linear function instead of the quadratic residual 1
2n
‖y − Xβ‖2

2,

where the Hessian matrix of the objective function needs different treatment.
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Suppose that in the kth iteration, by replacing ‖β‖1 with ftk(β), the objective function

of the Lasso problem — F (β) = 1
2n
‖y −Xβ‖2

2 + λ‖β‖1 — is transformed into

Ftk(β) =
1

2n
‖y −Xβ‖2

2 + λftk(β). (4.7)

The surrogate function ftk(x) in Equation 4.5 has a property in the following lemma.

Lemma 4.2.2. Suppose that from the beginning of our algorithm to the end of our algo-

rithm, we have that β(k)
i ≤ B for any i ∈ {1, 2 . . . p} and k ∈ {1, 2, . . .}. Then for any

k ∈ {1, 2, . . .}, the surrogate function defined in Equation 4.5, i.e., ftk(x), has the following

property:

ftk(B)−B ≤ ftk(x)− |x| ≤ 0. (4.8)

Proof. See subsubsection 4.6.4.

4.3 Order of complexity of the HS Algorithm

This section deals with the order of complexity of the HS algorithm, i.e., how many number

of operations needed to achieve the ε-precision that is defined in Definition 4.1.1. Since our

HS algorithm involves two layers of iterations — one is for the shrinkage of t (we call it an

outer-loop), and the other is the AGD optimization (we call it the inner-loop)— the order

of complexity is mainly effected by: (i) the number of inner-iterations, (ii) the number

of outer-iterations, (iii) the number of operations in each inner-iteration. To solve these

components respectively, we discuss (i) in subsection 4.3.1, and (ii) in subsection 4.3.2.

And because (iii) is very similar to that in algorithm 11, algorithm 12, algorithm 13, and

algorithm 14, we will not discuss it separately in a section and will only discuss it briefly

in subsection 4.3.3.

153



4.3.1 Number of Inner-Iteration

Recall the line 7 - line 11 in algorithm 10, for a fixed tk, the inner-loop aims at finding an

estimator β(k), whose precision is shown in the following equation

Ftk(β
(k))− Fmin,k ≤ ε̃k, (4.9)

where ε̃k is the precision we set for the AGD algorithm on optimizing function Ftk(β) =

1
2n
‖y −Xβ‖2

2 + λftk(β) and the value of ε̃k will be specified later. We denote β̂
(k)

=

arg minβ{ 1
2n
‖y − Xβ‖2

2 + λftk(β)}, and we have Fmin,k = F (β̂
(k)

). In the kth outer-

iteration, an upper bound on the number of inner-iterations that are needed to achieve the

ε̃k is shown in the following theorem.

Theorem 4.3.1 (Inner-Loop). Recall that a Lasso problem has a response vector y ∈ Rn

and a model matrix X ∈ Rn×p. To minimize the Lasso objective function F (β) =

1
2n
‖y −Xβ‖2

2 +λ‖β‖1, we design a homotopic approach, i.e., in the kth outer-iteration of

our proposed algorithm, we use AGD algorithm to minimize a surrogate function Ftk(β) =

1
2n
‖y −Xβ‖2

2 +λftk(β). Instead of converging to the minimizer of Ftk(β), we do an early

stopping to control the total number of numerical operations. And we denote the early stop-

ping estimation as β(k)[s], where s is the number of AGD-iterations (inner-iterations). We

assume that for any k = 1, 2, . . . , s = 1, 2, . . ., we have
∣∣∣β(k)[s]
i

∣∣∣ ≤ B, where β(k)[s]
i is the

ith entry of vector β(k)[s] (i = 1, 2, . . . , p), and B is a constant. And we further assume

that our proposed algorithm stops when tk < τ . Under the above assumption, we know

that in the kth outer-iteration, the condition number of function Ftk(·) can be bounded by
3B3λmax

(
X>X
n

)
2λ[log(1+τ)]2

+
(
B
τ

)3
. Accordingly, after C1 log(1/ε̃k) inner-iterations, one is guaranteed

to achieve the following precision

Ftk(β
(k))− Fmin,k ≤ ε̃k,
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where Fmin,k = minβ Ftk(β), ε̃k = λp
3B

[log(1 + tk)]
2 and C1 is a constant that does not

depend on the value of tk.

Proof. See subsubsection 4.6.4.

Remark 4.3.1. Our assumption that the entries of β are bounded by a constant B is rea-

sonable, as such a condition has appeared widely in the literature. A popular way to justify

is that the values have to be manageable in a modern computer, which are restricted by the

largest value that can be stored in the corresponding computer platform.

Remark 4.3.2. In the above theorem, we need a condition: tk > τ , where τ > 0 is a

predetermined constant. This condition prevents function ftk(β) from converging to the

function ‖β‖. In subsection 4.5.1, we will argue that our result applies in the “warm-up”

stage of a Lasso-algorithm. That is, when tk is small enough, under some conditions, the

stopping point of our algorithm provides an estimator that is close enough to the ultimate

Lasso estimator; therefore from our estimator, we may reliably estimate the support of the

ultimate Lasso estimator, and simply run an ordinary regression on this support set. In this

sense, our result finds a “warm start” for solving the Lasso problems, at the same time,

achieves a provable faster convergence rate.

4.3.2 Number of Outer-Iteration

This section discusses the minimal number of outer-iterations needed to achieve the ε-

precision defined in Definition 4.1.1, which explains the line 2 in algorithm 10.

Theorem 4.3.2 (Number of outer-iteration). With the conditions in Theorem 4.3.1 being

satisfied, and suppose the following conditions are also satisfied:

1. For k = 1, 2, . . ., we have tk = t0(1− h)k where t0, h are pre-specified.

2. The precision of AGD in minimizing function Ftk(β) is set as ε̃k = λp
3B

[log(1 + tk)]
2,

i.e., we run the AGD until the following inequality is achieved: Ftk(β
(k)[s])−Fk,min <
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ε̃k, where quantity β(k)[s] is the iterative estimator in the sth inner-iteration at the kth

outer-iteration, and recall that Fk,min = minβ Ftk(β).

Then when k ≥ −1
log(1−h)

log
(
λpt0(2B+1)

ε

)
, our proposed algorithm finds a point β(k) such

that

F (β(k))− Fmin ≤ ε,

where Fmin = minβ F (β) with F (β) = 1
2n
‖y −Xβ‖2

2 + λ ‖β‖1 , which is defined in

Equation 4.2.

Proof. The proof is shown in subsubsection 4.6.4.

4.3.3 Order of complexity for HS Algorithm

With all the above blocks, we develop the main theory, i.e., the order of complexity, in

this section. Recall that, the definition of order of complexity is the total number of opera-

tions needed to achieve the ε-precision. The reason for us to adopt the order of complexity

instead of the running time is that the order of complexity is independent of (different)

computer platforms, while running time possibly depends on different platforms. Conse-

quently, the order of complexity provides a more reliable way for us to compare different

algorithms.

Theorem 4.3.3 (Main Theory). Under the conditions that are listed in Theorem 4.3.1 and

Theorem 4.3.2, we can find β(k) such that

F (β(k))− Fmin ≤ ε

with the number of numerical operations has the order of complexity

p2O

([
−1

log(1− h)
log

(
λpt0(2B + 1)

ε

)]2
)
.

Proof. See subsubsection 4.6.4.
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4.4 Numerical Examples

In this section, we compare the performance of HS algorithm with other state-of-the-art

algorithms through numerical experiments. As we mentioned in section 4.1, there are

many Lasso-algorithms. Proximal mapping appears to be a major tool in developing Lasso-

algorithms. We take ISTA [see 55] as a representative. Starting from the proximal map-

ping, some Lasso-algorithms utilize the accelerated gradient descent, and develop a faster

approach in proximal mapping. For this type of Lasso-algorithms, we select FISTA [see

24] as a representative. For the third type of Lasso-algorithms, we adopt coordinate de-

scent. And the last type of Lasso-algorithms apply surrogate functions to approximate the

`1 penalty; here we select SL [see 121] as an representative. Based on the theoretically

analysis in section 4.1 and subsection 4.6.1, we see that ISTA [see 55], CD [see 56] and SL

[see 121] share the same order of complexity, so we will only pick ISTA as a representative

of these three. FISTA [see 24] is also selected as a benchmark since it has the best order of

complexity among the existing Lasso-algorithms.

In this section, two numerical examples are shown. The difference between the two

simulations lies on the setting of the true parameter β. In first simulation, the ith entry

of the true parameter β ∈ Rp is generated by βi = (−1)i exp (−2(i− 1)/20) for i =

1, . . . , p. This style of parameter follows an traditional fashion, which is similar to [56]. In

our second simulation, we set βi = (−1)i exp (−2(i− 1)/20)1 {i ≤ 10} . This parameter

setting assumes that most of the entries in β is zero, which renders a case with sparse truth.

4.4.1 Simulation 1

The objective in this numerical example is to explore whether HS has better performance

than the benchmarks when estimating the true parameter under the sparse linear regression

model. For a fair comparison, the simulation setting and data generation mechanism is

similar to [56]. The difference is that in [56], the running time is compared under different
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simulation setting, while we adopt the number of numeric operations here. (Recall that

running time may depend on the platforms, while the number of numerical operations does

not.)

The data generation mechanism is as follows. We generate Gaussian data with n obser-

vations and p covariates, with each predictor is associated with a random vector xj ∈ Rn,

and the model matrix is X = (x1, · · · ,xj, · · · ,xp). Here we assume that the random vec-

tor xj follows the multivariate normal distribution with zero mean, variances being equal

to 1, and identical population correlation ρ, that is, the covariance matrix of xj is of the

following form: 

1 ρ . . . ρ

ρ 1 . . . ρ

...
... . . . ...

ρ ρ . . . 1


.

In this simulation, we set ρ = 0.1. The response values were generated by

y =

p∑
j=1

xjβj + qz, (4.10)

where the ith (1 ≤ i ≤ p) entry in vector β = (β1 · · · βp)> is generated by

βi = (−1)i exp (−2(i− 1)/20) ,

which are constructed to have alternating signs and to be exponentially decreasing. Be-

sides, z = (z1 · · · zp)> is the white noise with zi satisfying the standard normal distribution

N(0, 1). quantity q is chosen so that the signal-to-noise ratio is 3.0. The turning parameter

λ is set to be 10−3. And in our simulation, two scenarios are discussed, where the first

scenarios is n = 50, p = 20 and the second scenario is n = 50, p = 80.

Table 4.2 summarizes the numerical results of the number of operations for ISTA,

FISTA, and our algorithm to achieve the different ε-precision. And Figure 4.3 visualizes
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the numerical results in Table 4.2, where the blue line, red line, and yellow line represent

the number of numerical operations of ISTA, FISTA, and our method, respectively. The x-

axis is the log(1/ε) (Recall ε in Equation 4.3). And y-axis is the logarithms of the number

of numerical operations to achieve the corresponding ε-precision.

In both two scenarios, i.e., n = 50, p = 20 and n = 50, p = 80, there are some

common properties of these three methods (ISTA, FISTA, and Ours). Generally speaking,

as the precision ε approaches to 0, it costs more number of numerical operations for the

designed algorithms to get the optimizer that achieves the desired precision. Therefore, no

matter ISTA, FISTA or our method, the common characteristic of Figure 4.3 is that, both

three methods have an increasing tendency.

In both two scenarios, i.e., n = 50, p = 20 and n = 50, p = 80, there are also some

differences among these three methods (ISTA, FISTA, and Ours). Generally speaking, both

ISTA and FISTA requires larger number of numerical operations than that of our method.

For example, in the second scenario, when ε is 0.005, our method only requires 36, 457 op-

erations, however, ISTA and FISTA need 190, 131 and 55, 133 operations, respectively. So,

it is obvious that our method, compared with the state-of-the-art Lasso-algorithms (where

FISTA is the most efficient one), requires less number of numerical operations to achieve

the same ε-precision. In the first scenario (n = 50, p = 20) with large ε, the number of

numerical operations of the three types of algorithms are very similar, because when ε and

p are very small, the hidden constant before the complexity (O(p2/ε) for ISTA, O(p2/
√
ε)

for FISTA, and O(p2(log(1/ε))2 for HS) are dominated.

The pattern in Figure 4.3 matches our theoretical results. As we have shown in sec-

tion 4.1, the number of numerical operations of ISTA and FISTA are O(1/ε) and O(1/
√
ε),

respectively. If we take the logarithm of these two number of numerical operations, then

they ought to be O (log(1/ε)) and O
(

1
2

log(1/ε)
)
. Therefore, in principle, the slop of ISTA

and FISTA in Figure 4.3 should be 1 and 1
2
, respectively. To verify this conjecture, we

perform a linear regression and find that the slop of the ISTA curve in the right panel of
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Figure 4.3 is 0.71411, and the slop of the FISTA curve in the left panel of Figure 4.3 is

0.25211. It should be acknowledged that there is some deviation of the slops from the

theoretically predicted values, when comparing the numerical results with the theoretical

analysis. The bias in both two scenarios is because ε is not small enough. If we decrease ε

to 0, then the bias would be reduced, because the term related to ε in the complexity, i.e.,

O(p2/ε) for ISTA, O(p2/
√
ε) for FISTA, and O(p2(log(1/ε))2) for HS, will be dominated.

For our proposed algorithm, whose computational complexity is O
(
[log(1/ε)]2

)
, its shape

in Figure 4.3 should be similar to log(2 log(x)) theoretically. Yet, in real practice, it is dif-

ficult to achieve this ideal computational complexity, because in each outer-iteration, it is

difficult to know exactly when the inner-iteration should stop (see line 7 in algorithm 10).

However, through the optimal computational complexity is hard to achieve in real practice,

the computational complexity of our propose algorithm is still lower than that of ISTA and

FISTA.

Table 4.2: Numerical complexity of ISTA, FISTA, HS in the first simulation

Precision ε
method 0.05 0.03 0.02 0.01 0.009 0.008 0.007 0.006 0.005

n = 50, p = 20
ISTA 5, 070 6, 016 7, 005 9, 585 10, 101 10, 703 11, 434 12, 294 13, 369

FISTA 4, 781 5, 117 5, 453 6, 461 6, 685 6, 797 7, 021 7, 133 7, 357
Ours 5, 478 5, 478 5, 479 5, 479 5, 479 5, 479 5, 479 5, 479 6, 005

n = 50, p = 80
ISTA 37, 400 50, 277 65, 273 109, 772 119, 226 130, 799 145, 306 164, 377 190, 131

FISTA 31, 237 34, 533 37, 417 45, 657 47, 305 48, 541 50, 189 52, 249 55, 133
Ours 30, 919 30, 919 32, 765 34, 611 34, 611 34, 611 36, 457 36, 457 36, 457

1 There is the parameters settings of our HS algorithm: t0 = 3, h = 0.1, λ = 1e− 3,β(0) = 1p×1.

4.4.2 Simulation 2

In this section, we discuss another simulation setting different from that one in subsec-

tion 4.4.1. Here, we still focus on the regression, where data is generated by following

the formulation in Equation 4.10. The y,X, q, z are generated the same way as in sub-

section 4.4.1, i.e., the jth column in X has the same population correlation ρ = 0.1,

and z = (z1 · · · zp)> is the white noise with normal distribution of zi as N(0, 1) and
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Figure 4.2: Number of Operations of ISTA, FISTA, and our algorithm under different ε in
the first simulation

Figure 4.3: Empirical cumulative distribution function (left) and histogram (right) of the
1000 simulations in the first numerical example.
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q is chosen so that the signal-to-noise ratio is 3.0. The only difference between this

simulation to the one in subsection 4.4.1 lies in the setting of β. Here, we only set

the first 10 entries in β as non-zero, and the remaining entries in β is set as 0, i.e.,

βi = (−1)i exp [−2(i− 1)/20]1{i ≤ 10}.

Table 4.3 summarizes the numerical results of the number of operations for ISTA,

FISTA, and our algorithm to achieve the different ε-precisions. And Figure 4.4 visualizes

the numerical results in Figure 4.4, where the blue line, red line, and yellow line represent

the number of numerical operations of ISTA, FISTA, and our method, respectively. The x-

axis is the log(1/ε) (Recall ε in Equation 4.3). And y-axis is the logarithms of the number

of numerical operations to achieve the corresponding ε-precision.

In both scenarios, i.e., n = 50, p = 20 and n = 50, p = 80, we can see that, generally

speaking, both ISTA and FISTA requires more number of numerical operations than that

of our method. For example, for the second scenario, when ε is 0.005, our method only

requires 32, 763 operations, however, ISTA and FISTA need 179, 373 and 53, 485 opera-

tions, respectively. So, it is obvious that our method, compared with the state-of-the-art

Lasso-algorithms (where FISTA is the most efficient one), requires less number of numer-

ical operations to achieve the same ε-precision. For the first scencario (n = 50, p = 20)

with large ε, the number of numerical operations of the three types of algorithms are very

similar, because when ε and p are very small, the hidden constant before the complexity

(O(p2/ε) for ISTA, O(p2/
√
ε) for FISTA, and O(p2/(log(1/ε))2) for HS) are dominated.

Table 4.3: Numerical complexity of ISTA, FISTA, HS in the second simulation

Precision ε
method 0.05 0.03 0.02 0.01 0.009 0.008 0.007 0.006 0.005

n = 50, p = 20
ISTA 5, 242 6, 274 7, 263 9, 370 9, 757 10, 187 10, 703 11, 305 12, 122

FISTA 4, 781 5, 229 5, 565 6, 125 6, 349 6, 461 6, 573 6, 797 7, 021
Ours 5, 479 5, 479 5, 479 6, 005 6, 005 6, 005 6, 005 6, 005 6, 005

n = 50, p = 80
ISTA 39, 519 55, 330 72, 119 112, 869 120, 693 130, 473 142, 698 158, 346 179, 373

FISTA 31, 649 35, 769 39, 065 45, 657 46, 893 48, 129 49, 365 51, 013 53, 485
Ours 30, 918 32, 763 32, 763 32, 763 32, 763 32, 763 32, 763 32, 763 32, 763

1 The parameters settings of our HS algorithm: t0 = 3, h = 0.1, λ = 1e− 3,β(0) = 0.1× 1p×1
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Figure 4.4: Number of Operations of ISTA, FISTA, and our algorithm under different ε in
the second simulation.

4.5 Discussion

In our theoretical result, we required the presence of a constant τ > 0, such that tk ≥

τ for all k. Such a condition prevents the hyper-parameter t from converge to zero. In

subsection 4.5.1, we show that when the τ is chosen to be small enough, an early-stopped

homotopic approach will find the support of the global solution, therefore, one can simply

run the ordinary regression on this support set, without losing anything.

In subsection 4.5.2, we discuss other seemingly similar homotopic ideas, and articulate

the differences between theirs and the work that is presented in this paper.

4.5.1 Support Recovery and the Need for Hyper-parameter t to Converge to Zero

In Theorem 4.3.1, we assume that there is a constant τ > 0, such that tk ≥ τ for all k. Such

a condition prevents the hyper-parameter t from converge to zero. Therefore, our result

just applies to the warm-up stage of a homotopic approach in solving the Lasso problem.

In this subsection, we show that under some standard conditions that have appeared in

the literature, as long as we set τ to be small enough, the associated algorithm will find a

solution that both has small “prediction error” and “estimation error”. The mathematical
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meaning of “prediction error” is

1

n

∥∥∥X(β̃ − β̂)∥∥∥2

2
,

where β̃ = arg minβ
1

2n
‖y −Xβ‖2

2 + λft(β) for a general t and ft(β) defined in Equa-

tion 4.5, and β̂ = arg minβ
1

2n
‖y −Xβ‖2

2 + λ ‖β‖1. And the mathematical meaning of

“estimation error” in our paper is ∥∥∥β̃ − β̂∥∥∥2

2
.

In the remaining of this section, we will give two propositions, where we develop the

conditions where we would have small prediction error and estimation error, respectively.

We begin with the prediction error, i.e., 1
n

∥∥∥X(β̃ − β̂)∥∥∥2

2
. In the Proposition 4.5.1, we

declare that there is no additional conditions needed to guarantee the small prediction error.

That is, as long as we converge t→ 0, our proposed algorithm can guarantee the prediction

error goes to zero as well.

Proposition 4.5.1. For our proposed algorithm, when t → 0, we have the perdition error

1
n

∥∥∥X(β̃ − β̂)∥∥∥2

2
→ 0, where β̃ = arg minβ

1
2n
‖y −Xβ‖2

2 + λft(β) for a general t and

ft(β) defined in Equation 4.5. And β̂ = arg minβ
1

2n
‖y −Xβ‖2

2 + λ ‖β‖1.

Proof. See subsubsection 4.6.4.

After developing the prediction error, we now discuss the estimation error. A nice

property of Lasso is that, it can potentially achieve the sparse estimation when n < p, i.e.,

most of the entries in the Lasso estimator β̂ are zero, and only few of them are non-zero.

The index set of these non-zero entries are called support set, i.e., S = {i : if β̂i 6= 0;

∀ i = 1, 2, . . . , p}. To show how Lasso can realize the sparse estimation, we take X = I as

an illustration example, where I is the identity matrix. (More complicated model matrix X

can also be used, but here we use X = I to create an example.) Then we have the linear
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regression model as

y = β + w,

where y is the response vector, and w is the white noise. The Lasso estimator of the above

linear regression model is

β̂ = arg min
β

1

2n
‖y − β‖2

2 + λ ‖β‖1 .

It can be verified that

β̂i =

 sign(yi)(|yi| − nλ), if |yi| > nλ;

0, otherwise,

is the solution of the Lasso problem. Note that β̂ is sparse if y has many components with

small magnitudes. However, if we consider ft(β), instead of the `1 penalty ‖β‖1, we have

β̃ = arg min
β

1

2n
‖y − β‖2

2 + λft(β).

We can show that β̃i = 0 if and only if yi = 0. This shows that β̃ is not guaranteed to be

sparse.

Although β̃ is not sparse, we can still verify that β̃ has very small estimation error

under some specific assumptions of the model matrix X.

Proposition 4.5.2. Suppose the model matrix X in the Lasso problem has the following

three properties:

1.
∥∥∥(X>SXS

)−1
X>S

∥∥∥
F

can be bounded by a constant, where S = {i : β̂i 6= 0,∀i =

1, 2, . . . , p} with β̂ = 1
2n
‖y −Xβ‖2

2 + λ ‖β‖1 . And ‖·‖F is the Frobenius norm

defined as ‖Am×n‖F =
√∑m

i=1

∑n
j=1 |Aij|2,whereAij is the (i, j)th entry in matrix

A.
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2.
∥∥∥X†Sc∥∥∥

F
can be bounded by a constant, where Sc is the complement set of S. And

X†Sc is the pseudo-inverse of matrix XSc . The mathematical meaning of pseudo-

inverse is that, suppose XSc = UΣV, which is the singular value decomposition

(SVD) of XSc . Then X†Sc = V>Σ†U>. For the rectangular diagonal matrix Σ, we

get Σ† by taking the reciprocal of each non-zero elements on the diagonal, leaving

the zeros in place, and then transposing the matrix.

3. σmax (Σ1) < min {2, 2σmin (Σ2)}, where σmax (Σ1) returns the maximal absolute

diagonal values of matrix Σ1, and σmin (Σ2) returns the minimal absolute diago-

nal values of matrix Σ2. Matrix Σ1 is the diagonal matrix in the SVD of matrix(
X>SXS

)−1
X>SXSc +

(
X†ScXS

)>
, i.e.,

(
X>SXS

)−1
X>SXSc +

(
X†ScXS

)>
= U1Σ1V1.

Matrix Σ2 is the diagonal matrix of the SVD of matrix 1
2
X†ScXSc + 1

2

(
X†ScXSc

)>
,

i.e.,
1

2
X†ScXSc +

1

2

(
X†ScXSc

)>
= U2Σ2V2.

Then we have
∥∥∥β̃ − β̂∥∥∥2

2
→ 0 when t→ 0.

Proof. See subsubsection 4.6.4.

We notice that the above proposition requires a strong condition on the model matrix X

in order to achieve the support recovery. Releasing the conditions in the above proposition

is an interesting future research topic.

4.5.2 Other Related Homotopic Ideas

It is worth noting that, in the recent research, some researchers also realize the log-polynomial

order of complexity [see 126, 127, 128, 129, 130] in a framework similar to Lasso-algorithms.

However, we would like to clarify that, there are some essential differences between our
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paper and these papers. First, the problem formulation in these papers is totally different

from ours. The problem formulation these papers solve is that, they start at some initial

objective problem, which is a Lasso-type objective function:

1

2n
‖y −Xβ‖2

2 + λ(0)‖β‖1, (4.11)

and then they gradually decrease the large λ(0) until the target regularization λ(target) is

reached. When the λ(target) is reached, the algorithm is stopped. However, this algorithmic

solution is not the optimal in Equation 4.11. In other words, the solution of these papers is

not exactly the Lasso solution. While in our paper, our objective function stays the same

as Equation 4.2 from the beginning to the end of our algorithm. Therefore, the solution we

iteratively calculated is the minimizer of the Lasso problem in Equation 4.2. In addition to

the difference of the objective function, the assumptions between our algorithm and these

papers are also different. Specifically, these papers require more additional assumptions

than us, such as the restricted isometry property (RIP), which is used to ensure that the

all solution path is sparse. Finally, through both our paper and these papers are called

“homotopic” method, the definition of the “homotopic” is different. Specifically, these

papers use the homotopic path in the penalty parameter λ: they start from a very large λ

and then shrinkage to the target λ. This type of method is also called “path following” in

other papers, such as [123, 131, 132], and etc, instead of “homotopic path”. However, our

paper use the homotopic path in the `1 penalty λ ‖β‖1: we replace the `1 regularization

term with a surrogate function, and then by adjusting the parameters in the surrogates, to

get the surrogate approximates closer to the original `1 regularization term.
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4.6 Supplementary Material

4.6.1 Review of Some State-of-the-art Algorithms

In this section, we will show the algorithm mechanism of these four representative we

select, namely ISTA [see 55], FISTA [24, see], CD [see 56], and SL [see 121]. For each al-

gorithm, we show (i) their number of operations in an iteration, (ii) the number of iterations

to meet the ε-precision in Equation 4.3, (iii) and their according order of complexity.

Iterative Shrinkage-Thresholding Algorithms (ISTA)

ISTA aims at the minimization of a summation of two functions, g + f , where the first

function g : Rp → R is continuous convex and the other function f : Rp → R is smooth

convex with a Lipschitz continuous gradient. Recall the definition of Lipschitz continuous

gradient as follows:

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

If we let g(β) = λ‖β‖1 and f(β) = 1
2n
‖y−Xβ‖2

2 with the Lipschitz continuous gradient

L taking the largest eigenvalue of matrix X>X/n, noted as σmax(X>X/n), then Lasso is

a special case of ISTA.

The key point of ISTA lies in the updating rule from β(k) to β(k+1), i.e., β(k) → β(k+1).

It is realized by updating β(k+1) through the quadratic approximation function of f(β) at

value β(k):

β(k+1) = arg min
β
f(β(k))+〈(β−β(k)),∇f(β(k))〉+ σmax(X>X/n)

2
‖β−β(k)‖2

2 +λ‖β‖1.

(4.12)

Simple algebra shows that (ignoring constant terms in β), minimization of equation Equa-

168



tion 4.12 is equivalent to the minimization problem in the following equation:

β(k+1) = arg min
β

σmax(X>X/n)

2

∥∥∥∥∥β −
(
β(k) −

1
n
(X>Xβ(k) −X>y)

σmax(X>X/n)

)∥∥∥∥∥
2

2

+ λ‖β‖1,

(4.13)

where the soft-thresholding function in Equation 4.14 can be used to solve the problem in

Equation 4.13:

S(x, α) =


x− α, if x ≥ α,

x+ α, if x ≤ −α,

0, otherwise.

(4.14)

The summary of ISTA algorithm is presented in algorithm 11.

Algorithm 11: Iterative Shrinkage-Thresholding Algorithms (ISTA)
Input: y ∈ Rn,X ∈ Rn×p, L = σmax(X>X/n)
Output: an estimator of β satisfies the ε-precision, noted as β(k)

1 initialization;
2 β(0), k = 0

3 while F (β(k))− F (β̂) > ε do
4 β(k+1) = S(β(k) − 1

nL
(X>Xβ(k) −X>y), λ/L)

5 k = k + 1

It can be seen from line 4 in algorithm 11 that the number of operations in one iteration

of ISTA is O(p2). This is because that the main computation of each iteration in ISTA is

the matrix multiplication in X>Xβ(k). Note that the matrix X>X can be pre-calculated

and saved, therefore, the order of computational complexity is p(2p− 1) [see 133].

In addition to the operations in each iteration, we also develop the convergence analysis

of ISTA in the following equation [see 24, Theorem 3.1]. To make it more clear, we list

Theorem 3.1 in [24, Theorem 3.1] below with several changes of notation. The notations

are changed to be consistent with the terminology that are used in this paper.

Theorem 4.6.1. Let
{
β(k)

}
be the sequence generated by line 4 in algorithm 11. Then for
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any k ≥ 1, we have

F (β(k))− F (β̂) ≤ σmax(X>X/n)‖β(0) − β̂‖2
2

2k
. (4.15)

Therefore, to achieve the ε-precision, i.e., F (β(k))−F (β̂) ≤ ε, at least σmax(X>X/n)‖β(0)−β̂‖22
2ε

iterations are required, which leads to the order of complexityO(
σmax(X>X/n)‖β(0)−β̂‖22

2ε
p2) =

O(p2/ε).

Fast Iterative Shrinkage-Thresholding Algorithms (FISTA)

Motivated by ISTA, [24] developed another algorithm called Fast Iterative Shrinkage-

Thresholding Algorithms (FISTA). The main difference of ISTA and FISTA is that FISTA

employs an auxiliary variableα(k) to update from β(k) to β(k+1) in the second-order Taylor

expansion step (i.e., the one in Equation 4.12); More specifically, they have

β(k+1) = arg min
α
f(α(k))+〈(α−α(k)),∇f(α(k))〉+σmax(X>X/n)

2
‖α−α(k)‖2

2+λ‖α‖1,

(4.16)

where α(k) is a specific linear combination of the previous two estimator β(k−1),β(k−2), in

particular, we haveα(k) = β(k−1) + tk−1−1

tk
(β(k−1)−β(k−2)). FISTA falls in the framework

of Accelerate Gradient Descent (AGD), as it takes additional past information to utilize

an extra gradient step via the auxiliary sequence α(k), which is constructed by adding a

“momentum” term β(k−1) − β(k−2) that incorporates the effect of second-order changes.

For completeness, the FISTA is shown in algorithm 12.

Obviously, the main computational effort in both ISTA and FISTA remains the same,

namely, in the soft-thresholding operation of line 4 in algorithm 11 and algorithm 12. The

number of operations in each iterations of FISTA is still O(p2). Although for both ISTA

and FISTA, they have the same number of operation in one iteration, FISTA has improved

convergence rate than ISTA, which is shown in the following theorem [see 24, Theorem

4.4].
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Algorithm 12: Fast Iterative Shrinkage-Thresholding Algorithms (FISTA)
Input: y ∈ Rn,X ∈ Rn×p, L = σmax(X>X/n)
Output: an estimator of β, noted as β(k), which satisfies the ε-precision.

1 initialization;
2 β(0) , t1 = 1, k = 0

3 while F (β(k))− F (β̂) > ε do
4 β(k) = S(α(k) − 1

nL
(X>Xα(k) −X>y), λ/L)

5 tk+1 =
1+
√

1+4t2k
2

6 α(k+1) = β(k) + tk−1
tk+1

(β(k) − β(k−1))

7 k = k + 1

Theorem 4.6.2. Let
{
α(k)

}
,
{
β(k)

}
be a sequence generated by line 6 and line 4 in algo-

rithm 12, respectively. Then for any k ≥ 1, we have that

F (β(k))− F (β̂) ≤ 2σmax(X>X/n)‖β(0) − β̂‖2
2

(k + 1)2
. (4.17)

Consequently, FISTA has a faster convergence rate than ISTA, which improves from

O(1/k) to O(1/k2). This is because that, to update from β(k−1) to β(k), ISTA only con-

siders β(k−1), however, FISTA takes both β(k−1) and β(k−2) into account. To achieve the

precision F (β(k))−F (β̂) ≤ ε, at least 2σmax(X>X/n)‖β(0)−β̂‖22√
ε

iterations are required, which

leads to an order of complexity of O(
2σmax(X>X/n)‖β(0)−β̂‖22√

ε
p2) = O(p2/

√
ε).

Coordinate Descent (CD)

The updating rules in both ISTA and FISTA involve all coordinates simultaneously. In

contrast, [56] proposes a Lasso-algorithm that cyclically chooses one coordinate at a time

and performs a simple analytical update. Such an approach is called coordinate gradient

descent.

The updating rule (from β(k) to β(k+1)) in CD is that, it optimizes with respect to only

the jth entry of β(k+1) (j = 1, · · · , p) where the gradient at β(k)
j in the following equation
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is used for the updating process:

∂

∂βj
F (β(k)) =

1

n

(
e>j X>Xβ(k) − y>Xej

)
+ λsign(βj) (4.18)

where ej is a vector of length p, whose entries are all zero expect that the jth entry is equal

to 1. Imposing the gradient in Equation 4.18 to be 0, we can solve for β(k+1)
j as follows:

β
(k+1)
j = S

(
y>Xej −

∑
l 6=j

(
X>X

)
jl
β

(k)
l , nλ

)/(
X>X

)
jj
,

where S(·) is the soft-thresholding function defined in Equation 4.14. This algorithm has

been implemented into the a R package, glmnet, and we summarize it in algorithm 13.

Algorithm 13: Coordinate Descent(CD)
Input: y ∈ Rn,X ∈ Rn×p, λ
Output: an estimator of β, noted as β(k), which satisfies the ε-precision.

1 initialization;
2 β(0), k = 0

3 while F (β(k))− F (β̂) > ε do
4 for j = 1 · · · p do

5 β
(k+1)
j = S

(
y>Xej −

∑
l 6=j
(
X>X

)
jl
β

(k)
l , nλ

)/(
X>X

)
jj

After reviewing the algorithm of CD, we develop the order of complexity of CD. Firstly,

the number of operations in each iteration of CD is O(p2). It can be explained by the

following two reasons. (i) While updating β(k+1)
j (line 5 in algorithm 13), it costs O(p)

operations because of
∑

l 6=j
(
X>X

)
jl
β

(k)
j . (ii) From line 4 in algorithm 13, we can see that

all p entries of β(k+1) are updated one by one. Combining (i) and (ii), we can see that the

number of operations need in one iteration of CD is of the order O(p2).

The convergence rate of CD is derived as a corollary in [134, Corollary 3.8] and here

we list the corollary as a theorem below. We changed several notations to adopt the termi-

nology in this paper:

172



Theorem 4.6.3. Let
{
β(k)

}
be the sequence generated by the line 5 in algorithm 13. Then

we have that

F (β(k))− F (β̂) ≤ 4σmax(X>X/n)(1 + p)‖β(0) − β̂‖2
2

k + (8/p)
. (4.19)

The above equation shows that, to achieve the precision ε-precision, at least

4σmax(X>X/n)(1 + p)‖β(0) − β̂‖2
2

ε
− 8

p

iterations are required, which leads to an order of complexity of

O

([
4σmax(X>X/n)(1 + p)‖β(0) − β̂‖2

2

ε
− 8

p

]
p2

)
= O(p2/ε− 8p) = O(p2/ε).

Smooth Lasso (SL)

The aforementioned Lasso-algorithms all aim exactly at minimizing the function F (β).

On the contrary, [121] uses an approximate objective function to solve the Lasso. Their

method is called a Smooth-Lasso (SL) algorithm. The main idea of SL is that it use a

smooth function—φα(u) = 2
u

log(1 + eαu) − u— to approximate the `1 penalty, and the

Accelerated Gradient Descent (AGD) algorithm is applied after the replacement. There-

fore, the objective function of SL becomes Fα(β) = 1
2n
‖y −Xβ‖2

2 + λ
∑p

i=1 φα(βi). The

pseudo code of SL is displayed in algorithm 14.

For the computational effort, it mainly lies in the calculation of ∇Fα(w) = X>X
n

w −
X>y
n

+ v, where the v is a vector of length p, whose ith entry is −2
w2
i

log(1 + eαwi) +

2αeαwi
wi(1+eαwi )

− 1. Accordingly, the main computational effort of each iteration of SL is the

matrix multiplication in X>Xw(k), which cost O(p2) operations. On the other side, proved

by [121], the approximation error of β(k) in SL is shown in Equation 4.20.

Theorem 4.6.4. Let
{
β(k)

}
be a sequence generated as in line 5 of algorithm 14. Then we
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Algorithm 14: Smooth Lasso (SL)

Input: y ∈ Rn,X ∈ Rn×p, µ = [σ2
max(X/

√
n) + λα/2]

−1

Output: an estimator of β, noted as β(k), which satisfies the ε-precision.
1 initialization;
2 β(0) , k = 0

3 while F (β(k))− F (β̂) > ε do
4 w(k+1) = β(k) + k−2

k+1
(β(k) − β(k−1))

5 β(k+1) = w(k+1) − µ∇Fα(w(k))
6 k = k + 1

have

F (β(k))− F (β̂) ≤
4‖β(0) − β̂‖2

2σ
2
max( X√

n
)

k2
+

4
√

2λn log 2‖β(0) − β̂‖2

k
. (4.20)

So to achieve the ε-precision, SL needsO(1/ε), which results in the order of complexity

O(p2/ε).

4.6.2 Path Following Lasso-Algorithm

As mentioned in section 4.1, the path following Lasso-algorithm has two drawbacks. First,

it is not guaranteed to work in general cases. Second, there is no theoretical guarantee

that the order of complexity of a path following Lasso-algorithm is low, considering that

the maximum number of iterations can be as large as 2p, where p is the number of predic-

tors. In this section, we provide mathematical details to support the above two drawbacks.

The structure of this section is described as follows. In the “Details to Support the First

Drawback of Path Following Lasso Algorithm” section, we provide a counter example that

the path following Lasso-algorithm is not workable, which represents a general category

of design matrix X and coefficient β. In the “Details to Support the Second Drawback of

Path Following Lasso Algorithm” section, we provide mathematical details to support the

second drawback of the path following Lasso-algorithm.
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Details to Support the First Drawback of Path Following Lasso Algorithm

In this section, we provide a counter example that the path following Lasso-algorithm is

not workable. This counter example represents a general category of design matrix X

and coefficient β. We use the following counter example to argue that a path following

approach does not work in the most general setting.

Before representing the concrete counter example, let us discuss the key step in design-

ing a path following Lasso-algorithm. For a general solution derived by path following

Lasso-algorithm, i.e., β̂(λ), it is the minimizer of Equation 4.1, so it must satisfy the first

order condition of Equation 4.1:

q− λsign(β̂(λ)) = X>Xβ̂(λ), (4.21)

where q = X>y and is sign(β̂(λ)) a vector, whose ith component is the sign function of

β̂(λ):

sign(βi(λ)) =


1 if βi(λ) > 0

−1 if βi(λ) < 0

[−1, 1] if βi(λ) = 0

.

If we divide the indices of q,β,X into S = {i : β̂i(λ) 6= 0, ∀ i = 1, . . . , p} and its

complements Sc, then we can rewrite Equation 4.21 as

 qS

qSc

−
 λsign(β̂S(λ))

λsign(β̂Sc(λ))

 =

 X>SXS X>SXSc

X>ScXS X>ScXSc


 β̂S(λ)

0

 ,

where β̂S(λ) is the subvector of β only contains elements whose indices are in S and

β̂Sc(λ) is the complement of βS . Besides, sign(β̂S(λ)) is the subset of sign(β̂(λ)), only

contains the elements whose indices are in S, and sign(β̂Sc(λ)) is the complement to

sign(β̂S(λ)). Matrix XS is the columns of X whose indices are in S , and XSc is the
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complement of XS .

Suppose we are interested in parameter estimated under λ and λ−∆(∆ ∈ (0, λ)), i.e.,

β̂(λ), β̂(λ−∆). Then β̂(λ), β̂(λ−∆) must satisfy the following two system of equations:

 qS − λsign(β̂S(λ)) = X>SXSβ̂S(λ)

qSc − λsign(β̂Sc(λ)) = X>ScXSβ̂S(λ)
, (4.22)

 qS − (λ−∆)sign(β̂S(λ−∆)) = X>SXSβ̂S(λ−∆)

qSc − (λ−∆)sign(β̂Sc(λ−∆)) = X>ScXSβ̂S(λ−∆)
. (4.23)

From the above two system of equations, we have the following:

−(λ−∆)sign(β̂Sc(λ−∆)) = −λsign(β̂Sc(λ)) + ∆X>ScXS(X>SXS)−1sign(β̂S(λ)).

(4.24)

That is, if one decrease λ to λ−∆, one must strictly follow Equation 4.24.

Following the above key step in the path following Lasso-algorithm, we represent a

counter example as follows. Suppose β1 > β2 > β3 > β4 = β5 = . . . = βp = 0. The

model matrix X = (x1,x2,x3, . . . ,xp), where x1,x2 ∈ Rn is the first two columns from a

orthogonal matrix (x1,x2, x̃3, . . . , x̃p), and for j ≥ 3, we have xj = αjx1 + (1− αj)x2 +√
1− α2

j − (1− αj)2x̃j with αj ∈ (0, 1). The response vector y is generated by

y =

p∑
j=1

βjxj.

If β1, β2 are very large number, say, 200, 100, and β3 is not that large, say, 1. Then the

following algorithm works as follows:

• Iteration 0: We start with λ0 = +∞, then we know that β̂(λ0) = 0 and S0 = ∅.

• Iteration 1: When λ changes from λ0 = +∞ to λ1 = ‖q‖∞, from Equation 4.21, we

know that S1 = {1}.
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• Iteration 2: Similar to the first iteration, when λ decrease to λ2, we have S2 = {1, 2}.

• Iteration 3: This is where problem happens. From Equation 4.24, we know that

∀λ2 −∆ ∈ (λ3, λ2], we have

sign(β̂Sc2(λ−∆)) = X>Sc2XS2(X>S2
XS2)−1sign(β̂S2

(λ)).

Since sign(β̂S2
(λ)) = (1, 1)> and XS2 = (x1,x2),XSc2 = (x3, . . . ,xp), we have

the right hand side of the above equation as a all-one vector, i.e, (1, 1, . . . , 1)>. To

make the left hand side sign(β̂Sc2(λ2−∆)) equals to (1, 1, . . . , 1)>, we can only take

∆ = λ2, which gives us S3 = {1, 2, 3, . . . , p}.

However, from the data generalization, we know that the true support set is {1, 2, 3}. There-

fore, one will not be able to develop a path following algorithm to realize correct support

set recovery. At least not in the sense of inserting one at a time to the support set. In the

above example, since a path following approach can only visit three possible subsets, it

won’t solve the Lasso problem in general.

Details to Support the Second Drawback of Path Following Lasso-Algorithm

In this section, we provide more technitical details to support the second drawback of path

following Lasso-Algorithm. Recall the main idea of path following Lasso-Algorithm is

that, it begins with a large λ0, which makes the estimated β̂(λ0) = 0, and accordingly

its support set S0 = ∅ (empty set). Then it tries to identify a sequence of the penalty

parameter λ as follows:

λ0 > λ1 > λ2 > . . . > λT−1 > λT = 0,

such that for any k ≥ 1, when we have λ ∈ [λk, λk−1], the support of β̂(λ) (which is a

function of λ) i.e., Sk, remains unchanged. Moreover, within the interval [λk, λk−1], vector
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β̂(λ) elementwisely is a linear function of λ. However, when one is over the kink point,

the support is changed/enlarged, i.e., we have Sk 6= Sk−1 or even Sk ⊆ Sk−1.

A point deserves attention is that, if T , the total number of kink points is small, then the

path following algorithm is efficient, i.e., it only requires O(nTp2) numerical operations.

In particular, if the size of supports are strictly increasing, i.e., we have

|Sk−1| < |Sk| ∀k ≥ 1,

then we have T ≤ p, and accordingly the computational complexity can be bounded by

O(np3). However, it turns out bounding the value of T is an open question. In recent

papers such as [122, 123], we can see that bounding T is an open problem.

4.6.3 An Important Theorem

Our proof will rely on a result on the number of steps in achieving certain accuracy in using

the accelerate gradient descent (AGD) when the objective function is strongly convex. The

result is the Theorem 3.7 in [135]. We represent the theorem here for readers’ convenience.

We introduce some notations first. Suppose ones wants to minimize a convex function

f : X → R in a feasible closed convex set X ∈ Rp. We further assume that f is a

differentiable convex function with Lipschitz continuous gradients L, i.e., ∀x,y ∈ X, we

have

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 ,

where∇f(x) represents the gradient of function f(x). Furthermore, we assume that f is a

strongly convex function, i.e., ∀x,y ∈ X, there exist µ > 0, such that we have

f(y) ≥ f(x) +∇f(x)(y − x) +
µ

2
‖y − x‖2

2 .
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This type of function f is called the L-smooth and µ-strongly convex function. Recall that

our objective is to solve the following problem:

min
x∈X

f(x).

In the following, we present one version of the accelerated gradient descent (AGD)

algorithm. Given (x(t−1), x̄(t−1)) ∈ X×X for t = 1, 2, . . ., we set

x(t) = (1− qt)x̄(t−1) + qtx
(t−1) (4.25)

x(t) = arg min
x∈X

{
γt
[
x>∇f

(
x(t)
)

+ µV
(
x(t),x

)]
+ V

(
x(t−1),x

)}
(4.26)

x̄(t) = (1− αt) x̄(t−1) + αtx
(t), (4.27)

for some qt ∈ [0, 1], γt ≥ 0, and αt ∈ [0, 1]. And here V (x, z) is the prox-function (or

Bregman’s distance), i.e.,

V (x, z) = v(z)−
[
v(x) + (z− x)>∇v(x)

]
,

with v(x) = ‖x‖2
2 /2. By applying AGD as shown in Equation 4.25 - Equation 4.27, the

following theorem presents an inequality that can be utilized to determine the number of

iterations when certain precision of a solution is given.

Theorem 4.6.5. Let
(
x(t),x(t), x̄(t)

)
∈ X ×X ×X be generated by accelerated gradient

descent method in Equation 4.25-Equation 4.27. If αt = α, γt = γ and qt = q, for

t = 1, . . . , k, satisfy α ≥ q, L(α−q)
1−q ≤ µ, Lq(1−α)

1−q ≤ 1
γ

, and 1
γ(1−α)

≤ µ + 1
γ
, then for any

x ∈ X, we have

f
(
x̄(k)
)
− f(x) + α

(
µ+

1

γ

)
V
(
x(k−1),x

)
≤ (1− α)k

[
f
(
x̄(0)
)
− f(x) + α

(
µ+

1

γ

)
V
(
x(1),x

)
,

]
.
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In particular, if

α =

√
µ

L
, q =

α− µ/L
1− µ/L

, γ =
α

µ(1− α)
,

then for any x ∈ X, we have

f
(
x̄(k)
)
− f(x) + α

(
µ+

1

γ

)
V
(
x(k−1),x

)
.

≤
(

1−
√
µ

L

)k [
f
(
x̄(0)
)
− f(x) + α

(
µ+

1

γ

)
V
(
x(1),x

)]
. (4.28)

The above theorem gives a convergence rate of AGD under the scenario when the ob-

jective function is strongly convex. This result will be utilized in the proof of Theorem

4.3.1, which can be found in subsubsection 4.6.4.

4.6.4 Proofs

Proof of Lemma 4.2.1

Proof. In this proof, we will do two parts.

First, we will prove the existence of the initial point t0 stated in Equation 4.4. We know

that

lim
t→+∞

∑p
j=1 M(t)ij(X

>y/n)j

t

= lim
t→+∞

p∑
j=1

[X>X

n
+
λ [log(1 + t)]2

3t3
I

]−1

ij

(
X>y

n

)
j

1

t

= lim
t→+∞

p∑
j=1

[X>Xt

n
+
λ [log(1 + t)]2

3t2
I

]−1

ij

(
X>y

n

)
j

.

= 0.

The above indicates that when t is very large, the t0 defined in Equation 4.4 will exist.
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Next, we will verify that, if t0 is chosen as shown in Equation 4.4, i.e,

t0 ∈

{
t :

∣∣∣∣∣
p∑
j=1

M(t)ij(X
>y/n)j

∣∣∣∣∣ ≤ t,∀i = 1, . . . , p

}
,

we have
∣∣∣β(0)
i

∣∣∣ < t0. It can be verified that,

M(t)
X>y

n
= arg min

β


1

2n
‖y −Xβ‖2

2 +
1

3t3
[log(1 + t)]2 β>β︸ ︷︷ ︸

G(β)

 , (4.29)

where G(β) is a special case of Ft(β) when t is large enough to include all the coefficient

βi into the interval [−t, t]. Utilizing the above fact that the minimizer in Equation 4.29

when t = t0 satisfies the condition that its coordinates are within [−t0, t0], we have

|βi(t0)| =
∣∣∣∣(M(t0)

X>y

n

)
i

∣∣∣∣ =

∣∣∣∣∣
p∑
j=1

M(t0)ij(X
>y/n)j

∣∣∣∣∣ ≤ t0.

Thus, if we choose t0 as shown in Equation 4.4, i.e.,

t0 ∈

{
t :

∣∣∣∣∣
p∑
j=1

M(t)ij(X
>y/n)j

∣∣∣∣∣ ≤ t,∀i = 1, . . . , p

}
,

we can verify that ∀i = 1, 2, . . . p, |βi(t0)| ≤ t0, i.e.,
∣∣∣β(0)
i

∣∣∣ ≤ t0.

Proof of Lemma 4.2.2

Proof. Because ft(x) is a even function, we only consider the positive x in the remaining

of the proof.

First, when 0 ≤ x ≤ t, one has

ft(x)− x =
1

3t3
[log(1 + t)]2 x2 − x,
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which is a quadratic function with the axis of symmetry, 3t3

2[log(1+t)]2
being larger than t.

Therefore, one has

1

3t
[log(1 + t)]2 − t ≤ ft(x)− x ≤ 0.

Then we discuss the scenario when x > t, where

ft(x)− x =

[[
log(1 + t)

t

]2

− 1

]
x+

1

3x
[log(1 + t)]2 − 1

t
[log(1 + t)]2 ,

which is a decreasing function of variable x. Therefore,

ft(B)−B = [ft(x)− x] |x=B ≤ ft(x)− x ≤ [ft(x)− x] |x=t = ft(t)− t,

where we further have ft(t)− t = 1
3t

[log(1 + t)]2 − t ≤ 0.

By the combination of two scenario (x ≤ t and x > t), we prove the statement in

Equation 4.8.

Proof of Theorem 4.3.1

Proof. To begin with, we revisit some notations in linear algebra. For matrix A, we use

Aij to indicate the (i, j)th entry in matrix A. Besides, its maximal/minimal eigenvalue is

λmax(A)/λmin(A), respectively.

It is known that, the condition number of function Ftk(β) = 1
2n
‖y −Xβ‖2

2 + λftk(β)

is defined by the ratio between the maximal and minimal eigenvalue of its Hessian. Recall

that, the (i, j)th entry of the Hessian matrix of the surrogate function ftk(β), noted as

Htk,i,j , is

Htk,i,j =


2
3

[log(1 + tk)]
2 max{|βi|, tk}−3, if i = j,

0, otherwise.
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Note that the Hessian matrix Htk is diagonal and positive definite; therefore one can eas-

ily find its minimum and maximum eigenvalues. So the condition number of function

Ftk(β) = 1
2n
‖y −Xβ‖2

2 + λftk(β), noted as κk, is

κk =
λmax

(
X>X
n

+ λHtk

)
λmin

(
X>X
n

+ λHtk

) (4.30)

≤
λmax

(
X>X
n

)
+ λλmax (Htk)

λmin

(
X>X
n

)
+ λλmin (Htk)

(4.31)

≤
λmax

(
X>X
n

)
+ λλmax (Htk)

λλmin (Htk)

=
λmax

(
X>X
n

)
+ 2λ

3t3k
[log(1 + tk)]

2

2λ
3x3 [log(1 + tk)]

2 (4.32)

=
3x3λmax

(
X>X
n

)
2λ [log(1 + tk)]

2 +
x3

t3k

≤
3B3λmax

(
X>X
n

)
2λ [log(1 + τ)]2

+

(
B

τ

)3

. (4.33)

Equation 4.30 is due to the definition of the condition number. Equation 4.31 is because of

the two fact. First, for the maximal eigenvalue of summation of two matrix A + B, i.e.,

λmax(A + B), is no more than summation of maximal eigenvalue separately, λmax(A) +

λmax(B). Second, similar to the maximal eigenvalue, the minimal eigenvalue follows the

similar rule that λmin(A + B) ≥ λmin(A) + λmin(B). The equality in Equation 4.32 is due

to the fact that matrix Htk is diagonal with positive diagonal entries. The x in Equation 4.32

refers to

x = max {|βi| : βi is the ith entry in β} .

Equation 4.33 is because that tk ≥ τ and we assume that throughout the algorithm, all

elements in β(k)(k = 1, 2 . . .) is bounded by B.

By calling Theorem 3.7 in [135] (i.e., the theorem in subsection 4.6.3 in this paper), we
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can prove the statement in Theorem 4.3.1. The details of the proof are listed as follows. Re-

call that we want to minimize Ftk(β) for a fixed k. From the previous analysis, we can find

that Ftk(β) is Lk-smooth and µk-strongly convex, where Lk = λmax

(
X>X
n

+ λHtk

)
and

µk = λmin

(
X>X
n

+ λHtk

)
. Consequently, the condition number in the kth outer-iteration

κk = Lk
µk

can be upper bounded by
3B3λmax

(
X>X
n

)
2λ[log(1+τ)]2

+
(
B
τ

)3 for any {k = 0, 1, 2, . . . : tk ≥ τ}.

For a fixed k, when applying AGD to minimize Ftk(β), our steps, which are line 8

- line 10 in algorithm 10, follows the AGD steps that are presented in Equation 4.25-

Equation 4.27, by setting αk =
√

µk
Lk
, qk = αk−µk/Lk

1−µk/Lk
, γk = αk

µk(1−αk)
. According to Equa-

tion 4.28 in Theorem 4.6.5, if

(1− αk)s
[
Ftk(β̄

(k)[0]
)− Fk,min + αk

(
µk +

1

γk

)
V (β(k−1)[1], β̂k)

]
︸ ︷︷ ︸

Ck

−αk
(
µk +

1

γk

)
V (β(k−1)[s−1], β̂k)︸ ︷︷ ︸
Dk

≤ ε̃k, (4.34)

then Ftk(β
(k)[s]) − Fk,min ≤ ε̃k with a given ε̃k. Here in Equation 4.34, we have β̂k =

arg minβ Ftk(β) and function V (·, ·) has been defined in subsection 4.6.3.

We then solve the inequality in Equation 4.34 to get an explicit formula for the quantity

s. To achieve this goal, we simplify Equation 4.34 first. Note that quantities Ck and Dk are

defined via underlining in Equation 4.34. It can be verified that Dk ≥ 0. This is because

v(x) = ‖x‖2
2 /2 (recall the definition of v(x) in subsection 4.6.3) is a convex function, i.e.,

we have

V (β(k−1)[s−1], β̂k) = v(β̂k)−
[
v(β(k−1)[s−1]) + (β̂k − β(k−1)[s−1])>∇v(β(k−1)[s−1])

]
≥ 0.

Since Dk > 0, if we have

(1− αk)s Ck ≤ ε̃k,
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then the inequality in Equation 4.34 will be satisfied. By introducing simple linear algebra,

the above inequality can be rewritten as

(1− αk)s ≤
ε̃k
Ck
.

By taking logarithm of both sides, we have

s log (1− αk) ≤ log

(
ε̃k
Ck

)
,

which gives

s ≥
− log

(
ε̃k
Ck

)
− log (1− αk)

=
log
(
Ck
ε̃k

)
− log (1− αk)

. (4.35)

Furthermore, we know log
(

1
1−x

)
≥ x for 0 < x < 1, so if

s ≥
log
(
Ck
ε̃k

)
αk

, (4.36)

then the inequality in Equation 4.35 holds. In summary, if we have Equation 4.36, then we

have Ftk(β
(k)[s])− Ftk(β̂k) < ε̃k.

Now we will show that, both 1
αk

=
√

Lk
µk

and log(Ck) in Equation 4.36 can be bounded

by a constant that does not depend on k (or equivalently, tk). First, we prove that 1
αk

=
√

Lk
µk

can be bound. This is essentially the argument that have been used in the step Equa-

tion 4.33. Second, we prove that Ck is also bounded. Because we have

Ck = Ftk(β
(k)[0])− Fk,min︸ ︷︷ ︸
Ck,1

+αk

(
µk +

1

γk

)
︸ ︷︷ ︸

Ck,2

V (β(k−1)[1], β̂k)︸ ︷︷ ︸
Ck,3

.

Note that quantities Ck,1, Ck,2, and Ck,3 are defined via underlining in the above equation. It
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is evident that Ck,1 and Ck,3 are bounded. For Ck,2, we have

Ck,2 = µk,

because we set γk = αk
µk(1−αk)

. Since µk is bounded above by a constant, quantity Ck,2 is

bounded as well. By combining the above several block, we know log(Ck) is bounded.

In conclusion, after C1 log(1/ε̃k) inner-iterations, one is guaranteed to achieve the fol-

lowing precision

Ftk(β
(k))− Fmin,k ≤ ε̃k,

where ε̃k = λp
3B

[log(1 + tk)]
2 and C1 is a constant that does not depend on the value of tk

(or k).

Proof of Theorem 4.3.2

Proof. We start by showing that, for any t ≥ 0, one has

F (β(k))− F (β̂) ≤ λp(2B + 1)tk.
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This is because of the following sequence of inequalities for any β ∈ Rp:

F (β(k)) =
1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

∥∥∥β(k)
∥∥∥

1

=
1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

∣∣∣β(k)
i

∣∣∣
≤ 1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β
(k)
i )− λp [ftk(x)− x] |x=B (4.37)

=
1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β
(k)
i ) +

λpB

[
1−

[
log(1 + tk)

tk

]2
]
− λp

3B
[log(1 + tk)]

2 +
λp

tk
[log(1 + tk)]

2 (4.38)

≤ 1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β
(k)
i ) +

λpB

[
1−

(
1

1 + tk

)2
]
− λp

3B
[log(1 + tk)]

2 + λptk (4.39)

≤ 1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β
(k)
i ) + 2λpBtk −

λp

3B
[log(1 + tk)]

2 +

λptk (4.40)

=
1

2n

∥∥∥y −Xβ(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β
(k)
i ) + λp(2B + 1)tk −

λp

3B
[log(1 + tk)]

2

≤ 1

2n

∥∥∥y −Xβ̂
(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β̂
(k)
i ) + λp(2B + 1)tk −

λp

3B
[log(1 + tk)]

2 + ε̃k (4.41)

=
1

2n

∥∥∥y −Xβ̂
(k)
∥∥∥2

2
+ λ

p∑
i=1

ftk(β̂
(k)
i ) + λp(2B + 1)tk (4.42)

≤ 1

2n

∥∥∥y −Xβ̂
∥∥∥2

2
+ λ

p∑
i=1

ftk(β̂i) + λp(2B + 1)tk (4.43)

≤ 1

2n

∥∥∥y −Xβ̂
∥∥∥2

2
+ λ

∥∥∥β̂∥∥∥
1

+ λp(2B + 1)tk (4.44)

= F (β̂) + λp(2B + 1)tk
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where Equation 4.37 is due to the left side hand of Equation 4.8, i.e., [ftk(x)− |x|] |x=B ≤

ft(x) − |x|. And Equation 4.37 is by plugging in the value of [ftk(x)− x] |x=t0 . Equa-

tion 4.39 utilizes the inequality that tk
1+tk

≤ log(1 + tk) and inequality log(1 + tk) ≤ tk.

Equation 4.40 uses inequality 1− 1
(1+tk)2 ≤ 2tk. Equation 4.41 is because that we assume

the precision in kth inner-iteration is Ftk(β
(k))−Ftk(β̂

(k)
) ≤ ε̃k. Equation Equation 4.42 is

owing to the fact that we set ε̃k = λp
3B

[log(1 + tk)]
2. Equation 4.44 is due to the right hand

side of Equation 4.8, i.e., ft(x) − |x| ≤ 0. Equation 4.43 is because β̂
(k)

is the minimizer

of Ftk(β), so Ftk(β̂
(k)

) < Ftk(β̂). Equation 4.44 is because ftk(x) − |x| ≤ 0 in Lemma

4.2.2.

Through the above series of equalities and inequalities, we know that

F (β(k))− F (β̂) ≤ λp(2B + 1)tk. (4.45)

Besides, in the statement of the theorem, we have

k ≥ −1

log(1− h)
log

(
λp(2B + 1)t0

ε

)
,

which is equivalent to

λp(2B + 1)tk ≤ ε.

So the right side of Equation 4.45 isn’t larger than ε. Thus, we prove that, when k ≥
−1

log(1−h)
log
(
λp(2B+1)t0

ε

)
, we have F (β(k))− F (β̂) ≤ ε.

Proof of Theorem 4.3.3

Proof. The total number of numeric operations is determined by three factors, namely

(1) the number of out-iterations, (2) the number of inner-iterations, and (3) the number

of numeric operations in each inner-iterations. We adopt the assumption that different
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basic operations can be treated equally. We have discussed (1) and (2) in subsection 4.3.1

and subsection 4.3.2, and we discuss (3) briefly here. The main computational cost of an

inner-iteration in our proposed algorithm lies in line 9 of algorithm 10, which is the matrix

multiplication in ∂

∂β(k)[s]Ftk(β
(k)[s]) = X>X

n
β(k)[s] − X>y

n
+ ∂

∂β(k)[s]ftk(β
(k)[s]). With matrix

X>X
n
, X>y

n
being pre-calculated and stored at the beginning of the execution, the calculation

of ∂

∂β(k)[i]Ftk(β
(k)[s]) requires O(p2) operations.

Now we count the total number of numerical operations that are need in our proposed

method to achieve the ε precision. We know that to achieve F (β(k)) − Fmin < ε, we need

at least (Theorem 4.3.2)

N
∆
=

−1

log(1− h)
log

(
λp(2B + 1)t0

ε

)

outer-iterations. Furthermore, we know that the number inner-iteration in an inner-loop k

is O(log( 1
ε̃k

)) with a hidden constant which can be universally bounded, and the number of

operations in each inner-iteration is p2. Therefore, the total number of numerical operations

to get the estimator β(k) with precision F (β(k))− F (β̂) ≤ ε can be upper bounded by the
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following quantity:

p2

N∑
k=1

log

(
1

ε̃k

)
(4.46)

= p2

N∑
k=1

log

(
3B

λp

[
[log(1 + tk)]

2]−1
)

(4.47)

= p2

N∑
k=1

log

(
3B

λp

)
− p2

N∑
k=1

log
(
[log(1 + tk)]

2)
= p2N log

(
3B

λp

)
− 2p2

N∑
k=1

log (log(1 + tk))

≤ p2N log

(
3B

λp

)
− 2p2

N∑
k=1

log

(
tk

1 + tk

)
(4.48)

= p2N log

(
3B

λp

)
− 2p2

N∑
k=1

log (tk) + 2p2

N∑
k=1

log (1 + tk)

= p2N log

(
3B

λp

)
− 2p2

N∑
k=1

log
(
t0(1− h)k

)
+ 2p2

N∑
k=1

log (1 + tk)

≤ p2N log

(
3B

λp

)
− 2p2

N∑
k=1

log
(
t0(1− h)k

)
+ 2p2

N∑
k=1

tk (4.49)

= p2N log

(
3B

λp

)
− 2p2

N∑
k=1

[log (t0) + k log (1− h)] + 2p2

N∑
k=1

t0(1− h)k

= p2N log

(
3B

λp

)
− 2p2N log (t0)− 2p2 log (1− h)

N∑
k=1

k + 2p2

N∑
k=1

t0(1− h)k

= p2N log

(
3B

λp

)
− 2p2N log (t0)− 2p2 log (1− h)

(N + 1)N

2

+2p2 t0
[
1− (1− h)N

]
h

= O(N2)

where Equation 4.47 is derived by plugging in that ε̃k = λp
3B

[log(1 + tk)]
2. To be more

exactly, there is a hidden constant related to the big O notation in O
(

log
(

1
ε̃k

))
in Equa-

tion 4.47, however, as mention in the proof of Theorem 4.3.1, this hidden constant can be

bounded universally. So in Equation 4.47, we omit this hidden constant. Equation 4.48 is
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derived due to the inequality that log(1 +x) ≥ x
1+x

for x ≥ 0. Equation 4.49 is derived due

to the inequality that log(1 + x) ≤ x for x ≥ 0.

Proof of Proposition 4.5.1

Proof. Because β̂ is the minimizer of 1
2
‖y −Xβ‖2

2 + λ ‖β‖1, we can get its first-order

condition as:
1

n

(
X>Xβ̂ + X>y

)
+ λsign

(
β̂
)

= 0 (4.50)

And because β̃ is the minimizer of 1
2
‖y −Xβ‖2

2 + λft (β), we can get its first-order con-

dition as:
1

n

(
X>Xβ̃ + X>y

)
+ λ∇ft

(
β̃
)

= 0, (4.51)

where ∇ft
(
β̃
)

is the gradient of ft
(
β̃
)

. By subtracting Equation 4.50 from Equa-

tion 4.51, we have

1

n
X>X

(
β̃ − β̂

)
+ λ

[
∇ft (β)− sign

(
β̂
)]

= 0.

By left multiplying
(
β̃ − β̂

)>
on both sides of the above equation, we have

1

n

(
β̃ − β̂

)>
X>X

(
β̃ − β̂

)
+ λ

(
β̃ − β̂

)> [
∇ft

(
β̃
)
− sign

(
β̂
)]

= 0.

The above is equivalent to

1

n

(
β̃ − β̂

)>
X>X

(
β̃ − β̂

)
= −λ

(
β̃ − β̂

)> [
∇ft

(
β̃
)
− sign

(
β̂
)]

= −λ
(
β̃ − β̂

)>
∇ft

(
β̃
)

+ λ
(
β̃ − β̂

)>
sign

(
β̂
)

= −λ
(
β̃ − β̂

)>
∇ft

(
β̃
)

+ λβ̃
>

sign
(
β̂
)
− λβ̂

>
sign

(
β̂
)

= −λ
(
β̃ − β̂

)>
∇ft

(
β̃
)

+ λβ̃
>

sign
(
β̂
)
− λ

∥∥∥β̂∥∥∥
1
.
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Because ft (β) is a convex function, we have

1

n

(
β̃ − β̂

)>
X>X

(
β̃ − β̂

)
≤ −λ

[
ft

(
β̂
)
− ft

(
β̃
)]

+ λβ̃
>

sign
(
β̂
)
− λ

∥∥∥β̂∥∥∥
1
.

So we have

1

n

∥∥∥X(β̃ − β̂)∥∥∥2

2
≤ −λ

[
ft

(
β̂
)
− ft

(
β̃
)]

+ λ
∥∥∥β̃∥∥∥

1
− λ

∥∥∥β̂∥∥∥
1
.

When t→ 0, we have ft(β) very close to ‖β‖1, so we have 1
n

∥∥∥X (β̃ − β̂)∥∥∥2

2
→ 0.

Proof of Proposition 4.5.2

Proof. From Proposition 4.5.1, we know that

∥∥∥X(β̃ − β̂)∥∥∥2

2
→ 0

when t→ 0, where β̂ = arg minβ
1

2n
‖y −Xβ‖2

2+λ ‖β‖1 , and β̃ = arg minβ
1

2n
‖y −Xβ‖2

2+

λft(β). The above can be written as

XS

(
β̃S − β̂S

)
+ XScβ̃Sc = δ, (4.52)

where S is the support set of β̂ and ‖δ‖2
2 ≈ 0. By left multiplying

(
X>SXS

)−1
X>S on both

sides of Equation 4.52, we have

(
β̃S − β̂S

)
+
(
X>SXS

)−1
X>SXScβ̃Sc =

(
X>SXS

)−1
X>S δ, (4.53)

By left multiplying X†Sc on both sides of Equation 4.52, we have

X†ScXS

(
β̃S − β̂S

)
+ X†ScXScβ̃Sc = X†Scδ, (4.54)
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where X†Sc is the pseudo-inverse of matrix XSc . The mathematical meaning of pseudo-

inverse is that, suppose XSc = UΣV, which is the singular value decomposition (SVD) of

XSc . Then X†Sc = V>Σ†U>. For the rectangular diagonal matrix Σ, we get Σ† by taking

the reciprocal of each non-zero elements on the diagonal, leaving the zeros in place, and

then transposing the matrix.

By reorganizing Equation 4.53 and Equation 4.54 into block matrix, we have

 I
(
X>SXS

)−1
X>SXSc

X†ScXS X†ScXSc


︸ ︷︷ ︸

M

 β̃S − β̂S

β̃Sc

 =

 (
X>SXS

)−1
X>S δ

X†Scδ

 .

Through this system of equations, we can solve

∥∥∥∥∥∥∥
 β̃S − β̂S

β̃Sc


∥∥∥∥∥∥∥

2

2

as

∥∥∥∥∥∥∥
 β̃S − β̂S

β̃Sc


∥∥∥∥∥∥∥

2

2

=
∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2
=

∥∥∥∥∥∥∥M−1

 (
X>SXS

)−1
X>S δ

X†Scδ


∥∥∥∥∥∥∥

2

2

.

Because for a matrix A and vector x, we have ‖Ax‖2
2 ≤ ‖A‖

2
F ‖x‖

2
2 , we can bound∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2
as

∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2
≤

∥∥M−1
∥∥2

F

∥∥∥∥∥∥∥
 (

X>SXS
)−1

X>S δ

X†Scδ


∥∥∥∥∥∥∥

2

2

=
∥∥M−1

∥∥2

F

(∥∥∥(X>SXS
)−1

X>S δ
∥∥∥2

2
+
∥∥∥X†Scδ∥∥∥2

2

)
.

Because ‖M−1‖F ≤
√

rank(M−1) ‖M−1‖2 , we can further bound
∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2
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as

∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2

≤ rank(M−1)
∥∥M−1

∥∥2

2

(∥∥∥(X>SXS
)−1

X>S δ
∥∥∥2

2
+
∥∥∥X†Scδ∥∥∥2

2

)
= rank(M−1)

[
1

λmin(M)

]2(∥∥∥(X>SXS
)−1

X>S δ
∥∥∥2

2
+
∥∥∥X†Scδ∥∥∥2

2

)
. (4.55)

For
∥∥∥(X>SXS

)−1
X>S δ

∥∥∥2

2
in Equation 4.55, we have

∥∥∥∥∥∥∥
(
X>SXS

)−1
X>S︸ ︷︷ ︸

Q

δ

∥∥∥∥∥∥∥
2

2

= ‖Qδ‖2
2

=

|S|∑
i=1

(q>i δ)2

≤
|S|∑
i=1

‖qi‖2
2 ‖δ‖

2
2

= ‖Q‖2
F ‖δ‖

2
2 ,

where q>i denotes the ith row in matrix Q, and Q denotes
(
X>SXS

)−1
X>S . Because ‖Q‖2

F

is bounded and ‖δ‖2
2 → 0, we have

∥∥∥(X>SXS
)−1

X>S δ
∥∥∥2

2
→ 0.

For
∥∥∥X†Scδ∥∥∥2

2
in Equation 4.55, following the similar logic, we have

∥∥∥X†Scδ∥∥∥2

2
≤

∥∥∥X†Sc∥∥∥2

F
‖δ‖2

2 ,

Because
∥∥∥X†Sc∥∥∥2

F
is bounded and ‖δ‖2

2 → 0, we have
∥∥∥X†Scδ∥∥∥2

2
.

For λmin(M) in Equation 4.55, let us start with a general eigenvalue of matrix M, and

we denote the eigenvalue of M as λ(M). If we prove that all the eigenvalue of matrix

M is strictly larger than 0, than 1
λmin

(M) can be bounded. This is equivalent to prove that

M− λ(M)I is positive semidefinite for any eigenvalue λ(M).
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If we denote M∗ = M+M>

2
, then we notice that λ(M) = λ(M∗). We will verify that

M∗ − λ(M)I is positive semidefinite under the conditions of Proposition 4.5.2. To verify

it, we know that for any α,β, we have

(
α> β>

)
M∗

 α

β


=

(
α> β>

) (1− λ)I A+B>

2

A>+B
2

1
2
X†ScXSc + 1

2

(
X†ScXSc

)>
− λI


 α

β


= (1− λ) ‖α‖2

2 + β>
[

1

2
X†ScXSc +

1

2

(
X†ScXSc

)>
− λI

]
β +

α>(A + B>)β, (4.56)

where A =
(
X>SXS

)−1
X>SXSc , B = X†ScXS . For the last term in Equation 4.56, we can

apply SVD to A + B>, i.e., A + B> = U1Σ1V1, then we have

|α>(A + B>)β| = α>U1Σ1V1β

≤ σmax(Σ1)〈α>U1,V1β〉

≤ σmax(Σ1)
∥∥α>U1

∥∥
2
‖V1β‖2

≤ σmax(Σ1)
∥∥α>∥∥

2
‖β‖2

≤ 1

2
σmax(Σ1)

(∥∥α>∥∥2

2
+ ‖β‖2

2

)
,

where σmax(Σ1) is the maximal absolute value in the diagonal entry of Σ1.
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By plugging the above result into Equation 4.56, we have

(
α> β>

)
M∗

 α

β


≥ (1− λ) ‖α‖2

2 + β>
[

1

2
X†ScXSc +

1

2

(
X†ScXSc

)>
− λI

]
β

−|α>(A + B>)β|

≥ (1− λ) ‖α‖2
2 +

β>
[

1

2
X†ScXSc +

1

2

(
X†ScXSc

)>
− λI

]
β

−1

2
σmax(Σ1)

(∥∥α>∥∥2

2
+ ‖β‖2

2

)
=

(
1− λ− 1

2
σmax(Σ1)

)
‖α‖2

2 + (4.57)

β>
[

1

2
X†ScXSc +

1

2

(
X†ScXSc

)>
−
(
λ+

1

2
σmax(Σ1)

)
I

]
β,

where σmax (Σ1) is the maximal absolute diagonal value of matrix Σ1. Because we have

σ (Σ1) < 2, so the first term in Equation 4.57 is greater than 0. Besides, because the mini-

mal singular value of 1
2
X†ScXSc+

1
2

(
X†ScXSc

)>
is larger than 1

2
σmax(Σ1), i.e., 1

2
X†ScXSc+

1
2

(
X†ScXSc

)>
= U2Σ2V2 and 2σmin (Σ2) > σmax (Σ1), the second term in Equation 4.57

is also greater than 0. Thus, we prove that M∗ is a positive semidefinite matrix, whose

eigenvalue would be strictly larger than 0. According, M, which shares the same eigen-

value with M∗ also has eigenvalues strictly larger than 0. So we have 1
λmin(M)

bounded.

In conclusion, because λmin (M) is bounded,
∥∥∥(X>SXS

)−1
X>S δ

∥∥∥2

2
→ 0, and

∥∥∥X†Scδ∥∥∥2

2
→

0, we have ∥∥∥β̃ − β̂∥∥∥2

2
=
∥∥∥β̃S − β̂S∥∥∥2

2
+
∥∥∥β̃Sc∥∥∥2

2
→ 0.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

In this chapter, we summarize the contribution of the previous four chapters and discuss

the future works.

5.1 Summary of Our Contributions

This thesis have four main works, and each work is presented in one chapter. Chapter 1

discusses the hot-spots detection in spatio-temporal data. Chapter 2 improves the method-

ology in Chapter 1. Chapter 3 proposes the SAPDEMI method to identify the underlying

PDE models from noisy data. Chapter 4 develops an efficient algorithm to solve the Lasso-

type problem. The contributions of these four chapters are summarized as follows.

• Chapter 1:

In this chapter, we have three contributions. First, we focus on the hot-spots detec-

tion in the non-stationary multivariate spatio-temporal data, while most of the ex-

isting work focuses on either univariate spatio-temporal data, or the spatio-temporal

data with i.i.d. background or following simple probability distribution. Second, our

research work helps with sparse hot-spots detection in multivariate spatio-temporal

data, while the traditional SPC mainly focuses on detecting global or system-wise

hot-spots. Third, we propose to use tensor decomposition method to model mul-

tivariate spatio-temporal data, which can be easily extended to more complicated

spatio-temporal data.

• Chapter 2:

In this chapter, we improve the methodology in Chapter 1 both statistically and com-

putationally. The statistical improvement is the capability to detect hot-spots with
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temporal circularity, instead of temporal consistency as in Chapter 1. The compu-

tational improvement is the development of a more efficient algorithm with lower

computational complexity.

• Chapter 3:

The statistical contribution in this chapter is that we realize the identification of un-

derlying dynamic models, which can also be called “model selection” in the statistics

terminology, while lots of existing literature focus on “parameter estimation”. Mean-

while, we establish the statistical properties of our method in the context of model

selection, which has not been reported in the literature. The computational contri-

bution of this chapter is that our proposed method is computationally efficient in the

functional estimation stage, since it only requires the computational complexity of

the linear polynomial of sample size, which achieves the theoretical minimal lower

bound.

• Chapter 4:

We propose an efficient algorithm to solve the Lasso problem, which is faster than

the state-of-the-art algorithms for Lasso. Namely, the state-of-the-art algorithms

can only guarantee O(1/ε) or O(1/
√
ε) convergence rates, while we can prove an

O([log(1/ε)]2) for the newly proposed algorithm.

5.2 Future Research

This thesis contributes to three areas: (1) hot-spots detection in spatial-temporal data, (2)

PDE-based model identification, and (3) optimization in the Lasso-type problem. For the

above three areas, there are some promising future research ideas, whose detailed descrip-

tion is listed as follows.

• hot-spots detection in spatial-temporal data:

In both Chapter 1 and Chapter 2, we assume that after applying some transforma-
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tions to the raw data, the transformed raw data would follow the normal distribu-

tion. Specifically, in Chapter 1, we assume that the logarithm of the number of

crime events follows the normal distribution, and in Chapter 2, we assume that the

logarithm of the number of gonorrhea events follows the normal distribution. It

can be seen that, the datasets we use in Chapter 1 and Chapter 2 – the number of

crime/gonorrhea events – are both count data. In the future, we would like to re-

search on the Poisson distributions and take the effect of popularization size into

considerations.

• PDE-based model identification:

In this area, there are three promising future research directions. First, in Chapter 3,

we take the spatial variable x ∈ R as an illustration example, and it would be inter-

esting to investigate the case when the spatial variable x ∈ Rd (d ≥ 2) due to its wide

existence in practice. Second, future research could consider the interaction between

the spatial variable and the temporal variable. For instance, we can explore the time-

varying coefficient β(t) = (β1(t), . . . , βK(t))> in Equation 3.3. Besides, we can also

consider the case when the εni in Equation 3.2 has spatial-temporal patterns. Third, in

our paper, we utilize the cubic spline in the functional estimation stage, and it would

be interesting to investigate other fitting methods, such as B-splines, reproducing

kernel Hilbert space and so on.

• optimization in the Lasso-type problem:

In Chapter 4, we take the Lasso problem as an illustration example, whose lose func-

tion is the summation of squared residual, i.e., ‖y − Xβ‖2
2. Future research could

consider generalized loss functions, for instance, the Huber loss, the 0-1 loss func-

tion and so on. Moreover, future research can investigate the necessary and sufficient

conditions of the surrogate function paths to realize the homotopic method.
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