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Abstract

Multiple sclerosis (MS) is an inflammatory disease of the brain and spinal cord
characterized by demyelinating lesions. Structural magnetic resonance imag-
ing (sMRI) is a medical imaging technique that is sensitive to these lesions.
Quantitive analyses of MRI, such as the number and volume of MS lesions, are
essential for diagnosing the disease and monitoring its progression. In addition,
the formation of these lesions, a complex process involving inflammation, tis-
sue damage, and repair, is also important for diagnosing and monitoring the
disease. While sMRI is sensitive to lesion activity, there is surprisingly poor
association between clinical findings and the radiological extent of involvement
on MRI using traditional volumetric measures. This phenomenon is referred to
as the clinico-radiological paradox.

The work in this thesis is an effort to bridge this clinico-radiological paradox
and link the longitudinal findings on structural MRI in patients with MS to
disease-modifying treatment and other clinical information. Chapter 2 of the
thesis is an introduction to sMRI data. Chapter 3 and 4 of the thesis deal
with MS lesion segmentation using multi-sequence structural MRI. Chapter 5
is a culmination of this work. The lesion segmentation technique explored in
Chapter 3 and 4 is extended to build a pipeline to extract longitudinal intensity
information, or lesion profiles, from lesions in multi-sequence sMRI. A PCA
regression model is then introduced to relate the longitudinal lesion profiles to
disease-modifying treatment and other clinical information in an attempt to
link the information from sMRI to clinical information. In addressing these

clinical issue, this thesis also contains a number of biostatistical contributions:

i



the design and analysis of expert rater trials, data reduction techniques for high
dimensional and longitudinal data through principal component analysis (PCA)

regression models, and the comparison of supervised learning algorithms.
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Chapter 1

Introduction

Multiple sclerosis (MS) is an inflammatory disease of the brain and spinal cord
characterized by demyelinating lesions. Structural magnetic resonance imag-
ing (sMRI) is a medical imaging technique that is sensitive to these lesions [1].
Quantitive analyses of MRI, such as the number and volume of MS lesions, are
essential for diagnosing the disease and monitoring its progression [2, 3]. In ad-
dition, the formation of these lesions, a complex process involving inflammation,
tissue damage, and repair, is also important for diagnosing and monitoring the
disease [4]. While sMRI is sensitive to lesion activity, there is surprisingly poor
association between clinical findings and the radiological extent of involvement
on MRI using traditional volumetric measures. This phenomenon is referred to
as the clinico-radiological paradox [5].

The work in this thesis is an effort to bridge this clinico-radiological paradox
and link the longitudinal findings on structural MRI in patients with MS to
disease-modifying treatment and other clinical information. Chapter 2 of the

thesis is an introduction to sMRI data. Chapter 3 and 4 of the thesis deal



with MS lesion segmentation using multi-sequence structural MRI. Chapter 5
is a culmination of this work. The lesion segmentation technique explored in
Chapter 3 and 4 is extended to build a pipeline to extract longitudinal intensity
information, or lesion profiles, from lesions in multi-sequence sMRI. A PCA
regression model is then introduced to relate the longitudinal lesion profiles to
disease-modifying treatment and other clinical information in an attempt to
link the information from sMRI to clinical information. In addressing these
clinical issue, this thesis also contains a number of biostatistical contributions:
the design and analysis of expert rater trials, data reduction techniques for high
dimensional and longitudinal data through principal component analysis (PCA)
regression models, and the comparison of supervised learning algorithms.

Chapter 2 of this thesis is an introduction to sMRI data, and includes de-
tailed instructions and code for the preprocessing and analysis of sMRI data.
With my advisor Dr. Ciprian Crainiceanu, co-advisor Dr. Russell Shinohara,
and Dr. Ani Eloyan, this chapter has been developed into a book chapter in
the Handbook of Modern Statistical Methods: Neuroimaging Data Analysis,
entitled “A Tutorial for Multi- sequence Clinical Structural Brain MRI” [6].
As part of sMRI analysis education, I also co-developed and taught tutori-
als on the topic at the Statistics and Applied Mathematical Science Institute
(SAMSI) and the Eastern North American Region (ENAR) meeting. More re-
cently I co-developed a Coursera course with Dr. Crainiceanu and fellow PhD
student John Muschelli on structural MRI analysis and preprocessing using the
statistical software R, that will be released soon.

The majority of my work for this thesis has been dedicated to MS lesions

segmentation using multi-sequence sMRI, which is covered in Chapters 3 and



4. While many methods for lesion segmentation exist in the literature, these
methods are often difficult to reproduce and do not have publicly available soft-
ware implementations. Chapter 3 introduces OASIS is Automated Statistical
Inference for Segmentation (OASIS), a fully automated, cross-sectional lesion
segmentation algorithm [7]. OASIS uses a logistic regression model to create
probability maps of lesion presence for multi-sequence MRI studies. In this
chapter, I present the OASIS method and perform extensive validation of the
method, showing increased performance of OASIS over the previous state of the
art lesion segmentation method. The validation of the OASIS method includes
qualitative validation, using expert rater trials with a neurologist, neuroradi-
ologist, and radiologist. The OASIS lesion segmentation algorithm is available
for public use and is currently implemented as an R package (https://cran.r-
project.org/web /packages/oasis/index.html). Chapter 4 compares the logistic
regression model from the OASIS algorithm against a number of supervised ma-
chine learning algorithms [8]. Here I found that the logistic regression model has
performance as well or better than the more complex machine learning models
and this work illustrates the importance of model interpretation and parsimony.

Chapter 5 describes the culmination of this thesis work, an attempt to bridge
the clinico-radiological paradox. Using an algorithm I previously developed for
segmenting new and enlarging MS lesions [9], along with the OASIS algorithm,
I developed a pipeline for extracting and normalizing lesion profiles, the lon-
gitudinal voxel-level intensities on the multi-sequence sMRI within MS lesions.
Using PCA to reduce the dimension of the lesion profiles, I discovered that the

score on the first PC is a voxel-level biomarker of lesion repair. The marker



is validated by two clinicians in an expert rater trial. The relationship be-
tween this biomarker and the clinical measures of interest is modeled using a
PCA regression model, and a statistically significant relationship between the
biomarker and the use of disease-modifying treatment, steroids, and distance to

the boundary of a lesion was found [10].



Chapter 2

A tutorial for multi-sequence

clinical structural brain MRI

2.1 Introduction

High resolution structural magnetic resonance imaging (sMRI) is used exten-
sively in clinical practice, as it provides detailed anatomical information of the
living organism, is sensitive to many pathologies, and assists in the diagnosis
of disease [11]. Applications of sMRI cover essentially every part of the human
body from toes to brain and a wide variety of diseases from stroke, cancer, and
multiple sclerosis (MS) to internal bleeding and torn ligaments. Since the intro-
duction of MRI in the 1980s, the lack of side effects, the continuously improving
resolution of images, and the wide availability of MRI scanners have made sMRI
instantly recognizable in the popular literature [12]. Indeed, when one is asked
to have an MRI in a clinical context it is almost certainly an sMRI or its close

relative, the dynamic contrast enhancing MRI (DCE-MRI) . These images are



fundamentally different from functional MRI (fMRI) in size, complexity, mea-
surement target, type of measurement, and intended use. While fMRI aims
to study brain activity, sMRI reveals anatomical information. This distinction
is important as the scientific problems and statistical techniques for fMRI and
sMRI analysis differ greatly [13], yet confusion between the two continues to
exist in the literature and among reviewers. Despite the enormous practical
importance of sMRI, few statisticians and biostatisticians have made research
contributions in this field. This may be due to the subtle aspects of sMRI, the
relatively flat learning curve, and the lack of contact between statisticians and
biostatisticians and the scientists working in clinical neuroimaging. Our goal
is reduce the price of entry, accelerate learning, and provide the information
required to progress from novice to initiated sMRI researcher.

This chapter is designed to provide a tutorial for sMRI research, introduce
some major unsolved scientific problems in brain imaging of patients with neu-
rological disease, and describe the important technical problems associated with
data analysis. Image acquisition and pre-processing, especially as it relates to
pre-processing pipelines, will also be discussed. In our experience, it has been
impossible to seperate the image pre-processing pipeline from later analysis.
The paper is accompanied by sMRI for two subjects with multiple sclerosis
at two visits together with the associated R code that can be used to open,
visualize, and conduct small statistical analyses. These studies have been pre-
processed using the pre-processing steps outlined in this chapter.

An sMRI study typically consists several different sMRI sequences, most
commonly the T1-weighted (T1), T2-weighted (T2), Fluid Attenuated Inversion

Recovery (FLAIR), and Proton Density (PD). Other sequences are continuously
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being researched and may become standard in future sMRI studies. Moreover,
the type of magnet (1.5T, 3T, or 7T), the brand of MRI scanner, and the choice
of scanning parameters may induce major differences between images, even if
they are of the same sequence. We refer to the sMRI collection of two or more
sequences as multi-sequence sMRI. We will distinguish multi-sequence sMRI
from multi-modality imaging, which refers to the combination of at least two
different types of imaging, for example sMRI and Computed Tomography (CT),
or CT and Positron Emitted Tomography (PET).

From a data perspective, every sequence is a three dimensional array, with
each entry representing a voxel, or three dimensional pixel. The size of the
voxels depends on the acquisition parameters and provides the resolution of the
image. Figure 2.1 displays data from a standard sMRI sequence protocol for
three slices shown in the three rows. The voxel size for these images has been
interpolated to 1 x 1 x 1 mm (interpolation of sMRI is discussed in detail in
Section 2.5.3). Slices are displayed, moving from the inferior to the superior of
the brain and are labeled A, B, and C, respectively. Each column corresponds
to a different sequence — the FLAIR (A1, B1, C1), T2 (A2, B2, C2), T1 (A3,
B3, C3), and PD (A4, B4, C4). An intuitive way to think about the different
sequences is that they are slices through the brain seen through different filters.
Making such plots in R [14] is relatively easy using the oro.nifti R package [15]
package. After setting the working directory to the location of the compressed
FLAIR volume, the following lines of code will load the volume and plot one
axial slice of the FLAIR image:

library(oro.nifti)

flair <- readNIfTI(’FLAIRnorm.nii.gz’, reorient=TRUE)

7



Figure 2.1: Multi-sequence MRI data for one subject. Three axial slices are
shown on each row (letters A, B, C indicate a different slice going from the
inferior (A) to superior (C) of the brain) indicating FLAIR (A1, B1, C1), T2
(A2, B2, C2), T1 (A3, B3, C3), and PD (A4, B4, C4). A small MS lesion is
visible n the A-slice images. Some larger MS lesions are visible closer to the
ventricle in the B-slice images.



image(flair[,,50])
A plot of the sagittal, coronal and axial view from the slices [111,132,102]
([sagital slice, coronal slice, axial slice]) can be obtained using the command
orthographic:

orthographic(flair, xyz = c(111, 132, 102))
While R packages may change, improve, or become obsolete, we currently like
the oro.nifti R package, because it is relatively easy to use and allows us to
work directly with compressed files. This is a big advantage when working on
large studies and /or transferring files. Once the magic of staring of the pictures
is gone, some important technical questions remain. Most importantly: 1) what
are these images?; 2) how can we handle sMRI?; and 3) what are some major

pitfalls when starting working on sMRI? We are now addressing these questions.

Figure 2.2: A. Dynamic contrast enhancing (DCE) volume after gadolinium
injection. B. The numerical data obtained from the red region of interest in (A)
from this volume.



2.1.1 What are these images?

At the most basic level, every sMRI volume is a 3 dimensional (3D) array, with
dimensions determined according to the acquisition parameters. For example,
the FLAIR volume shown in Figure 2.1 is stored as a 3D array and the 50"
axial slice (moving from the inferior to the superior of the brain) is stored in
flair[,,50]. This FLAIR image is interpolated to a voxel size of 1 x 1 x Imm
and is 182 x 218 x 182 voxels, or about 7 million voxels. As shown in Figure 2.1
this MRI study contains 4 sequences, for a total of around 30 million voxels for
the entire study. In contrast, fMRI are 4 dimensional (4D) matrices, where time
is the fourth dimension. Similarly, dynamic contrast enhanced MRI (DCE-MRI)
[16, 17] is also 4D, though here we focus on 3D sMRI.

Figure 2.2 displays an axial slice of the T'1 image obtained post-gadolinium
injection. Gadolinium chelate is a paramagnetic substance that can be injected
in the blood stream and makes blood appear hyper intense in the T1. When
a sequence of such images is taken before and after injection, for the purpose
of observing and quantifying the blood dynamics into the brain, the sequence
is referred to as DCE-MRI. Figure 2.2 shows one time point from a DCE-MRI.
Alternatively, only one post-contrast injection image may be acquired and this is
referred to as a post-gad T'1 image. The image contains an MS lesion surrounded
by a hyper intense ring, which indicates blood with a higher concentration of
gadolinium. A small red box in Figure 2.2 A is magnified in Figure 2.2 B.
Each voxel in the magnification contains both the intensity and the associated
numerical data. For example, the largest value in this rectangle is 204, and

corresponds to the most hyper intense shade. Images are just representations
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of data using a particular mapping from real numbers to a gray (or color)
scale. Simple manipulations of this mapping can lead to dramatic changes in
contrasts, at least in the way they appear to the human eye. The representation
appears to be reasonable as the correspondence between known and represented
anatomy and pathology are remarkable. Surprisingly, even if one tried to cluster
intensities of voxels across the entire brain there is overlap between various tissue
classes, simply because the same intensity can easily appear in two different
parts of the brain. For example, there are many areas in the normally appearing
white matter that have roughly the same intensity with the ring around the
lesion.

A natural question then becomes, what are the data units and how compara-
ble are these units across subjects, visits, and studies? Unfortunately, standard
sMRI dare unit less. Thus, the size of the units is comparable within the same
sequence, though taking the difference between two sequences of the same type
is meaningless. Thus, before conducting any sort of analysis on these images,
data intensity normalization is a crucial step. We will discuss some methods of

intensity normalization in Section 2.5.4.

2.1.2 How can we handle sMRI?

An important characteristic of brain imaging data is that it is big. In most
computing environments, loading into memory more than one sMRI study is
not recommended. This raises questions about data storage and handling for
conducting analyses where data can be accessed one or a few images at a time.

We recommend to store data using a folder structure of the type:
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D:/study_type/subject_id/visit_k/sMRIsequence_name.nii.gz

A separate file containing subject identifiers, visit information, covariates and
health outcomes can be stored as a master file. Some researchers prefer to
have the visit identifier and the subject identifier in the file name to avoid
confusion. Regardless of preferences, careful naming and organization of the
data is a crucial step towards more sophisticated analyses. As a basic rule, for
population level analyses the naming system and directory structure must be
consistent, script-friendly, intuitive, and documented.

The compressed files are quite small (around 3Mb), though loading and de-
compressing hundreds of such files in the computer memory can slow down and
even crash computers. We have found that the most robust approach is to up-
load the minimum number of images necessary for performing the analysis. For
example, if one is interested in calculating the mean FLAIR image of spatially
registered images then one can simply upload one image at a time and use an
iterative formula for calculating the mean. If ji,, is an estimator of the mean
using the first n observations Y;, i > 1 then fi,, = n%lﬁn—l + %Yn. Similar formu-
las exist for more complex operations, such as sequential updating of covariance
operators.

The R computational environment is familiar to statistician and biostatisti-
cians and the R environment has many packages for designed for neuroimaging.
However, neuroimaging has been developed primarily outside of statistics, with
a distinctly different software and analytic culture. Indeed, in neuroimaging
MATLAB®, Python [18], and C are used extensively. Learning these languages

is especially useful for direct collaboration. There is an extensive collection
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of useful neuroimaging software; in this chapter we will cover those which we
have found to work particularly well. For example, Medical Image Processing,
Analysis, and Visualization (MIPAV) is particularly powerful for data visualiza-
tion, exploratory analysis, spatial inhomogeneity corrections, segmentation, and

spatial registration.

2.1.3 What are some major pitfalls when starting work-
ing on sMRI?

The biggest mistake in neuroimaging analysis is to look for an application that
illustrates a particular biostatistical modeling idea. A “method backwards” ap-
proach is problematic in any discipline, but it is especially dangerous in imaging.
A reasonably deep understanding of imaging, image pre-processing, and imag-
ing literature can save time, avoid “wheel re-invention”, and maintain focus
on scientifically relevant and important problems. Thus, we advocate a “prob-
lem forward” approach, where biostatisticians and statisticians work directly
with collaborators, learn about the details of data acquisition, and identify the
most important problems where we can have an impact. Like every technology-
intensive field, imaging requires developing a basic set of skills that allows to
understand, formulate, and help solve the most important problems. While Bio-
statisticians “get to play in everyone else’s backyard” (John Tukey, Bell Labs,
Princeton University), there must be rules about “playing”. We have found
the Neuroscience community to be incredibly welcoming and open to informed
biostatistical and statistical ideas and approaches, when we are open to learning

the necessary background for working with neuroimaging data.
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Another pitfall is to not understand the dangers that lurk in neuroimaging.
Here, we warn of a few. First, there is much biological variation between brains
and in addition neurological disease can deform the brain quite dramatically.
Therefore, methods that are reasonably well developed for healthy brains tend
to fail badly on diseased brains. Second, magnetic coils create spatial inho-
mogeneities that could be quite large and vary with the subjects and time of
the scan. Spatial inhomogeneity corrections, such as N3 [19] or N4ITK][20],
work quite well and are reasonably standard in most imaging processing plat-
forms; however, subtle bias fields remain and can strongly affect quantitative
analyses. We discuss in detail the inhomogeneity and inhomogeneity correc-
tion in Section 2.5.1. Third, for many of the steps in pre-processing, a number
of different methods exist and little work has been done to evaluate and com-
pare these methods. For example, it is common to hear statements of the type
“my registration method to a template is better” or “this segmentation ap-
proach works well”. Often there is little evidence supporting such statements,
and these judgements are based solely on the qualitative inspection of images.
There is a need for validation and replication work as well as understanding
human qualitative assessment of images. This is another excellent opportunity
for statisticians and biostatisticians to become involved in imaging. A fourth
major pitfall is to assume that problems in neuroimaging have been solved. The
range, complexity, and diversity of unsolved problems is astonishing. Indeed,
registration, intensity normalization, longitudinal co-registration, spatial inho-
mogeneity, segmentation, population level analyses are all wide open problems.
Fifth, quantifying associations between imaging and health is a hard problem

that needs to be well understood and addressed. Indeed, brain characteristics
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are extremely heterogenous across individuals, while longitudinal changes tend
to be much smaller. For example, in a study of fractional anisotropy, a measure
derived from diffusion weighted imaging, of the corpus callosum [21] the longitu-
dinal variability over 4-5 years only accounted for 2 to 3% of the total observed
variability. This raises important problems for biostatisticians and statisticians
in many neuroimaging studies where the signal, if it exists, sits under a pile of

noise.

2.2 Open scientific problems associated with

sMRI of the diseased brain

Given the diversity of diseases and associated scientific questions, it can be dif-
ficult to identify important scientific problems. It may be simple to identify
segmentation of white matter pathology as a general problem (see Section 2.6.1
for a discussion of lesion segmentation in MS), though we are aware that there
are fundamental differences between identifying affected tissues in MS, stroke,
cancer, traumatic brain injury (TBI), or Alzheimer Disease (AD.) While recog-
nizing these difficulties, we attempt to provide an overview that is informative.
But due to the scope of the problems, we cannot be exhaustive.

From a clinical perspective, the interest is often in subject-specific data.
At this level typical scientific questions are related to existence, location, and
severity of brain abnormalities that may be clinically relevant. Another set of
problems is related to quantifying the volume of white matter, cerebrospinal

fluid (CSF), gray matter, and brain. These problems fall under the umbrella of
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brain tissue segmentation. More subtle problems can also be addressed, such
as localized abnormalities. Examples of these are bleeding, gray matter thin-
ning, or quantifying unusual white matter intensity distributions (referred to as
“dirty white matter”). For sMRI studies aquired at multiple visits, biological
changes between the two visits may be of interest. An example is whether brain
abnormalities have disappeared or have worsened, and whether there are quan-
titative changes in tissue volume or quality between the two visits. A pervasive
technical problem is how to align images of the same subject, how to visualize
the differences between images when intensities change scale from one visit to
the next, and how to eliminate the scanner/visit-specific inhomogeneities. In
Section 2.5.1 we will discuss how to address the spatial inhomogeneity correc-
tion, in Section 2.5.4 we will present methods for registration (aligning different
brains to a template) and co-registration (aligning the sSMRI sequences for the
same subject’s brain from several visits). After applying intensity normalization
as described in Section 2.5.5, one can difference the respective sequences for the
same subject. Probably the most disappointing part of this exercise on real
data is that typically the difference is not zero and reveals the imperfections of
the registration and normalization procedures. The most serious problem is the
fact that edges and boundaries do not align perfectly and some obvious differ-
ences may simply come from the fact that the magnetic signal was stronger in
a particular visit than at the other visit. But, where there is disappointment,
there is opportunity.

When one is moving from the subject to the population level, a new set of
scientific problem arises. Indeed, at the population level one could be interested

in mapping the location of lesions on a template brain and studying whether the
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localization of these lesions is associated with disease severity or progression.
Examples of such problems includes mapping the location of MS lesions or of
the stroke clot after admission to the Intensive Care Unit (ICU.) Another prob-
lem is to quantify differences and changes in brain tissues and their association
with health outcomes. For example, how is the size and shape of the ventricles
in the brain of a patient infected with HIV related to the duration of the dis-
ease or with the type of treatment or with the time from treatment initiation.
Another example is to study the association between white matter loss or gray
matter thinning and progression to AD. High quality sMRI data for this type
of problem is publicly available through the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (http://adni.loni.usc.edu/). Another set of problems is to
study the population level temporal evolution of lesions or normalized voxel in-
tensity in lesions and their association with health processes and/or treatment.
For example, in a stroke trial one may be interested in whether the brain clot is
eliminated after surgery, how fast the clot is eliminated and whether faster or
slower elimination is better for the patient. In an MS study, one may be inter-
ested in analyzing retrospectively whether white matter abnormalities could be
used to predict when and where a new lesion will occur. The last set of problems
is to study the structure of the data across the population either using unsu-
pervised techniques, such as principal component analysis (PCA) or clustering,
or supervised techniques, like regression. For example, one could be interested
in analyzing the principal directions of variation in the brain morphology and
its association with health outcomes, clustering of subjects according to their
image intensities or brain morphology, or identifying locations in the brain that

may be strongly associated with cognitive declines related to accelerated aging.

17



2.3 Data structure and intuitive description of
associated problems.

It is useful to describe the data structure and discuss sMRI from a notation
perspective. We denote by Y;;m(vijm) the intensity of the mth, m =1,..., M,
sequence of the sMRI data at the jth study visit, j = 1, ..., J;, of the ith subject,
i=1,...,1, at the voxel v;jm,. For the data accompanying this chapter I = J =
2, and M = 4 resulting in a total of 16 images. For those cases when there is only
one sMRI per subject (e.g. cross-sectional imaging studies) the index j could
be omitted. As the indexes i, j, and k in v;; indicate, images are typically not
registered, in the sense that voxels do not have the same interpretation between
the same sMRI sequences, visits, or subjects. A transformation of images that
ensures that the voxel depends only on the subject, that is v;jm = v; is called co-
registration. A transformation of the image to a template, X (v), where the voxel
does not depend on the subject is called registration to a template or simply
registration. While co-registration is less controversial and current software
seems to handle it well, registration to a template raises multiple problems,
especially in brains affected by disease. We will discuss registration and co-
registration in Section 2.5.4

A major problem in imaging is that images may have spatial inhomogeneities.
More precisely, this means that the intensity of the image in various tissues (e.g.
fat, white matter) varies by the location in the brain. This can be quite obvious
when, for example, the inferior part of the brain is brighter than the superior.
This can lead to serious problems, as gray matter in the inferior part of the

brain may actually be “whiter” than the white matter in the superior part.
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Spatial inhomogeneities vary in severity, and can often be very subtle. Such
subtle distortions would be discarded by a human observer, but may create se-
rious problems when one tries to analyze data. For example, they have been
shown to have a large negative effect on MS lesion segmentation [7]. From a
notational perspective, an image with spatial inhomogeneities will have the lo-
cal intensity distributions in the same tissue vary across locations in the brain.
The problem of inhomogeneity correction depends on the definition of “tissue”
and requires distribution matching across various tissue types and brain loca-
tions. This is a tough problem with imperfect, but reasonable solutions. This
is discussed in details in Section 2.5.1. A quick way to diagnose spatial inhomo-
geneities is to visually identify white matter, fat, gray matter, and bone regions
from various parts of the brain and plot the histograms of intensities for each
such region separately. A less effective, but faster alternative is to compare the
histograms of axial, sagittal, and coronal distributions. Of course, tissue type
proportions should vary by slice, but reasonable approximations can be ob-
tained. Another alternative is to use and visualize an aggressive smoother that
would hide biological information, but would highlight unusual spatial patterns
of image intensity.

Whenever one is interested in analyzing more than one sequence, it is useful
for the units in which Yjjm(vijm) is expressed to have the same interpretation
and be on the same scale. As we mentioned earlier, this is not the case in
sMRI, which can raise fundamental questions related to population level effects.
Indeed, if data are not on the same scale even taking the differences between
two images does not make sense. A transformation of image intensities from

the raw image to an interpretable scale is called image intensity normalization.
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This should not be mistaken for image registration, which is also often referred
to in practice as “image normalization”. In Section 2.5.5 we will discuss the
statistical principles of image normalization and we will discuss various ways of

conducting image intensity normalization.

2.4 Acquisition and reconstruction

The contrast of an SMRI volume is the relative difference of signal intensities
within the volume. When an MRI scan is acquired, changing the scanning pa-
rameters changes the contrast of the volume to produce the different sequences,
such as FLAIR, T1, T2, and PD. The scanning parameters that contribute to
the contrast of an image are the flip angle (FA), the repetition time (TR), the
inversion time (TI), and the echo time (TE). A more detailed description of
image scanning parameters can be found in [22]. Small changes in the scan-
ning parameters can result in different contrast. For example, two volumes may
both be a “FLAIR” volume, but if acquired with different scanning parameters
can have different image contrasts. MRI physicist are continually working to
develop new imaging techniques in the form of different combinations of these
parameters to produce higher quality volumes. It is therefore desirable, but
quite difficult, to develop algorithms that are robust to changes in the scanning
parameter. Variability in the contrasts can also arise from the strength of the
magnet used for imaging. The magnet strength is measure in teslas. Currently,
common field strengths for sMRI are 1.5T, 3T, and 7T [22]. Slice thickness and

the in-plane resolution of the original volumes is also important, as the volumes
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may be interpolated during image pre-processing. Information about the scan-
ning parameters, slice thickness, and field strength of the magnet can often be
found in the header of the sMRI volume.

During acquisitions, imaging artifacts can arise due to the imaging hardware
or from the subject. It is well established that the introduction of artifacts as-
sociated with patient motion and the variability associated with scanners can
significantly degrade the accuracy of results from further analysis [23] . There-
fore volumes from the scanner typically undergo either a manual or automatic
quality control to assure that volumes with artifacts are removed before analy-
sis. [23] and [24] both propose automated methods for assessing the quality of

an image.

2.5 Pre-processing

After the sMRI data is acquired and reconstructed, data are pre-processed for
analysis. It is often hard to define exactly what “pre-processing” means, as
it will vary by study, scientist, or even analysis. Indeed, pre-processing and
image analysis are closely linked, with pre-processing often having a dramatic
impact on the analytic results. Thus, it is important for the biostatisticians and
statisticians working with sMRI data to have knowledge of the pre-processing
steps and their potential impacts on the downstream analyses. For the pur-
pose of this paper, we divide image pre-processing into four main steps: 1)
inhomogeneity correction; 2) spatial interpolation; 3) skull stripping; 4) spatial
registration; and 5) intensity normalization. A detailed description of each step

with software and data applications is provided in this section. These steps are
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typically executed in this order in an image pre-processing pipeline and depend
on various choices and optimality criteria. A pipeline is a choice of a particular
set of image pre-processing steps that can be applied to many images. While
we simplify here for understanding, an additional complication is that the or-
der, steps, and algorithm for each step are not agreed upon in the community.
Part of the reason for the plurality of pipelines is that it is difficult to quantify
the difference in quality between pre-processing pipelines. Developing improved
algorithms for image pre-processing and methods for quantifying the quality of
pipelines is an area filled with opportunities.

There are many tools for creating image pre-processing pipelines. The choice
of tools should be based upon the tools availability, results quality, and compu-
tational feasibility for large collections of images. While we do believe that there
is no universally best pipeline, a non-exhaustive list of popular sMRI pipelines
include the LONI Pipeline Processing Environment [25], the FMRIB Software
Library (FSL) [26], and Java Image Science Toolkit (JIST) [27] implemented in
Medical Image Processing Analysis and Visualization (MIPAV) [28]. An excit-
ing new tool for R users is ANTsR : Advanced Normalization Tools with R
(http:/ /stnava.github.io/ANTsR /index.html), a pre-processing pipeline that can
be run through R. Image pipelines often fail on a subset of images, which, left
uncorrected, can seriously impact downstream analyses. Therefore, another
quality control step must be performed, which often consists of a qualitative

visual inspection of the preprocessed images.
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2.5.1 Inhomogeneity correction

MRI intensity inhomogeneity is the slow variation of intensities within a tis-
sue class in an image. In the literature intensity inhomogeneity is also referred
to as intensity nonuniformity, shading, the bias field or the gain field. Spatial
inhomogeneity can be caused by the MRI scanner or by the properties of the
object that is being imaged. The latter cause is hard to control and account for,
but is relatively small in low magnetic field intensity scanners. Inhomogeneity
may raise analytical challenges, because basic assumptions of various models
and techniques may be violated. A consequence can be that methods developed
for images with no, small, or known inhomogeneity field patterns may fail in
heterogeneous imaging studies where inhomogeneity fields can be quite large
or have unexpected distributions. For example, many segmentation algorithms
use image intensity thresholding on one or more images that are known to dis-
criminate well between specific tissue classes. However, if the same tissue has
different intensity distributions at different locations in the brain then segmen-
tation algorithms can be seriously affected. For example, Figure 2.3 A displays
a T1 volume from a 7T scanner, while Figure 2.3 B displays the estimated in-
homogeneity field, indicating higher intensities in the left-bottom corner. Thus,
gray matter in this area has higher intensities than white matter areas in other
areas of the brain (gray matter looks “whiter” than white matter.) While res-
olution and biological details are sharper in higher intensity scanners, spatial

inhomogeneity is known to increase with the field strength of the magnet.
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Figure 2.3: A. Axial slice from a T1 -weighted volume obtained from a 7T
scanner. Volumes from scanners with a higher magnetic field strength often
contain more intensity inhomogenity artifacts, as seen in this image. B. The
inhomogenity field for this slice as modeled by the N4 ITK algorithm.

2.5.1.1 Concepts

The inhomogeneity field of an image is commonly modeled multiplicatively. For
a voxel v, the observed intensity in an image Y,,(v), where, for simplicity, we
have dropped the subject and visit index used in Section 2.3. Conceptually,
the observed image is modeled as Y, (v) = a(v) X,,(v) + €,, where X,,,(v) is the
true voxel intensity, a(v) is the multiplicative inhomogeneity field, and e, is an
additive error assumed to follow a Gaussian distribution. The additive error is

often ignored and data are modeled additively on the log-intensity scale:

log{Ypn(v)} = log{Xm(v)} + log{a(v)}. (2.1)
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[29] and [30] provide comprehensive reviews of methods to correct for im-
age inhomogeneities. The inhomogeneity field can be corrected for prospectively
through phantom scans, the use of multiple coils, or special sequences. We focus
on retrospective methods to estimate the field from the the data, as these are
most relevant to the statistician. Clearly, the deconvolution model 2.1 requires
strong assumptions to ensure identifiability. While each method used for esti-
mation makes slightly different technical assumptions, intutitively they all make
assumptions about the degree of variation in the log{ X,(v)} and log{a(v)} pro-
cesses. Typically, though often not explicit, one assumes that log{a(v)} varies
spatially much slower than log{X;,(v)}. Under this assumption, an aggressive
smoother (e.g. 3D kernel smoother with a large window) of the image could be
viewed as an estimator of log{a(v)}. The majority of inhomogeneity correction
methods can be grouped as (1) filtering, (2) surface fitting, and (3) statistical
models. In filtering methods, the inhomogeneity field is assumed to be of low
spatial frequency and the signal of the anatomical structures in the image of
high frequency. The inhomogeneity field can then be removed using a low pass
filter. Surface fitting methods use a tissue segmentation first, which is then
followed by smoothing within tissue classes. Statistical models assume that the
inhomogeneity field follows a particular random process distribution. We will
take exception to this nomenclature, as all these approaches are based on sta-
tistical models. However, we provide the accepted categorization to help with
communication.

When the true inhomogeneity field is not available, criteria used to assess the
performance of inhomogeneity correction methods include: 1) variance over the

entire image or segmented portions of the image; 2) coefficient of variation over
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the image; 3) joint coefficient of variation between two tissue classes. When the
true inhomogeneity field is available, the mean square error between the derived
and true inhomogeneity field is calculated. Other important considerations for

assessing these methods are stability, computer requirements, and CPU time

[29].

2.5.1.2 Practical approaches, software, and application to data

The most commonly used method for inhomogeneity correction is a statistical
model, the nonparametric nonuniform intensity normalization (N3) correction
[19]. The method assumes that f(v) = log{a(v)} and u(v) = log{Xm(v)} are
two independent random variables with distributions F' and U, respectively.
The distribution of the sums of these two random variables is the convolution
of F' and U. N3 searches for the inhomogeneity field to maximize the frequency
content of the image intensity distribution and constrains the inhomogeneity
field to be modeled as a Gaussian distribution with small variance. Code for this
method is publicly available and has been implemented in most pre-processing
pipelines. More recently, an improvement and extension of the N3 method has
been proposed, the NAITK [20]. Code for this method is publicly available and
the method has already been implemented in many pipelines. Figure 2.3 B
shows the inhomogenity field as modeled by the N4 ITK algorithm [20].
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2.5.2 Skull stripping

Skull stripping is the process of extracting the brain from an image by removing
the background and all other tissue. More specifically, the problem is to esti-
mate Sijm(vijm) € {0, 1}, the indicator variable of brain tissue being contained
in voxel vjjm, from the images of each subject at each visit, Yijm(vijm). This pro-
cess, which may be considered a segmentation task (see also Section 2.6.1), is
necessary for the identification of tissue to be studied. Errors in skull stripping
can produce both fictitious effects and reduce power if key regions of the brain

are erroneously removed.

2.5.2.1 Concepts

While dozens of techniques have been proposed for this task over the past two
decades, the most common method remains the brain extraction tool (BET)
[31]. BET is a simple technique that aims to iteratively fit a mesh around the
surface of the brain, and has been shown to have superior performance to com-
peting methods, although it has documented limitations including a propensity
to include extracerebral tissue in the brain mask [32, 33]. While several hybrid
methods [34, 35] have been proposed by integrating generative and classifying
techniques to produce methods that are robust to differences between scanners
and protocols, no solution has satisfactorily solved the problem. Thus, most
image analysis groups still resort to manual correction after automatic skull
stripping. Recently, multi-atlas label fusion techniques [36, 37] have shown
great promise for skull-stripping [38, 39]; these methods use deformable regis-

tration to compare the subject under study with a library of other images for
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which manual skull-stripping images (called atlases) and average (or fuse) these
manual labels across atlases. Patch-based techniques [40] have also shown great
promise with significantly lower computational burden. As new methods are
developed, many authors submit results for active comparison to a validation

resource, and comparisons are publicly available [41].

2.5.2.2 Practical approaches, software, and application to data

As BET [31] is so commonly used, we demonstrate its application as an easy-to-
use and computationally practical approach. BET was first implemented in FSL
[42], but now is available in other image processing packages including MIPAV
and JIST [43]. Using MIPAV, skull-stripping can be achieved using BET on a
T'1-weighted image in less than a minute on a standard personal computer and

an example of the results is shown in Figure 2.4.

2.5.3 Interpolation

Interpolation transforms a discrete array of numbers into a continuous image.
As we saw in Figure 2.2, sMRI are arrays of intensity values that have been
sampled on a grid. When performing operations such as image registration,
magnification, image reslicing and resampling, and surface rendering it is de-
sirable to have a continuous image and to know the approximate values of the

image at points other than those on the original grid.

28



Figure 2.4: An axial slice of from a 3T T1-weighted imaging of a patient with
MS before (A, showing Y;jm (vijm)) and after (B, showing Yjm(vijm)Sijm(Vijm))
skull stripping using BET.

2.5.3.1 Concepts

An extensive review and comparison of interpolation methods in medical im-
age analysis can be found in [44] and [45]. The most common interpolation
methods in sMRI analysis are truncated and windowed sinc, nearest neighbors,
linear, quadratic, cubic b-splines, cubic, Lagrange, and Gaussian interpolation.
Consider the voxel v = (zy, Yy, 2,) with coordinates (z,,y,, 2,) that were not
necessarily among the coordinates where data were sampled. Then the image

can be interpolated at v as

Ym(”) = Ym(ﬂ?m Yu, zt!) = Z Ym(pa r, S)h(x'v DYy — T2y — 3)

p?rls
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where the function A(-, -, -) is the interpolation kernel and the summation is done
over all p, r, s where data are observed. To provide some intuition we describe
the interpolation kernels for “one nearest neighbor”, “linear” and “windowed

sinc”. For one nearest neighbor the interpolation kernel is:

1 0<|z|<05
h(z) =

0 elsewhere

For linear interpolation the interpolation kernel is:

I1—]z|] 0<|z| <05
h(z) =

0 elsewhere

sin(mzx)
e

The sinc function is sine(z) = If N denotes the number of supporting

points used for interpolation then the windowed sinc interpolation kernel is

sin(mzx) 0< |$| <N

0 elsewhere

2.5.3.2 Practical approaches, software, and application to data

In sMRI pre-processing, interpolation is linked closely with spatial registration.
As an image is spatially aligned to another image or a template, the image
being registered must be interpolated to determine the values of the registered
image in the new coordinate space. Interpolation methods are typically a tuning
parameter for registration and are important as they can impact the clarity
of the image after registration. Windowed sinc has been shown to produce

good results in accordance with the number of supporting points used in the
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interpolation, but can become quite computationally intensive as the number

of supporting points increases [44].

2.5.4 Spatial Registration

Registration is the process of determining the spatial alignment and correspon-
dence between images. Consider the case when one is interested in registering
image Y (p, 7, s) tolf;(p,'r,s), wherep=1,...,P,r=1,...,R,ands=1,...,5
are the indexes of the three dimensional arrays. The dimension of both arrays
are P x R x S; when the arrays have different dimensions interpolation, as de-
scribed in Section 2.5.3, can be applied. If we identify a voxel with its array
index v = (p,r, s) then the product of registration is a bijective transformation
map, v — T'(v), from one image reference system to another. The registered
image in the reference system of Y (-, -, -) is then Y{T'(p, 7, s)} whereas results or
images can be obtained in the “native space” by using the back transformation
v — T~ !(v). It is important to note that registration is a transformation of
space and does not affect image intensities; however, image intensities can be
used to find optimal transformations in a specific class of transformations. In
this section we focus on intra-subject registration, also referred to as spatial
normalization. Inter-subject registration and registration to a group template
image are discussed in the Analysis section. [46] provides a detailed summary
of registration methods and we use the notation introduced in this text in the

following description.
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2.5.4.1 Concepts

There is an infinite number of transformations v — T'(v) and they range from
useless to useful. For example, given two images expressed on the same 3D grid
one can perfectly transform each individual point from the first image to each
individual point in the second image. Such a transformation may or may not
respect some order and is characterized by the degree of smoothness (number
of degrees of freedom). A random assignment of indexes would have P x R x S!
degrees of freedom, with most transformations being useless and uninformative.
Here we will describe a few useful transformations, including rigid and affine and
we will provide the necessary tools for non-linear and diffeomorfic approaches.

Rigid registration is the simplest type of registration and consists of a trans-
lation and rotation. Thus, 3D rigid registrations have six-degrees of freedom,
3 associated with the translation vector, t = (t,,t,,%,), in the z,y and 2z direc-
tions and 3 associated with the rotation parameters 8 = («, 8,7y). For a voxel

v = (4, j, k) the rigid transformation can be written as:

T—;'igid (’U) = RU + t

where

cosfcosy cosasiny +sinasinfcosy sinasiny — cosasin 8 cosy
R=] —cosfBsiny cosacosy—sinasinfsiny sinacosvy + cosasinBsinvy

sin 3 —sinacos 8 cos acos 3

An affine registration has the same form as the rigid and is of the type Tyne(v) =

Av+t, with the difference that the matrix A is not constrained to be a rotation
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matrix. Thus, the total number of degrees of freedom of 3D affine transformation
is 12 with 9 degrees of freedom corresponding to the 9 entries of the matrix A
and 3 corresponding to the translation vector ¢.

Choosing the registration class (e.g. rigid or affine) is a crucial step, though
one still needs to estimate the parameters of registration in the induced spaces.
This is done throughout the minimization of a utility function. There are three
main ways of constructing a utility functions using: 1) landmarks; 2) surface
fitting; and 3) voxel-similarity metrics. In landmark based registration, fiducial
markers or landmark point identified by hand in the images are used as points
of reference. A fiducial marker is an object that is placed in the field of view in
an image. These landmarks replace the original frame of reference and transfor-
mations are applied to reduce a particular distance between them, which could
include minimizing the geometric distance or a combination between the geo-
metric distance and the intensities in the image. Either the Root Mean Square
(RMS) Error or Fiducial Registration Error (FRE) can be optimized to select
the registration parameters. The error of the registration can be assessed by re-
porting the Target Registration Error (TRE) for the non-landmark areas in the
image. Landmark based registration requires the identification of landmarks,
which can be time consuming and may be prone to observer error. Therefore,
finding landmarks automatically and reliably is an active area of research. An
excellent comprehensive description of shape analysis and landmark-based reg-
istration can be found in [47].

Surface based registration takes into account the different geometric struc-
tures of the brain to improve the intra-subject variability of brain shapes af-

ter registration. Several methods exist for surface based registration including

33



methods available in the widely used software FreeSurfer (http://surfer.nmr.mgh.harvard.edu).
In surface registration, the idea is to think of the ceberal cortex as a surface
which is transformed into the new space so that the gyri and sulci on the cortex
are matched.
Voxel-similarity based registration methods are popular, as they do not re-
quire the identification of landmarks or segmentation of the image. Here the
registration T' is optimized by a function of the voxel values in the two images.
For images of the same modality, the sum of shared difference (SSD) can be

used:

§5D = -3 [V{T@)} - V(o)

vell

where 2 is the image domain of the two images, Y{T'(v)} is image after the
transformation 7' is applied and 17(1}) is the voxel intensity of the target image.
Another popular similarity function is correlation coefficient (CC) between the

intensity values in the two images and is defined as

L YeeaV{TO)} - YTV (v) - V]
VeV {T(0)} — YT - 3oV (v) — V)2

Y{T()}/nand ¥ = ¥

cc

b

where YT = 7 Y (v)/n. For images that are

vefl vefl

obtained as different sequences or even different modalities, the intensities of
the images can differ quite dramatically. Thus, joint entropy is often used
as an alternative methods registration optimization method. For a vector of

probabilities p = (p1, . .., pk) the entropy H(p) = — >, prlog(pk). Entropy can

be thought of as a measure of information contained in the image. Maximum
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entropy, log(K), is obtained when p; = ... = px = 1/K. Minimum entropy, 0,
is obtained when p; = 1 and p, = ... = px = 0. Maximum entropy corresponds
to a perfectly chaotic environment (e.g. random assignment of shades of gray
to an image), whereas minimum entropy corresponds to a perfectly organized
system (e.g. assigning the same shade of gray to the entire image.) Registration

is often done through minimizing joint entropy,

H(A,B) = Z ZPAB(GJ: b) log pap(a,b)

a b

where p’p(a, b) is the joint probability of the pair of image values a in image A
and b in image B being observed at the same voxel. As image intensities can
be completely different minimizing H(A, B) directly does not typically work
directly. Instead, the histogram of each image intensities can be partitioned
into quantiles and one can assess that the two images have the same intensity
at voxel v if the image intensities fall within the same inter-quantile interval of
the image-specific intensity distribution. In a scatter plot of image intensities,
at the corresponding voxels, H(A, B) is a symmetric measure of how far the
points are from the identity line. A major problem in this context is that there
are many background (non-tissue) voxels, which could dominate the measure.
To mitigate the effect of the many background voxels, joint entropy can be

replaced by mutual information
I(A,B)=H(A)+H(B)—H(A,B)
The mutual information is a measure of the mutual dependence of the two
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images.

In practice the effect of these measures is often not completely understood
and minor assumptions can have serious effects on the results of registration.
Note, for example, that the quantile transformation that we have introduced
above is, essentially, a histogram mathcing approach for signal intensities. Such
approaches can be seriously affected if the relative intensities in images have
different distributions. For example, a brain with larger ventricles will have
a larger number of voxels in the cerebro-spinal fluid (CSF) than a standard
template. Similarly, a brain with a large lesion with specific intensity properties
will have a histogram with a fundamentally altered shape. Ignoring the effects
of pathology and between-subject variability can have large effects on the results

of registration and is one of the dirty, unspoken of, secrets of registration.

2.5.4.2 Practical approaches, software, and application to data

We now discuss and visualize some simple examples showing the process of reg-
istration. Registration can be thought of as a collection of steps that transform
the image into the template space. Recall that registration is a transforma-
tion on the voxel location and not of image intensities; image intensities can
be used to optimize the transformation using, for example, differences between
the transformed image and a template. Suppose that we observe a simple 2-
dimensional (2D) image depicted in Figure 2.5 (top left panel) that needs to
be transformed to the template space (top right panel). In this example, the
template image is a clockwise rotation of the observed image by a 7/2 degree
angle and a shift. Hence, we can use the following rotation matrix to transform

the observed data into the template space.
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cos(m/2) —sin(w/2)
sin(w/2)  cos(mw/2)

Thus, for each pixel with coordinates = = (x1,z2)” we obtain the coordinates
in the new space y = (y1,%)" as y = Rx. The resulting image is shown in
the left middle panel of Figure 2.5. With a shift in the X coordinate we may
completely register the observed image into the template space. The shift can

be incorporated in the transformation as follows:

U1 cos(m/2) —sin(mw/2) —101 x1
yp | = | sin(n/2) cos(7/2) 0 To
1 0 0 1 1

A comparison between the top-right and top-middle panels in Figure 2.5 indi-
cates that the resulting image is very similar to the image in the template space;
in fact, because this is a toy example, they are identical.

A rigid transformation is useful in cases when several images for one subject
are acquired over a relatively short period of time, as we expect the images
to be similar except that the subject may have changed positions between the
image acquisitions. If the acquired image has different voxel dimensions than
the template image, we may want to use an affine transformation. In a second
example, the observed data is simply a 7/4 degree rotation of the template
image while the pixel size is half that of the pixel size of the template image.
We may use the following transformation matrix to transform the observed

image into the template space.
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- (1 _ - cos(—m/4) —sin(—m/4) 0 1T T, -
Y2 | = sin(—w/4) cos(—m/4) 0O T

1 0 0 1 1

b =

The image in Figure 2.5 is based on rounding the noninteger coordinates. Thus,
as described in Section 2.5.3, interpolation of the intensities is needed to obtain
the complete image. As discussed above, once the user chooses the parameter-
ization (e.g. rigid, affine, etc.) and the objective function to be minimized the
transformation matrix can be estimated.

Several softwares exist to estimate the transformation matrix for 3D image
data, including the Advanced Normalization Tools (ANTS) described by [48],
FMRIB Software Library (FSL) (see [26] for a general overview of FSL), Medical
Image Processing Analysis and Visualization (MIPAV) (http://mipav.cit.nih.gov)
and Statistical Parametric Mapping (SPM) (http://www fil.ion.ucl.ac.uk/spm/).

The top left image in Figure 2.6 shows one slice of a 3 dimensional T1 image.
Suppose that data from multiple subjects need to be registered into the template
space shown in the top right panel; this is the Montreal Neurological Institute
(MNI) template. The following code in FSL can be used to obtain the affine

transformation matrix from the image into the template space.

flirt -in Brain.nii.gz -ref Template.nii.gz -out Brain_affine.nii.gz

-omat affine.mat

where Brain.nii.gz contains the image, Template.nii.gz is the template image.

The resulting Brain_affine.nii.gz will be the image transformed into the template
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Figure 2.5: Steps of registration: a toy example.
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space, finally, the affine.mat will show the transformation matrix.

Y1 —1.089 0.001 0.025 186.19 T
Yo 0.006 —1.104 0.054 224.17 Ty
Ys —0.006 —0.005 1.173 —13.196 T3
1 0 0 0 1 1
observed template

affine affine ANTs

Figure 2.6: Application of two software methods (the function flirt on bottom
left and ANTs affine on bottom right) to register a real brain image (top left)
to a template (top right).
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A similar transformation can be obtained using the ANTs software. How-
ever, the function ANTS provides the transformation matrix as an outcome
and a second function has to be used to transform the image into the new space

based on the estimated matrix from ANTS.

ANTS 3 -m MI[Brain.nii.gz, Template.nii.gz, 1, 4] -o img.nii.gz

-r Gauss[3,0] -1 0

WarpImageMultiTransform 3 Brain.nii.gz BrainWarp.nii.gz -R

Template.nii.gz -i imgAffine.txt

If the brain structures are similar up to affine differences then the meth-
ods described above will likely produce reasonable results. However, in some
cases one area of the brain may need to be transformed more than surround-
ing tissue or tissue from a different part of the brain. Approaches that go
beyond affine transformations are typically referred to as non-linear and diffeo-
morfic approaches. Here is one parameterization in ANTSs to obtain a non-linear

transformation:

ANTS 3 -m CC[Brain.nii.gz, Template.nii.gz, 1, 8] -o img.nii.gz

-r Gauss[1,1] -i 30 * 20 * 5 -t SyN[0.25]

WarpImageMultiTransform 3 Brain.nii.gz BrainWarp.nii.gz -R

Template.nii.gz -1 imgAffine.txt BrainInverseWarp.nii.gz

[48] provides an overview of how one can use ANTs to obtain non-linear transfor-
mations of the images from patients with disease, by focusing the optimization

function to the area containing the healthy tissue.
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2.5.5 Intensity normalization

Conducting any type of population-level analysis or inference on data usually
requires that the units of measurement have the same meaning for every subject
and visit. Indeed, when units are different, even calculating a simple average
is not possible. This is a well-known problem in sMRI image analysis, as these
modalities are measured in arbitrary units that depend on many factors in-
cluding the scanner, protocol, and manual adjustments made by the radiology
technician acquiring the images. The importance of intensity normalization has
been emphasized by numerous publications in the imaging literature [49, 50, 51].
The normalization process should produce units that: 1) have a common inter-
pretation at the tissue-type level; 2) are replicable; 3) preserve the rank of
intensities; 4) have similar distributions for the same tissues of interest across
and within patients; 5) are not influenced by biological abnormality or popula-
tion heterogeneity; 6) are minimally sensitive to noise and artifacts; and 7) do
not result in the loss of information either due to pathology or other phenomena.
These principles, proposed in [52] and referred to as the statistical principles of
image normalization (SPIN), guide the mathematical formulation described in

the next section.

2.5.5.1 Concepts

Consider the image intensity Y;;(v) at each voxel v expressed in arbitrary units
and measured for subject 7 at visit 7. Normalization is any transformation of
the type Y;;(v) — N;;{Yi;(v)}. It is useful to conceptualize the histogram of

intensities Y;;(v) as a mixture of densities
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K
h; () = Z wijk fijr(T), (2.2)
k=1

where fi;x(z) are the subject/visit-specific intensity densities of empty space and
known tissues, such as white matter, gray matter, cerebrospinal fluid, bone, skin,
and lesions. The weights w;;;, > 0 sum to 1 and represent the relative weights of
components k = 1, ..., K. This includes both cases with and without pathology,
as the weight for lesions can be allowed to be 0. Careful inspection of SPIN
4 suggests that after normalization fi;r(-) should be as close to one another as
possible for all 7 and 7 and for any fixed k. Thus, a natural starting point would
be to consider transformations that reduce the distance between the f;;.(z) for
any fixed k. Together with SPIN 1, this suggests the existence of the following
theoretical model in normalized space for all images: gg (z) = Ele wiikgk(T),
where the densities gr(z) are independent of subjects and/or visits, though
the weights assigned to these densities depend on subject and visit and may
be the measure of interest in medical studies. The fundamental difficulty of
normalization is to find a transformation from hy;(x) to g5 (z) that respects the

ordering of distributions and their mutual distances in the normalized space.

2.5.5.2 Practical approaches, software, and application to data

The most widely used image normalization techniques have centered on his-
togram matching [49, 53, 50]. First, a template histogram is constructed, usu-
ally by averaging across a group of subjects in a training set. Then, a nonlinear
transformation NVj;(-) (often a linear spline) is estimated for each subject at each
visit to minimize any deviations between the normalized histogram N;;{Y;;(v)}

and the template. Although histogram matching methods produce replicable
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results, they are based on assumptions that are often violated: 1) the tissue-type
distribution is the same across subjects and visits; 2) the absence of abnormal
pathology; and 3) the absence of technical artifacts. For example, Figure 2.7
shows how the assumption of common distributions of tissue throughout the
head can cause mismatching of gray matter (GM) to cerebrospinal fluid (CSF);
note how a normal-appearing part of the brain (raw data shown in the top panel)
is induced to show erosion of GM by histogram normalization (histogram nor-

malized data shown in the bottom left panel).

¥

\

Raw Histogram

Raw Image

)

Histogram-Equalized Image

Figure 2.7: First column: region of interest from patient with MCI shown before
(A) and after (C) histogram matching. Red square indicates region of gray
matter on the unnormalized image that disappears after histogram matching.
Second column: histograms (shades of gray indicate different study visits) of
the gray matter before (B) and after (D) histogram matching and (E) white
stripe normalization for subjects in ADNI. Note the large proportion of gray
matter mismatched to background (zero intensity) after histogram matching.
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An alternative method [54, 55] that has been proposed is to match the un-
derlying a particular subdistribution consisting of a reference tissue as well as
possible. We call this tissue-specific histogram normalization. It is important
to note that although the distribution of intensities in the reference tissue are
matched, regions of normal tissue with intensities outside the range of the ref-
erence tissue are not necessarily comparable; the true normalization function
Ni;(+) is often nonlinear (due to differences in protocol, etc.) and thus normal-
izing with respect to white matter may not result in normalized gray matter
intensities. Tissue-specific histogram normalization does, however, maintain the
natural variability in other tissue types, allowing for the study of pathology.

Assume for the moment that for every subject and visit we have an area
of reference tissue (a sub-mask, usually of the white matter). Then we can
accurately estimate f;;;(z) (say k = 1 for white matter) for each ¢ and j and
obtain a normalized estimator that has mean zero and variance one, fJ(z) =
oi1 fijk(tij1 + 0ij1x), where pij1 and o451 are the mean and standard deviation
of fij1(z), respectively. An estimator of g;(z) is the average of fgl (z) and linear
normalization with respect to the white-matter distribution is

K
hiy (@) = Y wijelow figk iz + oij12)]. (2.3)

k=1
All units are expressed in multiples of standard deviations, o;;, of the white-
matter intensities, and zero is the average intensity of white matter. This
method relies on the availability of a reference tissue (usually white matter)
mask indicating a region of the brain that should be comparable across sub-

jects. This is often unavailable before intensity normalization, however, and
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[52] proposed and validated a fully automatic method that avoids this.
Consider a T1 sMRI, Y;;(v), for subject i = 1,...,n. [52] use normal-
appearing white matter (NAWM) as a reference color, since it is the largest
and most contiguous brain tissue. To identify the distribution of NAWM in-
tensities, [52] use a penalized spline smoother [56] to estimate the mode of the
intensity histogram in white matter, pj;, (the largest non-background peak).
To estimate the variability within NAWM on the raw image, they estimate

the standard deviation o7;

, of intensities in Q;; = {v : H;'[H(u};) — 7] <
Yij(v) < H;'[H(py,) + 7]}, which is referred to as the white stripe (where
Hij(z) = [*__ hij(z) dz). Here T is a quantile tolerance in the original space of

intensities. The estimation of yj;; and o7;, was been found to be remarkably

ij1
robust across several thousand images (failure rate < 1%). If the family of den-
sities fi;1(v) can be parameterized by two parameters then p;;; = 1 (151, 071)
and 045 = a(pfjy,075) (proof follows from the method of moments). Thus,
matching pj;, and of;; (estimable directly from the white stripe without prior
segmentation) results in matching p;;; and o5, and this tissue-specific his-

togram normalization method has been shown to perform well in large multi-

center studies.

2.6 Analysis

2.6.1 Lesion segmentation

Segmentation is the labeling of voxels in an image according to particular prop-

erties of the voxel (e.g. the type of tissue the voxel contains). Examples include
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segmenting and comparing the cingulate gyrus of subjects with schizophrenia
and healthy controls [57] and segmenting the hippocampus to assess volume loss

due to chronic heavy drinking [58]. A review of methods for segmentation of

brain sMRI can be found in [59] and [60].

Figure 2.8: A. An axial slice from the FLAIR volume from a patient with
multiple sclerosis. B. Manual expert segmentation of the lesions from this slice.

Here we describe the problem of segmentation of brain lesions in multiple
sclerosis (MS) from a single sMRI study. MS is an inflammatory disease of
the brain and spinal cord characterized by demyelinating lesions that can be
observed with sMRI [61]. In MS quantitative analyses of sMRI, such as the
number and volume of lesions in an image, are essential for diagnosing the dis-
ease and monitoring disease progression [2]. In practice, MS lesions are manually
segmented by experts from sMRI. Figure 2.8 shows an example of a manual
segmentation of lesion voxels. As manual or semi-automated segmentations of
images are time consuming, costly, and prone to large inter- and intra-observer

variability [62], development of automated methods of lesion segmentation is
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an active field of research [63]. Reviews of current lesion segmentation methods
can be found in [63], [64], and [65]. LesionTOADs is a readily available soft-
ware for lesion segmentation that runs in the JIST pipeline enviornment [66].
An excellent resource for lesion segmentation data is the MS lesion segmenta-
tion challenge 2008 [67]. This database include sMRI volumes acquired at the
Children’s Hospital Boston and University of North Carolia along with expert
manual segmentations.

Lesions segmentation is a classification problem. In the literature, super-
vised classifiers are trained on expert manual segmentations of lesion voxels or
unsupervised classifiers use clustering methods to identify lesion voxels . The
covariates or features in the model are derived from the different imaging se-
quences Y;,. From these images anatomical information derived from atlases
and/or the voxel-level intensity information from an imaging modality Y,,(v)
can be used for classification [65]. To illustrate the problem, we provide an
overview of a lesion segmentation method from the literature [7], as it is a logis-
tic regression model, a model that is familiar to statistician and biostatisticans.
Let L;i(v) = 1 if the manual segmentation of voxel v is a lesion for subject i
and let L;(v) = 0 otherwise. Concatenate the manual segmentations from each
voxel for all subjects into a single vector L. Similarly, let Y denote the design
matrix of features derived from the different imaging modalities for all of the
voxels and subjects. We can then model the probability that a lesion contains

a voxel with the logistic regression model:

logit{ P{L(v) =1} =Y (v)B

48



Recently, it has been found that for lesion segmentation the particular classifi-
cation algorithm is less important than the development of the features [8]. In
spite of this, methods continue to be classified according to the method used for
classification and not by the feature space. Indeed, the classification method
(e.g. random forrest, svm, or logistic regression) offers basically no informa-
tion on what actually improves prediction. In a seminal paper [68], D.J. Hand
notes “the extra performance to be achieved by more sophisticated classifica-
tion rules, beyond that attained by simple methods, is small”. It follows that if
aspects of the classification problem are not accurately described (e.g., if incor-
rect distributions have been used, incorrect class definitions have been adopted,
inappropriate performance comparison criteria have been applied, etc.), then
the reported advantage of the more sophisticated methods may be incorrect.”
We subscribe to this view, though we describe it more plastically as “there are
very few reasonable ways of cutting the potato.” Here, the potato is, of course,
the cloud of points in the feature space.

A major source of difficulty in automated segmentation of MRI is due to
variable imaging acquisition parameters [65, 63]. Most segmentation methods
have tuning parameters that are adjusted to a particular data set and may not
generalize to a new data set with different acquisition parameters. Lesion seg-
mentation is also closely intertwined with image pre-processing. Methods using
anatomical information rely on proper nonlinear spatial registration to a tem-
plate image. The use of image intensities requires high quality inhomogeneity
correction and intensity normalization — otherwise population level modeling
is hopeless. There are even lesion segmentation methods in the literature that

iterate between lesion segmentation and inhomogeneity [69].
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2.6.2 Lesion mapping

In Section 2.5.4 we discussed spatial registration methods for structural images.
There are two main issues in the context of registration in presence of lesions:
1) It can be very hard to find the best way to register images for many subjects
into the same brain if their images are distorted due to disease; 2) should the
segmentation of lesions be performed before or after registration. If the lesions
in the brain have been hand-segmented in the native space, or in the rigidly
registered space which is common in MS studies, then one can use the lesion
masks to extract the areas that are within the lesion and use the healthy brain
for registration. Both ANTs and FSL provide the capability of excluding the
lesion areas from the mask when estimating the transformation matrices. For
instance in ANT's this can be performed by adding an option in the function

call.

ANTS 3 -m MI[Brain.nii.gz, Template.nii.gz, 1, 4] -o img.nii.gz

-r Gauss[3,0] -1 0 -x lesion_mask.nii.gz

Another approach to alleviate the effect of the presence in lesions in the brain
is to fill in the area of lesions by the average of normal appearing white mat-
ter intensities and then estimating the transformation matrix for the resulting
images. After obtaining the transformation matrices for each subject their cor-
responding lesion masks can be transformed into the template space by applying

the transformation.

WarpImageMultiTransform 3 lesion_mask.nii.gz lesion_maskWarp.nii.gz -R

Template.nii.gz -i imgAffine.txt
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After registering all the mask maps into the template space we can plot a so-
called lesion histogram which shows the prevelence of lesions in certain areas of
the brain as shown in Figure 2.9.

S8.80

-27.90

12.22

Figure 2.9: Two slices from a histogram of lesions constructed using non-linear
registration of observed images in ANTs.

2.6.3 Longitudinal and cross sectional intensity analysis

Another very important type of analysis is to directly analyze the intensities in
the image after intensity normalization. Indeed, after intensity normalization,
we can compare and quantify the histograms of intensities within each sequence
or combined across sequences. This could be done at the brain level, which
requires only intensity normalization, or at the tissue level, which would also
require a segmentation algorithm. For example, at the population level one may
be interested in the intensity distribution in white matter. This could be done by
obtaining the histogram intensities, stacking them in a matrix and conducting

a PCA or other dimensionality reduction approach. A similar analysis could
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Figure 2.10: Voxel intensities for FLAIR (top panels), T1 (middle panels), and
T2 (bottom panels) images in a lesion (labeled lesion 14) for one subject over 8

years at 40 visits.
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be conducted at the lesion level if one is interested in cross-sectional differences
in lesion intensity distributions. Another possibility is to study the association
between these distributions and health outcomes.

To provide a view of what could be achieved, consider a study of natural
history of MS conducted by Daniel Reich at the National Institutes of Health
(NIH.) Figure 2.10 displays the voxel-specific intensities of the FLAIR (top
panels), T1 (middle panels), and T2 (bottom panels) images in a lesion (labeled
lesion 14) for one subject over 8 years at 40 visits. The x-axis represents time in
days and the y-axis represents image intensities as standard deviations of white
matter intensities; see Section 2.5.5 for more details. The first column displays
the three sequences along an axial slice, with MS lesions being visible around
the ventricles, especially in the FLAIR and T1 images. The second column
displays the corresponding voxel intensities, while the third column displays
the voxel intensities in the contralateral part of the brain corresponding to the
lesion. The contralateral area of the brain is used here as control. The fourth
column provides the difference in voxel intensities between each voxel and its
contralateral correspondent voxel.

The orange vertical line indicates the first time when lesion 14 was identified
using the SuBLIME algorithm, [55] an algorithm designed to segment new and
enlarging MS lesion, though the lesion may have occurred earlier than this visit.
Indeed, before the lesion is observed there is around a 1.5 year gap between the
MRI visits. Visits are indicated as a rug on the x-axis; notice that there are
few visits in the beginning followed by many monthly visits after lesion 14 is
detected. This is just one example of the data, and similar plots can now be

obtained for all lesions. This raisies important scientific questions, such as: 1)
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how many patterns of intensities are there before and after the lesion is detected?
2) are there subtle changes in image intensities before the lesion is detected that
could predict the lesion localization or timing? 3) are certain white matter areas

with specific intensity patterns more prone to lesion formation?

2.7 Conclusions

We could have written a book. We probably should have written a book. Af-
ter finishing this chapter, we realize that we barely scratched the surface of
one of the most exciting areas of research in statistics and biostatistics. Far
from being exhaustive, this chapter introduces fundamental analytic concepts
in neuroimaging that are pertinent both to healthy subjects but, especially, to
those who suffer from brain diseases. While the number of biostatisticans and
statisticians who work in this area is incredibly small given the importance of
the problem, those who “get hooked” become passionate about looking in the
most quantitative way possible into the brain and dealing with complex analytic
problems. Far from sending the message that this area of research is closed, our
own perception is that research is just now starting. Important concepts have
already been introduced and progress has been achieved. However, without
knowing what has already been achieved the research community will simply

reinvent the wheel.
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Chapter 3

OASIS is Automated Statistical
Inference for Segmentation, with
applications to multiple sclerosis

lesion segmentation in MRI

3.1 Introduction

Multiple sclerosis (MS) is an inflammatory disease of the brain and spinal cord
characterized by demyelinating lesions that are most easily identified, at least on
magnetic resonance imaging (MRI) studies, in the white matter of the brain [1].
Quantitive analyses of MRI, such as the number and volume of lesions, are es-
sential for for diagnosing the disease and monitoring its progression [2, 3]. MRI

measures are also a common primary endpoint in phase II immunomodulatory
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drug therapy trials [70]. In these trials, either manual or semi-automated seg-
mentations are used to compute the total number of lesions and the total lesion
volume [65]. Manual delineation is challenging as three-dimensional informa-
tion from several MRI modalities must be integrated [71]. Manual assessment
of MRI is also prone to large inter- and intra- observer variability [62]. While
semi-automated methods have been found to decrease inter- and intra- rater
variability, they still require manual reader input and are time consuming [63].
Therefore a sensitive and specific automated method to detect lesions in the
brain is essential for the analysis of studies with a high numbers of MS patients.

A comprehensive review of currently available automated, cross-sectional MS
lesion segmentation methods, or methods used to identify lesions from a single
MRI study, is provided in [71]. We divide these methods into four categories:
supervised classifier with an atlas, supervised classifier with no atlas, unsuper-
vised classifier with an atlas, and unsupervised classifier with no atlas. We focus
on supervised methods without atlases, as the method we propose is in this cat-
egory. Supervised methods without atlases train on manually segmented images
annotated by experts and use image intensities of MRI to classify lesions [71].
Supervised classification algorithms are applied to the volumes: artificial neural
networks [72], spatial clustering [73], k-nearest neighbors [74, 75, 76|, Parzen
window [77], Parzen window and morphological grayscale reconstruction [78],
Bayes [79], AdaBoost [80], simulated annealing and Markov random fields [81],
and graph cuts [82]. All of the aforementioned methods except [76] use multi-
modality MRI information to classify lesions. The most widely-used feature
across all segmentation methods is voxel intensity, which derives strength from

a multi-modality approach [71].
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The method we propose uses a logistic regression model to assign voxel-
level probabilities of lesion presence in structural MRI of patients with MS.
Logistic regression models have been used for segmentation of brain tissues
and pathology in MRI [83, 84, 85]. For applications to MS, logistic regression
has been used for detection of gadolinium enhancing lesions [86], prediction of
gadolinium enhancing lesions without administering contrast agents [87], and
for segmentation of new and enlarging MS lesions [9]. To our knowledge logistic
regression has not been used in cross-sectional segmentation of MS lesions in
structural MRI.

One difficulty in automated segmentation of MRI is due to variable imaging
acquisition parameters [71]. All of the segmentation methods reviewed in [71]
have tuning parameters that are adjusted to a particular data set and may not
generalize to a new data set with different acquisition parameters. These pa-
rameters are not informed by the data and therefore must be tuned empirically,
often with little to no interpretability of the parameter. Application to a new
data set may require several iterations of segmentations to adjust the tuning pa-
rameters to values that produce acceptable segmentations. A method in which
the tuning parameters are informed by the data and for which adjustments are
intuitive and simple would therefore be valuable.

A second difficulty in intensity-based segmentation is that MRI data are
acquired in arbitrary units; units can vary widely between and within imag-
ing centers. These variations are attributed to scanner hardware, interactions

between hardware and patients, and variations in acquisition parameters [62].
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Therefore, proper intensity normalization is essential in developing a generaliz-
able segmentation method. Many of the segmentation methods use intensity-
normalized volumes [65], but these methods do not demonstrate the general-
izability of the normalization procedure to changes in imaging acquisition pa-
rameters and imaging centers. In [63] the authors performed a PubMed and
Google Scholar search for MS lesion segmentation papers. Of the 47 papers
that met their search criteria, only 13 of these papers used multicenter data for
validation, and the largest database used for validation consisted of 41 subjects.
To show generalizability, methods must be validated on multicenter data with
many subjects.

A third difficulty is intensity inhomogeneity, the slow spatial intensity varia-
tions of the same tissue within an MRI volume. Inhomogeneity can significantly
reduce the accuracy of image segmentation [29], and therefore some form of
spatial normalization is necessary for accurate lesion segmentation. Most lesion
segmentation methods assume that these inhomogeneities have been corrected
during image preprocessing, but we have found strong spatial patterns within
tissue type even after the N3 inhomogeneity correction algorithm [19] is applied.

To address these and related problems, we propose OASIS is Automated
Statistical Inference for Segmentation (OASIS), a fully automated, generaliz-
able, and novel statistical method for cross-sectional MS lesion segmentation.
Using intensity information from multiple modalities of MRI, a logistic regres-
sion model assigns voxel-level probabilities of lesion presence. After training on
manual segmentations, the OASIS model produces interpretable results in the
form of regression coefficients that can be applied to imaging studies quickly

and easily. OASIS uses intensity-normalized brain MRI volumes, enabling the
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model to generalize to changes in scanner and acquisition sequence. OASIS also
adjusts for intensity inhomogeneities that preprocessing bias field correction
procedures do not remove, using smoothed volumes. This allows for more accu-
rate segmentation of brain areas that are highly distorted by inhomogeneities,
such as the cerebellum. One of the most practical properties of OASIS is that
the method is fully transparent, easy to explain and implement, and simple to
modify for new data sets.

To illustrate the generalizability of OASIS to changes in imaging acquisition
parameters, we evaluated the performance of the algorithm on a total of 300 MRI
studies from two separate imaging centers with varying acquisition parameters.
This is a crucial criterion for assessing the generalizability and utility of the

method.

3.2 Materials and methods

In this section we introduce OASIS, a method inspired by Subtraction Based
Inference for Modeling and Estimation (SuBLIME), an automated method for
the longitudinal segmentation of incident and enlarging MS lesions [9]. Before
the OASIS logistic regression model is fit, a brain tissue mask is created, all MRI
volumes are intensity normalized, and smoothed volumes are created to capture
local spatial information and adjust for remaining field inhomogeneities. The
OASIS method involves two iterations of model fitting: the first to perform an
initial lesion segmentation and the second to use this initial lesion segmentation
to remove lesions, which can distort the smoothed volumes. After the final

model is fit, the regression coefficients are applied to produce three dimensional
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maps of voxel-level probabilities of lesion presence.

We evaluate the performance of OASIS on MRI volumes of the brain acquired
with various acquisition protocols. We use data sets from two different imaging
centers for validation, which we refer to as validation set 1 and validation set
2. validation set 1 has manual lesion segmentations. We trained the OASIS
method on a subset of the studies in this dataset, and tested on the remaining
studies. An expert evaluated the segmentations from validation set 1. validation
set 2 is used to demonstrate generalizability to changes in image acquisition
parameters. We applied the coefficients from the model trained on validation
set 1 to the studies in validation set 2, and experts evaluated the OASIS lesion

segmentations.

3.2.1 Study population

validation set 1 contains a total of 131 MRI studies from 131 subjects. Of these
studies, 98 are from patients with MS and 33 are healthy volunteer scans. Of
the 98 patients with MS, the median age is 44 years (IQR: [33, 54]), 72 are
female (26 male), and the median EDSS is 3.5 (IQR:[2, 6]). The median age of
the healthy volunteers is 34 (IQR: [28, 42]) and 19 are female (14 male).
validation set 2 contains a total of 169 MRI studies from 149 subjects.
Twenty subjects in validation set 2 have baseline and follow-up scans. The
mean time between baseline and follow-up for these 20 subjects is 132 days
(IQR: [51, 182]). The subjects in the validation set are a mixture of healthy
volunteers and patients: 110 of the patients have MS, 38 have other neurological

diseases, and one is a healthy volunteer. The median age of the MS patients
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is 42 (IQR: [33,50]); 54 are female (56 male); 68 have relapsing remitting MS,
31 have primary progressive MS, and 11 have secondary progressive MS. The
median age of the patients with other neurological diseases is 41 years, (IQR:
[35, 51]) and 8 are female (30 male). The healthy volunteer is a 28 year old
female.

3.2.2 Experimental methods

T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR) and
proton density (PD) volumes were acquired for all subjects at each study, and
all imaging protocols were approved by local institutional review boards. For
validation set 1, 3D T1-MPRAGE images (repetition time (TR) = 10 ms; echo
time (TE) = 6ms; flip angle (FA) a = 8°; inversion time (TT) = 835 ms, reso-
lution = 1.1 mm x 1.1 mm x 1.1 mm), 2D T2-weighted pre-contrast FLAIR
images (TR = 11000 ms; TE = 68 ms; TI = 2800 ms; in-plane resolution =
0.83 mm x 0.83 mm; slice thickness = 2.2 mm), T2-weighted and PD images
(TR = 4200 ms; TE =12/80 ms; resolution = 0.83 mm x 0.83 mm x 2.2 mm)
were acquired on a 3 tesla MRI scanner (Philips Medical Systems, Best, The
Netherlands).

For validation set 2, the 3D T2-weighted post-contrast FLAIR was acquired
using a variable flip angle sequence, the 2D PD and T2-weighted volumes us-
ing a dual-echo fast-spin-echo sequence, and the 3D T1-weighted volume using
an inversion-prepared fast spoiled gradient-echo sequence. These studies were
acquired on a single 3 tesla MRI scanner (Signa Excite HDxt; GE Healthcare,

Milwaukee, Wisconsin). Table 3.1 contains the ranges for the validation set 2
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scanning parameters.

Table 3.1: Ranges for validation set 2 scanning parameters

FA (degrees) TR (ms) TE (ms) TI (ms)
FLAIR 90 (4800, 8802) (124.3, 151.4) (1481, 2200)
T2-weighted 90 5317 (116.2, 124.2) NA
PD 90 5317 (16.0, 23.7) NA
Tl-weighted  (6,13) (8.7, 9.1) (3.2,3.6) (450, 725)

3.2.3 Image preprocessing

Before building our statistical model for the lesion segmentation, we prepro-
cessed the images from validation set 1 and validation set 2 using the tools pro-
vided in Medical Image Processing Analysis and Visualization (MIPAV) [28],
TOADS-CRUISE (http://www.nitrc.org/projects/toads-cruise/), and Java Im-
age Science Toolkit (JIST) [27] software packages. We first rigidly aligned the
T1-weighted image of each subject into the Montreal Neurological Institute
(MNI) standard space (voxel resolution 1mm?). We then registered the FLAIR,
PD, and T2-weighted images of each subject to the aligned T'1-weighted images.
We also applied the N3 inhomogeneity correction algorithm [19] to all images
and removed extracerebral voxels using SPECTRE, a skull-stripping procedure
[88].

3.2.4 Statistical modeling and spatial smoothing

We performed all statistical modeling in the R environment (version 2.12.0,
R Foundation for Statistical Computing, Vienna, Austria) with the packages
AnalyzeFMRI [89], biglm [90], ff [91], and ROCR [92]. We used the FSL
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tool fslmaths (http://www.fmrib.ox.ac.uk/fsl) for the three dimensional spatial

smoothing of the volumes.

3.2.5 Brain tissue mask

The first step in OASIS is to create a mask of the brain that excludes cere-
brospinal fluid (CSF). CSF is excluded because it disrupts the capture of the
inhomogeneity field and distorts the representation of the local cerebral features
when creating smoothed volumes. To make this mask, we used the extracerebral
voxel removal mask described in the Image Preprocessing Section and excluded
voxels in the mask that appear hypointense in the FLAIR volume. Because CSF
is hypointense in the FLAIR, we empirically found that excluding voxels falling
below the bottom 15th percentile of FLAIR intensities over the extracerebral
voxel removal mask removes CSF outside of the brain and in the ventricles. We
refer to this mask as the brain tissue mask. Figure 3.1B shows a slice of the

brain tissue mask for a particular subject for illustration.

3.2.6 Intensity normalization

We used intensities from the FLAIR, PD, T2-weighted, and T1-weighted vol-
umes to identify the presence of MS lesions. We denote the observed intensity

of voxel v, for subject i by:

M°(v),M = FLAIR, PD,T2,T1

where M indicates the imaging sequence.
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Figure 3.1: A. Axial slice from different modalities of intensity normalized brain
MRI of a single subject: Al. FLAIR image. A2. T2-weighted image. A3.
PD image. A4. Tl-weighted image. B. Brain tissue mask of an axial slice
of the brain. C. Axial slice of select voxels for OASIS modeling. D. Manual
lesion segmentation of an axial slice of the brain. E. Axial slice of brain tissue
mask with dilated lesion mask made at a false positive rate of 1% removed. F.
Axial slice of the smoothed probability map with intensity scale. G. Binary
segmentation of the probability map from the OASIS model at false positive
rate of .005 overlaid on the FLAIR image.
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MRI volumes are acquired in arbitrary units. Analyzing images across sub-
jects and imaging centers requires that images be normalized so that voxel
intensities have common interpretations. For normalization, we adapt the nor-
malization method from [93] to normalization with respect to the brain tissue

mask. The normalized intensity of voxel v, for subject 7 is denoted by:

MO (v) — ud
MY (v) = Mi(v) = Pim
O M
where p1 ,, and o7, are the mean and standard deviation of the observed voxel
intensities in the brain tissue mask of subject i, from sequence M. The normal-

ized voxel intensities are standard scores of the brain tissue mask. Figure 3.1A

shows a slice of the normalized images from all four modalities from a single

subject with MS: FLAIR, T2-weighted, PD, and T1-weighted.

3.2.7 Smoothed volumes

To account for intensity inhomogeneities that remain after initial inhomogeneity
correction, we use a sequence of multiresolution smoothed volumes, obtained
using different levels of smoothing. The smoothed volumes are created by three
dimensional smoothing of the normalized volume from each modality over the
brain tissue mask. A Gaussian smoother with relatively large kernel window
size is used to smooth over the features in the brain and capture the pattern of
the remaining inhomogeneity.

For subject i and imaging modality M, let k be the size of the kernel win-

dow. Then the intensity in voxel v of the smoothed volume of imaging modality

M is expressed as GMN (v, k). The smoothed volumes are used in the OASIS
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model to incorporate spatial information and to account for inhomogeneities in
the brain that persist after N3 correction. For OASIS we use smoothed volumes
as covariates with kernel window sizes of 10 and 20 voxels, which were found
empirically on validation set 1 to work well. Figure 3.2 shows the smoothed
volumes for both kernel window sizes of 10 and 20 from each modality. The ker-
nel window size of 20 smooths over the anatomical features almost completely,
while the kernel window size of 10 still preserves some of these features, such
as the hyperintesities of the gray matter in the FLAIR, T2-weighted, and PD

volumes and hypointensities of the gray matter in the T1-weighted volume.

T2-weighted F T1-weighted

)

Figure 3.2: Axial slice from a a single subject of the smoothed volumes from all
modalities. Row one contains the smoothed volumes with kernel window size
of 10 and row two contains the smoothed volumes with kernel window size of
20. Column A contains the FLAIR images, B contains the T2-weighted images,
C contains the PD images and D contains the T1-weighted images. To link
the figure with the notation used in this paper: Al. GFLAIRY (v,10); A2.
GFLAIRY (v,20); B1. GT2N(v,10); B2. GT2Y(v,20); C1. GPDX (v, 10); C2.
GPDN(v,20); D1. GT1¥(v,10); D2. GT1¥ (v, 20); E. Scale of intensities in the

smoothed volumes.
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3.2.8 OASIS is Automated Statistical Inference for Seg-

mentation

In this section we introduce the OASIS model. OASIS uses logistic regression
to model the probability that a voxel is part of a lesion. We choose logistic
regression because it is extremely simple and easy to interpret. We model lesions
at the voxel level using FLAIR, PD, T2-weighted, and T1-weighted intensities
as well as the intensities from the smoothed volumes of each modality with
kernel window sizes of 10 and 20 voxels. The model must be trained on a
gold standard measure of lesion presence. Figure 3.1D is an example of manual
lesion segmentation, which is an appropriate gold standard measure for the
OASIS model. The result of our model is a collection of coefficients that can
be used to create three-dimensional maps of the probabilities of lesion presence.
OASIS obtains the estimated logit of the probability of each voxel being part of a
lesion by weighting these 12 images (the four imaging modalities and smoothed
volumes for each modality) with the coefficients.

The first step of the modeling procedure is to select candidate voxels to
minimize false positives and computation time. Lesions appear as hyperinten-
sities in the FLAIR volume. The brain tissue mask was applied to the FLAIR
volume, and the 85th percentile and above of voxels in the brain tissue mask
were selected as candidate voxels for lesion presence. In validation set 1, there
were a total of 1,093,394 lesion voxels (a volume of 1,093 cm?®). The voxel selec-
tion procedure excluded 64,556 (6%) of these voxels, but lowered the searchable
area to 15% of the original size. This procedure also decreases the number of

potential false positive voxels. Using this threshold also significantly decreases
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the number of voxels the model must be fit on, allowing for a much faster fit.
Figure 3.1C shows a slice of the voxel selection mask for a single subject.

We then fit a voxel-level logistic regression model over the candidate voxels.
In the OASIS model, the probability that a voxel is part of a lesion is represented
as P{L;(v) = 1}, where L is a random variable denoting voxel-level lesion
presence. If there is a lesion in voxel v for subject i, then L;(v) = 1. Otherwise,
L;(v) = 0. The probability that a voxel v contains lesion incidence is modeled

with the following logistic regression model:
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The effect of magnetic field inhomogeneities are thought to be multiplicative,
so we use the interactions between the normalized volume and the smoothed

volume in the model.

3.2.9 OASIS model refinement

The second iteration of the OASIS model fitting is done to reduce the influence
of lesions in the smoothed volumes. First, we fit the model and use the estimated
coefficients to create maps of the estimated probability of lesion presence at each
voxel. To incorporate spatial information of the neighboring voxels and reduce
noise, we smooth the estimated probabilities from the model using a Gaussian
kernel with window size of 3 mm. This kernel size was empirically chosen and
found to perform well. The resulting probability maps were then thresholded
using a liberal false positive rate of 1% (threshold value of 0.10), which resulted
in model based hard segmentations of lesions. These lesions masks were then
dilated by 5 voxels to ensure that the entire lesion was captured and removed
from the brain tissue mask. Figure 3.1E shows the brain tissue mask with the
lesions removed. New smoothed volumes were created by applying a Gaussian
smoother with kernel window sizes of 10 and 20 to the normalized image from
each modality over the brain tissue mask with the lesions removed. We inpainted
the smoothed volumes to fill the places where lesions were removed with the
values we would expect in this area if it were occupied by normal, healthy tissue.

The intensity in voxel v of the normalized image after the second Gaussian
smoother has been applied is labeled as, G2M}N (v, k). Figure 3.3 shows an ax-

ial slice for a subject of the FLAIR volume and the smoothed volume for this
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image with kernel window sizes of 10 and 20 before and after the lesions were
removed. To link the figure with the notation, Figure 3.3A shows FLAIRY (v),
Figure 3.3B shows a scale of intensities in the smoothed volumes, Figure 3.3C1
shows GFLAIRY (v,10), Figure 3.3C2 shows G?FLAIRY (v,10), Figure 3.3D1
shows GFLAIRN (v,20), and Figure 3.3D2 shows G2FLAIRY (v,20). The le-
sions are captured in the first smoothed volume, especially with the kernel size
of 10, but are not captured in the second smoothed volume. The model [1] was
refit over the same voxels using the second smoothed volume to obtain the final
coefficients that are used to create the final probability maps. Again, the final
estimated probabilities are smoothed using a Gaussian kernel with window size
of 3 mm. Figure 3.1F shows a slice of the probability map for a subject and
a scale of intensities. Red indicates areas with a higher probability of being a

lesion and blue indicates areas with a lower probability of being a lesion.

3.2.10 Probability map and binary segmentation

Using this fitted model to generate a probability map for the entire brain from
a set of new images takes about 30 minutes for each study using a standard
workstation. The Gaussian smoothing is the slowest step of the algorithm and
takes approximately one minute for each volume. These computations can be
parallelized to take substantially less time; the entire algorithm can be run in
approximately 5 minutes with 8 cores. To make a probability map for a new
study, the two sets of regression coefficients, a brain mask, and the FLAIR, PD,

T2-weighted, and T1-weighted volumes are required. Using population-level
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Figure 3.3: Axial slice of the FLAIR volume and the first and second smoothed
volumes created from the FLAIR image for a single subject. To link the figure
with the notation used in this paper: A. FLAIRY (v) B. Scale of intensities
in the smoothed volumes C1. GFLAIRY (v,10); C2. G?FLAIRY (v,10); D1.
GFLAIRY (v,20); D2. G2FLAIRY (v,20).

thresholds, the probability maps from OASIS can be used to create hard seg-

mentations of lesion presence. Figure 3.1G shows a slice of a hard segmentation

overlaid on the FLAIR image.

3.2.11 Validation with gold standard: validation set 1

validation set 1, described in detail in the Materials section, consists of 131 MRI
studies: 98 studies from MS subjects and 33 studies from healthy subjects. To
fit the model and to measure performance, we required a set of data in which
the outcome is assessed using a gold standard measure. The gold standard

was obtained using manual segmentation by a technologist with more than
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10 years of experience in delineating white matter lesions. The technologist
spent between 30 minutes to an hour segmenting each study, depending on the
lesion load and distribution. The majority of the studies had at least moderate
pathology and therefore took between 45 minutes to an hour. The segmentations
were made from the FLAIR and T1-weighted volumes. Figure 3.1D shows a
manually segmented slice for a subject. The mean volume of lesions for MS
subjects in validation set 1 is 11.2 ecm® (IQR: [1.7 cm®, 16.6 cm?®]). It was
assumed that the healthy subjects did not have any lesions.

To evaluate performance of our model within validation set 1, we trained
the model [1] on 20 randomly selected subjects (15 MS subjects and 5 healthy
subjects) and tested on the remaining 111 subjects (83 MS subjects and 28
healthy subjects). We used only the studies from the 111 subjects in this test
set to estimate the voxel-level receiver operator characteristic (ROC) curve and
area under the curve (AUC). These performance measures are known to be sus-
ceptible to instability. To account for this, we nonparametrically bootstrapped
with replacement the subjects to the training and testing sets. We then fit the
model on the training set and observed the performance of the model in the
testing set.

It is known that the full AUC summarizes test performance over regions of
the ROC space that are not clinically relevant for lesion segmentation [9]. Once
a test has been able to distinguish well between disease and not disease, the
performance of the test for particular applications must be evaluated, in which
case one may be interested in only a small portion of the ROC curve [94]. In
this particular application we are interested in using the lesion segmentation

to identify lesions and to provide accurate estimations of lesion volumes. The

73



mean lesion volume of manual lesion segmentations from validation set 1 is 11.2
cm?® (IQR [1.7 em?, 16.6 cm?®]). For the entire brain, a false positive rate of
.01 would correspond to a volume of 12.8 cm? of healthy brain being falsely
identified as lesion, which is more than the mean lesion volume in validation
set 1. Therefore we examined only false positive rates below 1%. We provide
the partial ROC curve with bootstrapped 95% confidence bands for clinically

relevant false positive rates of 1% and below.

3.2.12 Validation with expert rankings: validation set 1

and validation set 2

For the studies in validation set 2, gold standard segmentations were not avail-
able. To evaluate the performance of OASIS on validation set 2, three experts
(a neuroradiologist, neurologist, and radiologist) compared OASIS segmenta-
tions to those from LesionTOADS, an open-source lesion segmentation software
(http://www.nitrc.org/projects/toads-cruise/), [95, 96, 66]. validation set 2,
described in detail in the Materials section, consists of 169 MRI studies of 149
subjects, 20 of whom had follow-up visits. These studies were acquired using a
variety of imaging protocols.

For the OASIS algorithm, the only parameter that must be tuned when
moving to a new dataset is the population-level threshold. For validation set 2
we used the coefficients that were trained on validation set 1 and then empiri-
cally adjusted the population level threshold for validation set 2. To adjust this
threshold, we randomly sampled 10 subjects from validation set 2. We applied

thresholds between 0.10 and 0.50 (by increments of 0.05) to the probability
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maps, examined the segmentation, and empirically chose a threshold of 0.35 for
validation set 2. This threshold adjustment is very fast and transparent. We
ran the segmentations for the 10 subjects in parallel, and each segmentation
took less than 5 minutes. Next, we thresholded the probability maps at the
9 different thresholds, which took only seconds. Last, we looked through the
segmentations and the original images to select the optimal (most reasonable)
threshold, which took only about a minute for each subject. The entire process
of tuning the threshold took less than an hour and involved only 10 minutes of
manual image examination. This procedure only needs to be performed once
when moving to a new imaging center or study. For the segmentation compar-
ison, we presented the three experts with segmentations at the threshold value
of 0.35 on all of the images in validation set 2 as well as at the threshold from
validation set 1 with a false positive rate of 0.005, a threshold value of 0.16. We
will refer to the threshold value of 0.35 as the empirically adjusted threshold
and the threshold value of 0.16 as the validation set 1 threshold.

We compared both OASIS segmentations to the segmentations produced
by the open source software LesionTOADS. We ran LesionTOADS with T1-
weighted and FLAIR inputs and the default parameters. We adjusted the
smoothing parameter from 0.2 to 0.4 because we empirically found this to im-
prove the quality of the segmentations. It is important to note that Lesion-
TOADS not only segments lesions, but also segments the other tissue classes of
the brain. For this analysis, we only used the lesion segmentations.

We designed an image rating system to evaluate the performance of the two
segmentation algorithms. For each of the 169 studies, we had three segmen-

tations: the LesionTOADS segmentation, the OASIS segmentation with the
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threshold from validation set 1, and the OASIS segmentation with the empiri-
cally adjusted threshold. We also randomly selected 20 of the MRI studies and
created duplicates of these to assess rating reliability, for a total of 189 studies.
We randomized the order in which the segmentations were presented to the ex-
perts and randomly assigned each segmentation a letter: A, B, or C, so as to
blind the rater to the segmentation algorithm.

We presented each of the 189 MRI studies to an experienced MS neurora-
diologist. For each study, the neuroradiologist examined the set of three seg-
mentations along with the original FLAIR, PD, T1-weighted, and T2-weighted
volumes. The neuroradiologist then scored the performance of each of the seg-
mentations on a continuous scale from 0 to 100, with 0 being an unusable lesion
segmentation and 100 being a perfect segmentation. The neuroradiologist was
presented all three segmentations simultaneously, so that scores were assigned
relative to one another. Fifty of the studies were selected to be scored with the
same system by a neurologist with a subspecialty in MS and a general radiolo-
gist in order to assess rater agreement among the three raters. The 50 studies
were comprised of 45 randomly selected studies with 5 of the studies repeated
to assess rater reliability.

The neuroradiologist also compared and scored the OASIS and Lesion-
TOADS segmentations from the studies for the 98 MS patients in validation
set 1. This allows for comparison of the performance of the segmentations on

validation set 1 and validation set 2.
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3.3 Experimental results

3.3.1 Validation set 1: training with gold standard

The OASIS model has an estimated full AUC of 98% (95% CI; [96%, 99%])
and a partial AUC for clinically relevant false positive rates of 1% and below of
0.59% (95% CT; [0.50%, 0.67%]) in the test set. Figure 3.4 shows the voxel-level
partial ROC curve for the test set with bootstrapped 95% confidence bands
for clinically relevant false positive rates. The probability map threshold that
corresponds to a false positive rate of 1% is 0.10. The vertical axis of the partial
ROC curve shows the true positive rate (sensitivity) for thresholds between 0
and 0.10 of the probability map and the horizontal axis shows the false positive
rate (1 - specificity) for these thresholds.

The coefficients from fitting the logistic model [1] over all 131 studies in
validation set 1, a total of 24 million voxels, are reported in the Appendix. The
coefficients from the first and second fit of the model are provided. We also
assessed the variation in the coefficients by nonparametrically bootstrapping
the subjects with replacement. The bootstrapped 95% confidence intervals for
the coefficients can be found in the Appendix. The variance of these coefficients
is large in comparison to the estimates of the coefficients. The instability in
the coefficients does not impact the performance of OASIS, as illustrated in the
stability of the partial ROC curve.

Choosing a final threshold value after the second probability maps are made

is a tradeoff between sensitivity and specificity. OASIS is flexible, and the
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Figure 3.4: Partial ROC curve for the voxel-level detection of lesions in the
testing set of validation set 1 for different thresholds of the probability maps
produced from OASIS for clinically relevant false positive rates of 1% and below.
Bootstrapped 95% confidence bands are also provided. The vertical axis of the
partial ROC curve shows the true positive rate (sensitivity) for a given threshold
of the probability map and the horizontal axis shows the false positive rate (1
- specificity) for this threshold.

appropriate false positive rate may be selected for a particular application. Ta-
ble 3.2 shows the threshold values, sensitivity, and dice similarity coefficient [97]
for four different false positive rates for the model fit over all of the studies in
validation set 1. OASIS detected lesions in many of the healthy subjects. Ta-
ble 3.3 shows the mean volume of false positive lesions detected in the healthy

and MS subjects for the four threshold values from Table 3.2. The volume of

false positives for both the MS and healthy subjects is comparable.
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Table 3.2: Binary segmentation thresholds with false positive rate, sensitivity
and DSC_for validation set 1
False Positive Rate Sensitivity Threshold Value DSC

1% 80% 0.10 0.55
0.75% 6% 0.12 0.58
0.5 % 69% 0.16 0.61
0.25% 58% 0.23 0.59

Table 3.3: Volume of false positive lesion in healthy volunteers and MS subjects
from validation set 1 (in ecm?); the actual mean lesion volume is 0 cm? for healthy
volunteers and 11.2 cm?® (IQR: [1.7 cm?, 16.6 cm?]) for MS subjects

Threshold Value Healthy Mean (IQR) MS Mean (IQR)

0.10 8.6 (4.6, 10.6) 10.9 (7.6, 13.6)
0.12 6.7 (3.1, 8.2) 8.0 (5.2, 10.3)
0.16 4.3 (1.5, 5.7) 5.2 (3.0, 7.0)
0.23 2.2 (.7, 2.8) 2.5 (1.2, 3.5)

3.3.2 Validation set 1: neuroradiologist rating results

For the neuroradiologist rankings of the OASIS and LesionTOADS segmenta-
tions for the 98 MS subjects in validation set 1, we performed a paired t-test to
assess the difference in the means of the OASIS segmentations and the Lesion-
TOADS scores. This difference was found to be 12.6, with a 95% confidence
interval of (9.6, 15.8), p-value < 107'2. The OASIS empirical threshold was
ranked higher than LesionTOADS segmentation in 73 (95% CI: [64, 81]) of the
98 studies or 74% (95% CI: [65%, 82%]). We nonparametrically bootstrapped
with replacement the subjects to produce the confidence intervals for the rank-

ings.
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3.3.3 Validation set 2: neuroradiologist rating results

Table 3.4 contains summary statistics for the scores from the neuroradiologist
ratings of the three segmentations for all 189 studies. The OASIS validation set
1 threshold segmentations and the LesionTOADS segmentations have a much
lower first quantile than the OASIS empirical threshold segmentations. For
this analysis we focus mainly on the difference between the OASIS empirical
threshold and the LesionTOADS segmentation, as the OASIS validation set 1
threshold did not perform well on this new data set. This was expected, as
the probability map threshold needs to be adjusted to maintain the same false
positive rate when moving to a new data set. We performed a paired t-test
to assess the difference in the means of the OASIS empirical threshold scores
and the LesionTOADS scores. This difference was found to be 16.6, with a
95% confidence interval of (13.3, 20.0), p-value < 107'%. The OASIS empirical
threshold was ranked higher than Lesion TOADS segmentation in 146 (95% CI:
[135, 157]) of the 189 cases or 77% (95% CI: [71%, 83%]). We nonparametrically
bootstrapped with replacement the subjects to produce the confidence intervals
for the rankings.

Table 3.4: Summary statistics of image ratings of validation set 1 for neurora-
diologist on 189 studies

OASIS OASIS LesionTOADS
validation set 1 Threshold Empirical Threshold
Minimum 3.7 3.7 2.7
1st Quantile 27.3 55.7 21.7
Median 42.0 68.3 51.0
Mean 43.2 64.1 47.5
3rdQuantile 57.7 76.3 71.0
Maximum 99.3 99.0 97.3
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To assess rater reliability among the 20 duplicated MRI studies, we cal-
culated the intraclass correlation coefficient: 0.61 (95% CI: [0.69, 0.81]). The
rankings for the LesionTOADS images and the OASIS empirical threshold were
preserved in the duplicate rankings for 17 of the 20 images (95% CI: [14, 20]).
We nonparametrically bootstrapped with replacement the subjects to produce
the confidence intervals for both the intraclass correlation coefficients and the

rankings.

3.3.4 Validation set 2: rater agreement with neuroradi-

ologist, neurologist, and radiologist
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Figure 3.5: Notched box plot of the results from the neuroradiologist, neurol-
ogist, and radiologist image ratings for segmentations of the 50 MRI studies
from validation set 2: the OASIS validation set 1 threshold segmentations, the
OASIS empirically adjusted threshold segmentations, and the LesionTOADS
segmentations.

Table 3.5 contains summary statistics for the scores from the neuroradiolo-
gist, neurologist, and radiologist ratings of the three segmentations for the set
of 50 studies selected to asses rater reliability. Figure 3.5 shows a notched box

plot for each rater of these findings. From the box plot we see that there is
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a statistically significant difference between the medians for all three segmen-
tations for the neuroradiologist and neurologist. There was not a statistically
significant difference in the medians of the scores for the three segmentations by
the radiologist. Moreover, all three raters indicated that the OASIS validation
set 1 segmentations and the LesionTOADS segmentations have a much lower
first quantile than the OASIS empirical threshold segmentations. The outliers
in the boxplots can be explained as either errors in processing, such as regis-
tration or bad artifacts, or as studies that none of the segmentation methods

performed well on. We did not remove these studies from the analysis, because
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we want to assess the performance of OASIS in the setting of an image processing
pipeline, where images may not be properly registered or may contain artifacts.

Again, we will focus mainly on the difference between the OASIS empir-
ical threshold and the LesionTOADS segmentation. We performed a paired
t-test to assess the difference in the means of the OASIS empirical threshold
scores and the LesionTOADS scores. These differences can be found in Table
5. The mean for the OASIS empirical threshold was greater than the mean for
the LesionTOADS scores for all three raters. This difference was found to be
statistically significant for both the neuroradiologist and neurologist, (p-values
< 107* and < 1073, respectively), but not for the radiologist, (p-value 0.5).
The neuroradiologist and the neurologist tended to spread their scores more,
and this allowed better comparison of the segmentation algorithms. Table 5
also shows the percentage of time the OASIS empirical threshold was ranked
higher than LesionTOADS segmentation in the 50 studies. We nonparamet-
rically bootstrapped with replacement the subjects to produce the confidence
intervals for the rankings.

To assess rater reliability among the 5 duplicated MRI studies, we calculated
the intraclass correlation coefficient and the number of times the rankings for
the LesionTOADS images and the OASIS empirical threshold were preserved.
We nonparametrically bootstrapped with replacement the subjects to produce
the confidence intervals for both the intraclass correlation coefficients and the
rankings. For the neuroradiologist, the intraclass correlation coefficient for the
5 repeated studies is 0.55 (0.21, 0.82) and the number of preserved rankings is
4 (2,5). For the neurologist, 0.32 (-0.10, 0.68) and 4 (2,5). For the radiologist,
-0.38 (-0.35, 0.71) and 2 (0,4). The repeated rankings for each rater for the 5
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subjects is reported in the Appendix.

We calculated the rater agreement for the ranking of the OASIS empirical
threshold versus LesionTOADS. We decided to use the rankings of the scores to
assess rater agreement rather than the scores themselves, because, as shown from
the intraclass correlation coefficient, the scores are not very reliable, while the
order in which the observers rank the segmentations, on the other hand, is quite
reliable. We calculated the kappa statistic to assess the reliability of the rankings
for each pair of raters and nonparametrically bootstrapped with replacement
the subjects to produce the confidence intervals for the kappa statistics. The
kappa statistic for the rater agreement between the neuroradiologist and the
neurologist was 0.47 (0.20, 0.75), the neuroradiologist and radiologist 0.02 (-
0.26, 0.30) and the neurologist and radiologist -0.09 (-0.37, 0.19).

3.4 Discussion

OASIS may be used to assist or even replace manual segmentation of MS lesions
in the brain. After training and adjustment of the population level threshold,
our fully automatic method does not require human input and avoids the vari-
ability introduced by manual segmentation. Using the explicit form of the sta-
tistical model, OASIS can easily be adapted and trained for cases where more
or fewer imaging sequences are available.

With the OASIS model, a recalibration of the population-level segmentation
threshold is necessary for each new data set but can be done on a fairly limited
number of subjects, as in the example from this paper. a recalibration of the

population-level segmentation threshold is necessary for each new data set but
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can be done on a fairly limited number of subjects, as in the example from this
paper. A set of subjects is required to tune this population level threshold,
therefore fully automatic segmentation of a single study from a new imaging
center may not feasible with the OASIS model. However, in these cases the
threshold can be adjusted very quickly manually (2-5 minutes) by visual in-
spection of 3-4 slices by adjusting just one parameter. When using an ROC
curve for classification, thresholds for subpopulations with different covariate
values may need to be defined differently in order to keep false positive rates
the same across those subpopulations [98]. Therefore, it was expected that the
ROC threshold would need to be adjusted to maintain the same false positive
rate from validation set 1 in validation set 2. This threshold is the only tuning
parameter in OASIS that must be adjusted when moving to a new data set, and
this adjustment is very fast and intuitive to make and does not require multiple
iterations of segmentations. We believe that OASIS holds promise for use in
multicenter MRI studies, with adjustment of the population level threshold for
each site.

Future work includes further validation of OASIS under changes in imaging
center and protocol and to also show the reproducibility of the OASIS segmen-
tations. One resource for this is the MS Lesion Segmentation Challenge [67], a
common database for MS lesion segmentation algorithms. We plan to do further
validation with this database as well as with volumes from additional imaging
centers. For this analysis we did not have scan-rescan MRI available. These are
crucial for assessing the reproducibility of the method, and we plan to acquire

these in the future.
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In contrast to many automatic segmentation techniques, OASIS is compu-
tationally fast. While training the model on the 131 studies from validation
set 1 takes five hours on a standard workstation, this process is only conducted
once. The results from this are summarized as the two sets of 21 coefficients
in model [1]. Also, the model may be trained on fewer studies, as shown in
the partial ROC analysis within validation set 1; the performance of the model
remains stable when trained on subsets of 20 studies. Using this fitted model to
generate a probability map of the entire brain from a set of new images takes
only 30 minutes. These times are for standard workstations and are expected to
drop dramatically with multi-core parallel computing and improved technolo-
gies. The Gaussian smoothing is the slowest step of the algorithm, and these
computations can be parallelized to substantially decrease the time of the entire
algorithm to approximately 5 minutes.

After making the image ratings for validation set 2, the neuroradiologist was
unblinded and reviewed the three segmentations, providing comments about the
strengths and weaknesses of each. The OASIS empirical threshold performed
much better than the OASIS validation set 1 threshold. The neuroradiologist
reported a preference for the smoothness of the OASIS segmentations in con-
trast to the LesionTOADS segmentation, which often appeared speckled. The
OASIS segmentations often had artifacts in the pineal glands and the choroid
plexus of the ventricles. This may be explained by the fact that OASIS was
trained on FLAIR images acquired before a gadolinium-based contrast agent
was administered to the patient, while the validation was done with FLAIR im-
ages that were acquired after gadolinium administration. Voxels in the choroid

plexus and pineal glands, which enhance with gadolinium, were brighter and
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were thus misclassified as lesion. LesionTOADS does not make a similar error,
as it imposes topological constraints that preclude these structures from being
identified as lesions. Further refinements of OASIS may account for such com-
plex changes of protocol. The LesionTOADS segmentations were more variable
than those of OASIS and did not perform well on cases with low lesion load.
The OASIS segmentation had systematic errors in the medial frontal cortex
and the brainstem. On the other hand, LesionTOADS avoided false positives
in the brainstem because it only segments lesions in the cerebrum. Figure 3.6
shows a slice from a subject with an example of a lesion that OASIS segments
in the cerebellum. Figure 3.6A shows a single slice of the FLAIR volume, Fig-
ure 3.6B shows a single slice of the T1-weighted volume, Figur