
Cognitive and Brain-inspired Processing Using Parallel

Algorithms and Heterogeneous Chip Multiprocessor

Architectures

by

Daniel R. Mendat

A dissertation submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

October, 2017

c⃝ Daniel R. Mendat 2017

All rights reserved

Abstract

This thesis explores how some neuromorphic engineering approaches can be used

to speed up computations and reduce power consumption using neuromorphic hard-

ware systems. These hardware designs are not well-suited to conventional algorithms,

so new approaches must be used to take advantage of the parallel nature of these ar-

chitectures. Background regarding probabilistic graphical models is presented along

with brain-inspired ways to perform inference in Bayesian networks. A spiking neuron

implementation is developed on two general-purpose parallel neuromorphic hardware

devices, the SpiNNaker and the Parallella. Scalability results are shown along with

speed improvements as compared to using mainstream processors on a desktop com-

puter.

General vector-matrix multiplication computations at various levels of precision

are also explored using IBM’s TrueNorth Neurosynaptic System. The TrueNorth

contains highly-configurable hardware neurons and axons connected via crossbar ar-

rays and consumes very little power but is less flexible than a more general-purpose

neuromorphic system such as the SpiNNaker. Nevertheless, techniques described here

ii

ABSTRACT

enable useful computations to be performed utilizing such crossbar arrays with spiking

neurons including computing word similarities using trained word vector embeddings.

Another technique describes how to perform computations using only one column of

the crossbar array at a time despite the fact that incoming spikes normally affect all

columns of the array.

A way to perform cognitive audio-visual beamforming is presented. Using two

systems, each containing a spherical microphone array, sounds are localized using

spherical harmonic beamforming. Combining the microphone arrays with 360 degree

cameras provides an opportunity to overlay the sound localization with the visual

data and create a combined audio-visual salience map. Cognitive computations can

be performed on the audio signals to localize specific sounds while ignoring others

based on their spectral characteristics.

Finally, an ARM Cortex M0 processor design is shown that will be used to boot-

strap and coordinate other processing units on a chip developed in the lab for the

DARPA Unconventional Processing of Signals for Intelligent Data Exploitation (UP-

SIDE) program. This design includes a bootloader which provides full programma-

bility each time the chip is booted, and the processor interfaces with other hardware

modules to access the Networks-on-Chip and main memory.

Primary Reader: Andreas G. Andreou

Secondary Reader: Sang (“Peter”) Chin

iii

ABSTRACT

Committee Members: Najim Dehak and Philippe Pouliquen

iv

Acknowledgments

I am grateful for many people who have influenced me while I worked on this

dissertation. I want to thank my advisor, Andreas Andreou, for all his support and

for being a great source of inspiration. He has taught me to think about interesting

approaches to problems that span multiple fields. His energy is contagious and his

devotion to research and students has helped many a career, mine included.

I also want to thank my co-advisor, Peter Chin. Collaborating with him has been

a joy, and his tireless efforts to mentor me have always been valuable. I am grateful

for Ralph Etienne-Cummings as well. He has always been available for advice and

support.

I thank the other two members of my dissertation committee, Philippe Pouliquen

and Najim Dehak. Philippe has been very helpful over the years and has provided a

wealth of information and assistance in the lab. Najim has also been a great source

of support and insights. I am grateful for their service on the committee.

I truly appreciate the fact that I got to spend my days in the lab with Andrew

Cassidy, Joseph Lin, Recep Ogzun, Thomas Murray, Tomás Figliolia, Sean McVeigh,

v

ACKNOWLEDGMENTS

Kayode Sanni, Gaspar Tognetti, Guillaume Garreau, Kate Fischl, Mart́ın Villemur,

Christos Sapsanis, Jeff Craley, Alejandro Pasciaroni, Valerie Rennoll, and Jonah Sen-

gupta. It was wonderful to work, play, and learn with you. I am grateful for the

wisdom of Pedro Julián and Philippe Pouliquen who provided their expertise to us

all. Ralph Etienne-Cummings and the members of his lab were all very helpful during

my time at school as well.

Much of the work in this dissertation was accomplished in collaboration with

other groups. I thank the Advanced Processor Technologies group at the University

of Manchester, particularly Alan Stokes, Luis Plana, Sergio Davies, Steve Temple,

and Stephen Furber, for all their assistance in working with the SpiNNaker hardware

platform. In addition, the technical support of IBM researchers, particularly Andrew

Cassidy, Rodrigo Alvarez-Icaza, John Arthur, and Paul Merolla, was invaluable when

working with the TrueNorth hardware platform. I acknowledge the discussions with

Kaitlin Fair from the Georgia Institute of Technology which were helpful in pursuing

novel ways of working with the TrueNorth. Andrew Dykman also contributed to

implementing and documenting the 8-bit TrueNorth work presented here. Collabora-

tion with Kate Fischl was invaluable for working with many aspects of the TrueNorth

platform and other related projects in the lab.

I thank Alejandro Pasciaroni for creating some peripherals for the ARM Cortex

M0 architecture we worked on together and for helping me debug modules I worked

on. I also thank him for designing the board for connecting the SpiNNaker and the

vi

ACKNOWLEDGMENTS

Parallella together which will enable fast communication between the two devices. I

thank Kate Fischl for helping to assemble the board as well.

I thank the Electrical and Computer Engineering department staff, particularly

Janel Johnson, Nicole Aaron, Cora Mayenschein, Debbie Race, and Barbara Sullivan,

for their assistance with many varied tasks over the years. I also thank Ruth Scally

from the Center for Language and Speech Processing for administrative assistance.

Powerlifting was a big part of my life while at Johns Hopkins, so I thank some

friends who helped make that enjoyable. At school it was great to train and discuss

research with Paul Stanton, Charles Jonassaint, Michael Carlin, and Thomas Murray.

I also thank all the friends who joined my wife and me at other gyms later on.

My research could not have been accomplished without generous fellowships from

the Electrical and Computer Engineering Department, the Bodmer family, and the

Johns Hopkins University Applied Physics Laboratory. I thank Dennis Ryan in par-

ticular for his work on maintaining the Applied Physics Laboratory fellowship. I

am also grateful for research funding from the NSF grant INSPIRE SMA 1248056

through the Telluride Workshop on Neuromorphic Cognition Engineering, the NSF

grant SCH-INT 1344772, an ONR MURI N000141010278, and the DARPA UPSIDE

project HR0011-13-C-0051 through BAE Systems.

I thank my wife, Amanda Mendat, for selflessly and enthusiastically reviewing

this entire manuscript and offering numerous helpful suggestions.

I thank my family for graciously accepting the fact that I spent many weekends

vii

ACKNOWLEDGMENTS

working on classes and research, even while visiting. They have all been very sup-

portive during the entire process. From grandparents to aunts, uncles, and cousins

I am very appreciative of everyone. I thank my mother-in-law, Diane Peterson, and

her husband, Ken Peterson, for all their encouragement and general love and support.

My sister-in-law, Rebecca Pickering, and her husband, CJ Pickering, have likewise

been invaluable sources of positivity along the way. Their son, Jackson Pickering, has

already been a source of light in the world. I thank my brother, Benjamin Mendat,

and my sister, Julie Mendat, for all their fun banter and support their whole lives.

My parents, Amy and Stephen Mendat, have always meant the world to me, and I

am so very thankful for their devotion. Finally, my wife Amanda has been there for

me every step of the way and I cannot thank her enough. I love them all.

viii

Dedication

This thesis is dedicated to my wife, Amanda. I love you.

ix

Contents

Abstract ii

Acknowledgments v

List of Tables xv

List of Figures xvi

1 Introduction 1

2 Bayesian Networks, Learning, and Inference 15

2.1 Learning . 20

2.2 Inference . 27

2.2.1 Exact Inference . 30

2.2.2 Approximate Inference . 33

2.2.2.1 Gibbs Sampling . 36

2.2.2.2 Neural Sampling . 42

x

CONTENTS

2.2.3 Simple Inference Results . 48

3 Parallel Neural Sampling on SpiNNaker 51

3.1 Automated Network Analysis . 54

3.1.1 Converting the Network for Neural Sampling 54

3.1.2 Parallelization and Colorization 56

3.1.3 Node Organization on the SpiNNaker 58

3.2 Code Organization and Data/Event Flow 60

3.2.1 Putting Data on the Board 61

3.2.2 Communication . 62

3.2.3 Interrupts and Event-Based Programming 64

3.2.4 Code Organization for Neural Sampling 67

3.2.5 Getting Data Back . 69

3.2.6 Summarized Flow for Neural Sampling 70

4 Sampling Results on 4-Chip SpiNNaker 74

4.1 Chest Clinic Network . 75

4.2 Icy Road Network . 78

4.3 Larger Networks and Scalability . 81

4.4 Comparison to Gibbs Sampling . 85

4.5 Discrete Gibbs Sampling on 4-Chip SpiNNaker 88

4.5.1 Student Network . 90

xi

CONTENTS

4.5.2 ALARM Network . 92

4.5.3 Child Network . 94

5 48-Chip SpiNNaker and the Parallella 97

5.1 Migration to 48-Chip SpiNNaker . 98

5.2 Parallella . 101

5.3 Spatial Locality on the SpiNNaker . 109

5.4 SpiNNaker Complexity Analysis . 112

5.4.1 Load Network from File . 112

5.4.2 Load CPD Tables from File 113

5.4.3 Determine Markov Blankets 114

5.4.4 Determine Color Groups in the Graph 115

5.4.5 Calculate Markov Blanket Probability Tables 117

5.4.6 Arrange Nodes on the Board 119

5.4.6.1 Simple Arrangement 119

5.4.6.2 Exploit Spatial Locality 120

5.4.7 Generate Routes . 121

5.4.8 Perform Sampling . 122

5.5 Heterogeneous Architecture . 124

5.5.1 Heterogeneous via Ethernet 125

5.5.2 Heterogeneous with Interconnect Board 130

xii

CONTENTS

6 TrueNorth 133

6.1 4-bit Vector Matrix Multiplications 136

6.1.1 Main Corelet Architecture . 138

6.1.2 First Core . 139

6.1.3 Second Core . 141

6.1.4 Negative Summations . 142

6.1.5 4-bit Unsigned VMM . 142

6.2 Word2vec . 143

6.2.1 Background . 144

6.2.2 Word2vec Word Similarities on TrueNorth 147

6.3 Stochastic Multiplications with Column Select 151

6.4 MATLAB Simulations . 157

6.4.1 Word2vec . 157

6.4.2 Nonuniformity Correction . 158

6.5 8-bit Unsigned Vector Matrix Multiplications 178

6.5.1 Design . 179

6.5.2 Results and Discussion . 183

7 Cognitive Audio-Visual Beamforming 188

7.1 Spherical Harmonic Beamforming . 192

7.2 Experiments . 197

7.2.1 Human Voices . 197

xiii

CONTENTS

7.2.2 AB Tones . 201

7.3 Audio-Visual Integration . 206

7.4 Discussion . 209

8 ARM Cortex M0 Architecture for UPSIDE Project 211

8.1 Overall Architecture and Features . 214

8.2 ROM, UART and Bootloader . 218

8.3 SPI . 221

8.4 SRAM, Cache, DMA, and NoC Interface 224

8.5 Interrupts Overview . 226

8.6 Programming the M0 . 227

8.6.1 Bootloader . 228

8.6.2 Custom Applications . 239

8.6.2.1 SPI . 245

8.6.2.2 DMA . 248

8.6.2.3 NoC . 250

Bibliography 253

Vita 269

xiv

List of Tables

2.1 Simple Example Inference Results . 49

6.1 Word2vec Similarities on TrueNorth 150
6.2 Layer 1 Crossbar for 8-Bit VMM . 181
6.3 Layer 2 Crossbar for 8-Bit VMM . 182

8.1 Cortex M0 Architecture Memory Map 216

xv

List of Figures

2.1 Icy Road Network . 16
2.2 Simple ABC Bayesian Network . 28
2.3 Typical Markov Chain . 35
2.4 Example Markov Blanket . 37
2.5 Neural Sampling Network . 44
2.6 Comparison of Gibbs and Neural Sampling 50

3.1 SpiNNaker Boards . 52
3.2 Simplified Neural Sampling Network 54
3.3 SpiNNaker Flow Overview . 71

4.1 Chest Clinic Network . 75
4.2 Chest Clinic Inference with Unknown X-ray 76
4.3 Chest Clinic Inference with Positive X-ray 78
4.4 Icy Road Inference . 79
4.5 Icy Road Inference with No Significant Precipitation 80
4.6 Large Network Structure . 81
4.7 MAE Values for Binary Tree-Structured Networks 83
4.8 Neural Sampling Runtimes on 4-Chip SpiNNaker 84
4.9 Neural Sampling and Gibbs Sampling vs. Known Implementation . . 86
4.10 Runtimes for Neural Sampling on SpiNNaker vs. Gibbs Sampling . . 88
4.11 Student Network . 90
4.12 Gibbs Sampling on PC vs. Exact Inference - Student Network 91
4.13 Gibbs Sampling on SpiNNaker vs. PC - Student Network 92
4.14 Approximate Inference Results for the ALARM Network 93
4.15 The Child Network . 95
4.16 Approximate Inference Results for Child Network 96

5.1 Visual Perception Network . 98
5.2 Visual Perception Inference . 100

xvi

LIST OF FIGURES

5.3 Parallella . 102
5.4 Neural Sampling Runtimes . 104
5.5 Neural Sampling Speedups . 105
5.6 Mean Absolute Error for Parallella - 511 Node Network 108
5.7 Neural Sampling Runtimes with Spatial Locality 110
5.8 Neural Sampling Speedups with Spatial Locality 111
5.9 Heterogeneous Neural Sampling Runtimes Over Ethernet 126
5.10 Heterogeneous Neural Sampling Speedups Over Ethernet 127
5.11 Heterogeneous Architecture Accuracy 129
5.12 Heterogeneous Interconnect Board Bottom View 130
5.13 Heterogeneous Interconnect Board Top View 130
5.14 Heterogeneous Architecture Close-up 131

6.1 The IBM TrueNorth Neurosynaptic System 134
6.2 Similarity Values for a 500-Word Dictionary Trained on Wikipedia . . 148
6.3 Stochastic Multiplications with Column Select 152
6.4 MATLAB Word2vec TrueNorth Exact Simulation 159
6.5 MATLAB Word2vec TrueNorth Different Neuron Threshold Simulation 160
6.6 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 1 165
6.7 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 10 166
6.8 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 20 167
6.9 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 30 168
6.10 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 50 169
6.11 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 75 170
6.12 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 100 171
6.13 Nonuniformity Correction 6 Bits, 50x1 Pixels, Averaging 150 172
6.14 Nonuniformity Correction 6 Bits, 64x64 Pixels, Averaging 100 173
6.15 Nonuniformity Correction 6 Bits, 128x64 Pixels, Averaging 100 174
6.16 Nonuniformity Correction 6 Bits, 128x128 Pixels, Averaging 100 . . . 175
6.17 Nonuniformity Correction 6 Bits, 256x128 Pixels, Averaging 100 . . . 176
6.18 Nonuniformity Correction 6 Bits, 256x256 Pixels, Averaging 100 . . . 177
6.19 Single 8-Bit VMM Corelet Overview 180
6.20 8-Bit VMM Accuracy with 256 Count Factor 184
6.21 8-Bit VMM Accuracy with 512 Count Factor 185

7.1 MH Acoustics Eigenmike Spherical Microphone Array 190
7.2 Sony Bloggie MHS-FS1K . 190
7.3 ABC Sound Angles . 198
7.4 ABC Spectrogram . 199
7.5 ABC Localization Maps . 200
7.6 AB Tones Spectrogram Eigenmike . 201
7.7 AB Tones Spectrogram VisiSonics . 202

xvii

LIST OF FIGURES

7.8 AB Tones Localization Results . 204
7.9 Video Frame Localization with VisiSonics and Eigenmike 207

8.1 The Nano-Abacus Chiplet Core Architecture 213
8.2 The ARM Cortex M0 Architecture 215
8.3 Salamis Chip Multiprocessor Architecture 217
8.4 SPI Timing Diagram - Byte Read . 222
8.5 SPI Timing Diagram - Byte Write . 222

xviii

Chapter 1

Introduction

The semiconductor industry has followed Moore’s Law1 for decades. Gordon

Moore originally stated that the transistor count in a given chip area doubles approx-

imately every year,1 but he changed the estimate later on to say that the doubling

would occur approximately every two years.2 These exponential improvements in

computing capabilities have led to a massive increase in the amount of data3 used

in research today. Researchers create more complicated models every day, and more

data are collected to train these models.

On the other hand, processor clock speed increases have been slowing in recent

years,4 so progress in improving single-core computing power has decelerated. Parallel

processing is an obvious way to mitigate the possible end of Moore’s Law, and with the

current emphasis on power-efficient microprocessors5 it is possible to create massively-

parallel systems that consume much less power than in the past.

1

CHAPTER 1. INTRODUCTION

However, even mainstream multiprocessors created today consume lots of power

and still cannot think about general complex problems as well as humans can despite

decades of advancement. The human brain is full of neurons that consume minimal

power,6 only totaling about 20 W for the entire brain. Despite that low power bud-

get, the brain can solve many problems that traditional computers still have trouble

solving.

Advancements in machine learning (particularly in deep learning) have made im-

pressive progress on the computing side in recent years7 over a wide variety of fields

including speech recognition, natural language processing, object recognition, ge-

nomics, and medicine to name a few. For example, the state of the art techniques

in object recognition these days generally utilize deep networks, often convolutional

neural networks.8,9 Human poses can be estimated through the use of convolutional

neural networks10 as well, and extending these principles further creates the ability to

perform action recognition on videos.11 In fact, it is possible to perform action recog-

nition with neural networks12 and other techniques13 without the use of a camera,

relying on only a few single dimensional active acoustic signals and taking advantage

of the Doppler effect.

Autonomous driving has become an extremely hot area lately given that many

car manufacturers have been working on integrating early versions of that technology

into their vehicles. Other companies are contributing as well. For example, NVIDIA

has an autonomous driving group that has demonstrated fully autonomous driving on

2

CHAPTER 1. INTRODUCTION

public roads of all kinds including highways and rural routes with no lane markings,

utilizing convolutional neural networks.14 These general concepts have been adapted

for use in portable robots with specialized hardware for terrain navigation as well.15

It is out of the scope of this thesis to adequately cover all the areas where neu-

ral networks have improved upon state of the art results in machine learning tasks.

However, it is clear that neural networks have impacted many fields in a profound

way. These tasks are often ones where humans excel. Image recognition, speech

understanding, driving, etc., are all areas within which the human brain is adept at

understanding and functioning but computing systems have only recently been able

to catch up.

On a superficial level neural networks function similarly to how the brain works.

Spikes of electrical activity travel through the brain’s neurons via axons of one neuron

connected to dendrites of another. When conditions are right, typically when enough

spikes reach excitatory connections at a neuron’s dendrites, the neuron sends out more

spike(s) along its axon that can travel to other neurons in the brain. Neural networks

typically include nodes that aggregate inputs that are summed before a nonlinearity

is applied to that input.7 This nonlinearity can be thought of in very general terms

as being analogous to the decision for whether a node (“neuron”) in the brain spikes

given its input.

Neuromorphic engineering16–18 attempts to emulate the brain and other aspects of

biology to create hardware/software architectures that generally consume less power

3

CHAPTER 1. INTRODUCTION

than conventional techniques and often employ a high level of parallelism just as the

neurons in the brain all work simultaneously. The field encompasses a wide range

of projects and goals that span from modeling biology as accurately as possible to

borrowing concepts from biology to improve conventional methods without being so

strict about how close they are to the real world.

For example, one project that uses neurons to implement mathematical function-

ality as well as to model areas of the brain is called Nengo.19 Based on the Neural

Engineering Framework (NEF),20 Nengo provides a useful way to both get started

modeling neural systems to accomplish a goal as well as a way to build more com-

plicated systems. Modeling neuromorphic systems in software is useful, but without

low-power hardware it is difficult to use these techniques to reduce power consumption

in an application.

There are many low-power neuromorphic systems with various levels of impact

in the field. This thesis focuses on three of them, namely the SpiNNaker, Paral-

lella, and TrueNorth. The SpiNNaker is the Spiking Neural Network Architecture

and was created at the University of Manchester.21–23 The system consists of chips,

each containing 18 ARM968 cores running at about 200 MHz, each capable of 32-bit

fixed-point math. These chips are connected via a fast mesh network, and two main

boards are currently available for research: a 4-chip board and a 48-chip board. The

larger board contains over 800 cores that can be used to perform parallel computa-

tions, and Nengo has been implemented on this hardware to accelerate the simulation

4

CHAPTER 1. INTRODUCTION

of networks of biologically-plausible neurons.24,25 These large boards can be linked

together to form massive networks of ARM cores for parallel computations.

The Parallella26 is an open-source board that contains a Xilinx Zynq7000 series

system-on-chip27 containing two ARM A9 cores and a field-programmable gate ar-

ray (FPGA) in addition to an Adapteva Epiphany coprocessor28 which integrates 16

floating-point processors running at 1 GHz. While the architecture is less neuromor-

phic than the SpiNNaker in a sense due to the fact that the Parallella is less distributed

and runs faster cores capable of more computations, the Parallella is nevertheless an

interesting platform for software architecture exploration and comparisons with the

SpiNNaker.

The IBM Neurosynaptic System,29,30 also called the TrueNorth chip, is the final

piece of neuromorphic hardware programmed in this thesis. Unlike the SpiNNaker

and the Parallella, the TrueNorth consists of networks of hardware neurons that can

be configured independently. Instead of programming general-purpose processors to

emulate neurons the hardware can only consist of neurons, and the neuron parameters

are directly programmed to perform a task. This type of specialized architecture leads

to very minimal power consumption but also creates limitations when programming

the chip to perform generalized tasks. However, there are plenty of applications the

TrueNorth is well-suited for due to having over 1 million neurons and over 268 million

synaptic connections that are all individually programmable.

The first two devices described above, the SpiNNaker and the Parallella, contain

5

CHAPTER 1. INTRODUCTION

von Neumann processing units. However, they are not programmed in a typical

manner due to their parallel nature. The SpiNNaker can only communicate via special

packets that can be sent around the board through the use of programmable routers

located on each chip, and in this thesis the Parallella processing units communicate

by writing to and reading from specific areas of shared memory. SpiNNaker packets

can additionally be dropped if they experience deadlock, so there are challenges with

these architectures beyond standard parallel programming techniques that apply to

a single computer with reliable message passing.

On the other hand, the TrueNorth was created specifically to overcome limitations

of typical von Neumann architectures,29 specifically the von Neumann bottleneck31

which arises from the CPU having access to the memory (and thus the data and

instructions) through one bus. Most data must go through that bus (omitting details

such as cache designs and other parameters), so the bus limits the speed at which

computations can occur. The TrueNorth architecture does not have that singular

bottleneck due to its distributed nature and in particular its memory that is colocated

with its processing units. The TrueNorth stores its memory states (neuron membrane

potentials, parameters, etc.) near its processing elements (neurons) in each core. In

addition, the very nature of the TrueNorth cores themselves means that programming

the system is a new challenge because most algorithms are not designed to be executed

in parallel, let alone on neurons with limited computing capabilities.

The challenges associated with designing algorithms and implementing them on

6

CHAPTER 1. INTRODUCTION

these parallel neuromorphic hardware platforms are well worth the cost because these

devices have inherent advantages in terms of power and speed as compared to typ-

ical general-purpose computing devices. Just as graphical processing units (GPUs)

provide speed advantages over central processing units (CPUs) but have limitations

and different programming considerations required when implementing algorithms,

neuromorphic processing units have their own tradeoffs in the pursuit of increasing

capabilities and decreasing power consumption. Researchers are now creating cogni-

tive processing units17 (CogPUs) to more creatively architect solutions to problems

using neuromorphic techniques. These new massively-parallel architectures also cre-

ate new challenges for chip designers. With so many simultaneous processing units

that are sometimes non-homogeneous it can be difficult to analyze the best use of

space when creating a microprocessor, but new theory has provided some direction32

for tackling this type of optimization.

As CogPUs become closer to biology they are more likely to provide more pro-

nounced benefits in power consumption and processing capabilities, particularly as

related to the types of problems with which computers struggle and humans excel.

These improvements come with more challenges, though, because as the systems get

closer to biology, algorithms enter uncharted territories as researchers need to become

more creative and design new ways of performing tasks using the new neuromorphic

tools at hand without knowing how the brain actually executes these procedures in

practice.

7

CHAPTER 1. INTRODUCTION

It is obvious that mimicking the brain has potential for improving circuit design

because of the efficiencies the brain displays. However, there are other reasons as well.

For example, cognitive science has applied33 probabilistic models to many cognitive

processes. The processes themselves are highly probabilistic in nature, and it only

makes sense that the human brain can cope with these models in a probabilistic way.

Taking things one step further, the brain even has an innate ability to determine

the form a model should take on.34 Rather than having to be told whether data

should be arranged in a list, hierarchy, ring, etc., the human brain can look at various

situations and quickly determine a good way to describe the situation in the context

of a model. Of course there are more complicated examples of data for which the

organization is not obvious, but for many cases even small children can categorize

and model the data effectively. For example, given varying objects of different sizes,

colors, and shapes, humans can very quickly come up with a way to organize the

shapes based on those characteristics, but machines still struggle to deal with these

types of open-ended model structure tasks. They typically need to be programmed

to fit the data to a given structure rather than determine the structure on their own,

but it would be very important both to the field of cognitive development as well as

AI to better understand this type of capability.

It has been shown that in various situations the brain performs close to a sta-

tistically optimal way. One area of examples of this type of optimal decision is in

sensorimotor control.35 Humans face everyday optimization and estimation tasks

8

CHAPTER 1. INTRODUCTION

when they interact with the world, and there is uncertainty inherent to each of these

types of actions. When people view objects the estimation of these objects’ locations

and speeds are subject to noise due to the visual system in the brain. The same

idea applies to touching objects – the size, shape, and location of objects are noisy

measurements in the brain. As most people have noticed on numerous occasions, hu-

man hearing is particularly noisy when it comes to estimating the location of objects

emitting sounds.

Modeling the stochastic nature of perception in the environment therefore plays a

large role in human behavior.35 One example of a real-life situation is estimating the

location of a tennis ball during a game by combining information about the predicted

distribution of the location of the opponent’s hit and visual information showing a

noisy estimate of the ball’s actual position and velocity once the ball is struck.35 One

experiment done to support this idea36 is that people were asked to estimate the

location of a cursor on a screen in relation to their hand position. Uncertainty was

added to the cursor by making its location fuzzy (depicted as a point cloud), and

participants had a mental model (prior distribution) of where the cursor was likely to

be based on the number of times the cursor showed up in various locations in previous

trials. As a result they were able to predict the location in a manner consistent with

using Bayesian statistics to perform the same task.

There are many other examples of this type of behavior,35 and the same phe-

nomenon occurs when information from two different senses are combined. Studies

9

CHAPTER 1. INTRODUCTION

have been developed to show that combining uncertain visual and tactile information

to estimate an object’s height results in behavior close to what Bayesian statistics

predicts,37 and the same situation occurs when combining visual and auditory infor-

mation to predict an object’s location.38

Clearly the brain has the capacity to effectively deal with uncertainty in everyday

situations, but it also performs complicated tasks. As described earlier, neural net-

works have only recently been doing as well as humans on specific tasks with great

amounts of data required to train them. On the other hand, the human brain can

much more quickly learn to perform these tasks and is clearly better at generalizing to

new situations. Machine learning has only begun to scratch the surface of what brains

are capable of doing, so there are plenty more things to be learned from studying the

brain and also from adapting related ideas to algorithms and hardware.

People have only begun to determine how groups of neurons work together in small

animals, and less progress has been made in understanding the intricacies of the hu-

man brain. However, there are some examples in neuroscience showing that spiking

neuron activities match predictions of Bayesian statistics, suggesting that some spike

encodings in actual biology may represent probabilistic quantities. For example, when

owls localize sounds they are biased toward being accurate straight ahead and typi-

cally underestimate angles on the sides. This behavior is consistent with a Bayesian

model, and particular decodings of neural populations in the owl’s auditory system

are consistent with quantities in the model.39 In another case, neurons in monkey

10

CHAPTER 1. INTRODUCTION

cortexes fire consistently with the probability that certain eye movements will result

in more reward juice.40

Other work posits that the brain may weigh possible decision choices using a

common technique from statistics - by expressing the choices as a ratio of their prob-

ability values. More specifically, the logarithm of the so-called “likelihood ratio” may

be formed in the brain as a result of sensory input and stored for later decision mak-

ing.41 In fact, this thesis explains how the formation of such a log-likelihood ratio

can be used to make decisions about the world on neuromorphic hardware in a way

that could potentially be done in the brain.

The thesis begins in Chapter 2 by describing one main class of statistical models

called Bayesian networks that can be used to describe situations in the world. The

brain must by definition be able to construct a cohesive view of the world in order to

make intelligent decisions, and Bayesian networks are one way to create these types of

knowledge. The chapter then goes on to explain how these models can be trained so

that they represent actual phenomena before describing how decisions can be made

(called “inference”) using these networks.

Chapter 3 takes these concepts further and describes how these decisions can be

made using spiking neurons on parallel neuromorphic hardware (SpiNNaker). De-

scriptions of the entire automated software flow are included as the process goes from

a representation of the network automatically to inference running on the hardware

using computations that could be accomplished in the brain. Results of this com-

11

CHAPTER 1. INTRODUCTION

bined hardware/software flow using the smaller 4-chip SpiNNaker are described in

Chapter 4 for various models, and a scalable network structure is introduced that

is used in this chapter and later chapters to benchmark inference performance and

scalability.

Chapter 5 discusses the work required to implement these networks and inference

on the larger 48-chip SpiNNaker as well as how to integrate the same type of compu-

tations on the Parallella hardware. That way the small and large SpiNNaker board

results can be compared to the Parallella results. A complexity analysis of the algo-

rithms used to process the network and set it up on the SpiNNaker is also explored.

Finally, a heterogeneous architecture was created by connecting the large SpiNNaker

and the Parallella via Ethernet, and performance results are shown.

The TrueNorth is described in Chapter 6. Very large-scale vector-matrix multipli-

cation architectures using spiking neurons are shown using multiple techniques, each

having different tradeoffs. One of those architectures is used to implement natural

language processing tasks including detecting word similarities and solving analo-

gies using the TrueNorth and this neural architecture. A technique for performing

multiplications stochastically and selecting particular neurons to perform computa-

tions with is also shown along with an example image processing pipeline task as an

application.

A way to perform cognitive audio-visual beamforming and localization is presented

in Chapter 7. The system is cognitive because it enables neuromorphic algorithms

12

CHAPTER 1. INTRODUCTION

to be developed to localize specific sounds based on their spectral characteristics just

as the human brain can focus on specific types of sounds at the expense of others.

Theory is presented and then two actual hardware systems running these algorithms

are examined. One consists of a fully integrated audio-visual spherical array and the

other consists of a more inexpensive spherical array coupled with a basic camera.

Performance of both systems are shown and compared.

Finally, Chapter 8 presents the design of an ARM Cortex M0 architecture for

massive neuromorphic chips created in the lab. The main goal of the design is to im-

plement an image processing pipeline for wide area aerial photographs. This pipeline

includes tasks such as non-uniformity correction for the raw pixel data coming out

of the imager, debayering of the incoming pixels to form standard RGB images, de-

warping the images so that despite movement of the sequence of images each image is

rotated to have a common fixed background, detecting moving objects in the image,

and tracking those objects. The chips contain some conventional implementations for

performing computations, but there are many processing units that are quite uncon-

ventional to enable low power consumption in a neuromorphic manner. Coordinating

all these processing units in parallel can be a challenging task, so the M0 architecture

provides a way to bootstrap the system and enable a fully programmable interface to

utilize these processing units to their full potentials. Although the chips are designed

to perform image processing, these units can be used for many other purposes as well.

The common theme in all this work is that all these systems are brain-inspired,

13

CHAPTER 1. INTRODUCTION

massively parallel unconventional processing systems. Useful systems utilizing neu-

romorphic principles can be created whether they utilize actual spiking neurons or

borrow concepts from the brain’s capabilities. Research such as this has the potential

to continue to improve the state of the art in many areas, particularly as it becomes

harder over time to continue increasing mainstream processor clock speeds.

14

Chapter 2

Bayesian Networks, Learning, and

Inference

Bayesian networks are used to model a wide variety of systems in the world,

ranging from simple classification tasks all the way to analyzing complex human

behavior. Bayesian networks are directed graphical models where each node in the

network represents a random variable and the arrows represent dependencies between

those variables in a probabilistic model.42–45 Every node contains a description of its

conditional probability distribution (CPD) given its parents (other nodes that point

toward the current node). When the nodes are discrete variables with categorical

distributions, the conditional distribution is stored as a CPD table where each row

corresponds to a different configuration of the node’s parents and the values in that

row describe the probability of the node’s values occurring given those parent values.

15

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Cloudy (C)

Precipitation (P) Frozen Ground (F)

Accumulation (A) Salt Down (S)

Icy Road (I)

Cloudy

0 1

0.5 0.5 Precipitation

C 0 1

0 0.9 0.1

1 0.3 0.7

Frozen

0 1

0.8 0.2
Accumulation

P 0 1

0 0.99 0.01

1 0.8 0.2

Salt Down

P F 0 1

0 0 0.9 0.1

0 1 0.85 0.15

1 0 0.5 0.5

1 1 0.05 0.95

Icy Road

A S F 0 1

0 0 0 0.99 0.01

0 0 1 0.95 0.05

0 1 0 0.99 0.01

0 1 1 0.95 0.05

1 0 0 0.35 0.65

1 0 1 0.01 0.99

1 1 0 0.65 0.35

1 1 1 0.15 0.85

Figure 2.1: Icy Road Network. This example Bayesian network models a probability
distribution over random variables associated with precipitation on road surfaces and
whether the road is icy.

After a graphical model is established the parameters of the model can be learned

from data (see Section 2.1). These parameters describe conditional probability values

of nodes given their parents. So the model describes the probabilistic relationships

between variables, and each of these relationships has parameters that are learned

from data.

16

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Figure 2.1 shows an example Bayesian network called the Icy Road Network which

happens to contain only binary nodes. It describes a probability distribution over six

variables concerning precipitation and whether the ground is icy depending on other

conditions such as temperature and whether salt was placed on the road. Arrows are

drawn from parents to children and indicate which variables are directly and condi-

tionally dependent on others. These dependencies are often referred to as “causal

relationships” which in aggregate describe the independence structure of the net-

work.42,44 The CPD tables are shown surrounding the network, and these particular

CPD tables were invented for illustrative purposes. For example, a node with no

parents such as Cloudy has a prior probability distribution of being 0 or 1. On the

other hand, the Precipitation variable has a CPD table that depends directly on the

value of Cloudy.

The Icy Road Network can be described intuitively as follows. The cloud cover

(Cloudy) and whether the ground is frozen (Frozen Ground) are conditions that do

not directly result from the other variables (they are not “caused” by the others). On

the other hand, the probability of Precipitation depends on the cloud cover (clouds

“cause” precipitation to become more or less likely to occur). Significant accumulation

(Accumulation) depends on whether precipitation is occurring at all, and whether

salt is administered (Salt Down) depends on whether precipitation is present and the

ground is frozen. Finally, icy conditions (Icy Road) depend on whether significant

accumulation occurs, salt is on the road, and the ground is frozen.

17

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

The nodes in the network collectively describe a joint probability distribution, and

the arrows indicate how the joint distribution can be factored in terms of CPDs that

are learned from data. Of course the general rules of conditional probability apply

so the distribution can be factored many different ways, but the arrows indicate a

factorization that can utilize the CPD tables described directly by the model. For

example, the Icy Road Network explicitly describes the following joint distribution

factorization:

P(A,C, I, F, P, S) = P(C)P(F)P(P |C)P(A|P)P(S|P, F)P(I|A, S, F). (2.1)

Learning, or training, must be done in order for the model to be useful, and this

process is described in Section 2.1. Training establishes the parameters for every CPD

table in the network based on data collected so that the model describes reality as

well as it can.

Once the model is trained, useful tasks can be accomplished by performing in-

ference as described in Section 2.2. While performing inference the values of some

variables may be fixed as evidence, and then the probability distribution over the

remaining variables given the fixed evidence is determined. Inference is where real

predictions, classifications, and decisions can be made using the model.

For example, if there is a model describing noise in measurements taken using a

sensor as well as the underlying physical process that governs the data themselves, it

18

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

is possible to perform inference in order to determine the most likely phenomena that

led to those measurements. In order to do so, the measurements are fixed as evidence

in the model, and inference is done over the remaining variables to determine the

probability distribution of the original data given the measurements collected.

The structure of the network includes the choice of variables and the values they

can have as well as the connections between nodes. These choices are generally

made or influenced by subject matter experts who have knowledge regarding which

relationships are causal. However, these decisions are sometimes altered by other

factors including the difficulty of performing learning or inference, so the design of

the model is generally an iterative process where it is improved based on the challenges

encountered when evaluating how well it works in practice.

The rest of the sections in this chapter describe learning and inference includ-

ing some basic examples. These concepts are expanded to include a brain-inspired

way of performing inference, and comparisons between standard techniques and this

neuromorphic technique are shown. Later chapters will take that technique further

by exploiting parallelism and brain-inspired hardware architectures to improve the

speed, parallelism, and power consumption when performing inference.

19

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

2.1 Learning

Learning encompasses a variety of different techniques ranging from the simple to

the complex,42,43,45 and new techniques are described for novel networks regularly.

The appropriateness and effectiveness of these techniques are extremely dependent

on the actual model in question as well as the data themselves that are available for

training. There are two main classes of learning techniques that cover most of these

cases: maximum likelihood estimation and Bayesian estimation. Neither of them is

perfect for all situations, and they both have various pros and cons that can make

one or the other advantageous over the other for particular models and datasets.

Extremely briefly, Bayesian estimation provides a convenient framework to incor-

porate prior beliefs about random variables in a distribution.42,43 Including prior

beliefs can be helpful when there is insufficient data to create a reasonable estimation

of a distribution’s parameter. A classic example is the case of flipping a fair coin three

times. If the coin comes up heads three times most people would not expect the coin

to always come up heads, and the reason they do not expect that result is because

they are thinking about their prior beliefs on what is reasonable. On the other hand,

maximum likelihood parameter estimation depends more directly on the data, and if

the data are skewed due to having a small number of samples, nothing is explicitly

built into the framework to take that into account.

Although Bayesian estimation techniques have attractive properties such as in-

corporation of prior distributions it can be difficult to get the math to “work” when

20

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

designing a strategy for parameter estimation. This means that there are a limited

number of distributions that are easy to utilize in the Bayesian framework, and as a

result some distributions are used in these models for mathematical expediency that

do not match the data or real beliefs of experts.

Because this thesis is focused more on inference (see Section 2.2) and all the graph-

ical models are of the same general class unless specifically mentioned, this section

will focus on learning in Bayesian networks with discrete categorical distributions at

each node. Another assumption made here is that all the data are available for learn-

ing, which means there are no random variables for which data are missing. These

assumptions make maximum likelihood estimation straightforward, and that process

is described below.42,43,45,46

Using the Icy Road Network depicted in Figure 2.1, assume there are N instances

of training data. Each value is a vector containing the value of each of the 6 random

variables in the model. The first step is to create the likelihood function because

maximum likelihood estimation involves maximizing the likelihood of the data given

the parameters (CPD table entries). This likelihood is the joint distribution (Equa-

21

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

tion 2.1) and is shown below:

N∏
d=1

P(A = ad, C = cd, I = id, F = fd, P = pd, S = sd) =

N∏
d=1

P(C = cd)P(F = fd)P(P = pd|C = cd)P(A = ad|P = pd)·

P(S = sd|P = pd, F = fd)P(I = id|A = ad, S = sd, F = fd).

(2.2)

In the above equation, d indexes the N data points, and the variables ad, cd, id, fd, pd,

and sd are the values of the variables A,C, I, F, P , and S in data point d. The right-

hand side of the equation is the factorized version described explicitly by the model

(see Equation 2.1).

Next, change the notation so that P(C = i) where i ∈ {0, 1} is Ci, P(P = i|C = j)

where i ∈ {0, 1} and j ∈ {0, 1} is Pij, and so on:

N∏
d=1

P(A = ad, C = cd, I = id, F = fd, P = pd, S = sd) =

N∏
d=1

[∏
i

C
I(cd=i)
i

∏
i

F
I(fd=i)
i

∏
i,j

P
I(pd=i,cd=j)
ij

∏
i,j

A
I(ad=i,pd=j)
ij ·

∏
i,j,k

S
I(sd=i,pd=j,fd=k)
ijk

∏
i,j,k,l

I
I(id=i,ad=j,sd=k,fd=l)
ijkl

]
.

(2.3)

Here I() is the indicator function that is 0 when the value passed to I is false and 1

when the value passed to I() is true. Then let NC=i be the number of times node C

takes on the value i in the data, NP=i,C=j be the number of times in the data node

22

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

P has the value i and node C has the value j simultaneously, and so on:

N∏
d=1

P(A = ad, C = cd, I = id, F = fd, P = pd, S = sd) =

∏
i

CNC=i
i

∏
i

FNF=i
i

∏
i,j

P
NP=i,C=j

ij

∏
i,j

A
NA=i,P=j

ij ·

∏
i,j,k

S
NS=i,P=j,F=k

ijk

∏
i,j,k.l

I
NI=i,A=j,S=k,F=l

ijkl .

(2.4)

Because the logarithm function is a monotonically increasing function, one can

take the log of the likelihood function to create the log-likelihood function and not

affect the results of the maximization procedure:

log

[
N∏
d=1

P(A = ad, C = cd, I = id, F = fd, P = pd, S = sd)

]
=

∑
i

NC=i logCi +
∑
i

NF=i logFi +
∑
i,j

NP=i,C=j logPij+

∑
i,j

NA=i,P=j logAij +
∑
i,j,k

NS=i,P=j,F=k logSijk+

∑
i,j,k.l

NI=i,A=j,S=k,F=l log Iijkl.

(2.5)

Let the log-likelihood (Equation 2.5) be referred to as L(X, θ) where X is the set

of all the training data (N vectors of length 6 in this example) and θ represents the

CPD table entries (Ci, Fi, Pij, Aij, Sijk, and Iijkl). The likelihood must be maximized,

but this maximization must be constrained so that the row of each CPD table sums

23

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

to 1. Therefore, the following contraints must hold:

∑
i

Ci = 1, (2.6)

∑
i

Fi = 1, (2.7)

∑
i

Pij = 1 ∀j, (2.8)

∑
i

Aij = 1 ∀j, (2.9)

∑
i

Sijk = 1 ∀j, k, (2.10)

and
∑
i

Iijkl = 1 ∀j, k, l. (2.11)

In summary, the goal is to maximize L(X, θ) subject to Equations 2.6-2.11. A

simple way to do this is to utilize Lagrange multipliers,42,46 so the following will be

maximized:

L(X, θ)− λ1

(∑
i

Ci = 1

)
− λ2

(∑
i

Fi = 1

)
− λ3

(∑
i

Pij = 1

)

− λ4

(∑
i

Aij = 1

)
− λ5

(∑
i

Sijk = 1

)
− λ6

(∑
i

Iijkl = 1

)
.

(2.12)

Maximizing Expression 2.12 involves taking the partial derivatives with respect

to each of the parameters. Note that each of the parameters only shows up in a

single term in L(X, θ) and only one of the constraints. Therefore, taking each partial

derivative only leaves a simple result. For example, the following is the result when

24

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

the partial derivative of Expression 2.12 is taken with respect to parameter Ci and

set equal to 0:

NC=i

Ci

− λ1 = 0 (2.13)

Ci =
NC=i

λ1

. (2.14)

Combining the constraint in Equation 2.6 with Equation 2.14 yields the following:

∑
i

NC=i

λ1

= 1 (2.15)

λ1 =
∑
i

NC=i. (2.16)

Therefore,

Ci =
NC=i∑
i NC=i

, (2.17)

which means that in order to estimate the probability of the node Cloudy being true,

one just counts how many times node C is true in the data and divides by the total

number of times node C is true or false (the number of total data points in the

training data).

The same basic process holds for other nodes in the graph as well, but nodes having

parents (and therefore conditional probability parameters) are slightly different. Take,

for example, node P which describes whether there is any Precipitation in the model.

25

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Following the same process, the partial derivative of Expression 2.12 with respect to

Pij is below:

NP=i,C=j

Pij

− λ3 = 0 (2.18)

Pij =
NP=i,C=j

λ3

. (2.19)

Combining Equation 2.19 with the constraint in Equation 2.8 gives the following

result:

∑
i

NP=i,C=j

λ3

= 1 (2.20)

λ3 =
∑
i

NP=i,C=j. (2.21)

Therefore,

Pij =
NP=i,C=j∑
i NP=i,C=j

, (2.22)

which again means that counting provides the estimate for the probability of Precip-

itation given whether the sky is Cloudy in this model. For a given value of the node

Cloudy the counts for Precipitation are collected. For the case where Cloudy is true

the probability of Precipitation being true is the number of times in the data where

Cloudy is false and Precipitation is true divided by the total number of times in the

26

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

data where Cloudy is false. That process must then be repeated for all the other

cases (of course taking into account the fact that each conditional distribution must

sum to 1 so some values can be trivially filled in once others are obtained).

Learning in discrete Bayesian networks with categorical CPD tables is straight-

forward when all the data are available and involves keeping track of simple counts in

the training data. However, there are many other cases that complicate matters. Sit-

uations where the values of some nodes are unknown in the training data are common

and can be dealt with by utilizing other techniques. In addition, utilizing different

probability distributions in the model (other than categorical) create other learning

procedures even when utilizing the same maximum likelihood estimation framework.

The process is similar in that the likelihood function is maximized, but sometimes it

is difficult to derive a closed-form solution for learning. This thesis does not cover

the myriad other situations that can arise in learning, but this section is intended to

give the reader a basic understanding of how learning in the models covered in this

thesis can occur.

2.2 Inference

Once the model is trained it can be used to estimate the probability of other

events occurring. Some questions are trivial given the network structure. For exam-

ple, asking for the probability of significant accumulation given that precipitation is

27

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

present is simple because that information is stored directly in the CPD table for the

Accumulation node (in this case the answer is 0.2). However, other questions can

also be asked that are not as obvious to answer. For example, one can ask for the

probability that the ground is frozen given that the road is icy. Or one can query

the probability that salt was put down on the road given that it is icy. Furthermore,

it is possible to determine the most likely configuration of some variables given that

others might have specific values.

A

B

C

A = 0 A = 1
0.3 0.7

B = 0 B = 1
A = 0 0.2 0.8
A = 1 0.9 0.1

C = 0 C = 1
B = 0 0.4 0.6
B = 1 0.2 0.8

Figure 2.2: Simple ABC Bayesian Network. This directed network contains three
nodes, each of which are binary. Node C is observed (known) and inference can be
performed on nodes A and B. In this example C = 0. The CPD table for each node
is shown to the right of the network itself.

There are multiple ways to attack the challenge of performing inference.42,43,45

Different techniques work better for some networks than others, and some techniques

only apply to specific types of networks. Ideally an exact solution is sought (see

28

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Section 2.2.1), but sometimes that is not a tractable task and approximate solutions

(see Section 2.2.2) can be used instead.

In order to describe a few important inference procedures and to contrast their

differences a simple binary Bayesian network has been created. Figure 2.2 contains

the ABC model as well as its associated CPD tables. This model contains three

random variables, A, B, and C, each of which are binary. Node C is an observed

node (shaded) which means its value is known. The factorization built into the model

is the following:

P(A,B,C) = P(A)P(B|A)P(C|B). (2.23)

Assume this network is already trained, so the CPD tables have already been spec-

ified based on the training data collected for this network. Each CPD entry described

here is listed with the probability of the node being ‘0’ first and the probability of

being ‘1’ second.

Since C is known (assume for this example that its value is 0), inference can be

performed to determine the probability of nodes A and B taking on the values 0

and 1. More explicitly, the values of P(A = 1|C = 0) and P(B = 1|C = 0) can

be determined given that the following probability distributions are specified by the

trained model: P(A), P(B|A), and P(C|B).

29

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

2.2.1 Exact Inference

The simplest way to perform exact inference is to use the laws of conditional

probability and marginalization of probability distributions. Since the ABC network

in Figure 2.2 is so small, does not contain very many connections, and does not

have a large set of values each node can be, it is straightforward to perform these

computations. Focusing on the conditional distribution of node A given the evidence

at node C, the laws of conditional probability provide the following starting point:

P(A = 1|C = 0) =
P(A = 1, C = 0)

P(C = 0)
. (2.24)

The top and bottom probability values can be calculated by marginalizing the

joint distribution of the model:

P(A = 1|C = 0) =

∑1
b=0 P(A = 1, B = b, C = 0)∑1

a=0

∑1
b=0 P(A = a,B = b, C = 0)

. (2.25)

Since the network contains only binary nodes the joint distribution P(A,B,C) is a

table with 23 = 8 entries. However, as the size of the network increases the table grows

exponentially and quickly becomes unwieldy. For example, even a modest network

with 100 binary nodes would yield a table with 2100 entries which would not fit in the

combined memory of all the computers in existence. Luckily, though, the hierarchical

network structure provides a scalability to the model by providing local factors that

30

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

are of manageable size. Therefore, terms can be expanded by using the factorization

shown graphically in the model and in Equation 2.23:

P(A = 1|C = 0) =

∑1
b=0 P(A = 1)P(B = b|A = 1)P(C = 0|B = b)∑1

a=0

∑1
b=0 P(A = a)P(B = b|A = a)P(C = 0|B = b)

. (2.26)

Probability values can be found in the CPD tables shown in Figure 2.2. Filling them

into the above equation yields the following result:

P(A = 1|C = 0) =
0.7 · 0.9 · 0.4 + 0.7 · 0.1 · 0.2

0.3 · 0.2 · 0.4 + 0.3 · 0.8 · 0.2 + 0.7 · 0.9 · 0.4 + 0.7 · 0.1 · 0.2
.

(2.27)

So P(A = 1|C = 0) ≃ 0.79 and P(A = 0|C = 0) ≃ 0.21. P(B = 1|C = 0) and

P(B = 0|C = 0) can be computed in a similar manner.

Performing exact inference in this naive way can be easily done in this simple

network, but as the network complexity increases the number of multiplications and

summations that must be achieved increase immensely and may take a very long time

to compute or can even become intractable. Luckily there are some computational

efficiencies that can be taken advantage of to make the process better. For example,

Equation 2.26 can be simplified in the following manner by moving the summations

inward:

P(A = 1|C = 0) =
P(A = 1)

∑1
b=0 P(B = b|A = 1)P(C = 0|B = b)∑1

a=0 P(A = a)
∑1

b=0 P(B = b|A = a)P(C = 0|B = b)
. (2.28)

31

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

In this network there is not much gain from moving the summations in, but as the

network size increases that technique becomes essential. For example, in a network

with 50,000 nodes, many nodes are likely not connected to very many other nodes. In

those situations summations relating to the factors for those nodes can be moved very

far through the exact inference expressions and can save a great deal of computation.

This general idea of moving summations inward forms the basis of some general

algorithms used to perform inference in directed acyclic graphs.42,45 The basic case of

this is called variable elimination. Some tweaks on the variable elimination concepts

yield the sum product algorithm, and by turning the summations into maximization

operators and keeping track of which values in the model yield those maximum values

the most likely configuration of the model can be determined. That tweak is the max

product algorithm. Further changes by dividing the problem into locally-held beliefs

and allowing new information (updated values of random variables in the model) to

flow yield the popular belief propagation procedure.

Despite these improvements in computation complexity, networks can still become

intractable to perform exact inference on. This is often due to a combination of

networks having so many local connections and so many nodes in general that all

the local computations still take a very long time to compute. Other times exact

inference is not preferred because the application demands faster inference results than

exact inference can provide. Alternative options to perform approximate inference

are described in Section 2.2.2, and this thesis focuses on these types of solutions in

32

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

a neuromorphic way by performing approximate inference using spiking neurons in

parallel on brain-inspired hardware.

2.2.2 Approximate Inference

There are myriad ways to perform approximate inference, but perhaps the most

obvious algorithm is loopy belief propagation.42 The procedure is very similar to belief

propagation as briefly described in Section 2.2.1. However, whereas belief propagation

is guaranteed to converge to the correct result in two passes of sent messages in

directed acyclic graphs, loopy belief propagation applies in situations where there

are cycles in the graph. The procedure works essentially the same way as belief

propagation except that messages are passed until the updates become small enough

for convergence to occur. Convergence is not guaranteed for all networks, but it can

nevertheless be successfully applied for some models.

Another class of inference techniques comprises various optimization techniques

to approximate the distribution of interest.42 These techniques, including various

forms of variational inference, essentially provide a framework with which to perform

inference on a distribution that is more tractable than the original distribution of

interest.

Instead of changing the distribution itself it is also possible to approximate the

original distribution by creating particles that in aggregate converge to the inference

queries in question. These algorithms are called particle methods, and they comprise

33

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

a wide variety of sampling techniques.42 The concept of aggregating values and

computing their histogram will be revisited many times in this thesis as it forms the

basis for the approximate inference techniques discussed here.

Some particle methods are very straightforward such as rejection sampling, where

in directed acyclic graphs node values are chosen starting from prior nodes (nodes

with no parents). Then, traveling down the tree of the model (following the arrows),

node values are sampled until all the nodes have a value. Each of these samples is

created based on the distribution at that node given the other values already sampled

in the network. In other words the CPD table at each node is used to generate each

sample. If any sample does not match the evidence (for example C = 0 in the ABC

network shown in Figure 2.2) the current set of samples are thrown out. Once a

sample is created for each node in the network the configuration of the nodes of

interest are stored. These values are aggregated, and their relative frequencies of

occurrence represent the probability of those nodes taking on those values.

An improvement to rejection sampling is called likelihood weighting .42 Rather than

allow some samples to be thrown out which wastes computations, this technique forces

the evidence to be its observed value. However, samples are then weighted by the

probability of the evidence being true given the other sampled values in the network.

Importance sampling allows for sampling from a different distribution than the

one of interest42 which can make inference tractable. It can also be used to focus on

areas of a distribution that are unlikely and therefore rarely produce samples using

34

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

other techniques.

Other approximate inference techniques are Markov Chain Monte Carlo (MCMC)

algorithms. All MCMC techniques47 rely on the construction of a Markov chain48

(see Figure 2.3). Markov chains are simply graphical models where as time goes

on each node only depends on the value of the previous node. In Figure 2.3, each

random variable in the chain (Y1, Y2, Y3, ..., YN) represents a complete configuration

of another graphical model. For example, consider using an MCMC technique on the

ABC network described in Figure 2.2. In that situation for the MCMC techniques

described in this thesis, Y1 would refer to a configuration of the variables A, B, and

C, and Y2 would refer to another configuration of the variables A, B, and C at a later

time in the evolution of the chain and the sampling process.

Y1 Y2 Y3 Y4

Figure 2.3: Typical Markov Chain.

Samples from the Markov chain are created over time, meaning that another

configuration of the original graphical model follows from the one before it.42,49 This

Markov chain is designed so that over time the samples are generated from a stationary

distribution the chain has converged to. The Markov chain samples can then be used

to perform approximate inference by estimating the conditional distribution of the

nodes of interest given the evidence in the original model. The following sections

35

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

describe first how a typical MCMC algorithm called Gibbs sampling can be used in

Bayesian networks to perform inference (see Section 2.2.2.1). Then a way to perform

brain-inspired computations to achieve the same goal is explained in Section 2.2.2.2.

2.2.2.1 Gibbs Sampling

Gibbs Sampling42,49 is an MCMC technique that is a special form of the Metropolis-

Hastings algorithm. As described earlier, each node in the Markov chain (see Fig-

ure 2.3) represents the full configuration of the original network. The first node in the

Markov chain corresponds to a random initialization of the nodes in the original model

(except for the observed nodes which are fixed to their known values). Then, during

each sampling iteration each unobserved node in the network is sampled one at a time.

Assuming that there are N nodes X1, X2, ..., XN having current values x1, x2, ..., xN

in the network, they are sampled according to the following distribution:

xi ∼ P(xi|x1, x2, ..., xi−1, xi+1, ..., xN), (2.29)

where i goes from 1 to N , and each variable xj is the most recently-sampled value

for that node Xj. Each iteration consists of running through all N nodes, so each

iteration consists of N steps in the Markov chain.

This Gibbs sampling construction ensures that the Markov chain has a unique sta-

tionary distribution that is proportional to the distribution of interest,50 which in this

36

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

case is the joint distribution described by the original Bayesian network. Therefore,

by aggregating all the samples over time and viewing their histograms, it is possible

to perform inference tasks because these relative frequencies of values occurring esti-

mate the probability of the nodes being those values given the known evidence in the

model.

Now, note that the distribution described in Expression 2.29 can often be greatly

simplified because the conditional probability of a node given its Markov Blanket is

independent of all the other nodes in the network.42 Therefore, the distribution in

Expression 2.29 only requires computations done using the node xi’s Markov Blanket.

A B

C D

E F

G

Figure 2.4: Example Markov Blanket in a Bayesian network.

For example, consider the network shown in Figure 2.4. This network depicts

the Markov Blanket for node E. The Markov Blanket consists of the node’s parents,

children, and coparents (nodes that are parents of the same node as the node in

37

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

question). Therefore, nodes A and B are not part of the Markov Blanket and can be

ignored when sampling E using Gibbs sampling.

Put another way, consider sampling node E using Expression 2.29. Following the

rules of conditional probability the following is true:

P(E|A,B,C,D, F,G) =
P(A,B,C,D,E, F,G)

P(A,B,C,D, F,G)
. (2.30)

Based on the conditional independence structure of the model, the joint distribu-

tion can be factored in the following manner:

P(A,B,C,D,E, F,G) = P(A)P(B)P(C|A,B)P(D|B)P(E|C,D)P(G|E,F). (2.31)

Thus, continuing along from Equation 2.30, E can be sampled from the following

distribution:

P(E|A,B,C,D, F,G) =
P(A,B,C,D,E, F,G)

P(A,B,C,D, F,G)

=
P(A)P(B)P(C|A,B)P(D|B)P(E|C,D)P(G|E,F)∑

e∈D(E) P(A)P(B)P(C|A,B)P(D|B)P(E|C,D)P(G|E,F)

=
P(A)P(B)P(C|A,B)P(D|B)P(E|C,D)P(G|E,F)

P(A)P(B)P(C|A,B)P(D|B)
∑

e∈D(E) P(E|C,D)P(G|E,F)

=
P(E|C,D)P(G|E,F)∑

e∈D(E) P(E|C,D)P(G|E,F)
, (2.32)

where in the above equations D(E) is the set of values node E can be. The only

38

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

nodes involved in the computation come from the Markov Blanket, as expected. In

addition, note the factors involved in the computation. The factors are exactly the

factors that can be formed with the members of the Markov Blanket, and they are

also the only factors that involve the node that is to be sampled. This last point that

the factors all include the node to be sampled is exactly why these nodes form the

Markov Blanket. They are the only ones that do not drop out of the equation for the

conditional probability of the current node given all the others.

The process of determining the update equations for Gibbs sampling is easily

automated if the distributions are all discrete. For each node the Markov Blanket

is determined, and then the factors completely included in the Markov Blanket are

multiplied together in the numerator and denominator. Then the denominator is

marginalized to remove the dependence on the current node, and the division is

completed. The denominator is a single value after the sum, and the numerator can

take on a number of values, each corresponding to a member of D(E).

On the other hand, if the conditional distribution for the current node given

its parents is not discrete, the denominator turns into an integral and the result of

Equation 2.32 is a continuous conditional distribution. This distribution may or may

not be possible to express in closed form.

Once the Gibbs update distributions are calculated for each node in the network

the sampling process can run. At each time step a new sample is generated for

each node in order given the current values of all the other nodes. When Gibbs

39

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

sampling is used to sample nodes that are parameters for other distributions in the

network there is a burn-in period before the model settles down and converges to a

good likelihood for the model,42 but in this work the model is assumed to be already

trained and therefore all the samples can be used for inference from the beginning of

the sampling process. Instead of converging to a better configuration of the random

variables, in this work the sampling process is simply used to traverse the probability

distribution that is already set in order to estimate the inference distributions in

question. In addition, the samples are commonly correlated, so if an application

depends on uncorrelated samples every nth sample is often taken. However, in the

situations described in this thesis the samples are only viewed in aggregate to build

a distribution so this factor is not important.

Now, going back to the simple 3-node discrete Bayesian network (the ABC net-

work) shown in Figure 2.2, determining the sampling equation for each node using

the form of Expression 2.29 is straightforward. Since there are three nodes and one

is known, two distributions are required. These two distributions are the following:

P(A|B = b, C = 0), where b is the most recent sample for B, and P(B|A = a, C = 0),

where a is the most recent sample for A.

These sampling distributions can generally be greatly simplified by only consider-

ing the terms that include nodes in the Markov Blanket of the current node. There-

40

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

fore, the following simplification can be made:

P(A|B = b, C = 0) = P(A|B = b) (2.33)

because the Markov Blanket of A only contains B. On the other hand, P(B|A =

a, C = 0) cannot be simplified in this manner because both A and C are in the

Markov Blanket of B.

Before the algorithm starts each node is initialized to a random value except for

the observed nodes which are fixed. During every iteration each unobserved node is

sampled one at a time, and the number of times each node takes on each value is

recorded. Every sample relies on the most current value of every other node in the

network. In this example network the following two distributions (in simplified form)

are used for generating new samples:

P(A|B = b) and P(B|A = a, C = 0). (2.34)

To elaborate, take the first sampling distribution:

P(A|B = b) =
P(A)P(B = b|A)∑1

i=0 P(A = i)P(B = b|A = i)
. (2.35)

41

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

If b = 0 then the following distribution is the sampling distribution for A:

P(A = 0|B = 0) =
0.3 · 0.2

0.3 · 0.2 + 0.7 · 0.9
≃ 0.09 (2.36)

and P(A = 1|B = 0) =
0.7 · 0.9

0.3 · 0.2 + 0.7 · 0.9
≃ 0.91. (2.37)

Otherwise b = 1 and the following is the sampling distribution for A:

P(A = 0|B = 1) =
0.3 · 0.8

0.3 · 0.8 + 0.7 · 0.1
≃ 0.77 (2.38)

and P(A = 1|B = 1) =
0.7 · 0.1

0.3 · 0.8 + 0.7 · 0.1
≃ 0.23. (2.39)

The sampling distributions for node B, P(B|A = a, C = 0), are calculated in a similar

manner, in this case depending on the most recent sample for node A.

2.2.2.2 Neural Sampling

Neural sampling51,52 is similar to Gibbs sampling in that it involves aggregating

samples of random variables in an MCMC manner to perform inference in Bayesian

networks. However, Neural sampling is currently limited to models with binary vari-

ables. On the other hand, Neural sampling is more biologically realistic than Gibbs

sampling because it is designed to mimic neurons in the brain. Each random variable

in the network is modeled as being a neuron with a membrane potential that influ-

ences the node’s probability of spiking, and each neuron has a refractory period that

42

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

affects the frequency with which it can spike.

The first step in setting up the network is to convert the Bayesian network into

an equivalent neuron network that can be used to perform sampling. This is done by

determining the Markov Blanket for each node and creating new types of connections.

For example, in the simple ABC network described in Figure 2.2, node B has nodes

A and C in its Markov Blanket.

The new neural network structure is shown in Figure 2.5. This structure is set

up in a specific manner so that the Markov Chain that is processed in this MCMC

technique converges to the correct distribution over time. Each node is binary, so

there are four possible permutations of values that the Markov Blanket can take on.

These are represented by four variables, α00, α01, α10, and α11. The nodes l00, l01,

and l10 are inhibitory nodes, and they fire when all the nodes connected to them are

0.

There is a pattern in the connections in the structure here. Whenever a node is

supposed to be 0 for a particular Markov Blanket value permutation, that node in the

Markov Blanket is connected to the l-node associated with that combination. On the

other hand, when the node is supposed to be 1 it is connected to the α-node for that

combination. That is why for the α00 node, neither A nor C is connected directly.

Both of them are 0 for the 00 combination, so they are both connected to l00 which

is instead connected to α00.

It has already been mentioned that the inhibitory l-nodes turn on when everything

43

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

A C

l00 α00 l01 α01 l10 α10 α11

B

Figure 2.5: A conversion to neural network structure for node B assuming that it has
two nodes, A and C, in its Markov Blanket.

connected to them is 0. However, for the α nodes the situation is different. These

nodes each have a certain probability of firing, and this probability tends toward 0

whenever any of the nodes connected to them are 0.

However, when all the nodes connected to an α-node are 1, the node has a different

probability of firing. This probability depends on the membrane potential, ui(t), at

a particular time t of the neuron representing that node:

ui(t) = log
P(Xi = 1|X\i)

P(Xi = 0|X\i)
. (2.40)

In this notation Xi is the ith random variable in the model containing the nodes

X1, X2, ..., XN . In Figure 2.5 the variable Xi is the node B, or the node for which

44

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

the Markov Blanket is examined. X\i represents all the nodes in the network that

are not the current node, so X\i can mathematically be simplified to be the Markov

Blanket of the current node Xi. This membrane potential value ui(t) is fed into a

sigmoid function to determine the probability of that α-node firing:

p(firing) = σ(ui(t)− log τ), (2.41)

where σ(x) = (1+e−x)−1. Here, τ is a constant chosen for the entire sampling process

which represents how long the effects of a spike last. The spike creates a refractory

process in the current neuron as well as a change in the membrane potential of other

neurons that lasts on the order of 5 ms to 100 ms.51,52 So τ represents both of these

effects in milliseconds, and in this thesis τ has been fixed to be 20 ms.

Remember, though, that these nodes are represented by neurons. So instead of

having this firing probability (Equation 2.41) be applicable all the time for each α-

neuron, it only applies once τ ms has elapsed since the last time the neuron has fired.

This is because the neuron has to go through its refractory process before it can fire

again.

In reality, some neurons can fire a rapid burst of spikes and others must wait

longer amounts of time in between spikes. This can be accommodated by using a

modified version of this framework,51,52 but in this work everything is restricted to

the fixed refractory period case for simplicity and accuracy. The MCMC process

45

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

has only been proven to converge to the correct distribution for the fixed refractory

period case despite the fact that local computations are correct in the flexible case

and empirical results can be good.

So the way each main neuron (not the auxiliary or inhibitory ones) works is that

if it has not fired in the last τ timesteps it can fire with the probability given in

Equation 2.41. Once it fires this neuron cannot fire again until enough time has

elapsed. However, from the time the neuron fires all the way through the amount

of time it cannot spike, the neuron represents the value 1 in the network. This is

why the value of τ is included in the firing probability (the firing probability must

essentially be divided by τ since once a neuron fires it stays on for a time period of

length τ).

This type of network structure is created for each neuron in the original Bayesian

network, and all neurons are additionally connected together in the same manner as

they are in the original network. Then the converted network can be sampled over

time in a manner similar to Gibbs sampling. An order is chosen for the neurons, and

they are updated over time. The number of times each neuron is on (including both

actual spikes as well as the refractory periods) is tallied, and from those numbers

the distribution can be approximated via a histogram after the burn-in period has

elapsed.

Note that the entire network in Figure 2.5 essentially functions to choose the

distribution from which node B samples. The excitatory and inhibitory connections

46

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

influence which of the α nodes can send a spike to node B which then makes node B

spike. Thus the essential pieces of information are the node’s Markov Blanket and the

values of the nodes in that Markov Blanket for every node in the original Bayesian

network.

Now, going back to the example ABC network shown in Figure 2.2, it is straight-

forward to set up the sampling distributions. Looking at node A of the model and

considering Equation 2.40 as well as the Markov Blanket of node A, the following

membrane potential is calculated:

ua(t) = log
P(A = 1|B = b)

P(A = 0|B = b)
. (2.42)

So depending on the value of node B the membrane potential at A varies. Using that

membrane potential the probability of the node firing must be calculated:

P(firing) = σ(ua(t)− log τ).

For example, in Equation 2.42, if B = 0 and τ = 20 then the values for the numerator

and denominator from Equation 2.36 and Equation 2.37 can be substituted. The

results are the following:

ua(t) = log
0.91

0.09

and P(firing) ≃ 0.34.

47

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

The same process must be completed for the other unobserved nodes in the network,

so for this example the probability of firing for node B must be calculated in a similar

way.

The probability of firing at each node only applies when the neuron is not in its

refractory period. When a neuron fires it becomes refractory for τ iterations, so it

cannot spike again until the refractory period is over.

2.2.3 Simple Inference Results

A general MATLAB framework was developed for describing Bayesian networks

as well taking those networks and analyzing them in preparation for performing sam-

pling. This analysis includes tasks such as determining which nodes are in each

node’s Markov Blanket, determining the sampling distributions automatically from

the graph structure and the CPD tables, etc. This framework was also extended and

improved later on in this thesis to work with neuromorphic hardware as described

later. Gibbs sampling and Neural sampling were both implemented in MATLAB

on top of this general framework so that arbitrary inference queries can be asked of

various models.

To provide an idea about how these algorithms work in practice, inference was

done on the simple ABC model in Figure 2.2 using four different techniques – exact

inference, Gibbs sampling, Neural sampling, and another implementation of Gibbs

sampling using Kevin Murphy’s BayesNet Toolbox.53

48

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Table 2.1 shows the probability of nodes A and B having the value 1 given that

node C = 0 for each of the four techniques. The sampling code all ran for 50,000

iterations, and the results are reported from just one run of each algorithm. “BNT

Gibbs” is the BayesNet Toolbox implementation of Gibbs sampling.

A = 1 B = 1
Exact 0.787 0.183
BNT Gibbs 0.785 0.187
Gibbs 0.792 0.180
Neural Sampling 0.794 0.183

Table 2.1: Inference results using four different techniques.

Figure 2.6 shows what the first 1000 iterations look like for node B using this

thesis’ Gibbs and neural sampling implementations. In Gibbs sampling the node can

potentially spike at any time, but in neural sampling once a spike occurs the node’s

value must remain 1 until τ iterations have passed. Note that despite these differences

the two implementations produce the value 1 approximately the same amount of time

overall.

49

CHAPTER 2. BAYESIAN NETWORKS, LEARNING, AND INFERENCE

Iteration

200 400 600 800 1000

Iteration

200 400 600 800 1000

Figure 2.6: Samples at node B in the simple ABC network. The top of the graph
comes from the Gibbs sampling implementation and the bottom is from the neural
sampling implementation.

50

Chapter 3

Parallel Neural Sampling on

SpiNNaker

The Spiking Neural Network Architecture (SpiNNaker)21–23 was created at the

University of Manchester. This board is a flexible platform that allows for massively-

parallel event-based computation. There are two different boards worked on during

this thesis which are shown in Figure 3.1. One contains four chips and the other is

larger and contains 48 chips. Each chip contains contains 18 ARM968 cores clocked

at about 200 MHz (configurable) which are capable of 32-bit fixed-point arithmetic.

Each core has 32 kB of instruction tightly-coupled memory (ITCM) and 64 kB of

data tightly-coupled memory (DTCM), and the 18 cores per chip all share one 128

MB block of SDRAM per chip. Multicast packet routing is supported in addition to

point-to-point message passing, and the messages are sent through a routing network

51

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Figure 3.1: Two SpiNNaker boards. The left board is a smaller, 4-chip board with
up to 72 available cores. The right board has 48 chips for up to 864 available cores.

operating at up to 1 gbps.54

These boards are designed to be programmed in an event-based manner so that

each core shuts down when it is not actively processing. Then, when an event (in-

coming packet, timer tick, etc.) occurs it is either added to a queue until the current

task is completed or interrupts the current process if the event has higher priority.

The smaller 4-chip board runs on only 1 W of power.

This entire architecture was designed for the purpose of simulating spiking neurons

in a realistic manner, so Neural sampling is a good candidate to be implemented on

52

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

this architecture. Each core only runs at 200 MHz, but with the fast communication

interconnect it is possible to distribute loads in an interesting manner. Just as neurons

do simple local computations and pass the results to other neurons, each core on this

chip can do local computations and pass them on to other cores so that the whole

board can do a great deal of work in aggregate.

Therefore, the goal of this portion of the thesis is to implement the Neural sampling

algorithm on the SpiNNaker and see how well it performs. The limits of the board

are tested, and the Neural sampling algorithm is implemented on large networks to

see whether it works well in practice.

The following sections describe the theory and mechanics of transforming a Bayesian

network into the proper type of neural network to perform sampling. There is also

a discussion of the way the code and data are organized on the board as well as the

process of actually performing sampling in the context of the SpiNNaker. The entire

flow of processing the network and getting it on the SpiNNaker is an automated pro-

cess. Once the network is described in a text file and the known values (evidence) in

the network are specified, the process can begin. Various MATLAB functions were

created which build the network structure from the text description, specify param-

eters, calculate sampling distributions for the SpiNNaker implementation, place the

nodes on the hardware, generate routing paths, boot the SpiNNaker, send data to

the SpiNNaker, and communicate via Ethernet with the SpiNNaker to retrieve the

results of simulations once sampling is completed.

53

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Some of the work in this chapter has been previously published55,56 by the author

of this thesis.

3.1 Automated Network Analysis

The first steps toward performing sampling on the SpiNNaker involve analyzing

the probabilistic graphical model file. This analysis happens without further interven-

tion by the user, and all the parameters required for setting up all the data structures

on the SpiNNaker are established. The sections that immediately follow describe the

process of preparing the network for sampling.

3.1.1 Converting the Network for Neural Sampling

A C

B

Figure 3.2: The converted Markov Blanket network used to simplify computations.

The addition of the extra neurons in Figure 2.5 clearly adds to the complexity

of the simulation in terms of runtime as well as memory. Instead of updating only

the nodes that were in the original Bayesian network, the auxiliary and inhibitory

54

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

nodes also must be sampled. However, by looking at the original network it is pretty

clear what that structure accomplishes. The inhibitory and auxiliary neurons (l- and

α-neurons, respectively) are used to select which probability distribution should be

used for the sampling of the bottom node (in this case node B). The α-neurons are

either on or off with a probability that only applies when the Markov Blanket matches

the correct pattern, and then the node at the bottom is simply designed to follow the

actions of the α-neurons. Since only one α-neuron is permitted to be on at a time,

all the extra neurons are essentially just choosing the distribution from which node

B is sampled.

As a result, the network has been simplified in this work to that of Figure 3.2.

This network is much simpler in terms of the number of neurons that need to be

sampled, but it performs the same function. In this case the main neuron, node B,

must be smarter, but all the inhibitory and auxiliary neurons are not sampled.

With the simplified network structure the main node needs to take care of the

work of the auxiliary neurons. So with this modified architecture, the main node

needs to determine the values of the nodes in the Markov Blanket. It also must

store a table of conditional probability distributions for itself given its set of Markov

Blanket values. Then, depending on the collective Markov Blanket value, the main

node performs the same function the corresponding auxiliary α-neuron would. So if

the main neuron already fired it remains in the state 1 and will not fire again, and

if it has not fired recently the main neuron fires with the probability the auxiliary

55

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

neuron would have fired.

So this network is not exactly the same as the original network, but it attempts

to emulates the same basic functionality by using less resources and reducing the

number of nodes that need to be simulated. The smaller number of node updates

translates directly into faster execution of the sampling algorithm.

3.1.2 Parallelization and Colorization

Gibbs sampling requires that, during each iteration, each node in the model is

sampled from one at a time.49 The order can change from iteration to iteration,

but nodes must be updated one after another. In the general case, samples are

generated from each node in order, and this process is repeated as many times as

necessary for adequate convergence. However, implementing this algorithm on parallel

hardware such as the SpiNNaker requires parallelizing the sampling process in order

to distribute computations across computational units to save time and power.

One can think of this issue in the following manner. Imagine there is a node that

is in state 1 with very low probability and is in state 0 with very high probability

given the current state of the network, and let the current state of the network have a

very high probability. If all the nodes are updated in parallel, the most likely update

is that all the nodes stay in their high probability states. Now, imagine that it is the

case that if that main node changes to its low-probability state, state 1, that some of

the rest of the network is more likely to take on a different state. If that is the case and

56

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

if all nodes are updated simultaneously, if that one node changes state, that change

is erroneously not reflected in the sampling probabilities for the other nodes until the

next time around. Therefore, the other nodes will most likely stay the same until the

next iteration, and then that original node will go back to its higher-probability state

as a result.

On the other hand, if the nodes are updated in a specified order, the change in

the main node will be reflected in the sampling probabilities of all the other nodes

that come after it, and this change may remain for a while. So there is clearly a

difference between sampling all the nodes in parallel and sampling them one at a

time, and Gibbs sampling has been proven to converge in the case where all the

nodes are updated in order. Therefore, one cannot just parallelize the whole network

and expect the sampling to work correctly.

However, it is still possible to parallelize Gibbs sampling without affecting the

convergence.57 The technique is to split the graph into different groups of nodes, or

colors, that can each be updated in parallel. If there are N colors, then the simulation

updates each of the nodes in each of the N colors in parallel, does the same for the

next color, and so on. This process continues until convergence.

The way to determine which nodes can be updated in parallel is intuitive. Basi-

cally, any node that is completely independent of the rest of the nodes in a given color

(given its Markov Blanket) can be added to that color and updated along with the

rest of that color in parallel. It is clear that if a node is in any other node’s Markov

57

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Blanket that the two nodes cannot be in the same color. Other than that restriction,

though, the nodes can be updated in parallel.

Essentially, there is still a fixed order between nodes that directly depend on

each other’s values, and parallelizing the nodes that do not depend on each other

does not affect the reasoning behind having Gibbs sampling ordered. Therefore, it is

feasible to parallelize the sampling computations on neuromorphic hardware such as

the SpiNNaker.

3.1.3 Node Organization on the SpiNNaker

One of the first considerations regarding performing sampling on the SpiNNaker

is the location of each node on the physical hardware. Obviously some performance

gains can be had by placing nodes closer together that need to communicate fre-

quently, but that is explored later on in this thesis with the implementation on the

larger 48-chip SpiNNaker. This section describes earlier work which is a simpler

design on the 4-chip board.

In this basic location implementation the nodes are simply arranged around the

board in an ordered manner that has nothing to do with the actual structure of the

network. First, the nodes are arranged in order of color with the original ordering

preserved within each color group. Then the nodes are distributed, in that order, in

a pattern where core 1 is filled on all the chips, then core 2 is filled on all the chips,

and so on up to and including core 16 on all the chips. If there are still unallocated

58

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

nodes left then the process starts over from the beginning.

Because this technique does not take into account spatial locality and thus locality

of spikes, many spikes must be sent between chips rather than being confined to one

chip or even core. Since this information must be sent between chips each time the

nodes must be updated, the amount of information sent around the board is larger

than if locality was preserved and nodes close to one another were contained within

the same cores, for example.

Now, recall that the board is set up to easily allow for event-based processing. The

architecture and software application programming interface (API) are both designed

to encourage this style of programming, and Neural sampling, once parallelized, will

work similarly to the way neurons work in the real world. Each neuron needs to

accept inputs from those around itself and then, with a certain probability, spike.

Therefore, there are a number of items each neuron must keep track of in order for

this system to work. The following is a list of important values each core must know:

Number of colors in the network This is necessary so each core knows how many

times it must iterate through neuron updates for each color before moving on

to the next time step.

Color of each node Nodes of the same color can be updated simultaneously, so the

color of each node must be known.

Nodes on current core Each core must know what nodes it is simulating.

59

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Node values Each neuron must know whether it is an observed node with a specific

value (evidence) or an unobserved node and that node’s current sampled value.

Markov Blanket Each neuron must know which nodes are in its Markov Blanket

(MB) as well as their current values so that it can store the proper values when

spikes come in and determine the distribution with which it should produce

samples.

Nodes whose Markov Blanket includes the current node Each neuron must

know where to send its spikes. These other nodes all have the current node in

their Markov Blankets, so they must be informed of the current node’s value.

Firing probabilities For each combination of MB values the neuron must know

what its probability of firing (sampling distribution) is.

3.2 Code Organization and Data/Event

Flow

In the original version of this implementation, each core had its own custom-

generated C code that ran on the board. MATLAB was used to automatically con-

vert the original Bayesian network to its neural equivalent and to determine all the

parameters needed for each core to keep track of all the nodes it is simulating as well

as the associated information each node needs to know.

60

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Creating, compiling, and then sending the compiled files, one for each individual

core, to the SpiNNaker is a slow process, and it does not really make sense to do things

that way. When all the data are written out in custom code for each core, instruction

memory is wasted by having extra lines of code. Therefore, an improved technique

has been implemented since then which is described in the following sections.

3.2.1 Putting Data on the Board

The better way to send code and data to the board is to just have one C file that is

compiled and sent to the board. The C code is compiled with an ARM cross-compiler

(it is compiled on an x86 host machine but compiled for the ARM cores located on

the SpiNNaker). This compiled file is then sent around the board to all the cores

using functions included in some Perl code written by the Advanced Processor Tech-

nology (APT) group at the University of Manchester. This Perl code also starts an

application written by the APT group that waits for SpiNNaker Datagram Protocol

(SDP) packets on a particular port. When it receives these messages it displays them,

providing a sort of standard output for the C programs which is useful for debugging

and all sorts of display purposes.

These commands are all automated in a shell script that is generic and relies only

on parameter files created by the MATLAB framework that reads in all the trained

network files and sets everything up. The script also programs the SpiNNaker with

the IP address of the host computer so that it knows where to send packets for display

61

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

as well as the packets containing the results of the sampling simulations. Once these

basic commands are executed the board is bootstrapped using a configuration file

provided by the APT group. The cores come online and the first core per chip

to come online is designated as a “monitor” core which handles administrative tasks.

The other cores on the chip can be used for general computations by the programmer.

The SDRAM for each chip is shared among all the cores on that chip. Therefore

all the necessary data for each core are placed into the SDRAM, and then the code

distributed to each core simply reads from its corresponding block of SDRAM to

initialize everything it needs to know. The transmission of data to the SDRAM

is controlled by Perl functions written by the APT group. Once all the data are

transmitted another Perl function sends the board a message telling the cores to

start executing their compiled code.

3.2.2 Communication

There are multiple ways to send messages around the SpiNNaker board, and these

are described next. Section 3.2.3 describes how these messages are processed and used

during the execution of parallel code on the board.

One way to communicate on the board is by sending multicast messages, which is

the quickest way to send a message. Only 32 bits of data can be sent in each message,

but the messages can be sent in multiple directions at once as it leaves each router

on the board. In fact, a multicast message can be sent to all cores on the board if

62

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

desired.

There is a router located on each chip, and the routers are connected to each other

in a particular way. The chips are arranged in a mesh grid, and each chip is connected

to all its neighbors except those in the NW and SE directions (6 total connections

going in and out of each chip).

The simplest way to set up a route for a multicast message is to give that particular

route a key. Then, at each chip the direction a packet with that key designation should

go is selected from a programmable list of router entries. So if the packet should turn

right when it hits a particular chip, that behavior can be coded into that core’s routing

table. In addition, if the packet should stop at a certain chip so that it can be received

by a certain core on that chip, that can also be coded into that chip’s routing table.

There are 1024 different entries allowed in each routing table, so the number of

paths a multicast packet can take is finite. However, for both the 4-chip and 48-

chip boards this amount of entries covers all the possible destinations a packet could

possibly go. This does become an issue when more than one 48-chip SpiNNaker board

is used though.

Another way to send messages on the board is by using SDP packets. These

packets allow messages to be sent to arbitrary locations without having to explicitly

set up routing tables on each chip along the path of the route. The downside to this

type of message is that the message takes longer to arrive. An advantage is that

messages of sizes up to 256 bytes can be sent using this technique.

63

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

Another interesting feature of SDP packets is that they can be used to send

messages over the network via the Ethernet port on the board. This is a very useful

property for getting data back from the board so that results can be stored on the

host PC for analysis. This capability is also used for sending messages mid-simulation

back to the host PC for debugging and general display purposes.

3.2.3 Interrupts and Event-Based Programming

This section describes the flow of programs on the board including how executables

deal with messages that are received.

The SpiNNaker is designed to be a parallel, event-based architecture. Utilizing

this event-based programming methodology yields great power savings over running

code sequentially because the ARM cores go to sleep when they are idle, so the

increased complexity of coding these parallel algorithms can be worth tackling.

In addition, the event-based paradigm allows the cores to work together to solve

a problem which is one of the main draws of the device. Each core is not very fast on

its own, but when they are used together to do smaller computations in parallel that

communicate with each other this architecture can be useful. Running completely

isolated code in parallel is not the best use of this board design though because that

could be done much faster on a more powerful cluster (power consumption would be

worse, but in terms of speed that type of system would be better than the SpiNNaker).

One of the main benefits of the SpiNNaker is its fast built-in communication network,

64

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

so collaborative problems are better suited to its architecture.

Programs start off in the same basic manner as any sequential application. How-

ever, there are five different event types that can be used to generate an interrupt in

the current program execution. When an interrupt is triggered, an associated call-

back function is called in order to deal with the event that occurred. For example, if

a message is received then a function can be established that will save the incoming

data so the program can utilize that information later on.

The five events on the SpiNNaker are the following:

1. MC packet received - This is the event that is triggered when a multicast (MC)

packet arrives at the current core. Typically the callback function associated

with this event would save the incoming data to a buffer so it can be used later

on. Exiting this function as quickly as possible is beneficial to ensure that no

incoming messages are dropped if the queue becomes full.

2. DMA transfer done - This is the event triggered when a direct memory access

(DMA) operation has completed. So if the program initiates a DMA transfer

from the shared SDRAM to the data memory for a particular core, this event

happens when the data have been successfully copied. This is an important

event because it ensures that the data have arrived before the program tries

to access the local copy, and it frees up the processor to perform other work

instead of blocking while data are transferred.

65

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

3. Timer tick - This event is triggered over and over again with a certain time

interval between (in microsecond units) which is set by the programmer. This

associated callback is typically the main processing function used when running

jobs on the SpiNNaker. A normal procedure is to have a processing function

run every so often at each timer tick, and messages are sent at the end of that

task. When every core gets its incoming messages the data are stored, and then

the timer tick occurs again and triggers the next round of processing.

The reason why the timer tick is usually used for data processing is that the

architecture was mainly designed to perform simulations of neurons in real-

time. This means that the computations for each neuron should update every

millisecond, and all the messages (spikes) should be sent and stored within that

time frame as well. When this paradigm is adapted to other problems this timer

tick period can be altered depending on how long the computations take to run

at each time step. These ticks are synchronized on one board, but independent

boards are not perfectly synchronized. Therefore, algorithms that scale to larger

collections of boards must be tolerant of this situation.

4. SDP packet received - This event is triggered when an SDP packet is received

at a given core. Depending on what is running on all the cores this packet can

either be from another core or from an outside host via Ethernet. Just as for

the multicast packet received event, the callback for this event is often used to

record the received data or perhaps reply to the message, especially in the case

66

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

when the packet comes from the host PC which is requesting data.

5. User event - This even is triggered by the application, so it is very free-form

and can be used for a variety of custom purposes.

Events can be set to have different priorities. Therefore, when an event occurs it

is added to a priority queue, and the ones with the highest priority are dealt with

first by calling their associated callback functions. The highest-priority events are

often MC message received events because these messages may disappear if they are

not dealt with in time and more messages arrive. However, this functionality can be

changed depending on the requirements of any particular application running on one

of the ARM cores.

3.2.4 Code Organization for Neural Sampling

As described in Section 3.2.3, the SpiNNaker is designed to be programmed in an

event-based manner. So the first thing that is done is to set up three functions that

each run when a corresponding interrupt is triggered:

1. Timer tick: This is the main function that runs at each time step and does the

actual generation of samples on the board. The first thing it does is to copy all

the incoming spike data to a different buffer so it will not be contaminated by

other new spikes from other neurons. Then this function generates new samples

for all the nodes of the current color. Spikes are sent to other nodes that need

67

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

to know what this core’s node values are. Finally, bookkeeping is done to keep

track of the node values over time which enables computing probability values

at the end, and the simulation moves on to the next color’s nodes. Once all

the colors have been exhausted, a new timestep is started and the process is

repeated for all the colors until the simulation has run for its full duration.

2. Multicast packet received: This function runs whenever a core receives a multi-

cast packet (spike) from other cores on the board. When this function runs, the

core receiving the data needs to log the incoming spike which tells the receiving

core what the sending node’s current value is.

3. SDP packet received: This function runs whenever a message comes from the

PC controlling the board. This functionality is described in the next section

that details how data are sent back to the PC, but the majority of these packets

are transmitted when the simulation is over and information is collected about

the sampling process that was just completed.

Most of the work is done in the Timer tick function. The frequency with which this

function is run depends on the size and complexity of the network being simulated.

As the networks grow larger this function must run less frequently because each

iteration takes longer to run as the number of generated samples, messages passed,

and messages received grow. Unfortunately the SpiNNaker requires this value to be

hard-coded, so it is necessary to tweak this parameter until the function runs as often

68

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

as it can without the SpiNNaker crashing or too many packets are dropped.

Each of the callback functions is assigned a priority, and ones with higher priority

can interrupt others with lower priority. The multicast packet received function has

the highest priority so that no incoming packets are lost due to computational delays.

The timer tick function is medium priority and can be interrupted by the multicast

packet received function in order to temporarily stop and save an incoming spike.

Finally, the SDP packet received callback function has the lowest priority because once

the simulation starts it is only used when gathering results at the end of execution.

These packets are instructions from the host computer controlling the SpiNNaker and

they simply instruct various cores to provide the number of spikes sampled from each

node and related information.

3.2.5 Getting Data Back

Once the simulation has completed, the data have to be sent somewhere so they

can be stored. Since the SpiNNaker board in its bare form is only connected to a

computer via an Ethernet port, packets must be sent back to the PC controlling the

board. SpiNNaker supports UDP communication, so that is used for sending the data

back.

When the simulation completes, some UDP messages indicating so are sent back

to the PC and displayed using software written to listen on a particular port. Then

the user must manually tell the PC to send packets to the SpiNNaker that request

69

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

information about the results.

The MATLAB software that requests results sends UDP packets crafted so that

they go to the chip/core combination that corresponds to where the current node is

handled on the board for the simulation. Once that core receives the message it sends

back the number of times in the simulation that particular neuron had value 1 along

with the number of timesteps in the simulation. With those two pieces of information

the conditional probability of that node being 1 given the evidence can be determined

by doing a simple division operation. In addition, having the number of timesteps

is useful to ensure that each node was sampled the proper number of times during

simulation.

3.2.6 Summarized Flow for Neural Sampling

The first thing each core does is load all the parameters for the Neural sampling

simulation. These parameters include how long the simulation runs, which nodes are

on the current core, which routes outgoing packets need to take, etc.

The routing tables are then populated, and the event callbacks are established.

The timer tick callback is where the math is done to determine whether each neuron

on each core should spike at the current simulation timestep. After all the neuron

states are calculated, those states are transmitted to other relevant cores via multicast

packets. When a core receives a message (spike) containing the state of another

neuron, that core’s MC packet received callback is called to store the data for the

70

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

next timestep in the simulation.

This process continues until the simulation has completed, at which point a UDP

packet is sent to the host PC that tells a program created by APT to display a

message saying that the simulation is done.

After the SpiNNaker indicates that the simulation has completed, UDP packets

are sent from the host PC using MATLAB that tell the SpiNNaker which information

is requested. For example, in order to determine how many times neuron number 1

has spiked during the simulation, MATLAB sends a UDP packet to the chip/core

location on the board that has that information, and then that core responds back

with the number of times neuron 1 spiked.

Write C Code
Compile Using ARM

Cross-Compiler
Send Executable(s)

to SpiNNaker

Set Up Parameters
Save Data
to Files

Send Data
to SpiNNaker

Run Simulation
Executable(s)
Load Data

Start Executable(s)

On Host PC

On SpiNNaker

Figure 3.3: Overview of the SpiNNaker flow.

These data are aggregated on the PC in MATLAB, and the results are saved.

In fact, MATLAB is used a lot on the host PC for controlling and communicating

71

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

with the SpiNNaker. Although the SpiNNaker itself is programmed in C, the original

Bayesian networks are all currently described in text files, and MATLAB is used

to read in those files and automatically convert those networks into valid networks

of neurons for use with the Neural sampling algorithm. MATLAB code is used to

calculate the firing probabilities for all the neurons as well as for the colorization of

the graph (see Section 3.1.2).

MATLAB is even used to call bash scripts that compile the C code for the appli-

cation as well as send data to the SpiNNaker and get everything up and running. In

effect, MATLAB provides the complete user-facing interface with the board by con-

trolling many of the underlying technologies so everything can be run automatically

and directly from MATLAB. However, when tweaks are made to the algorithm on the

SpiNNaker or data are sent to different SDRAM locations, the C code or bash scripts

are modified. But to run simulations and change basic parameters the only changes

are made in MATLAB, so complete experiments can be run in MATLAB throughout

the entire process.

Figure 3.3 shows the overview for creating a software system that works on the

SpiNNaker. The top portion of the diagram contains tasks that are done on the

host PC, and the bottom part describes things that occur on the SpiNNaker itself.

All the steps described in this section are completed once the algorithm has already

been detailed. Of course, many of the steps are not independent of each other.

Instead, many things are done in parallel during the development and testing process.

72

CHAPTER 3. PARALLEL NEURAL SAMPLING ON SPINNAKER

For example, the C code might be developed at the same time the parameters are

established because doing both of those things simultaneously makes testing more

feasible.

73

Chapter 4

Sampling Results on 4-Chip

SpiNNaker

This chapter describes the results of running Neural sampling on the smaller 4-chip

SpiNNaker. Multiple small networks were created and tested on the board to show

the basic functionality, and then larger networks were run in order to determine the

performance of the SpiNNaker as compared to other implementations. In addition,

results from running Gibbs sampling on the PC in MATLAB and running Gibbs

sampling on the 4-chip SpiNNaker are presented.

Some of the work in this chapter has been previously published55,56 by the author

of this thesis.

74

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

4.1 Chest Clinic Network

The classic Chest Clinic Network is a small example Bayesian network used to

illustrate the basic functionality of some inference algorithms. The papers initially

describing Neural sampling51,52 show some experimental results for Neural sampling

on this network, so this work shows that similar results are achieved by using the

SpiNNaker implementation. The network was assumed to be trained already and

the CPD tables were matched to the ones expressed in the Neural sampling paper51

describing that network.

Asia Smoking

Tuberculosis Lung Cancer Bronchitis

X-ray Dyspnea

Figure 4.1: The Chest Clinic Network.

The network is shown in Figure 4.1. This network describes the probability of

having a few different illnesses given symptoms and other factors. The illnesses are

tuberculosis, lung cancer, and bronchitis, and some conditions that relate to the

probability of having any of these conditions are whether the person visited Asia, is a

smoker, has a positive X-ray, and/or is experiencing dyspnea. The network structure

75

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

also suggests that the three illnesses are caused by visiting Asia and smoking. Then,

the onset of these illnesses in turn cause X-rays to become positive or dyspnea to

occur.

Tuberculosis Cancer Bronchitis

P
ro

b
ab

il
it

y
 V

al
u
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Exact
SpiNNaker

Figure 4.2: Conditional probability values for tuberculosis, cancer, and bronchitis
without having an X-ray given that the patient is experiencing dyspnea and has
recently visited Asia.

There are two examples described below. One is the case when no X-ray diagnosis

has been made, and the second case is when the X-ray is a positive X-ray. When

the X-ray has not been taken it is most likely the case that the person simply has

bronchitis rather than a more serious illness. On the other hand, once a positive

76

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

X-ray has occurred the person is more likely to have a serious condition.

In both of these examples the known evidence is that the person is experiencing

dyspnea and has recently visited Asia. For the no X-ray situation exact inference was

run in MATLAB and compared to the results of running Neural sampling on the same

network using the SpiNNaker. These results can be seen in Figure 4.2. The exact

inference results are the blue bars and the Neural sampling results are the red bars.

For all the examples in this section Neural sampling was run for 50,000 iterations.

As mentioned earlier, each of these results is a conditional probability value. For

example, the values for Tuberculosis represent P(T = 1|A = 1, D = 1). The other

values are similar except that they are substituted in for the first parameter, so Cancer

is P(C = 1|A = 1, D = 1).

In the second example the X-ray has a positive result in addition to the evidence

already present in the previous example. The positive X-ray indicates that a more

serious illness than bronchitis may be present, so there should be an increased prob-

ability of tuberculosis or cancer. These inference results are shown in Figure 4.3.

77

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Tuberculosis Cancer Bronchitis

P
ro

b
ab

il
it

y
 V

al
u
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Exact
SpiNNaker

Figure 4.3: Conditional probability values for tuberculosis, cancer, and bronchitis
given that the patient visited Asia, has dyspnea, and has had a positive X-ray. Note
that the probability of more serious illness has gone up compared to Figure 4.2.

4.2 Icy Road Network

The Icy Road Network was described in detail back in Chapter 2 and shown in

Figure 2.1. In this section inference results using both exact sampling in MATLAB

and Neural sampling with 50,000 iterations on the SpiNNaker are presented.

Two situations are considered here. In the first situation the road is known to be

icy and the inference task is to determine the probability of the ground being below

78

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Ground Freezing Salt Down

P
ro

b
ab

il
it

y
 V

al
u
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Exact
SpiNNaker

Figure 4.4: Separate conditional probability values for the ground being below freezing
and salt being on the road given that the road is icy.

freezing given that the road is icy as well as the probability that salt was placed on

the road given that the road is icy. These results are shown in Figure 4.4.

The second situation is that the road is icy and there is no significant amount of

precipitation. These results are depicted in Figure 4.5.

In both Figure 4.4 and Figure 4.5, the road is icy, and the difference between

the two is that the latter describes the situation where there is also no significant

precipitation. The results are intuitive. If the road is icy there is a certain probability

79

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Ground Freezing Salt Down

P
ro

b
ab

il
it

y
 V

al
u
e

0

0.1

0.2

0.3

0.4

0.5

0.6

Exact
SpiNNaker

Figure 4.5: Separate conditional probability values for the ground being below freezing
and salt being on the road given that the road is icy. This is the same plot as Figure 4.4
except that the extra condition of having no significant precipitation is added.

of the ground being below freezing. However, if evidence is added that says there is

no significant precipitation, then it is more likely that the ground must be below

freezing because otherwise it is unlikely that the road would be icy.

On the other hand, the reasoning behind the probability of salt being down is

more subtle. When evidence of no significant precipitation is added in, that also

means that there is a higher probability of no precipitation at all, which leads to a

lower probability of salt being down because it would be less useful.

80

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

The main point of this section, though, is that Neural sampling on the SpiNNaker

again faithfully reproduces the results achieved by performing exact inference on these

basic networks.

4.3 Larger Networks and Scalability

Larger networks were simulated in order to determine how well the Neural sam-

pling architecture on the SpiNNaker scales to bigger problems (networks). The goal

was to determine how many nodes can fit onto the four-chip board as well as to see

how well the speed of inference scales as the number of nodes increases.

1

2

4

8

16 17

9

18 19

5

10

20 21

11

22 23

3

6

12

24 25

13

26 27

7

14

28 29

15

30 31

· · ·
Figure 4.6: Basic Large Network Structure.

These networks were constructed in a way that makes it is easy to add more nodes

81

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

to the base structure, but this does not restrict the topology of Bayesian networks

that can be simulated using this technique. This structure was mostly chosen for its

simplicity and ease of creation, but other network structures could have been used

for these experiments as well.

The network is basically a binary tree of binary nodes where the arrows in the

network all point from the top down to the bottom. There are a few extra arrows

added in so that the network is not completely regular (see Figure 4.6). These net-

works will be referred to as networks with k layers in this thesis, and networks of k

layers contain 2k − 1 total nodes.

In order to see how faithfully the SpiNNaker simulation performs the Neural sam-

pling algorithm, a comparison was done between the MATLAB PC implementation

and the SpiNNaker version. Figure 4.7 shows the results which are presented as a

mean absolute difference between the inferred probability values of the nodes in the

network on each architecture.

First, the network was given identical evidence on each platform, and then in-

ference was run on all the other nodes using the two different hardware/software

architectures. The number of levels in the network was varied to see how well the PC

and the SpiNNaker simulations match for various network sizes. The number of layers

here was varied from 6 layers up to 15 layers (26−1 = 63 nodes up to 215−1 = 32, 767

nodes).

Each simulation was run for 50,000 iterations. As the number of nodes in the

82

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.005

0.01

0.015

0.02

0.025

0.03

Number of Nodes in Network

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

Figure 4.7: Mean Absolute Error Values between PC and SpiNNaker for binary tree-
structured Bayesian networks.

network increases, the results on the two different architectures diverge more. This is

expected because as the number of nodes increases the more complicated the prob-

ability distribution of the model becomes. Since samples are aggregated over time

and the accuracy of MCMC techniques depends on adequately exploring the relevant

areas of the probability distribution, having a larger network and not running sam-

pling for more iterations leads to a decrease in accuracy. However, the mean absolute

error values suggest that the SpiNNaker implementation reasonably matches that of

83

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

10

20

30

40

50

60

Number of Nodes in Network

R
u
n
ti
m

e
 (

H
o
u
rs

)

PC

SpiNNaker

Figure 4.8: Runtimes for Neural sampling in hours depending on the number of nodes
in the network using the 4-chip SpiNNaker architecture.

the PC using MATLAB.

A comparison between the SpiNNaker and the PC implementation was also per-

formed to see how well each of them scale in terms of speed as the number of nodes

increases (See Figure 4.8). The network sizes were the same as those used for the

accuracy comparison (26 − 1 = 63 nodes up to 215 − 1 = 32, 767 nodes).

It is not surprising that the PC simulation has a mostly linear slowdown as the

number of nodes increases. The amount of work done per node in MATLAB is

84

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

essentially fixed as the number of nodes increases because there is no network com-

munication and all the nodes are simulated sequentially, so the expected slowdown is

approximately linear. On the other hand, the SpiNNaker implementation does slow

down at a higher than linear rate as the number of nodes grows large. This reduction

in speed is likely due to the fact that the communication network on the SpiNNaker

has to deal with a much greater number of messages that are passed between nodes

as the network size increases.

However, it is clear that parallelizing the sampling algorithm yields very signifi-

cant speedups in execution time, even when only considering the 4-chip SpiNNaker.

Expanding to the larger SpiNNaker board yields even greater improvements and will

be described later in this thesis.

4.4 Comparison to Gibbs Sampling

Gibbs sampling was coded in MATLAB in order to better test the accuracy of

the Neural sampling algorithm running on the SpiNNaker. In addition, results using

Gibbs sampling from Kevin Murphy’s Bayes Net Toolbox53 (BNT) were compared to

both of these implementations developed for this thesis.

The comparisons were done on the binary tree-like networks described in Fig-

ure 4.6. For a given network size the three implementations were run for various

amounts of sampling iterations. The results for a network of 127 nodes are shown

85

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Sampling Iterations

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(P
ro

b
a
b
ili

ty
)

DRM−Murphy

DRM−SpiNN

Murphy−SpiNN

Figure 4.9: Mean Absolute Error (MAE) values between different sampling algorithms
for a binary tree-like network with 7 layers (127 nodes) as a function of the number of
sampling iterations. DRM stands for the author’s implementation of Gibbs sampling.
Murphy stands for the implementation of Gibbs sampling found in Kevin Murphy’s
BNT Toolbox. SpiNN stands for the Neural sampling algorithm running on the
SpiNNaker.

in Figure 4.9. As expected, the absolute error values decrease as the number of it-

erations increases. It is unclear why Kevin Murphy’s BNT implementation does not

match the other two implementations as closely as they match each other, but all

the results show a similar trend in the reduction of their differences as the number of

sampling iterations grows.

The runtimes of all three algorithms were also recorded from these preliminary

86

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

results. These speeds are shown in Figure 4.10. This comparison was run on a small

binary tree-like network of 1023 nodes (10 layers), and all the algorithms run on a PC

were run using an Intel Core-i7 (Sandy Bridge) quad-core laptop running Ubuntu.

DRM Gibbs sampling is a MATLAB implementation of Gibbs sampling so it is the

slowest out of the three implementations. Kevin Murphy’s BNT Gibbs sampling

implementation is written in C as a MATLAB MEX function so it is faster than the

DRM MATLAB implementation. Finally, Neural sampling on the SpiNNaker is the

fastest due to its parallel architecture. Each of the runtime lines increase linearly as

the number of sampling iterations increases because that is a linear increase in the

runtime complexity.

The 4-chip SpiNNaker architecture runs Neural sampling over 250 times faster

than Gibbs sampling running in MATLAB and about 25 times faster than the same

algorithm implemented in C. The main tradeoff here is that the algorithms on the

PC are running at a very high clock rate but are sequentially coded in a single thread

whereas the SpiNNaker implementation only runs on ARM processors running at 200

MHz. However, the 4-chip SpiNNaker these experiments used consists of 64 of these

ARM cores that were used in parallel for computations.

87

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

5

10

15

Number of Iterations

R
u
n
ti
m

e
 (

h
o
u
rs

)

DRM

Murphy

SpiNNaker

Figure 4.10: Runtimes in hours for all three algorithms with a binary tree-like net-
work of 1023 nodes as the number of sampling iterations increases. DRM and Mur-
phy are Gibbs sampling implementations, and SpiNNaker is Neural Sampling on the
SpiNNaker.

4.5 Discrete Gibbs Sampling on 4-Chip

SpiNNaker

This section describes the development of parallel Gibbs sampling in discrete

Bayesian networks with categorical distributions on the 4-chip SpiNNaker as well as

the sequential, single-threaded version implemented in MATLAB. So the implemen-

88

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

tation of this particular type of Gibbs sampling is very similar to Neural sampling

except that each node can take on multiple values of a categorical distribution rather

than being restricted to only having two possible values.

The organization of the code for Gibbs sampling on the SpiNNaker is very similar

to that of the Neural sampling design described in Section 3. The same framework is

used to load the network from text files and load the data on the SpiNNaker except

for minor tweaks to accommodate more values for each random variable in the model.

Of course the data are set up slightly differently because the tables containing the

sampling distributions depending on the nodes’ Markov Blankets are larger due to the

fact that the nodes can take on more than two values. The sampling code accounts

for this same difference and so does the code that aggregates all the samples at the

end to compute the probability of the node taking on its values.

Another big difference in the code is that unlike Neural sampling there is no log

ratio and no sigmoid computation done to determine the sampling distribution at each

node during each iteration (see Equation 2.40 and Equation 2.41). These differences

are due to the fact that the nodes do not have membrane potentials and refractory

periods that affect the cadence of spikes coming from each node. For reference the

Gibbs sampling distribution is described in Expression 2.29.

The following sections describe example discrete Bayesian networks for which

inference was performed on the SpiNNaker in parallel and compared to inference

results run on a PC.

89

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

4.5.1 Student Network

Difficulty Intelligence

Grade SAT

Letter

Figure 4.11: Student Network.

One example discrete Bayesian network is shown in Figure 4.11. This basic model

describes various factors relating to the performance of a student.42 Here the grade

directly depends on the difficulty of the class and the student’s intelligence. The

student’s SAT score directly depends on his/her intelligence, and the likelihood of

getting a positive recommendation letter from the teacher depends directly on the

grade earned in the class. Each node is binary except for the Grade node, since the

grade can be A, B, or C. The Difficulty can be easy or hard, the intelligence can be

low or high, the SAT score can be low or high, and the Letter can be weak or strong.

The first test was to focus on the PC implementation of Gibbs sampling using

MATLAB, and it was compared to exact inference to ensure that it works correctly.

These results can be seen in Figure 4.12. In both cases the difficulty of the class was

set to be hard, and the recommendation letter was varied from strong to weak. The

left side shows the inference results when the recommendation letter is strong. In

90

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Difficulty Grade Intelligence Letter SAT

P
ro

b
ab

il
it

y
 V

al
u
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ar

d

A
B

L
o
w

H
ig

h

S
tr

o
n
g

L
o
w

H
ig

h

H
ar

d

A
B

L
o
w

H
ig

h

S
tr

o
n
g

L
o
w

H
ig

h

Difficulty Grade Intelligence Letter SAT

P
ro

b
ab

il
it

y
 V

al
u
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ar

d

B
C

L
o
w

H
ig

h

W
ea

k

L
o
w

H
ig

h

H
ar

d

B
C

L
o
w

H
ig

h

W
ea

k

L
o
w

H
ig

h

Figure 4.12: Conditional probability values determined from performing inference on
the student network where the evidence is that the difficulty is hard and the letter
is varied from being strong on the left to weak on the right. The two bars in each
column correspond to the results of doing Gibbs sampling for 100,000 iterations and
exact inference, respectively.

that situation, the student is likely to get an A or a B in the class and has about

a 50% chance of having a high SAT score. In addition, his/her intelligence is more

likely to be high instead of low. On the other hand, when the recommendation letter

is weak instead of strong, the likelihood of getting an A in the class is inferred to be

very low, and the most likely grade is a C. The student’s SAT score is likely low, and

the student also is more likely to have lower intelligence.

Each inference result has two columns for each node, and they correspond to

performing Gibbs sampling for 100,000 iterations on the left and exact inference

on the right. Thus, these results provide some evidence that the Gibbs sampling

algorithm on the PC works correctly.

Networks were then run in parallel on the 4-chip SpiNNaker and compared to a

new run of sequential Gibbs sampling on the PC using MATLAB. See Figure 4.13

for the results. Inference was performed in the same model as earlier with the same

91

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Difficulty Grade Intelligence Letter SAT

P
ro

b
ab

il
it

y
 V

al
u
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ar

d

A
B

L
o
w

H
ig

h

S
tr

o
n
g

L
o
w

H
ig

h

H
ar

d

A
B

L
o
w

H
ig

h

S
tr

o
n
g

L
o
w

H
ig

h

Difficulty Grade Intelligence Letter SAT

P
ro

b
ab

il
it

y
 V

al
u
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
ar

d

B
C

L
o
w

H
ig

h

W
ea

k

L
o
w

H
ig

h

H
ar

d

B
C

L
o
w

H
ig

h

W
ea

k

L
o
w

H
ig

h

Figure 4.13: Conditional probability values determined from performing inference on
the student network where the evidence is that the difficulty is hard and the letter
is varied from being strong on the left to weak on the right. The two bars in each
column correspond to the results of doing Gibbs sampling for 100,000 iterations on
the PC and in parallel on the SpiNNaker, respectively.

fixed evidence, and the SpiNNaker results are very similar to Gibbs sampling on the

PC. In addition, since the experiments were similar to those in Figure 4.12, the two

graphs achieved on the SpiNNaker can be directly compared to those that only ran

on the PC as shown earlier. This means that the parallel Gibbs implementation on

the SpiNNaker also matches well with the exact inference results.

4.5.2 ALARM Network

The ALARM (A Logical Alarm Reduction Mechanism) network58 was used to

monitor and diagnose patients based on 16 findings and 13 intermediate variables.

There were 8 possible diagnoses in the network, and the model is comprised of 37

discrete variables.

Variables in the network include items such as cardiac output, central venous

92

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

pressure, pulmonary capillary wedge pressure, respiratory rate, and left ventricular

end-diastolic volume. Some diagnoses include hypovolemia (decreased blood plasma

volume), anaphylaxis (severe allergic reaction), and pulmonary embolism.

The network is available online through the bnlearn R package59 website60 and was

already trained, so code was written in MATLAB to convert the network parameters

to the format used in the rest of this thesis, and approximate inference using Gibbs

sampling was performed on the network using both MATLAB and the SpiNNaker.

CO HYPOVOLEMIA PCWP
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 V

al
u

es

H
ig

h

F
al

se

N
o

rm
alH

ig
h

F
al

se

N
o

rm
al

CO HYPOVOLEMIA PCWP
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 V

al
u

es

L
o

w

T
ru

e
F

al
se

L
o

w

L
o

w

T
ru

e
F

al
se

L
o

w

Figure 4.14: Inference results for the ALARM network, a Bayesian network composed
of discrete random variables. Two situations were examined: good (left) and bad
(right) health. Approximate inference was performed on the SpiNNaker and on a PC
using MATLAB. Inference was done for all nodes, but three are highlighted here: CO
(cardiac output), HYPOVOLEMIA, and PCWP (pulmonary capillary wedge pres-
sure). The left bar for each variable indicates the inference results from the PC and
the right bar corresponds to the SpiNNaker results.

Two experiments were done, both with the same observed nodes. In the first ex-

periment here called “good health,” the left ventricular end-diastolic volume (LVED)

was fixed to be normal rather than low or high, and the node indicating left ventric-

ular failure was fixed to be false rather than true. In the second experiment called

93

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

“bad health,” the LVED was fixed to be low and the left ventricular failure was fixed

to be true.

Inference results can be seen in Figure 4.14. Inference was performed on all vari-

ables in the network, but the figure focuses on certain variables for clarity. For the

good health case the cardiac output was most likely to be high whereas in the bad

health case the output was most likely to be low. Hypovolemia was likely to be false

in the good health situation and equally likely to be true or false in the bad health

situation. Finally, the pulmonary capillary wedge pressure was most likely to be nor-

mal in the good health situation and low in the bad health case. The results from

running the MATLAB code on the PC are very similar to those running directly on

the SpiNNaker.

4.5.3 Child Network

The Child network (Figure 4.15) was created during a project involving the Great

Ormond Street Hospital for Sick Children to diagnose congenital heart disease in

newborns during the first few days after birth.61 This network consists of 20 nodes

describing various measurements such as CO2 levels, lung blood flow, and chest X-ray

results.

The model is available online60 with all parameters trained, so the same code

described in Section 4.5.2 was used to convert the network for use with the SpiN-

Naker framework developed here. Evidence was chosen to be fixed, and approximate

94

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Birth
Asphyxia

Age

Disease

Duct
Flow

Cardiac
Mixing

Lung
Parench

Lung Blood
Flow

Sick

LVH
Hypoxia
Distrib

Hypoxia
in O2

True CO2
Chest
X-ray

Grunting

LVH
Reported

RUQ O2
Lower

Body O2

Measured
CO2

X-ray
Report

Grunting
Reported

Figure 4.15: The Child Network was used to diagnose congenital heart disease by
taking into account various random variables such as X-rays, CO2 measurements, etc.

inference using Gibbs sampling was performed on both the PC and the SpiNNaker.

Two situations were examined, one here called “good health” and the other here

called “bad health.” The good health situation included two pieces of evidence: the

lung flow was high and the baby was not grunting. For the bad health case the lung

flow was low and the baby was grunting.

95

CHAPTER 4. SAMPLING RESULTS ON 4-CHIP SPINNAKER

Sick CO2 LungParench
0

0.2

0.4

0.6

0.8

1
P

ro
b

ab
il

it
y

 V
al

u
es

Y
es

N
o

N
o

rm
al

N
o

rm
al

Y
es

N
o

N
o

rm
al

N
o

rm
al

Sick CO2 LungParench
0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 V

al
u

es

Y
es

N
o

N
o

rm
al

H
ig

h

N
o

rm
al

A
b

n
o

rm
al

Y
es

N
o

N
o

rm
al

H
ig

h

N
o

rm
al

A
b

n
o

rm
al

Figure 4.16: Inference results for the child network. Two situations were examined:
good (left) and bad (right) health. Inference was done over all nodes, but three nodes
are shown here: whether the child is sick, CO2 levels, and the status of the lung
parenchyma. The left bar for each variable indicates the inference results from the
PC and the right bar corresponds to the parallel SpiNNaker implementation results.

The inference results are shown in Figure 4.16. Inference was done on all nodes in

the network, but a few specific variables are highlighted in the figure. The infant was

more likely to be sick when it was in the bad health experiment and more likely to have

high CO2 levels. Finally, the lung parenchyma (functional tissue) condition was more

likely to be abnormal in the bad health case. The parallel inference on SpiNNaker

results are again similar to those achieved using the MATLAB implementation on

the PC.

96

Chapter 5

Migrating to 48-Chip SpiNNaker

and the Parallella

The inference results shown in Chapter 4 were all run on the small 4-chip SpiN-

Naker for which 64 ARM cores were used to perform approximate MCMC inference

in parallel. Neural sampling was ported to the larger 48-chip SpiNNaker as described

in this section for a big performance increase due to the ability to use 768 cores for

parallel sampling.

This chapter also details the Parallella, another parallel computing device, in

Section 5.2. Neural sampling was ported to the Parallella and its performance was

compared to both SpiNNaker devices. Finally, a heterogeneous architecture was cre-

ated where the SpiNNaker and Parallella work together to perform Neural sampling

which allows for the tradeoffs between the two platforms to be explored together.

97

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Some of the work in this chapter has been previously published55,56 by the author

of this thesis.

5.1 Migration to 48-Chip SpiNNaker

Each core on the larger SpiNNaker board is set up basically the same as each

core on the smaller board. Therefore, most of the required changes are related to the

fact that there are more locations on the board where nodes are physically located.

As a result the code to send the data to the board was changed as well as the code

laying out the nodes and determining the routes that packets take when the nodes

communicate with one another. Destination-based routing can still be used because

there are 768 cores used in this situation and there are 1024 possible router entries

per core, so there is plenty of room to store the route for each destination on the

board. Each core’s router is configured to know where to send packets destined for

particular endpoints.

Reflectance 3D Shape

Shading Contour

Figure 5.1: Binary graphical model for visual perception of two side by side shapes.
The reflectance and 3D shape of the objects influence the perceived shading and
contour of the objects when processed by the human visual system.

98

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

In order to perform a simple test of the migration to the larger SpiNNaker board,

an experiment was reproduced from one of the original Neural sampling papers.51 In

this visual experiment62 two objects were touching each other side by side. These

objects could either both be cylindrical or they could both be flat. They could both

have identical reflectance values or one value could be larger than the other but the

object was still flat horizontally across the surface. The combination of the shapes

of the objects and the reflectance values influence human perception of the objects’

shading as well as the contours of the objects. See Figure 5.1 for the binary graphical

model describing this model.

Let R denote the random variable describing the reflectance, S denote the shading,

C denote the contour, and D denote the 3D shape of the objects. In this experiment

the subjects know the type of shading (S) and contour (C), and the goal is to infer the

reflectance (R) and 3D shape (D) of the objects. As can be seen from the hierarchical

structure shown in Figure 5.1, the joint distribution can be factored in the following

manner: P(R,D, S, C) = P(R)P(D)P(S|R,D)P(C|D).

Inference was performed in two different situations given the trained parameters

detailed in the Neural sampling paper.51 The shading and contour were both known.

In both cases the shading was fixed while the perceived contour was chosen to be flat

for one situation and cylindrical for the other.

Inference on two different conditional probability distributions was achieved. For

case 1 inference calculates P(R = different|S = linear, C = cylindrical) while for case

99

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Contour: Cylindrical Contour: Flat

P
ro

b
ab

il
it

y
 o

f
D

if
fe

re
n

t
R

ef
le

ct
an

ce
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5s
1s
2s
3s
Exact

Figure 5.2: Inference (Neural sampling) in visual perception experiment on SpiN-
Naker hardware. The evidence for both sections includes linear shading, and on the
left the perceived contour was cylindrical while on the right the perceived contour was
flat. Neural sampling was run four times for each example (cylindrical vs. flat), and
the amount of time the algorithm was run varied from 0.5 seconds up to 3 seconds.

2 inference determines P(R = different|S = linear, C = flat).

This model is simple enough that exact inference is trivial, so the ground truth is

exact inference. In addition, the model was run on the SpiNNaker so that approxi-

mate inference was performed for each of those two cases. The results are shown in

Figure 5.2, which compares exact inference with Neural sampling running in MAT-

LAB on a PC and Neural Sampling running on the SpiNNaker. The networks of

spiking neurons were run on the SpiNNaker for varying amounts of time, and the

100

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

longer the networks were run the better they converged to the ground truth.

Binary tree-like networks of the type described in Figure 4.6 were also run on the

large SpiNNaker of sizes up to 18 layers (262,143 nodes) so that scalability of the

system could be explored. The larger SpiNNaker has 12 times more cores available

for performing parallel sampling than the smaller SpiNNaker has and therefore the

48-chip SpiNNaker can perform sampling much faster than the smaller board can.

These results are reported in the next few sections along with those from related

architectures, but the first results can be found in Figure 5.4 along with those of the

Parallella which is introduced next. All the runtime comparisons performed are using

50,000 iterations of neural sampling unless otherwise stated.

5.2 Parallella

The open-source Parallella26 board combines two ARM A9 cores and an FPGA

inside the Xilinx Zynq7000 series system-on-chip27 as well as 16 floating-point pro-

cessing units packaged as the Adapteva Epiphany coprocessor.28 Each floating-point

unit has a 1 GHz clock speed as compared to the approximately 200 MHz clock speed

for the ARM cores in the SpiNNaker, but the Parallella has less cores available. See

Figure 5.3 for an image of one of the two Parallella boards used in this thesis. The

board is contained within the original acrylic case provided by Parallella. The two

wires at the top of the image are used to power the fan that is currently located

101

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Figure 5.3: Parallella.

on the top of the box. The silver chip toward the left of the board is the Epiphany

coprocessor, and the Zynq chip is located underneath the black heatsink in the center.

Both the ARM chips and the Epiphany can be programmed using OpenCL.63,64

OpenCL allows people to create kernels which execute in parallel on various hard-

ware platforms (GPUs, CPUs, some FPGAs, and some custom hardware such as

the Parallella). In addition, the ARM cores run Ubuntu off an SD card and can be

programmed in various ways including using C/C++ which was the main technique

used for this thesis. The floating-point units on the Epiphany coprocessor can also

102

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

be programmed using C++ using the Epiphany Software Development Kit (ESDK)

developed specifically for this hardware.

Neural sampling was implemented on the Parallella. The same MATLAB frame-

work that was developed for the SpiNNaker code was used with some modifications.

The code used to parse the network and determine the parameters stored for each

node remained the same, but changes were made to the code controlling the place-

ment of the nodes on the board because the Adapteva Epiphany chip where sampling

was run has 16 nodes arranged in a 4x4 grid whereas the SpiNNaker has 64 nodes

that were used to generate samples arranged 16 to a chip in a 2x2 chip arrangement.

The code used to communicate with the Parallella was also different than the code

used to talk to the SpiNNaker. The SpiNNaker relies on UDP communication to load

data onto the board whereas the Parallella runs Ubuntu and can therefore be sent

data using the standard Linux Secure Copy (SCP) command. The host application

on the Parallella loads the data from the files and places data into the Epiphany’s

external memory so there is a maximum amount of space for everything. The memory

is divided into 16 sections, one for each Epiphany core, and the data for each core is

placed into that section. Then the host application tells the Epiphany that everything

is ready and it can begin sampling.

On the Epiphany side each core has access to the entirety of this memory, so a

special section was allocated for each core to receive messages. The offset for the

starting address of this location was the same on each core so that the other cores

103

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Network Size (x1000)

0.01 0.1 1 10 100 1000

R
u

n
ti

m
e

(h
o

u
rs

)

0.001

0.01

0.1

1

10

100

1000

MATLAB
(Projected)
SpiNN4
SpiNN48
Parallella

Figure 5.4: Runtimes for 50,000 iterations of the Neural sampling algorithm on four
platforms: single-threaded MATLAB on a Core i7 PC, 4-node SpiNNaker, 48-node
SpiNNaker, and 16-node Parallella.

would know where to put the message data when it was sent out to other boards.

Then the only other information needed is the cores and offsets from the starting

address to send the data to, so those were stored for each node. Instead of sending

a message from chip to chip as in the case of the SpiNNaker, the incoming message

sections of memory were simply populated instead.

Rather than using a global timer tick to synchronize all the cores as was done

with the SpiNNaker, the Epiphany ESDK provides for barriers to synchronize all the

104

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Network Size (x1000)

0.01 0.1 1 10 100 1000

S
p

ee
d

u
p

1

10

100

1000

10000

SpiNN4
SpiNN48
Parallella

Figure 5.5: Speedups for 50,000 iterations of the Neural sampling algorithm on three
platforms as compared to running it single-threaded using MATLAB on a Core i7 PC:
4-node SpiNNaker, 48-node SpiNNaker, and 16-node Parallella.

cores. These barriers were used to ensure that each core generates new samples at

the same time and that each core does not read the stored incoming messages until

all the other nodes have completed their sampling procedures and all the cores are

ready to move onto the next sampling iteration.

The MATLAB code controlling the Parallella remotely from a desktop PC waits

for the sampling process to complete and then sends the results back in a simple file,

again using SCP. Then the conditional probability values can be examined as they

105

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

were when the data were returned from the SpiNNaker.

Binary tree-like networks of 6 through 17 layers were run on the board. At 18

layers there was not enough memory to store all the parameters, although better data

packing techniques could alleviate that memory pressure at the expense of speed due

to the operations required to pack bits tighter in memory. The runtime comparison for

various Neural sampling implementations is shown in Figure 5.4. This runtime com-

parison includes all of the major binary Neural sampling algorithms described thus

far in the thesis. The blue line corresponds to running the single-threaded MATLAB

implementation on networks of 6 through 15 layers with a linear extrapolation of

runtimes up to 18 layers. The black line corresponds to running Neural sampling in

parallel on the 4-chip SpiNNaker for networks of 6 to 15 layers. The red line shows

the runtimes for running parallel Neural sampling on the large 48-chip SpiNNaker on

networks of 6 to 18 layers. Finally, the green line shows the results of running Neural

sampling in parallel on the Parallella hardware using networks of 6 through 17 layers.

Speedups of the three parallel implementations on specialized neuromorphic hard-

ware are shown in Figure 5.5 as compared to the reference single-threaded MATLAB

implementation run on a Sandy Bridge era Core i7 PC. In the fastest scenario the

48-chip SpiNNaker achieves almost a 2000x speedup over the MATLAB implemen-

tation, the 4-chip SpiNNaker is over 100x faster, and the Parallella is well over 20x

faster.

These speed increases are clearly not constant given a network size, and that

106

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

is due to many factors. One factor is the size of each color groups created when

parallelizing the sampling procedure. For the binary tree-like networks described in

this thesis there are 4 color groups in each network using the heuristics used here to

create the groups. Therefore, for the smaller networks there are less nodes in each

color group which means less nodes can be sampled in parallel. Sampling less nodes

in parallel provides less speedup potential for the neuromorphic implementations.

Another factor is the network used in each hardware architecture. For both SpiNNaker

platforms as the networks grow larger the speedups decrease after a certain point.

These speed reductions are likely due to the fact that many more messages must be

sent through the network in order to update all the nodes that depend on the value

of the current node for their sampling distributions. As more messages are sent more

network traffic is present, and slowdowns occur as a result. On the other hand, the

implementation on the Parallella has each node access memory to transmit messages,

and while slowdowns can occur these are not deadlock-type issues that can occur

on the SpiNNaker’s mesh network where messages are sent in multiple directions

simultaneously.

Another set of experiments was run on the 9-layer, 511-node network. Here the

number of sampling iterations was varied from 1000 to 100,000, and the accuracy

of the implementation was examined by looking at the mean absolute error between

Gibbs sampling on the PC and Neural sampling on the Parallella and the SpiNNaker

for the inferred probability of each node being 1 given the evidence. The Gibbs sam-

107

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sampling Iterations (x1000)

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(P
ro

b
ab

il
it

y
)

SpiNN
Parallella

Figure 5.6: Mean absolute error values for inferred probability values of all the
nodes in the 9-layer, 511-node network. Results from the SpiNNaker and Parallella
were each compared to the Gibbs sampling implementation from Kevin Murphy’s
BayesNet Toolbox.

pling implementation used is from Kevin Murphy’s BayesNet Toolbox. See Figure 5.6

for these results as well as a comparison to those of the SpiNNaker.

As the number of sampling iterations increases the differences between the im-

plementations decrease which is reasonable. However, it looks like the SpiNNaker is

closer to the results on the PC than the Parallella is. One implementation difference

is that the C rand function on the SpiNNaker returns integers in a larger range than

the Parallella does, so it is possible that this architecture difference accounts for at

108

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

least some of the difference since the rand function is used for generating samples.

5.3 Spatial Locality on the SpiNNaker

Thus far all of the node placement algorithms have not taken into account spatial

locality. The nodes are placed around the SpiNNaker and Parallella hardware without

regard for the other nodes they need to communicate with. However, nodes that

need to communicate with one another should theoretically be located close to one

another physically on the hardware. That way the messages can be passed to the

appropriate nodes more quickly and the overall amount of traffic through the network

is minimized.

In order to achieve these goals the directed Bayesian networks were converted to

an undirected network, and the graph was moralized so the parents in the directed

network were connected in the resulting undirected network. Connecting the parents

preserves the Markov Blankets that were present in the original directed network.42

A search was done so that for each node all its neighbors would be added first to

the SpiNNaker. One core was filled up at a time, and each core on a chip was filled

before the next chip was populated. This procedure ensures that at least some nodes

that frequently talk to each other (neighbors) are on the same core and therefore do

not need to add any traffic to the mesh network connecting all the SpiNNaker chips.

On the large board, the smaller networks using spatial locality ran more quickly

109

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Network Size (x1000)

0.01 0.1 1 10 100 1000

R
u

n
ti

m
e

(h
o

u
rs

)

0.001

0.01

0.1

1

10

100

1000

MATLAB
(Projected)
SpiNN4
SpiNN48
Parallella
Spat. Loc.

Figure 5.7: Runtimes for 50,000 iterations of the Neural sampling algorithm for five
situations: single-threaded MATLAB on a Core i7 PC, 4-node SpiNNaker, 48-node
SpiNNaker, 16-node Parallella, and 48-node SpiNNaker with spatial locality.

than the regular Neural sampling process, but when the networks became larger the

performance dropped off. For example, in networks of up to 13 layers the spatial

locality version was faster by up to a factor of 12 depending on the network size.

But for the network of 16 layers both took the same amount of time, and the spatial

locality runtimes became larger as the network size increased. See Figure 5.7 for a

plot of the runtime results and Figure 5.8 for the speedups.

Other potential improvements to the heuristics used in taking advantage of spatial

110

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Network Size (x1000)

0.01 0.1 1 10 100 1000

S
p

ee
d

u
p

1

10

100

1000

10000

SpiNN4
SpiNN48
Parallella
Spat. Loc.

Figure 5.8: Speedups for 50,000 iterations of the Neural sampling algorithm on four
platforms as compared to running it single-threaded using MATLAB on a Core i7 PC:
4-node SpiNNaker, 48-node SpiNNaker, 16-node Parallella, and 48-node SpiNNaker
with spatial locality.

locality exist. While nearby nodes are roughly placed onto cores in the same chip,

this technique is not perfect. Nearby neighbors are traversed and added to the core,

but eventually another node must be chosen to be the seed for the other neighbors

to add. Thus, some neighbors must be separated from the other neighbors by using

this technique. And beyond keeping neighbor nodes on the same core, once one chip

is filled up the numerically-next chip is populated. However, depending on where

111

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

the nodes on that chip are located in the original graph, those nodes may be better

positioned on another chip that is physically closer to where the node’s neighbors are

located on the SpiNNaker.

5.4 SpiNNaker Complexity Analysis

This section describes the challenges and techniques involved in each of the main

steps of performing Neural sampling on parallel hardware. Each subsection details a

different step of the process. In all the sections below the number of nodes is denoted

as N and the number of edges is denoted as E. These complexity numbers are kept

in general terms here so it is important to keep in mind the actual time it takes to

perform each action. For example, when values are read from files located on hard

drives or network storage devices these operations may take longer than other parts

of this process that might load values from RAM.

5.4.1 Load Network from File

The file describing the network structure first contains a list of all the nodes in

the directed acyclical graph, one per line. Each edge is listed on the lines that follow

the node list. Adding the nodes in the file to the list of all nodes takes O(N) steps.

Then the nodes are sorted once so the next step (adding edges) is sped up. That is

another O(N logN) steps using MATLAB’s Quicksort implementation.

112

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Once the nodes are collected and sorted all the edges must be traversed to store

them in the data structure. Each edge is added to both the parent and the child

nodes so that the parent knows its children and the child knows its parents. In order

to add an edge the parent is located in the list of nodes and the child is added. A

similar process occurs for the child node. Locating each of these nodes takes O(logN)

with a binary search, so adding the edges is O(2E logN).

The list of parents for each node is also sorted, but that is very quick (O(P logP)

on average per node where P is the average number of parents per node) assuming

that each node only has a small number of parents. This assumption must be true in

order for the size of the probability tables to not become too large. Each new sample

depends on the value of every node in the current Markov Blanket and that space

becomes large fast because it grows exponentially with the number of nodes in the

Markov Blanket. Since a sampling distribution is stored for each node given the state

of the entire Markov Blanket, this table must remain small in order to work on the

SpiNNaker.

The overall complexity is O(N + N logN + 2E logN + NP logP). Given that

P << N and P << E the complexity is roughly O((N + 2E) logN).

5.4.2 Load CPD Tables from File

The first step is to create an empty CPD table at each node. This involves looping

over the nodes and determining how many parents each node has. For the case of

113

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Neural sampling each node is binary so there are 2Pn rows in the table (where Pn is

the number of parents for node n ∈ {1, 2, ..., N}) that cover all possible values of the

nodes in the Markov Blanket. If P is the average value of Pn over all nodes then this

process is O(2P ·N).

Next, each line of the file is iterated over. Each line corresponds to one combination

of values of the Markov Blanket so there are 2P lines per node on average. The node

must be found in the list of nodes which is O(logN) since the list is sorted (binary

search). If there are any parents then their values must be determined by parsing the

line of the file. That parse is O(P) on average. Using the values of the parents the

row of the CPD table is determined and the probability values are inserted. Since

the nodes are binary for Neural sampling, only one value is specified and the other is

such that the two add to 1.

The overall complexity is O(2P ·N +N · 2P logN · P)). Given that P << N and

that P is very small, the complexity is roughly O(N logN).

5.4.3 Determine Markov Blankets

Once the structure of the network and its CPD tables are established the next

step is to determine where each node needs to send data. One important step toward

defining these connections is to determine the Markov Blanket of each node. Since

each sample is generated based on a distribution that depends on the values of all

nodes in the Markov Blanket, each node in the Markov Blanket must know to send

114

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

its current value to the node under consideration. This process must be completed

for each node in the network.

The Markov Blanket consists of a node’s parents, children, and coparents. Using

the procedure described above, a given node knows its parents and children directly

so they can simply be listed, which on average is O(P + C), where C is the average

number of children per node in the network. Then the children must be iterated over

and their parents are included in the Markov Blanket: O(C(P − 1)) = O(CP) since

for each child its parents must be iterated over.

Thus the overall complexity is O(N(P + C + CP)). Given that P << N and

C << N the complexity is O(N).

5.4.4 Determine Color Groups in the Graph

Nodes of the same color are nodes that can be sampled in parallel. This means

that all the nodes of one color do not directly depend on each other’s values when

sampling in the current iteration. Therefore, nodes that are not in each other’s

Markov Blankets can belong to the same color group and can be sampled at the same

time.

This work’s implementation chooses these groups by iterating over each node in

the graph and adding them to color groups in a greedy fashion. A given node’s Markov

Blanket is compared to all the nodes in the first color and the Markov Blanket for

each node in that color group is compared to the current node. If there are no matches

115

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

then the node is added to that group. Otherwise the next group is checked and so

on.

The worst-case scenario in terms of complexity of constructing the color groups

is that all the nodes are unconnected in the graph and they can therefore all be

sampled in parallel. This is, on the other hand, the most efficient way for sampling

to be carried out later on since it provides the maximum amount of parallelism. In

this scenario all the nodes are added to the same color group so every incoming node

must be compared to every other node in the group. The first node is added with no

required checks (O(1)). For the second node, the Markov Blanket of the first node

is traversed to see whether any members are the new node. Then the new node’s

Markov Blanket is traversed to see whether any members are the first node. That

total process is, on average, O(2(P + C + CP)) where P is the average number of

parents for a node in the network and C is the average number of children. The third

node needs to perform the same process but two times as often because there are two

times as many nodes already in the color group to iterate over: O(4(P + C + CP)).

116

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

This process continues which results in the following worst case complexity:

O

(
1 +

N∑
i=2

(i− 1)2(P + C + CP)

)
(5.1)

= O

(
1 + 2(P + C + CP)

N−1∑
i=1

i

)
(5.2)

= O

(
1 +

2(P + C + CP)N(N − 1)

2

)
(5.3)

= O (1 + (P + C + CP)N(N − 1)) . (5.4)

Given that P << N and C << N the complexity is approximately O(N2).

5.4.5 Calculate Markov Blanket Probability

Tables

When sampling is performed each node must generate new samples according to

the distribution of that node given the current sampled values of all the other nodes

in the network. This boils down to knowing the values of all the nodes in the Markov

Blanket (see Figure 2.4 for an illustration of this fact and the discussion following

that figure for an example of the mathematics involved in these computations). In the

current implementation of Neural sampling, each node stores a table of distributions

based on the current status of its Markov Blanket, and this section describes that

process.

The two main loops are to first loop over all the nodes (O(N)) and then loop over

117

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

each configuration of the Markov Blanket (O(2(P+C+CP))).

For each Markov Blanket configuration the parents are iterated over (O(P) on

average), and the CPD table of the current node is queried given its parents’ values.

In Neural sampling there are two different factors considered which are the numer-

ator (current node is 1) and denominator (current node is 0) of the log ratio (see

Equation 2.42), so for all these values two different cases are considered and stored.

A similar process is performed for the children. Each child is iterated over (O(C)

on average). The parents of each child are then iterated over (O(P) on average) to

retrieve the value for the factor associated with that child node given the current

Markov Blanket configuration being examined.

Once these factors are stored two steps must occur. The first is to determine

where to put the sampling distribution in the Markov Blanket table of probability

distributions. Thus the column for each node in the Markov Blanket must be found

in the table which is O((P + C + CP) log(P + C + CP)) since the nodes are sorted.

Once the columns are determined the row to fill in is easily calculated.

The second step is to multiply all the factors for the numerator and denominator

together. Since there are C children on average there are roughly C factors for the

numerator and the same for the denominator to multiply together. In the denomi-

nator this must be repeated once for the Neural sampling algorithm and potentially

more times in general Gibbs sampling because the denominator is a normalization

procedure and the process must be repeated for every value the current node can

118

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

have. Since this is a small constant number of repetitions it is omitted from this

calculation.

Thus the overall complexity is O(N ·2(P+C+CP) · (P +CP +(P +C+CP) log(P +

C + CP) + C)). Given that P << N and C << N the complexity is approximately

O(N).

5.4.6 Arrange Nodes on the Board

Once the parameters associated locally with each node are established the nodes

must then be physically arranged on the board. Two different techniques have been

used and they are each described in subsections that follow.

5.4.6.1 Simple Arrangement

In the simple case the nodes are arranged on the board by iterating over the nodes

and simply placing each successive node in the next specified location following a fixed

order list of locations on the board. However, before that is done the nodes are sorted

by color so it is simpler to iterate over all the nodes in a given color during sampling.

This sort is done by looping over the colors and then over the nodes. Each node is

checked to see whether it matches the current color and if it does then it is added to

the color. Therefore, the complexity for this sort is O(N).

Once the nodes are sorted assigning them to a location is O(N) because each

successive node is assigned to a list of predetermined locations that are cycled through

119

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

as the nodes are iterated over.

The overall complexity in this case isO(N+N), so the complexity is approximately

O(N).

5.4.6.2 Exploit Spatial Locality

Exploiting spatial locality in a perfectly optimal way is not a solved problem (see

Section 5.3). However, the following is a complexity analysis for the steps that were

conducted according to the explanation in Section 5.3, where greedy heuristics were

used to obtain the results shown in this thesis.

Moralizing the graph begins by creating a new list of nodes of an undirected graph

(O(N)). Then each node of the directed graph is iterated over (O(N)) and nodes from

the directed graph that should be neighbors in the moralized undirected graph are

added as neighbors to the new graph. These nodes include the parents and children

of each node O(P +C), but in addition for each parent all the other parents must be

connected as neighbors which is O(P (P − 1)) for a naive implementation. Thus the

graph moralization process is O(N +N(P + C + P (P − 1))).

The nodes are then placed by group into each core in turn. Once a core is filled

up the next one on that chip is entered and it is filled up. This process continues

until the board is full of nodes. Each core stores approximately N/768 nodes since

this thesis uses 768 cores on the large SpiNNaker board. This process is described in

more detail in the next paragraph.

120

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

The nodes in the network are iterated over. The next unvisited node (unsorted

search so O(N)) is chosen to be added to the current core. Its neighbors are iterated

over (O(P + C + CP) on average) and they are added to the group if they were

not already visited. They are also set to be visited (O(3) each time). When all the

neighbors are exhausted the next unvisited node is chosen and the process continues

until the core is full. Once the core is full the next one is chosen and the process

continues again. This paragraph describes a process that is O(N(P + C + CP)) in

the worst case.

More work needs to be done in order to get the nodes on each core ready. Each

core is iterated over (O(768)) and the group of nodes on the core is sorted by color

group (O(N/768)). Finally the official positions are recorded in another format so

the rest of the toolchain can use the positions (O(N)) for directing messages that are

sent from node to node on the board during the sampling process.

The overall complexity is then O(N +N(P +C +P (P − 1))+N(P +C +CP) +

N +N). Given that P << N and C << N , the complexity is approximately O(N).

5.4.7 Generate Routes

After the nodes’ locations are chosen on the board, the next step is to set up

routes for information to flow across the board. Each chip contains a router that is

used to redirect incoming packets based on 1024 possible programmable routes. Each

route is associated with a key. In this work destination-based routing is used, so each

121

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

destination on the board corresponds to one key value, and each router around the

board has a route specified that will move the packet toward its destination no matter

where the packet is currently located on the SpiNNaker.

There are 48 chips, each containing 16 cores to be addressed in this work which

means there are 768 possible destinations. Each chip contains a router, so there are

48 routers to be programmed for all those destinations. This means the complexity is

O(48 ·768) = O(36, 864). The calculation of the key and route parameters for each of

these router entries is at most a constant value since the determination involves only

a simple check of the current chip’s location and what the destination for the route

is.

Thus the overall complexity is O(36, 864) = O(1).

5.4.8 Perform Sampling

Sampling itself is performed for a chosen number of iterations I in this thesis.

During each iteration N nodes are sampled, so if this is done without parallelizing

the process the number of steps are O(NI). However, in this implementation, during

each iteration color groups are sampled in parallel one at a time until all groups are

sampled. Despite the fact that one color is sampled after another, all the nodes in

the network are sampled during each iteration. Assuming that there are at least 768

nodes in each color it can be assumed that the degree of parallelism is roughly 768 de-

spite the fact that the nodes cannot typically be divided perfectly evenly into groups

122

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

of multiples of 768 nodes. Therefore, with that caveat in mind, the parallel complex-

ity is approximately O(NI/768) with regard to how many sampling operations are

completed.

During each iteration the first step is to copy all the messages that came in during

the last iteration to the current buffer for use. That copy has a constant cost, B,

each iteration that depends on the connectivity of the graph. Then the current value

of the node is checked (O(1)) to see whether it is an observed node that should not

be sampled. If it is observed then its value does not change. Otherwise, if the neuron

is refractory two parameters are updated to keep track of the refractory state and its

current value (O(2)).

If the neuron is not refractory the sampling distribution is determined by look-

ing at the node values in the Markov Blanket and determining which row of the

probability table should be addressed. Checking the Markov Blanket node values is

O(P + C + CP) because all the nodes involved are sorted, including the storage of

current values, so no search is required. That value is retrieved (O(1)), and a ran-

dom number is generated to sample from that distribution (O(1)). Depending on the

sampled value the neuron’s refractory state and value are updated (O(2)).

Once all the nodes are sampled, messages are sent to other nodes on the board

that need to know the updated values. Let No be the average number of outputs per

node and then the complexity of sending messages overall per node is O(No) since

a separate message must be sent for each output using destination routing. When

123

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

the messages are received the values must be placed into the proper location which is

O(log(P +C +CP)) on average since the binary search is over the Markov Blanket.

Some details about timing are glossed over here though and the actual timing of

these events is faster than described here. Node values are sent across the network

right after all the samples on a given core are created, so many cores finish at different

times. Thus some cores are interrupted to receive messages while they are still creating

samples, and complicated timing interactions occur including the time it takes for each

packet to traverse the network.

The overall complexity of sampling is then O(NI/(768) · (B + P +C +CP + 4+

No log(P + C + CP))). Given that P << N , C << N , No << N , and B can be a

significant fraction of N despite parallelism, the complexity is roughly O(NIB) on

average.

5.5 Heterogeneous Architecture

A heterogeneous architecture was created that combines both the Parallella and

the SpiNNaker in order to see how the two systems can be combined to perform Neural

sampling. The SpiNNaker and the Parallella have different characteristics that make

them better-suited for different computations. For example, the SpiNNaker has a

large number of fixed-point processors running at a relatively low clock speed while

the Parallella has less processing units but they have floating-point capabilities and

124

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

run at a higher clock speed. Different computations can thus be run on each of

the systems within the context of an algorithm to minimize the delay required for

producing results and/or to reduce the power consumption of the architecture for a

given task.

As a first step the two systems were connected together to share the burden of

performing Neural sampling. In this paradigm the tasks done by each hardware

system were identical to keep things simple and to see how computations can be sped

up by combining the two architectures in a straightforward manner.

5.5.1 Heterogeneous via Ethernet

The two systems were connected to the same network via ethernet so that they

could each send current samples to each other during each sampling iteration. Since

the SpiNNaker cores are synchronized using a timer tick, the SpiNNaker controls

the runtime for each sampling iteration. At the start of each iteration the SpiNNaker

sends a UDP packet to the Parallella which tells the Parallella it should start executing

its sampling iteration. TCP packets would ensure more reliability but the SpiNNaker

requires UDP packets for communication with devices on the network.

The same general process occurs on both the Parallella and the SpiNNaker during

each iteration. Each core generates new samples for the nodes it is responsible for,

and once all the samples are generated the values are sent to the other nodes that

need to know those values.

125

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Network Size (x1000)

0.01 0.1 1 10 100 1000

R
u

n
ti

m
e

(h
o

u
rs

)

0.001

0.01

0.1

1

10

100

1000

MATLAB
(Projected)
SpiNN4
SpiNN48
Parallella
Spat. Loc.
Heterog.

Figure 5.9: Runtimes for six implementations of Neural sampling: single-threaded
MATLAB on a Core i7 PC, 4-node SpiNNaker, 48-node SpiNNaker, 16-node Par-
allella, 48-node SpiNNaker using spatial locality, and the heterogeneous architec-
ture consisting of the 48-node SpiNNaker and the 16-node Parallella connected by
Ethernet.

The mechanics of transmitting these sample values varies depending on which

node is considered, its position in the graph, and the location of the node and other

nodes that have that node in their Markov Blankets. For example, if the node is on

the SpiNNaker and the new sample value needs to be sent to another location on the

SpiNNaker, a multicast packet is sent in the same way that it is sent when Neural

sampling is run only on the SpiNNaker. On the other hand, when the node is on the

126

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

Parallella and the information must be sent to another node on the Parallella, the

proper memory location is populated with the new sample value just as it is when

the algorithm is run only on the Parallella. When a message must travel from the

SpiNNaker to the Parallella or vice versa, a UDP packet is sent to achieve that goal.

Network Size (x1000)

0.01 0.1 1 10 100 1000

S
p

ee
d

u
p

1

10

100

1000

10000

SpiNN4
SpiNN48
Parallella
Spat. Loc.
Heterog.

Figure 5.10: Speedups for the Neural sampling algorithm on five platforms as com-
pared to running it single-threaded using MATLAB on a Core i7 PC: 4-node SpiN-
Naker, 48-node SpiNNaker, 16-node Parallella, 48-node SpiNNaker with spatial lo-
cality, and the heterogeneous architecture consisting of the 48-node SpiNNaker and
the 16-node Parallella connected by Ethernet.

The SpiNNaker API takes care of the mechanics of using the hardware to send

and receive UDP packets via ethernet. On the Parallella the communication code

127

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

must be run on the host ARM core using Ubuntu. Therefore, to trigger events such

as sending or receiving information via ethernet to/from a Parallella Epiphany core,

memory values are changed so that the Epiphany cores can communicate with the

host ARM cores. The ARM cores poll certain memory addresses to see whether there

is any information that should be sent via ethernet in addition to managing when the

program is done being executed on the parallel cores of the Adapteva Epiphany. That

way, when an Epiphany core wants to send a message it flags the proper location in

memory and some bytes immediately following that flag area contain the message to

be sent.

Binary tree-like networks of 11 through 16 layers were run using the heterogeneous

architecture. The runtime comparison for various Neural sampling implementations is

shown in Figure 5.9, and the speedups are shown in Figure 5.10. This ethernet-based

heterogeneous architecture is slow because the latency of sending data via ethernet

is relatively high compared to sending data across a single board. Since spikes need

to be sent to other nodes this increased delay has a large effect on the speed of

executing the sampling algorithm. However, note that as the networks grow larger

the heterogeneous architecture’s runtimes do not slow down drastically. Because the

nodes are distributed across two different platforms and communication is limited

by ethernet, the slowdowns that occur as the network becomes saturated on the

SpiNNaker are not yet seen here.

An accuracy comparison was also done on a network having 11 layers (2047 nodes).

128

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sampling Iterations (x1000)

M
ea

n
 A

b
so

lu
te

 E
rr

o
r

(P
ro

b
ab

il
it

y
)

Figure 5.11: Mean Absolute Error (MAE) values for the inferred probability values
of all the nodes in the 11-layer, 2047-node network using Neural sampling. These
results compare the heterogeneous Parallella/SpiNNaker architecture to the results
from Kevin Murphy’s BayesNet Toolbox.

Sampling was performed on this network using Kevin Murphy’s BayesNet Toolbox,

and these results were compared to those of the heterogeneous architecture. The

number of sampling iterations was varied from 1000 to 100,000 and the Mean Absolute

Error (MAE) between the inferred probability of each node being 1 using each of the

sampling frameworks was computed. These results can be seen in Figure 5.11. As the

number of sampling iterations increases both techniques converge to the true value

as expected.

129

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

5.5.2 Heterogeneous with Interconnect Board

In order to speed up heterogeneous computations the ethernet link must be re-

placed with something faster, so an interconnect board (See Figure 5.12 and Fig-

ure 5.13) was designed by Alejandro Pasciaroni to provide a platform for sending

messages with less latency. The board contains a connector for the SpiNNaker link

located at the top of the large SpiNNaker board as well as a connector for the north

eLink of the Parallella so that the two devices can send packets to the board. There

is a second eLink connector on the board but it is there only for structural support

and is not connected to anything on the interconnect board.

Figure 5.12: Heterogeneous interconnect
board bottom view.

Figure 5.13: Heterogeneous interconnect
board top view.

The data protocol the SpiNNaker uses is different than the data protocol the

Epiphany uses, so the interconnect board has connectors that mate to the expansion

connectors on an Opal Kelly XEM6310 and other compatible FPGA boards. The

130

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

inclusion of the FPGA provides the capability to communicate with both the SpiN-

Naker and the Parallella as well as convert data from one format to the other so that

data can be passed from one device to the other and vice versa. Voltage regulators are

placed on the board as well so that the signals from each device can be sent through

the FPGA even though they have different maximum voltage levels.

Figure 5.14: Close-up view of the heterogeneous architecture interconnect board
connected to the SpiNNaker, Parallella, and Opal Kelly XEM6310 FPGA board.

Figure 5.14 shows a close-up view of the interconnect board connected to the

SpiNNaker and the Parallella as well as an Opal Kelly XEM6310 FPGA board. The

48-node SpiNNaker is on the left and the Parallella is on top to the right. The FPGA

131

CHAPTER 5. 48-CHIP SPINNAKER AND THE PARALLELLA

board is below the interconnect board, and the interconnect board sticks out on top

of the SpiNNaker.

Both the SpiNNaker team and the Parallella team have made open source hard-

ware description language (HDL) code available that creates designs that can com-

municate with their hardware, so those designs can be used with the FPGA on the

interconnect board to transfer packets back and forth. These designs are currently

being tested on the FPGA and the faster heterogeneous design is in progress.

132

Chapter 6

TrueNorth

IBM’s TrueNorth Neurosynaptic System29,30 is a brain-inspired, low-power parallel

processing machine that is composed of neurons that are connected together (See

Figure 6.1). The SpiNNaker contains general-purpose ARM CPUs and is therefore a

more flexible architecture in terms of the classes of algorithms that can be practically

implemented on it. However, the SpiNNaker consumes much more power than the

TrueNorth because it must rely on simulating neuron behavior in software while the

TrueNorth has built-in hardware neurons. Under typical utilization the TrueNorth

chip consumes approximately 70 mW of power.

Despite being less flexible than the SpiNNaker there are a great deal of tasks

the TrueNorth can be programmed to perform due to its programmable neurons

and synaptic connections. The TrueNorth contains 4096 cores which each have 256

neurons and 256 axons that have a programmable crossbar array controlling their

133

CHAPTER 6. TRUENORTH

Figure 6.1: The IBM TrueNorth Neurosynaptic System.

synaptic connections. In total there are over 1 million individually-programmable

neurons and over 268 million synaptic connections. These neurons have a flexible

model, and each of their parameters can be custom-tuned including values such as

their spike thresholds, leaks, and synaptic connection weights.

The TrueNorth chip itself is the large chip shown on the right of the board depicted

in Figure 6.1. This TrueNorth board design is similar to that of the Parallella design

described in Chapter 5 in that both designs utilize a Zynq-7000 series system on chip

(SoC) to act as an intermediary between the host PC controlling the board and the

TrueNorth/Epiphany chip contained within.

Code reuse is encouraged65 by packaging a configuration of the TrueNorth as a

“corelet,” which allows other applications to use the same functionality and enable

134

CHAPTER 6. TRUENORTH

hierarchical design by placing corelets inside of other corelets and being able to share

them with the TrueNorth community. IBM has also made debugging convenient by

creating the Compass simulator66 so that a TrueNorth device does not have to be

connected to the computer in order to work on a neural design.

IBM has also provided an energy-efficient deep neural networks (Eedn) software

framework67 that simplifies the process of programming the TrueNorth to run deep

networks68 without having to create a custom corelet from scratch each time. Instead,

Eedn enables the user to specify the network layers and parameters, training data,

development data, and later test data that are necessary for designing, training, and

running the final version of the network. With these specifications the developer can

tune the network on the training and development data, and the network can be

ported over so that it runs directly on the TrueNorth hardware, providing a fast, low-

power platform ready for mobile applications such as autonomous robots.15 Training

in Eedn takes into account the limitations of the TrueNorth architecture itself and

learns trinary weights that can be ported right into the neurosynaptic system once

training is complete.

This chapter focuses on some TrueNorth work that enables large-scale parallel

vector-matrix multiplications (VMMs). An implementation with 4-bit precision as

well as an 8-bit version are discussed as well as the tradeoffs between the two. An

interesting natural language processing (NLP) application called Word2vec is also

described along with some example results shown at the Telluride Neuromorphic

135

CHAPTER 6. TRUENORTH

Engineering Workshop held during the summer of 2015. Finally, a way to perform

stochastic multiplications on the TrueNorth platform is shown, and that implementa-

tion is used to perform nonuniformity correction (NUC) on images to show that this

technique could be used in an image processing pipeline where the image originates

straight from an image sensor. MATLAB simulations were also created to verify the

design in addition to running directly on the TrueNorth itself.

Some of the work presented in this chapter has already been published69 by the

author of this thesis, particularly the Word2vec application described in Section 6.2.

6.1 4-bit Vector Matrix Multiplications

The TrueNorth hardware architecture contains 4096 cores which can all run com-

putations in parallel, so one of the main goals was to perform the computations in

a massively-parallel manner. Luckily, this problem is trivially decomposable into a

parallel architecture by splitting the matrix, or dictionary, into smaller pieces that all

compute the VMMs at the same time.

Each core in the TrueNorth hardware contains 256 neurons. However, as will

be explained in Section 6.1.2, 4 neurons are required to represent each value in the

matrix, so only 64 words from the matrix can be represented by each core.

The number of elements in the input vector (and the matrix elements) is 64. The

math is all done as signed arithmetic, so there are actually 128 input channels to the

136

CHAPTER 6. TRUENORTH

architecture. These 128 channels are split and sent to all the corelets.

The overall computation is the following:

y = x · A, (6.1)

where y ∈ Z1xN is the result vector, x ∈ Z1x64 is the input vector, and A ∈ Z64xN is the

dictionary itself with N entries (each entry N is a column of the matrix). Because the

computations are done with 4-bit accuracy the input values (x and A) must be within

the range [−8, 7]. The output y can be in a larger range but that requires waiting

longer for the resulting spikes to come out of the network because they are encoded

as a simple rate code. In addition, this implementation only outputs positive VMM

results because the neurons on the TrueNorth can only spike when their internal

state hits a positive threshold. Clever tricks can be done to get output spikes for

negative values, but since the application in mind is Word2vec negative values are

not of interest. As explained in Section 6.2, finding the maximum values are the main

objective, and Section 6.1.4 further explains these negative summations.

The number of corelets, M , required for implementing the math for the 4-bit

VMM on TrueNorth is therefore:

M = ⌈N/64⌉ . (6.2)

Every corelet except for the last one is size 128x64, and the last one is size

137

CHAPTER 6. TRUENORTH

128x[what is left]. The dictionary is sliced so that there are 64 columns in each

chunk, and each of those chunks is processed in parallel in each of the main cores on

the chip.

6.1.1 Main Corelet Architecture

Each corelet consists of two actual hardware cores. The first core consists of a

dual-rail binary decomposition of the dictionary matrix assigned to the corelet, and

the second core is used solely to add up the spikes coming in from the first corelet

with the correct weights so the math works properly. These details are explained in

Section 6.1.2 and Section 6.1.3.

The input vector, x, consists of 64 4-bit signed elements. In order to represent

these numbers there are 128 input channels to the chip (and therefore 128 input

channels to each corelet once the input is split and duplicated across all corelets in

this architecture). Since there are 64 elements in the input vector, each element in

the input vector goes to one of the two associated rails. The input goes to the positive

rail if it is a positive number, and it goes to the negative rail if it is a negative number.

The input is encoded as a regular rate code which means that the number of spikes

corresponds to the value that is encoded. However, this could also be done as a

stochastic rate if desired. Stochastic rate codes are discussed further in Section 6.3.

138

CHAPTER 6. TRUENORTH

6.1.2 First Core

Let the portion of the dictionary represented by each corelet be denoted Di where

i is the index of the corelet ranging from 1 to M as described in Equation 6.2.

The first physical core in each of these corelets represents Di in a dual-rail binary

decomposition manner.

Each set of two rows of the core’s crossbar represents one row of Di. The first of

each of these two rows is the positive rail while the second is the negative rail, and

that pattern continues the whole way down to the bottom of the matrix.

Each set of four columns of the crossbar represents one column of actual values

in the original matrix Di. Each of these four columns in the crossbar represents a

different weight: {−8, 4, 2, 1}. The axon weights are all set to be 1 in the neuron

model rather than the aforementioned weights, but each column still nevertheless

corresponds to its respective binary weight. The correct weights will be taken into

account and added together in the second core of the corelet.

So in total, each number in Di takes up two rows and four columns of the crossbar.

Let the current entry in Di be denoted as k. k is a signed 4-bit integer ranging from -8

to 7 inclusive. The number must be encoded both on the positive and negative rails of

the crossbar across the current four columns. For the positive rail, the connections are

determined by performing a binary decomposition of the number. For the negative

rail, the sign of the number is reversed and then the binary decomposition again

determines the crossbar connections.

139

CHAPTER 6. TRUENORTH

This dual-rail encoding works because if the input is positive, that positive rate

encoding will come in on the positive rail and the binary decomposition is correct

because it is multiplied by a positive number. On the other hand, the sign of the

number on the negative rail must be reversed because it is multiplied by a negative

number (if the entry in x is negative then the spikes come in on the negative rail). The

dual-rail encoding takes into account the sign of the input spikes because the input

spikes are simply a rate and cannot express whether they are positive or negative

values. Instead the position of that rate (positive or negative rail) is used to denote

the sign of the input value.

Every axon (input) in this core is of the same type (type 0 in this case), and

all the neurons are also identical. Each neuron is a linear neuron with a threshold

of 1 so that every time its state is positive it spikes once and reduces its state by

1. These neurons have no leak. Therefore, each column constantly sums up how

many times a spike comes in for each of the values in that column of the dictionary,

and the neuron outputs one spike corresponding to the weight of that column of the

crossbar ({−8, 4, 2, 1}). Section 6.1.3 describes the straightforward manner in which

the second physical core in each corelet converts these spikes into their proper number

of output spikes to produce the results.

140

CHAPTER 6. TRUENORTH

6.1.3 Second Core

The second core is used to sum the results of the multiplication from the first

core. While the weights in the first core are all one, each column is designated to be

a certain weight. Therefore, these columns are summed in the second core with their

corresponding weights, and the second core outputs the final results.

The neurons in the first core are grouped into sets of four columns, and these

sets of four neurons are connected to the axons in the second core in the same order.

Therefore, in the second core, each set of four axons is a group. Within each set of

four axons there are four types: {0, 1, 2, 3}, and these types tell the neurons which

weights should be added to the neuron states when spikes come in.

The neurons in this second core are all set up so that axons of type 0 have weight

-8, type 1 have 4, type 2 have 2, and type 3 have 1.

The crossbar is set up so that neurons 1 to 64 in the second core each correspond

to the column sum for each of the 64 words in the dictionary (of course in the last

corelet there may be less than 64). In order to do this, each set of four axons must

be connected to a separate neuron. The first neuron has connections with the first

four axons, the second neuron has connections with axons 5-8, and so on.

The result of all these connections is that each neuron outputs the proper summa-

tion from the dot product of the input vector with its corresponding column in the

matrix. Since the input is a rate code and the connections all add up to one value of

the dictionary VMM multiplication, the outputs are all rate-coded as well.

141

CHAPTER 6. TRUENORTH

6.1.4 Negative Summations

Each neuron can only be configured to spike when its state hits a positive threshold

value, so results for when the summation in a column of the calculation is positive

work correctly. On the other hand, when the result for an addition in a column is

negative, no spikes are output.

A different architecture could be constructed so that negative results are also out-

put, but it would be less space-efficient. This example alternative architecture could

reverse the sign of the math in each column so that there would be two output neurons

for each word in the dictionary. One would spike when the result is positive and the

other would spike when the result is negative. However, this type of architecture was

not implemented because in the Word2vec application the maximum output values

are sought and negative values are not very useful (See Section 6.2).

6.1.5 4-bit Unsigned VMM

In addition to the signed architecture described thus far is an implementation of

an unsigned version. This version is very similar except that it of course only works

with positive values. The unsigned design additionally allows for vectors of length

256 rather than 128. Since the values are all positive the second input row is not

useful for the input values. The matrix is encoded using only the positive binary

decomposition as well because nothing needs to be done to take care of negative

142

CHAPTER 6. TRUENORTH

input. The number of outputs per corelet remains the same because there are still 4

bits in the computations and therefore 4 bits that must be accounted for via the axon

types. These four axon types are still reflected in the four outputs per column going

into the second core of the corelet and therefore allow for only 64 output columns per

corelet.

6.2 Word2vec

Word2vec was developed at Google by Tomas Mikolov and other researchers,70,71

and it provides ways to take a large amount of text data and create a vocabulary

of words represented in a high dimensional vector space. Further analysis72 was

performed to show that Word2vec works well when compared to other methods that

accomplish the same task. Although this general concept has been around for a

while73 and has been improved upon since,74 in this thesis the implementation on

Google Code was used.1

These so-called “word embeddings” are trained so that, generally, words that are

similar semantically and/or syntactically are closer together in vector space and words

that are not similar are farther apart in the vector space. Since one similarity metric

for vectors is the dot product, the aforementioned VMM framework on the TrueNorth

can be used to detect word similarities given a dictionary of word vectors trained

1https://code.google.com/p/word2vec/, accessed in 2015. However, a more current version can
be found at https://github.com/dav/word2vec as the old version is now unavailable.

143

CHAPTER 6. TRUENORTH

using the Word2vec framework. The VMM essentially can be used to perform many

thousands of dot products simultaneously using spiking neurons while consuming

very small amounts of power. Therefore, if the input vector to the VMM is the

vector corresponding to the word of interest and the matrix is the dictionary of word

vectors corresponding to the vocabulary, the maximum results in the VMM indicate

the words that are most similar to the input word in the trained model.

6.2.1 Background

Word2vec essentially works by trying to predict which words are near other words

in any given text. Given a corpus of length T containing words w1, w2, ..., wT , the

“Skip-gram” model maximizes71

1

T

T∑
t=1

∑
−c<j≤c,j ̸=0

log P(wt+j|wt), (6.3)

where c determines the size of the window, or context, of words surrounding the

current word. The window size trades off training complexity versus accuracy.

The probability in Expression 6.3 is nominally71 the softmax function:

P(wO|wI) =
exp(v

′T
wO

vwI
)∑W

w=1 exp(v
′T
w vwI

)
, (6.4)

where the v terms correspond to the vector representations of the w words in Expres-

144

CHAPTER 6. TRUENORTH

sion 6.3 and vw is the input representation while v′w is the output representation. W is

the number of words in the dictionary. Expression 6.4 clearly favors maximizing the

dot product of the vector representations of nearby words in text which should make

words that are used in similar situations be closer in vector space. However, when

maximizing Expression 6.3, the gradient of Expression 6.4 is taken, and calculating

that is usually computationally expensive due to the large size of W .

The model is physically expressed as a neural network with an input layer, hidden

layer, and output layer.70 The input consists of T nodes, where as expressed earlier,

there are T words in the dictionary. The hidden layer is a linear layer, and the number

of nodes in this layer is the length of the vector representation of the words. Finally,

the hidden layer is fully connected to the output layer which computes the softmax

function.

The input for the Skip-gram model is a one-hot encoding of the word, which

means that all the input values are 0 except for the input corresponding to the current

training example which is 1. During training the output layer becomes a similar one-

hot encoding to train the network to represent the input word. The context window

is taken into account by keeping the input fixed and changing the output one-hot

encoding to represent the other words in the context window70 before moving on to

another input training word. This choice of words within the context window is done

by performing sampling so that the words farther away from the current word are

chosen less likely. One way this is done70 is by randomly selecting a value from 1 to

145

CHAPTER 6. TRUENORTH

the size of the context and using that value as the context for that training iteration.

Since the input is a one-hot vector and the hidden layer is a simple linear layer,

the weights for the connections going from the input layer to the hidden layer actually

encode the vector representation of the word. This vector representation is then fed

into the softmax layer for the output.

On the other hand, an alternative to the Skip-gram model is the Bag-of-Words

model. The Bag-of-Words model essentially reverses the Skip-gram model by making

the input be various words in the context and the output be the current word.70 Each

technique is slightly different but can be better suited to particular tasks.

Improvements have been made to this basic formulation to speed up training71

by approximating the softmax calculations. Another useful change is to either ignore

common words or to subsample them by discarding each word with a probability

value related to the frequency with which the word shows up in the corpus, both of

which accomplish the goal of ignoring spurious similarities with common words such

as “the.”

Once the model is trained it is trivial to find similar words. A chosen word is con-

verted to its vector representation by finding it in the dictionary. Then similar words

can be determined by performing the dot product of every word’s vector representa-

tion in the dictionary with the query word’s vector representation. The words with

the largest dot product values are the words most similar in the Word2vec framework.

146

CHAPTER 6. TRUENORTH

6.2.2 Word2vec Word Similarities on TrueNorth

These dot products take time to compute, and a way to perform them in parallel is

to perform the equivalent VMM. Taking that concept one step further, the 4-bit VMM

architecture on TrueNorth (Section 6.1) can be used to calculate word similarities in

a low-power, neuromorphic manner. The bulk of the work done to establish the main

TrueNorth results was accomplished at the 2015 Telluride Neuromorphic Engineering

Workshop.

The first step was to use the Google Code implementation of Word2vec to create a

large dictionary. All the text from Wikipedia was downloaded and fed into Word2vec.

The number of hidden layers (and thus the length of the word vector representations)

in the Word2vec model created was 64. In addition, once the model was trained, the

computations done with the 4-bit VMM architecture on TrueNorth are limited to 4

signed bits, so the dictionary was quantized to fit into that 4-bit range.

MATLAB code was written to automatically convert a given dictionary into a

corelet required for programming the TrueNorth and to also communicate with the

TrueNorth to send the spiking input into the programmed design. Code was also

written to receive the results back from the TrueNorth and interpret them, including

determining which words in the dictionary correspond to the largest VMM entries

and thus the most similar words in the dictionary. Each of these steps was made

possible by the use of IBM’s APIs which provide the interface for programming the

hardware.

147

CHAPTER 6. TRUENORTH

Figure 6.2: Similarity values for a 500-word dictionary trained on Wikipedia.

148

CHAPTER 6. TRUENORTH

A simple experiment was conducted using the 500 most-commonly found words

in the Wikipedia dictionary which can be seen in Figure 6.2. Here the query was

the word “war,” and both the query and some of the most similar words are labeled.

VMM results from both the TrueNorth and MATLAB are shown. The reason why the

results are not identical is because of the magnitude of the output results. Despite

the input vector and the dictionary vectors all being quantized to be signed 4-bit

numbers the dot product results were very large. Therefore, in order to speed up

the simulation on the TrueNorth so that less output spikes had to be gathered, the

results were effectively divided by 16 by setting the neuron threshold in the first core

of each corelet to be 2 instead of 1 and setting the threshold in the second core to

8 instead of 1. These thresholds clearly do not perform actual perfect division, so

in actuality there is a bit of quantization error as compared to dividing by 16 with

floating-point numbers in MATLAB which is shown in the plot. This error does not

drastically influence determining the words of maximum similarity, though, which is

the main goal of this architecture. In addition, these thresholds can be chosen for

future applications by trading accuracy vs. speed depending on the goal.

The final demo in Telluride used a much larger dictionary of the 95,000 most-

commonly used words in Wikipedia. All told this design utilized 3,991 TrueNorth

cores including splitter cores used to route the input spikes to all the smaller VMM

blocks being calculated simultaneously. These cores account for approximately 97.4

percent of the total possible TrueNorth chip utilization. The computations were all

149

CHAPTER 6. TRUENORTH

telluride basketball mountains neuron
carbon volleyball landforms electron
colorado handball ranges protein
copper soccer glacier tissue
springs ncaa plateau cells

Table 6.1: Similarity results for four queries running on the TrueNorth hardware with
a dictionary of 95,000 words trained on Wikipedia.

completed within 153 ms due to the parallel nature of the combined software/hardware

architecture, although receiving spikes off the board took more time. In addition to

altering the neuron thresholds, this large dictionary example incorporated a neuron

leak in order to further reduce the number of spikes coming out of the system. The

leak introduces more error than the threshold changes alone but does not significantly

affect which dictionary vectors end up as the most similar to the input vector.

Table 6.1 shows the top results for a few queries run on the TrueNorth hardware

with a dictionary of 95,000 words trained on Wikipedia data. These top similarity

results match the results from a Python VMM implementation used at the Telluride

workshop.

Another interesting task that can be accomplished using these word vectors is

completing analogies.70–72 For instance, one example72 is that the vector between the

representation of “man” and “woman” is similar to that between “king” and “queen.”

Therefore, to solve the analogy “man is to woman as king is to ...” the input to the

VMM can be the vector math corresponding to woman - man + king. The results of

that analogy and a few others are listed below:

150

CHAPTER 6. TRUENORTH

• man is to woman as king is to: queen

• man is to woman as uncle is to: aunt

• good is to better as bad is to: worse

• france is to wine as germany is to: beer

• apple is to iphone as google is to: search

Many analogies do not work well with the Word2vec framework, but it is interest-

ing nonetheless that relationships like these can be found by simply looking at which

words occur together in text using a neural network.

6.3 Stochastic Multiplications with Col-

umn Select

The binary decomposition technique described above is useful because it allows

for exact computations to be performed. However, only 64 columns of the matrix

can be represented at once, and an entire second core must be used to perform the

summations to complete the process, so the method is not very space-efficient.

On the other hand, a different technique called stochastic multiplication with

column select is more space-efficient if the task is to multiply a number times a

151

CHAPTER 6. TRUENORTH

Figure 6.3: Stochastic multiplications with column select.

vector. Only one core in total is required, and the input number can be multiplied

by a vector of 256 different elements.

Figure 6.3 shows an overview of how the core works. The input is a scalar value

represented by a 256-element vector connected to the axons of the core. The first 240

elements represent the input number as a stochastic rate,75,76 and the last 16 elements

are a dual-rail encoded column address that must match the column address of the

number in the crossbar the input should be multiplied by.

The crossbar is organized so that each column represents a separate number. The

first 240 connections in the crossbar for that column are encoded as a stochastic rate,

and the last 16 elements are the dual-rail encoded column address.

152

CHAPTER 6. TRUENORTH

The dual-rail column address is divided into 8 positive rails and 8 negative rails.

The positive rails consist of the binary decomposition of the column address, and the

negative rails have a connection wherever the positive rail does not have a connection.

Therefore, in each column there are 8 total connections in the crossbar for the column

address.

The axon types for the first 240 axons are all identical. These axons are used

to represent a stochastic rate, so they are all just summed when input spikes come

in. The axon types for the column addresses are all identical as well, but they are a

different type. The weight for this type is set to be 31, and the leak on the neurons

is set to be 31*8 = 248 (it is negative).

The weights work because all 8 crossbar connections in the column address must

match in order to cancel out the neuron leak. Since the neurons only spike when their

states reach a positive value, the columns that do not match the input column do not

spike. However, this of course only works if the density of the crossbar connections

representing the elements of the vector is low enough. For example, if one column

is only off by one address bit, then there can only be a maximum of 31 crossbar

connections above the column address. Otherwise that other column can also spike.

Note that these addresses do not limit the computations to only target one column

at a time. Instead the addresses are flexible and can be reused, so multiple columns

may be selected at once. This technique provides a high degree of spatial flexibility

when designing cores because it is possible to choose sections of each core to use for

153

CHAPTER 6. TRUENORTH

computations while ignoring other portions of the crossbar.

The architecture described thus far can only work once and must somehow be

reset in order to perform another computation. The neurons do not have an innate

ability for their membrane potentials to be reset, so once a subset of columns is

selected using its address those columns are not going to immediately be reset back

down to the value of the neuron leak. In order to improve the design and to correct

this issue, Kaitlin Fair from the Air Force Research Laboratory suggested reserving

a row of the crossbar for resetting all the neurons. This row has a third axon type

in addition to the stochastic bit type and the address type so that the neuron reacts

properly to the input and performs a reset. The weight for this axon type at each

neuron must be more negative than the negative neuron threshold. Each neuron

must also be configured to have a negative saturation at its threshold. This setup

provides the opportunity to send a reset signal using the reset axon which makes all

the neurons go back to their negative threshold states and prepare the neurons for

the next computation.

Since the stochastic column-select multiplications can only select one column to

multiply the input by each time, there is a space-time tradeoff at play. In order to

multiply the input value by each element of the vector represented by the crossbar,

each multiplication must be done one at a time. So the input comes in on the axons

once, the output must propagate through the network of spiking neurons, and then

the column address on the input must be changed to the next value before the process

154

CHAPTER 6. TRUENORTH

can repeat. However, this type of architecture uses less space than the 4-bit VMM

architecture. Of course the 4-bit VMM achieves a different goal as well since it

multiplies a vector by a matrix instead of a value by a vector as is done here.

In addition, the limitation of having 31 or less crossbar connections above the col-

umn address in each column limits the resolution of the numbers to be represented in

the core. However, tricks can be done to increase the resolution by, for example, mak-

ing two columns have the same address and treating them both as separate sections of

the same stochastic rate code. Then the outputs of the two neurons attached to each

column can be added together in order to create more resolution (more potential time

slots for spikes to occur). This technique can be extended to more columns for more

resolution, but adding more columns requires more space and/or time depending on

whether the addition of the columns is handled in the same core in another column

or in another core. Adding an extra column for addition in the core would likely also

require using less than 31 rows for the stochastic stream to allow for some of the rows

to be used exclusively by the addition column.

Another change to this architecture is that instead of multiplying one number by

a vector, a VMM computation can be done instead. Here the 240 stochastic bits can

be split up into K different sections, each one representing a different number. This

split of the 240 bits is done both to the input and to each column of the crossbar.

That way there can be multiple input values and multiple values per column, and

they are all multiplied and added automatically. Of course, the limit of a maximum

155

CHAPTER 6. TRUENORTH

of 31 crossbar connections per column must still be enforced, though. If the number

of bits used to store the neuron leak were increased then the leak could be larger than

255 (it is currently 248), and then the weight on each column address bit could be

larger. This larger weight would give more room to allow more stochastic rate spikes

to be in each column of the crossbar.

There are many potential tweaks and avenues of exploration with this base archi-

tecture for performing stochastic multiplications using the TrueNorth crossbar arrays.

It is also an interesting way to select a given column without wasting space that could

otherwise be used by other neurons with that input axon. The trivial way of selecting

a column would be to only have one crossbar connection in a given row so that the

input from that axon only goes to a given neuron. However, with this technique other

columns can have connections in that row but still will not output anything when

they are not selected as the column of interest.

Simple experiments were conducted to test the architecture using stochastic mul-

tiplications, and once they were completed further work was done to show that non-

uniformity correction (NUC) math can be done to correct for noise in image sensors

using this design. See Section 6.4.2 for more details on those results.

156

CHAPTER 6. TRUENORTH

6.4 MATLAB Simulations

In addition to running the corelets on the official IBM TrueNorth simulator and

directly on the hardware itself, separate MATLAB simulations were created to sim-

plify the process for particular problems. One simulation covered the Word2Vec

functionality, and the second simulation covered the stochastic multiplications with

column-select. Both simulations involve the creation of classes designed to emulate

the behavior of various parts of the TrueNorth architecture including all the spikes

and internal neuron states, etc. This type of access also simplifies the debugging

process when creating a corelet because this simulator provides access to everything

whereas the IBM simulator does not. However, the way this simulator is programmed

is different than IBM’s Compass simulator, so it requires describing the corelet in a

different way than is done using the official API.

6.4.1 Word2vec

A simulation was designed to emulate theWord2vec implementation on the TrueNorth

hardware. The simulation loads the dictionary, chooses the query, creates the input

spikes, creates the simulation, and loops through all the input spike steps to run the

simulation and create the output spikes. These output spikes are collected and an-

alyzed by comparing the accuracy of the distributed VMM computation with doing

the math directly in MATLAB, and exact results were found with dictionary sizes up

157

CHAPTER 6. TRUENORTH

to 95,000 words. Note that the 95,000 word dictionary took a long time to run (it

was run overnight).

Another point to note is that the number of simulation ticks matters. Each

neuron’s threshold is set to be 1 in the MATLAB simulations, so for every increment

in the output value for a word similarity that corresponding neuron must spike once.

If the simulation does not run long enough some of those spikes will never occur, so

the simulation must be run long enough to gather all the output. 5000 ticks was

adequate for the 95,000 word dictionary with a query on the word “war.”

Figure 6.4 and Figure 6.5 show the results for a small 500-word dictionary when

comparing exact math in MATLAB with the TrueNorth simulations written in MAT-

LAB. Figure 6.4 shows the results when the thresholds on all the neurons are 1 and

no quantization error occurs. On the other hand, Figure 6.5 shows the results when

the threshold for core 1 is 2 and the threshold for core 2 is 8. In that situation the

same quantization error is introduced as was created when running on the TrueNorth

hardware itself. Both of these figures can be compared to Figure 6.2 which shows the

results of running the Word2vec similarity query on the TrueNorth hardware itself.

6.4.2 Nonuniformity Correction

Image sensor arrays consist of pixels that do not all react exactly the same way

to the same light intensity that arrives at the sensor. These nonuniformities, often

called fixed pattern noise, consist of two main concepts.77,78 The first is that there

158

CHAPTER 6. TRUENORTH

Word Index

0 50 100 150 200 250 300 350 400 450 500

S
im

il
ar

it
y

0

100

200

300

400

500

600

700

800

900

1000
500 Words

MATLAB
TrueNorth MATLAB Sim

Figure 6.4: Exact similarities versus a MATLAB simulation of the TrueNorth neuron
model with a 500 word dictionary trained on Wikipedia. This version has neuron
thresholds of 1 for each of the two cores in the corelets, and the math matches exactly.

159

CHAPTER 6. TRUENORTH

Word Index

0 50 100 150 200 250 300 350 400 450 500

S
im

il
ar

it
y

0

10

20

30

40

50

60

70
500 Words

MATLAB
TrueNorth MATLAB Sim

Figure 6.5: Exact similarity values (divided by 16) versus a MATLAB simulation of
the TrueNorth neuron model with a 500 word dictionary trained on Wikipedia. This
version has neuron thresholds of 2 and 8 for cores 1 and 2 in each corelet, respectively,
so that the number of output spikes is reduced by a factor of 16. As a result, there is
some quantization noise in the number of output spikes, and this noise matches the
results from the real TrueNorth implementation.

160

CHAPTER 6. TRUENORTH

is a fixed offset response for each pixel i when no light hits the sensor. The second

is that each pixel has a different gain which controls how sensitive the pixel is to

changes in light intensity. Expressed another way,

xi =
1

gi
· yi + oi, (6.5)

where xi is the pixel output, 1/gi is the gain of the pixel, oi is the offset value, and yi

is the actual light intensity. Therefore, the following operation can be done to correct

the output xi and arrive at the value of interest, yi:

yi = (xi − oi) · gi. (6.6)

The process of fixing the nonuniformities in the array is called nonuniformity cor-

rection (NUC). Since an image consists of an array of pixels the pixels can be arranged

to form a vector of pixels. Then the stochastic multiplication with column select ar-

chitecture can be used to perform the multiplication portion of the nonuniformity

correction. Therefore, MATLAB code was developed to create random offsets and

gains for each pixel of an image. All of the pixels were quantized to the number of bits

used, and the gains and offsets were also quantized. Then, the NUC operation was

done four different ways. In each of these ways the subtraction was done in MATLAB

to simplify the process and just focus on the multiplication for now, so the stochastic

NUC operation is only applying a gain multiplication.

161

CHAPTER 6. TRUENORTH

The first way, called “NUC MATLAB,” is done using floating-point math on the

quantized values described above. Then the result is also quantized. The second way

is “NUC Stochastic MATLAB,” which means that the numbers are encoded stochas-

tically using a random number generator in MATLAB and multiplied stochastically

(bitwise) using MATLAB. Using the random number generator means that with an

infinite stream of bits the number is encoded perfectly, but with a limited stream of

bits the encoding depends on the random sampling that occurs. Then the results are

decoded and quantized back to the specified number of bits.

The third way, called “NUC Stochastic Correct MATLAB,” is done the same way

as the third technique except that the number of 1’s and 0’s is fixed to be as correct as

possible (down to quantization error corresponding to the length of the bit stream).

So instead of randomly sampling each bit from the correct probability distribution,

the ratio of 1’s and 0’s is fixed to approximate the number as well as possible given

the limited amount of bits in the stream. Then the position of these bits is permuted

and the same stochastic math is performed. Because the values are guaranteed to be

as accurate as possible using this third method it is expected to yield better results

than the second method.

Finally, the technique called “NUC TrueNorth Stochastic” emulates the straight-

forward stochastic technique (NUC Stochastic MATLAB, which is the second tech-

nique) but runs on the MATLAB TrueNorth simulator designed in this thesis by using

the stochastic core.

162

CHAPTER 6. TRUENORTH

There are various parameters for the simulation. The simulation loads in a large

image of size 1440x2560, but the user can choose the number of rows and columns to

process. In addition, the number of bits with which to quantize all the results and

intermediate values can be chosen. Finally, the NUC operation can be averaged over

a chosen number of trials to improve the estimates of the real values utilizing the law

of large numbers.

All of the simulations shown in Figure 6.6 through Figure 6.13 were done with

only a single column of 50 values, so the number of rows is 50 and the number of

columns is 1. The number of bits for quantization in each of these simulations is

6. However, the number of times the operations were done so they can be averaged

varies from 1 to 150.

The layout of the images in each figure is the same. The first row contains the

original image in MATLAB which again consists of one 1x50 column of pixels from

the upper-left hand part of the image. The right image is the “raw” quantized image

created by fabricating gain and offset values for each pixel and applying them so there

are nonuniformities present.

The second row contains the results of performing NUC using floating-point math

on the quantized values. The result is quantized, and that is what leads to the

absolute differences seen on the right. At most the differences are 1 because exact

math is done here here and there is only quantization error to deal with.

The third row contains the NUC done stochastically in MATLAB along with the

163

CHAPTER 6. TRUENORTH

absolute differences to the original image. The fourth shows the “correct” stochastic

computations in MATLAB as described earlier along with the absolute differences.

Again, note that the “correct” version is expected to be more accurate than the

regular stochastic technique due to sampling a finite number of bits in the streams

representing the numbers. Finally, the last row shows the results of performing the

stochastic NUC using the TrueNorth simulation framework created here.

Figure 6.6 through Figure 6.13 show that it takes a good number of iterations

before the performance of the stochastic NUC approaches that of the floating-point

MATLAB version. In addition, all of the stochastic techniques show similar results

(MATLAB, “correct” MATLAB, and the TrueNorth simulation version).

The MATLAB TrueNorth simulation code is slow to run, so that is why these

characterization experiments were done, and they provide an idea about roughly how

many trials must be run each time and averaged in order to obtain various levels of

performance. Then the algorithms can be run later on a larger image patch without

having to try out so many different parameter values.

Figure 6.14 through Figure 6.18 show results for 100 averaging trials and 6 bit

quantization on image patches rather than just a single column. The size of each

image patch ranges from 64x64 up to 256x256 for the last figure. These results

show that the TrueNorth simulation works approximately as well as the stochastic

MATLAB simulations and the “correct” MATLAB stochastic simulations.

164

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

50

100

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

20

40

60

80

NUC TrueNorth Stochastic Differences TrueNorth

0

20

40

60

80

Figure 6.6: 1 averaging trial done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

165

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

15

20

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

10

20

30

40

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

15

20

Figure 6.7: 10 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

166

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

15

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

15

Figure 6.8: 20 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

167

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

15

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.9: 30 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

168

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

2

4

6

8

Figure 6.10: 50 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

169

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

2

4

6

8

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

2

4

6

Figure 6.11: 75 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

170

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

2

4

6

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

2

4

6

NUC TrueNorth Stochastic Differences TrueNorth

0

2

4

6

Figure 6.12: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

171

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

2

4

6

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

2

4

6

NUC TrueNorth Stochastic Differences TrueNorth

0

2

4

6

Figure 6.13: 150 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
50 rows, and 1 column.

172

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.14: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
64 rows, and 64 columns.

173

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.15: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
128 rows, and 64 columns.

174

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.16: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
128 rows, and 128 columns.

175

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.17: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
256 rows, and 128 columns.

176

CHAPTER 6. TRUENORTH

Original MATLAB Raw MATLAB

NUC MATLAB Differences MATLAB

0

0.5

1

NUC Stochastic MATLAB Differences Stochastic MATLAB

0

5

10

NUC Stochastic Correct MATLAB Differences Stoch. Correct MAT

0

5

10

NUC TrueNorth Stochastic Differences TrueNorth

0

5

10

Figure 6.18: 100 averaging trials done here. MATLAB NUC, stochastic NUC in
MATLAB, “correct” stochastic NUC in MATLAB, and stochastic NUC done on
TrueNorth. The differences are shown in the right-hand column. There were 6 bits,
256 rows, and 256 columns.

177

CHAPTER 6. TRUENORTH

6.5 8-bit Unsigned Vector Matrix Multi-

plications

The 4-bit (or less) VMM computations are best suited to the TrueNorth architec-

ture in terms of space considerations because there are only 4 axon types that can

be used to differentiate incoming spikes in the crossbar array. These types make it

possible to create 4-bit numbers because each spike can indicate a different binary

weight. However, it is also possible to trade space for precision by using more bits

(and space on the chip) to represent the values in the VMM. Another tradeoff in-

volves the amount of output spikes that are necessary to represent the final values.

Since more bits means larger values, it also takes longer for the output spikes to flow

through the system and aggregate at the end to get the results. Even if thresholds

are changed similar to what was done in the Word2vec example, since the outputs

are larger in magnitude, this operation creates larger errors if the amount of spikes

is to remain manageable. Nevertheless, this technique can still be used in situations

where more bit precision is required or larger values are needed.

This particular setup extends the 4-bit unsigned vector matrix multiplication code

to allow for an 8-bit dictionary matrix. This provides a tile-able unit for matrix

multiplication which can be used as a unit in a larger processing task on the core,

or as a standalone unit for matrix multiplication. The 8-bit VMM corelet tile works

with input vectors up to length 256 as well as matrices up to size 256x128. This

178

CHAPTER 6. TRUENORTH

corelet requires the use of 15 TrueNorth cores (9 processing cores and 6 splitter cores)

for each 256x128 block of the dictionary matrix. Andrew Dykman assisted with the

implementation of the 8-bit VMM.

6.5.1 Design

The input is an unsigned vector up to 256 elements represented as a rate code.

This means that each number is encoded as a number of spikes. For example, to

input the vector [5, 10] one would input 5 spikes into the first axon, 10 to the second,

and none to the rest. Just as with the 4-bit architecture the timing of these spikes

is unimportant (these could be represented as a stochastic rate code for example),

although inserting them right away means the result will arrive the quickest.

Inside each tiled corelet are 6 core splitters to allow the input vector to reach 4

layer one neurons inside the core. The 256 inputs are set up as spikes and fed to

either the upper or lower first level splitter. Each half goes through the first level

splitter to two second level splitters, and each layer one core is fed by an upper and

a lower first level splitter. The full chart is shown in Figure 6.19.

Layer 1 acts as the dictionary matrix, with each input row corresponding to a

row of the dictionary matrix, and every eight columns in the crossbar correspond to

a column in the matrix (see Table 6.2). So each 1x8 block corresponds to a single

element in the matrix. In each 1x8 block there is a binary big-endian representation

of the number where connections correspond to 1s and lack of connections correspond

179

CHAPTER 6. TRUENORTH

Upper 128 Input Spikes Lower 128 Input Spikes

Level 1 Splitter (U) Level 1 Splitter (L)

Level 2 Splitter (U1) Level 2 Splitter (L1) Level 2 Splitter (U2) Level 2 Splitter (L2)

Level 1 Processing (1)
Dictionary Elements 1-32

Level 1 Processing (2)
Dictionary Elements 33-64

Level 1 Processing (3)
Dictionary Elements 65-96

Level 1 Processing (4)
Dictionary Elements 97-128

Level 2 Processing (1)
Sums upper four bits,

lower four bits

Level 2 Processing (2)
Sums upper four bits,

lower four bits

Level 2 Processing (3)
Sums upper four bits,

lower four bits

Level 2 Processing (4)
Sums upper four bits,

lower four bits

256 set of input spikes

Level 3 Processing
Sums upper 4 bits with

lower 4 bits

128 sets of output spikes

Figure 6.19: Representation of a single tiled corelet. Ellipses represent data while
rectangles represent individual TrueNorth cores. Arrows show the flow of information
through the corelet as a rate code.

to 0s. All synaptic connections have a weight of 1.

The number of corelets can be increased as long as there are available cores on the

180

CHAPTER 6. TRUENORTH

1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1
1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1

Table 6.2: A Layer 1 crossbar for a 3x2 matrix consisting of the numbers
{177, 79, 173, 218, 44, 1} (left to right and then top to bottom). Each ‘1’ corresponds
to a connection in the crossbar and each ‘0’ corresponds to a lack of connection.

chip. The number of columns in the whole matrix per tile corelet is 128, but there

are 32 columns of the actual matrix in each of the four Layer 1 cores because each

number in the matrix requires 8 columns in the TrueNorth core. The number of rows

for the dictionary is limited to 256 regardless of number of tile corelets because all

inputs are fed to all Layer 1 cores, which are limited to 256 input axons. Inputs are

fed simultaneously to the Layer 1 cores across all tiles at the corresponding axons.

Layer 1 neurons are grouped in fours inside of the tile corelet, and their outputs are

fed directly to Layer 2 neurons.

Layer 2 acts as the first layer summer, summing the top four bits and bottom four

bits of each output from the corresponding Layer 1 core. 256 outputs from the Layer

1 neurons are directly connected to 256 input axons on the Layer 2 core. The upper

four bits are summed in one column of the crossbar, the next four are summed on the

next (as each neuron can only have 4 synaptic weights), and so on (see Table 6.3).

This means that each pair of neuron outputs corresponds to one element of the matrix

multiplication, with the first neuron’s output having sixteen times the weight of the

second neuron’s output. This weighting is achieved in Layer 3 by performing another

summation (weights in Layer 2 are identical for both the 16x and 1x neurons).

181

CHAPTER 6. TRUENORTH

1 (8) 0
1 (4) 0
1 (2) 0
1 (1) 0
0 1 (8)
0 1 (4)
0 1 (2)
0 1 (1)

Table 6.3: The Layer 2 crossbar pattern. This pattern is shared by all Layer 2 cores.
Connections are illustrated as ‘1’ and weights are in parentheses. This pattern repeats
along the diagonal until the core is filled up, so there are 64 outputs from this core.

There are an equal number of Layer 2 axon inputs as Layer 1 neuron outputs,

as each Layer 2 core takes every neuron output as an axon input. However, due to

the 4-to-1 column to row layout, only 64 neuron outputs actually result. This is why

there are four Layer 1 and four Layer 2 cores inside each tile corelet, as four 64-output

Layer 2 cores can feed into the 256 inputs of a single Layer 3 core.

The Layer 3 core is the final summer, combining the upper and lower halves of

the outputs of the Layer 2 cores into a single rate based output. Layer 3 is unique in

the corelet, taking axonal inputs from four Layer 2 cores. As each Layer 2 core only

has 64 outputs, four of them can be combined on a single Layer 3 core. Structurally,

every Layer 3 core is the same across all tiled corelets, with each row having one

synaptic connection and each column having two. All the neurons are identical, and

the synaptic weight for the first axon in each pair is weighted at sixteen times the

second axon to account for the fact that the spikes arriving at the first axon represent

the more significant bits of the multiplication results. The outputs from these 256

182

CHAPTER 6. TRUENORTH

neurons are the outputs from the entire tile corelet and are encoded with a rate code

representing the results of the vector matrix multiplication.

6.5.2 Results and Discussion

Two different parameters were examined. One was the number of tiles in the

VMM which controls the number of columns in the matrix. The other, which is here

called the “count factor,” controls the amount of quantization error in the results by

determining how often the linear neurons spike. One stage in the TrueNorth pipeline

is set up so that the neurons only spike once per count factor. This reduction in

the number of output spikes makes the simulation take less time in two ways: less

spikes coming out makes the simulation finish more quickly, and less spikes need to

be interpreted after they come off the chip. The count factor is the same concept as

the two neuron thresholds discussed in the Word2vec section (Section 6.2).

Experiments were done where the vector and the matrix were created randomly in

MATLAB and run on the TrueNorth using the custom-made tiled corelet. Figure 6.20

shows the output with a count factor of 256 compared to the MATLAB output divided

by 256. Figure 6.21 shows the output with a count factor of 512, this time with the

MATLAB output divided by 512. Each of these experiments was run with the same

pseudorandom number generator seed so the MATLAB results are identical up to the

scaling factor.

If the input vectors are limited to having 1 bit precision the output can contain

183

CHAPTER 6. TRUENORTH

0 20 40 60 80 100 120 140
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7
x 10

4

VMM Output Index

V
M

M
 O

u
tp

u
t

TrueNorth

MATLAB

Figure 6.20: 8-bit VMM accuracy with a count factor of 256.

a maximum of 255 spikes for each term in the summation of each column when

performing an 8-bit VMM. If the vectors are of length 256 then the maximum number

of output spikes per column is 255 ∗ 256 = 65, 280 spikes. These spikes come off the

chip one spike at a time per output pin, so theoretically it is possible to have to wait

that many time ticks for the output to complete. Using a millisecond time tick means

that 65,280 spikes takes over 65 seconds to arrive. For the unsigned 4-bit case the

maximum amount of time to wait with 256-element vectors is 15 ∗ 256 = 3, 840 ticks.

184

CHAPTER 6. TRUENORTH

0 20 40 60 80 100 120 140
6800

7000

7200

7400

7600

7800

8000

8200

8400

8600

VMM Output Index

V
M

M
 O

u
tp

u
t

TrueNorth

MATLAB

Figure 6.21: 8-bit VMM accuracy with a count factor of 512.

The signed 4-bit case has half the number of rows in the input and the matrix as well

as less possible input spikes so the maximum number of ticks is 7 ∗ 128 = 896 ticks.

If the inputs have more levels than one bit those ticks must be multiplied by the

maximum number of levels in the input, so the 8-bit version clearly requires a long

wait if exact math is desired. However, if the application does not require exact

computations then accuracy can be sacrificed by introducing quantization noise to

the output on the chip. By changing the linear neuron threshold at some point in the

processing chain the number of output spikes can be divided by that threshold at the

185

CHAPTER 6. TRUENORTH

expense of potentially losing some spikes (threshold - 1 spikes).

The magnitude of the VMM outputs is so large that both a 256 scaling factor and

a 512 scaling factor are relatively small. Therefore, even though quantization noise

is again introduced by changing the neuron thresholds, the amount of error is small

compared to the actual output value. For many applications this error is acceptable

given the amount of speedup it creates (256 and 512 times speedups, respectively),

and larger scaling factors can also be applied for various applications.

As was shown in the signed 4-bit case for the Word2vec application, if the goal

is to find the largest values coming from the VMM calculation then introducing this

quantization noise to improve speed at the expense of accuracy is a worthwhile trade

because the largest values are still likely to be found.

Ignoring splitter cores this design uses 9 processing cores to process 128 dictionary

vectors, each containing 256 elements. For comparison, the unsigned 4-bit design uses

2 processing cores to process 64 dictionary words of size 256. This means that the

unsigned 4-bit design (Section 6.1.5) takes approximately 44% of the number of cores

to represent the same data (albeit limited to 4-bit instead of 8-bit data). In addition,

the 8-bit version creates many more challenges in the time-accuracy tradeoff due to

all the extra spikes produced and therefore is likely only used when precision is truly

necessary and the time for computation is unimportant.

Each 8-bit corelet uses 15 cores, allows for 128 dictionary words of size 256, takes

256-element inputs, and creates 128 outputs. With 4096 TrueNorth cores this provides

186

CHAPTER 6. TRUENORTH

space for 273 tiled corelets and 34,944 8-bit words in the dictionary.

187

Chapter 7

Cognitive Audio-Visual

Beamforming

Previous chapters in this thesis have thus far focused on neuromorphic hard-

ware/software architectures that include performing computations using spiking neu-

rons. However, brain-inspired parallel computing is not solely limited to computations

that are currently done using actual neurons. Brain-inspired computing can take con-

cepts from the human brain and use them to advance the state of the art in other

ways, paving the way for possible spiking neuron computations in the future. Much of

the work in this chapter has been previously published79 by the author of this thesis.

This chapter discusses beamforming and then localizing sounds in a 3D environ-

ment. However, rather than simply locate sounds occurring in a scene, “cognitive”

signal processing is done to specify which sound characteristics are important to lo-

188

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

calize and then hone in on exclusively. Just as the human brain and audio system can

focus on one particular sound and determine where it is coming from while ignoring

other sounds, this work shows how similar localization tasks can be accomplished in

a parallel architecture. High-level objectives can also be used to direct the cognitive

system to focus on specific types of sounds.

In addition to the sound capabilities of this system, 360 degree camera images

are incorporated into the scene’s analysis to gain a better understanding of what

is occurring and provide an opportunity to provide further analysis. The sound

localization results are overlaid on the 360 degree video frames to provide a full audio-

visual experience. The combination of audio results with video frames also means that

visual scene analysis algorithms such as visual salience map techniques80–83 can be

run on the videos and also included in this system’s analysis. These visual algorithms

have been implemented on FPGAs84 which allows for rapid analysis in combination

with the audio algorithms discussed in this chapter. The combination of separate

auditory and visual information used for a localization task is a first step towards

cognitive audio-visual scene analysis.85,86

Beamforming is a technique that can virtually “steer” a microphone array in

a given direction so that sounds in this direction are emphasized while those from

other directions are attenuated. Localization is the process of determining from which

direction a sound emanates and can sometimes include using beamforming algorithms

to determine which direction contains the most amount of acoustic energy.

189

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Figure 7.1: MH Acoustics Eigenmike spherical microphone array.

Figure 7.2: Sony Bloggie MHS-FS1K.

190

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Two hardware systems were used to perform the work in this chapter. The first

system consists of two instruments combined together. The MH Acoustics Eigenmike

spherical microphone array87,88 (see Figure 7.1) consists of 32 microphones. The

radius of the sphere is 4.2 cm, and the sampling rate is 44.1 kHz. Visual recordings

were done using a Sony Bloggie MHS-FS1K (see Figure 7.2), which is an economical

video camera that captures video in high definition (HD) resolution, 1920x1080p.

The camera comes with a small 360-degree lens attachment along with software to

unwarp the video and turn it into a wide panorama of the scene at a usable resolution

of about 1280x182p.

The second system is the much more expensive VisiSonics audiovisual array.89

This system contains 64 microphones (again setup for equal microphone weights) that

record audio at 44.1 kHz along with 15 cameras that each record video at a resolution

of 1328x1048p. Software provided with the array stitches the videos together and

creates a panoramic view. The software can also perform localization and other

features, but this thesis only used the stitched panoramic video and raw microphone

data so that algorithms and software implementation could be fully explored.

The geometry of each microphone array is important. The Eigenmike array’s 32

microphones are arranged at the centers of the faces of a truncated icosahedron, which

allows for equal microphone weights when performing beamforming without letting

the errors become too large90 (see Equation 7.8 in Section 7.1). In addition, the

VisiSonics array’s 64 microphones are positioned to minimize errors when performing

191

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

beamforming.

Both arrays enable the use of Spherical Harmonic Beamforming because a spher-

ical configuration is required, and a standard spherical coordinate system is used in

this work. The azimuth angle, ϕ ∈ [0, 360] degrees, describes the horizontal angle in

the coordinate system, and the elevation angle, θ ∈ [0, 180] degrees, describes the ver-

tical angle. An elevation of θ = 0 degrees points directly up, 90 degrees is completely

horizontal, and 180 degrees points directly down.

7.1 Spherical Harmonic Beamforming

The sound source is assumed to be a plane wave with wavenumber k = 2πf/c

coming from the direction {θs, ϕs} where θs is the elevation angle of the sound source

and ϕs is the azimuth angle of the sound source. In that case the following is a

solution to the wave equation representing that sound source at a distance a from

the origin of the coordinate system which is located at the center of the microphone

array:87,91

G = 4π
∞∑
n=0

inbn(ka)
n∑

m=−n

Y m
n (θ, ϕ)Y m∗

n (θs, ϕs). (7.1)

Here, i =
√
−1, Y m

n are the spherical harmonics of order n and degree m, and ∗

denotes the complex conjugate. bn is a coefficient that applies when the observation

192

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

point is located on the surface of a rigid sphere of radius a:91

bn(ka) = jn(ka)−
j
′
n(ka)

h′
n(ka)

hn(ka) (7.2)

because the sound reflects off the sphere. Other coefficient values result when the

microphone array is located on a mesh, for example. jn is the spherical Bessel function

of order n and hn is the spherical Hankel function of the first kind. The spherical

harmonics are defined in the following manner:91

Y m
n (θ, ϕ) =

√
(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!

Pm
n (cos θ)eimϕ, (7.3)

where Pm
n are the associated Legendre functions. The spherical harmonics are or-

thonormal which is important to note later on as the beamformer is constructed.

In order to steer the array in a given direction (beamforming), an ideal beamform

function can be constructed so that every direction other than the one chosen is

attenuated:92,93

F (θ, ϕ, θs, ϕs) = δ(θ − θs)δ(ϕ− ϕs). (7.4)

This ideal beamformer is not very useful, however, because it does not show how to

actually perform this steering of the array. It simply states the objective for how a

perfect beamformer should behave.

On the other hand, any square-integrable function g(θ, ϕ) on the unit sphere can

193

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

be expressed as an infinite sum of spherical harmonics:91

g(θ, ϕ) =
∞∑
n=0

n∑
m=−n

Am
n Y

m
n (θ, ϕ), (7.5)

where Anm are weights that depend on the function g(θ, ϕ). To approximate the ideal

beamformer response F the weights are chosen as:92,93

Am
n = Y m∗

n (θs, ϕs). (7.6)

The weights shown in Equation 7.6 intuitively work because of the aforementioned

orthonormality of the spherical harmonics. Therefore, the only terms that contribute

to the function are the ones pointing in the same direction as the sound source.

The number of microphones in a spherical array that are used to spatially sample

the incoming sound is finite. It is possible92 to make the weights Am
n depend on the

incoming acoustic velocity potentials over the surface of the sphere, Φa(θ, ϕ, θs, ϕs),

and still approximate the ideal beamformer. In that case,

g(θ, ϕ) =
N∑

n=0

n∑
m=−n

Am
n

inbn(ka)
Y m
n (θ, ϕ), (7.7)

and

Am
n =

∫ 2π

0

∫ π

0

Φa(θ, ϕ, θs, ϕs)Y
m∗
n (θ, ϕ) sin θdθdϕ, (7.8)

where N is the maximum order of the spherical harmonics. The integral in Equa-

194

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

tion 7.8 is approximated by utilizing the cubature rule,92,94 which requires that the

microphone array has at least (N + 1)2 microphones. Thus the approximate beam-

former gN(θ, ϕ) steered to look in the direction (θ, ϕ) is92

gN(θ, ϕ) =

Q∑
q=1

WqΦa(θs, ϕs, θq, ϕq), (7.9)

where Q is the number of microphones in the array and Φa are the velocity potentials

at the microphones located at {θq, ϕq}.

Wq is defined in the following manner:

Wq =
N∑

n=0

1

inbn(ka)

n∑
m=−n

wqY
m∗
n (θq, ϕq)Y

m
n (θ, ϕ), (7.10)

where wq are the weights for the cubature formula.90 As mentioned earlier the weights

wq can all be set to 1 here for both the Eigenmike microphone array and the VisiSonics

microphone array due to the geometry of each system. They are each designed to

minimize errors in the cubature approximation and keep the weights as equal as

possible.

The microphones in the array do not directly record the velocity potentials Φa

required for beamforming, but the phase information can be recovered by performing

a Fast Fourier Transform (FFT) on the recorded sound data from each microphone92

which provides a scaled version of the velocity potentials. Since the FFT result

is in the frequency domain, Equation 7.9 can be modified to sum over the desired

195

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

frequencies:

gN(θ, ϕ) =
∑
f

Q∑
q=1

WqFf (θs, ϕs, θq, ϕq), (7.11)

where Ff (θs, ϕs, θq, ϕq) is the FFT response for a given frequency indexed by f from

the microphone signal recorded at position (θq, ϕq). This also means that frequencies

of interest can be specified by only including those FFT values in the beamformer

response and ignoring all others. In order to perform localization and determine

where sounds are coming from a grid of look directions is specified by creating an

array of azimuth and elevation angles for which beamforming is performed in those

directions. Then the magnitude of the response in each direction is calculated to

form a map indicating the amount of acoustic energy coming from each direction.

See Section 7.2 for some examples using real data. The computation done for each

direction in the localization map is separate from the others and can therefore be

parallelized to drastically speed up these computations.

Equation 7.11 is the basic building block for creating a cognitive beamformer. The

ability to choose time/frequency windows of interest is built into the beamforming

framework, so intelligent choices can be made here when deciding on the characteris-

tics of the sound of interest. Intelligence can be built into the system to differentiate

between different types of sounds by including only time/frequency windows that suit

the particular sounds of interest. These techniques are explored in the next section.

196

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

7.2 Experiments

Since the Eigenmike/Bloggie system consists of two separate pieces of hardware,

the data recorded using those devices must be synchronized. A MATLAB Graphical

User Interface (GUI) was developed for this purpose which loads the sound data from

the Bloggie video and one channel of the Eigenmike so that they can be shifted until

they best align. It helps to have an obvious audio cue such as hands clapping occur

at the beginning of the recording to assist with alignment. The software allows the

user to manually align the two time-series waveforms for analysis with buttons for

shifting the signals.

The software also resamples the Bloggie audio because it is sampled at 48 kHz

as compared to the Eigenmike’s 44.1 kHz sampling rate. The localization library

itself was implemented in C++ using functions from the Boost C++ library,95 and

a MATLAB MEX function was created to access this functionality directly from

MATLAB. The FFT is computed in MATLAB but the rest of the main beamforming

and localization code is implemented in the C++ code.

7.2.1 Human Voices

An outdoor experiment at Johns Hopkins University in Baltimore, Maryland was

conducted in order to test the functionality of the Eigenmike system coupled with

the localization software developed in this thesis. Three participants were located

197

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Figure 7.3: Experimental setup for three participants saying the letters “A,” “B,”
and “C,” respectively. The Eigenmike, labeled “E,” was located in the center. The
approximate azimuth angles for each person are shown.

in three separate positions, each approximately 4.9 meters away from the Eigenmike

array. With respect to the Eigenmike’s microphone coordinate system, the azimuth

angle for each person’s location was 270, 0, and 90 degrees. Each person was assigned

a letter, “A,” “B,” and “C,” respectively (see Figure 7.3), and each letter was yelled

from the designated location one at a time in order.

Figure 7.4 shows a spectrogram created from the first channel of the Eigenmike

array for this experiment. The blue boxes highlight the three time/frequency ranges

sent to the localization algorithm in order to estimate the position of each person.

The time-frequency intervals in the spectrogram were chosen for two main reasons.

The first reason is that by ignoring the low-level background noise other sounds in

the environment are better ignored including cars that were driving by. The second

reason is that choosing a high-energy portion of the spectrogram corresponding to

each person saying the letter maximizes the ability of the beamforming algorithm to

198

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Time (s)

2 2.5 3 3.5

F
re

q
u

en
cy

 (
k

H
z)

0

2

4

6

8

10

Figure 7.4: Spectrogram for three participants saying the letters “A,” “B,” and “C,”
respectively. The audio was taken from microphone 1 of the Eigenmike array, and the
blue boxes indicate the time/frequency ranges selected to localize each sound (one
box per localization in this example).

199

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Azimuth (Degrees)

0 100 200 300

E
le

v
at

io
n
 (

D
eg

re
es

)
0

50

100

150

Azimuth (Degrees)

0 100 200 300

E
le

v
at

io
n
 (

D
eg

re
es

)

0

50

100

150

Azimuth (Degrees)

0 100 200 300

E
le

v
at

io
n
 (

D
eg

re
es

)

0

50

100

150

Figure 7.5: Localization maps for three participants saying the letters “A,” “B,” and
“C” at azimuth angles of approximately 270, 0, and 90 degrees, respectively. The
ground was sloped so that the person saying the letter “B” was at a somewhat higher
elevation than the other two participants.

pick up the noise of the signal of interest.

The resulting localization maps can be seen in Figure 7.5. These maps were

formed by first creating a grid of azimuth and elevation angles before steering the

microphone array toward each of these angle combinations. The highest order of

spherical harmonics was chosen as N = 3 for these experiments. The resulting energy

from each of these directions was then plotted in a scaled image and displayed in the

figure.

The azimuth angles of maximum intensity were right around 270, 0, and 90 de-

grees, as expected. In addition the experiment was performed on sloping ground, with

the 0-degree position higher in elevation than the 270- and 90-degree positions, which

were at approximately the same, lower elevation. It can be seen that the maximum

of the “B” response (at zero degrees) in Figure 7.5 is at a higher elevation than the

other two maxima.

200

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Time (s)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
re

q
u
en

cy
 (

k
H

z)

0

1

2

3

4

5

6

Figure 7.6: Spectrogram from a short segment of the AB Tones experiment using
the Eigenmike array. The blue boxes represent the time/frequency windows used to
automatically localize the tones emitted from the speakers.

7.2.2 AB Tones

Another experiment involved playing sounds through two portable speakers (JAM

Plus wireless Bluetooth speakers) and localizing those sounds. Two participants each

held a speaker over his head and walked around at various distances from the hardware

systems. The same layout shown in Figure 7.3 was used for this experiment, except

that both acoustic arrays recorded the scene and that the sound sources were moving

201

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Time (s)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

F
re

q
u
en

cy
 (

k
H

z)

0

1

2

3

4

5

6

Figure 7.7: Spectrogram from a short segment of the AB Tones experiment using
the VisiSonics array. The blue boxes represent the time/frequency windows used to
automatically localize the tones emitted from the speakers.

202

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

rather than stationary.

Each speaker played a separate sound channel, and two different tones were played,

one from each speaker. These tones were harmonic tones with fundamental frequen-

cies at 400 Hz and 475.7 Hz and included 10 total frequency components up to 4000

Hz and 4757 Hz, respectively.85,86 The tone durations were 100 ms including 10 ms

onset and offset ramps, and a 25 ms gap was left between successive tones.

The two spherical acoustic arrays (Eigenmike and VisiSonics array) both recorded

the scene roughly 3-4.5 meters away from each other, and the participants holding

the speakers generally walked in a circular motion at various distances around the

arrays. Participants paused and turned around at various points in the recording.

The distances from the recording devices to the speakers changed throughout the

experiment. In addition, a car was parked between the arrays and a building, so

some of the localizations were done when participants were visually obstructed by

the car.

Figure 7.6 shows the spectrogram for a small portion of the recording from the

first channel of the Eigenmike array, and Figure 7.7 shows the spectrogram for the

same portion from the first channel of the VisiSonics array. The signals from each

array were manually synchronized so that the first channel of each array matched.

The blue boxes again represent the windows used to perform localization of the tones.

These windows were placed in a small frequency range from about 2362 Hz to 2458

Hz which intersects with one of the harmonics of each tone’s fundamental frequency

203

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Time (s)

0 5 10 15 20 25 30

A
zi

m
u

th
 (

D
eg

re
es

)

0

50

100

150

200

250

300

350

MH Acoustics

VisiSonics

Figure 7.8: Localized azimuth angles for two participants walking around holding the
speakers playing the “A” and “B” tones using the raw microphone recordings from
both the MH Acoustics Eigenmike and VisiSonics audiovisual arrays. The angles
wrap around at 0/360 degrees. Also note that the two arrays were located about 3-
4.5 meters from each other which creates discrepancies in localized angles for certain
speaker locations (close to the arrays and angles closer to 0/360 and 180 degrees).

204

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

in the spectrogram. The duration of each window was approximately 0.049 s long,

and there were no gaps between successive windows.

These windows were chosen again to avoid the low-frequency noise present in the

noisy Baltimore, Maryland environment. In addition, this frequency range corre-

sponds to an overlapping region of the harmonics present in both tones so it can be

used to localize both tones without having to change the windows. However, note

that the windows were simply regular repeating time windows rather than being cen-

tered on each tone. Some windows even include energy from successive tones rather

than only one, so it is expected that some tones will not be localized properly given

this time window methodology.

Figure 7.8 shows the results of performing localization in each of these windows

over a total combined time period of 28 seconds. The elevation angle is ignored and

the azimuth is plotted, and the localization was done separately using both the MH

Acoustics Eigenmike and VisiSonics audiovisual arrays using the raw sound data.

The angles wrap around when they reach 0/360 degrees.

Since the two devices were physically separated in space, the localized angles

cannot be identical. The microphone arrays were arranged side by side where the

label “E” is located in Figure 7.3 (but separated by 3-4.5 meters). Therefore, when

an object is located at 90 degrees or 270 degrees, the angles reported by both arrays

should be equal because they are both in line with each other and the object. On

the other hand, when the angle is between 90 and 270 degrees, the Eigenmike’s

205

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

localized angle should be less than the angle from the VisiSonics hardware. When

the object is in the semicircle between 270 and 90 degrees (the semicircle containing

“B” in Figure 7.3), the Eigenmike should report an angle greater than the VisiSonics

hardware (omitting, of course, the discontinuity at 0/360 degrees).

The background of Figure 7.8 indicates which localized angle values should be

higher in each region. When the background color is red the red data points should

have a higher value, and when the background color is blue the blue data points

should have a higher value. The majority of the data points agree with these criteria.

Keep in mind again that some time/frequency windows should have spurious results

because they contain sounds from two successive tones and a lot of background en-

ergy in between them so looking at a single azimuth angle for those windows is not

constructive.

7.3 Audio-Visual Integration

The VisiSonics audiovisual array already couples video and audio data together.

However, the other system used in this work consists of two separate devices, the MH

Acoustics Eigenmike microphone array and the Sony Bloggie camera.

The synchronization GUI extracts the audio data from the Bloggie camera along

with the audio from the first channel of the array, and it provides manual controls to

shift the two audio signals until they are synchronized. This synchronization is then

206

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

Figure 7.9: Localization results for both the VisiSonics system and the combined
Bloggie camera/Eigenmike system. The panel on top is from the combined system,
and the panel on the bottom is from the VisiSonics system. The blue lines indicate
the localized angles calculated using only the raw microphone data from each system.
This particular frame of the video illustrates the differing perspectives of the two
cameras and shows why the angles in Figure 7.8 do not exactly match.

207

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

saved to a file for convenient access later on. Of course, listening to the two signals

in MATLAB and looking at the spectrogram of each signal can also help.

After synchronization is complete, software provided by VisiSonics was used to

stitch the videos from all 15 cameras together. Another MATLAB GUI was created

to view the VisiSonics video and the Bloggie camera video for the AB tones experi-

ment (see Section 7.2.2) simultaneously. This GUI added the ability to visualize the

localized angle for each system directly in the video (see Figure 7.9).

The top panel in the Figure 7.9 comes from the combined Bloggie camera/Eigenmike

system, and the bottom panel corresponds to the stitched panorama coming from the

VisiSonics system. The localized angles were calculated using the spherical harmon-

ics implementation. The azimuth angles were calibrated to the two videos simply

by choosing the corresponding location for the 0/360 degree discontinuity in each

video and linearly extrapolating all the other angles to the rest of the pixels in the

video. In addition, the videos were calibrated with each other by circularly shifting

the VisiSonics video to roughly match the Bloggie video.

In some respects the video from the cheap digicam works better than the more

expensive VisiSonics system. In the VisiSonics system there are 15 separate cam-

eras, all of which are facing different directions. The multitude of angles means that

in outdoor scenes, particularly ones where the sun is out and there are also dark

shadows present, it can be difficult to get the exposures of all the cameras to form a

pleasing image. On the other hand, having cameras covering all directions allows for

208

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

a visualization of all elevation angles. The Bloggie camera provides a more pleasing

panoramic view of the scene with a consistent exposure, but it lacks a view of the

more extreme elevation angles covering areas up high and down low.

7.4 Discussion

The experiments described here use simple criteria to choose which sound signals

to locate. However, further work can be done to automate the process in more

complicated scenes. For example, in the AB Tones experiment (Section 7.2.2), the

time/frequency selections for performing localization were not optimized for the actual

timing of the tones. Many of the time windows included two successive tones that

often came from very different locations. One improvement for this situation is to

manually fix the timing of the windows for the sounds used in the experiment, but

the real goal of this project is to make this process automatic. The spectrogram can

be examined on the fly, and only high-energy areas can be chosen as windows. Other

improvements include looking at the characteristics of the sounds themselves. Unique

sounds can be located within the spectrogram based on their spectral characteristics

which allows those specific sounds to be found in 3D space and localized.

Spherical harmonic beamforming proved to be effective using the raw audio data

from both the VisiSonics audiovisual array and the MH Acoustics Eigenmike micro-

phone array. Coupling the Eigenmike with an inexpensive digital camera provided a

209

CHAPTER 7. COGNITIVE AUDIO-VISUAL BEAMFORMING

reasonable audio/visual sound localization system costing much less than the VisiSon-

ics system. However, depending on the required visual quality of the visual portion

of the A/V system it may be worth coupling the Eigenmike with a nicer camera or

set of cameras to better approximate the full coverage of the VisiSonics system.

210

Chapter 8

ARM Cortex M0 Architecture for

UPSIDE Project

The Defense Advanced Research Projects Agency (DARPA) created a program

called Unconventional Processing of Signals for Intelligent Data Exploitation (UP-

SIDE)96 which launched in 2013 due to a “need to dramatically expand the real-time

processing of wide-area, high-resolution video imagery, especially for target recogni-

tion and tracking a large number of objects.” Existing systems use a considerable

amount of power and one of the main goals for this project was to drastically reduce

the amount of power required for these computations. As part of that project the lab

at Johns Hopkins University has been working toward developing large low-power,

brain-inspired, and massively parallel chip multiprocessor architectures to achieve

those goals, particularly for aerial images.

211

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

The image processing pipeline includes tasks such as non-uniformity correction,

debayering, dewarping, object detection, and object tracking. Non-uniformity cor-

rection77,78 is done to compensate for the incoming raw pixel data from the sensor

due to transistor mismatch (also described in Section 6.4.2 of this thesis). Debay-

ering is required for converting the conventional Bayer filter pattern into standard

red, green, and blue (RGB) image pixels. Dewarping is necessary for rotating the

images coming from an aerial device so that the background is in a fixed position

rather than rotating with the device in order to aid the detection of which pixels are

background and which pixels are not. Once those main steps are completed, object

detection and object tracking can be accomplished using various algorithms. Some of

this pipeline has already been implemented and simulated on an array of FPGAs,97

and now custom application-specific integrated circuits (ASICs) have been designed

to perform these tasks.

The chips, called the nano-Abacus chiplets, contain a variety of processing units

connected by two network-on-chips (NoCs), one dedicated to data transmission to and

from the main memory and the other for controlling processing units (see Figure 8.1).

These units, while developed for the purpose of completing the image processing

pipeline, can also be used for a variety of tasks due to their general-purpose nature.

They are programmable via the NoCs so their parameters can be configured for

multiple datasets and situations. In addition, the order of computations is not fixed

and can be changed to suit other applications.

212

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Figure 8.1: The nano-Abacus chiplet core architecture.

The design contains a mix of digital and analog circuits performing various types

of unconventional processing techniques. For example, along with performing some

conventional mathematics the chip also utilizes stochastic techniques75,76 to reduce

power consumption for problems not requiring high precision computations.

Handling the processing units and coordinating their efforts can be a bit compli-

cated, especially when taking into account the fact that they can all communicate

with one another and access 3D dynamic random access memory (DRAM) on each

chip through the NoCs. In order to keep the chips flexible for as many applications as

possible there must be away to program the chip and control all the blocks to achieve

213

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

varying goals. Thus, the ARM Cortex M0 architecture described in this chapter was

designed to achieve all these goals. It is fully programmable from an external com-

puter, has interfaces to connect to all the processing units and the main memory

through the NoCs, can communicate back to an external device such as an FPGA

or computer, can utilize off-chip memory to expand its storage capacity, and can

perform other computations that may be inconvenient to do using all the specialized

unconventional processing blocks located on the chips. In addition, although this

chapter describes the general architecture for one M0 that is connected to a Serial

Parallel Interface (SPI) module, a second M0 that does not have SPI capabilities is

included on each chip to provide further flexibility.

8.1 Overall Architecture and Features

The ARM Cortex M098 is a 3-stage pipeline 32-bit fixed-point processor available

from ARM as a Verilog design that can be incorporated into custom FPGA and ASIC

designs. It has a hardware multiplier which as configured for this project takes 32

cycles to complete a multiplication but does not have a hardware divider. Hardware

interrupts provide the ability to handle events that occur during the execution of the

software loaded on the M0.

The M0 and all its peripherals are connected to an AHB-Lite bus (see Figure 8.2).

The M0 boots from a read-only memory (ROM) which in this case contains a compiled

214

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Figure 8.2: The ARM Cortex M0 Architecture.

bootloader that waits for instructions to be programmed from an external device.

There is a 32 KB block of static random access memory (SRAM) as well as a 2 KB

cache that speeds up accessing the SRAM data. The chips contain two NoCs that

enable access to the 3D DRAM as well as the arrays of processing units. A NoC

interface was designed to enable communication with the control NoC from the M0

so that all the processing units can be configured. A direct memory access (DMA)

controller was created so that transfers between the main memory and the SRAM can

be achieved through the data NoC without tying up the M0 with those operations.

The M0 can directly communicate off the chip using the Universal Asynchronous

215

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Receiver-Transmitter (UART) module as well as the SPI block. The UART is used

primarily for programming the M0 after the processor boots and also sending and

receiving data to a separate device. The SPI module is intended to be used with

external memory so that the storage capabilities of the design can be expanded beyond

the 32 KB of SRAM and the main memory or to transfer data into the chips in a

convenient manner.

The layout of one of these chips, called the Salamis chip multiprocessor, can be see

in Figure 8.3. The M0 architecture is shown in the blue squares. One M0 has access

to the SPI module and the other does not, but other than that the two architectures

can access their own copy of the same peripherals.

The bootloader, UART, and SPI modules were primarily designed as part of this

thesis while the blocks in blue in Figure 8.2 were primarily created by Alejandro

Pasciaroni. The NoCs, processing units, and the rest of the chip work was done by

other members of the lab including Alejandro.

Peripheral Starting Address
ROM 0x00000000
Cache 0x60000000
UART 0x52000000

NoC Write 0x53000000
NoC Read 0x54000000

DMA 0x57000000
SPI 0x58000000

Table 8.1: Starting addresses for peripherals in Cortex M0 architecture’s memory
map.

All peripherals for the M0 are memory-mapped, so accessing all the modules is

216

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Figure 8.3: Salamis chip multiprocessor architecture.

done by accessing certain memory addresses. An address decoder in the AHB-Lite bus

determines which peripheral should be selected and controls the flow of data. On the

way back all the output data heading back to the M0 go through a multiplexor so that

only data from the selected module are read into the M0’s registers. Table 8.1 shows

the starting address for each peripheral the M0 can access. The cache addresses are

in a different area than the other peripherals because the cache must be executable in

addition to being readable and writeable, and the M0 can execute instructions from

217

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

that range. The ability to execute instructions from the cache is essential for enabling

the bootloader to program the chips and then run the code that is programmed. There

are multiple configuration addresses starting with the addresses in the table for most

of the blocks shown in Figure 8.2, and to perform an operation these addresses must be

written to with the required information to proceed. More details about the modules

and the process for using them follow in the next sections.

8.2 ROM, UART and Bootloader

When the chip boots up the M0 begins reading instructions to execute starting

at address 0x00000000, so the ROM is located at that address. The ROM contains

all the compiled code for the bootloader which is the first thing the processor runs

on boot. The function of the bootloader is to read instructions sent to it from an

external device, place those instructions in RAM, and execute those instructions. The

bootloader must also handle the programmable interrupts by ensuring that external

devices can set the behavior of the interrupts each time the chips are booted.

The chips have two UART wires that allow data to be transferred back and forth

from an external device, one byte at a time. The baud rate of this UART module

is dependent on the clock speed of the M0, so changing the M0’s clock also affects

the communication speed over UART. Since the M0 is a 32-bit processor with 32-bit

addresses and supports 32-bit instructions, these bytes must be shifted in one at a

218

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

time to form the complete 32-bit instructions that are placed in memory.

The bootloader was written using assembly because it is possible to write the

entire bootloader so data are stored only in the M0’s registers rather than requiring

a stack and a heap in RAM. Leaving the SRAM empty provides maximum flexibility

when the program is loaded into the RAM and then later executed. The program

that is loaded onto the chip then knows exactly how much space is taken up by its

instructions at the beginning of RAM and is free to allocate the rest of the space for

the stack, heap, and any other storage required for execution of its tasks.

An additional constraint for the bootloader is that it polls the UART rather

than use the UART’s interrupt capabilities. Polling achieves the same goal of not

programming the bootloader in C which is that no RAM must be used for the stack

because no interrupts are triggered. However, once the M0 is programmed with the

code loaded through the bootloader, it is free to communicate over the UART using

interrupts. Sending data via the UART is accomplished by simply writing a byte at

a time to a memory-mapped register in the UART module. Data can be received by

polling that same address or by waiting until the UART interrupt is triggered and

then reading from that register to determine the value that was sent to the M0.

The first 4 bytes sent over UART to the chip are the number of instructions.

After those values are shifted in, the bootloader knows how many 32-bit words to

expect from the device sending the compiled code. All these words are shifted in.

As each word arrives it is placed into the next position in RAM starting from the

219

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

bottom. Once all the instructions are placed in RAM the M0’s main stack pointer is

set to the address stored in the first word in memory which is the default location for

the stack pointer. Then the M0 jumps to the address specified by the second word

which corresponds to the beginning of the code that should execute when everything

is ready.

ARM’s Keil uVision Integrated Development Environment (IDE) and compiler

were used to implement the bootloader as well as the code that is loaded into mem-

ory and executed by the bootloader. However, different configurations are required

for each situation. The bootloader is configured to boot from ROM at address

0x00000000 whereas the code that is loaded onto the processor later is configured

to execute in RAM starting at address 0x60000000 (see Table 8.1). The code loaded

into the RAM also uses a scatter file to choose the exact locations of the stack and

heap so that the code loaded into memory does not get overwritten by anything dur-

ing program execution. The scatter file also provides more flexibility to, for example,

leave some RAM open for DMA transfers or other uses.

The interrupt service routines (ISRs) must be part of the bootloader in order for

them to function correctly. Since they are located in RAM instead of in ROM, each

ISR jumps to the corresponding location in RAM and executes the code starting at the

address stored in that RAM location. This technique allows for full programmability

of the ISRs for each boot of the chips.

220

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

8.3 SPI

The Serial Parallel Interface is used to connect the M0 to off-chip memory to en-

able a multitude of options. For example, one use is to expand the amount of memory

available to the M0, and another is to send data to and from the M0 using that mem-

ory. Basic SPI99 has a master device and a slave device, and the implementation100

created for the UPSIDE chips uses four wires: MOSI, MISO, CS, and SCK. MOSI is

master out slave in, MISO is master in slave out, CS is chip select, and SCK is slave

clock. MOSI and MISO are used for sending actual data while CS is used to tell the

slave module that it is active and communication will begin soon. SCK is the clock

used to drive the data transfer and is sent along with the data to the slave module.

The particular memory devices the SPI block in this thesis was designed for are

the Microchip 23A1024 and 23LC1024 SRAMs.100 They support various modes of

operation, but the UPSIDE ASICs were designed to use the byte operation modes.

Every mode works in the same basic manner: the CS signal goes low and the SCK

signal starts toggling. The data are always valid on the rising edges of the SCK

signal. When the data transfer is complete the SCK signal goes back to its default

(low) state and the CS signal goes back to its default (high) state. Data are always

transferred in order of most significant bit to least significant bit.

The first 8 bits sent to the slave device (the memory) from the M0 are always the

instruction. Reading a byte (see Figure 8.4) consists of sending the read instruction

(0x03) and a 24-bit location that specifies the read address, both on the MOSI line,

221

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

and the SPI memory then sends back the byte of data specified on the MISO line.

Writing a byte (see Figure 8.5) involves sending the write instruction (0x02), the

24-bit address, and finally the 8 bits of data that are to be written, all on the MOSI

line.

Figure 8.4: SPI timing diagram for reading a byte from an external device. The
bits in blue are the instruction for reading, the values A23 through A0 comprise the
24-bit address, and the values D7 through D0 are the byte that is sent back from the
external device.

Figure 8.5: SPI timing diagram for writing a byte to an external device. The bits in
blue are the instruction for writing, the values A23 through A0 comprise the 24-bit
address, and the values D7 through D0 are the byte that is written to the external
device.

Reading and writing a byte at a time must first be enabled by setting the mode

register of the memory to correspond to byte mode. Reading and writing the mode

register is similar to reading and writing a byte except that there is no address in the

transaction. Reading consists of sending the 8-bit instruction for reading the mode

222

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

register on the MOSI line and then receiving the 8 bits of data that indicate the

current mode on the MISO line. Writing involves sending the instruction for writing

to the mode register and then sending the 8 bits corresponding to byte mode, both

on the MOSI line. Once the mode register is set, data can be read and written to the

external device as described above.

The M0 is a 32-bit processor, so rather than interacting with only one SPI memory

device by sending or receiving one byte at a time, this architecture is designed to

interface with four devices at once. All the devices share the CS and SCK signals

as well as the instruction and address they specify, but the data are unique to each

of the four modules. With 32 bits available, one register’s value can be set which

programs all four bytes at once in order to increase the throughput of one read or

write operation.

Operating the SPI involves setting one or two register values depending on the

mode. When writing to the M0, the 32-bit register containing each of the four bytes

to be simultaneously written to the four external memory devices must be set. Then

the register containing the shared instruction and address is set and the write to

the external devices begins. On the other hand, reading requires simply setting the

shared instruction and address register. When either a read or a write is completed,

the corresponding interrupt is triggered. For a read operation the values read from

external memory can be accessed by reading another 32-bit memory-mapped register,

and for a write operation the next step depends on the goals of the program and

223

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

whether it was waiting for the write to finish before accomplishing another task.

8.4 SRAM, Cache, DMA, and NoC Inter-

face

Alejandro Pasciaroni designed the SRAM, cache, DMA controller, and NoC in-

terface, while testing and integration was a collaborative effort. These peripherals

greatly extend the capabilities of the Cortex M0 by allowing it to effectively commu-

nicate with the rest of the processing units on the chips as well as access the main

3D DRAM.

The 32 KB of SRAM are used to store the instructions to be executed after the

chips are programmed, the stack memory, the heap memory, and any other memory

storage the programmer wants to use such as values copied from main memory using

the DMA controller. However, rather than connect the SRAM directly to the AHB-

Lite bus, a separate 2 KB cache was created to speed up memory accesses. The cache

is also connected to the DMA controller so that when values are copied from main

memory to the SRAM, the cache knows to invalidate any data it holds corresponding

to the addresses involved in the DMA transfer.

The DMA controller is used to copy data either from the main 3D DRAM on

the chips to the M0’s SRAM or to copy data from the SRAM to the 3D DRAM.

The DMA functionality is particularly useful for setting up all the processing units

224

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

and implementing the processing flow for various applications. Some processing units

rely on values stored in main memory, so the M0 can use the DMA controller to

write values to the DRAM, program the processing units through the NoC, and

then start the algorithmic pipeline. By definition, the DMA block accesses both

the main memory and the M0’s SRAM without the involvement of the CPU, which

allows for quicker setup when configuring the chips. While data are being shuttled

using the DMA controller, the rest of the processing units can be configured by the

processor through the NoC interface. When a DMA transfer is complete, there are

two interrupts that can be triggered depending on the operation. One interrupt is for

reading from the SRAM and the other is for writing to the SRAM. These interrupts

as well as all the other M0 capabilities can be fully programmed each time the chips

are reset as part of the bootstrap process using the M0 bootloader.

Programming the DMA controller involves setting some register values in the

peripheral by writing to the appropriate addresses, all of which are located in the

block specified by its starting address in Table 8.1. The main memory is addressed

using 40 bits, so two registers are required each for the starting and ending addresses

in the 3D DRAM. The starting and ending addresses in the local SRAM must also

be specified as well as the direction of the data transfer.

The NoC interface allows the M0 to communicate with all the other devices using

the two NoCs found on the chips, one NoC dedicated to data transfers with the main

memory and the other designed to control the processing units and exchange data

225

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

with them. Since the NoCs can send packets containing 256 bits of data, there are

8 registers of data that are written to specify the packet contents. An address is

specified, and a packet type is chosen because two different types of packets can be

transmitted. One register is set for one type of packet and another register is set

for the other. At that point the NoC interface works on sending the packet, and

once the data are sent an interrupt is triggered to let the M0 know that the task has

been completed. On the other hand, when a packet arrives, one of three interrupts is

triggered depending on the type of incoming data. One interrupt lets the M0 know

that data have arrived, and the second one occurs when a special acknowledgement

packet has been received. The final NoC interrupt is reserved for the case when a

control packet has been received. When data packets arrive, the M0 can read from

eight registers to handle the full contents (256 bits) of the incoming packets.

8.5 Interrupts Overview

This M0 architecture design includes 9 hardware interrupts which enable a range

of functionality described in the preceding sections. The following is a list of the

interrupts available to the developer every time the chips are booted and programmed:

• UART byte received

• DMA read transfer completed

• DMA write transfer completed

226

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

• Network data packet received

• Network acknowledgement packet received

• Network control packet received

• Network packet sent

• SPI packet received

• SPI packet sent

Each interrupt can be programmed and sent onto the board using the bootloader,

enabling a great amount of flexibility for the programmer to utilize. Communication

with other processing units on the board as well as external devices can be achieved

using the M0’s peripherals and the interrupt signals described above. The M0 makes

it straightforward to program the many processing units found on the chips so that

a wide variety of tasks can be accomplished.

8.6 Programming the M0

The code written for the M0 has all been compiled using the ARM Keil tools,

specifically the µVision V5.18.0.0 tools. The following sections describe how the

bootloader was programmed as well as how to use the DMA, SPI, and NoC periph-

erals.

227

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

8.6.1 Bootloader

As described in Section 8.2, the bootloader was programmed using assembly so

that no RAM is required for utilizing a stack and heap. Restricting all the basic

operations to only the M0’s internal registers provides the most amount of flexibility

for the programmer using the chip.

The following block shows the beginning of the bootloader assembly code where

the M0’s vector table is established. This vector table contains 32 entries. The first

entry is the beginning stack pointer address followed by multiple interrupts that are

standard for the M0. The ones specifically defined for this project are the reset

handler and the hard fault handler. The reset handler is the code that runs when

the M0 is booted, so that handler contains the important bootloader code itself. The

hard fault handler contains the code that runs when the M0 encounters a hard fault

and cannot continue running. The next block of 16 external programmable interrupts

correspond to custom hardware interrupts designed for this M0 architecture. This

code is flexible to allow for more interrupts than are actually enabled in the hardware,

but it does not hurt to have them established in software regardless.

PRESERVE8

THUMB

AREA RESET, DATA, READONLY ; First 32 WORDS is VECTOR TABLE

EXPORT __Vectors

; Set up main vector table here. The first entry isn’t really

; correct because it should be the initial stack pointer.

; However, since there is no stack it doesn’t really matter.

; The second is the reset handler, and the fourth is the

228

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

; hard fault handler.

__Vectors

DCD Reset_Handler

DCD Reset_Handler

DCD 0

DCD HardFault_Handler

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

; External Interrupts - These are set up so that they all

; jump to whatever they are configured to be in the

; application code loaded onto the M0 later on.

DCD One

DCD Two

DCD Three

DCD Four

DCD Five

DCD Six

DCD Seven

DCD Eight

DCD Nine

DCD Ten

DCD Eleven

DCD Twelve

DCD Thirteen

DCD Fourteen

DCD Fifteen

DCD Sixteen

AREA |.text|, CODE, READONLY

ENTRY

229

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

The code below is the reset handler which actually loads the data from the UART

and places it into memory. The code begins by turning off interrupts and then polls

the UART waiting for 4 bytes containing the amount of instructions to read. Then

all those instructions are read from the UART one byte at a time and shifted into a

4-byte value to form each full instruction. Once each instruction is ready it is placed

into RAM. Finally, after all the instructions are read, the stack pointer is updated to

be the location specified in the compiled code sent through the UART, and the M0

jumps to the location of the new reset handler stored in memory. Then all the new

code is executed.

; The reset handler is what runs when the processor boots and starts

; running.

Reset_Handler PROC

EXPORT Reset_Handler

; Turn off interrupts for polling the UART instead and store the

; compiled application code in memory.

LDR R1, =0xE000E100

LDR R0, =0x00000000

STR R0, [R1]

; Store the address of the UART in R0.

LDR R0, =0x52000000

; Poll the UART to determine the number of instructions to be

; received.

; R1 will store the number of instructions.

LDR R1, =0x0

; R3 is the current left shift amount for the current received

; byte.

LDR R3, =24

; R4 is the number of bytes left to receive to make a 32-bit

; word.

LDR R4, =0x4

230

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

; l1 is the loop for continuously polling the UART until data

; arrives.

l1

; Load the UART value into R2.

LDR R2, [R0]

; Shift the value right 8 bits and put the result into R5 to

; check if the data is valid.

MOVS R5, R2, LSR #8

; If the 9th LSB is 0 then data is good; otherwise poll again.

BNE l1

; Now have the current received byte.

; Shift the value left by the current shift amount and

; add it to R1 which stores the current 32-bit value.

LSLS R2, R3

ADDS R1, R2

; Subtract 8 from the shift amount so the next value goes

; into the correct byte position in R1.

SUBS R3, #8

; Subtract one from the number of bytes left and check

; if there are any left before continuing.

SUBS R4, #1

BNE l1

; Now have the total number of instructions so

; can do the same thing but add an extra outside loop

; over the number of instructions. R7 stores the current

; position in RAM which is where to place the next

; instruction received.

LDR R7, =0x60000000

; This loop goes over all instructions.

instr_loop

; Reset the shift, number of bytes left, and current 32-bit

; value (here R6) for the current instruction being received.

LDR R3, =24

LDR R4, =0x4

LDR R6, =0

231

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

; l2 is similar to l1 above.

l2

LDR R2, [R0]

MOVS R5, R2, LSR #8

BNE l2

LSLS R2, R3

ADDS R6, R2

SUBS R3, #8

SUBS R4, #1

BNE l2

; Store the current instruction into the address stored

; in R7 (RAM location). Then add 4 to the address (R7)

; so the next instruction goes in the next RAM address.

STR R6, [R7]

ADDS R7, #4

; Subtract one off the total number of instructions and

; when it hits zero it’s done.

SUBS R1, #1

BNE instr_loop

; Set the main stack pointer to the value stored in R0

; which is set by the application code.

LDR R0, =0x60000000

LDR R1, [R0]

MSR MSP, R1

; Branch to the application code which has been loaded

; into RAM.

LDR R0, =0x60000004

LDR R1, [R0]

BX R1

ENDP

The next bit of code is all the interrupts in the bootloader. These interrupts

232

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

are generic because they must be programmable. The 32-word long vector table is

always the first 32 words in the compiled code, so when the compiled code is placed in

memory the bootloader knows which of the 32 words correspond to the ISRs. Thus,

each interrupt in the bootloader loads the address of the corresponding compiled ISR,

and then the processor branches to that address after taking care of the stack. When

the ISR returns, the stack is also returned to its original state. Each interrupt is very

similar except that the address for loading the ISR location is different in each one.

; Here are all the possible interrupt handlers. They are all similar

; so only the first one is commented below.

One PROC

EXPORT One

; Need to push the link register which stores the location

; to return to once the interrupt handler is done.

PUSH {LR, R1, R2}

; Load the address storing the application’s first event

; handler address into R0.

LDR R0, =0x60000040

; Load the actual address from that location into R1.

LDR R1, [R0]

; Branch to R1 and let the application handle the interrupt.

BLX R1

; Pop the program counter off the stack and return back

; to the original code that is being executed.

POP {PC, R1, R2}

ENDP

Two PROC

EXPORT Two

PUSH {LR, R1, R2}

LDR R0, =0x60000044

LDR R1, [R0]

BLX R1

233

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

POP {PC, R1, R2}

ENDP

Three PROC

EXPORT Three

PUSH {LR, R1, R2}

LDR R0, =0x60000048

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Four PROC

EXPORT Four

PUSH {LR, R1, R2}

LDR R0, =0x6000004C

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Five PROC

EXPORT Five

PUSH {LR, R1, R2}

LDR R0, =0x60000050

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Six PROC

EXPORT Six

PUSH {LR, R1, R2}

LDR R0, =0x60000054

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

234

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Seven PROC

EXPORT Seven

PUSH {LR, R1, R2}

LDR R0, =0x60000058

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Eight PROC

EXPORT Eight

PUSH {LR, R1, R2}

LDR R0, =0x6000005C

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Nine PROC

EXPORT Nine

PUSH {LR, R1, R2}

LDR R0, =0x60000060

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Ten PROC

EXPORT Ten

PUSH {LR, R1, R2}

LDR R0, =0x60000064

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Eleven PROC

235

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

EXPORT Eleven

PUSH {LR, R1, R2}

LDR R0, =0x60000068

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Twelve PROC

EXPORT Twelve

PUSH {LR, R1, R2}

LDR R0, =0x6000006C

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Thirteen PROC

EXPORT Thirteen

PUSH {LR, R1, R2}

LDR R0, =0x60000070

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Fourteen PROC

EXPORT Fourteen

PUSH {LR, R1, R2}

LDR R0, =0x60000074

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Fifteen PROC

EXPORT Fifteen

PUSH {LR, R1, R2}

236

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

LDR R0, =0x60000078

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Sixteen PROC

EXPORT Sixteen

PUSH {LR, R1, R2}

LDR R0, =0x6000007C

LDR R1, [R0]

BLX R1

POP {PC, R1, R2}

ENDP

Finally, the hard fault ISR is triggered when the M0 encounters a problem that it

cannot recover from. For the UPSIDE chips the M0 is setup to simply send a specific

network packet indicating that the processor cannot continue running. The ISR is

shown in the next code block.

HardFault_Handler PROC

EXPORT HardFault_Handler

; Write to L2 Network. First 8 32-bit slots are

; for the 256-bit value being written to the network.

LDR R0, =0x53000000

LDR R1, =0x12345678

STR R1, [R0]

LDR R0, =0x53000004

LDR R1, =0x11111111

STR R1, [R0]

LDR R0, =0x53000008

LDR R1, =0x24242424

STR R1, [R0]

237

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

LDR R0, =0x5300000C

LDR R1, =0xAAAAAAAA

STR R1, [R0]

LDR R0, =0x53000010

LDR R1, =0xCCCCCCCC

STR R1, [R0]

LDR R0, =0x53000014

LDR R1, =0x97979797

STR R1, [R0]

LDR R0, =0x53000018

LDR R1, =0xDEADBEEF

STR R1, [R0]

LDR R0, =0x5300001C

LDR R1, =0x87654321

STR R1, [R0]

; The next two addresses are the location to send

; the network packet. The first consists of the least

; significant bits and the second contains the most.

LDR R0, =0x53000028

LDR R1, =0x01

STR R1, [R0]

LDR R0, =0x5300002C

LDR R1, =0x00

STR R1, [R0]

; Finally tell the network interface to send the packet.

LDR R0, =0x53000020

LDR R1, =0x02

STR R1, [R0]

ENDP

238

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

8.6.2 Custom Applications

The bootloader enables many types of programs to be executed on the M0 archi-

tecture. These programs can be written in assembly, C, or a combination of both.

However, some care must be taken using the ARM Keil tools to ensure that the

programs are executed correctly.

The M0 typically expects to boot from address 0 and execute code from that

location. However, it is possible to configure Keil such that the compiled code will

properly run from a different location. One way is to specify a “scatter file,” which

tells the compiler exactly where the compiled instructions are located as well as where

the stack and the heap should go in memory. Since the compiled code is copied to

the beginning of RAM, space must be allocated in the scatter file for that code, and

then the stack and the heap can be configured in the rest of the memory space as

desired.

A basic scatter file is shown below. This file sets up a memory region starting at

address 0x60000000 that is size 0x8000 bytes, the size of the memory available to each

M0 on the chips. Within that memory region the first 0x4000 bytes are reserved for

compiled code which is specified by the files ending in “.o” as well as some other basic

functionality. Then a separate region starting at address 0x60004000 of size 0x4000

bytes is reserved for the stack and the heap, each of which starts at an opposite end

of the region growing toward each other.

LR_2 0x60000000 0x8000

{

239

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

LEDSTUFF 0x60000000 0x4000

{

*.o (RESET, +First)

*(InRoot$$Sections)

startup.o (+RO)

.ANY (+RO +RW +ZI)

led_main.o (+RO +RW +ZI)

}

ARM_LIB_STACKHEAP 0x60004000 EMPTY 0x4000

{}

}

Other scatter files can be specified with different configurations as long as there

is enough space at the beginning of the memory space for the compiled code as well

as enough room for the stack and the heap. The stack and heap can be configured

separately if desired, too.

Now, in order to create a custom program, certain interrupts must be configured

in the vector table. The first value in the table is the initial stack pointer. This value

must correspond to the location of the start of the stack in the scatter file, which in

this case begins at the very end of the memory area. A new reset handler must also

be established so that when the bootloader jumps to address 0x60000004 and starts

executing, the bootloader runs the code specified here since that is the address where

the reset handler will be placed in memory.

Then, any external hardware interrupts can be specified as well. As described

in Section 8.5, multiple interrupts can be triggered by the hardware to be handled

240

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

by this custom software. They are all listed in the external interrupts of the startup

assembly code for any Keil project that wants to use them, and they are shown below.

PRESERVE8

THUMB

AREA RESET, DATA, READONLY ; First 32 WORDS is VECTOR TABLE

EXPORT __Vectors

__Vectors

DCD 0x60008000

DCD Reset_Handler

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

DCD 0

; External Interrupts

DCD UART_Handler

DCD DMA_RD

DCD DMA_WR

DCD NETW_RD_DATA

DCD NETW_RD_ACK

DCD NETW_RD_CONTROL

DCD NETW_WR

DCD SPI_READ

DCD SPI_WRITE

DCD 0

DCD 0

DCD 0

DCD 0

241

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

DCD 0

DCD 0

DCD 0

AREA |.text|, CODE, READONLY

Reset_Handler PROC

EXPORT Reset_Handler [WEAK]

IMPORT __main

LDR R0, =__main

BX R0

ENDP

DMA_WR PROC

EXPORT DMA_WR

IMPORT DMA_WR_ISR

PUSH {R0,R1,R2,LR}

BL DMA_WR_ISR

POP {R0,R1,R2,PC}

ENDP

DMA_RD PROC

EXPORT DMA_RD

IMPORT DMA_RD_ISR

PUSH {R0,R1,R2,LR}

BL DMA_RD_ISR

POP {R0,R1,R2,PC}

ENDP

NETW_WR PROC

EXPORT NETW_WR

IMPORT NETW_WR_ISR

PUSH { R0,R1,R2,LR}

BL NETW_WR_ISR

POP {R0,R1,R2,PC}

ENDP

242

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

NETW_RD_DATA PROC

EXPORT NETW_RD_DATA

IMPORT NETW_RD_DATA_ISR

PUSH {R0,R1,R2,LR}

BL NETW_RD_DATA_ISR

POP {R0,R1,R2,PC}

ENDP

NETW_RD_ACK PROC

EXPORT NETW_RD_ACK

IMPORT NETW_RD_ACK_ISR

PUSH {R0,R1,R2,LR}

BL NETW_RD_ACK_ISR

POP {R0,R1,R2,PC}

ENDP

NETW_RD_CONTROL PROC

EXPORT NETW_RD_CONTROL

IMPORT NETW_RD_CONTROL_ISR

PUSH {R0,R1,R2,LR}

BL NETW_RD_CONTROL_ISR

POP {R0,R1,R2,PC}

ENDP

UART_Handler PROC

EXPORT UART_Handler

IMPORT UART_ISR

PUSH {R0,R1,R2,LR}

BL UART_ISR

POP {R0,R1,R2,PC}

ENDP

SPI_READ PROC

EXPORT SPI_READ

IMPORT SPI_READ_ISR

PUSH {R0,R1,R2,LR}

BL SPI_READ_ISR

243

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

POP {R0,R1,R2,PC}

ENDP

SPI_WRITE PROC

EXPORT SPI_WRITE

IMPORT SPI_WRITE_ISR

PUSH {R0,R1,R2,LR}

BL SPI_WRITE_ISR

POP {R0,R1,R2,PC}

ENDP

END

The assembly code shown above is configured to run a function from a separate

C file in the Keil project for each interrupt that is triggered. The reset handler calls

the function main() so that the C code can execute as intended, whereas the other

interrupts call their respective C functions to perform the duties they are configured to

do. For example, at the bottom of the code, the SPI WRITE interrupt is configured

to call the C function SPI WRITE ISR.

Remember, though, that all these interrupts are indirectly called from the original

bootloader assembly code. The M0 still uses the original vector table for its interrupts,

so when an interrupt is called the bootloader reads the corresponding vector table

entry from RAM. Then it branches to that address’s code and the custom interrupt

runs, taking care of the stack and the link register along the way so the original

program execution can continue once the ISR has finished running.

The following sections go into a bit more detail regarding how to program the SPI

peripheral, the DMA controller, and the NoC interface. Some brief code snippets are

244

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

provided to show examples.

8.6.2.1 SPI

There are a few important registers that can be used to configure the SPI, and

they are shown below. The instruction address is used to program the instruction and

address sent on the SPI MOSI line (see Section 8.3), and the write value is the value

to be written if the instruction is a write instruction. The write value consists of four

separate bytes, each one going to an independent SPI MOSI line off the chip to four

separate external SPI devices that all share the same instruction and address. Once

an instruction is done being executed, the read register is used to read the value back

from the SPI. This 32-bit register stores the four separate bytes from four devices

with a shared instruction and address value, just as is done for write instructions.

Two registers can be used to clear the interrupts for reading and writing because

the peripheral triggers those interrupts once a read or write operation is completed.

Finally, the SPI clock signal (SCK) can be configured by programming the counter

for the clock divider feeding the SPI module.

#define SPI_INSTRUCTION_ADDRESS (0x58000000)

#define SPI_WRITE_VALUE (0x58000004)

#define SPI_READ (0x58000008)

#define SPI_CLEAR_READ_IRQ (0x5800000C)

#define SPI_CLEAR_WRITE_IRQ (0x58000010)

#define SPI_CLK_DIVIDER (0x58000014)

Programming the SPI clock divider is very simple. The following example shows

how to set the counter limit to 3.

245

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

(volatile unsigned int)SPI_CLK_DIVIDER = 3;

The following code writes one byte to each of four separate SPI devices at once.

When the instruction address register is written, the SPI starts working on sending

the value. The loop in the code waits until the ISR corresponding to the SPI write

being done is run. When the SPI is done writing, its write interrupt is triggered

and the interrupt updates the global flag SPI WRITE DONE. Then the code below

sets that flag back to its default value for the next time the SPI is written to. It is

also possible to perform other processing while waiting for the SPI write to complete

rather than looping and waiting in this manner.

(volatile unsigned int)SPI_WRITE_VALUE = 0x9876CFDA;

(volatile unsigned int)SPI_INSTRUCTION_ADDRESS = 0x0234abcd;

// Then wait until the write has finished and the ISR

// clears the flag.

while (SPI_WRITE_DONE == 0) {} SPI_WRITE_DONE = 0;

The next block shows the contents of the ISR handling a write completion by

clearing the interrupt and setting a flag saying the write is done.

void SPI_WRITE_ISR()

{

(volatile unsigned int)SPI_CLEAR_WRITE_IRQ = 1;

SPI_WRITE_DONE = 1;

}

Reading from the SPI devices is done in a similar manner. In the following block

it is assumed that the variable “result” has already been declared to be an unsigned

integer, and it stores the four bytes read from the four SPI devices.

246

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

// Read from the SPI device.

(volatile unsigned int)SPI_INSTRUCTION_ADDRESS = 0x03ccbbaa;

// Then wait until the read is done before trying to read.

while (SPI_READ_DONE == 0) {} SPI_READ_DONE = 0;

// Get the actual values.

result = *(volatile unsigned int*)SPI_READ;

The ISR for reading from the SPI is set up just as the write ISR is for this example.

void SPI_READ_ISR()

{

(volatile unsigned int)SPI_CLEAR_READ_IRQ = 1;

SPI_READ_DONE = 1;

}

Before the byte reads and writes described above are done, the mode must be set

to enable byte mode as shown below. When writing the mode, the SPI device writes

the instruction (0x01) and the first byte of the address. That first byte of the address

must contain the mode value that is to be written. In the example below the mode

value is 0x00 which corresponds to turning on byte mode for the peripheral.

// Test writing the mode for the SPI memory.

(volatile unsigned int)SPI_INSTRUCTION_ADDRESS = 0x01000000;

while (SPI_WRITE_DONE == 0) {} SPI_WRITE_DONE = 0;

The mode can also be read by the SPI peripheral in a similar manner to how

normal values can be read except that the instruction value is 0x05.

// Test reading the mode for the SPI memory.

(volatile unsigned int)SPI_INSTRUCTION_ADDRESS = 0x05000000;

while (SPI_READ_DONE == 0) {} SPI_READ_DONE = 0;

result = *(volatile unsigned int*)SPI_READ;

247

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

Reading and writing the mode triggers the same ISRs as reading and writing a

byte from/to the external device, so other computations can be again performed while

waiting for the read or write to finish.

8.6.2.2 DMA

The DMA controller addresses data in terms of 256-bit words, so the addresses

the M0 uses must be converted to these 256-bit units by dividing the byte location

by 32. Transfers can also only occur at proper aligned edges of these 256-bit word

locations. Writing to main memory is shown below. The write goes from address 0

to address 1, and there are low and high bits because the address has 40 bits. So the

low address is the lowest 32 bits and the high address contains the most significant 8

bits of the full address.

To start a write to main memory using the DMA controller, four registers are

programmed to set the address range in main memory. The starting and ending

addresses in the SRAM for the M0 must also be set. In the following example,

four 256-bit words are written from the RAM address 0x60001200 onward into main

memory. Once all the addresses are set, the transfer type is specified for whether the

DMA writes to main memory or reads from main memory. The DMA write ISR is

set to update the flag for whether the write has completed.

// First write to main memory (MM). All these addresses are inclusive

// so the last 256-bit word is also included.

(volatile unsigned int)0x57000004 = 132; // MM address 0 low

(volatile unsigned int)0x57000008 = 0; // MM address 0 high

248

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

(volatile unsigned int)0x5700000C = 136; // MM address 1 low

(volatile unsigned int)0x57000010 = 0; // MM address 1 high

// SRAM address 0

(volatile unsigned int)0x57000014 =

(0x60001200 - 0x60000000) / 32;

// SRAM address 1

(volatile unsigned int)0x57000018 =

(0x60001200 + 8*4 * 4 - 0x60000000) / 32;

// transfer type (2’b00 for read from MM, 2’b10 for write to MM)

(volatile unsigned int)0x5700001C = 2;

// Wait for the transfer to complete.

while (DMA_WR_DONE == 0) {} DMA_WR_DONE = 0;

Below is the implementation of the DMA write ISR.

void DMA_WR_ISR()

{

// Clear the interrupt.

(volatile unsigned int)DMA_WRITE_CLEAR_INTERRUPT = 1;

// Change the flag.

DMA_WR_DONE = 1;

}

Reading from the main memory using the DMA proceeds in a similar manner

except that the transfer type is changed so that it is a read, and the read ISR is

triggered to update the read flag instead of the write flag. Then the values can be

used however the programmer chooses.

249

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

8.6.2.3 NoC

Reading data from the network is accomplished by implementing the appropriate

ISR for the NoCs. The following code shows an example of an ISR that can be used

to read an incoming data packet from the control network. This ISR shown below

does not do anything with the values read from memory, but the values could easily

be used for various purposes. Once the incoming data is read and used, the ISR can

tell the NoC interface to turn off its interrupt.

void NETW_RD_DATA_ISR()

{

unsigned int result;

result = *((volatile unsigned int*)NETWORK_READ_P0_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P1_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P2_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P3_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P4_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P5_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P6_ADDRESS);

result = *((volatile unsigned int*)NETWORK_READ_P7_ADDRESS);

// Clear the interrupt.

(volatile unsigned int)NETWORK_READ_DATA_CLEAR_INTERRUPT = 1;

}

The constants are defined in the following way for that ISR.

#define NETWORK_READ_P0_ADDRESS (0x54000000)

#define NETWORK_READ_P1_ADDRESS (0x54000004)

#define NETWORK_READ_P2_ADDRESS (0x54000008)

#define NETWORK_READ_P3_ADDRESS (0x5400000C)

#define NETWORK_READ_P4_ADDRESS (0x54000010)

#define NETWORK_READ_P5_ADDRESS (0x54000014)

#define NETWORK_READ_P6_ADDRESS (0x54000018)

#define NETWORK_READ_P7_ADDRESS (0x5400001C)

250

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

#define NETWORK_READ_DATA_CLEAR_INTERRUPT (0x54000028)

Similar ISRs can be implemented for reading a network acknowledgement packet

or a network control packet. The register addresses for the incoming data are the

same, but the different types of packets can be handled different ways by creating

multiple ISRs, one for each type.

On the other hand, writing to the network is accomplished by first setting the

eight 32-bit words to be placed in the packet. Then the internal address for the

processing unit is written, the address of the device on the network is specified, and

finally the type of transfer is set. This transfer type (data or command) can be used

to tell the processing unit which type of packet is incoming so it knows how to react.

The loop at the end follows a similar convention as the other ISRs shown earlier in

this chapter because it waits until a flag is set saying that the write is done before

proceeding. Then it clears the flag again so it is ready for the next network write.

// Set the data in the packet.

((volatile unsigned int)0x53000000) = 3493;

((volatile unsigned int)0x53000004) = 3615;

((volatile unsigned int)0x53000008) = 7001;

((volatile unsigned int)0x5300000C) = 7500;

((volatile unsigned int)0x53000010) = 0;

((volatile unsigned int)0x53000014) = 0;

((volatile unsigned int)0x53000018) = 0;

((volatile unsigned int)0x5300001C) = 0;

// Internal address used by the processing unit.

((volatile unsigned int)0x5300002C) = 0;

// Set horizontal (X) and vertical (Y) addresses.

251

CHAPTER 8. ARM CORTEX M0 ARCHITECTURE FOR UPSIDE PROJECT

// X is least significant 5 bits and Y is next 3 bits.

// Here sending to (X, Y) = (2, 0)

((volatile unsigned int)0x53000030) = 2 + (0 << 5);

// Specify data or command - 0x20 is data and 0x24 is command.

// Setting this register also sends the packet.

((volatile unsigned int)0x53000024) = 1;

// Wait for packet to be written.

while (NETW_WR_DONE == 0) {} NETW_WR_DONE = 0;

252

Bibliography

[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Elec-

tronics, vol. 38, no. 4, pp. 114–117, 1965.

[2] G. E. Moore et al., “Progress in Digital Integrated Electronics,” in Electron

Devices Meeting, vol. 21, 1975, pp. 11–13.

[3] A. Szalay and J. Gray, “2020 Computing: Science in an Exponential World,”

Nature, vol. 440, no. 7083, pp. 413–414, Mar. 2006.

[4] D. Geer, “Chip Makers Turn to Multicore Processors,” IEEE Computer, vol. 38,

no. 5, pp. 11–13, 2005.

[5] B. Smith, “ARM and Intel Battle Over the Mobile Chip’s Future,” IEEE Com-

puter, vol. 41, no. 5, pp. 15–18, 2008.

[6] S. Herculano-Houzel, “Scaling of Brain Metabolism with a Fixed Energy Bud-

get per Neuron: Implications for Neuronal Activity, Plasticity and Evolution,”

PLoS ONE, vol. 6, no. 3, p. e17514, Mar. 2011.

253

BIBLIOGRAPHY

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification with

Deep Convolutional Neural Networks,” in Advances in Neural Information Pro-

cessing Systems, 2012, pp. 1097–1105.

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning Hierarchical Fea-

tures for Scene Labeling,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1915–1929, 2013.

[10] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, “Joint Training of a Con-

volutional Network and a Graphical Model for Human Pose Estimation,” in

Advances in Neural Information Processing Systems, 2014, pp. 1799–1807.

[11] S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural Networks for

Human Action Recognition,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[12] J. Craley, T. S. Murray, D. R. Mendat, and A. G. Andreou, “Action Recognition

Using Micro-Doppler Signatures and a Recurrent Neural Network,” in 2017 51st

Annual Conference on Information Sciences and Systems (CISS), March 2017,

pp. 1–5.

[13] T. S. Murray, D. R. Mendat, P. O. Pouliquen, and A. G. Andreou, “The Johns

254

BIBLIOGRAPHY

Hopkins University Multimodal Dataset for Human Action Recognition,” in

Proceedings of SPIE: Radar Sensor Technology XIX; and Active and Passive

Signatures VI, May 2015, pp. 79–94.

[14] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,

L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to End Learning for

Self-Driving Cars,” arXiv Preprint arXiv:1604.07316, 2016.

[15] K. D. Fischl, G. Tognetti, D. R. Mendat, G. Orchard, J. Rattray, C. Sapsanis,

L. F. Campbell, L. Elphage, T. E. Niebur, A. Pasciaroni, V. E. Rennoll, H. Rom-

ney, S. Walker, P. O. Pouliquen, and A. G. Andreou, “Neuromorphic Self-

driving Robot with Retinomorphic Vision and Spike-based Processing/Closed-

loop Control,” in 2017 51st Annual Conference on Information Sciences and

Systems (CISS), March 2017, pp. 1–6.

[16] C. Mead, “Neuromorphic Electronic Systems,” Proceedings of the IEEE, vol. 78,

no. 10, pp. 1629–1636, 1990.

[17] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of Silicon Brains in the

Nano-CMOS Era: Spiking Neurons, Learning Synapses and Neural Architecture

Optimization,” Neural Networks, vol. 45, pp. 4–26, 2013.

[18] F. C. Morabito, A. G. Andreou, and E. Chicca, “Neuromorphic Engineering:

From Neural Systems to Brain-Like Engineered Systems,” Neural Networks,

vol. 45, 2013.

255

BIBLIOGRAPHY

[19] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Ras-

mussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a Python Tool for

Building Large-Scale Functional Brain Models,” Frontiers in Neuroinformatics,

vol. 7, 2013.

[20] C. Eliasmith and C. H. Anderson, Neural Engineering: Computation, Repre-

sentation, and Dynamics in Neurobiological Systems. MIT Press, 2004.

[21] S. Furber, F. Galluppi, S. Temple, and L. Plena, “The SpiNNaker Project,”

Proceedings of the IEEE, pp. 1–17, 2014.

[22] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras, S. Temple,

and A. D. Brown, “Overview of the SpiNNaker System Architecture,” IEEE

Transactions on Computers, vol. 62, no. 12, pp. 2454–2467, Dec. 2013.

[23] X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple, and S. B. Furber, “Modeling

Spiking Neural Networks on SpiNNaker,” Computing in Science & Engineering,

vol. 12, no. 5, pp. 91–97, 2010.

[24] F. Galluppi, S. Davies, S. Furber, T. Stewart, and C. Eliasmith, “Real Time

On-Chip Implementation of Dynamical Systems with Spiking Neurons,” in The

2012 International Joint Conference on Neural Networks (IJCNN), June 2012,

pp. 1–8.

[25] A. Mundy, J. Knight, T. C. Stewart, and S. Furber, “An Efficient SpiNNaker

256

BIBLIOGRAPHY

Implementation of the Neural Engineering Framework,” in 2015 International

Joint Conference on Neural Networks (IJCNN), July 2015, pp. 1–8.

[26] A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting High-performance

Energy-efficient Manycore Architectures with Epiphany,” arXiv.org, Dec. 2014.

[27] C. Kohn, “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All

Programmable SoC Devices,” Tech. Rep. XAPP1159, Jan. 2013.

[28] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell, “Programming the

Adapteva Epiphany 64-Core Network-on-Chip Coprocessor,” in Proceedings

of the 2014 IEEE International Parallel & Distributed Processing Symposium

Workshops (IPDPSW). IEEE, 2014, pp. 984–992.

[29] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,

F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,

S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk,

R. Manohar, and D. S. Modha, “A Million Spiking-Neuron Integrated Circuit

with a Scalable Communication Network and Interface,” Science, vol. 345, no.

6197, pp. 668–673, Aug. 2014.

[30] A. S. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur, P. A.

Merolla, P. Datta, M. G. Tallada, B. Taba, A. Andreopoulos, A. Amir,

S. K. Esser, J. Kusnitz, R. Appuswamy, C. Haymes, B. Brezzo, R. Moussalli,

257

BIBLIOGRAPHY

R. Bellofatto, C. Baks, M. Mastro, K. Schleupen, C. E. Cox, K. Inoue, S. Mill-

man, N. Imam, E. McQuinn, Y. Y. Nakamura, I. Vo, C. Guo, D. Nguyen,

S. Lekuch, S. Asaad, D. Friedman, B. L. Jackson, M. D. Flickner, W. P. Risk,

R. Manohar, and D. S. Modha, “Real-Time Scalable Cortical Computing at 46

Giga-Synaptic OPS/Watt with 100 Speedup in Time-to-Solution and 100,000

Reduction in Energy-to-Solution,” in Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis

(SC’14). IEEE Press, Nov. 2014.

[31] J. Backus, “Can Programming be Liberated from the von Neumann Style?: A

Functional Style and its Algebra of Programs,” Communications of the ACM,

vol. 21, no. 8, pp. 613–641, 1978.

[32] A. S. Cassidy and A. G. Andreou, “Beyond Amdahl’s Law: An Objective Func-

tion That Links Multiprocessor Performance Gains to Delay and Energy,” IEEE

Transactions on Computers, vol. 61, no. 8, pp. 1110–1126, 2012.

[33] N. Chater, J. B. Tenenbaum, and A. Yuille, “Probabilistic Models of Cognition:

Conceptual Foundations,” Trends in Cognitive Sciences, vol. 10, no. 7, pp. 287–

291, 2006.

[34] C. Kemp and J. B. Tenenbaum, “The Discovery of Structural Form,” Proceed-

ings of the National Academy of Sciences, vol. 105, no. 31, pp. 10 687–10 692,

2008.

258

BIBLIOGRAPHY

[35] K. P. Körding and D. M. Wolpert, “Bayesian Decision Theory in Sensorimotor

Control,” Trends in Cognitive Sciences, vol. 10, no. 7, pp. 319–326, 2006.

[36] K. P. Kording and D. M. Wolpert, “Bayesian Integration in Sensorimotor Learn-

ing,” Nature, vol. 427, no. 6971, p. 244, 2004.

[37] M. O. Ernst and M. S. Banks, “Humans Integrate Visual and Haptic Informa-

tion in a Statistically Optimal Fashion,” Nature, vol. 415, no. 6870, pp. 429–433,

2002.

[38] D. Alais and D. Burr, “The Ventriloquist Effect Results from Near-Optimal

Bimodal Integration,” Current Biology, vol. 14, no. 3, pp. 257–262, 2004.

[39] B. J. Fischer and J. L. Peña, “Owl’s Behavior and Neural Representation Pre-

dicted by Bayesian Inference,” Nature Neuroscience, vol. 14, no. 8, pp. 1061–

1066, 2011.

[40] M. L. Platt and P. W. Glimcher, “Neural Correlates of Decision Variables in

Parietal Cortex,” Nature, vol. 400, no. 6741, p. 233, 1999.

[41] J. I. Gold and M. N. Shadlen, “Neural Computations that Underlie Decisions

about Sensory Stimuli,” Trends in Cognitive Sciences, vol. 5, no. 1, pp. 10–16,

2001.

[42] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and

Techniques, 1st ed. The MIT Press, Jul. 2009.

259

BIBLIOGRAPHY

[43] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[44] J. Pearl, “Bayesian Networks,” MIT Encyclopedia of the Cognitive Sciences,

2001.

[45] K. P. Murphy, Machine Learning: a Probabilistic Perspective. MIT Press, Sep.

2013.

[46] ——, “Dynamic Bayesian Networks: Representation, Inference and Learning,”

Ph.D. dissertation, University of California Berkeley, 2002.

[47] C. Andrieu, N. De Freitas, A. Doucet, and M. Jordan, “An Introduction to

MCMC for Machine Learning,” Machine Learning, vol. 50, pp. 5–43, 2003.

[48] J. R. Norris, Markov Chains, ser. Statistical and Probabilistic Mathematics.

Cambridge University Press, 1998.

[49] G. Casella and E. I. George, “Explaining the Gibbs Sampler,” The American

Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[50] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing Times.

American Mathematical Society, Oct. 2008.

[51] D. Pecevski, L. Buesing, and W. Maass, “Probabilistic Inference in General

Graphical Models through Sampling in Stochastic Networks of Spiking Neu-

rons,” PLOS Computational Biology, vol. 7, no. 12, p. e1002294, Dec. 2011.

260

BIBLIOGRAPHY

[52] L. Buesing, J. Bill, B. Nessler, andW. Maass, “Neural Dynamics as Sampling: A

Model for Stochastic Computation in Recurrent Networks of Spiking Neurons,”

PLOS Computational Biology, vol. 7, no. 11, p. e1002211, Nov. 2011.

[53] K. P. Murphy, “The Bayes Net Toolbox for Matlab,” Computing Science and

Statistics, 2001.

[54] J. Navaridas, M. Luján, J. Miguel-Alonso, L. A. Plana, and S. Furber, “Un-

derstanding the Interconnection Network of SpiNNaker,” in Proceedings of the

23rd International Conference on Supercomputing. ACM, 2009, pp. 286–295.

[55] D. R. Mendat, S. Chin, S. Furber, and A. G. Andreou, “Markov Chain Monte

Carlo Inference on Graphical Models Using Event-Based Processing on the

SpiNNaker Neuromorphic Architecture,” in 2015 49th Annual Conference on

Information Sciences and Systems (CISS), March 2015, pp. 1–6.

[56] ——, “Neuromorphic Sampling on the SpiNNaker and Parallella Chip Mul-

tiprocessors,” in 2016 IEEE 7th Latin American Symposium on Circuits and

Systems (LASCAS), Feb 2016, pp. 399–402.

[57] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, “Parallel Gibbs Sampling:

From Colored Fields to Thin Junction Trees,” in International Conference on

Artificial Intelligence and Statistics, 2011, pp. 324–332.

[58] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, The ALARM

261

BIBLIOGRAPHY

Monitoring System: A Case Study with Two Probabilistic Inference Techniques

for Belief Networks. Springer, 1989.

[59] M. Scutari, “Learning Bayesian Networks with the bnlearn R Package,”

Journal of Statistical Software, vol. 35, no. 3, pp. 1–22, 2010. [Online].

Available: http://www.jstatsoft.org/v35/i03/

[60] ——. (2015) Bayesian Network Repository. [Online]. Available: http:

//www.bnlearn.com/bnrepository/

[61] D. J. Spiegelhalter and R. G. Cowell, “Learning in Probabilistic Expert Sys-

tems,” Bayesian Statistics, vol. 4, pp. 447–465, 1992.

[62] D. C. Knill and D. Kersten, “Apparent Surface Curvature Affects Lightness

Perception,” Nature, vol. 351, no. 6323, p. 228, 1991.

[63] J. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard

for Heterogeneous Computing Systems,” Computing in Science & Engineering,

vol. 12, no. 3, pp. 66–73, 2010.

[64] A. Munshi, “The OpenCL specification,” Tech. Rep. 1.0, Oct. 2009.

[65] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A. An-

dreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza, E. McQuinn, B. Shaw,

N. Pass, and D. S. Modha, “Cognitive Computing Programming Paradigm: A

262

http://www.jstatsoft.org/v35/i03/
http://www.bnlearn.com/bnrepository/
http://www.bnlearn.com/bnrepository/

BIBLIOGRAPHY

Corelet Language for Composing Networks of Neurosynaptic Cores,” in Proceed-

ings of the 2013 International Joint Conference on Neural Networks (IJCNN),

2013, pp. 1–10.

[66] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P.

Risk, H. D. Simon, and D. S. Modha, “Compass: A Scalable Simulator for

an Architecture for Cognitive Computing,” in Proceedings of the 2012 Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis (SC’12). IEEE Computer Society, Nov. 2012, pp. 1–11.

[67] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. An-

dreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo,

P. Datta, A. Amir, B. Taba, M. D. Flickner, and D. S. Modha, “Convolutional

Networks for Fast, Energy-Efficient Neuromorphic Computing,” arXiv.org, Mar.

2016.

[68] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7,

pp. 436–444, May 2015.

[69] A. G. Andreou, A. A. Dykman, K. D. Fischl, G. Garreau, D. R. Mendat, G. Or-

chard, A. S. Cassidy, P. Merolla, J. Arthur, R. Alvarez-Icaza, B. L. Jackson, and

D. S. Modha, “Real-time Sensory Information Processing Using the TrueNorth

Neurosynaptic System,” in 2016 IEEE International Symposium on Circuits

and Systems (ISCAS), May 2016, p. 2911.

263

BIBLIOGRAPHY

[70] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space,” arXiv preprint arXiv:1301.3781, 2013.

[71] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality,” in Advances

in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates,

Inc., 2013, pp. 3111–3119. [Online]. Available: http://papers.nips.cc/paper/

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.

pdf

[72] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic Regularities in Continuous

Space Word Representations,” in NAACL HLT, vol. 13, 2013, pp. 746–751.

[73] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic

Language Model,” Journal of Machine Learning Research, vol. 3, no. Feb, pp.

1137–1155, 2003.

[74] O. Levy and Y. Goldberg, “Dependency-Based Word Embeddings,” in ACL.

Citeseer, 2014, pp. 302–308.

[75] B. R. Gaines et al., “Stochastic Computing Systems,” Advances in Information

Systems Science, vol. 2, no. 2, pp. 37–172, 1969.

264

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

BIBLIOGRAPHY

[76] A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Transac-

tions on Embedded Computing Systems (TECS), vol. 12, no. 2s, p. 92, 2013.

[77] European Machine Vision Association and others, “Standard for Characteriza-

tion of Image Sensors and Cameras,” EMVA Standard, vol. 1288, 2010.

[78] J. G. Harris and Y.-M. Chiang, “Nonuniformity Correction of Infrared Image

Sequences Using the Constant-Statistics Constraint,” IEEE Transactions on

Image Processing, vol. 8, no. 8, pp. 1148–1151, 1999.

[79] D. R. Mendat, J. E. West, S. Ramenahalli, E. Niebur, and A. G. Andreou,

“Audio-Visual Beamforming with the Eigenmike Microphone Array an Omni-

Camera and Cognitive Auditory Features,” in 2017 51st Annual Conference on

Information Sciences and Systems (CISS), March 2017, pp. 1–4.

[80] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual Atten-

tion for Rapid Scene Analysis,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, Nov 1998.

[81] A. F. Russell, S. Mihalaş, R. von der Heydt, E. Niebur, and R. Etienne-

Cummings, “A Model of Proto-Object Based Saliency,” Vision Research,

vol. 94, pp. 1–15, 2014.

[82] J. L. Molin, A. F. Russell, S. Mihalas, E. Niebur, and R. Etienne-Cummings,

“Proto-Object Based Visual Saliency Model with a Motion-Sensitive Channel,”

265

BIBLIOGRAPHY

in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct 2013,

pp. 25–28.

[83] J. L. Molin, R. Etienne-Cummings, and E. Niebur, “How is Motion Integrated

into a Proto-Object Based Visual Saliency Model?” in 2015 49th Annual Con-

ference on Information Sciences and Systems (CISS), March 2015, pp. 1–6.

[84] J. L. Molin and R. Etienne-Cummings, “Live Demonstration: Real-Time Imple-

mentation of a Proto-Object-Based Dynamic Visual Saliency Model,” in 2015

IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct 2015, p. 1.

[85] L. Shestopalova, T. M. Bőhm, A. Bendixen, A. G. Andreou, J. Georgiou,

G. Garreau, B. Hajdu, S. L. Denham, and I. Winkler, “Do Audio-Visual Motion

Cues Promote Segregation of Auditory Streams?” Frontiers in Neuroscience,

vol. 8, 2014.

[86] J. Georgiou, P. Pouliquen, A. Cassidy, G. Garreau, C. Andreou, G. Stuarts,

C. d’Urbal, A. G. Andreou, S. Denham, T. Wennekers et al., “A Multimodal-

Corpus Data Collection System for Cognitive Acoustic Scene Analysis,” in

Information Sciences and Systems (CISS), 2011 45th Annual Conference on.

IEEE, 2011, pp. 1–6.

[87] J. Meyer and G. Elko, “A Highly Scalable Spherical Microphone Array Based

on an Orthonormal Decomposition of the Soundfield,” in Acoustics, Speech, and

266

BIBLIOGRAPHY

Signal Processing (ICASSP), 2002 IEEE International Conference on, vol. 2.

IEEE, 2002, pp. II–1781–II–1784.

[88] “Eigenmike Microphone Array.” [Online]. Available: http://www.mhacoustics.

com

[89] “VisiSonics Audiovisual Camera.” [Online]. Available: http://www.visisonics.

com

[90] M. C. Chan, “Theory and Design of Higher Order Sound Field Recording,”

Department of Engineering, FEIT, ANU, Honours Thesis, 2003.

[91] E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical

Holography. Academic Press, 1999.

[92] S. O. Petersen, “Localization of Sound Sources Using 3D Microphone Array,”

University of Southern Denmark, MS Thesis, 2004.

[93] Z. Li and R. Duraiswami, “Flexible and Optimal Design of Spherical Micro-

phone Arrays for Beamforming,” Audio, Speech, and Language Processing,

IEEE Transactions on, vol. 15, no. 2, pp. 702–714, 2007.

[94] M. Taylor, “Cubature for the Sphere and the Discrete Spherical Harmonic

Transform,” SIAM Journal on Numerical Analysis, vol. 32, no. 2, pp. 667–670,

1995.

[95] “Boost C++ Libraries.” [Online]. Available: http://www.boost.org

267

http://www.mhacoustics.com
http://www.mhacoustics.com
http://www.visisonics.com
http://www.visisonics.com
http://www.boost.org

BIBLIOGRAPHY

[96] “Unconventional Processing of Signals for Intelligent Data

Exploitation (UPSIDE),” https://www.darpa.mil/program/

unconventional-processing-of-signals-for-intelligent-data-exploitation, Ac-

cessed: October 12, 2017.

[97] A. G. Andreou, T. Figliolia, K. Sanni, T. S. Murray, G. Tognetti, D. R. Mendat,

J. L. Molin, M. Villemur, P. O. Pouliquen, P. Julian, R. Etienne-Cummings, and

I. Doxas, “Bio-inspired System Architecture for Energy Efficient, BIGDATA

Computing with Application to Wide Area Motion Imagery,” in 2016 IEEE

7th Latin American Symposium on Circuits Systems (LASCAS), Feb 2016, pp.

1–6.

[98] J. Yiu, The Definitive Guide to ARM R⃝ Cortex R⃝-M0 and Cortex-M0+ Proces-

sors. Academic Press, 2015.

[99] SPI Block Guide V03.06, Motorola, 2003.

[100] 1Mbit SPI Serial SRAM with SDI and SQI Interface, Microchip, 2015.

268

https://www.darpa.mil/program/unconventional-processing-of-signals-for-intelligent-data-exploitation
https://www.darpa.mil/program/unconventional-processing-of-signals-for-intelligent-data-exploitation

Vita

Daniel Richard Mendat was born during 1988 in

New Jersey. He received a B.S. degree in Electrical and

Computer Engineering with a double major in Com-

puter Science from Rutgers University in 2010. He

enrolled in the Electrical and Computer Engineering

Ph.D. program at Johns Hopkins University that same

year, where he completed an M.S. degree in Electrical

and Computer Engineering in 2011. He received the Johns Hopkins University Elec-

trical and Computer Engineering (JHU ECE) Department Fellowship as well as the

JHU ECE Bodmer Fellowship, both in 2010-2011. He was later supported by the

JHU Applied Physics Laboratory Fellowship during 2013-2017. His research focuses

on neuromorphic hardware/software architectures for performing unconventional par-

allel processing.

269

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Bayesian Networks, Learning, and Inference
	Learning
	Inference
	Exact Inference
	Approximate Inference
	Gibbs Sampling
	Neural Sampling

	Simple Inference Results

	Parallel Neural Sampling on SpiNNaker
	Automated Network Analysis
	Converting the Network for Neural Sampling
	Parallelization and Colorization
	Node Organization on the SpiNNaker

	Code Organization and Data/Event Flow
	Putting Data on the Board
	Communication
	Interrupts and Event-Based Programming
	Code Organization for Neural Sampling
	Getting Data Back
	Summarized Flow for Neural Sampling

	Sampling Results on 4-Chip SpiNNaker
	Chest Clinic Network
	Icy Road Network
	Larger Networks and Scalability
	Comparison to Gibbs Sampling
	Discrete Gibbs Sampling on 4-Chip SpiNNaker
	Student Network
	ALARM Network
	Child Network

	48-Chip SpiNNaker and the Parallella
	Migration to 48-Chip SpiNNaker
	Parallella
	Spatial Locality on the SpiNNaker
	SpiNNaker Complexity Analysis
	Load Network from File
	Load CPD Tables from File
	Determine Markov Blankets
	Determine Color Groups in the Graph
	Calculate Markov Blanket Probability Tables
	Arrange Nodes on the Board
	Simple Arrangement
	Exploit Spatial Locality

	Generate Routes
	Perform Sampling

	Heterogeneous Architecture
	Heterogeneous via Ethernet
	Heterogeneous with Interconnect Board

	TrueNorth
	4-bit Vector Matrix Multiplications
	Main Corelet Architecture
	First Core
	Second Core
	Negative Summations
	4-bit Unsigned VMM

	Word2vec
	Background
	Word2vec Word Similarities on TrueNorth

	Stochastic Multiplications with Column Select
	MATLAB Simulations
	Word2vec
	Nonuniformity Correction

	8-bit Unsigned Vector Matrix Multiplications
	Design
	Results and Discussion

	Cognitive Audio-Visual Beamforming
	Spherical Harmonic Beamforming
	Experiments
	Human Voices
	AB Tones

	Audio-Visual Integration
	Discussion

	ARM Cortex M0 Architecture for UPSIDE Project
	Overall Architecture and Features
	ROM, UART and Bootloader
	SPI
	SRAM, Cache, DMA, and NoC Interface
	Interrupts Overview
	Programming the M0
	Bootloader
	Custom Applications
	SPI
	DMA
	NoC

	Bibliography
	Vita

