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Abstract

Data-driven machine translation paradigms—which use machine learning to

create translation models that can automatically translate from one language to

another—have the potential to enable seamless communication across language barriers,

and improve global information access. For this to become a reality, machine translation

must be available for all languages and styles of text. However, the translation quality

of these models is sensitive to the quality and quantity of the data the models are

trained on. In this dissertation we address and analyze challenges arising from this

sensitivity; we present methods that improve translation quality in difficult data

settings, and analyze the effect of data quality on machine translation quality.

Machine translation models are typically trained on parallel corpora, but limited

quantities of such data are available for most language pairs, leading to a low resource

problem. We present a method for transfer learning from a paraphraser to overcome

data sparsity in low resource settings. Even when training data is available in the

desired language pair, it is frequently of a different style or genre than we would like

to translate—leading to a domain mismatch. We present a method for improving
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domain adaptation translation quality.

A seemingly obvious approach when faced with a lack of data is to acquire more

data. However, it is not always feasible to produce additional human translations. In

such a case, an option may be to crawl the web for additional training data. However,

as we demonstrate, such data can be very noisy and harm machine translation quality.

Our analysis motivated subsequent work on data filtering and cleaning by the broader

community.

The contributions in this dissertation not only improve translation quality in

difficult data settings, but also serve as a reminder to carefully consider the impact of

the data when training machine learning models.

Primary Reader and Advisor: Philipp Koehn

Secondary Readers: Kevin Duh & Matt Post
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Imagine a world where everyone can access the information they need, no matter

what language they speak.

Human translators play an important role in global communication, but they can

only translate around 2,000 words a day (Chan, 2002). In contrast, current machine

translation systems can translate that many words (or more) per second (Heafield

et al., 2020).1 Additionally, there are thousands of languages spoken worldwide;

it is not always easy (or affordable) to find a human translator who can translate

between particular languages, or who can translate a particular style of text. Machine

translation (MT) is a subarea of natural language processing (NLP) that has the

potential to fill the gaps to enable seamless communication across language barriers,

and improve global information access.

However, for this to become a reality, MT must be available for all languages and

styles of text.

Automatic translation has been a dream for decades, beginning with human-written

translation rules applied by a computer. More modern approaches have treated

machine translation as a machine learning problem, using existing human translations

to learn high-output-dimensional structured-prediction translation models. Recent

improvements in machine translation have made it more widely usable, partly due

1There are also computer assisted/aided translation (CAT) methods which use machine translation
to assist human translators (Knowles and Koehn, 2016; Wuebker et al., 2016).
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to deep neural network approaches. Neural machine translation is now deployed

commercially, including in consumer facing applications by Microsoft, Google, and

Facebook, among others. When trained on large high quality corpora, such models

have even been shown to be near human quality in specific languages and domains

where training data is abundant (Hassan et al., 2018).

However, machine translation is not yet effective for all settings and use-cases

since—like most deep learning algorithms—neural machine translation is sensitive

to the quantity and quality of the training data, and many of the situations where

this technology is most needed lack large, high quality corpora. This is the focus of

my work:2 overcoming data challenges by improving machine translation in settings

which lack sufficient high quality corpora.

1.2 Overview

Machine translation models translate a sentence in the source language to a sentence

in the target language (e.g., translating from Spanish to English). Such models are

typically trained on pairs of sentences that were originally translated by humans. The

current state-of-the-art solution to this machine learning problem is neural machine

translation (NMT), where models are deep neural networks with parameters estimated

by training on the parallel training data.

2With the exception of the introduction and conclusion, the main body of this dissertation uses
the first person plural (‘we’) rather than the singular (‘I’). This is to both reflect standard practice
in the field, and also to respect contributions made by collaborators in the case of joint work.
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Limited quantities of such data are available for most language pairs, leading to a

low resource problem. We present a method for transfer learning from a paraphraser

to overcome data sparsity in low resource settings in Chapter 3.

Even when training data is available in the desired language pair, it is frequently

formal speech or news—leading to a domain mismatch when models are used to

translate a different type of data from most of what they were trained on. We present

a method for improving domain adaptation translation quality in Chapter 4.

Neural machine translation currently performs poorly in domain adaptation and

low resource settings (Koehn and Knowles, 2017; Sennrich and Zhang, 2019). A

seemingly obvious approach when faced with a lack of data is to go get more data.

This is often the best way to improve translation quality. However, it is not always

feasible to produce additional human translations. In such a case, an option may

be to crawl the web for additional training data. However, such data can be very

noisy and harm machine translation quality— particularly neural machine translation

quality—as we show in Chapter 5. We will also discuss some of the noise mitigation

methods that were inspired by our work in Chapter 5.

1.3 Publications

Portions of this dissertation have been previously published, and additional work

completed during my doctoral studies has also been published. Here I categorize and
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briefly summarize the papers.

1.3.1 Low Resource Machine Translation

The overarching challenge in low resource machine translation is data sparsity. I

have addressed this using a paraphraser by:

• Generating additional training data by paraphrasing one side of a parallel corpus

(Hu, Khayrallah, Culkin, Xia, Chen, Post, and Van Durme, 2019a).

• Simulating training on many possible translations using a paraphraser in the

training objective (Chapter 3; Khayrallah, Thompson, Post, and Koehn, 2020a).3

A specific challenge in low resource MT is vocabulary coverage; words in the text

we would like to translate are often unobserved in the parallel training corpus. I

developed methods to improve translation of rare and unknown words including:

• Morphological segmentation to improve statistical machine translation of rare

words (Ding, Duh, Khayrallah, Koehn, and Post, 2016).

• Generation of lexical translations and integration of those translations in

statistical machine translation (Gujral, Khayrallah, and Koehn, 2016).

• Morphological re-inflection to generate additional forms of words (Cotterell,

Vylomova, Khayrallah, Kirov, and Yarowsky, 2017).

3This paper was nominated for best paper at WeCNLP 2020.
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CHAPTER 1. INTRODUCTION

• Integration of lexical translations in statistical machine translation (Shearing,

Kirov, Khayrallah, and Yarowsky, 2018).

• Integration of lexical translations in neural machine translation (Thompson,

Knowles, Zhang, Khayrallah, Duh, and Koehn, 2019a).

1.3.2 Domain Mismatch

I have addressed the problem of domain mismatch by:

• Proposing a method for combining neural and statistical MT to reduce inaccurate

translations that would confuse users, and applying it to domain adaptation

(Khayrallah, Kumar, Duh, Post, and Koehn, 2017).

– Applying Khayrallah et al. (2017) to low resource machine translation

(Ding, Khayrallah, Koehn, Post, Kumar, and Duh, 2017).

• Adding a regularization term during adaptation that keeps the model output from

differing too much from the original generic model, and improves performance

in the domain of interest (Chapter 4; Khayrallah, Thompson, Duh, and Koehn,

2018a).

• Analyzing models during adaptation (Thompson, Khayrallah, Anastasopoulos,

McCarthy, Duh, Marvin, McNamee, Gwinnup, Anderson, and Koehn, 2018).
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• Reducing forgetting of original domain knowledge during adaptation (Thompson,

Gwinnup, Khayrallah, Duh, and Koehn, 2019b).

1.3.3 Noisy Training Data

Towards addressing the challenge of noisy training data I have:

• Demonstrated that web-crawled training data can contain noise that degrades

translation quality (Chapter 5; Khayrallah and Koehn, 2018).4

• Organized a shared task on filtering web-crawled data to address that noise

problem (Koehn, Khayrallah, Heafield, and Forcada, 2018).

• Applied a method for filtering noisy data (Khayrallah, Xu, and Koehn, 2018b).

1.3.4 Additional NLP Contributions

In addition to the three focus areas of this dissertation, I have contributed to other

areas of NLP, including:

• Creating an interface for teaching about machine translation (Khayrallah,

Knowles, Duh, and Post, 2019).

• Developing a multiview learning method to incorporate multiple views of data.

This work was originally motivated by improving word-embeddings for use in

4This paper won the Outstanding Contribution Award at the 2018 Workshop on Neural Machine
Translation and Generation (WNMT).
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bilingual lexicon induction to be used to translate out of vocabulary words, but it

ended up being effective for phonetic transcription from acoustic & articulatory

measurements, recommending hashtags, and recommending friends on a dataset

of Twitter users (Benton, Khayrallah, Gujral, Reisinger, Zhang, and Arora,

2019).

• Generating a comprehensive list of translations (Khayrallah, Bremerman,

McCarthy, Murray, Wu, and Post, 2020b).

• Applying simulated multiple reference training (Chapter 3; Khayrallah et al.,

2020a) to non-task oriented dialog (Khayrallah and Sedoc, 2020).

• Proposing a linguistically motivated diagnostic for the ‘I don’t know’ problem

in non-task oriented dialog (Khayrallah and Sedoc, 2021).
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In 2015,1 statistical machine translation (SMT) was working well (Bojar et al.,

2015), but a new paradigm (neural machine translation; Kalchbrenner and Blunsom,

2013) was becoming competitive (Jean et al., 2015a).

In some ways neural machine translation (NMT) revolutionized the field—it led to

higher translation quality in high resource settings, and new perspectives on transfer

learning (as applied in Chapters 3 and 4). This new paradigm also came with new

challenges—different computer hardware requirements, less fidelity, and less robustness

(as explored in Chapter 5 ). Additionally, some familiar challenges remained: low

resource and domain mismatch settings as explored in Chapters 3 and 4.

As a background to the remaining chapters, we provide brief history of machine

translation, followed by a high level introduction to the machine translation paradigms

we will use in this thesis (SMT and NMT). Additionally, we will discuss how such

systems are evaluated. Perhaps most importantly—particularly in the context of this

thesis—we will discuss the role of different types of data in machine translation.

2.1 Historical Context

Automatic translation has been a dream for decades, if not longer. We review this

history to not only provide perspective, but also to contextualize the current state of

the art models, and highlight the fact that many of the current challenges are long

standing ones.

1When I began my doctoral studies.
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babelfish.altavista.com, was launched on December 9, 1997, named after a

fictional idea of a fish that could be placed to one’s ear and translate between languages

(Adams and Perkins, 1985). This may have been the first publicly facing machine

translation service.

But well before that, in a 1949 letter to Norbert Wiener, Warren Weaver commented

(Hutchins, 1997):

Also knowing nothing official about, but having guessed and
inferred considerable about, powerful new mechanized methods in
cryptography—methods which I believe succeed even when one does not
know what language has been coded—one naturally wonders if the problem
of translation could conceivably be treated as a problem in cryptography.
When I look at an article in Russian, I say “This is really written in
English, but it has been coded in some strange symbols. I will now proceed
to decode.”

This framing of the translation problem as code breaking has left its mark on the

vocabulary of the field. ‘Decoding’ is often used to describe the process of generating

a translation, and ‘encoder’ and ‘decoder’ are used to describe parts of neural machine

translation models.

After a lack of optimism from Wiener, Weaver responded:

Suppose we take a vocabulary of 2,000 words, and admit for good measure
all the two-word combinations as if they were single words. The vocabulary
is still only four million: and that is not so formidable a number to a
modern computer, is it?

As we will discuss in Section 2.4.4, balancing the size of the vocabulary remains

a challenge, even to ‘modern’ computers in 2021, over 70 years after the original

correspondence.
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2.2 Data Driven Machine Translation

Data driven machine translation consists of models, evaluation of those models,

and data to train the models. We will describe each of these in subsequent sections.

Machine Translation is a structured prediction problem, with a high dimensional

output space (vocabulary) and with many acceptable sequences (translations) for each

example. There have been many different approaches to solving this problem. We will

review the two data driven paradigms that will be referenced in later chapters of this

thesis: statistical machine translation and neural machine translation.

We can describe the process of translation as finding the most likely target sentence

y given a source sentence x.

This can be written mathematically as:

arg max
y

p(y|x) (2.1)

Statistical machine translation, and neural machine translation each have different

ways of learning probability distribution from data.
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2.3 Statistical Machine Translation

We give a high level overview of statistical machine translation, with a focus on

phrase based machine translation (Koehn et al., 2003).2 We provide this as background

for Chapter 5; for a more thorough explanation, consider the textbook by Koehn

(2009), or the book chapter by Osborne (2010).

Statistical machine translation learns to translate between a source and a target

language from both parallel and monolingual corpora.

Using Bayes rule, we can break Equation 2.1 down into:

arg max
y

p(y|x) = arg max
y

p(x|y)p(y)

p(s)
(2.2)

However, when translating a given sentence x, p(x) will always be the same, leaving:

arg max
y

p(y|x) = arg max
y

p(x|y)p(x) (2.3)

Equation 2.3 is referred to as a noisy-channel model, and comes from information

theory (Shannon, 1948). This brings us back to the analogy by Weaver; the noisy

channel is modeling translation under the assumption that the sentence was intended

to be in the target language, but got distorted in a noisy channel and ended up in the

source language.

2We note that there are other statistical machine translation approaches such as hierarchical
phrase-based models (Chiang, 2007) and syntax-based models (Galley et al., 2004; Galley and
Manning, 2008)
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The noisy-channel model requires p(x|y) and p(y) (and a search for the arg max).

p(y) is a language model, it predicts the probability of each word, given some previous

words (p(yi|yj<i)). This can be learned from monolingual text. N-gram language

models are most typically used, and these can be learned from either the target side

of the parallel text, or from additional monolingual data.3

p(x|y) is the translation model. We will provide a high level overview, and note

that modeling p(x|y) is where the variety of statistical machine translation paradigms

differ.

The translation model is trained on a parallel corpus.4 Based on that parallel

corpus, an alignment is learned between words in the source and target sentences.

Then phrasal translations are extracted based on those alignments. Note that since

alignment is done within a sentence pair, a phrase translation cannot be extracted if

the source and target phrase do not occur in an aligned sentence pair.

In practice, a variety of features go in the model, weights on which are then learned

during tuning.

‘Decoding,’ or generating a translation, is a search process. For each hypothesis, the

target sentence is typically generated phrase by phrase, in order,5 but not necessarily

in order of the source sentence; phrases from the source sentence can be translated

in any order. A phrase is selected from the input sentence, and then a translation

3Monolingual data is typically easier to acquire, and increasing the amount for language model
training typically improves translation quality, especially since it might be more domain relevant.

4Finding aligned documents and extracting aligned sentences are also steps in the data gathering
pipeline, but are beyond this summary.

5e.g., ‘left-to-right’ for English.
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is chosen for it. In addition to the probability of that translation, language model

probabilities and other feature scores are combined for scoring. Since the problem is

NP-hard, beam search is typically used.

2.4 Neural Machine Translation

Neural machine translation (Kalchbrenner and Blunsom, 2013) describes a variety

of approaches that use ‘end to end’ neural networks for translation. These models are

typically trained on pairs of parallel sentences6 and use backpropagation of a loss to

learn the weights of the neural network (Rumelhart et al., 1986).

The first successful approaches to neural machine translation used encoders and

decoders (Sutskever et al., 2014; Cho et al., 2014), typically based on recurrent neural

networks or variants. The introduction of attention allowed for a focus on different

parts of the full input sequence and improved translation quality (Bahdanau et al.,

2015). The Transformer model, introduced by Vaswani et al. (2017), addresses the

recency bias of recurrent neural networks by forgoing recurrent connections in favor of

more attention throughout the model.

Regardless of the architecture of the models, neural machine translation models

typically produce tokens one by one, and typically generate the target sentence in

order.7 This is done by taking the softmax over the size of the vocabulary, and

6Though document level approaches have been explored (e.g., Junczys-Dowmunt, 2019).
7e.g., ‘left-to-right’ for English
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choosing the highest probability token.8

During standard neural machine translation training, the reference is: (1) used in

the training objective; and (2) conditioned on as the target prefix.9

2.4.1 NLL Objective

Neural machine translation models are typically trained using negative log likelihood

(NLL) with respect to a single reference. The standard negative NLL training objective

in NMT, for the ith target word in the reference y is:1

LNLL = −
∑
v∈V

[
1{yi = v} (2.4)

× log pmt(yi = v |x, yj<i)
]

where V is the vocabulary, 1{·} is the indicator function, and pmt is the MT output

distribution (conditioned on the source x, and on the previous tokens in the reference

yj<i). Equation 2.4 computes the cross-entropy between the MT model’s distribution

and the one-hot reference.

8Beam search can also be used.
9In autoregressive NMT inference, predictions condition on the previous target tokens. In training,

predictions typically condition on the previous tokens in the reference, not the model’s output (teacher
forcing; Williams and Zipser, 1989).
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2.4.2 Knowledge Distillation

An alternative approach is (word-level) Knowledge Distillation (Hinton et al., 2015;

Kim and Rush, 2016) which assumes access to a teacher distribution (pteacher(y |x))

and minimizes the cross entropy with the teacher’s probability distribution.

The knowledge distillation training objective for the ith target word in the reference

y, given the source x, with a target vocabulary V is:

LKD = −
∑
v∈V

[
pteacher(yi = v | y, yj<i)

× log
(
pmt(yi = v |x, yj<i)

)]

The teacher and student each condition on the previous reference tokens (yj<i).

Kim and Rush (2016) introduced sequence-level knowledge distillation. This

re-frames knowledge distillation as a data augmentation problem: the teacher model

is used to generate full sequences, which are then paired with the original source to

form a parallel corpus which the child is trained on (using NLL).

2.4.3 Regularization

Regularization is important part of machine learning models to prevent overfitting.

Examples used in neural machine translation include: dropout and label smoothing.

Srivastava et al. (2014) propose dropout to prevent overfitting in neural networks.
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This technique randomly selects some nodes to be ignored or ‘dropped out’ during

training, forcing other nodes to adapt.

Label smoothing spreads some probability mass over all non-reference tokens

equally (Szegedy et al., 2016). It can be viewed as a weighted average between the

(one-hot) gold target, and the uniform distribution over all the labels (typically with

a larger weight on the gold target). Müller et al. (2019) analyze label smoothing and

find that it not only improves generalization, but also improves model calibration,

which in turn improves beam search.

2.4.4 Subword Vocabularies

One of the bottlenecks of machine translation is taking the softmax over the target

vocabulary; this is slow. Additionally, word embeddings are a large percentage of the

memory used by the model.

For these reasons, early neural machine translation models limited their vocabularies

to a fixed size,10 replaced rare words with an ‘unk’ token, and then backed off to a

dictionary (Jean et al., 2015b; Luong et al., 2015).

An alternative approach is to break up rarer words into smaller units. Morphological

segmentation and compound splitting were explored for statistical machine translation

(e.g., Nießen and Ney, 2000; Koehn and Knight, 2003; Virpioja et al., 2007; Stallard

et al., 2012).

10This size tended to range from 30K to 100k tokens.
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The first widely used word segmentation approach for neural machine

translation—proposed by Sennrich et al. (2016c)—adapted the byte pair encoding

(BPE; Gage, 1994) compression algorithm for this task. Byte pair encoding iteratively

merges the most frequently adjacent pair of bytes and replaces them with a new

byte. Sennrich et al.’s adaptation for NMT begins by initializing the vocabulary with

all characters found in the text. The most frequently occurring pair of characters

(perhaps ‘t’, ‘h’ in English) is replaced with a new symbol (e.g., ‘th’) and this new

symbol is added to the vocabulary. This process continues until a preset maximum

number of merges is conducted. The final vocabulary is the initial character set, plus

the new symbols created by merges. In practice, merges are not allowed across word

boundaries for efficiency. When the segmentation is applied to text, it is indicated by

a special marking allowing the segmentation to be removed.11 Chapters 4 and 5 use

BPE.

In 2018 another segmentation algorithm (Kudo, 2018) was proposed, and released

as part of the SentencePiece tool kit (Kudo and Richardson, 2018). While BPE

assumes that the data has been tokenized into words,12 SentencePiece does not have

that assumption, and also does not require tokenization as a preprocessing step.13

11e.g. ‘underneath’ might get segmented as under@@ ne@@ ath. The original can be recovered
with the sed command sed -r ’s/(@@ )|(@@ ?$)//g’).

12While this assumption is somewhat reasonable for some languages such as English which separate
words with white space, spaces are not required in some other languages, such as Japanese and
Chinese.

13SentencePiece treats space as a ‘character’ by replacing it with a special symbol
(‘ ’). Segmentation can be removed with the python command detokenized =

’’.join(segmented).replace(‘ ’, ’ ’).
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SentencePiece releases a variety of approaches. In Chapter 3, we use the unigram

model, which assumes that the probability of a sequence of subwords is the product of

the probability of those subwords. Finding the most probable segmentation is then an

argmax, which can be computed using the Viterbi algorithm (1967). Straightforward

EM is not possible in this case, so a modified iterative algorithm is used to learn the

vocabulary and probabilities.

Chitnis and DeNero (2015) proposed a word segmentation model for neural machine

translation using Huffman encoding (1952), but unlike the approaches of Sennrich

et al. (2016c) and Kudo (2018), the segmentation based on Huffman encoding does

not produce symbols that are interpretable as subword units, and cannot generalize

to translate and produce new words unobserved at training time.

While early NMT models used subword vocabularies as large as possible (e.g.,

30-100k tokens), there is evidence that smaller vocabulary sizes improves translation

quality, particularly for lower resource settings (Ding et al., 2019), a trend followed

by Guzmán et al. (2019) and we follow in Chapter 3. Using a smaller vocabulary

means even relatively common words will be segmented during training. This reduces

sparsity and may allow the model to learn how to translate rare variants of those

words. It is important to note that these automatic segmentation algorithms do not

aim to explicitly learn morphologically plausible subword units.14

14In Ding et al. (2016), we explore both BPE segmentation and morphological segmentation for
SMT.
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2.5 Comparing Statistical and Neural

Machine Translation

Statistical machine translation translates discrete tokens explicitly, and a word can

only be generated by the model if it is part of a phrase pair that also occurred in a

parallel sentence pair in the training data. This level of fidelity does not apply in neural

machine translation. While neural machine translation models do perform better in

general—in part due to their ability to generalize—this allows them to ‘hallucinate’

(generate output unrelated to the input). Unlike inadequate translations in statistical

machine translation—which often take the form of disfluent outputs—neural machine

translation errors are often fluent in the target language, making them difficult to

identify by a monolingual speaker (Martindale and Carpuat, 2018; Martindale et

al., 2019; Martindale, 2020). As we will discuss in Chapter 5, NMT struggles with

robustness to certain types of noise—both in training and in decoding.

A variety of approaches combined neural and statistical machine translation in

hybrid systems to balance the benefits of each paradigm (e.g., Devlin et al., 2014;

Junczys-Dowmunt et al., 2016; Stahlberg et al., 2016; Mi et al., 2016; Stahlberg et al.,

2016; Stahlberg et al., 2017; Khayrallah et al., 2017).

Despite producing higher quality translations than statistical machine translation

in high resource single domain settings, initial neural machine translation models

under-performed statistical machine translation models in several difficult data
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conditions such as translating under domain mismatch, in low resource settings,

when translating rare words (Koehn and Knowles, 2017), and noisy data settings

(Khayrallah and Koehn, 2018). However, more recent work has mitigated this reduction

in translation quality. Neural machine translation does have properties which can

make it advantageous in some of these settings: e.g, the segmentation of words into

subword units (which may allow for learning of different morphological variants) and

the transfer learning approaches neural machine translation enables.

2.6 Evaluation

While the gold-standard for evaluation of machine translation models is human

evaluation, that is not always feasible.15 There are a variety of different automatic

metrics for machine translation that compare the similarity between the machine

translation model’s output and a human reference translation.16 This similarity can

be judged in a variety of ways.17 The current standard is the BLEU score (Papineni

et al., 2002), which is a weighted n-grams precision between the machine translation

output and human reference:

15In addition to potentially being expensive, human evaluation cannot be directly optimized
towards, and is not consistent (two different evaluators may give different responses).

16While we still depend on a human reference, this can be reused to evaluate many different
systems, rather than just one.

17e.g.: Papineni et al. (2002), Doddington (2002), Lavie and Agarwal (2007), Lo and Wu (2011),
Stanojević and Sima’an (2014), Gupta et al. (2015), Gupta et al. (2015), Popović (2015), Popović
(2017), Lo (2017), Shimanaka et al. (2018), Tiedemann and Scherrer (2019), Mathur et al. (2019), Lo
(2019), Chow et al. (2019), Yankovskaya et al. (2019), Zhang et al. (2020), Sellam et al. (2020), and
Thompson and Post (2020a).
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BLEU4 = min(1,
output length

reference length
)

4∏
i=1

precisioni (2.5)

Where precisioni is the precision of i-grams (e.g. the ratio of correct i-word phrases

to the total number of i-grams in the machine translation output.) This gives a score

between 0 and 1, which is typically scaled to be between 0 and 100 for readability.

BLEU is typically computed over a corpus, rather than on a sentence level.

While BLEU is beginning to show its age and may not be ideal for comparing

extremely similar quality systems—e.g., very high quality systems (Ma et al., 2019;

Mathur et al., 2020)—it currently remains the standard metric after nearly two decades.

It is important to note that BLEU scores can only be directly compared on a single test

set, and cannot be compared across languages. Since BLEU computes n-gram matches,

tokenization influences the score, and BLEU can also only be directly compared with

consistent tokenziation. SacreBLEU (Post, 2018)18 is a package that re-implements

the tokenization of mteval-v13a.pl, the official script of the Conference on Machine

Translation (WMT) evaluations.19

18github.com/mjpost/sacrebleu
19github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl
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2.7 Data

Like most machine learning algorithms, data-driven machine translation (including

both SMT and NMT) typically requires a ‘training’ data set, and a ‘test’ set for

reporting results. The former should be as large as possible, and the latter is typically

on the order of 1,000 to 3,000 sentences. Statistical machine translation uses a tuning

set to learn the weights of different features. Neural machine translation uses a

development (dev) set for model selection from checkpoints or for early stopping. Both

tuning and development sets are typically the size of test sets.

Machine translation models are typically trained on a parallel corpus, which consists

of pairs of sentences originally translated by human translators20 although other forms

of data can be incorporated in training as well. Table 2.1 shows a toy example of a

parallel corpus.21

La liebre y la tortuga. The hare and turtle.
La tortuga verde. The turtle is green.
El conejo tiene orejas. The rabbit has ears.
Una liebre rápida. A fast hare.

Table 2.1: Example Spanish-English parallel training data.

Recent improvements in machine translation modeling have made it more widely

usable, however, translation quality still heavily depends on data quality and quantity.

An obvious solution to problems of data scarcity is to get more data. This can

20The process of extracting these sentences is known as sentence alignment. See Koehn (2009) for
a description of the problem, and Thompson and Koehn (2019) for a recent approach.

21This can also be referred to as bitext, parallel text, or parallel data.
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come in the form of transfer learning, data augmentation, and gathering additional

parallel data from the web.

2.7.1 Transfer Learning

We can generalize the problem of domain adaptation to one where there is a small

relevant parallel corpus, and a large less relevant corpus.

Domain adaptation can be seen as a kind of low resource setting, where there is

insufficient data in the language pair and domain of interest (although there may be

plenty of data in the language pair in general). Some similar approaches can therefore

be applied to low resource and domain adaption settings. Transfer learning across

different domains as well as languages and/or dialects is now common in NLP for low

resource settings.

2.7.1.1 Continued Training

A simple yet effective technique commonly applied in adaptation settings is

continued training22 (Luong and Manning, 2015), where a model is first trained

on the larger general corpus, and then that model is used to initialize a new model

that is trained on the more specific corpus.

Continued training was initially proposed for domain adaptation (Luong and

22This can also be referred to as fine tuning, we use the term continued training to distinguish
from the framework of Hinton and Salakhutdinov (2006), which uses supervised learning to fine
tune features obtained through unsupervised learning (and for consistency with the notation in the
published version of Chapter 4).
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Manning, 2015), but can also be applied to other forms of transfer learning.

For consistency with the literature, we will describe continued training using the

terminology of domain adaptation. We will then discuss how this can be used as

transfer learning in other types of low resource settings.

Continued training consists of three steps:

1. Train a model until convergence on a large out-of-domain parallel corpus using

LNLL as the training objective.

2. Initialize a new model with the final parameters of Step 1.

3. Train the model from Step 2 until convergence on in-domain parallel corpus,

again using LNLL as objective.

In other words, continued training initializes an in-domain model training

process with parameters from an out-of-domain model. The motivation is that

the out-of-domain model provides a reasonable starting point and is better than

random initialization.23

2.7.1.2 Continued Training for Domain Adaptation

Empirically, continued training works very well for domain adaptation, and there

are several variants. For example, in Chapter 4 we introduce a regularization technique

for continued training of machine translation models that improves translation

23In Thompson et al. (2018) we show evidence for this hypothesis.

26



CHAPTER 2. BACKGROUND

quality in domain adaptation. This keeps the model output from differing too much

from the original general model, and improves translation quality in the domain

of interest. During standard fine-tuning, in-domain improvements from adaptation

come at the expense of general-domain translation quality; this method mitigates the

domain-adapted model’s drop in translation quality on the original domain. Dakwale

and Monz (2017) use a similar approach but focus on preventing the domain-adapted

model’s drop in translation quality on the original domain rather than improving

adaptation translation quality. In Thompson et al. (2019b), we interpret this drop

in general-domain translation quality during standard fine-tuning as catastrophic

forgetting. To mitigate it, we adapt elastic weight consolidation (a machine learning

method for combating catastrophic forgetting) to retain the majority of general-domain

translation quality lost without degrading in-domain translation quality.

2.7.1.3 Additional Approaches to Domain Adaptation

There are additional non-continued training domain adaptation techniques. Some

of them could be combined with continued training.

Instance weighting was originally proposed for domain adaptation in statistical

NLP (Jiang and Zhai, 2007) and applied widely for statistical machine translation

(e.g., Matsoukas et al., 2009; Shah et al., 2010; Foster et al., 2010; Rousseau et al.,

2011; Zhou et al., 2015; Wang et al., 2016; Imamura and Sumita, 2016). This method

scores each sentence or domain, and then trains the model with that score as the
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weight on the sentence or domain. Wang et al. (2017) apply instance weighting to

neural machine translation, and also propose a dynamic weight learning strategy.

Kobus et al. (2017) propose domain control for NMT to create a single model that

can perform well on multiple domains. That work aims to provide the NMT encoder

with meta-information about the domain, to allow it to learn to translate multiple

different domains well. They propose two methods: (1) a domain specific token added

to source sentence (inspired by Sennrich et al., 2016a), and (2) a domain embedding

portion added to the word embeddings (inspired by Crego et al., 2016).

In Khayrallah et al. (2017), we use the lattice output of statistical machine

translation to constrain the search space available to a neural machine translation

decoder, bringing together the robust adequacy and the fluency properties of statistical

MT and neural MT systems, respectively. Incorrect translations which read fluently in

the target language but are unrelated to the original source sentence were a problem

in early neural machine translation systems, especially in domain mismatch settings.

Such translations are particularly problematic because the person reading them might

not realize they are incorrect since they read so fluently.

For a survey of domain adaptation that includes both continued-training and

additional approaches, see (Saunders, 2021).
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2.7.1.4 Analysis of Domain Adaptation

In addition to work that aims to directly improve domain adaptation, there is

work that aims to analyze the domain mismatch problem. In Thompson et al. (2018),

we analyze different components of the neural network to better understand what

happens during adaptation. We find that the models are still able to adapt well

when any single part of the model remains fixed, and that while training on general

domain data alone does not lead to good translation quality, it does get the model

close to a good local minimum in the in-domain error surface, making it well placed

for adaptation on the in-domain data.

Gu and Feng (2020) perform a similar analysis, though they use the transformer

architecture (Vaswani et al., 2017), and focus their analysis on the problem of

catastrophic forgetting in NMT24 and find different parts of NMT models are important

for general and in-domain translation quality.

2.7.1.5 Crosslingual Transfer

Zoph et al. (2016) apply continued training to transfer between high and low

resource language pairs to improve low resource translation quality. They experiment

with language pairs of different levels of similarity, e.g., transferring to Uzbek–English

from French-English, and transferring to Spanish-English from both French–English

and German–English. They find that transfer from French–English to Spanish-English

24A problem we touch on in Chapter 4, and we address in Thompson et al. (2019b).
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performs better than transferring from German–English to Spanish-English. They

also experiment with freezing various parts of the model when transferring from

French–English to Uzbek–English. They find freezing target embeddings and training

all other parameters works best.

Zoph et al. (2016) do not use any subword units,25 and they initialize input language

embeddings for the child model with randomly-assigned embeddings from the parent.26

Nguyen and Chiang (2017) learn a BPE subword vocabulary on the combined source

and target data of both the parent and child languages. They consider the case of

transfer between related languages (e.g., in the Turkic family). They find that even

though some of the languages may be written in different scripts (in which case they

apply transliteration as a preprocessing step), after applying BPE there is an over

50% vocabulary overlap in the training data. While the word-based transfer method

of Zoph et al. does not always improve translation quality in Nguyen and Chiang’s

experiments, the BPE-based transfer does.

Dong et al. (2015) and Firat et al. (2016) consider multilingual neural machine

translation models, and the transfer that can occur between languages pairs. These

models use a different encoder or decoder for each language.

Firat et al. (2016) find the transfer between languages particularly helpful in

the simulated lower resource pairs they considered, though the smallest setting they

consider is 100k lines of training data.

25Zoph et al. (2016) was published less than three months after Sennrich et al. (2016c).
26All the experiments use English as the target language (both parent and child models), so no

change is required to the target side embeddings.
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Johnson et al. (2017) consider a simpler architecture, using tags to indicate

the language (inspired by Sennrich et al., 2016a). They find it improves low

resource translation. They also explore zero-shot translation—translation between

two languages that were trained on as part of other pars, but had no parallel corpus

between them (e.g., a model trained on Portuguese-English and English-Spanish

translation can generate reasonable translations for Portuguese-Spanish). Additionally,

they find that zero-shot translation can be improved by continued training on a small

amount of language-pair specific data.

2.7.1.6 Pretraining on Monolingual Data

Large pretrained encoder models trained on monolingual data (as opposed to

a parallel corpus), sparked by the success of ELMo (Peters et al., 2018), have

revolutionized NLP (for a survey, see Xia et al., 2020). Some of these have variants

that are trained on monolingual data in multiple languages. Many of these are simply

encoders, and are often used to generate contextual embeddings.

BART (Lewis et al., 2020) is a sequence to sequence transformer, and mBART

was proposed as a multilingual version of BART as a method for pretraining MT (Liu

et al., 2020). It is trained on parallel corpora synthetically generated from noised

monolingual data in multiple languages. The target sentence is the original sentence,

and the input is a noised version of that sentence. The types of noise are:

• Token Masking: random tokens are sampled and replaced with a [MASK] token
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(Devlin et al., 2019).

• Token Deletion: random tokens are deleted.

• Text Infilling: masking multiple tokens with a single mask (inspired by Joshi

et al., 2020).

• Sentence Permutation: randomly shuffling phrases in the sentence.

• Document Rotation: choosing a random token as the start, and keeping the rest

in order (wrapping around the text).

Liu et al. found that this pretraining improves translation quality at all but the highest

resource levels (over 25 million lines).

2.7.2 Data Augmentation

Ideally, we would like to have larger quantities of (high-quality) data to train.

However, there is typically a limit to the amount of human-translated data available

for any given language pair and domain. Data augmentation is a family of approaches

that create additional synthetic training data, often (though not always) based on

monolingual data.

Back-translation

Back-translation (Sennrich et al., 2016b) is the most common method for

data augmentation using non-parallel data in NMT. Back-translation translates
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target-language monolingual text to create synthetic source sentences. Back-translation

requires a reverse translation model for each language pair but is effective at a variety

of resource levels. Additionally, it can be effective at incorporating monolingual

domain-specific text for adaptation.

There are several of variants of back-translation. Fadaee and Monz (2018) select

sentences to back translate which have (1) difficult words, or (2) difficult contexts

for such words. Edunov et al. (2018) propose sampled back-translation and found

that sampling when generating the back-translations improved translation quality.

Caswell et al. (2019) propose tagged back-translation, which signals to the model which

sentence pairs are synthetic using tags (inspired by Sennrich et al., 2016a). Iterative

back-translation iteratively trains machine translation models in the source-target and

target-source directions, and improves each of them with back-translation repeatably

(Hoang et al., 2018).

Additional Approaches

Fadaee et al. (2017) insert rare words in novel contexts in the existing parallel

corpus, using automatic word alignment and a language model. RAML (Norouzi et al.,

2016) and SwitchOut (Wang et al., 2018b) randomly replace words with others from

the vocabulary during training.

Currey et al. (2017) train multitask machine translation models that learn to both

translate source language text and copy target language text. They do so by creating

33



CHAPTER 2. BACKGROUND

synthetic parallel corpora by copying monolingual target language data to the source,

and mixing that with the parallel training data. This improves translation quality for

words that should be identical in both languages (e.g., named entities).

2.7.3 Web-crawled Data

Even with improved methods and models, the tried-and-true method for improving

translation is gathering more data.

One approach to complement transfer learning, data augmentation, and the often

prohibitively expensive task of having translators translate millions of sentences for

model training is to crawl the web for existing translated data.

Although the idea of crawling the web for parallel data goes back to the 20th

century (Resnik, 1999), work in the academic community on extraction of parallel

corpora from the web mostly focused on large stashes of multilingual content in

(relatively) straightforward to align form, such as the Canadian Hansards, Europarl

(Koehn, 2005), the United Nations (Rafalovitch and Dale, 2009; Ziemski et al., 2016),

or European Patents (Täger, 2011). A curated product of these efforts is the OPUS

web site (Tiedemann, 2012; Skadiņš et al., 2014).27

Paracrawl is an ongoing large-scale effort to crawl text from the web (Bañón

et al., 2020). Acquiring parallel corpora from the web typically goes through stages

of: (1) identifying web sites with parallel text, (2) downloading the pages of the web

27opus.nlpl.eu
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site, (3) aligning document pairs, and (4) aligning sentence pairs. A final stage of the

processing pipeline (5) filters out bad sentence pairs. These bad sentence pairs exist

either because the original web site did not have any actual parallel data, only partial

parallel data, or due to failures of earlier processing steps.

As we show in Chapter 5, unfiltered crawled data degrades translation quality. To

encourage more research on this challenge, we organized a shared task on filtering

web-crawled data (Koehn et al., 2018).
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3.1 Introduction

As discussed in Chapter 1, there are a variety of low resource settings that lack

sufficient training data to build high quality machine translation models. In this

chapter,1 we introduce a method for transfer learning from a paraphraser in order to

simulate having more parallel training data, in the form of multiple references per

training example.

Many possible valid translations typically exist for a given sentence; in fact Dreyer

and Marcu (2012) showed that naturally occurring sentences can have billions of valid

translations. Despite this variety, machine translation models are optimized toward

a single translation of each sentence in the training corpus. We hypothesize that

the discrepancy between linguistic diversity and standard single-reference training

hinders machine translation quality. Training a high resource MT model on millions

of sentence pairs likely exposes it to similar sentences translated different ways, but

training a low-resource MT model with a single translation for each sentence (out of

potentially billions) exacerbates data sparsity.

This discrepancy was previously impractical to address, since obtaining multiple

human translations of training data is typically not feasible. However, recent neural

sentential paraphrasers produce fluent, meaning-preserving English paraphrases. We

introduce Simulated Multiple Reference Training (SMRT), a method that incorporates

1The work described in this chapter was published in Khayrallah et al. (2020a). In Khayrallah
and Sedoc (2020), we apply this method to non-task-oriented dialog systems (chatbots) and analyze
the effect on response diversity.
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such a paraphraser directly in the training objective, and uses it to simulate the full

space of translations. SMRT approximates the full space of possible translations by

sampling a paraphrase of the reference sentence from a paraphraser and training the

MT model to predict the paraphraser’s distribution over possible tokens.

We demonstrate the effectiveness of our method on two corpora from the

low-resource MATERIAL program, and on parallel corpora from GlobalVoices.

We also analyze our method to understand:

1. how it performs at various resource levels;

2. how it combines with back-translation;

3. how the different components of the method impact translation quality; and

4. how it compares to sequence-level paraphrastic data augmentation.

3.2 Method

We propose Simulated Multiple Reference Training (SMRT), which uses a

paraphraser to approximate the full space of possible translations, since explicitly

training on billions of possible translations per sentence is intractable.

In standard neural MT training, the reference is:

1. used in the training objective; and
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2. conditioned on as the target prefix.2

We approximate the full space of possible translations by:

1. training the MT model to predict the distribution over possible tokens from the

paraphraser at each time step; and

2. sampling the previous target token from the paraphraser distribution.

Figure 3.1 shows an example of possible paraphrases and highlights a sampled

path and some of the other tokens used in the training objective distribution.

turtle

turtle

turtle

turtle

rabbit

A

tort
oise

turtlerabbit
tortoise

hare

ha
re

tortoise

tortoise

beat the thewon against the

los
t to

theThe

lost to the turtle

was
by

beaten

tor
toi
se

thewas bybeaten

turtle
a

against

a

Some . . . . . . . .possible . . . . . . . . . . . . .paraphrases of the original reference, ‘The tortoise beat the hare,’
for the Dutch source sentence, ‘De schildpad versloeg de haas.’ A sampled path
and some of the other tokens also considered in the training objective are
highlighted.

Figure 3.1: A paraphrase example.

We review the standard NLL training objective, and then introduce our proposed

objective.

2In autoregressive NMT inference, predictions condition on the previous target tokens. In training,
predictions typically condition on the previous tokens in the reference, not the model’s output (teacher
forcing; Williams and Zipser, 1989).
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3.2.1 NLL Objective

The standard negative log likelihood (NLL) training objective in NMT, for the ith

target word in the reference y is:1

LNLL = −
∑
v∈V

[
1{yi = v} (3.1)

× log pmt(yi = v |x, yj<i)
]

where V is the vocabulary, 1{·} is the indicator function, and pmt is the MT output

distribution (conditioned on the source x, and on the previous tokens in the reference

yj<i). Equation 3.1 computes the cross-entropy between the MT model’s distribution

and the one-hot reference.

3.2.2 Proposed Objective

In this work, rather than training towards that single one-hot reference, we would

like to be able to train towards the full space of possible translations. We will do so

by:

1. training the MT model to predict the distribution over possible tokens from the

paraphraser at each time step (rather than the single one-hot vector y);

2. sampling a token from that distribution to use in the target prefix for both the

MT model, and for the paraphraser.
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We compute the cross entropy between the distribution of the MT model and the

distribution from a paraphraser conditioned on the original reference:

LSMRT = −
∑
v∈V

[
ppara(y

′
i = v | y, y′j<i) (3.2)

× log pmt(y′i = v |x, y′j<i)
]

where y′ is a paraphrase of the original reference y. ppara is the output distribution

from the paraphraser3 (conditioned on the reference y and the previous tokens in

the sentence produced by the paraphraser y′j<i). pmt is the MT output distribution

(conditioned on the source sentence, x and the previous tokens in the sentence produced

by the paraphraser, y′j<i). At each time step we sample a target token y′i from the

paraphraser’s output distribution to cover the space of translations. We condition on

the sampled y′i−1 as the previous target token for both the MT model and paraphraser.

For a color-coded visualization see Figure 3.1, which shows . . . . . . . . .possible . . . . . . . . . . . . .paraphrases of

the reference, ‘The tortoise beat the hare.’ The paraphraser and MT model condition

on the paraphrase (y′) as the previous output. The paraphrase (y′) and the rest

of the tokens in the paraphraser’s distribution make up ppara, which is used to

compute LSMRT.

3Paraphraser parameters are frozen during MT training.
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3.3 Experimental Setup

3.3.1 Paraphraser

For use as an English paraphraser,4 we train a Transformer model (Vaswani et

al., 2017) in fairseq (Ott et al., 2019) with an 8-layer encoder and decoder, 1024

dimensional embeddings, 16 encoder and decoder attention heads, and 0.3 dropout.

We optimize using Adam (Kingma and Ba, 2015). We train on ParaBank2 (Hu

et al., 2019b), an English paraphrase dataset.5 ParaBank2 was generated by training

an MT system on CzEng 1.7 (a Czech−English parallel corpus with over 50 million

lines (Bojar et al., 2016)), re-translating the Czech training sentences, and pairing

the English output with the original English translation. Many potential candidates

were generated from the translation model for each sentence, and high quality diverse

paraphrases were selected.

3.3.2 NMT Models

We train Transformer NMT models in fairseq6 using the flores low-resource

benchmark parameters (Guzmán et al., 2019): 5-layer encoder and decoder,

512-dimensional embeddings, and 2 encoder and decoder attention heads. We regularize

with 0.2 label smoothing and 0.4 dropout. We optimize using Adam with a learning

4We release paraphraser, the data and the code for replication: data.statmt.org/smrt
5Hu et al. released a trained Sockeye paraphraser but we implement our method in fairseq.
6We release paraphraser, the data and the code for replication: data.statmt.org/smrt
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rate of 10−3. We train for 200 epochs, and select the best checkpoint based on

validation set perplexity. We translate with a beam size of 5. For our method we

use the proposed objective LSMRT with probability p = 0.5 and standard LNLL on

the original reference with probability 1 − p. We sample from only the 100 highest

probability vocabulary items at a given time step when sampling from the paraphraser

distribution to avoid very unlikely tokens (Fan et al., 2018).

We use Tagalog (tl) to English (en) and Swahili (sw) to English parallel corpora

from the MATERIAL low-resource program (Rubino, 2018). We also report results

on MT parallel corpora from GlobalVoices, a non-profit news site that publishes in

53 languages.7 We evaluate on the 10 lowest-resource settings that have at least

10,000 lines of parallel text with English: Hungarian (hu), Indonesian (id), Czech (cs),

Serbian (sr), Catalan (ca), Swahili (sw),8 Dutch (nl), Polish (pl), Macedonian (mk),

and Arabic (ar).

We use 2,000 lines each for a validation set for model selection from checkpoints

and for a test set for reporting results. The approximate number of lines of training

data is in the top of Table 3.1. We train an English SentencePiece model (Kudo and

Richardson, 2018) on the paraphraser data, and apply it to the target (English) side

of the MT parallel corpus, so that the paraphraser and MT models have the same

output vocabulary. We also train SentencePiece models on the source-side of the

parallel corpus. We use a subword vocabulary size of 4,000 for each.

7We use v2017q3 released on Opus (opus.nlpl.eu/GlobalVoices.php; Tiedemann, 2012).
8Swahili is in both MATERIAL and GlobalVoices. MATERIAL data is not widely available, so

we separate them to keep out GlobalVoices results reproducible.
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3.4 Results

Results are shown in Table 3.1. Our method improves over the baseline in all

settings, by between 1.2 and 7.0 BLEU (all statistically significant at the 95% confidence

level (Koehn, 2004)).9 We see larger improvements for lower-resource corpora.

dataset GlobalVoices MATERIAL

* → en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5
this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

∆ +3.1 +7.0 +3.2 +4.3 +4.0 +2.6 +2.6 +2.0 +1.2 +2.2 +1.2 +1.2

Table 3.1: BLEU scores on the test set. We bold the best value; all improvements
are statistically significant at the 95% confidence level. ‘train lines’ indicates the size
of parallel corpus used for training.

3.5 Analysis

We analyze our method to explore:

1. how it performs at various resource levels (Section 3.5.1);

2. how it combines with back-translation (Section 3.5.2);

3. how the different components of the method impact translation quality

(Section 3.5.3); and

9All BLEU scores are SacreBLEU (Post, 2018).
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4. how it compares to sequence-level paraphrastic data augmentation

(Section 3.5.4).

3.5.1 MT Data Ablation

In order to better understand how our method performs across various data sizes

subselected from the same corpus, we ablate a Bengali-English parallel corpus from

GlobalVoices.10 After reserving data for evaluation, as in Section 3.3.2, approximately

132k lines are left for training; we ablate this to 100k, 50k, 25k, and 15k lines.

Figure 3.2 plots the translation quality of our method and the baseline against the

log of the data amount. Our improvements of 2.7, 3.7, 1.6, and 0.8 BLEU at the 15k,

25k, 50k, and 100k subsets are statistically significant at the 95% confidence level; the

0.1 improvement for the full 132k data amount is not. Similar to Table 3.1, we see

larger improvements in lower-resource ablations.

3.5.2 Back-translation

Back-translation (Sennrich et al., 2016b) is the most common method for

incorporating non-parallel data in NMT. Similar to our work, it generates additional

training data based on an auxiliary sequence-to-sequence model. It is a very effective

form of data augmentation, so we investigate how our method interacts with it.

10We choose bn-en for its relatively large size while still containing dissimilar languages, as ablating
French-English (another similarly-sized option from GlobalVoices) does not reflect typical low-resource
machine translation quality.
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Figure 3.2: Bengali-English data ablation. Improvements of 2.7, 3.7, 1.6, and 0.8
BLEU at the 15k, 25k, 50k, and 100k subsets are statistically significant.

Table 3.2 shows the results for back-translation, our work, and the combination of

both.11 Adding our method to back-translation improves results by an additional 0.5

to 5.7 BLEU.12

dataset GlobalVoices MATERIAL

* → en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5
baseline w/ back-translation 2.8 7.1 4.6 17.6 20.1 20.7 26.9 19.3 29.1 16.0 38.8 33.0

this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7
this work w/ back-translation 4.9 12.8 6.6 19.6 23.4 23.0 27.5 20.2 29.7 16.8 39.3 33.7

Table 3.2: Comparison between back-translation and this work. We bold the best
BLEU score on the test set, as well as any result where the difference from it is not
statistically significant at the 95% confidence level.

11We use a 1:1 ratio between the parallel corpus of and the synthetic back-translated parallel corpus.
We use newscrawl2016 (data.statmt.org/news-crawl) as monolingual text. When combining with
our work, we run our method on both the original and back-translation data.

12All statistically significant at the 95% confidence level.
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For all language pairs, the best translation quality is achieved by our method

combined with back-translation, or our method alone. For 9 of 12 corpora,

back-translation and our proposed method are complementary, with improvements

of 1.2 to 7.8 BLEU12 over the baseline when combining the two. For cs-en and tl-en,

adding back-translation to our method does not change translation quality as measured

by BLEU. In the lowest-resource setting (hu-en) our method alone outperforms the

baseline by 3.1 BLEU, but adding back-translation reduces the improvement by 0.5

BLEU.

3.5.3 Method Ablation

In Table 3.3 we analyze the contributions of each part of our proposed method.

We compare four conditions to the baseline:13

1. paraphrasing the reference, without sampling or the distribution in the loss;14

2. sampling from the paraphraser, without the distribution in the loss;

3. using the distribution in the training objective, without sampling the paraphrase;

and

4. the proposed method.

13All use settings from Section 3.3.2: we use the original reference with LNLL with 1 − p = 0.5
probability, and when sampling we sample from the top w = 100 tokens.

14This is equivalent to LNLL using a paraphrase generated with greedy-search as the reference, see
Section 3.5.4.
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dataset GlobalVoices MATERIAL

dist. paraphrase * → en hu id cs sr ca sw nl pl mk ar sw tl
loss sampling train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

✗ n/a baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5

✗ ✗ (1) 2.9 8.8 4.6 14.5 17.8 19.2 23.4 17.6 27.0 14.2 35.7 29.9
✗ ✓ (2) 5.1 11.6 6.5 15.6 19.7 20.2 24.4 18.1 27.9 15.0 38.1 32.0
✓ ✗ (3) 4.0 10.5 6.5 15.2 18.8 19.8 23.9 18.0 27.6 14.4 37.6 31.6

✓ ✓ (4) this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

Table 3.3: We compare four conditions to the baseline: (1) paraphrasing the reference,
without sampling or the distribution in the loss; (2) sampling from the paraphraser
in the training objective, without the distribution; (3) using the distribution in the
training objective, without sampling; and (4) the proposed method. We bold the best
test set BLEU score, and others where the difference is not statistically significant at
the 95% confidence level.

We find that sampling is particularly important to the success of our method;

removing it significantly degrades translation quality in all but 3 language pairs. Since

we sample a paraphrase each batch, this exposes the model to a wide variety of

different paraphrases. Using the distribution in the loss function is also beneficial,

particularly for the lower resource settings and in the MATERIAL corpora.

3.5.4 Sequence-Level Paraphrastic Data

Augmentation

As a contrastive experiment, we use the paraphraser to generate additional

target-side data for use in data augmentation. For each target sentence (y) in

the training data, we generate a paraphrase (y′). We then concatenate the original

source-target pairs (x, y) with the paraphrased pairs (x, y′) and perform standard
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LNLL training. We consider 3 methods for generating paraphrases: beam search (beam

of 5), greedy search, sampling (top-100 sampling). Greedy search tends to work best:

see Table 3.4. It improves over the baseline for the 10 Global Voices datasets, but

not for the two MATERIAL ones. Overall, our proposed method is more effective

than this contrastive method. We hypothesize this is due to the wider variety of

paraphrases SMRT introduces by sampling and training toward the full distribution

from the paraphraser. However, sequence level paraphrastic data augmentation may

still be useful in constrained situations where a black-box MT system is used and only

the data can be modified.15

dataset GlobalVoices MATERIAL

* → en hu id cs sr ca sw nl pl mk ar sw tl
train lines 8k 8k 11k 14k 15k 24k 32k 40k 44k 47k 19k 46k

baseline 2.3 5.3 3.4 11.8 16.0 17.9 22.2 16.0 27.0 12.7 37.8 32.5

beam-search paraphrase 2.6 8.7 4.7 13.5 16.3 18.4 22.6 16.6 26.6 12.2 35.9 29.4
greedy paraphrase 3.2 9.4 4.6 14.8 18.3 19.6 24.4 18.0 27.5 14.7 35.8 30.3
sampled paraphrase 2.8 8.0 5.1 13.9 16.8 19.5 23.9 17.6 27.6 14.2 37.2 31.6

this work 5.4 12.3 6.6 16.1 20.0 20.5 24.8 18.0 28.2 14.9 39.0 33.7

Table 3.4: We compare three ways of generating paraphrases for preprocessed data
augmentation: beam search, greedy search, and sampling. We bold the best BLEU
score on the test set, as well as any result where the difference from it is not statistically
significant at the 95% confidence level.

15Given such a constrained setting multiple different sampled translations could be generated and
paired with the original source, while retaining a 1-to-1 ratio of original to paraphrased text, to
mimic the sampling portion of our method, and increase the coverage provided by the paraphrases.

49



CHAPTER 3. IMPROVING LOW-RESOURCE MT WITH SMRT

3.6 Related Work

3.6.1 Knowledge Distillation

Our proposed objective is similarly structured to word-level knowledge distillation

(Hinton et al., 2015; Kim and Rush, 2016, for a more detailed discussion see Chapter 2),

where a student model is trained to match the output distribution of a teacher model.

Paraphrasing as preprocessed data augmentation, as discussed in Section 3.5.4, is

similarly analogous to sequence-level knowledge distillation (Kim and Rush, 2016).

In typical knowledge distillation both the student and teacher models are translation

models trained on the same data, have the same input and output languages, and

use the original reference for the previous token. In contrast, our teacher model is

a paraphraser, which takes as input the original reference sentence (in the target

language), with the sampled paraphrase as the previous token. Knowledge distillation

is usually used to train smaller models and does not typically incorporate additional

data sources, though it has been used for domain adaptation (Dakwale and Monz,

2017; Khayrallah et al., 2018a).

3.6.2 Paraphrasing for Machine Translation

In Hu et al. (2019a), we present case studies on paraphrastic data augmentation for

NLP tasks, including neural machine translation. We use sequence-level augmentation
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with heuristic constraints on the model’s output. SMRT differs in that we train toward

the paraphraser distribution, and we sample from the distribution rather than using

heuristics.

Wieting et al. (2019a) used a paraphrastic-similarity metric for minimum risk

training (MRT; Shen et al., 2016) in NMT. They note MRT is slow, and, following

prior work, use it for fine-tuning after NLL training.

Paraphrasing was also used for statistical MT, including: source-side 16 phrase

table augmentation (Callison-Burch et al., 2006; Marton et al., 2009), and generation

of additional references for tuning (Madnani et al., 2007; Madnani et al., 2008).

3.6.3 Data Augmentation in NMT

Back-translation translates target-language monolingual text to create synthetic

source sentences (Sennrich et al., 2016b). Similar to SMRT, it is using an external model

to generate additional data. However, back-translation needs a reverse translation

model for each language pair. In contrast, we need a paraphraser for each target

language. Zhou et al. (2019) found back-translation is harmful in some low-resource

settings, but a strong paraphraser can be trained as long as the target language is

sufficiently high resource.

Fadaee et al. (2017) insert rare words in novel contexts in the existing parallel

16We were initially inspired by such work, and considered source-side paraphrastic augmentation.
In initial experiments, as well as in Hu et al. (2019a), we found that target-side augmentation was
more effective.
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corpus, using automatic word alignment and a language model. RAML (Norouzi

et al., 2016) and SwitchOut (Wang et al., 2018b) randomly replace words others from

the vocabulary. In contrast to random or targeted word replacement, we generate

semantically similar sentential paraphrases.

3.6.4 Label Smoothing

Label smoothing (Szegedy et al., 2016; Pereyra et al., 2017, which we use when

training with LNLL) spreads probability mass over all non-reference tokens equally;

LSMRT places higher probability on semantically plausible tokens.

3.6.5 Language Model Integration in NMT

Similar to using a language model in neural machine translation, SMRT

incorporates additional target-side data. The paraphraser is conditioned on the

full reference, so it can directly replace the reference and captures meaning—not just

fluency. Using a language model to rescore an N-best list (Schwenk, 2007; Schwenk,

2012) or interpolating language models (Gülçehre et al., 2015; Gülçehre et al., 2017;

Domhan and Hieber, 2017; Stahlberg et al., 2018) only introduce new relative scores;

paraphrasing can introduce new target side words.
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3.7 Conclusion

We present Simulated Multiple Reference Training (SMRT), which uses transfer

learning from a paraphraser to improve translation quality in low-resource settings—by

1.2 to 7.0 BLEU—and is complementary to back-translation.

Neural paraphrasers are rapidly improving (Wieting et al., 2017; Li et al., 2018;

Wieting and Gimpel, 2018; Hu et al., 2019a; Hu et al., 2019b; Hu et al., 2019c;

Wieting et al., 2019b), and the concurrently released Prism multi-lingual paraphraser

(Thompson and Post, 2020a; Thompson and Post, 2020b) has coverage of 39 languages

and outperforms prior work in English paraphrasing. As paraphrasing continues

to improve and cover more languages, we are optimistic SMRT will provide larger

improvements across the board—including for higher-resource MT and for additional

target languages beyond English.
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4.1 Introduction

In Chapter 3, we considered the situation where there was an insufficient amount

of parallel text in the language pair of interest. In this chapter,1 we consider the

situation where there is a sufficient amount of parallel text in the language pair of

interest, but there is an insufficient amount of parallel text in the language pair and

domain of interest. We focus on the supervised domain adaptation problem, where in

addition to a large out-of-domain corpus,2 we also have a smaller in-domain parallel

corpus available for training.3

A technique commonly applied in this situation is continued training4 (Luong and

Manning, 2015), where a model is first trained on the out-of-domain corpus, and then

that model is used to initialize a new model that is trained on the in-domain corpus.

This simple method leads to empirical improvements on in-domain test sets.

However, we hypothesize that some knowledge available in the out-of-domain

data—which is not observed in the smaller in-domain data but would be useful

at test time—is being forgotten during continued training, due to overfitting. This

phenomenon can be viewed as a version of catastrophic forgetting (Goodfellow et al.,

2013), a perceptive we explore in Thompson et al. (2019b).

1The work described in this chapter was published in Khayrallah et al. (2018a).
2This can also be referred to as a ‘general domain’ corpus. We use ‘out-of-domain’ in this chapter

for consistency with the notation in the published version of this work.
3Another challenge in machine translation is the situation where there is no in-domain data

available, we do not address that problem in this work.
4This is also often referred to as fine tuning, we use the term continued training to distinguish

from the framework of Hinton and Salakhutdinov (2006), which uses supervised learning to fine
tune features obtained through unsupervised learning (and for consistency with the notation in the
published version of this work).
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To address this limitation, we add an additional term to the loss function of

the NMT training objective during continued training. In addition to the original

term—which minimizes the cross entropy between the model’s output distribution

and the reference translation—the additional term in the loss function minimizes the

cross entropy between the output distribution of the model we are training and the

output distribution of the out-of-domain model. This prevents the distribution of

words produced from differing too much from the original distribution.

4.2 Method

We focus on the following scenario: we assume there is a model that was trained

on a large, general (out-of-domain) corpus in the language pair of interest, and there

is a new domain, along with a small in-domain training set, for which we would like

to build a model. We begin by initializing the weights of the in-domain model with

the weights of the out-of-domain model, and then continue training the new model on

the in-domain data, using the modified training objective to prevent the model from

differing too much from the original out-of-domain model.

We review the standard NLL training objective and standard continued training,

then introduce our proposed objective.
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4.2.1 NLL Objective

The standard negative log likelihood (NLL) training objective in NMT, for the ith

target word in the reference y is:1

LNLL = −
∑
v∈V

[
1{yi = v} (4.1)

× log p(yi = v |x, yj<i)
]

where V is the vocabulary, 1{·} is the indicator function, and p(yi = v |x, yj<i) is the

MT output distribution (conditioned on the source x, and on the previous tokens in

the reference yj<i). Equation 4.1 computes the cross-entropy between the MT model’s

distribution and the human gold-standard distribution (1{yi = v}, which is simply a

one-hot vector that indicates the correct word).

4.2.2 Continued Training

Continued training is a simple yet effective technique for domain adaptation. It

consists of three steps:

1. Train a model until convergence on large out-of-domain parallel corpus using

LNLL as the training objective.

2. Initialize a new model with the final parameters of Step 1.
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3. Train the model from Step 2 until convergence on in-domain parallel corpus,

again using LNLL as objective.

In other words, continued training initializes an in-domain model training

process with parameters from an out-of-domain model. The motivation is that

the out-of-domain model provides a reasonable starting point and is better than

random initialization.

In our work, we replace LNLL in Step 3 by an interpolated regularized objective.

All other steps remain the same.

4.2.3 Regularized NMT Objective

We use the output distribution of the trained out-of-domain model to regularize

the training of our in-domain model as we perform continued training to adapt to a

new domain.

We add an additional regularization (reg) term to incorporate information from an

auxiliary (aux) out-of-domain model in the training objective:

Lreg = −
∑
v∈V

(
paux(yi = v |x; yj<i) (4.2)

× log p(yi = v |x; yj<i)
)
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where paux is the output distribution from the auxiliary out-of-domain model,5 and p

is the output distribution from the in-domain model being trained.

Lreg (Equation 4.2) minimizes the cross-entropy between the out-of-domain

model distribution paux(yi = v |x; yj<i) and the in-domain model distribution

p(yi = v |x; yj<i). We interpolate this with the standard training objective (LNLL,

Equation 4.1) to obtain the final training objective:

L = (1 − α) LNLL + α Lreg (4.3)

4.3 Experiments

4.3.1 Data

We translate from English (en) to German (de) as well as from German to

English. For our large, out-of-domain corpus we utilize parallel corpora from

WMT2017 (Bojar et al., 2017),6 which contains data from several sources: Europarl

parliamentary proceedings (Koehn, 2005),7 News Commentary (political and economic

news commentary),8 Common Crawl (web-crawled parallel corpus), and the EU Press

Releases.

We use newstest2015 as the out-of-domain development set and newstest2016

5The out-of-domain model is fixed while training the in-domain model.
6statmt.org/wmt17
7statmt.org/europarl
8casmacat.eu/corpus/news-commentary.html
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as the out-of-domain test set. These consist of professionally translated news articles

released by the WMT shared task.

We perform adaptation to two different domains: EMEA (descriptions of medicines)

and TED Talks (rehearsed presentations). For EMEA, we use the data split from

Koehn and Knowles (2017),9 which was extracted from OPUS (Tiedemann, 2009;

Tiedemann, 2012).10 For TED, we use the data split from the Multitarget TED Talks

Task (MTTT) (Duh, 2018),11 which was extracted from WIT3 (Cettolo et al., 2012).12

Tables 4.1, 4.2, and 4.3 give the number of words and sentences of each of the corpora

in the train, dev, and test sets, respectively.

In addition to experiments on the full training sets, we also conduct experiments

adapting to each given domain using only the first 2,000 sentences of each in-domain

training set to simulate adaptation to a very low-resource domain.

corpus de words en words sentences

EMEA 13,572,552 14,774,808 1,104,752
TED 2,966,837 3,161,544 152,609

WMT 139,449,418 146,569,151 5,919,142

Table 4.1: Tokenized training set sizes.

9github.com/khayrallah/domain-adaptation-data
10opus.nlpl.eu/EMEA.php
11cs.jhu.edu/ kevinduh/a/multitarget-tedtalks
12wit3.fbk.eu
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corpus de words en words sentences

EMEA 26479 28838 2000
TED 37509 38717 1958

newstest15 44869 47569 2169

Table 4.2: Tokenized development set sizes.

corpus de words en words sentences

EMEA 31737 33884 2000
TED 35516 36857 1982

newstest16 64379 65647 2999

Table 4.3: Tokenized test set sizes.

4.3.2 NMT Settings

Our neural machine translation systems are trained using a modified version of

OpenNMT-py (Klein et al., 2017).13

We build RNN-based encoder-decoder models with attention (Bahdanau et al.,

2015), and use a bidirectional-RNN for the encoder. The encoder and decoder both

have 2 layers with LSTM hidden sizes of 1024. Source and target word vectors are of

size 500. We apply dropout with 30% probability. We use stochastic gradient descent

as the optimizer, with an initial learning rate at 1 and a decay of 0.5. We use a

batch size of 64 sentences. We keep the model parameters settings constant for all

experiments.

We train byte pair encoding segmentation models (BPE; Sennrich et al., 2016c) on

the out-of-domain training corpus. We train separate BPE models for the source and

13The code is available: github.com/khayrallah/OpenNMT-py-reg
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target language, each with a vocab size of 50, 000. We then apply those models to

each corpus, including the in-domain ones. This setup allows us to mimic the realistic

setting where the computationally-expensive-to-train generic model is trained once,

and when there is a new domain that needs translating the existing model is adapted

to that domain without retraining on the out-of-domain corpus.

We train our out-of-domain models on the WMT corpora and use the WMT

development set (newstest15) to select the best epoch as our out-of-domain model.

When training our domain specific models, we use the in-domain development set to

select the best epoch. When we switch to the in-domain training corpus, we reset

the learning rate to 1, with a decay of 0.5, and continue to apply dropout with 30%

probability.

4.4 Results

Table 4.4 shows the in-domain and out-of-domain baselines, the improvement

provided by continued training, and the added improvement of regularization during

continued training on the entire in-domain datasets.14

The trends are similar in all four test conditions: Continued training outperforms

both baselines, beating the stronger of the two by between 4.0 and 5.3 BLEU points.

Our regularization method provides additional improvement over continued training

14For the regularized results, α is selected to maximize BLEU on the dev set. See Section 4.5 for
more details.
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De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain (WMT) 30.8 29.8 25.1 25.9
in-domain 43.2 31.4 37.0 25.1

continued-train w/o regularization 48.5 36.4 41.0 30.8
continued-train w/ regularization 49.3 (+0.8) 36.9 (+0.5) 42.5 (+1.5) 30.8 (+0.0)

Table 4.4: BLEU score improvements over continued training. We compare to the
out-of-domain baseline and the in-domain baseline. We also compare to continued
training without the additional regularization term.

by up to to 1.5 BLEU. There is one setting (En-De TED) where there is no change.

We also repeat the experiment for cases where the in-domain training data is

smaller, which corresponds to a more challenging (yet often realistic) domain adaptation

scenario. Table 4.5 shows the results of adaptation when only 2, 000 sentences of

in-domain parallel text are available. This amount of data is insufficient to train an

in-domain NMT model; however, standard continued training is able to improve upon

the out-of-domain baseline by 2.2 to 4.9 BLEU. Adding our additional regularization

term improves translation quality by an additional 0.2 to 0.9 BLEU.

De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain (WMT) 30.8 29.8 25.1 25.9

continued-train w/o regularization 34.3 33.4 30.0 28.1
continued-train w/ regularization 35.2 (+0.9) 33.6 (+0.2) 30.2 (+0.2) 28.4 (+0.3)

Table 4.5: BLEU score improvements over continued training using the 2, 000 sentence
subsets as the in-domain corpus. We compare to the out-of-domain baseline and
continued training without the additional regularization term.

In both Table 4.4 and Table 4.5, we confirm previous research findings that
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continued training is effective, and demonstrate that our regularized objective adds

further improvements.

4.5 Analysis

In this section, we perform more detailed analysis of our method. Our research

questions are:

1. Is the additional training objective transferring general knowledge to the

in-domain model? (Section 4.5.1)

2. What is the impact on translation quality in the original domain? (Section 4.5.2)

3. Why does EMEA show larger improvements? (Section 4.5.3)

4. What value should α be set to? (Section 4.5.4)

4.5.1 Transfer of General-Domain Knowledge

We hypothesize that the regularization term presents knowledge from the

out-of-domain model to the continued training model while the model adapts during

continued training. This allows the domain-adapted model to retain knowledge from

the original (out-of-domain) model that is useful and would otherwise be lost while

training continues on the in-domain data, due so the sparsity of the smaller in-domain

dataset.

64



CHAPTER 4. IMPROVING SUPERVISED DOMAIN ADAPTATION

If this is true, using the additional regularization term should improve translation

quality of an in-domain model (that does not use continued training), since our

technique should transfer general domain knowledge learned from the out-of-domain

corpus.

To test this we train an in-domain model from scratch (on only the in-domain data,

as opposed to initializing with the general-domain model) using our regularization term.

The results are shown in Table 4.6. In this setting, the only out-of-domain information

is coming from the additional term in the loss function. Our method provides an

improvement of up to 2.3 BLEU over the in-domain model, though in De-En TED

translation quality degrades by 0.2 BLEU. While none of these experiments outperform

continued training, the large improvements suggest the method is transferring general

domain knowledge to the domain specific model.

De-En En-De
training condition EMEA-test TED-test EMEA-test TED-test

out-of-domain (WMT) 30.8 29.9 25.1 25.9

in-domain 43.2 31.4 37.0 25.1
in-domain w/ regularization 45.5 (+2.3) 31.2 (−0.2) 38.8 (+1.8) 26.0 (+0.9)

continued-train w/o regularization 34.3 33.4 30.0 28.1
continued-train w/ regularization 35.2 (+0.9) 33.6 (+0.2) 30.2 (+0.2) 28.4 (+0.3)

Table 4.6: Analysis of BLEU score improvements without continued training. We
compare to the out-of-domain baseline and the in-domain baseline. We show the
continued-training results for comparison.

Additionally, these experiments suggest our method could be beneficial in situations

where continued training is not an option. For example, the out-of-domain model
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might be much larger or perhaps a completely different architecture than the in-domain

model; as long as it provides a distribution over the same vocabulary as the in-domain

model, it can be used as the auxiliary model in the training objective.

4.5.2 Impact on Original Domain Translation

Quality

To examine how well general domain knowledge is retained by the adapted

models, we evaluate the domain specific models on a more general domain test

set (newstest2016),15 as well as on the other domain’s test set (i.e. translation

quality of the TED model on the EMEA test set and vice-versa). We report the results

for De-En in Table 4.7. In each case, as regularization increases, both general-domain

and cross-domain translation quality increase. Continued training for a particular

domain harms translation quality on the other domains when compared to the original

out-of-domain model.

This suggests that there is some amount of general information about translating

between the two languages that is being forgotten by the network during continued

training, and the regularization term helps remember it.

15Note that this analysis is complicated by the fact that the WMT task is not a single-domain
task, since the WMT test set consists of news articles, while the training data includes parliamentary
text, political and economic commentary and press releases.
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Baseline Continued Training (α)
training domain testset in-domain out-of-domain 0 0.001 0.01 0.1

EMEA EMEA-dev 49.6 31.4 53.2 53.1 53.4 52.9
EMEA-test 43.2 30.8 48.5 48.5 49.3 48.1

newstest2016 5.5 33.8 23.6 23.8 24.1 27.0

TED TED-dev 27.1 27.1 31.8 31.9 32.2 32.1
TED-test 27.1 29.8 36.4 36.7 36.9 36.7

newstest2016 17.0 33.8 30.6 30.9 30.9 31.6

Table 4.7: Analysis of the sensitivity of BLEU scores on the domain-specific sets
and newstest2016 to the interpolation parameter (α) for De-En. Continued training
with an α = 0 is standard continued training, without regularization. Translation
quality of the in-domain test sets is best with an interpolation weight of 0.01 in this
language pair, while translation quality of the out-of-domain test sets is better with
an interpolation weight of 0.1, the highest value we search over.

4.5.3 Differences between Domains

Throughout our experiments, we observe larger improvements for EMEA than we

do for for TED. For TED, translation quality is similar for both the in-domain and

out-of-domain baselines (the in- and out-of-domain baselines are within 1.6 BLEU of

each other for TED, whereas for EMEA the in-domain model is over 11 BLEU better

in both directions—see Table 4.4 for full results).

We hypothesize that this is because TED is actually similar in domain to our

‘out-of-domain’ training set. In particular, we suspect that TED talks are similar

to parliamentary speech, which are part of the WMT training data—both are oral

presentations that cover a variety of topics.

In contrast, EMEA focuses on a single topic (descriptions of medicines) and

contains specialized medical terminology throughout.
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The out-of-vocabulary rates (OOV) are consistent with this hypothesis (see Tables

4.1a and 4.1b for OOV rates by type and token, respectively). For EMEA, the OOV

rate is lower for the in-domain training set compared to the out-of-domain training

set while for TED, the opposite is true: the OOV rate is lower for the out-of-domain

training set compared to the in-domain training set. This suggests that the EMEA

domain has a unique vocabulary that needs to be adapted to, while TED covers a

wide variety of topics, and requires a large corpus to cover its vocabulary, and the

adaptation problem is more about the style of the corpus.

(a) OOVs by type. (b) OOVs by token.

Figure 4.1: Percentage of out-of-vocabulary words by (a) type and (b) token.

This contrast between a very homogeneous domain and a heterogeneous one is

typically not made: both are typically described as ‘domain adaptation.’ However,

perhaps future work should approach these problems differently.
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4.5.4 Sensitivity to α

We perform a search over α, the interpolation parameter between NLL and our

regularization term. We run experiments with α values of 0.001, 0.01, 0.1, and select

the best model based on in-domain development set translation quality. Table 4.7

shows the development and test scores when translating to English (the trend is

similar translating to German, and is thus not shown here). In general, we see the

best in-domain translation quality with α set to 0.01 or 0.1.16

4.6 Related Work

Prior work has included the use of similar techniques to solve problems different

than ours, as well as different approaches to solve the same problem.

4.6.1 Knowledge Distillation

The added regularization term is formulated in the spirit of knowledge distillation

(Hinton et al., 2015; Kim and Rush, 2016, for a more detailed discussion see Chapter 2),

where a student model is trained to match the output distribution of a parent model.

In word-level knowledge distillation, the student model’s output distribution is trained

on the same data that the parent model was trained. In contrast, our domain specific

model (which replaces the student) is trained with a loss term that encourages it to

16It is maybe possible to make further improvements by searching over a more fine-grained range
of α values.
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match the out-of-domain model (which replaces the parent) on in-domain training

data that the out-of-domain model was not trained on.

4.6.2 Regularization Techniques

We draw inspiration from prior works including Yu et al. (2013), which

introduces Kullback-Leibler (KL) divergence between the model being trained

and an out-of-domain model as a regularization scheme for speaker adaptation.

Their work adapts a context dependent deep neural network hidden Markov model

(CD-DNN-HMM) using the KL-divergence between the softmax outputs (modeling

tied-triphone states) of a network trained on a large, speaker independent (SI) corpus

the model being adapted to a specific speaker, initialized with the SI model. Our

technique can also be viewed as an extension of label smoothing (Szegedy et al., 2016;

Pereyra et al., 2017), where instead of a simple uniform or unigram word distribution,

we use the distribution of an auxiliary NMT model.

4.6.3 Continued Training

Since Luong and Manning (2015) introduced continued training in NMT, it has

become the de facto standard for domain adaptation. The method has been surprisingly

robust, and in-domain improvements have been shown with as few as tens of in-domain

training sentences (Miceli Barone et al., 2017).
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Despite the success of continued training, several studies have noted that a model

trained via continued training tends to significantly underperform the original model

on the original domain. Freitag and Al-Onaizan (2016) found that that ensembling an

out-of-domain model with a model trained via continued training can significantly

reduce the translation quality drop on the original domain compared to the continued

training model alone. In contrast, our work focuses on further improving in-domain

results.

Chu et al. (2017) present mixed fine-tuning. They begin by training an

out-of-domain NMT model but they continue training on a mix of in-domain and

out-of-domain data (with the in-domain data oversampled). They also experiment

with tagging each sentence with the domain it comes from, allowing a single system to

adapt to multiple domains. In contrast, our method does not require further training

on (or even access to) the very large general domain dataset while adapting the model

to the new domain.

4.6.4 Regularizing Continued Training

Miceli Barone et al. (2017) share our goal of improving in-domain results and

compare three methods of regularization to improve continued training: 1) Bayesian

dropout 2) L2 regularization, and 3) tuneout, which is similar to Bayesian dropout

but instead of setting weights to zero, they are set to the value of the out-of-domain

model. They report small improvements (≈ 0.3 BLEU) with Bayesian dropout and
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L2, but tuneout results are inconsistent and mostly hurt BLEU. In contrast to all

three methods, which regularize the weights of the model, our work regularizes only

the output distribution and does not directly control the weights.

The work of Dakwale and Monz (2017) is very similar to ours but focuses on

retaining out-of-domain translation quality during continued training, instead of

in-domain improvements. They perform multi-objective learning with most of the

weight (90%) on the auxiliary objective. By contrast, our training emphasizes the

in-domain training objective (weighting the auxiliary objective 0.1% to 10%) and we

show much larger in-domain improvements.

4.7 Conclusion

In this work, we focus on the scenario where there was sufficient data in the language

pair to train a strong model, and we now have a new domain for which we would like

a model, but there is a limited amount of training data in the new domain. We add

an additional term to the NMT training objective that minimizes the cross-entropy

between the model output vocabulary distribution and an auxiliary model’s output

vocabulary distribution. We begin by initializing with the out-of-domain model, and

then continue training on the in-domain data, using the modified training objective to

prevent the model from differing too much from the original out-of-domain model. We

report improvements of up to 1.5 BLEU over a strong baseline of continued training
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when using the full domain adaptation corpora, and up to 0.9 BLEU over continued

training in our extremely low resource domain adaptation setting.

In Thompson et al. (2019b), we explore continued training from the perspective

of continual learning of highly related tasks, and directly address the degradation

observed in out-of-domain translation quality after continued training (as discussed in

Section 4.5.2) as an instance of catastrophic forgetting (Goodfellow et al., 2013), by

adapting elastic weight consolidation (Kirkpatrick et al., 2017) for continued training

of neural machine translation models.
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5.1 Introduction

Even with improved methods we introduced in Chapters 3 and 4 to better leverage

limited existing data, the tried-and-true method for improving translation is gathering

more data. One approach to complement the expensive task of paying translators

to create data to train on is to crawl the web for existing data. This approach is

compatible with a variety of data-driven translation approaches. However, as we

demonstrate in this chapter,1 there are challenges with using such web-crawled data,

particularly for neural machine translation.

As a motivating example, consider Table 5.1. We add an equally sized noisy web

crawled corpus to a high quality German-English training corpus provided by the

shared task of the Conference on Machine Translation (WMT).2 This addition leads to

a 1.2 BLEU point increase for the statistical machine translation system, but degrades

the neural machine translation system by 9.9 BLEU.

NMT SMT

WMT17 27.2 24.0
+ noisy corpus 17.3 (–9.9) 25.2 (+1.2)

Table 5.1: Adding noisy web crawled data (raw data from paracrawl.eu) to a WMT
2017 German–English statistical system obtains small gains (+1.2 BLEU), a neural
system falls apart (–9.9 BLEU).

The maxim more data is better that holds true for statistical machine translation

1The work described in this chapter was published in Khayrallah and Koehn (2018).
2While additional data is of particular interest in low resource language pairs and domains, here

we study the impact of noise in a higher resource setting in order to be able to contrast to known
clean data, which can be difficult to do in low resource settings where all data is often noisy in some
way.
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seems to come with more caveats for neural machine translation. The added data

cannot be too noisy. In order to reduce the noise, we first seek to understand it:

what kind of noise harms neural machine translation models? We explore several

types of noise that occur in the web-crawled corpus and assess their impact by adding

synthetic noise to an existing parallel corpus. We find that for almost all types of

noise, neural machine translation systems are harmed more than statistical machine

translation systems. We discovered that one type of noise—copied source language

segments—has a catastrophic impact on neural machine translation quality, leading it

to learn a copying behavior that it then excessively applies.

5.2 Real-World Noise

What types of noise are prevalent in crawled web data? We manually examined 200

sentence pairs of the Paracrawl corpus and classified them into several error categories.

While the results of such a study depend on how crawling and extraction is executed,

the results (see Table 5.2) give some indication of what noise to expect.

We classified any pairs of German and English sentences that are not translations of

each other as misaligned sentences. These may be caused by any problem in alignment

processes (at the document level or the sentence level), or by forcing the alignment of

content that is not actually parallel. Such misaligned sentences are the biggest source

of error (41%).
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Type of Noise Amount

Okay 23%

Misaligned sentences 41%

Third language 3%
Both English 10%
Both German 10%

Untranslated sentences 4%

Short segments (≤2 tokens) 1%
Short segments (3–5 tokens) 5%

Non-linguistic characters 2%

Table 5.2: Types of noise in the raw Paracrawl corpus.

There are three types of wrong language content (totaling 23%): one or both

sentences may be in a language different from German and English (3%), both sentences

may be German (10%), or both sentences may be English (10%).

4% of sentence pairs are untranslated, i.e., source and target are identical. 2%

sentence pairs consist of random byte sequences, only HTML markup, or Javascript. A

number of sentence pairs have very short German and/or English sentences, containing

at most 2 tokens (1%) or 5 tokens (5%).3

Since it is a very subjective value judgment what constitutes disfluent language,

we do not classify these as errors. However, consider the sentence pairs in Table 5.3

that we did count as ‘okay,’ although they contain mostly untranslated names and

numbers.

3When this work was published, there was concern that short segments (such as glossary entries)
might harm the ‘language modeling’ component of the join neural translation models (specifically
RNN models). This work suggested, and further work confirmed, that short segments alone are not
the problem, though the quality of those segments matters.
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de: Anonym 2 24.03.2010 um 20:55 314 Kommentare
en: Anonymous 2 2010-03-24 at 20:55 314 Comments

de: &lt; &lt; erste &lt; zurück Seite 3 mehr letzte &gt; &gt;
en: &lt; &lt; first &lt; prev. page 3 next last &gt; &gt;

Table 5.3: Example ‘okay’ sentences pairs from the paracrawl corpus that might not
be ideal for training.

At first glance, some types of noise seem to be easier to automatically identify

than others. However, consider, for instance, content in a wrong language. While

there are established methods for language identification,4 these do not work well on a

sentence-level basis, especially for lower-resource languages (Caswell et al., 2020), and

short sentences (Carter et al., 2013). Or, consider the seemingly obvious problem of

untranslated sentences. If they are completely identical, that is easy to spot—although

even those may have value, such as the list of country names which are often spelled

identical in different languages. There are many degrees of near-identical content of

unclear utility.

5.3 Types of Noise

The goal of this work is not to develop methods to detect noise, but rather to

ascertain the impact of different types of noise on translation quality when present in

parallel data. Our findings informed subsequent work on parallel corpus cleaning (see

Section 5.7).

4github.com/google/cld3
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We now formally define five types of naturally occurring noise and describe how

we simulate them.5 By creating artificial noisy data, we avoid the hard problem of

detecting specific types of noise but are still able to study their impact.

5.3.1 Misaligned Sentences

As shown above, a common source of noise in parallel corpora is faulty document or

sentence alignment. This results in sentences that are not matched to their translation.

Such noise is rare in certain corpora such as Europarl (Koehn, 2005)—where strong

clues about debate topics and speaker turns reduce the scale of the task of alignment

to paragraphs—but more common in the alignment of less structured web sites. We

artificially create misaligned sentence data by randomly shuffling the order of sentences

on one side of the original clean parallel training corpus.

5.3.2 Misordered Words

Language may be disfluent in many ways. Disfluency may be the product of

machine translation, poor human translation, or heavily specialized language use, such

as bullet points in product descriptions (recall also the examples above). We consider

one extreme case of disfluent language: sentences from the original corpus where the

words are reordered randomly. We do this on the source or target side.

5We release the simulated data: data.statmt.org/noise
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5.3.3 Wrong Language

A parallel corpus may be polluted by text in a third language, say French in a

German–English corpus. This may occur on the source or target side of the parallel

corpus. To simulate this, we add French–English (bad source) or German–French (bad

target) data to a German–English corpus.

5.3.4 Untranslated Sentences

Especially in parallel corpora crawled from the web, there are often sentences that

are untranslated from the source in the target. Examples are navigational elements

or copyright notices in the footer. Purportedly multilingual web sites may be only

partially translated, while some original text is copied. Again, this may show up on

the source or the target side. We take sentences from either the source or target side

of the original parallel corpus and simply copy them to the other side.

5.3.5 Short Segments

Sometimes additional data comes in the form of bilingual dictionaries. Can we

simply add them as additional sentence pairs, even if they consist of single words or

short phrases? We simulate this kind of data by subsampling a parallel corpus to

include only sentences of maximum length 2 or 5.
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5.4 Experimental Setup

5.4.1 Neural Machine Translation

Our neural machine translation systems are trained using Marian

(Junczys-Dowmunt et al., 2018).6 We build RNN-based encoder-decoder models with

attention (Bahdanau et al., 2015). We train Byte-Pair Encoding segmentation models

(BPE; Sennrich et al., 2016c) with a vocab size of 50, 000 on both sides of the parallel

corpus for each experiment. We apply drop-out with 20% probability on the RNNs,

and with 10% probability on the source and target words. We stop training after

convergence of cross-entropy on the development set, and we average the 4 highest

performing models (as determined by development set BLEU) to use as an ensemble

for decoding (checkpoint ensembling). Training of each system takes 2–4 days on a

single GPU (GTX 1080ti).

5.4.2 Statistical Machine Translation

Our statistical machine translation systems are trained using Moses (Koehn et

al., 2007).7 We build phrase-based systems using standard features commonly used

in recent system submissions to WMT (Haddow et al., 2015; Ding et al., 2016;

Ding et al., 2017). We train our systems with the following settings: a maximum

6marian-nmt.github.io
7statmt.org/moses
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sentence length of 80, grow-diag-final-and symmetrization of GIZA++ alignments, an

interpolated Kneser-Ney smoothed 5-gram language model with KenLM (Heafield,

2011), hierarchical lexicalized reordering (Galley and Manning, 2008), a lexically-driven

5-gram operation sequence model (OSM; Durrani et al., 2013), sparse domain indicator,

phrase length, and count bin features (Blunsom and Osborne, 2008; Chiang et al.,

2009), a maximum phrase-length of 5, compact phrase table (Junczys-Dowmunt, 2012),

minimum Bayes risk decoding (Kumar and Byrne, 2004), cube pruning (Huang and

Chiang, 2007), with a stack-size of 1000 during tuning. We optimize feature function

weights with k-best MIRA (Cherry and Foster, 2012).

While we focus on phrase based systems as our SMT paradigm, we note that there

are other statistical machine translation approaches such as hierarchical phrase-based

models (Chiang, 2007) and syntax-based models (Galley et al., 2004; Galley et al.,

2006) that may have better translation quality in certain language pairs and in low

resource conditions.

5.4.3 Clean Corpus

In our experiments, we translate from German to English. We use corpora from

the shared translation task organized alongside the Conference on Machine Translation

(WMT)8 as clean training data. For our baseline we use: Europarl (Koehn, 2005),9

8statmt.org/wmt17/
9statmt.org/europarl
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News Commentary,10 and the Rapid EU Press Release parallel corpus. The corpus

size is about 83 million tokens per language. We use newstest2015 for tuning SMT

systems, newstest2016 as a development set for NMT systems, and report results on

newstest2017.

We always train our language model for statistical machine translation on the target

side of the parallel corpus for that experiment. Note that we do not add monolingual

data to our systems since this would make our study more complex. While using

monolingual data for language modeling was standard practice in statistical machine

translation, how to use such data for neural models was less obvious at the time of

this work.11

5.4.4 Noisy Corpora

Here we describe how each specific noisy-corpus was created.12

For misaligned sentence and misordered word noise, we use the clean

corpus (above) and perturb the data. To create untranslated sentence noise, we

also use the clean corpus and create pairs of identical sentences.

For wrong language noise, we do not have French–English and German–French

data of the same size from the same sources. Hence, we use the EU Bookstore corpus

10casmacat.eu/corpus/news-commentary.html
11As this dissertation is being completed, back-translation (Sennrich et al., 2016b) is the standard

method for monolingual data integration in neural machine translation.
12The data is available at data.statmt.org/noise.
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(Skadiņš et al., 2014).13

The short segments are extracted from OPUS corpora (Tiedemann, 2009;

Tiedemann, 2012; Lison and Tiedemann, 2016):14 EMEA (descriptions of medicines),15

Tanzil (religious text),16 Open Subtitles 2016,17 Acquis (legislative text),18 GNOME

(software localization files),19 KDE (localization files), PHP (technical manual),20

Ubuntu (localization files),21 and Open Office.22 We use only pairs where both the

English and German segments are at most 2 or 5 words long. Since this results in

small data sets (2 million tokens and 15 million tokens per language, respectively),

they are duplicated multiple times.

We also show the results for naturally occurring noisy web data from the raw 2016

ParaCrawl corpus (Bañón et al., 2020).23

We sample the noisy corpus in an amount equal to 5%, 10%, 20%, 50%, and 100%

of the clean corpus. We then combine the noisy corpus with the clean one. This

reflects a realistic situation where there is a clean corpus, and one would like to add

additional data that has the potential to be noisy. For each experiment, we use the

target side of the parallel corpus to train the SMT language model, including the

13opus.nlpl.eu/EUbookshop.php
14opus.nlpl.eu
15emea.europa.eu
16tanzil.net/trans
17opensubtitles.org
18ec.europa.eu/jrc/en/language-technologies/jrc-acquis
19l10n.gnome.org
20se.php.net/download-docs
21translations.launchpad.net
22openoffice.org
23We use the deduplicated raw set from paracrawl.eu.
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noisy text.

5.5 Impact on Translation Quality

Table 5.4 shows the effect of adding each type of noise to the clean corpus.24 For

some types of noise NMT is harmed more than SMT: mismatched sentences (up

to -1.9 for NMT, -0.6 for SMT), misordered words (source) (-1.7 vs. -0.3), wrong

language (target) (-2.2 vs. -0.6).

Short segments, untranslated source sentences and wrong source

language have little impact on either SMT or NMT (at most a degradation of -0.7).

Misordered target words decreases BLEU scores for both SMT and NMT by

just over 1 point (100% noise).

The most dramatic difference is untranslated target sentence noise. When

added at 5% of the original data, it degrades NMT quality by 9.6 BLEU, from 27.2 to

17.6. Adding this noise at 100% of the original data degrades quality by 24.0 BLEU,

dropping the score from 27.2 to 3.2. In contrast, the SMT system only drops 2.9

BLEU, from 24.0 to 21.1.

24We report case-sensitive detokenized BLEU (Papineni et al., 2002) calculated using
mteval-v13a.pl.
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5% 10% 20% 50% 100%

Misaligned sentences 26.5 24.0

-0.7 -0.0

26.5 24.0

-0.7 -0.0

26.3 23.9

-0.9 -0.1

26.1 23.9

-1.1 -0.1

25.3 23.4

-1.9 -0.6

Misordered words
(source)

26.9 24.0

-0.3 -0.0

26.6 23.6

-0.6 -0.4

26.4 23.9

-0.8 -0.1

26.6 23.6

-0.6 -0.4

25.5 23.7

-1.7 -0.3

Misordered words
(target)

27.0 24.0

-0.2 -0.0

26.8 24.0

-0.4 -0.0

26.4 23.4

-0.8 -0.6

26.7 23.2

-0.5 -0.8

26.1 22.9

-1.1 -1.1

Wrong language
(French source)

26.9 24.0

-0.3 -0.0

26.8 23.9

-0.4 -0.1

26.8 23.9

-0.4 -0.1

26.8 23.9

-0.4 -0.1

26.8 23.8

-0.4 -0.2

Wrong language
(French target)

26.7 24.0

-0.5 -0.0

26.6 23.9

-0.6 -0.1

26.7 23.8

-0.5 -0.2

26.2 23.5

-1.0 -0.5

25.0 23.4

-2.2
-0.6

Untranslated
(English source)

27.2 23.9

-0.0 -0.1

27.0 23.9

-0.2 -0.1

26.7 23.6

-0.5 -0.4

26.8 23.7

-0.4 -0.3

26.9 23.5

-0.3 -0.5

Untranslated
(German target)

17.6 23.8

-9.8

-0.2

11.2 23.9

-16.0

-0.1

5.6 23.8

-21.6

-0.2

3.2 23.4

-24.0

-0.6

3.2 21.1

-24.0

-2.9

Short segments
(max 2)

27.1 24.1

-0.1 +0.1

26.5 23.9

-0.7 -0.1

26.7 23.8

-0.5 -0.2

Short segments
(max 5)

27.8 24.2

+0.6+0.2

27.6 24.5

+0.4+0.5

28.0 24.5

+0.8+0.5

26.6 24.2

-0.6 +0.2

Raw crawl data 27.4 24.2

+0.2+0.2

26.6 24.2

-0.6 +0.2

24.7 24.4

-2.5
+0.4

20.9 24.8

-6.3

+0.8

17.3 25.2

-9.9

+1.2

Table 5.4: Results from adding different amounts of noise (ratio of original clean corpus)
for various types of noise in German-English Translation. Generally neural machine
translation (left green bars) is harmed more than statistical machine translation (right
blue bars). The worst type of noise are segments in the source language copied
untranslated into the target language.
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5.5.1 Copied Output

Since the noise type where the target side is a copy of the source has such a big

impact, we examine the system output in more detail.

We report the percent of sentences in the evaluation set that are identical to

the source for the untranslated target sentence and raw crawl data in

Figure 5.1 (solid bars). The SMT systems output 0 or 1 sentences that are exact

copies. However, with just 20% of the untranslated target sentence noise

(which corresponds to 10% of the total training data being noisy, since it is combined

with clean data), 60% of the NMT output sentences are identical to the source. This

suggests that the NMT systems learn to copy, which may be useful for named entities.

However, with even a small amount of this data it is doing far more harm than good.

Figure 5.1 also shows the percent of sentences that have a worse TER score against

the reference than against the source (shaded bars). This means that it would take

fewer edits to transform the sentence into the source sequence than it would take

to transform it into the target sequence. When just 10% untranslated target

sentence data is added, 57% of the sentences are more similar to the source than to the

reference, indicating partial copying. This suggests that the NMT system is overfitting

on the copied portion of the training corpus. This is supported by Figure 5.2, which

shows the learning curve on the development set for the untranslated target

sentence noise setup. The translation quality for the systems trained on noisy

corpora begin to improve, before over-fitting to the copy portion of the training set.

87



CHAPTER 5. ON THE IMPACT OF NOISE ON MACHINE TRANSLATION

(a) Untranslated (target) (b) raw crawl

Figure 5.1: Copied sentences in the Untranslated (target) and raw crawl
experiments. NMT is the left green bars, SMT is the right blue bars. Sentences that
are exact matches to the source are the solid bars, sentences that are more similar to
the source than the target are the shaded bars.

Note that while we plot the BLEU score on the development set with beam search,

the system is optimizing cross-entropy given a perfect prefix.

Though 7.4% of the sentences in the raw crawl data was exact copied sentences

(compared to 1.7% of sentences in the clean data) we find that when using equal

amounts of raw-crawled and clean data (the far right column in Table 5.4), 31% of the

output sentences were exact copies, and 18% of the remaining sentences were more

similar to the source than the reference.
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Figure 5.2: Learning curves for the NMT untranslated target sentence
experiments.

5.5.2 Incorrect Language Output

We performed a manual analysis of the neural machine translation experiments

where a German–French corpus is added to a German–English corpus (wrong target

language). For each of the noise levels, Table 5.5 shows the percentage of NMT

output sentences in French, out of a total of 3004. Most NMT output sentences were

either entirely French or English, with the exception of a few mis-translated cognates

(e.g.: ‘façade’, ‘accessibilité’).

In the SMT experiment with 100% noisy data added, there are a couple of French

words in mostly English sentences. These are much less frequent than unknown

German words passed through. Only 1 of the 3004 sentences is mostly French.

At first glance, it is surprising that such a small percentage of the output sentences
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Amount of Noise in Training Amount of French in Output

5% 0.2%
10% 0.6%
20% 1.7%
50% 3.3%
100% 6.7%

Table 5.5: Percentage of the 3004 sentences in the test set that were translated to
French when different amounts of Wrong language (French target) noise
(ratio of original clean corpus).

were French, since up to half of the target data in training was in French. We attribute

this to the domain of the added data differing from the test data. We essentially

had a multi-task model. Source sentences in the test set are more similar to the

domain-relevant clean parallel training corpus than the domain-divergent noise corpus.

Therefore, the model is able to determine which language it should be producing

based on the domain of the input sentence. While we observe a drop in quality (2.2

BLEU when half the target training data was in French) only 6.7% of the total output

sentences were in French.

Aharoni and Goldberg (2020) found that neural language models are able to learn

sentence representations that cluster sentences according to domain, without domain

supervision. This suggests that our translation model may have also been able to

learn a domain classification model, based on the input sentences.
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5.6 Related Work

There is a robust body of work on filtering out noise in parallel data. For example:

Taghipour et al. (2011) use an outlier detection algorithm to filter a parallel corpus;

Xu and Koehn (2017) generate synthetic noisy data (inadequate and non-fluent

translations) and use this data to train a classifier to identify good sentence pairs

from a noisy corpus; and Cui et al. (2013) use a graph-based random walk algorithm

and extract phrase pair scores to weight the phrase translation probabilities to bias

towards more trustworthy ones.

Most of this work was done in the context of statistical machine translation, but

more recent work (Carpuat et al., 2017) targets neural models. That work focuses

on identifying semantic differences in translation pairs using cross-lingual textual

entailment and additional length-based features, and demonstrates that removing such

sentences improves neural machine translation quality.

As Rarrick et al. (2011) point out, one problem of parallel corpora extracted from

the web is translations that have been created by machine translation. Venugopal et al.

(2011) propose a method to watermark the output of machine translation systems to

aid this distinction. Belz and Kow (2011) report that rule-based machine translation

output can be detected due to certain word choices, and statistical machine translation

output due to lack of reordering.

In 2016, shared tasks were organized on document alignment (Buck and Koehn,
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2016), and on sentence pair filtering.25 The latter was in the context of cleaning

translation memories which tend to be cleaner that the data collected from web crawls.

Belinkov and Bisk (2018), Anastasopoulos et al. (2019), and Anastasopoulos (2019)

investigate noise in neural machine translation, but they focus on creating systems

that can translate the kinds of orthographic errors (typos, misspellings, etc.) that

humans often produce and can comprehend. In contrast, we address noisy training

data and focus on types of noise occurring in web-crawled corpora.

There is a rich literature on data selection which aims at sub-sampling parallel data

relevant for a task-specific machine translation system (Axelrod et al., 2011). Wees

et al. (2017) find that the existing data selection methods developed for statistical

machine translation are less effective for neural machine translation. This is different

from our goals of handling noise since those methods tend to discard perfectly fine

sentence pairs (e.g., software manuals) that are just not relevant for the targeted

domain (e.g., social media). Our work is focused on noise that is harmful for all

domains.

Other work has also considered copying in NMT. Currey et al. (2017) add copied

data and back-translated data to a clean parallel corpus. They report improvements

on English↔Romanian when adding as much back-translated and copied data as they

have parallel (1:1:1 ratio). For English↔Turkish and English↔German, they add

twice as much back translated and copied data as parallel data (1:2:2 ratio), and

25NLP4TM 2016 shared task: rgcl.wlv.ac.uk/nlp4tm2016/shared-task
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report improvements on English↔Turkish but not on English↔German. However,

their English↔German systems trained with the copied corpus did not perform worse

than baseline systems.

In work contemporaneous to ours, Ott et al. (2018) found that while copied

training sentences26 represent less than 2.0% of their (‘clean’) training data (WMT 14

English↔German and English↔French), copies are over-represented in the output of

beam search.27 Using a subset of training data from WMT 17, they replace a subset

of the true translations with a copy of the input. They analyze varying amounts of

copied noise, and a variety of beam sizes. Larger beams are more affected by this

kind of noise; however, for all beam sizes quality degrades completely with 50% copied

sentences.28

5.7 Impact on Subsequent Work

These findings informed future work on corpus cleaning. As a follow-up to this

work, we organized a shared task on filtering web-crawled data (Koehn et al., 2018).

In this task, participants were given access to clean parallel data and web-crawled data

and asked to identify the clean portion of web crawled data. Participants were judged

by how well MT models trained on only their filtered web crawled data performed.

26That work defines a copying as any sentence pair where intersection over the union of unigrams
(excluding punctuation and numbers) is at least 50%.

27They report the following copy rates for various beam sizes on en↔fr: 2.6% (beam=1), 2.9%
(beam=5), 3.2% (beam=10) and 3.5% (beam=20)

28See Figure 3 in Ott et al. (2018).
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This task drew 18 submissions. While a variety of methods were used, the majority

included: (1) pre-filtering rules, (2) scoring functions for sentence pairs, and some

included (3) a classifier that learned weights for feature functions. Many of the

pre-filtering rules reflect the work in this chapter, such as removing sentence pairs

of vastly different lengths (which suggests they are not aligned sentences), removing

sentence pairs that are too similar (which indicates copy noise), and removing sentences

where the language identifier does not detect the required language.

After prefiltering, scoring functions were applied. These include as n-gram or

neural language models on clean data, language models trained on the provided

raw data as contrast, neural translation models and bag-of-words lexical translation

probabilities. The winning submission on Dual Conditional Cross-Entropy Filtering

(Junczys-Dowmunt, 2018) set a new state-of-the-art in data filtering.

In subsequent years (Koehn et al., 2019; Koehn et al., 2020), the shared task

focused on lower resource settings. Multilingual sentence embeddings (LASER;

Artetxe and Schwenk, 2019) were applied for this task (Chaudhary et al., 2019), and

performed well, particularly in lower resource settings. This reflects a growing trend in

natural language processing as whole towards transfer learning across languages and

tasks. Such methods can be particularly important in low resource settings, where

there may be insufficient parallel data to train initial models for use in, for example,

Dual Conditional Cross-Entropy Filtering.

There was also work to extend dual conditional cross entropy filtering to the case
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where no parallel data is available (Axelrod et al., 2019).

For the 2020 iteration of the task, there was more focus on modeling this as a

classification task rather than simply ranking. This required both clean and noisy

examples to train the classifier. Since the shared task provided some clean training data,

participants used that and also corrupted sentences for negative training examples.

Some corrupted sentences address challenges highlighted in this chapter, such as

mismatched sentences, truncated sentences and sentences with swapped word order

(Esplà-Gomis et al., 2020; Açarçiçek et al., 2020; ElNokrashy et al., 2020; Xu et al.,

2020)

5.8 Conclusion

We described five types of noise in parallel data, motivated by a manual analysis

of raw web crawl data. We found that neural machine translation is less robust to

many types of noise than statistical machine translation.

In general, systematic noise has a larger negative impact than random noise.

Additionally, noise on the target side tends to be more problematic. Certain types

of source noise can distinguished from the ‘clean’ text, allowing the model to learn a

kind of multi-task model. However, if the distinction is on the target side, it cannot

be learned in a way that can be identified by the model during inference, when only

the source sentence is available.
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In particular, copied data—where the target side of the training data is identical

to the source—is problematic because the model learns to copy at a much higher rate

than copying occurs in the training data. We observed a similar effect of copying

being over represented in the output of the experiments trained on raw web crawled

data, suggesting careful consideration of overlap between source and target training

data is necessary.

While we focus on RNN-based models with attention as our NMT architecture, we

note that different architectures have been proposed, including based on convolutional

neural networks (Kalchbrenner and Blunsom, 2013; Gehring et al., 2017) and the

self-attention based Transformer model (Vaswani et al., 2017).

In this study, we focused on a relatively high resource setting, in order to be able

to do controlled experiments in comparison to known clean data. Finding additional

data is particularly important for low resource language pairs and domains, however

in such settings all of the data available might be noisy (Caswell et al., 2021). This

makes it even more crucial to think carefully about data quality and potential filtering

approaches.
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6.1 Summary

Despite neural machine translation’s increased quality and prevalence, data quality

and quantity remain challenges in machine translation.

Limited quantities of such data are available for most language pairs, leading to a

low resource problem. Even when training data is available in the desired language pair,

it is frequently formal speech or news—leading to a domain mismatch when models

are used to translate a different type of data from most of what they were trained on.

Neural machine translation currently performs poorly in domain adaptation and low

resource settings (Koehn and Knowles, 2017; Sennrich and Zhang, 2019). An obvious

approach when faced with a lack of data is to go get more data. This is often the

best way to improve translation quality. However, it is not always feasible to produce

additional human translations. In such a case, an option may be to crawl the web for

additional training data. However, such data can be very noisy and harm machine

translation quality— particularly neural machine translation quality.

This dissertation addresses these three specific data challenges in machine

translation:

1. We present a method for transfer learning from a paraphraser to overcome data

sparsity in low resource settings Chapter 3.

2. We present a method for improving domain adaptation translation quality, when

sufficient data is available in the language pair of interest, but not in the domain
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of interest Chapter 4.

3. We consider web-crawls as a method for acquiring more data, and find that such

data can harm machine translation quality if not carefully filtered Chapter 5.

6.2 Future Work

This dissertation took steps towards improving translation quality in difficult

data settings in order to improve information access and communication for users

of all languages. However, there remains future work to be done towards that goal,

including:

6.2.1 Revisiting the Impact of Noisy Training

Data on NMT

In Chapter 5 we investigated the impact of different types of artificially created noisy

training data on NMT, in order to motivate future work on parallel corpus filtering.

This work spurred further research in the area, but there were some limitations of the

study that merit re-exploration, including:

• Our work used RNNs, but there have been several advances in NMT training

in the past three years. An interesting line of work would be to consider more

recent neural machine translations architectures as well.
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• Our work did not consider any data augmentation or pretraining. It would be

interesting to investigate the impact of noisy data on the pretrained models

themselves, as well as when performing adaptation. It would also be impactful

to understand how data augmentation interacts with noisy data.

• Our work considered the impact of web-crawled noisy data. There are other forms

of noise in machine translation data. This includes sampled back-translation data

(Edunov et al., 2018), and sampled paraphrase data (Chapter 3; Khayrallah et al.,

2020a). These types of data have been demonstrated to improve translation

quality, despite adding some noise. A better understanding of the impact of

different types of noise may help with improved sampling techniques for data

augmentation.

• There was a domain shift in the data added for one of the noise types (Wrong

Language) that may have confounded some of the results, this should be

corrected in any future work.

• We only considered translating from German to English. This is a relatively high

resource pair, with somewhat similar languages. We began we clean corpora

and added potentially noisy data. Exploring noise in lower resource settings

with more dissimilar languages would be beneficial. This may pose a bit of a

challenge, since often all available data in low resource settings is noisy, but

would be a realistic use-case (Caswell et al., 2021).
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6.2.2 Learning to Learn from Diverse Data

In certain situations there is a sudden need for translation after a disaster, such as

the 2010 Haitian Earthquake, where an MT model was requested by first responders

to be able to translate text messages sent to a helpline. An MT model was built from

scratch in under a week (Lewis, 2010).

This dissertation explored how to leverage different forms of non-standard data

to overcome training data sparsity, focusing on a targeted type of data for each

identified problem. However, such approaches require some level of specialization for

each language pair and domain, depending on the data that might be available, and

therefore requires a human expert to experiment with different methods to decide

what will work best. That is impractical to scale to all language pairs in the world,

and may not always be fast enough.

There is beginning to be some work on learning how to learn from diverse data

sets (e.g., Wees et al., 2017; Wang et al., 2018a; Kumar et al., 2019; Wang et al., 2020;

Kumar et al., 2021a; Kumar et al., 2021b), though improved computational efficiency

is crucial.

6.2.3 Multilingual NLP

Improving communication is about more than just translation. All natural

language processing (NLP) tools we build should also serve everyone. Beyond machine
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translation, there are other (multilingual) NLP problems that have difficult data

settings. Adapting and expanding the techniques such as those developed for difficult

data settings in machine translation to other NLP systems have a high potential for

impact. Additionally, studies on the effect of noisy data on other NLP tasks, and

follow up work on how to mitigate the effect also have a high potential for impact.

This applies to both web-crawled data, and somewhat curated data, which may be

noisy as well.

6.3 Closing Remarks

In this dissertation, we consider three data challenges that affect machine

translation quality, and reconsider what and how different types of available data can

be used to improve machine translation.

In recent years, with the move toward end-to-end neural models, there has been

a trend toward abstracting many different NLP tasks as sequence to sequence tasks,

and focusing on the modeling without an equivalently thorough focus on the data.

While much can be learned from vision, speech, and other NLP tasks and it remains

important to learn from adjacent fields, it is crucial to consider the subtleties in different

tasks, and to always carefully consider the data available, and also additional data

that could be leveraged. Careful integration of additional data in an intelligent way

can often have a high impact.
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