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Abstract 

In nearly every moment of our lives, we make decisions. However, the neuronal 

mechanism underlying decision-making is still not clear. Currently, there is a debate on 

whether value-based decisions are based on the selection of goals or the selection of 

actions. We investigated this question by recording from the supplementary eye field 

(SEF) of monkeys during an oculomotor gambling task. We found that SEF neurons 

initially encode the option and action values associated with both task options. Later on, 

the competitive interactions between the different options result in their selection. 

Specifically, competition occurred in both action space and value space as represented in 

SEF. However, SEF encodes the chosen option 60~100 ms before the chosen action. 

When neuronal activity in SEF was reversibly inactivated, the monkeys’ selection of the 

less valuable option was significantly increased. These results suggest that SEF is 

actively engaged in value based decision-making by forming a map of the competing 

saccade targets. Activity within this map reflects the chosen option first, and then later 

the corresponding necessary action . This SEF population activity is causally related to 

the selection of a saccade based on subjective value, and reflects both the selection of 

goals and of actions. Moreover, in contrary to the two major decision hypothesis under 

the debate, our results suggest value based decision rely on the selection of both goals 

and actions. This study therefore supports a new cascade choice theory of value-based 

decision making in which the competition is present for both goals and actions. The early 

competition between goals (value) can further bias the competitive process between 

actions. 
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Chapter 1  

Introduction 

In nearly every moment of our lives, we make decisions. However only till very 

recently, have we begun to investigate the neuronal mechanism of decision-making (Gold 

and Shadlen, 2007). Value based decision- making requires the ability to select both the 

reward option with the highest available value and the appropriate action necessary to 

obtain the desired option. The neuronal mechanisms underlying these processes are still 

not well understood. 

1.1 Value based decision-making 

Neurophysiological understanding of decision- making was pioneered by studies 

on perceptual decision- making (Britten et al., 1992; Shadlen and Newsome, 1996, 2001; 

Pastor-Bernier and Cisek, 2011) . Recently, value based decision-making, in which the 

decisions are based primarily on the subjective value associated with each of the possible 

alternatives, has become the focus of the nascent field of neuroeconomics (Glimcher, 

2005; Kable and Glimcher, 2009). While perceptual decision- making depends more on 

the representation of the external state such as the visual stimuli, value based decision- 
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making is more driven by the desirability of the object which depends on the internal 

state. 

A network of cortical areas has been identified participating in value based 

decision- making (Sugrue et al., 2005; Gold and Shadlen, 2007; Rangel et al., 2008; 

Kable and Glimcher, 2009; Padoa-Schioppa, 2011). Neurobiological correlates of value 

have been described in orbitofrontal cortex (Padoa-Schioppa and Assad, 2006), amygdala 

(Nishijo et al., 1988a, b; Paton et al., 2006), as well as other cortical areas traditionally 

associated with reward-seeking behavior. The value signals from those areas have been 

found in relation to the obtained reward option itself, but do not reflect the motor actions 

required to obtain it. On the other hand, the motor related cortical areas have been 

identified decades ago (Tehovnik et al., 2000; Lynch and Tian, 2006), which include 

superior colliculus (SC), lateral inferior parietal cortex (LIP),  and frontal eye field  (FEF) 

(Bizzi, 1967; Bizzi and Schiller, 1970; Goldberg and Bushnell, 1981; Bruce and 

Goldberg, 1985). These cortical areas are dominated by movement information (Leon 

and Shadlen, 1999). Where the decision is made and how value representations 

participate in action selection are still under debate. Currently, there are two major 

hypotheses for this process.  

1.1.1 Good-based hypothesis 

The good-based hypothesis (Padoa-Schioppa, 2011) suggests that the decision is 

made in a goods space. It is consistent with the economic theories arguing that human 

make decisions between options regarding different goods by integrating all relevant 

factors (gains, risk, cost, et al) into a single variable capturing the subjective value of 

each option. Neurophysiological studies  have found such subjective value activity in the 
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obitofrontal (OFC) (Padoa-Schioppa and Assad, 2006, 2008; Padoa-Schioppa, 2009) and 

ventromedial prefrontal cortex (vmPFC) (Wallis, 2007; Kennerley and Walton, 2011; 

Padoa-Schioppa, 2011). In particular, neural activity in OFC correlates with the value of 

each single option independent of other options (Padoa-Schioppa and Assad, 2008), and 

adjusts its gain to reflect the full range of values presented in a given block of trials 

(Padoa-Schioppa, 2009). This hypothesis satisfies the normal intuition about decision-

making. For example, when choosing between an apple and a banana, we would think 

about the apple rather than how to move our hands when making the decisions. This 

hypothesis also follows the classic tradition of cognitive psychology, in which the 

cognitive system responsible for decisions is separate from the sensorimotor systems that 

implement its commands (Pylyshyn, 1984). This theory in its purest form would predict 

that motor areas should only represent the motor plan of the chosen option. 

1.1.2 Action-based hypothesis 

Action-based hypothesis (Cisek, 2006, 2007; Cisek and Kalaska, 2010) suggests 

that decisions are made through a biased competition between action representations. In 

this hypothesis, the subjective value is still important, but these signals are not directly 

compared in the abstract space of goods. Instead, they together with other factors such as 

action costs cause bias influence on a competition that take place within a representation 

of potential actions. Current findings in perceptual decision- making have supported this 

hypothesis (Shadlen and Newsome, 2001; Gold and Shadlen, 2007). The neuronal 

activity in LIP (Shadlen and Newsome, 1996, 2001), SC (Horwitz and Newsome, 1999, 

2001), FEF (Hanes and Schall, 1996), dLPFC (Kim and Shadlen, 1999), and basal 

ganglia (Ding and Gold, 2013) act as accumulators, in which different actions competes 
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with each other by accumulating evidence supporting certain action as described in the  

accumulator model. This hypothesis can also be supported by the perturbation experiment 

in which inactivation of deeper layer of SC (McPeek and Keller, 2004) or sub-threshold 

SC micro-stimulation (Carello and Krauzlis, 2004) influence monkeys choice behavior 

rather than simple motor control. This theory in its purest form predicts that chosen value 

should not exist before an action is chosen, since the competition in the action space is 

the only precursor to the decision. 

Both good-based hypothesis and action-based hypothesis are based on the 

neurophysiology recordings in different cortical areas where either value or action is 

coded. But none of them have taken into account of the recording in the association areas 

where action value has been founded. In order to investigate the "elephant" from a 

different angle, we decided to record in one of the association areas (supplementary eye 

field, SEF) to see how value can participate or help with action selection in value based 

decision-making. 

1.2 Supplementary eye field 

We used an ocular motor task in the study of this decision-making problem. The 

first work on saccadic cortical region can be traced back to Ferrier (Ferrier, 1875, 1886). 

The experiments were done by electrically stimulating exposed cortex of anesthetized 

monkeys. Nowadays, the cortical regions identified contributing to the eye movement 

include the frontal eye field (FEF), the parietal eye field (PEF) which is located in the 

lateral bank of the intraparietal sulcus (LIP), the supplementary eye field (SEF) which is 

part of the dorsal medial frontal cortex (DMFC), the medial superior temporal area 

(MST), the prefrontal eye field region (PFEF or dorsal lateral prefrontal cortex, DLPFC), 
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and a region on the medial surface of the parietal lobe called the precuneus region in 

human imaging studies and area 7m in monkey studies (Tehovnik et al., 2000; Lynch and 

Tian, 2006). 

 SEF was first described by Schlag and Schlag-Ray (Schlag and Schlag-Rey, 1985, 

1987) as a region in the dorsomedial frontal cortex in which neurons discharge before 

saccadic eye movements. The identification of this area was motivated by the observation 

of eye movement-representing area in the dorsal bank of the cingulate sulcus, which was 

found while mapping the supplementary motor areas (SMA) (Woolsey et al., 1952). This 

area is located rostral to the SMA and lateral to the pre-SMA. Previous studies showed 

that the neurons in SEF discharge during saccadic movement (Bruce et al., 1985; Mann et 

al., 1988; Schall, 1991; Bon and Lucchetti, 1992), active fixation (Bon and Lucchetti, 

1990; Lee and Tehovnik, 1995),  onset of visual stimuli (Schlag and Schlag-Rey, 1987; 

Schall, 1991; Russo and Bruce, 1996), smooth pursuit eye movement (Heinen, 1995; 

Heinen and Liu, 1997), and hand-eye coordination (Mushiake et al., 1996).  

Despite its similarity to other oculomotor areas, SEF also demonstrates many 

differences especially in regard to its contribution to internal guided saccades. In the first 

study of SEF, Schlag and Schlag-Rey (Schlag and Schlag-Rey, 1987) noted that unlike 

FEF, SEF showed activity prior to spontaneous exploratory saccades. In addition, SEF 

showed longer latency in response to electrical stimulation, suggesting that SEF is more 

remote along the final common pathway compared to FEF. Based on those observations, 

the authors suggested that the two eye fields have different roles of visually guided (FEF) 

and internally guided (SEF) saccades. Chen and Wise (Chen and Wise, 1995) found that 

SEF is involved in oculomotor learning where the neurons were most active during the 
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learning of new and arbitrary stimulus-saccade associations. In addition, in anti-saccade 

experiment, the pre-saccadic activity of SEF neurons was highly predictive of successful 

anti-saccades, showing higher activity in anti-saccade trials than in pro-saccade trials 

with the same saccade metric (Schlag-Rey et al., 1997; Amador et al., 1998, 2004).  It 

was also reported that SEF neurons detect and predict reinforcements (Amador et al., 

2000; Stuphorn et al., 2000a; Coe et al., 2002; So and Stuphorn, 2012). In the 

countermanding task, SEF neurons showed error- and conflict- monitoring activity 

(Stuphorn et al., 2000b). However, unlike neurons in FEF and SC, the neurons in SEF 

were not sufficient to initiate eye movement in visually guided saccades (Stuphorn et al., 

2000b; Stuphorn et al., 2010). 

The idea of SEF involved in the control of internally guided saccades can be also 

supported by perturbation experiments which test the causal relation between the 

neuronal activity and the behavior. Electrical stimulation of the SEF produced saccades 

that take the eyes to a particular orbital position ("goal-directed saccades"), and 

prolonged stimulation kept the eyes at that positions. While stimulation of the FEF 

elicited saccades that had specific direction and amplitudes, prolonged electrical 

stimulation yielded a staircase of identical saccades with intervening fixation (Tehovnik 

and Lee, 1993; Tehovnik, 1995). Moreover, the behavioral state of animals has a much 

greater effect on saccadic eye movements evoked electrically from SEF than from FEF 

(Tehovnik et al., 1999).  In the experiment, monkeys were required to fixate the visual 

target for 600 ms after which a juice reward was given. When stimulating the SEF early 

during the fixation period, 16 times as much current was required to evoke saccades than 

when current was delivered after termination of the fixation spot. During countermanding 
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task in which SEF showed error and monitor signal (Stuphorn et al., 2000a),  electrical 

micro-stimulation to SEF neurons improved the monkeys’ performances (Stuphorn and 

Schall, 2006). Lesion and reversible inactivation study on SEF showed mild but 

significant deficits in temporal discrimination task. In the visual guided task, DMFC 

lesion produced a mild impairment on the contralateral side which recovered within 

weeks. FEF lesions produced a much more dramatic deficit on the task that lasted for 2 

years of continued testing (Schiller and Chou, 1998). Human patients with SEF lesions 

showed impairment in sequence of memory-guided saccades, while there were no 

impairment in visually guided or single memory-guided saccades (Gaymard et al., 1990). 

Consistent with the idea that SEF is involved in internal guided saccade, the 

design of this dissertation study was based on the hypothesis of SEF’s participation in the 

process of value based decision-making in the case of eye movements. As discussed 

above, value based decision depends on the internal representation of desirability as well 

as selectivity, and is an internal guided process.  SEF has appropriate anatomical 

connection for such a role because it sits in the association area linking the option value 

coding cortical areas to the motor related areas. It receives input from orbitofrontal cortex 

and the amygdala (Huerta and Kaas, 1990; Ghashghaei et al., 2007). In addition, SEF 

also forms a cortico-basal ganglia loop with the caudate nucleus, superior temporal 

polysensory (STP) area and the nuclei in the central thalamus that are innervated by 

superior colliculus (SC) and substantia nigra pars reticulata (SNpr). Caudate nucleus, as 

part of this cortico-basal ganglia loop, has already been known to contain saccadic action-

value signals (Lau and Glimcher, 2008). Moreover, SEF has reciprocal connections with 

oculomotor cortical areas, such as FEF, LIP, and 7A (Huerta and Kaas, 1990), which can 
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modulate the neuronal activity in the motor area. Previous recording found that neurons 

in SEF became active before value based saccades much earlier than neurons in FEF and 

LIP (Coe et al., 2002). A previous research in the lab has found reward options and of 

saccadic actions in stimulus driven saccades (So and Stuphorn, 2011). However, whether 

this neuronal activity participates in the ongoing value based decision process is still 

unknown. It could either represent the decision variables used in the decision process 

itself, or merely reflect the downstream outcome of the decision. 

1.3 Thesis overview 

We investigated whether and how SEF participate in value based decision- 

making through an integrated application of physiological recording, and perturbation 

techniques. In addition to non-primate neurophysiology recording, we also carried out a 

human psychophysics pilot study to test the experiment paradigm before the 

physiological recording (Chapter2). Although the human psychophysics experiment 

design is not identical to the one used in the monkey study, it advanced our understanding 

of how visual salience can influence value-based choice behavior through modifying 

value representation. In the main experiment, we designed a gamble task in which 

monkeys had to choose between two options by making an eye movement to the desired 

option (Chapter 3). This decision task allowed us to investigate the neuronal activity in 

terms of both value representation and direction representation. We found that population 

neuronal activity in SEF represented both chosen and non-chosen option in a competitive 

way (Chapter 4), which argues against the value based hypothesis in its pure form. 

Moreover, our results support a sequential process between value and direction 

representation, whereby the chosen option is selected first, and then biases the action 
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selection process (Chapter 5). This result argues against action-based hypothesis in its 

pure form. Our neurophysiologic results therefore support a new cascade hypothesis of 

decision- making which will be discussed in detail in Chapter 5 and Chapter 7. Consistent 

with these neural recording results, reversible inactivation of SEF produced a larger error 

rate and noisier choice behavior (Chapter 6). These results further suggest that SEF 

causally contributes to the value based decision process. The dissertation will close with a 

conclusion, proposing a possible parallel decision- making process in both value and 

direction space, and the possible role of SEF in value based decision- making (Chapter 7). 
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Chapter 2  

A human pilot study ---mechanisms 

underlying the influence of saliency on 

value-based decisions  

This chapter will describe a behavioral study in humans, which was conducted 

before the physiological recording as a pilot study. Though the human psychophysics 

experiment design was not eventually used in the monkey study because of technical 

issues, the result suggest an interesting way of how visual salience can influence value-

based choice behavior through modulating value representation and motor competition. 

Value-based decision- making is the selection of an action among several 

alternatives based on the subjective value of their outcomes. While ideally this choice 

should be independent of irrelevant target properties, it is well-known that low level 

physical properties can profoundly influence decision-making. During free viewing of 

natural scenes and video sequences, saccades are drawn to more salient parts of an image 

(Parkhurst et al., 2002; Parkhurst and Niebur, 2003; Berg et al., 2009), observers find 
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these parts more interesting (Masciocchi et al., 2009), and high salience targets are 

detected faster and more accurately (Egeth and Yantis, 1997; Wolfe, 1998). The question 

thus arises whether visual salience influences not only simple perceptual but also value-

based decisions. 

A number of recent studies demonstrated that both visual salience and subjective 

value can affect decision- making (Navalpakkam et al., 2010; Markowitz et al., 2011; 

Schutz et al., 2012). Nevertheless, the mechanisms underlying this behavioral 

phenomenon might differ depending on the specific influence of salience in the task. 

Sensory stimuli can vary in many different feature dimensions and any of these feature 

domains can influence the overall salience of the target. However, value information is 

typically carried only by some of the features of a visual target. It is therefore of 

importance, whether salience is manipulated on the same or a different feature dimension 

as value. 

In a situation, in which salience is manipulated on a different feature dimension 

than the one indicating value, the main effect of salience manipulations will be to 

influence the overall contrast of the target relative to the background and other targets. In 

other words, low salience will lead to a lower probability that the target will be detected 

to be present.  However, once detected a low salience target will provide as much 

information about its value as a high salience target. Such salience manipulations were 

often employed in previous research, either by modulating detectability of targets 

(Markowitz et al., 2011) or of distractors (Navalpakkam et al., 2010). This generates a 

‘neglect’ situation, in which high value targets can be overlooked, if they are of lower 

salience than the background or alternatives.  
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The situation is different when the salience of the feature dimension is 

manipulated that carries value information, but other feature dimensions of the target are 

still highly salient. In this situation, the perception of the value information is selectively 

influenced by the salience manipulation, while all the other perceptual dimensions are the 

same. The influence of the salience manipulation on choice behavior is therefore not 

simply to make the agent unaware of a low salience target, but rather to create targets 

whose value is harder to perceive. There are fewer studies of this type (Schutz et al., 

2012) and as a result we know much less about the influence of salience on value-related 

information. 

In this study, we designed therefore a two alternative forced choice task, in which 

items in a visual display were endowed with different values (rewards). Human 

participants rapidly chose between items, attempting to maximize the reward amount.  

We manipulated visual salience and value of the targets simultaneously and 

independently across trials, while keeping the detectability of all targets constant. That is, 

we designed visual stimuli, for which one visual feature (luminance contrast with the 

background) was large enough to ensure that their location could be detected rapidly. 

Another visual feature (color saturation) was manipulated so that the visual feature 

carrying value information (color hue) was more or less perceptually salient. Therefore, 

the manipulation of salience influences the perception of value. The salience is with 

respect to behaviorally relevant information (i.e. target value), but not with respect to the 

ability of the subject to localize the targets on the screen.  In this way we could 

manipulate the visual salience of value information without directly affecting motor 

processes used to report the choice. We also mixed no-choice trials in with the choice 
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trials, in which subjects could only select the single target on the screen. The no-choice 

trials were controls to test the effect of visual salience and value on behavior without any 

interference by the choice process.   

We found that both value and salience have strong effects on the decision process 

by themselves, as has congruency between value and salience. Specifically, reaction 

times were significantly correlated with both value and salience of the chosen target, and 

with value difference and salience difference between the chosen target and the non-

chosen target. In addition, the error rate, defined as the rate of choosing the lower valued 

target, was significantly higher in incongruent trials than in any other type of trials. 

After characterizing behavior in a descriptive regression model, we analyzed the 

neuronal mechanisms underlying our behavioral data using a series of four stochastic 

accumulator models based on different functional assumptions (Bogacz et al., 2006; 

Cisek et al., 2009; Purcell et al., 2010; Hanks et al., 2011; Krajbich and Rangel, 2011). 

All models consist of two accumulators, each adding up value information in support of 

one of the two possible choices. For the “independent model”, we assumed that the two 

accumulators did not interact, while the other accumulator models implemented mutual 

inhibition between them.  The “speed model” assumed that salience influenced the rate 

with which value information was accumulated by modulating the strength of the 

incoming value information. The “onset model” was motivated by the observation that 

salience can reduce visual processing time (Ratcliff and Smith, 2011; White and Munoz, 

2011) and assumed an earlier accumulation onset time rather than an increased 

accumulation rate. The full model combined both ways for salience to affect the 

accumulation process. Comparison between model predictions and behavior suggested 
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that mutual inhibition and salience-induced differences in accumulation onset time, but 

not accumulation rate, are necessary to explain the behavior of the human participants. 

2.1 Method 

2.1.1 Subjects 

Fifteen participants (Age: 18-30, eight female) undergraduate and graduate 

students naïve to the purpose of the study, were recruited from the Johns Hopkins 

University community and participated in the experiment after providing informed 

consent. All participants reported normal or corrected-to normal vision and no history of 

color blindness. Among these 15 participants, 9 (Age: 26-30, five females) participated in 

the two pilot experiments, 9 (Age: 18-30, five females) participated in the main 

experiment, and 3 participated in all three experiments. All procedures were approved by 

the Johns Hopkins University Homewood Institutional Review Board. 

2.1.2 Pilot Experiments  

In the first pilot experiment, we determined saturation levels to be used in the 

main experiment based on simple color detection. Four targets with equal brightness 

appeared on the screen, of which one was colored and the others were gray.  The 

participants were required to localize the colored target and to indicate its position by 

pressing the corresponding key on a keyboard.  In order to encourage accuracy, we did 

not set a response deadline. We tested all five colors (cyan, brown, green, blue, yellow) 

used in the main experiment (Figure 2.1) in a range (1%-16%) of saturation levels. In the 

pilot experiment, the color of the targets in the detection experiment did not carry any 

value information and we did not observe systematic behavioral differences across colors  
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Figure 2.1    Behavioral paradigm. A: Sequence of events during no-choice trials (top) 
and choice trials (bottom). The type of stimulus is listed to the right. The black arrow is 
not part of the stimuli; it symbolizes the participants' choices which then lead to the next 
stimulus shown. In all cases shown, the arrow corresponds to the optimal choice.  B: 
Visual cues used. High and low salience targets are left and right, respectively. Rows 
correspond to values, as shown to the right. 
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(Figure 2.2).  In contrast, mean reaction time varied systematically with the saturation 

level, which for our purposes served as a measure for the salience of a target. Low 

saturation levels were defined as in the 3-5% range because the reaction times in response 

to these targets were around 50 ms longer than those in response to high saturation 

targets, defined as 16% where performance plateaued. Accuracy was nearly perfect for all 

values above 6% (with one outlier).  Thus, low saturation level was chosen for each color 

(5% for yellow, 4% for cyan, brown and green, and 3% for blue), so that the salience of 

the color information was substantially reduced from high saturation level (16% for all 

colors), but still strong enough to be detectable. 

In order to test, whether the manipulation of the color saturation by itself had an  

effect on the speed with which the targets could be detected, we performed a second pilot 

experiment (the singleton task) with nine participants (results shown in Figures 2.4 and 

2.7). In this task, 10 targets with different color or saturation as selected in the pilot 

experiment were used. There was no difference in value associated with the targets.  

In each trial, only one target appeared on the screen and the participants were 

asked to indicate its location by pressing the corresponding key. They were encouraged to 

do so as fast as possible while maintaining accuracy. The task made sure the detectability 

of all the targets was the same. 

2.1.3 Stimuli 

In the main experiment, the value associated with a particular target was indicated 

by its color. The color properties of the targets were derived from the hue (H∈[0°,360°)), 

saturation (S∈[0,1]) and brightness (V∈[0,1]) color space. In this space, hue is the 

attribute of a visual sensation according to which an area appear to be one of the  
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Figure 2.2 Effect of saturation level on reaction time and error rate for different 
color targets. The mean reaction times and error rates for nine subjects are plotted. The 
colors of the lines in the plots correspond to the colors of the targets used in the task. A: 
Mean reaction times plotted as a function of the saturation level. Error bars represent 
standard error of the mean reaction time. B: Error rates plotted as a function of the 
saturation level. Error bars represent standard error of error rate.  
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perceived colors; saturation is the colorfulness of a stimulus relative to its own 

brightness; and brightness is the attribute of a visual sensation according to which an area 

appears to emit more or less light. Five different colors indicated five different values that 

could be earned (“cyan”, hue 180°: 0 points;“brown”, 30°: 10 points; “green”, 90°: 20 

points; “blue”, 240°: 40 points; “yellow”, 60°: 80 points) (Figure 2.1B). The targets were 

approximately 1.5×1.5° in size and were always presented approximately 20° away from 

the central fixation point at angles 45°, 135°, 225° or 315° relative to the horizontal. The 

background was approximately 16×22cm in size and was uniformly gray and the 

brightness of each target exceeded that of the background by 4%. Since the targets had all 

the same brightness, the participants had to rely on color information alone to determine 

the relative value of each target. We manipulated the salience of this reward-related 

information by modulating color saturation independently of target value, as determined 

in the first pilot experiment. As discussed, the selection of high and low saturation levels 

for each hue was guided by the psychophysical data in the second pilot study. 

2.1.4 Main experiment 

At the start of the main experiment, participants received instructions on the 

nature of the task. They were informed that they would have the opportunity to earn 

“points” which accumulated over trials, and they were encouraged to maximize the 

number of points earned. 

Participants then were presented with targets on a computer monitor (Figure 

2.1A) in front of them that varied in value and salience. The task consisted of two types 

of trials: choice and no-choice trials. At the beginning of each trial, the participants were 

required to fixate the fixation point for 1500 ms. In choice trials, after the fixation point 
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disappeared, two targets appeared in diagonally opposite locations on the screen. 

Participants chose a target by pressing a key on the keypad (Insert: left up; Delete: left 

down; Home: right up; End: right down; the relative locations of these keys on the 

keypad agree with the locations of the corresponding stimuli on the screen) that 

corresponded to the location of the desired option. Pressing any key other than these four 

was considered an invalid choice.  No-choice trials were used as controls to test the 

influence of both salience and value without interference by choice. In no-choice trials, 

only one target appeared on the screen and participants had to press the key that 

corresponded to the target location.  Pressing one of the other three keys was considered 

an error.  The response deadline (2000 ms) was chosen generously to encourage 

participants to take as much time as necessary to choose the appropriate target. Following 

a valid key press, the amount of points associated with the chosen target and the non-

chosen target were revealed on the monitor. Otherwise, no points were revealed, the next 

trial started after an inter-trial interval whose length was selected randomly (uniform 

distribution) from the range 1000-1500ms. 

Six comparisons were selected from the set of possible value differences between 

the two stimuli: 0 vs.  10 points, 0 vs. 20 points, 10 vs. 20 points, 20 vs. 40 points, 20 vs. 

80 points, and 40 vs. 80 points.  Each of these pairs was presented with equal frequency. 

These comparisons were selected so that across different trial types targets with medium 

values (10, 20, 40 points) had equal probability to be either larger or smaller in value than 

the alternative target. In addition, this set included comparisons with smaller and larger 

value differences.  For each value comparison, there were four different salience-value 

combinations (Figure 2.1A): In low salience trials, both targets were of low salience.  In 
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high salience trials, both targets were of high salience. In congruent trials, the high value 

target was of high salience, while the low value target was of low salience. Finally, in 

incongruent trials, the high value target was of low salience and the low value was of 

high salience. This resulted in 24 different combinations of choice trials (6 value 

comparisons × 4 value-salience combinations). Together with 10 different types of no-

choice trials (5 values x 2 salience levels), there were 34 different trial types that formed 

one block of trials. The trials were presented in blocks, so that a trial of a particular type 

was not presented again until the next block. Within a block, the order of trials was 

randomized. 

Participants were initially trained with high salience (32% saturation level) no-

choice and choice trials. After they achieved an accuracy of 90%, the main experiment 

began. Each participant performed the same number of trials, 11 blocks with 34 trials 

each, 374 trials total. 

2.2 Results 

2.2.1 Influence of value on reaction time 

Our behavioral results showed a significant effect of the chosen target value on 

reaction times in correct trials. The mean reaction time during both no-choice and choice 

trials reflected the value of the chosen target. For all types of choice trials, reaction time 

was significantly correlated with the chosen target value; high salience (t-test, df=34, 

p<10-9), low salience (t-test, df=34, p<10-10), congruent (t-test, df=34, p<10-8), and 

incongruent (t-test, df=34, p<10-6) (Figure 2.3). The correlation coefficients were 

significantly smaller than zero as tested by the t-test in all cases; the larger the chosen 

value, the shorter the reaction time. This result reflected most likely the motivational 
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Figure 2.3 Effect of chosen value on reaction time. The mean reaction times for all 
participants are plotted against the value of the chosen targets in (A) no-choice high 
salience trials, (B) no-choice low salience trials, (C) high salience trials, (D) low salience 
trials, (E) congruent trials and (F) incongruent trials. Each circle shows the mean reaction 
time of one participant in the respective condition. The red line shows the result of linear 
regression.  
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drive of the chosen target value on the speed of decision- making and response execution 

processes. Interestingly, the relative importance of this motivational drive was weaker on 

no-choice trials than on choice trials (slope of no-choice trials: high salience: -0.78 

ms/point,  low salience: -1.6 ms/point; slope of choice trials: high salience: -4.82 

ms/point, low salience: -5.19 ms/point, congruent: -4.33 ms/point, incongruent: -4.25 

ms/point), and in no-choice trials, the correlation between value and reaction time was 

significant only for low salience (t-test, df=43, p=0.03), but not high salience trials (t-test, 

df=43, p = 0.1) (Figure 2.3). 

Not only had the absolute value of the chosen target a significant effect on 

reaction time, but also the difference between chosen and non-chosen target. In our 

experimental design, we used only six out of the full set of all possible value 

combinations. Within this subset of choices, the value of the chosen target (i.e. the target 

with the higher value) was positively correlated with the value difference between chosen 

and non-chosen target. Therefore, we could not use a simple regression analysis to test 

whether the reaction time were correlated with value differences independent of chosen 

value. Nevertheless, a partial correlation analysis showed that, when we controlled for the 

contribution of the chosen value, the reaction time was still significantly correlated with 

the value difference between the chosen and the non-chosen target in all choice trials 

(Spearman partial correlations; high salience trials: df=42, p<10-4, low salience trials:  

df=42, p=0.015, congruent trials: df=42, p=0.016, incongruent trials: df=42, p=0.002). 

This relationship was also negative (slope high salience trials: -0.57 ms/point, low 

salience trials: -0.33 ms/point, congruent: -0.33 ms/point, incongruent: -0.42 ms/point): 

the larger the value difference, the shorter the reaction time. This finding supports the 
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view that participants compared the values of both targets before making a choice. Larger 

value differences made it easier to discriminate the more valuable target and resulted in 

faster responses, while smaller differences decreased the discriminability and required 

more time to select the correct response.   

 

2.2.2 Influence of salience on reaction time 

The salience of the reward information, i.e., the color saturation level of the 

targets, had a significant influence on reaction times when compared to the singleton task, 

the second pilot experiment (Figure 2.4).  In the singleton task, the reaction time for high 

salience targets (high salience singleton, mean: 467 ms) was identical to that for low 

salience targets (low salience singleton, mean: 467 ms) and much faster than the reaction 

time in no-choice trials. On the other hand, in no-choice trials when there was no 

interference between salience and value, the reaction time for high salience trials (mean: 

638 ms) was significantly faster (Kolmogorov–Smirnov (K-S) test, p <10-10) than for low 

salience trials (mean: 726 ms).  

At first sight, the large latency difference between singleton and no-choice trials is 

surprising, since the only difference between the two trial types is that color is 

behaviorally meaningful in one (no-choice), but not the other (singleton). However, this 

difference likely reflects a simple speed-accuracy trade-off caused by contextual 

differences in task demands. In the singleton task, the subjects could be sure that on any 

given trial there was only one target on the screen. The task was in essence to detect the 

changing location of the target as fast as possible. For this purpose, luminance contrast 

provided sufficient information, while target color could be safely ignored.  In this 

situation, the subject’s threshold for selecting a target could be lower than in the choice  
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Figure 2.4 Mean reaction time modulated by both salience and value. Mean reaction 
time across all participants on high salience singleton trials ( the singleton task),  low 
salience singleton trials (the singleton task), no choice high salience trials, no choice low 
salience trials, high salience trial, low salience trial, congruent trials and incongruent 
trials. Asterisks indicate statistical significance of difference between conditions, * means 
p≤0.05, **means p≤0.01, *** means p≤0.001, ****means p≤0.001; in all cases from t-
tests. Sample size is nine. Error bars represent standard error of the mean.  
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condition without affecting accuracy, due to the absence of distractors. In contrast, during 

our main experiment the no-choice trials were embedded in a larger number of choice 

trials. In this situation the subject’s threshold for selecting a target had to be higher than 

in the choice condition, because in the majority of trials there were two competing 

targets, whose value needed to be compared. In principle, there was an absence of 

distractors in the no-choice trials that was similar to the singleton trials. However, since 

the two trial types were randomized, the subjects could not be sure when a no-choice 

would occur and therefore could not adjust their response criteria selectively.  

In choice trials, the reaction time in high salience trials (mean: 851 ms) was 

significantly faster (K-S test, p=0.032) than in low salience trials (mean: 913 ms). 

Moreover, the congruency between differences in value and reward salience had a strong 

effect on the target selection process. In congruent as well as in incongruent trials, the 

two targets varied both in value and in salience. In congruent trials, the more valuable 

target had also more salient reward information. Thus, both the difference in value and in 

salience supported the same target. In contrast, in incongruent trials the more valuable 

target had less salient reward information. Here, the difference in value and in salience 

supported different targets. Accordingly, across all value levels, the reaction time on 

congruent trials (mean: 822 ms) was significantly faster (K-S test, p<10-13) than on 

incongruent trials (mean: 953 ms; Figure 4). This difference could not be explained 

merely by the fact that the chosen targets differed in salience. The reaction time on 

congruent trials was still significantly faster (K-S test, p=0.01) than that on high salience 

trials (Figure 2.4), even though the salience of the chosen targets were the same. 
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Likewise, the reaction time on incongruent trials was also significantly slower (K-S test, 

p<0.01) than that on low salience trials (Figure 2.4). 

2.2.3 Error trials 

In the experiment, we did not set a very stringent time-limit on the decision 

process. Therefore, the error rates, defined as the rate of choosing the lower valued target, 

were low in general. Nevertheless, we also saw an effect of congruency on error rate 

(Figure 2.5A). The error rates for high salience, low salience, and congruent trials was 

low (high: 4.3%; low: 5.8%; congruent: 4.4%). Specifically, the error rate for low 

salience trials was not significantly higher (K-S test, p=0.25) than the one for high 

salience trials. This indicated that the participants were still able to identify the color of 

the low salience targets, although those targets were harder to identify. In contrast, the 

error rate for incongruent trials was much higher (13.1%).  This is higher than the error 

rates for high salience (K-S test, p=0.01), and congruent trials (K-S test, p=0.01) as well 

as for low salience trials although the latter difference was not significant (K-S test, 

p=0.07).  

Furthermore, we compared the reaction time distribution of the error and correct 

trials during choice trials. To quantify the differences, we plotted the cumulative 

distribution for both error trials and correct trials in all four trial conditions. As shown in 

Figures 2.5C and 2.6, in low and high salience trials, the reaction time on error trials 

(mean RT: low salience trial: 959 ms, high salience trial: 924 ms) tended to be longer 

than on correct trials (mean RT: low salience trial: 913 ms, high salience trial: 851 ms). 

Though the differences did not reach significance (K-S test, p=0.28 and p=0.25, 

respectively), the difference is significant (K-S test, p=0.048) for the combined 
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Figure 2.5 Error rates and mean reaction times on different trial types. A: Mean 
error rate for all participants for different trial types. B: Mean error rate in incongruent 
trial for all participants as a function of chosen value. C:  Mean reaction time for both 
correct (light orange) and wrong (dark orange) choice on different trial types. See Fig. 5 
for the meaning of the asterisks. Sample size is nine. Error bars represent standard error 
of the mean reaction time.  
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Figure 2.6 Cumulative reaction time distributions. Cumulative distributions of 
reaction time are plotted for correct (black) and error (red) trials on high salience trials 
(K-S test, p=0.28), low salience trials (K-S test, p=0.25), congruent trials (K-S test, 
p=0.001), and incongruent trials (K-S test, p=0.01). 
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population.  In congruent trials, this difference became larger. The reaction time for error 

trials (mean RT: 955 ms) was significantly longer (K-S test, p=0.001) than for correct 

trials (mean RT: 823 ms). In contrast to all other trial types, in incongruent trials the 

reaction time for error trials (RT: 876 ms) was significantly shorter (K-S test, p=0.01) 

than for correct trials (mean RT: 953 ms). Note that this shorter reaction time on error 

trials was not confounded by the chosen value on those trials. First, on error trials (by 

definition) a smaller value was chosen than on correct trials. Second, the error rate did 

not increase as the chosen value increase (Figure 2.5B). The chosen value on error trials 

was therefore on average not larger than the chosen value on correct trials. This specific 

difference in the reaction time distributions between congruent and incongruent trials 

turned out to be important, because, as we shall see below, it allowed us to distinguish 

between different types of accumulator models of the decision process. 

2.2.4 Descriptive model of behavior 

To summarize, in the main experiment, the reaction time across the six different 

trial types was correlated with the value of the chosen target, the salience of the reward 

information, and the contingency between value and salience (Figure 2.7). Across all 

chosen values in the main experiment, the reaction time was shortest for no-choice high 

salience trials, increased successively for no-choice low salience, congruent, high 

salience, low salience trials, and was longest for incongruent trials. This was very 

different from the results in the second pilot experiment (singleton task), in which the 

results showed no difference between reactions to high and low salience targets (Figures 

2.4 and 2.7).  
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Figure 2.7 Mean reaction times  for both second pilot and main experiment. Mean 
reaction time in the second pilot experiment are plotted against different targets with 
corresponding colors without value information on high salience singleton  trials (green 
solid line), low salience singleton trials (green dotted line) in the singleton task (second 
pilot experiment).  The reaction time in the main experiment are plotted against value of 
the chosen targets on no-choice high salience trials (black solid line), no-choice low 
salience trials (black dotted line), high salience trials ( blue solid line), low salience trials 
(blue dotted line), congruent trials (red solid line), and incongruent trials (red dotted line). 
Sample size is nine. Error bars represent standard error of the mean reaction time.  
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We further used a descriptive model to quantify the trends we had observed in the 

behavior data. There were a number of factors that could contribute to the decision- 

making process, including 1) the value of the chosen target, 2) the salience of the chosen 

target, 3) the value of the non-chosen target, 4) the salience of the non-chosen target, 5)  

the value difference between chosen and non-chosen target, 6) the salience difference 

between chosen and non-chosen target, as well as the multiplicative interaction between 

salience and value for both 7) chosen and 8) non-chosen target. In order to quantify the 

effect of each of these possible factors, we fitted a family of nested regression models to 

the reaction times in correct choice trials that included all possible iterations of the seven 

factors plus a baseline term. In order to combine the reaction time data across all 

participants, we normalized reaction times within each participant between 0 to 1 (thus, 

the normalized RTs computed in eq. 11 cannot be directly compared with the actual RTs 

in Fig. 4). By comparing the Bayesian information criterion value (BIC), and Akaike 

value (Burnham and Anderson, 2002; Busemeyer and Diederich, 2010)  of each model 

(Table 1), we identified the best fitting model.  Of all linear models tested, the lowest BIC 

value and lowest Akaike value occurred for the same model: 

0.5209 0.0015* 0.0373*
                  0.0018*( ) 0.0188*( )

normalized chosen chosen

chosen nonchosen chosen nonchosen

RT v s
v v s s

= − −
− − − −

     (2.1) 

where vchosen and vnon-chosen are the point values of the chosen and non-chosen target (

(0,0.1,0.2,0.4,0.8)iv ∈ ), and 𝑆𝑆𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  are the salience values of the chosen 

and non-chosen targets (𝑆𝑆𝑖𝑖 ∈ (0,1)), respectively. All four parameters (but none of the 

other four possibilities listed above) contributed significantly to the regression, including: 

1) value of the chosen target (t-test: p<10-7), 2) salience of the chosen target (t-test: 
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Rank Variables resulting in model BIC AIC Evidence ratio 

1 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑑𝑑𝑣𝑣,𝑑𝑑𝑜𝑜  -8711 8734 1 

2 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑑𝑑𝑜𝑜, 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜   -8711 -8734 1 

10 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑑𝑑𝑣𝑣, 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  -8710 -8733 1.23 

13 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑑𝑑𝑣𝑣 -8708 -8726 3.90 

17 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑑𝑑𝑣𝑣,𝑑𝑑𝑜𝑜, 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

× 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

-8705 -8732 23.90 

 

Table 2.1  BIC table for descriptive behavior regression model. All possible 
combinations of eight independent variables:  𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 
𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  (𝑑𝑑𝑣𝑣), 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  (𝑑𝑑𝑜𝑜), interaction between chosen value and 
salience (𝑣𝑣𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑜𝑜𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ), interaction between non-chosen value and non-chosen 
salience (𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ) were tested against the behavioral data. The first 
column shows the BIC rank of the model among all other 255 models. The second 
column shows the selected variables with the corresponding rank. The third column 
shows the BIC value, the forth column shows the AIC value, and the fifth column shows 
the BIC evidence ratio for each model compared with the best fitting model. 
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p<10-5), 3) value difference between chosen and non-chosen target (t-test: p<10-4), and 

4)salience difference between chosen and non-chosen target (t-test: p=0.001). Table 1 

shows the BIC values, Akaike value and evidence ratio (relative to the best-fitting model) 

for different models ranked by their fit to the behavioral data. From the evidence ratios it 

is clear that there were actually approximately 12 different regression models all 

containing 4 variables that all fitted the data almost as well as the best-fitting model. This 

phenomenon is likely related to the fact that the variables we chose were most likely not 

completely independent of each other such as the equation containing Schosen  and 

Snonchosen  can be equally expressed as an equation containing Schosen  and dS.  However, 

there was a clear drop in evidence for alternative 3- or 5-variable models. 

2.2.5 Accumulator models 

The behavioral results, confirmed by a linear regression model, showed that both 

value and salience of the targets as well as the congruency between them influence the 

decision- making process. To make progress towards understanding the underlying 

mechanisms, we modeled the decision process using accumulator models with four 

functionally related architectures (Figure 2.8). In addition to suggesting a functional 

mechanistic explanation of the underlying mechanisms, accumulator models have the 

additional advantage over descriptive regression models (like the one developed in the 

previous section) that they describe the entire distribution of behavioral data, rather than 

only their mean values. This modeling approach allowed us to address several questions 

beyond the identification of the behaviorally relevant factors. Most importantly, it 

allowed us to ask questions regarding the functional architecture of the decision-making 

mechanism that implements the value-based decisions. In the following simulation-based  
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Figure 2.8 Architecture of the four accumulator models. A:  Model 1: Independent  
model, without mutual inhibition between the targets. B:  Model 2: Speed model. 
Salience influences the rate of accumulation but not its the onset. C: Model 3: Onset 
model. Salience influences the onset of accumulation but not its rate. D:  Model 4: Full 
model with feed forward inhibition model salience influencing both the onset of 
accumulation and its rate. vi are the units that transfer sensory input into value. mi are the 
accumulators that integrate the input and trigger a motor response. Consistent with 
appendix equation 2, Δt=t1-t2 is the onset difference generated by salience differences, Ni 
is the number of accumulations that occur in each accumulator mi, I(vi) is the rate of 
accumulation for each accumulator mi, and u is the mutual inhibition parameter between 
two accumulators 
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analysis, we focused specifically on two of these mechanistic questions. First, is there a 

role for inhibitory interactions between the processes representing the two targets? 

Second, how does the salience of the reward information influence the decision- making 

process? In addition, accumulator models incorporated in a natural fashion non-linearity 

in the decision-making process, such as the threshold, which is not easy to be captured in 

a linear regression model. 

Models 1-3 have the same complexity (6 parameters). As described below, they 

are special cases of the general functional Model 4 which is slightly more complex with 7 

parameters. In order to determine the importance of particular factors, for Model 1-3, we 

systematically constrained one factor of the general model (Model 4), while allowing the 

other factors to change freely to achieve the best possible fit with the behavioral data. All 

other aspects of the functional architecture were held constant across the four different 

variants (mutual inhibition for model 1, onset difference for model 1, accumulation speed 

for model 3, none for model 4) .All models have two accumulator units, each of which 

integrates the input from the target whose choice they would trigger until it reaches the 

response threshold. The quanta size of the input for accumulation is determined by the 

target value. The rational for this design choice follows immediately from the idea that 

what is accumulated during the decision process is support for a particular choice (here 

the value that is associated with selecting a particular target). In Model 1 (independent 

model), salience influences both the onset and the rate of accumulation but the two 

accumulators are independent, with no inhibitory interaction between them (Figure 

2.9A). In contrast, Models 2 (speed model) and 3 (onset model) are feed-forward 

inhibition models. Here, the two accumulator units also integrate the input from the target  
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Figure 2.9 Examples of the time evolution of variables in independent models in 
incongruent trials. Within each plot, the upper panels are examples for correct trials, the 
lower panels for error trials. The paths for high value low salience targets are shown in 
red, and for low value high salience targets are in black.  All competitions start at 0 and 
threshold is always 100. A: Model 1:  independent model, no mutual inhibition between 
targets. B: Model 2:  speed model, salience influences the rate of accumulation. C: Model 
3:  onset model, salience influences the onset of accumulation. D: Model 4: the free 
model.  
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whose choice they would trigger, but in addition they receive inhibitory input from the 

alternative target, with the inhibitory strength determined by the behavioral fit. The 

strength can therefore approach zero, which includes the condition enforced in model 1. 

The key difference between Models 2 and 3 is the mechanism by which salience 

influences the integration process. Model 2 assumes that salience influences the quality 

of the perceptual process output, and thus the probability of accumulation, which is 

independent of the input strength which is determined by value (Figure 2.9B). This 

results in a modulation of the mean drift rate, which is orthogonal to the effect of value, 

as supported by our behavioral analysis. In Model 3, on the other hand, salience is 

assumed to influence the onset time of the accumulation process (Figure 2.9C), but not 

the probability of accumulation (i.e., mean drift rate). Finally, salience is free to modify 

both onset and drift rate in Model 4 (Figure 2.9 D). 

We optimized the parameters in all four models using the observed reaction times 

in correct choice trials, which were used as the training set for parameter tuning. We then 

compared the simulated reaction time distribution with the training set reaction 

distribution using person chi-square statistics (Van Zandt et al., 2000; Purcell et al., 2010) 

. This method maximized the proportion of correct responses in addition to matching the 

distribution of observed RTs. In order to avoid over fitting of the training data and to test 

the models' capability of prediction, in addition, we compared the predicted behavioral 

performance with two test sets, neither of which was used during training. One was the 

observed behavior in no-choice trials, the other was the behavior in erroneous choice 

trials (the trials in which the participant chose the lower valued target). In addition, we 
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also used the BIC to test both fitness and prediction of the models. The results of this 

analysis are consistent with the results using the chi-square criterion (table 2).  

2.2.6 Mutual inhibition is necessary to explain behavior 

The independent model (Model 1) did not explain the reaction times well. Its 

mean χ2 fit (7.08) was significantly larger than that for the other two constrained models 

(Model 2: mean χ2 fit, 2.44; t-test, df=29, p<10-8, Model 3: mean χ2 fit, 2.24; t-test, df=29, 

p<10-10). More importantly, the predicted reaction times in no-choice trials did not fit the 

observed reaction times (Figure 2.10 A,B). Specifically, a very general characteristic of 

the observed reaction time data was the increased reaction time latency on choice trials as 

opposed to no-choice trials (Figure 2.7). In contrast, the independent model predicted that 

the reaction times for choice trials were as fast as those in no- choice trials, due to the 

lack of inhibition from the non-chosen target. In addition, Model 1 overestimated the 

error rate on incongruent trials (Figure 2.10C) and it failed to predict the observation that 

on incongruent trials the reaction times on error trials were shorter than those on correct 

trials (Figure 2.10D). For no-choice trials, the mean χ2 value (12.84) of Model 1 was 

significantly larger than that of the other two models (Model 2: χ2: 8.38, t-test, df=29, 

p<10-15, Model 3: χ2: 3.61, t-test, df=29, p<10-34). In sum, the analysis of Model 1 

showed very clearly that mutual inhibition between two choices is important for target 

selection. Model 2, in which salience modulates the accumulation rate, reaction time 

differences caused by salience differences were positively correlated with the time it took 

the accumulated activity to reach the threshold. Therefore, this model predicted that the 

reaction time difference caused by salience will be larger for choice trials than for no- 



39 
 

 choice trial no-choice trial 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑖𝑖𝑓𝑓  𝜒𝜒𝑓𝑓𝑖𝑖𝑓𝑓2  𝐵𝐵𝐵𝐵𝐵𝐵𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓  𝜒𝜒𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓2  

Independent 

model -111.86 7.08 -15.76 12.87 

Speed model -114.68 2.44 -39.30 8.38 

Onset model -115.51 2.44 -44.27 3.61 

Full model -114.37 3.50 -37.89 8,20 

Table 2.2 Fitness of four different models in fitting reaction time on choice trials and 
predicting reaction time on no-choice trials. The first column shows the type of the 
model under testing. The second and third columns show the BIC value and 𝜒𝜒2 for the 
choice trials when optimizing model parameters during the training section. The fourth 
and fifth rows show the BIC value and 𝜒𝜒2  for the no-choice trials when testing the 
models' capability of prediction.  
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Figure 2.10 Predictions of Model 1 (independent model). A: Predicted mean reaction 
times are plotted against the value of the chosen targets on different trial types. Each 
sample size is a 100 simulations. Error bars represent standard error of the mean reaction 
time. Symbols are as in Figure 7. B: Predicted mean reaction times are plotted against 
observed mean reaction time for 24 different choice trial types (black circle) and 10 
different no-choice trial types (red circle). C: Comparison between observed (light orange) 
and predicted error rate (grey) on different trial types. D: Comparison between observed 
(correct trial: light orange; error trial: dark orange) and predicted (correct trial: light grey; 
error trial: dark grey) mean reaction times on different trials types. Symbols are as in 
Figure 5. 
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choice trials (Figure 2.11A).  On the other hand, in Model 3, in which salience modulates 

the accumulation onset, reaction time differences caused by salience were independent of 

how long it takes the activity to reach threshold. Therefore, this model predicted that the 

reaction time difference caused by salience will be similar for choice and no-choice trials 

(Figure 2.12A). Consequently, when the parameters of both models were adjusted so that 

they fit the reaction time differences in choice trials, the salience-induced reaction time 

differences in no-choice trials predicted by Model 2 should be smaller than the ones 

predicted by Model 3. This is exactly what the simulations showed (Figures 2.11A, 

2.12A). Specifically, Model 2 predicted that reaction times in no-choice trials should not 

be significantly influenced by salience, as can be seen by comparing the solid and dotted 

black lines in Figure 2.11B. This prediction is not unreasonable. The luminance contrast 

of high salience targets was similar to that of low salience targets. This allowed the single 

targets to be equally localized. Furthermore, value information was not behaviorally 

relevant, since no choice was required. Therefore, one might expected that differences in 

salience do not necessarily influence reaction time similar as in the singleton task (Figure 

2.7). In contrast, Model 3 predicted that reaction times to targets with high salience of the 

reward information should be faster than the ones to targets with low salience, as 

indicated in the corresponding plot in Figure 2.12A. 

This difference in the predictions of the two models allowed us to compare how 

well they fit the observed behavioral data. A comparison of the actual (Figure 2.7) with 

the predicted reaction times (Figure 2.11A, 2.12A) showed that, overall, Model 3 agreed 

much better with observations than Model 2. The behavioral fit of Model 3 (mean χ2 test 

=3.61) in no-choice trials was significantly (t-test, df=29, p<10-15) better than that of 



42 
 

 

Figure 2.11 Predictions of Model 2 (speed model). Symbols are as in Figure 2.10.  
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Figure 2.12 Predictions of Model 3 (onset model).  Symbols are as in Figure 2.10.  
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Model 2 (mean χ2 test =8.38). In particular, the human participants showed consistently 

longer reaction times in no-choice trials with low salience targets compared to trials with 

high salience targets. Consequently, the comparison of predicted to observed reaction 

times in Figures 2.11B and 2.12B showed that for most no-choice trials (indicated by the 

red circles) the predicted RTs of Model 2 are too short, while the predictions of Model 3 

for no-choice trials were as accurate as for choice trials. 

Secondly, the two models also made different predictions with regards to the 

reaction times in error trials, providing another opportunity to determine which model 

provided a better description of behavior. The behavioral data showed that the reaction 

time in all trial types was significantly longer for erroneous than for correct responses, 

except for incongruent trials for which the pattern was incongruent trials for which the 

pattern was the opposite (Figure 2.5C). Thus, there was an inversion of reaction time for 

congruent and incongruent trials with respect to correct and erroneous responses. Both 

models predicted correctly that in congruent trials the reaction time  was significantly 

longer on error trials than on correct trials (Model 2: K-S test, p=0.004; Model 3: K-S 

test, p=0.003). On incongruent trials, however, Model 2 predicted that the reaction time 

on erroneous trials was also significantly longer (K-S test, p=0.002) than on correct trials 

(Figure 2.11D). This is because an error can only occur when the accumulator associated  

with the low value target happened to reach the threshold earlier than the one associated 

with the high value target. Since in Model 2 the low value accumulator tended to rise 

slowly, this can only happen if the competing high value accumulator also rose slowly. 

Thus, in this model the reaction time on error trials had to be longer than on correct trials 

(Figure 9B).  



45 
 

In contrast, Model 3 accurately predicted shorter reaction times on erroneous than 

on correct incongruent trials (Figure 12D). Sensitivity analysis showed that the difference 

in onset time of the accumulation between high and low salience targets was significantly 

linearly correlated (t-test, df=47, p<10-8, Sobol Index: 0.43) with the reaction time 

differences between error and correct trials on incongruent trials (Figure 13).  In Model 3, 

errors were due to the earlier onset of accumulation for the low value targets. This onset  

time difference, especially when it is large, created a window of opportunity for the low 

value accumulation process during which it experienced no competition from the high 

value accumulation process. Therefore, in this model the reaction times on error trials 

tended to be shorter than on correct trials (Figure 2.9C). The fact that this prediction, 

which was specific for Model 3, was confirmed by the behavioral data gives further 

support for the hypothesis that differences in the onset latency of accumulation (as in 

Model 3) rather than in the rate of accumulation (as in Model 2) explains the salience 

effect in our behavioral choice task. 

Finally, we also optimized the full model, where salience could influence both 

onset and rate of the accumulation (Figure 2.14). This model has one parameter more 

than Models 2 and 3. We would therefore expect at least as good a fit to the training data 

as the best of the less complex models. However, Model 4 does not necessarily have 

better predictive power for the test data since it might still contains terms based on 

incorrect assumptions. Indeed, the full model did not significantly improve the accuracy 

of the reaction time fits in the training set (correct choice trial, mean χ2 fit =3.50), and it 

resulted in decreased accuracy when predicting the reaction time in the testing set (no- 
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Figure 2.13 Effect of difference in the onset time of accumulation in Model 3 (onset 
model). The predicted mean reaction time difference between error and correct trials on 
incongruent trials  is correlated with the simulated time of accumulation onset, shown in 
50 different simulations (black circles), together with the regression line (red).    
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Figure 2.14 Predictions of Model 4 (full model).  Symbols are as in Figure 2.10.  
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choice trials, mean χ2 test =8.20) over Model 3. This provided additional support for 

Model 3. 

2.3 Discussion 

We studied the influence of visual salience on value-based decision processes of 

human observers performing a two-alternatives-forced-choice task. Most previous studies 

examined the effect of visual saliency (Berg et al., 2009) and value (Platt and Glimcher, 

1999; Bendiksby and Platt, 2006; Milstein and Dorris, 2007; Milosavljevic et al., 2010)  

on saccades and decisions in isolation. In contrast, we manipulated saliency and value of 

targets simultaneously, in order to investigate how these two factors interact and how 

they influence the decision process. 

Our behavioral results showed that not only value, but also visual salience as well 

as congruency between value and visual salience influence the decision process. 

Specifically, we found that reaction time across all trial types is correlated with all three 

of these variables. Furthermore, congruency had an effect on error rates as well as on 

reaction times in error trials. These findings are in broad agreement with recent 

behavioral studies of eye movements in macaque monkeys and humans which also 

manipulated salience and value information simultaneously (Navalpakkam et al., 2010; 

Markowitz et al., 2011; Schutz et al., 2012). This convergence of findings across species 

and effector systems indicates that these behavioral trends are robust and reflect basic  

selection mechanisms in the primate brain. However, despite the similarity of the 

behavioral findings, the mechanism underlying these phenomena can differ depending on 

whether salience and value information share the same feature dimension as will be 

discussed later. 
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2.3.1 Onset time differences 

The speed and the onset model are based on different hypotheses how salience 

modulates the decision process. In the speed model, salience influences accumulation 

speed by modulating the probability of an increase in activity, which influences how 

likely the accumulator responds to the input independent of its strength. A possible 

neurophysiological interpretation could be that salience modulates the likelihood that  

an individual neuron responds to synaptic input, or how many neurons out of the entire 

pool of ‘decision’ neurons respond to the input in a given time interval and for a given 

stimulation. This interpretation does not seem to be unreasonable, given our current 

understanding of primate decision-making mechanisms. It is therefore quite noteworthy 

that our analysis ruled out this model so convincingly. Instead another model, namely the 

onset model, explained the observed reaction time distribution of error trials and no-

choice trials much better. 

In the onset model, salience influences the onset time of accumulators to 

accumulate value information instead of influencing accumulation speed. Specifically, 

this stochastic model suggests an earlier accumulation onset time when processing high 

compared to low salience targets. What might be the sources of this earlier onset? One 

possibility is that the difference is due to an attentional shift.  Specifically, high salience 

targets might attract attention first, as predicted by bottom-up attentional guidance 

models (Itti et al., 1998). Focus on one of the targets might in turn result in an advantage 

for the accumulation process associated with this target, similar to the logic underlying a 

recent model of how value-based decisions are guided by visual attention (Krajbich and 

Rangel, 2011; Lim et al., 2011). However, in our paradigm, attentional guidance can only 



50 
 

explain the behavioral results on choice trials but not on no-choice trials. In the latter, 

attention should always be focused on the only target present, but we found that reaction 

times still differed between high and low salience trials (Figure 7). Even though saliency-

based models (Itti et al., 1998) predict slightly faster deployment of attention to more 

salient than to less salient targets, the effect is likely too small to explain the size of the 

observed reaction time difference in no-choice trials. Allocation of attention can then not 

be the main reason for the onset differences in the accumulation process. 

An alternative hypothesis is that the onset difference is caused by differences in 

the visual processing time required for computing the value of high and low salience 

targets (Ratcliff et al., 2007; Ratcliff and Smith, 2011). Low salience targets might need 

more time to be identified than high salience targets. This hypothesis is consistent with 

our behavioral data, since the salience effect on reaction time is similar for choice and no-

choice trials. It is also supported by neurophysiological findings of clear effects of 

contrast, but not of attention, on visual response latencies in primates (Lee et al., 

2007).Our results suggest therefore that the onset time of accumulation is time-locked to 

the end of the visual processing. This implies a sequential form of information 

processing, similar to a recent model of target selection in frontal eye fields (Purcell et 

al., 2010). What might keep the accumulators from integrating evidence earlier?  One 

possibility is that a specific gating mechanism blocks accumulation until a certain degree 

of difference has developed in the input sources. Alternatively, in our model information 

about the location of potential targets drives the accumulators equally well and the two 

accumulators inhibit each other sufficiently to suppress any activity increase. Only when 



51 
 

value information is added, the symmetry is broken and the differentiated accumulation 

process can start. 

2.3.2 Functional architecture of value-based decision-making in primates 

Our analysis using stochastic accumulator models aimed at investigating the 

neuronal mechanisms underlying behavior. Obviously, simple modeling studies can only 

provide indirect evidence about mechanisms implemented in the brain. Nevertheless, the 

fact that our models show qualitative differences in their ability to explain behavioral data 

allows us to rule out entire families of functional architectures. The failure of Model 1, 

the independent model, shows that mutual inhibition between choices is required for the 

decision mechanism. The comparison between the two feed-forward inhibition models, 

speed and onset model, shows that increased visual salience leads to an earlier start of 

accumulation rather than an increased rate of accumulation. That the rate of accumulation 

plays a minor role, if any, is underscored by the fact that including it in addition to the 

change in onset time (Model 4) does not improve performance significantly. These 

findings allow us to formulate a strong hypothesis about the type of decision architecture 

that underlies the effects of visual salience and value information on choice behavior. 

One hypothesis is that value and salience independently drive action selection and 

compete for access to the motor system. Indeed, we observed that early choices reflected 

more strongly visual salience, while later choices were more driven by value, consistent 

with previous findings by Markowitz et al. (2011). These authors suggested that the 

reaction time difference is due to the time-varying balance between stimulus- and reward-

driven selections. This was reasonable, since in their study salience influenced both 

location and value-related information simultaneously. Information about target location 
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influences the preparation of motor acts directed towards these locations (Schiller and 

Tehovnik, 2005). Information about target identity, on the other hand, is crucial for the 

generation of value information, which in turn affects competition between different 

value options (Padoa-Schioppa, 2011). However, in our study, we designed stimuli whose 

salience influenced only the discrimination of target identity, but did not affect the ability 

to locate a target. Therefore, automatic selection processes driven by stimulus location 

were equally strong for all targets as confirmed by our second pilot study (singleton task; 

see Figure 2.4 & 2.7). If value and salience were competing during the decision process, 

the choice behavior should show a joint dependence on sensory and goal-directed 

processes. In contrast, our behavioral results do not show an interaction between visual 

salience and value.  

This suggests a second hypothesis that there is a combined value and salience 

map within the visuomotor system (Navalpakkam et al., 2010; Schutz et al., 2012). Under 

this hypothesis, the salience map formed is first influenced by bottom-up factors (in our 

case luminance contrast with the background) and is only later modified by value 

information. This implies that bottom-up salience alone can influence behavior 

independent of value information, in particular during early responses. However, in our 

study we were interested in dissociating the effect of salience on value-based decision- 

making from the one on motor generation in general. Indeed, the salience manipulation 

that we used does not seem to have influenced motor behavior very much, since the 

reaction time for both high and low salience targets is the same in the singleton task 

(Figure 2.4 & 2.7). Moreover, if the salience map is modulated by the attention captured 

by the objects associated with reward (Anderson et al., 2011), we would expect to see a 
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joint dependence between reward and salience, which is not shown in the result. 

Therefore, the salience effect in our experiment is less likely to be the result of early 

activation in the salience map driven by bottom up factors.  

Instead, these findings support a third alternative hypothesis about the interaction 

of salience and value in decision-making; namely that value-based action selection is a 

serial iterative decision process. First, lower sensory areas process the stimuli and derive 

value and location information from them. The salience of the relevant visual feature 

influences how long this process takes, but has no influence on the output of this stage. 

The processed information is then sent to accumulators in a higher comparative area that 

selects the final (and motor) response. At this point the value input has been stripped of 

other content, such as saliency. This serial processing hypothesis contains the predictions 

of the combined saliency map hypothesis as a special case. When the sensory features 

carrying both target location and identity information are of varying salience, the targets 

with more salient features will influence the decision-making stage earlier and there will 

be a higher likelihood that the subject will choose the more salient target (in particular, if 

the accumulation process was fast and there was less time for the less salient target to 

reach the accumulation stage). Behavior will appear as if bottom-up salience of the 

targets alone can influence choice independent of value information. Thus, for this set of 

experimental conditions, both hypotheses explain the behavior equally well. In contrast, 

our present experimental findings can only be explained by the serial processing 

hypothesis, but not the combined saliency map hypothesis. This attribute of the serial 

processing hypothesis is attractive. Nevertheless, at this point we do not know, if this 
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conjecture is indeed correct, since we have not tested subjects in both conditions and 

determined if our model can really explain data across both situations. 

The higher order areas involved in the final decision likely include structures 

representing subjective value, such as orbitofrontal (Padoa-Schioppa and Assad, 2006) 

and ventromedial prefrontal cortex (Kim et al., 2008; Lim et al., 2011), and/or  visual-

motor association structures, such as the lateral intraparietal area (Platt and Glimcher, 

1999; Sugrue et al., 2004), supplementary eye field (So and Stuphorn, 2010), or the 

supplementary motor area (Scangos and Stuphorn, 2010). Given our results, it is worth 

investigating whether and how these areas integrate both visual salience and value 

information during value-based decision- making when salience influences selectively 

the value perception of an object, but not awareness of its presence. 
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Chapter 3  

General Methods 

This chapter is a methods chapter. In the chapter, the main behavior paradigm will 

be introduced. This paradigm together with its modified versions will be used throughout 

the whole dissertation work. The chapter will also discuss the basic techniques used in 

the dissertation project, including monkey neurophysiology set up, the general methods 

for recording and basic analysis methods. This will provide background knowledge for 

the following chapters. 

3.1 Experimental Set-Up and Surgery 

Two rhesus monkeys (both male; monkey A: 7.5 kg, monkey I: 7.2 kg) were 

trained to perform the tasks used in this study. All animal care and experimental 

procedures were approved by Johns Hopkins University Animal Care and Use 

Committee. During the experimental sessions, each monkeys was seated in a primate 

chair, with its head restrained, facing a video screen. Eye position was monitored with an 

infrared corneal reflection system (Eye link,SR Research ltd., Ottawa, Canada) and 

recorded with the Plexon system (Plexon Inc., Dalls,TX) at a sampling rate of 1000 Hz. 
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The monkeys were water restricted, and we use steamed water as reward to motivate the 

monkeys' participation. We used a newly developed fluid delivery system to deliver the 

water. The system was based on the two syringe pumps connected to a fluid container 

that was controlled by a stepper motor. This delivery system made sure the accuracy of 

the fluid amounts which is critical for our experiment design. 

All surgical procedures were done under sterile conditions and also accordance 

with the rules and regulations of the Johns Hopkins Animal Care and Use Committee. 

3.2 Behavior Paradigm --- a gambling task 

In the gambling task, the monkeys had to make saccades to peripheral targets that 

were associated with different amounts of reward (Figure 3.1A). The targets were squares 

of various colors, 2.25×2.25° in size. They were always presented 10° away from the 

central fixation point at a 45, 135, 225, or 315° angle. There were 7 different targets 

(Figure 3.1B), and each gamble target consisted of two colors corresponding to the two 

possible reward amounts. The portion of a color within the target corresponded to the 

probability of receiving that reward amount. Four different colors indicated four different 

reward amounts (increasing from 1, 3, 5 to 9 units of water, where 1 unit equaled 30 µl). 

The minimum reward amount for the gamble option was always 1 unit of water, while the 

maximum reward amount ranged from 3, 5 to 9 units, with three different probabilities of 

receiving the maximum (20, 40, and 80%). This resulted in a set of gambles, as shown in 

the matrix (Figure 3.1B), whose expected value on the diagonal axis was the same. 

The task consisted of two types of trials- choice trials and no-choice trials. All the 

trials started with the appearance of a fixation point at the center of the screen (Figure 
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Figure 3.1 Gambling task.  A: Sequence of events during choice trials (top) and no-
choice trials (bottom). The lines below indicate the duration of various time periods in the 
gambling task. The black arrow is not part of the stimuli; it symbolizes the monkeys' 
choices which then lead to the next stimulus shown. B: Visual cues used in the gambling 
task. Four different colors indicated four different reward amounts (increasing from 1, 3, 
5 to 9 units of water, where 1 unit equaled 30 µl). The expected value of the gamble 
targets along the diagonal axis was the same. C: Target set for the new gamble 
experiment.  
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3.1A), on which the monkeys were required to fixate for 500-1000 ms.  In choice trials, 

two targets appeared on two locations that were randomly chosen among the four 

quadrants. Simultaneously, the fixation point disappeared and within 1000 ms the 

monkeys had to choose between the gambles by making a saccade toward one of the 

targets. Following the choice, the non-chosen target disappeared from the screen. The 

monkeys were required to keep fixating on the chosen target for 500-600ms, after which 

the target changed color. The two-colored square then changed into a single-colored 

square associated with the final reward amount. This indicated the result of the gamble to 

the monkeys. The monkeys were required to continue to fixate on the target for another 

300 ms until the reward was delivered. In the choice trial, each gamble option was paired 

with all other six gamble options. This resulted in 21 different combinations of options 

that were offered in choice trials. The sequence of events in the no-choice trials was the 

same as in the choice trials except that only one target was presented. In those trials, the 

monkeys were forced to make a saccade to the given target. All 7 gamble options were 

presented during no-choice trials. A subset (22%) of choice trials were onset-difference 

trials, in which one target appeared three video frames (~50ms) earlier than the second 

target (Figure 3.1C). The onset-difference trials consisted of four specific comparisons of 

gamble options with varying degrees of difference in subjective value.  Each option could 

be either the early or late onset target, resulting in 8 different types of onset-difference 

trials.   

We presented no-choice and choice trials mixed together in blocks of trials that 

consisted of all twenty one different choice trials and eight onset different trials and seven 

different no-choice trials. Within a block, the order of trials was randomized. The 
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locations of the targets in each trial were also randomized, which prevented the monkeys 

from preparing a movement toward a certain direction before the target appearance.  

3.3 Estimation of subjective value 

We used Maximum Likelihood Difference Scaling (MLDS) (Maloney and Yang, 

2003; Kingdom and Prins, 2010) to estimate the subjective value of different targets. The 

algorithm is an optimization algorithm which gives the best estimation of the subjective 

value and internal noise based on the maximum across-trial. The maximum across-trial 

likelihood is defined as:  

1
( (1), (2),... ( ), ) log ( ; (1), (2),... ( ), )

T

d e k k d
k

LL N r p r D Nψ ψ ψ σ ψ ψ ψ σ
=

=∑              (3.1) 

where ( )iψ  are the subjective value for all the targets, dσ  is the internal noise,  rk is the 

response (chosen:1 or non-chosen:0 ) on the kth trial, and 𝐷𝐷𝑘𝑘  is the estimated subjective 

value difference between two targets in the kth trial given the set of subjective value and 

internal noise, 𝑟𝑟 the full set of responses across all trials and 𝑇𝑇 the number of trials. We 

performed the MLDS using Matlab based toolbox "Palamedes " developed by Prins and 

Kindom (Prins and Kingdom, 2009). 

3.4 Electrophysiology recording 

3.4.1 Single unit recording 

After training, we placed a hexagon chamber ( 29 mm in diameter) centered over 

the midline, 28 mm (monkey A) and 27 mm (monkey I ) anterior of the interaural line. .  

Then after a minimum six week healing period, we performed a craniotomy within this 
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chamber under ketamine anesthesia.  The site of the craniotomy was cleaned daily with 

sterile saline (0.9% sodium chloride), Betadine Solution (10% povidine iodine), and 

Nolvasan (0.5% chlorhexidine gluconate).  When recording within the opened region was 

complete, the craniotomy was enlarged to expose a new area for sampling.  After each 

recording session, the craniotomy and surrounding area were thoroughly cleaned, the 

recording chamber was filled with sterile saline, and a titanium cover was screwed onto 

the chamber in order to keep the area clean and isolated from the external environment.   

During each recording session, single units were recorded using 1-4 tungsten 

microelectrodes with an impedance of 2-4 MΩs (Frederick Haer, Bowdoinham, ME). 

The microelectrodes were advanced using a self-built microdrive system. .A hexagonal 

chamber system enabled us to position the electrode over the brain within a grid 

framework of 0.25 mm spacing. 

Data were collected using the PLEXON system. Up to four template spikes were 

identified using principal component analysis and the time stamps  and local field 

potential were then collected at a sampling rate of 1,000 Hz. Data were subsequently 

analyzed off-line to ensure only single units were included in consequent analyses. 

3.4.2 Cortical location 

To determine the location of the SEF, we obtained magnetic resonance images 

(MRI) for monkey A and monkey I. A three-dimensional (3-D) model of the brain was 

constructed using MIPAV (BIRSS, NIH). As an anatomical landmark, we used the 

location of the branch of the arcuate sulcus. The locations of neuronal recording sites are 

shown in (Figure 3.2). In monkey A, we found neurons during the saccade preparation  
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Figure 3.2  Recording locations in SEF. Red dots indicate the locations in which 
neurons showed task related activity before saccade onset. Blue dots indicate the 
locations in which neurons were not modulated by task before saccade onset.  Black 
squares indicate the position of the cooling plate.  A: Recording sites in monkey A. B: 
Recording sites in monkey I. 
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period in the region from 0 to 11 mm anterior to the genu of the arcuate branch and 

within 5 mm to 2mm of the longitudinal fissure (Figure 3.2A). We designated these 

neurons as belonging to the SEF, consistant with previous studies from our lab and 

existing literature (Tehovnik et al., 2000; So and Stuphorn, 2011). In monkey I, neurons 

from 0 to 11 mm anterior to the genu of the arcuate branch and within 5 mm to 2mm of 

the longitudinal fissure formed a cluster of neurons with saccade-related activity and 

were designated as belonging to the SEF (Figure 3.2B). 

3.5 Neurophysiology data analysis 

3.5.1 Spike density functions 

To represent neural activity as a continuous function, we calculated spike density 

functions by convolving the spike train with a growth-decay exponential function that 

resembled a post-synaptic potential.  Each spike therefore exerts influence only forward 

in time.  The equation describes rate (R) as a function of time (t):    

𝑅𝑅(𝑓𝑓)  =  (1 −  𝑜𝑜𝑒𝑒𝑒𝑒(−𝑓𝑓/𝜏𝜏𝑔𝑔)) ∙  𝑜𝑜𝑒𝑒𝑒𝑒(−𝑓𝑓/𝜏𝜏𝑑𝑑  )                                          (3.2) 

, where 𝜏𝜏𝑔𝑔  is the time constant for the growth phase of the potential, and 𝜏𝜏𝑑𝑑 , is the time 

constant for the decay phase.  Based on physiological data from excitatory synapses, we 

used 1 ms for the value of 𝜏𝜏𝑔𝑔  and 20 ms for the value of 𝜏𝜏𝑑𝑑 (Sayer et al., 1990). 

3.5.2 Task-related neurons 

We used several criterions to determine whether neurons were task related. To 

test whether a neuron was active while the monkey generated saccades to the targets, we 

analyzed the neuronal activity in the time period between target onset to saccade 
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initiation. We performed a t-test on the spike rate in 50 ms intervals throughout the 

saccade preparation time period (150 ms to 0 ms before saccade onset or 50ms to 200 ms 

after target onset) to compare against the baseline period (200 ms to 150ms prior to target 

onset). If p value were ≤0.05 for any of the intervals, the cell was deemed to have activity 

significantly different form baseline.  

Furthermore, we used a more stringent way to define the task related neuron by 

fitting a family of regression models to the neuronal activity and determining the best-

fitting model (So and Stuphorn, 2011).  

The influence of value (𝑉𝑉) on neuronal activity was described using a sigmoid 

function 

𝑓𝑓(𝑉𝑉) = 𝑏𝑏1
1+𝑜𝑜−𝑜𝑜(𝑉𝑉−𝑓𝑓)                                                                                     (3.3) 

where 𝑏𝑏1 is the weight coefficient, s (𝑜𝑜 ∈ (0,1)) is the steepness, and t (𝑓𝑓 ∈ (0,1))is the 

threshold value.   

The influence of saccade direction (𝐷𝐷) on neuronal activity was described using a 

circular Gaussian function 

𝑔𝑔(𝐷𝐷) = 𝑏𝑏2 × 𝑜𝑜{𝑤𝑤×[cos (𝐷𝐷−𝑒𝑒)]−1}                                                               (3.4) 

where 𝑏𝑏2is the weight coefficient,  w (𝑤𝑤 ∈ (0, 4𝜋𝜋])is the turning width, p (𝑒𝑒 ∈ [0,2𝜋𝜋]) is 

the preferred direction of the neuron. 

The interaction of value and direction was described using the product of 𝑓𝑓(𝑉𝑉) 

and 𝑔𝑔(𝐷𝐷) 
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ℎ(𝑉𝑉,𝐷𝐷) = 𝑓𝑓(𝑉𝑉) × 𝑔𝑔(𝐷𝐷) = 𝑏𝑏3 × 1
1+𝑜𝑜−𝑜𝑜(𝑉𝑉−𝑓𝑓) × 𝑜𝑜{𝑤𝑤×[cos (𝐷𝐷−𝑒𝑒)]−1}             (3.5) 

where 𝑏𝑏3 is the weight coefficient. 

For each neuron, we fitted the average neuronal activity before saccade (50ms 

before saccade onset to 20 ms after saccade onset) on each no-choice trial with all 

possible linear combinations of the three terms 𝑓𝑓(𝑉𝑉), 𝑔𝑔(𝐷𝐷), ℎ(𝑉𝑉,𝐷𝐷) as well as with a 

simple constant model (𝑏𝑏0) . We identified the best fitting model for each neuron by 

finding the model with the minimum Bayesian information criterion (Burnham and 

Anderson, 2002; Busemeyer and Diederich, 2010) 

log( ) log( )RSSBIC n k n
n

= × + ×                                                              (3.6) 

where n is the number of trials (a constant in our case), and RSS the residual sum 

of squares after fitting.  We used a loosely defined BIC in order to include more neurons 

into analysis, where k is the number of independent variables in the equation. A lower 

numerical BIC value indicates better fit of a model, with a lower residual sum of squares 

indicating better predictive power, and a larger k penalizes less parsimonious models. All 

neurons with lower BIC value than the baseline model were considered stringently task 

related and were included in the following chapters.  
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Chapter 4  

Competition between Choice Options 

After the animal training as described in the previous chapter, we did recording in 

SEF to look at the correlation between neuronal activity and monkeys' choice behavior. 

In this chapter, we will discuss in detail whether and how the action value signals for 

both choice options compete with each other, and contribute to the decision process. 

4.1 Specific Methods 

4.1.1 Population analysis 

The normalized time-direction maps for population analysis were generated from 

the neuronal activity in no-choice trial and in choice trial when two options were 180° 

apart. The colors indicate the magnitude of firing rate which was normalized by setting 

the baseline activity (mean activity between 50 to 0 before target onset for all trials) as 0 

and maximum activity (the maximum mean activity across all the trial type) as 1. For 

each cell, we first estimated its preferred direction by fitting the directional tuning with 

circular Gaussian term as described in BIC analysis (section 3.4.2). After that, we 

calculated the relative angular distance between its preferred direction and the target 
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location for every trial. We then sorted the relative angular distance from small to large 

and rotated the matrix to let the chosen target position to always be 90° (except the 

analysis of the error trial in which we let the larger value targets instead of the chosen 

target to be in 90°). By doing this, we could average across all the trials since the target 

position is always the same. Population data were finally displayed as 2D pseudo-color 

plot, with each horizontal row representing the location of the selected target with respect 

to each cell's preferred direction (interpolated at an angle of 7.2°) and each column 

representing the target with respect to either target onset or movement onset. 

4.1.2 Leaky integrator model 

A mean-rate leaky-integrator neuronal model with two layers of 200 neurons each 

was implemented as a dynamical system describing the neuronal activity in SEF. In this 

model, the first layer is an input layer, which receives action value input for different 

target options 𝑉𝑉𝐷𝐷𝑗𝑗   and send the activity to the second layer through a feed forward 

network. The second layer is an decision layer where the each neuron is activated not 

only by the output from the first layer but also by the direction information of the target 

as described by 𝐷𝐷𝑖𝑖 . Each neuron in the decision layer is governed by the following non-

linear differential equation: 

𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑓𝑓

= 𝑓𝑓(𝐸𝐸𝑖𝑖 − 𝐵𝐵𝑖𝑖 + Θ − 𝛼𝛼(𝑋𝑋𝑖𝑖))                                                                 (4.1) 

where 𝐸𝐸𝑖𝑖 is the excitory input into the decision layer: 

𝐸𝐸𝑖𝑖 = 𝐷𝐷𝑖𝑖 + ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑉𝑉𝐷𝐷𝑗𝑗𝑗𝑗                                                                             (4.2) 

and 𝐵𝐵𝑖𝑖 is the inhibitory input from the first layer: 
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𝐵𝐵𝑖𝑖 = ∑ 𝑣𝑣𝑖𝑖𝑗𝑗 ∙ 𝑋𝑋𝑗𝑗𝑗𝑗 + 𝛽𝛽∑ 𝐷𝐷𝑗𝑗𝑗𝑗                                                                         (4.3) 

The first term in the function describes the mutual inhibition between different 

neurons, and the second term describes the global inhibition or activation from the first 

layer to the second layer. In function 4.1, 𝛼𝛼 is a decay rate and α is the Gaussian noise. 𝑓𝑓 

is a sigmoid transfer function, which implements the quenching dynamics. This transfer 

function contains a faster than linear portion for large value of x. It allows the neuron to 

exert more inhibition to other neurons when its activity gets large while reduce the 

neuron's sensitivity to noisy input.   

4.2 Results 

4.2.1 Subjects' choice behavior in the gamble task 

As discussed in Chapter 3 (section 3.2), two monkeys (A and I) were trained to 

perform a gambling task (Figure 3.1), in which they chose between two different gamble 

options with different maximum reward and reward probability. The maximum and 

minimum amounts of reward they can get were indicated by the color of the target. The 

portion of a color within the target corresponded to the probability of receiving the 

reward amount. We used the Maximum Likelihood Difference Scaling to estimate the 

subjective value for each targets based on the choice probability of the monkeys for all 

combinations of options (section 3.3). The subjective value of the targets increased as the 

expected value of the target increased (Figure 4.1A), since both animals chose the targets 

more often as their expected amount of reward increased. However, two monkeys 

showed different risk attitude.  While, monkey I was always risk seeking, Monkey A was 

risk seeking when the reward probability was low and maximum reward was high and 
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Figure 4.1  Behavior results for monkeys A (top) and monkey I (bottom).  A: The 
mean subjective value of the 7 gamble options is plotted as a function of expected value. 
Different colors indicate different amounts of maximum reward. B: The mean reaction 
times in no-choice trial as a function of subjective value. C: The mean reaction times in 
choice trial as a function of subjective value differences. D: The influence of onset time 
on choice probability. 
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risk aversive when the reward probability was high and maximum reward was low. The 

value referred in following analysis is the subjective value rather than the expected value. 

Consistent with the human study as described in chapter 2, the mean saccade 

reaction times during no-choice trials were significantly negatively correlated with 

subjective value of the target (Figure 4.1B, monkey B: p=0.03 and monkey I: p=0.003, 

respectively).  On the two choice trials, the reaction times were significantly correlated 

with the subjective value difference between the two targets (Figure 4.1C, monkey B: 

p<10-14 and monkey I: p<10-4, respectively). On the onset difference trial ( Figure 4.1D), 

the probabilities of both monkeys choosing the early onset target were larger than normal 

condition, while the probability of  them choosing the late onset target was smaller than 

normal condition. The effect of onset difference was larger as the subjective value 

difference between two targets was larger. 

4.2.2 Non-divisive normalized firing pattern in SEF 

To understand the neuronal mechanisms underlying the choice behavior, we 

collected 516 neurons in SEF (290 from monkey A, 187 from monkey I, Figure 3.2). Of 

these, 362 neurons (70.16%) showed significant activities (t-test, p<0.05) during the 

saccade preparation period (210 from monkey B, 152 from monkey A). 128 neurons form 

362 neurons (35.36%) were considered as stringently task related by BIC criteria and 

were used in the following analysis (see Methods).  

Comparing choice and no-choice trial, SEF neurons either increased (Figure 4.2A) 

or decreased (Figure 4.2B) their activity when adding the second target in the choice trial. 

Over all, compared with the no-choice trial, the mean activity for the preferred direction 
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Figure 4.2 Comparison of neuronal activity in choice and no-choice trials. A:  A 
representative neuron which shows higher activity when the target in the receptive field 
was chosen and lower activity when it was non-chosen comparing to that in the no-choice 
trial. Shaded areas show the time period (50 ms before movement onset) used for the 
statistic test. B: A representative neuron which shows lower activity in choice trial than in 
no-choice trial. C: Distribution of activity differences between the choice trail when the 
target in receptive field was chosen and the no-choice trial. D: Distribution of activity 
difference between the choice trial when the target was not chosen and the no-choice trial. 
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was significantly larger in choice trial when the target was chosen (Wilcoxon signed-rank 

test, p=0.03; mean difference: 1.38 spike/second for all neurons and 6.38 spike/second for 

the significant different ones, Figure 4.2C). Meanwhile, the mean activity for the 

preferred direction was significantly reduced in choice trial than in no-choice trial when 

the target was not chosen (Figure 4.2D; Wilcoxon signed-rank test, p<10-3; mean 

difference: -1.43 spike/second for all neurons and -4.73 spike/second for the significant 

different ones). It is worthwhile to note that, in order to have a fair comparison, we 

controlled the value of chosen target, value of non-chosen target in choice trial and value 

of the chosen target in no-choice trial to be the same. Therefore, the difference shown 

here cannot be explained by the average value difference between the chosen targets and 

non-chosen targets. 

That this neuronal activity pattern in SEF is very different from the divisive 

normalization effect. Under such condition as divisive normalization, the neurons always 

show less activity when the number of options increase. Here, in the presence of an 

attractor/non-chosen target, the neuronal activity for the chosen targets was stronger than 

the activity in the no-choice trial. 

4.2.3 Competition between value of the choice options 

In order to visualize the competition between chosen and non-chosen value, we 

systematically varied either the chosen value or the non-chosen value while maintain the 

other to be the same. Figure 4.3 shows a representative SEF neuron. The neuronal 

activity was grouped by whether saccade was directed towards (preferred direction trials, 

PD trials) or opposite (non-preferred direction trials, NPD trials) to the preferred 

direction of the neuron. In the no-choice trials (Figure 4.3A), the neuron was modulated  
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Figure 4.3 An representative neuron showing different degrees of chosen and non-
chosen values aligning on target onset (left)  and movement onset (right). A: The 
neuronal activity in the no-choice trial. Colors indicate the chosen value. B: The neuronal 
activity in the choice trial when the chosen value was controlled. Colors indicate the non-
chosen value of the choice. C: The neuronal activity in the choice trial when the non-
chosen value was controlled. Colors indicate the chosen value of the choice.  
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 by the chosen value of the targets in PD trials but was not activated by targets in NPD 

trials. Contrasting with the choice trials (Figure 4.3A, B), this neuron showed increased 

activity in both PD trials and NPD trials, and its activity was modulated by both chosen 

value and non-chosen value. Since each neuron represented the target information within 

its receptive field, the activity in PD trials then represented the activity to the target in 

receptive field which had been chosen, while the activity in the NPD trials represented 

the activity of the target in the receptive which was not chosen.  

Figure 4.3B shows the effect of non-chosen value on neuronal activity.  In the 

figure, the chosen value was controlled to be the highest amount while the non-chosen 

value was grouped into high, medium and small. As in the figure, the neuronal activity in 

the NPD trials which represent the activity for the non-chosen target was positively 

correlated with the value of non-chosen target. Meanwhile, the neuronal activity in PD 

trials, which represent the neuronal activity for the chosen target, was also modulated by 

the non-chosen value in a negative way especially when aligned on the target onset. The 

smaller the non-chosen value was, the earlier the neuronal activity for the chosen target 

peaked.  Figure 4.3 C shows the effect of chosen value on neuronal activity in the choice 

trial. When controlling the non-chosen value to be lowest, the neuronal activity in PD 

trials for the chosen target was strongly positively correlated with the chosen value, while 

neuronal activity for the non-chosen target was negatively correlated with the chosen 

value in the NPD trials. This negative correlation was led by the inhibition from the 

chosen target to the non-chosen target, while the negative correlation in Figure 4.3 B PD 

trials was led by the inhibition from the non-chosen target to the chosen target.  In 

summary, the results suggest that both chosen value and non-chosen value contributed to 
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the neuronal activity in SEF. The neuronal activity was positively contributed by the 

target in its receptive field, and was inhibited by the targets outside of its receptive field.  

More importantly, the contribution of chosen value and non-chosen value is asymmetric. 

The chosen value had larger effect in terms of both activation and inhibition than the non-

chosen target. This effect is closely linked with the competition process between the two 

options, and will be quantified and discussed further in Chapter 5.  

Figure 4.4 shows the neuronal population activity in no-choice trials and choice 

trials averaging across all 128 task related neurons. The mean average across all the 

neurons shows similar pattern of neuronal activity as comparing to the representative 

neuron. It suggests that the competition in the value space is a general phenomenon in 

SEF rather than occurring only in several representative neurons. 

4.2.4 Competition between direction of the choice options 

In order to visualize the competition between different direction combinations, we 

also systematically varied the non-chosen direction while maintain the chosen direction 

to be the same. Figure 4.5A shows the representative neuronal activity. The neuronal 

activity for both preferred direction and non-preferred direction was the strongest when 

the non-chosen targets were in the contra-lateral hemisphere 180° away (light grey line);  

was medium when the non-chosen targets were in the contralateral hemisphere 90° away 

(grey line); and was lowest when the chosen targets were in the ipsilateral hemisphere 

and 90° away. Although this result is less consistent across population as the effect of 

target value, considering that the directional effect always confounds with the width of 

the receptive field of different neurons (Figure 4.5B). However, the mean activity across 

all the neurons demonstrated the same trend. This result suggests the mutual inhibition is  
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Figure 4.4 Average neuronal activity across 128 neurons representing different 
degrees of chosen and non-chosen values. Conversion is the same as Figure 4.3. 
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Figure 4.5  Directional effect. SEF neuronal activity is modulated by the angular 
position between two targets. The darkness of the line indicate different direction 
combination: when two targets were 180° apart in the different hemisphere (light grey), 
when two targets were 90° apart in the different hemisphere (medium grey), and when 
two targets were 90° apart in the same hemisphere of visual field (black). A: A 
representative neuron. B: Mean average across 128 neurons. The shade indicates the 
standard error. 
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the weakest when the targets were 180 degrees away, and strongest when the targets 

were90 degrees away in the same hemisphere. Overall, the results suggest that there is 

mutual competition not only between the value representation, but it also occurs between 

the directional representation. In another words, in addition to the value information 

competing with each other, the direction information was also in competition with each 

other. Second, the mutual inhibition between neurons has certain directional tuning. The 

further the targets are apart the less inhibition between targets. This result is very 

important since it helps in determining the turning function of mutual inhibition for the 

simulation (section 4.2.7). 

4.2.5 The competition between two options in action value map in SEF 

We next looked at the population activity for all 128 neurons using time-direction 

maps to investigate the temporal dynamics of neuronal activity for each neuron during 

the decision process. In the map, we sorted the neurons according to their preferred 

direction from 0° to 360°(see section 4.1.1). The colors indicate the strength of the 

normalized activity. Assuming that each neuron represented the action value of saccades 

directed towards its preferred direction, the whole activity distribution across the entire 

distribution encodes the combined estimation of the relative value of various saccades 

that the monkey can make. Each vertical line in the map represented the state of this 

activity distribution in the action value map at one moment in time. In our experiment, 

since all targets were presented with the same distance from the center of the screen, we 

then can presume that our spatial map here is one-dimensional (direction). Thus, the 

time-direction map represented the development of action value-related activity over the 

course of decision-making SEF. 



78 
 

The map to the left (Figure 4.6A) shows the simple no-choice case with one target 

presented. In response to the target presentation, activity in a broad set of neurons 

increased. Activity centered on the target direction reached a maximum around the time 

of saccade initiation. The map to the right shows the more complex case in which two 

targets were presented. Compared with the time-direction map in the no-choice case, 

there are several differences. First, activity started to rise in two parts of the map. One 

was centered on the target that would be chosen, while the other one was centered on the 

non-chosen target. The initial rise in activity relative to saccade onset started earlier when 

aligned on movement onset, in keeping with the fact that reaction times were longer 

when the monkey had to choose between two response options. At the beginning, the 

activity associated with both possible targets was of similar strength, but around 50 ms 

before saccade onset, a difference developed between these two different groups of cells. 

The activity centered on the chosen target became much stronger than the one centered 

on the non-chosen target and increased until saccade onset.  

Figure4.7 further compares the competition between two targets when the value 

difference between them differed. The chosen value in both conditions was controlled to 

be the same, while the non-chosen value differed. Comparing between two time-direction 

maps, the neuronal activity for the non-chosen target was stronger and lasted longer in 

the small value difference trials than the large value difference trials. The stronger 

neuronal activity for the non-chosen target was due to the larger non-chosen value in the 

small value difference trial, and the longer lasting activity was because of the weaker 

competition. The long lasting activity in the small value difference trial was consistent 

with the behavior results of longer reaction time for the smaller value difference trial  
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Figure 4.6 Time-direction maps showing population activity in SEF. A:  Time-
direction maps for population activity in SEF in no-choice (one-target , up row) and 
choice (two target, bottom row) aligning on both target onset (left) and saccade onset 
(right). Each horizontal row within the plot represents the average activity of cells with 
preferred direction located at the corresponding direction on direction axis. Colors 
indicate the average change in firing rate relative to the background firing rate. Red 
circles indicate the position for the chosen targets and the black circles indicate the 
position for the non-chosen targets. B:  Comparison between the large value difference 
trial and small value difference trial.  
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Figure 4.7 Time-direction maps for comparison between correct and error trials. Up 
row shows the neuronal activity in correct trials. The red circle indicates the position for 
the chosen targets, which were the higher value targets. And the black circle indicates the 
position for the non-chosen targets, which were the lower value targets. Bottom row 
shows the activity in error trials.  The red circle indicates the position for the chosen 
targets, which were the lower value targets, and the black circle indicates the position for 
the non-chosen targets, which were the higher value targets.  
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(Figure 4.1C). Moreover, the activity for the chosen target was also weaker in the small 

value difference trial especially early in the time period (100-150 ms after target onset). 

These results deliberate the competition between neuronal representations of the two 

targets in a large population of SEF neurons.  

However, it is still unclear that whether the neuronal activity here represents the 

average subjective value which was retrieved each time during the decision process, or 

the trial by trial subjective value used for decision.  In order to answer this question, we 

also compared the neuronal activity in the trials when the monkeys chose the large 

subjective value target and small subjective value target (Figure 4.7). In the trial when the 

monkeys chose the larger value target, the time-direction map is similar to the choice 

case (left figure). However, when the monkeys chose smaller value target, the neurons 

activity for the chosen target also increased its firing rate in regardless of the chosen 

target is a low value target. Therefore, the neuronal activity in SEF is more correlated 

with choice or trial based subjective value rather than the average subjective value 

estimated across the recording section (see section 3.2.2).  

The analysis so far is more concerned with the competition between value 

information and/ or competition between directions in a uniform inhibition manner 

without directional tuning. In order to visualize the mutual inhibition in the action space 

with directional tuning, similar analysis can also be performed by comparing different 

direction combinations of the targets. Unfortunately, only a subset of neurons was tested 

with full direction combination. Therefore, there were not enough neurons with different 

preferred direction to create the time-direction maps. 
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Overall, the results suggest that SEF participates or at least represents the 

competition between two options during the value-based decision process. 

4.2.6 The onset manipulation of the competition process 

In order to perturb the decision process, we manipulated the onset difference 

between two targets in a subset of choice trials. As described in section 4.2.1 (Figure 

4.1D), behaviorally and comparing to the normal trial, both monkeys were more likely to 

choose the early onset target while less likely to choose the late onset target. The early 

onset target showed behavior advantages than the late onset target. Therefore, if the 

competition did happen in SEF, we would expect to see similar advantages in neuronal 

activity representing the early onset target relative to those representing the late onset 

target. This was exactly what we found in the SEF.  

Figure 4.8A shows the comparison of a representative neuron's activity in the 

trials when the monkey picked early onset target (early onset trial) and the trials when the 

monkey picked late onset target (late onset trial). The color of the spike density function 

shows whether the chosen target (red) or the non-chosen target (black) was in the 

receptive field. As shown in the carton on the left of the figures, in the trials when the 

monkeys chose the early onset trial, the red line indicates the neuronal activity for the 

chosen target which was the early onset target (as demonstrated in the red block). The 

black line indicates the neuronal activity in the trial when the non-chosen target which 

was the late onset target was in the receptive field (as demonstrated in the red block). If 

assuming the neuronal activity represents the choice option within its receptive field, we 

could consider the neuronal activity in two trial types act as two counter neurons 

representing two different choice options in the same trial type. The neuronal activity for 
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Figure 4.8 SEF activity in onset difference trials. A: A representative neuron. Top row 
shows the neuronal activity in early onset trial. Red line shows the neuronal activity for 
the early onset target which was the chosen target. Black line shows the activity to the 
late onset target which was the non-chosen target. Bottom row shows the activity in late 
onset trial. Red line shows the activity for the late onset target which was chosen and 
black line shows the activity to the early onset target which was not chosen. B: The 
average neuronal activity across all neurons. Symbols are same as A. C: Time-direction 
map for the onset difference trials. Up row shows the neuronal activity in early onset trial. 
Bottom row shows the activity in late onset trial.    
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the early onset target therefore increases at the beginning and then was depressed as the 

late onset target increases its activity. The neuronal activity for the early onset target later 

won the competition and the monkey therefore chose the early onset target. Similarly, in 

the trials when the monkey chose the late onset targets, the red line indicates the neuronal 

activity for the late onset target and the black line shows the activity for the early onset 

target. The neuronal activity for the early onset target began to increase early on in the 

trial, however got depressed as the late onset target increased its firing rate. The neuronal 

activity for the late onset target continued to increase across time and won the 

competition for the decision process. The monkey then chose the late onset target. The 

subplots on the left within each figure show the same comparison but now aligned on the 

movement onset. They show that all the activity difference between chosen and non-

chosen target happen before the saccade onset when the monkey indicate their choice by 

eye movements.  

To visualize the activity for the whole action value map in SEF, we did the 

population analysis for the onset different trials and formed the time-direction maps for 

each comparison. As shown in Figure 4.8C, in the trail monkey chose the early onset 

target,  the neurons representing the early onset target activated earlier in time and  

continued to increase firing till the movement onset if the early onset target was chosen 

( up row). In contrary, in the trial when monkey chosen the late onset targets, the 

neuronal activity for the early onset target  increased first and then decreased as the 

activity for the late onset target increased if the late onset target was chosen (bottom row). 

These results again demonstrate that the competition indeed happened between chosen 



85 
 

and non-chosen targets in a mutual inhibit way. Moreover, we could manipulate this 

competition or decision process by changing the presenting time of the visual stimulus.  

4.2.7 Simulation of neurophysiologic data 

To prove what we saw in the neuronal activity represent the mutual inhibition 

process for competition, we further used a mean-rate leaky-integrator model (Grossberg, 

1973; Cisek, 2006) to simulate the competition process. The simulated network contained 

200 neurons which were inhibited against each other through lateral inhibition as 

described in the method. The simulation results exhibited many similar phenomena as 

shown in the recordings (Figure 4.9): In the no-choice condition, the simulated neurons 

increased its firing rate as the value of the targets increased. In addition, in the two-choice 

condition, the simulated firing rate correlated with both chosen and non-chosen values in 

both preferred and non-preferred direction of the neuron (Figure 4.9A), which is very 

similar to the real neuronal activity (Figure 4.3 and 4.4).  Furthermore, we looked at the 

activity for the whole simulated population. Similar to the real neurophysiological 

recording, the simulated time-direction map shows that neurons with the preferred 

direction near the target direction got activated in the no-choice trial. In the choice-trial, 

the simulated neurons with preferred directions consistent with both the chosen target 

direction and non-chosen target direction got activated (Figure 4.9B). In the simulated 

time-direction map, the activity for both target were equally activated at the early stage. 

Later on, while the activity for the chosen target increased, the activity for the non-chosen 

target became gradually depressed. To further look at the competition process, we also 

did the simulation for small value difference and large value difference trial. As shown in 

Figure 4.9C, consistent with Figure 4.7, the length of the competition process was 
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Figure 4.9  Simulation results. A. Simulated neuronal activity in no-choice trial (left 
two columns), choice trial when controlling chosen value to be the same (middle two 
columns) or controlling non-chosen value to be the same (left two columns). B. 
Simulated time-direction maps for no-choice trial (top row) and choice trial (bottom 
row).Colors indicate the strength of activity. C. Simulated time-direction maps for small 
value difference trial (top row) and large value difference trial (bottom row). 
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determined by value difference between two targets. The smaller the value difference was 

the longer the competition process lasted. The similarity between the simulated results 

and real recording suggests competition process with mutual inhibition happened in SEF. 

4.3 Discussion 

4.3.1 Non divisive normalization in SEF 

This chapter focuses on describing the competitive process between choice 

options.  We observed a non-divisive normalization pattern of neuronal activity in SEF  

when comparing the neuronal activity in choice trials with that from the no-choice trials. 

This result suggests that coding mechanism in SEF is different from many other cortical 

areas in the sensory systems (Shapley and Victor, 1978; Bonin et al., 2005), the motor 

systems (Basso and Wurtz, 1998), and higher order processes such as multisensory 

integration (Ohshiro et al., 2011), visual attention (Reynolds and Heeger, 2009) or even 

decision-making (Louie et al., 2011; Louie et al., 2013). The non-divisive normalization 

may suggest that SEF is functionally important during decision-making process, which 

frees the cortical area from the general efficient encoding mechanism of information in 

the cortical maps (Louie et al., 2013). This non-devisive normalization pattern may 

contribute to better signal to noise ratio for neuronal coding during the decision-making 

process, and preserve the chosen value information in a “transitive” way. 

4.3.2 Competition between two choice options in SEF 

Action-value signal is of central importance in selecting an appropriate action 

during value base decision-making (Rangel et al., 2008; Kable and Glimcher, 2009).  It 

links value representation to action representation. Action-value signal have been 
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reported in DLPF (Kobayashi et al., 2002; Kennerley and Wallis, 2009), SEF 

(Wunderlich et al., 2009, So and Stuphorn, 2010) and caudate (Lau and Glimcher, 2008). 

However the action value in different cortical area may serve different functions during 

value based decision process. Whether and how the action value signal in SEF 

dynamically contributes to the value based decision process is still unknown. 

The results from this chapter suggest that action value in SEF represents the 

competition between two options in a mutual inhibition way. To visualize the 

competition in value representation and direction representation separately, we looked at 

the value competition and direction competition by controlling either value or direction of 

one target to be constant, and let the value or direction of the other target varies. We 

found that not only did the value representation of the targets exhibit mutual inhibition on 

each other, the directional information also competed with each other in a directional way. 

Ideally, a rational value based choice should not be influenced by directional information. 

However consistent with previous research in pre-motor cortex (Pastor-Bernier and Cisek, 

2011), we did find the spatial distance between two options exerting an effect on the 

decision process. Specifically, the mutual inhibition between different neurons has 

directional tuning. The mutual inhibition is weaker if the distance between the targets is 

larger. These results suggest that the competition process during decision-making process 

occurs both in value space and in direction space. Therefore, SEF is less likely to be a 

path way which is merely modulated by the input value information in the decision-

making process. These observations together support the idea that rather than being a 

downstream motor area which simply is in charge of motor control, SEF participates or at 

least represents the decision-making process.  
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The competition processes in both value space and action space will be further 

quantified in the next chapter. The causal role of SEF rather than correlation will be 

tested by a series of perturbation experiments which will be described in chapter 6. 
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Chapter 5  

Cascade Process between Value and 

Direction Representation 

After discussing the competition process between two targets in the previous 

chapter, this chapter will focus on the investigation of the temporal dynamics of the 

transition process between value information and direction information. We dissociated 

the competition of value and of direction embedded in the same neuronal activity using 

different analysis techniques. The results from different methods support the same idea 

that in SEF, competition between option values occurs earlier than competition between 

directions in our behavior paradigm. 

5.1 Specific Methods 

5.1.1 Classification analysis 

Binary linear classification was performed using Matlab toolboxes and custom 

codes. The analysis was performed using neuronal activity 200ms before movement onset 

till 20ms after neuron onset at 1ms time resolution. For each neuron at given time bin, we 
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used the neuronal activity in part of the choice trials to train the classifier, and then used 

the trained classifier to predict either the direction of the chosen target or the value of the 

chosen target for each trial. Specifically, when predicting the chosen direction, we first 

determined the two targets’ location in a choice trial. We then used the neuronal activity 

in all choice trials where the monkey chose one of the target locations regardless of the 

non-chosen location and its value, to train the classifier. This optimized classifier was 

then used to predict which of the target position was chosen based on the observed 

neuronal activity in each trial. Similarly when predicting the chosen value, we trained the 

classifier using the neuronal activity from all chosen trial where the monkey chose one of 

the target value regardless of the non-chosen value and the direction positions .This 

trained classifier was then used to predict which target was chosen among the two 

possible options. We performed the classification for every 1 ms time bin during the trial. 

The classification accuracy was calculated by averaging across all trials for each neuron.  

Next, a permutation test which shuffled the chosen and the non-chosen direction or value 

of all trials for 100 times, was used to test whether the classification accuracy was 

significant (p<0.05). If the classification result is better than the 5th highest classification 

accuracy in the permutation test, we consider the result to be significant. 

5.1.2 Mutual information analysis 

In order to compare the relative strength of saccade value and direction, we 

calculated separately for each neuron the mutual information between neuronal activity 

and value/direction.   

To reduce bias in estimating the mutual information, we discretized the neuronal 

activities so that each bin could hold equal number of trials.  We set the number of bins 
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for neuronal activity (NF) as four.  The boundaries between the bins were fixed across all 

time windows.  At each particular time window, we collected the mean neuronal firing 

rates (F) from every trial.  Neuronal activity below first quartile (Q1) was classified as F1, 

between Q1 and Q2 as F2, between Q2 and Q3 as F3, and lastly the neuronal activity above 

Q3 was classified as F4.  

The mutual information between the neuronal activity F and the variable X, which 

could be of either value or direction, was by the following: 
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where 𝑀𝑀𝑖𝑖𝑗𝑗  was the number of trials having both 𝐹𝐹𝑖𝑖and X𝑗𝑗 ;𝑀𝑀𝑖𝑖· was the number of trials 

having Fi; and 𝑀𝑀·𝑗𝑗was the number of trials having Xj.  M was the number of total trials.  

As mentioned before, we set NF, the number of distinct states of neuronal activity, to four. 

In the case of direction, we set Nx, the number of distinct states of the relevant variable, 

to four, because we tested four different saccade directions. For value, we tested 7 

different values.  However, distinguishing 7 different value levels would have resulted in 

different maximum amounts of mutual information for the two variables (direction: 2 bits; 

value: ≤ 2.8 bits).  This would have led to an overestimation of value information relative 

to directional information.  In order to make the value and direction information 

estimations directly comparable, we also set Nx for value to be four as well.  In grouping 

the 7 different values into four bins, we followed the same binning procedure as we did 

for the neuronal activities. So that each bin held approximately equal number of trials.  

We computed a first approximation of the bias as follows: 
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where UFX was the number of nonzero Mij’s for all i and j, UF was the number of nonzero 

M.i for all i, and UX was the number of nonzero Mi. for all j.  This procedure followed the 

approach described in Ito and Doya (2009). 

Finally, we performed a permutation procedure to test whether the amount of 

mutual information was significant, and to further reduce any remaining bias. We 

generated a random set of Fi and Xj pairs, by permuting both F and X arrays respectively.  

We calculated the mutual information between F and X, using the same method described 

above, and repeated this process for 100 times.  The mean of the mutual information 

obtained from these 100 random processes represented remaining bias and was subtracted 

from I(F,X).  To test whether the final estimated mutual information was significant (p < 

0.05), we compared it with the 6th highest information obtained from the 100 random 

processes.  If it was non-significant, we set the mutual information to zero.  The bias 

reductions sometimes led to negative estimates of mutual information.  In that case, we 

also set the final estimated information to be zero. 

5.1.3 Regression analysis 

A linear regression was used to determine the temporal contribution of chosen 

target and non-chosen target to the neuronal firing rate in choice trials. First, for each 

neuron, we calculated the mean firing rate on no-choice trials for each direction and 

chosen values (𝑆𝑆𝑜𝑜𝑜𝑜−𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑖𝑖𝑜𝑜�������������(𝑉𝑉𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐷𝐷𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓) ). Then, in the regression analysis, we 

tested three descriptive models: 
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Model1: 𝑆𝑆𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑜𝑜 (𝑓𝑓) = 𝑏𝑏0                                                                                        (7) 

Model2: Schoice (t) = b1Sno−chocie�������������(Vchosen , Dchosen , t)                                         (8) 

Model3: 𝑆𝑆𝑐𝑐ℎ𝑜𝑜𝑖𝑖𝑐𝑐𝑜𝑜 (𝑓𝑓) = 𝑏𝑏1𝑆𝑆𝑜𝑜𝑜𝑜−𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑖𝑖𝑜𝑜�������������(𝑉𝑉𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐷𝐷𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓) 

                                                      +𝑏𝑏2𝑆𝑆𝑜𝑜𝑜𝑜−𝑐𝑐ℎ𝑜𝑜𝑐𝑐𝑖𝑖𝑜𝑜�������������(𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ,𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓)                          (9) 

Model 1 is a simple baseline model, where 𝑏𝑏0 is a constant. Model 2 evaluates the 

contribution of the chosen target to the firing rate. Model 3 evaluates the contribution of 

both chosen target and non-chosen target to the firing rate based on neuron's firing rate in 

the no-choice trial.  The data were fitted with linear least-squares fitting routine 

implemented in Matlab ( The Math Works, Natick, MA) to minimize the sum of squared 

deviation between observed and predicted values. BIC was used to determine the best 

model for each neuron. After the BIC test, a permutation procedure was performed to test 

whether the coefficient for the chosen and non-chosen target were significant. In the 

permutation test, neuronal activity was assigned in each trial with permutated chosen 

value and permutated non-chosen value. The difference between the chosen and non-

chosen coefficient was calculated using the same method described above for 1000 times. 

To compare whether the estimated difference between chosen and non-chosen coefficient 

was significant, a two-tailed test was used, by comparing it with the 25 highest 

differences and 25 lowest differences from the 1000 permutation process. The first 

differential time, onset time, was defined as the first time when the chosen coefficients 

for all the neurons was significant larger than non-chosen coefficients (t-test).  
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5.2 Results 

5.2.1 Temporal sequence between chosen value and chosen direction 

To answer whether there are any temporal differences between the development 

of chosen value and chosen direction information, we performed a trial by trial analysis 

using linear classification to decode the monkeys’ chosen direction and chosen value 

from the firing rate with 1 ms temporal resolution. This method allowed us to ask the 

question of whether and when did one type of chosen target information appear in the 

neuronal activity and how it develop over time. Figure 5.1A shows the average 

classification accuracy which was significantly better than random averaging across all 

128 task-related neurons (see method). The red line indicates the significant classification 

accuracy for the chosen value. The black line is for the chosen direction. The results 

demonstrate that neuronal activity in SEF predict both chosen value and chosen direction 

better than chance. When aligned with saccade onset, the time point where the activity 

allowed us to predict chosen value better than random (around 160 ms before saccade 

onset) was much earlier than the time for predicting saccade direction (around 60 ms 

before saccade onset). After the early peak for chosen value prediction, the classification 

accuracy for chosen value gradually decreased while the accuracy of prediction for 

direction increased over time. Figure 5.1B further explicates the number of neurons 

showing significant classification accuracy as a function of time. Consistent with the 

temporal dynamic of the classification accuracy, there was larger proportion of neurons 

showing significantly better prediction accuracy than random for chosen value than 

direction early in the trial.   



96 
 

 

Figure 5.1 Temporal sequence between value and direction information. A: Time 
course of classification accuracy for both value (red) and direction (black) aligned on and 
saccade onset. B: The number of neurons showing significant classification for both 
value and direction. C: Comparison between chosen and non-chosen information for both 
value (up row) and direction (bottom row). D: Comparison between chosen and non-
chosen correlation coefficients in the regression analysis for both value (up row) and 
direction (bottom row).   
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The similar analysis can also be done in the high dimension space, in which the 

neuronal activity for each neuron represents one feature dimension. The trajectory of the 

population activity, determined by the neurons recorded simultaneously, changed as the 

neuronal activity developed. Figure 5.2A shows the principle component of the neuronal 

activity for four different trajectories representing four different chosen directions. Figure 

5.2 B shows the mean average of classification results from all the recording assemblies. 

Consistent with the single neuronal analysis, the decoding result from neuron assembles 

using support vector machine (SVM) shows similar temporal sequence between value 

information and direction information. However, the prediction accuracy using the 

neuronal assembles is much higher than using the single unit, (see figure 5.2B and figure 

5.1A). 

5.2.2 Mutual value and direction information 

The classification results suggest there is temporal difference between the 

appearance of chosen direction and chosen value information. However, this analysis is 

more about the temporal difference between the result of competition for value and 

direction, rather than the dynamic difference between competition process in value space 

and direction space. Therefore, we also performed mutual information analysis to 

compare the value and direction information for both chosen and non-chosen targets.  We 

focused on the difference between the chosen and non-chosen information, which is 

directly correlated with the competition process between chosen and non-chosen options. 

We used 106 neurons (26 from monkey A and 80 from monkey I) out of the 128 neurons 

for this analysis. These 106 neurons are those we tested with 8-12 direction combinations 

in the experiment. For early recording (the other 22 neurons), we only used 4 direction  
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Figure 5.2 Neuronal dynamics within a neuronal state space and results of SVM 
classifier. A. The activity of the simultaneously recorded neurons defined a 10-
dimensional state space.  A projection of this state space onto a 2-dimensional subspace 
is shown. The subspace is defined by the first two principal components (PC1, PC2) 
explaining variance in the neuronal state vector distribution. The temporal succession of 
the mean state vector location between target and saccade onset is shown separately for 
trials in which one of four saccade directions was chosen by the monkey. The mean state 
vector locations form a trajectory (T1: blue, T2: black, T3: violet, T4: red line). The 
green dot on the trajectories indicates the moment of saccade initiation. B. SVM analysis 
of the distribution of state vectors for all combination of saccade directions and value was 
performed. The percentage of correctly predicted choices based on this analysis is plotted 
as a function of the time bin during which the state vectors were defined, showing the 
mean classification accuracy of all recording sections. The shaded color indicates the 
standard error.   
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combination, where the two target were exactly opposite to each other. Therefore, the 

chosen direction and non-chosen direction information for these 22 neurons could be 

confounded and these neurons were excluded from the analysis.  

The mutual information analysis (Figure 5.1 B) shows that, first, value and 

direction information for both chosen target and non-chosen target were represented in 

the neuronal activity. Second, the chosen target information was significantly stronger 

than non-chosen target information later on in the decision process. Third, consistent with 

the classification analysis, the onset time when chosen value information significantly 

differed from non-chosen value information (-116 ms before saccade onset) was 57ms 

earlier than the onset time when different chosen direction information significantly 

differed from non-chosen direction information (-59 ms). These results suggest that SEF 

not only represented the result of the competition as quantified by the classification, it 

also reflected the two choice options and the competition process between them in both 

value and direction domain. While the chosen direction and value information grew 

stronger across time, the non-chosen direction and value information gradually decreased.  

Note that the result profiles differed between two different analyses. This is 

possibly because of the different questions asked in each analysis. In the classification 

analysis, we wanted to know whether we can successfully predict which target the 

monkey chose (target value or target direction) other than the other target based on the 

chosen value/direction information embedded in neuronal activity. In the mutual 

information analysis, we sought to determine which of the four different values (see 

method) or directions was for either chosen or non-chosen targets.  Moreover, the 

sensitivity to different type of information also differs for different techniques. For 
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example, for the classification analysis, it has only one decision threshold for binary 

classification. But the threshold can be placed in the optimal place according to the 

training sample. This analysis is easier to pick up option value information than action 

value information. For the information analysis, it divides the data into more parts, 

However, the way for data division is predetermined (Wallisch et al., 2010), rather than 

being in the most proper place as in the classification analysis. Therefore, the information 

analysis can be more sensitive in some cases (such as detecting action value), but less 

sensitive in other cases (such as detecting option value). 

5.3 Competition process in both value representation and direction 

representation in SEF  

We used regression analysis to further quantify the mutual inhibition process 

between the chosen and non-chosen target. In the analysis, we used the neuronal activity 

in the no-choice trial with targets of both chosen and non-chosen targets (same value and 

direction) as the independent variables, and the neuron activity in the choice trial as the 

dependent variable.  Compare with previous literatures (Cai et al., 2011; So and Stuphorn, 

2011), this method allows us to estimate the turning of direction and value based on the 

neuronal activity in no-choice trial rather than assuming the tuning function empirically 

in the regression analysis. It reduces the chance of incorrectly predetermine the type of 

turning function, as well as the number of parameters needed to be estimated in the 

regression model.  

Figure 5.1D shows the comparison between the correlation coefficient of both 

chosen target and non-chosen target for both value and direction. Consistent with 
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previous results, as the competition continued, the correlation coefficient for the chosen 

value gradually rise above the average, while the correlation coefficient for the non-

chosen value gradually dropped below the average. Although the decrease in correlation 

coefficient for non-chosen target was less pronounced for value than for direction, the 

mutual inhibition between the two options is still visible. The regression analysis again 

confirms that difference between chosen and non-chosen value (-116ms) appear earlier 

than difference between chosen and non-chosen direction (-59 ms). 

5.4 Discussion 

This chapter focuses on the temporal difference between the competition in value 

representation and in direction representation. The classification results demonstrate that 

the chosen value information appears earlier than the chosen target information in SEF 

during value based decision-making process. Mutual information analysis and regression 

analysis further elaborate the competition process between chosen target and non-chosen 

target by comparing the relative strength for both targets. All together, the results suggest 

two important aspects as discussed in following. 

First, the results suggest that the competition process occurs in both value space 

and direction space. In chapter 4, we did observe strong mutual competition in value 

domain and weak competition with directional tuning in direction domain. However even 

though the competition process can be represented in SEF, it is still possible that the 

neuronal activity in SEF was merely driven or modulated by the competition process 

from the input in value space. That is, SEF only serves as a relay point mapping the value 

information to the corresponding target direction. If this is true, we should observe that 

both value space and direction space competition occurring simultaneously, or value 
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space competition occurring earlier but with similar profile as in direction space. 

However the results showed temporal difference between these two competitions and 

difference in their profile arguing against this possibility. It is very likely that the 

competition in the value domain can occur in OFC, vmPFC, or ACC (Padoa-Schioppa, 

2011), and then project onto SEF. The neuronal activity in SEF with directional tuning 

compete with each other, and then biases the competition process in motor domain which 

can take place in frontal or parietal cortical area or through cortical-basal ganglia loop 

(Cisek, 2007; Kable and Glimcher, 2009). 

Second, these results argue against the action based hypothesis in its pure form 

(Cisek, 2007, 2012). If the action based hypothesis in its pure form is true, we should see 

the chosen direction information appearing earlier than the chosen value information 

since the competition in the action space is the only precursor before choice. However, 

the results from all three different analyses suggest that the competition in value space 

occurs earlier than the competition in the action space. Therefore, it is less likely that the 

competition process only takes place within motor representation.  

Based on these results, we suggest a cascade hypothesis of decision-making, in 

which competitions in both the value space and the direction space take plac. The 

competition in the value space can bias the competition process in the action space. In our 

experiment paradigm, the competition in the direction representation was balanced at the 

beginning after targets were presented, since the information for all the targets were 

equally strong without value information. As shown in the Figure 5.1D, the regression 

correlation coefficients for both chosen and non-chosen target increase equally at the 

beginning of the competition.  However, the competition in the value representation was 
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imbalanced, since the value of different options differed.  This imbalanced competition in 

the value space then led to the generation of chosen value information, and biases the 

competition process in the action space. The cascade hypothesis will be discussed further 

in Chapter 7. 
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Chapter 6  

Causal Relation between SEF and Value 

based Choice Behavior 

In the previous two chapters, we have discussed the correlation between SEF 

neuronal activity and choice behavior exhibited by monkeys. In this chapter, we seek to 

test if there is causal relation between the neuronal activity and the monkeys' behavior 

through perturbing SEF using cryogenic deactivation.  

6.1 Specific Methods 

6.1.1 The cryogenic deactivation 

The cooling or cryogenic deactivation technique of cortical area can be traced 

back to 1960 (Dondey et al., 1962). Cryotips (Skinner and Lindsley, 1968; Zhang et al., 

1986), cooling plates (Schiller and Malpeli, 1977; Sandell and Schiller, 1982; Michalski 

et al., 1993) and cryoloops (Salsbury and Horel, 1983; Lomber et al., 1999; Long and Fee, 

2008; Koval et al., 2011) have been used in different cooling experiments. SEF is a 

surface cortical structure that is relatively large and smooth in area. Therefore, cooling 

plate is the ideal method for deactivating this cortical area. 
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Two most common forms of reversible inactivation techniques are 

pharmacological and cryogenic or cooling. Compared to pharmaco-chemical deactivation, 

cooling has several advantages (Lomber, 1999). First, cooling can simultaneously 

deactivate a relatively larger area, which often requires multiple injections to achieve the 

same effect using chemical deactivation. Second, repeated chemical inactivation of a 

particular region in brain often results in permanent damage that cannot be reversed. 

Thirdly, the size of the inactivation locus is easier to replicate between different 

deactivating agents. Considering these advantages, we employed the cooling technique 

instead of pharmacology to perturb the activity in SEF. 

In this experiment, cooling plates were used to inactivate the SEF bilaterally or 

unilaterally. The location of SEF was determined by the electrophysiological recording 

where saccade related activity was recorded (Figure 3.2). The size of the cooling plate is 

10mm from anterior to posterior, and 12mm from left to right. For unilateral cooling, in 

which either left or right hemisphere SEF was cooled, the plate is 10 mm from anterior to 

posterior and 6mm from medial to lateral.  In those experiments, the left or right 

hemisphere was alternately cooled across experiment sections. 

Room temperature methanol was pumped through Teflon tubing that passed 

through a dry ice bath, in which methanol was reduced to subzero temperature. Chilled 

methanol was then pumped through a cryoloop. The cryoloop was attached to a stainless 

steel plate (Figure 6.1A), the surface of which was used to cool down the corresponding  
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Figure 6.1 The cryogenic deactivation.  A: Cooling plate used to deactivate SEF. B: 
Target set for the new gamble experiment.  
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cortical area. The methanol was returned to the same reservoir from which it came to 

form a closed loop. The cortical temperature on the dura was monitored by an attached 

micro-thermocouple. At the same time, two electrodes were recording simultaneously 

inboth left and right hemispheres SEF to monitor the neuronal activity. A total of over 30 

blocks of data in each section were obtained. During each session, monkeys initially 

performed the task for 10-15 min in normal state, and then the SEF region was 

deactivated bilaterally for 10-15 min by pumping chilled methanol through the cryoloop 

while the task continued.  After that, the cortical temperature returned to normal for 

another 10-15 min as the cooling device was turned off. This whole process was then 

repeated at least 3 times over 900 trials. 

6.1.2 Time frequency analysis 

Time-frequency analysis was performed using the matching pursuit (MP) 

algorithm (Mallat and Zhang, 1993). Matching pursuit has been used previously to 

analyze LFPs (Ray et al., 2008a; Chen et al., 2010). It is a procedure for computing 

adaptive signal representations and can eliminate all cross terms of the Wigner 

distribution of the signal. The Gabor function dictionaries used in MP provide the best 

time-frequency resolution possible in agreement with the uncertainty principle. The 

multi-scale decomposition of MP allows sharp transients in the LFP signal to be 

represented by functions that have narrow temporal support, rather than oscillatory 

functions with a temporal support of hundreds of milliseconds (such as in Short Time 

Fourier Transform in time-frequency analysis, multi-tapering for spectrum analysis) (Ray 

et al., 2008a; Ray et al., 2008b). 
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The algorithm is an iterative procedure that selects a set of Gabor functions 

(atoms) from a redundant dictionary of functions that constitute the best possible 

description of the original signal. Time-frequency plots were then obtained by calculating 

the Wigner distribution of every atom and taking the weighted sum. All computations 

were performed using MATLAB (Mathworks, Natick, MA). We performed the MP 

computation using custom MATLAB scripts and the free software toolbox ‘LastWave’ 

[http://www.cmap.polytechnique.fr/~bacry/LastWave/], developed by Emmanuel Bacry. 

The LFP signal was sampled at 1 kHz and was analyzed in 900 separate 1 ms time 

bins. For stimulus-related activity, we examined the LFP signal in the 900 ms time 

interval starting at 300ms before target onset. For movement related activity, we 

examined the 900 ms time interval starting at 500 ms before movement onset. Matching 

pursuit yields a 430×615 array of time-frequency values (with a time resolution of ~1.5 

ms, frequency resolution of ~0.35 Hz). 

6.1.3 The new target gamble task 

In a subset of the inactivation experiment, we performed new gamble experiments 

using seven different gamble cues which the monkeys had never seen before (Figure 

6.1B). This was done to differentiate the cooling effect between the habituate system and 

the goal-direct system. In those sections, we reversed the position for the maximum 

reward and the minimum reward, while maintaining the rule in the same way. The colors 

cyan, red, blue, and green represent 1, 3, 5, and 9 units of water respectively. The 

percentage of area covered by color indicated the probability to receive the reward.  
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6.2 Results 

6.2.1 Neuronal response to cool temperature: Action potentials 

By cooling down the temperature in SEF, we temporarily and reversibly 

deactivated this cortical area by slowing down its metabolism. Figure 6.2 shows a 

representative recording in one section. In the experiment, the cooling sections were

interleaved with normal temperature sections. The cooling sections lasted around 15-

20mins each time.  As the cooling device turned on (first row), cortical temperature on 

the dura above SEF gradually went down within 1-2 minutes. The neuron in both 

hemisphere (forth row: left hemisphere; fifth row: right hemisphere) decreased their 

firing rates as the temperature dropped and were almost diminished at around 5°C. 

Throughout the experiment, the neuronal activity returned to normal level every time 

after the temperature returned to normal temperature range (37-38 °C). This is despite the 

fact that reversible deactivation occurred 14 times and lasted around 4 hours. Note that 

the deactivation of the right hemisphere was weaker than the left hemisphere in this 

recording section. This is because the recording position in right hemisphere was deeper 

than that in the left hemisphere. Figure 6.3 summarize the neuronal activity as a function 

of both the depth of recording position and the temperature above dura. As shown in the 

figure, neuronal activity always decreased with decreasing temperature or shallow 

recording position. In all of the behavior analysis, we only included the data when the 

dura temperature was below 15 Celsius which is considered as the cooling condition.  As 

shown in the figure, at this temperature range, even the neurons in the infra-granular layer 

reduced their firing rate to approximately 30% of their normal firing rate. Therefore, the 

majority of the neurons in SEF were inactivated under the cooling condition. 
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Figure 6.2 A representative cooling section. The first row shows the turning on and off 
of the cooling device. The second row shows the cortical temperature recorded above 
durra. The third and forth rows show the neuronal activity recorded simultaneously in 
both left (third row) and right (forth row) SEF. 
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Figure 6.3 Neuronal activity as a function of temperature above the dura and depth 
of recording. Color in the right plot indicates the strength of the activity compared to the 
normal temperature condition. The darker the color, the closer the activity is to normal 
firing.  
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6.2.2 Neuronal response to cool temperature: Local field potential 

In addition to action potential, we also measured the local field potential during 

cooling situation. Currently the origin of LFP is still under debate. Different literatures 

have different hypotheses about the local field potential in different frequency band 

(Buzsaki et al., 2012; Reimann et al., 2013). The cooling technique provides us with an 

ideal perturbation technique to probe how the energy distribution across different bands 

will change when the frequency of action potentials is modulated. 

Figure 6.4 shows a representative recording. The color maps in both subplots 

represent the energy distribution of LFP as a function of both time and energy. The black 

line overlaid indicates the neuronal activity recorded simultaneously. In the normal 

condition, after target onset, the firing rate increased and peaked around the time before 

the saccade movements. The cooling condition, in contrary, showed no such pattern in 

firing rate, and even the baseline firing rate was greatly reduced as shown in figure 6.4B. 

The energy distribution of LFP, on the other hand, did not show any difference between 

the two conditions. After the target onset, energy in the gamma and high gamma range 

began to increase together with the increasing firing rate of action potential. The beta 

band activity also increased from negative to zero. The fact that cooling had a bigger 

impact on action potential rather than LFP suggest that the energy distribution of LFP is 

more related to the synaptic input to the neuron rather than the action potential output. 

The action potential output is more closely linked to the metabolism of neurons, which 

can be modulated by temperature. 
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Figure 6.4 Comparison of LFP energy distribution in normal (A) and cooling (B) 
conditions. The LFP energy distribution was plotted as a function a time and frequency. 
The overlaid black lines show the multi-unit activity recorded simultaneously. 
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6.2.3 The effect of SEF deactivation on choice probability 

In order to test the causal relation between monkeys' choice and neuronal activity, 

we further compared monkeys' choice function in cooling situation and normal situation. 

Figure 6.5 (top row) shows both Monkey A's and Monkey I's choice performances in 

gamble paradigm when their SEF were bilaterally cooled down in the cooling sections. 

Comparing the normal condition (blue bars) with the cooling condition (red bars), both 

monkeys made significantly more mistakes (Monkey A: paired t-test, df=99, p=0.002; 

Monkey I: paired t-test, df=99, p=0.01) during the cooling sections. The increase of error 

was largest for intermediate value difference. This is probably due to the fact that there is 

a ceiling effect for very small value-difference comparisons. Whereas for very large 

value differences, the decision is so easy that other brain regions besides the SEF are 

sufficient to select the better option. 

We did observe a significant difference between normal condition and cooling 

condition. However, as shown in the figures, the monkeys were still able to made 

reasonable choices most of the time. Considering that both monkeys were trained on the 

tasks for approximately a year, we reasoned that the habitual system can also participate 

in the task, and therefore compensate for the perturbation effect on the goal directed 

system. In order to weaken the participation of habitual system during the decision 

process, we created a gamble experiments with a new set of target cues which the 

monkeys were never trained with (Figure 6.1B). As expected, the effect of cooling in the 

new gamble experiments was more pronounced. Both monkeys (Monkey A: paired t-test, 

df=49, p=0.003; Monkey I: paired t-test, df=59, p=0.002) showed more mistakes in 

cooling condition than in normal condition (Figure. 6.5A bottom row). Moreover, not  
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Figure 6.5 Choice probability affected by cooling. A. The probability of choosing the 
smaller value target in choice trial was plotted as a function of subjective value 
differences of two options for both monkeys. The behavior under normal conditions is 
shown by the blue bars (normal temperature; 37 ºC). The behavior when SEF is 
inactivated in both hemispheres is shown by the red bars (~10 ºC). B. Contour plot of 
choice probability between any two of the target pairs. The targets’ numbers were sorted 
by their subjective values in the normal temperature condition. The colors indicate the 
choice probability. The top row shows the choice probability in both gamble tasks for 
both monkeys in the normal condition. The bottom row shows the monkeys' choices 
probability when the SEFs were bilaterally deactivated. 
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only did the monkeys make more mistakes in small value difference trials, they also 

tended to make more mistakes in relatively large value difference trials. Figure 6.5B 

shows the choice probability contour comparing each pair among 7 targets in both 

gamble and new gamble experiments. The order of the target was sorted by the subjective 

value in the normal condition, and therefore was the same for both normal and cooling 

conditions. The result further confirms the monkeys’ tendency to show more randomness 

in choices selection instead of changing their preference when SEF was inactivated. As 

shown in the figure, the preference of the targets was almost consistent between the 

normal and cooling situation. However, the border area along the diagonal axis is much 

wider in the cooling condition than in the normal condition. This indicates that the mean 

subjective value of the targets were consistent across both conditions. However, the 

standard deviations of the subjective values were larger in cooling condition than that in 

normal condition.  

6.2.4 Unilateral deactivation 

In order to test whether the cooling effect is local, we carried out a set of 

unilateral cooling experiments. In these experiments, only SEF on one hemisphere 

(Monkey A: 3 sections on left side and 2 sections on right side; Monkey B: 3 sections on 

left side and 4 sections on right side) was inactivated while the other SEF on the opposite 

hemisphere maintained its normal function. The unilateral cooling experiments were also 

done using the new target gamble experiment.  

To quantify the imbalance effect led by unilateral cooling, we divided the trials 

into incongruent trials and congruent trials based on whether or not the high value target 

was on the contra lateral side of inactivation: In the congruent trial, the high value target 
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was on the unaffected side of visual field. Therefore, the low value targets had weaker 

neuronal representation and the value competition was congruent with the inactivation 

effect.  Conversely in the incongruent trial, the higher value target was on the affected 

side of visual field. Consequently, the higher value target had weaker neuronal 

representation. The value competition is incongruent with the inactivation effect. Both 

monkeys showed significantly more errors in the incongruent trials than in the congruent 

trials (Monkey A: paired t-test, df=49, p=0.005; Monkey I: paired t-test, df=69,  p=0.036, 

Figure 6.6). The error rates for normal temperature condition always fell in between the 

congruent condition and incongruent condition.  These results reflect the imbalance in 

contribution to the competition process by the affected and the unaffected SEF due to the 

unilateral inactivation. Therefore, the results support a local effect from cooling. 

6.3 Discussion 

6.3.1 Dissociation between action potential and LFP 

Any excitable membrane, whether it is a spine dendrite, soma, axon or axon 

terminal, and any type of transmembrane current can contribute to the extracellular field. 

However, it is less clear which are the most important factors. While some researches 

consider cooperative postsynaptic activity (Mitzdorf, 1985; Linden et al., 2011), cellular-

synaptic architectural organization of the network and synchrony of the current source 

(Buzsaki et al., 2012) as the most important factors of LFP, others argue that the active 

currents and not synaptic input dominate the generation of LFPs (Reimann et al., 2013). 

Many researches haves also shown spike "contamination" of the LFP (Rasch et al., 2008; 

Zanos et al., 2011). However, by deactivating SEF, our results demonstrate that even as 

the action potential was diminished, the energy distribution across different frequency  
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Figure 6.6 Choice probability affected by unilateral cooling for two monkeys. The 
probability of choosing the smaller value target in the choice trial was plotted as a 
function of subjective value differences of two options for both monkeys. The behavior in 
congruent trial, in which the unaffected side is congruent with the higher value target side, 
is shown by the grey. The behavior in incongruent trial, in which the unaffected side is on 
the opposite side to the higher value target side is shown by the black. 
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bands is still similar to the distribution from when the action potential was present. This 

suggests that, spike "contamination" cannot be a major influence on LFP energy 

distribution, at least in SEF. LFP including the high frequency band is largely determined 

by the synaptic input or postsynaptic potentials and other non-spike-related membrane 

voltage fluctuations (Nicholson and Freeman, 1975; Ray and Maunsell, 2010; Belluscio 

et al., 2012). 

The fact that LFP is more dependent on synaptic input rather than the action 

potential output from SEF as suggested by the cooling results, highlight the importance of 

LFP analysis. In this way, LFP analysis provided a possible way to investigate the 

information flow rather than information repetition of a certain cortical area. LFP 

analysis could potentially dissociate the information of synaptic input from other cortical 

areas and the information led by local computation. 

6.3.2 Causal role of SEF in value based decision-making 

Action value neurons have been found in SEF during no-choice trials in a 

experiment similar to this dissertation study (So and Stuphorn, 2010). As reported, the 

neuronal activity was not only tuned by saccade direction, but also modulated by the 

reward amount of the targets. The human imaging literature also supports this finding. 

Specifically, the imaging research found action value signal in medium frontal area in 

general, whereas saccade related action value was coded in SEF and arm movement 

related action value was coded in SMA (Wunderlich et al., 2009). The dissertation 

research in Chapter 4 and Chapter 5 also demonstrated how the action value can correlate 

with the decision process. However, these findings which correlate neuronal activity with 

decision process could not determine if there is causal relationship between the function 
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role of SEF and choice behavior (Teller, 1984). Therefore, in this chapter, by using a 

perturbation experiment, we were testing the causal role of SEF in decision-making.  

The result shows that inactivation of neuronal activity in SEF leads to increase of 

monkeys' error rate in choice behavior. Moreover, several reasons make it unlikely that 

this increase of error rate can explained by a deficiency in the movement generation. First, 

previous research shows that, unlike FEF, SEF lesion usually produced a mild 

impairment on the contra-lateral side or even no impairment in visually guided or single 

memory-guided saccades (Gaymard et al., 1990; Schiller and Chou, 1998). Second, in the 

no-choice trial, during cooling, the monkeys never showed any directional difficulty 

choosing any targets. This suggests that the monkeys did not have motor difficulties in a 

simple visual triggered task. Third, if the deficiency is due to the generation of the 

movement, we should see the error rate increase equally strong for both easy choice 

comparison and difficult choice comparison. Therefore, a motor deficit should lead to a 

global increase of the error rate rather than a change of the slope of the choice function 

(Figure 6.5). Considering all these reasons, we conclude that the increase of error rate 

during cooling was due to difficulties in making a choice rather than in the generation of 

movements. 

The results of the new targets gamble show that, when the monkeys were less 

familiar with the targets, their choice selection became more inconsistent once SEF was 

inactivated. This is in line with the idea that SEF plays a causal role in goal-directed 

decision-making. In the new gamble task, the decision depended more on the goal 

directed system than on the habitual system. Therefore, cooling down SEF had a larger 

effect on choice behavior. Nevertheless, although the influence of inactivation on choice 
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behavior were significant, we still observed that both monkeys could make relatively 

rational choices in the new gamble experiment instead of just random decisions. This 

phenomenon can be explained in several ways. One possibility is that, even though the 

new target gamble task required more involvement of the goal directed system, the 

habituate system still participated to some degree. For example, in the new gamble 

experiment, the monkey can still use color cues without estimating the subjective value of 

all the targets. For instance they can always choose a green-containing target with larger 

maximum value rather than a blue-containing target. Since both monkeys showed strong 

risk seeking behavior under normal condition, the choice behavior would be similar 

under the cooling condition even if the monkeys used simple color mapping rules to 

make choices. In order to rule out this possibility, future experiment should use 

completely different target cues (such as different pictures) to train the monkey shortly 

and then test the cooling effect. Doing this can possibly prevent the simple mapping 

between certain feature dimension to specific choice. Another possible explanation would 

be that SEF is only part of a larger network participating in coding action value. There 

are other cortical areas such as DLPFC (Kobayashi et al., 2002; Wallis and Miller, 2003; 

Kim et al., 2008) and striatum (Samejima et al., 2005; Lau and Glimcher, 2008) that 

participate in coding action value in parallel. Therefore, deactivating SEF would only 

weaken the overall action value representation within this network, rather than 

completely out take action value information. Currently, it is still not clear what the 

specific roles of DLPFC, caudate, and putamen are in coding action value. It is very 

possible that DLPFC and SEF interact cooperatively in transforming option into action-

value representation considering the reciprocally connection between them. Both DLPFC 
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and SEF project to FEF and SC, and share overlapping regions of the caudate (Huerta and 

Kaas, 1990; Wang et al., 2005). It is also possible that SEF may receive action value 

input information from DLPFC (Kennerley and Wallis, 2009). In order to test the 

possible interaction between SEF and DLPFC, it would be interesting to record these 

cortical areas simultaneously while perturbing the activity of one of them. This would 

allow testing the influence of activity in one area on activity in the other area. 

Although cooling did not completely eliminate rational choice behavior in our 

gambling task, the effect of the SEF inactivation as discussed is comparable to the effect 

of permanent lesions of the orbitofrontal cortex through ablation (Noonan et al., 2010). 

Overall, the fact that inactivation of SEF has an immediate effect on value-based 

decisions establishes a causal link between SEF single unit activity and choice based on 

subjective preferences (at least in regards to eye movements).  
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Chapter 7  

General Discussion 

In previous chapters, we elucidated in detail on how our current findings are 

related to previous researches in specific aspects. In this chapter, we will discuss in 

general how value representation interacts with action selection during decision process, 

and how SEF might work in concert with other brain areas in value based decision-

making. 

7.1 Comparison between different value based decision- making 

hypotheses  

As discussed in chapter 1, currently there are two major hypotheses about value 

based decision-making (Cisek, 2012): the goods-based hypothesis and the action-based 

hypothesis.  

In the goods-based hypothesis, all the relevant decision factors can be integrated 

into a single variable capturing the subjective value of each offer. The decision is made in 

this subjective value representation and the option with the highest value is chosen. The 
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appropriate action plan then is computed to produce the requirement movement for the 

offer. Good-based hypothesis is more consistent with the traditional cognitive theories 

(Marr, 1982) which propose that "what to do " was selected before specifying "how to do 

it". Neurophysiological and imaging studies have suggested that the variables 

contributing to the decision in value space are encoded in the orbitofrontal cortex 

(Plassmann et al., 2007; Wallis, 2007; Padoa-Schioppa, 2011) and ventromedial 

prefrontal cortex (Kable and Glimcher, 2007; Kennerley and Walton, 2011). In 

orbitofrontal cortex, offer value neurons and chosen value neurons were found. The firing 

of offer value neuron has been identified to be linearly correlated with the subjective 

value of one of the offered rewards, regardless of what the other rewards are. Chosen 

value neuron has been shown to track the subjective value of the chosen reward in a 

single common currency independent of the juice type. Although the precise location for 

the occurrence of competition in the value space is still under debate (Padoa-Schioppa, 

2011), the existence of subjective value or expected utility provides a foundation of 

possible competition or choice selection in the value space. The good-based hypothesis in 

its pure form states that only action plan corresponding to the chosen target is represented 

in the motor related area. Moreover, there should be no competition between the two 

targets in the motor actions. The findings from this dissertation study argue against the 

goods-based hypothesis in its pure form for two reasons. First, SEF a motor related 

cortical area (Schlag and Schlag-Rey, 1987; Lynch and Tian, 2006) reflects both chosen 

and non-chosen targets in its action value map. Second, in addition to the competition in 

the value space, we also observed competition in the motor space with directional tuning. 

Therefore, though our result support value-based hypothesis in a general sense that 
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competition do occur in the value space, they argue against the good-based hypothesis in 

its pure form and its prediction of competition only presenting in the value space.  

Action-based hypothesis (Glimcher et al., 2005; Cisek, 2007; Rangel and Hare, 

2010) suggests that decision is made through biased competition between action 

representations. Thus, the other decision factors such as subjective value, effect of actions, 

only biases the competition process in action space, rather than directly competing with 

each other. The existence of action value related activity has challenged the good-based 

hypothesis. Numerous cortical regions have been found to code action value or are 

modulated by relative value information. These regions include the dosolateral prefrontal 

cortex (Leon and Shadlen, 1999; Kim et al., 2008), the anterior cingulate cortex (Shidara 

and Richmond, 2002; Seo and Lee, 2007), the lateral intraparietal area (Sugrue et al., 

2004; Louie and Glimcher, 2010), supplementary eye fields (Amador et al., 2000; So and 

Stuphorn, 2010), the superior colliculus (Ikeda and Hikosaka, 2003), and the striatum 

(Samejima et al., 2005; Lau and Glimcher, 2008). Chosen action value information was 

also found among these area including ACC (Kennerley and Wallis, 2009) and caudate 

(Lau and Glimcher, 2008). It is still under debate as to why option value and action value 

coexist in brain, and their functional specialties in value based decision process. The 

action-based hypothesis in its pure form would suggest that chosen action information 

appear earlier in brain than chosen value information. In contrary, our result argues 

against this hypothesis in its pure form. Our study shows that chosen value information or 

competition between value spaces occurs earlier than chosen direction information in 

motor space.  
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Based on these results, we propose a cascade hypothesis of decision-making. This 

hypothesis argues that competition in value space and action space happen simultaneous 

in time. The competition in the value space can bias the competition in the action space. 

In the current experiment paradigm, the competition in the action space was balanced at 

the beginning. Therefore, imbalances appear in the value space competition earlier than 

those in the action space.  This hypothesis is consistent with the hieratical control of the 

frontal lobe (Fuster, 2001; Badre, 2008; O'Reilly, 2010). It is very likely that good-based 

hypothesis and action-based hypothesis are two extreme cases of decision-making. For 

decision based on visual trigger, such as perceptual decision-making (Shadlen and 

Newsome, 2001) or in situation of unbalanced visual cues (Markowitz et al., 2011) as 

discussed in chapter 2, the competition occurs mainly in action space, and is very weak or 

equilibrated in value space. For the decision purely based on abstract component such 

subjective value which integrates different decision effectors in different contact, the 

competition is more likely to appear early in the value space than in the action space.  

7.2 The functional role of SEF in value based decision- making ----

executive control of saccade selection 

Decision-making and action selection are likely a distributed process that takes 

place within a larger network of areas, including SEF (Ledberg et al., 2007; Hernandez et 

al., 2010). As suggested by affordance hypothesis, the competition in the action space is 

likely to happen within an interconnected network of parietal and frontal areas, such as 

FEF and LIP (Cisek, 2007; Cisek and Kalaska, 2010), and sub-cortical areas (Gurney et 

al., 2001). This competition among the potential motor responses can be strongly 

influenced and controlled by executive signals depending on different cognitive demands. 
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This executive control signal can come from the prefrontal cortex and medial frontal 

cortex, including the SEF (Stuphorn and Schall, 2006; Isoda and Hikosaka, 2007; 

Johnston et al., 2007).  

Previous researches have shown that SEF does not directly participate in 

movement generation.  Similar to the neuronal activity in other medial frontal cortex 

(Scangos and Stuphorn, 2010), the neuronal activity in SEF also does not reach a fixed 

level of activity just before movement generation (Figure 4.4) (Schall et al., 2002; 

Stuphorn et al., 2010). SEF also does not show divisive normalization which is widely 

observed in many other motor related area, such as LIP (Louie et al., 2011), and SC 

(Basso and Wurtz, 1998). These facts support the notion that there is a fundamental 

difference in the functional role of SEF comparing to other oculomotor areas in motor 

control. In accordance with the idea that SEF participates in self-generated saccade 

movement, in this dissertation study, we found that SEF participates in coding action 

value based on internal representation of subjective value in the decision- making process. 

SEF can serve as a transition area bridging higher cognitive process within the value 

space and motor control in the action space. This is supported by the fact that the value 

information in SEF behave as if in between OFC and motor area. Unlike the neuronal 

activity in LIP or SC, SEF shows no divisive normalization in the neuronal representation. 

Therefore SEF can still faithfully represent the value in a monotonic way as OFC does. 

However, unlike the neuronal activity in OFC, the value signal in SEF has directional 

tuning and is also influenced by the value of other options. Therefore, it reflects the 

action value for each option and the mutual inhibition between them. The action value 

map in SEF can further provides a basic drive to bias the movement generation process in 
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downstream motor area as a form of executive control. Previous research found SEF 

influencing neuronal activity in oculomotor areas (Huerta and Kaas, 1990), such as FEF 

and SC, which directly control gaze (Hanes and Schall, 1996; Pare and Hanes, 2003). 

SEF’s influence on motor competition could be exerted either directly through 

connection with FEF and SC, or indirectly through projection to the caudate nucleus, 

with which it forms a cortical-basal ganglia loop. In order to test this executive control 

hypothesis, it would be very interesting to record simultaneously in SEF and FEF, and 

observe how stimulation or inactivation of SEF can influence the neuronal pattern in FEF.  

The inactivation experiment in this dissertation study further suggests a causal 

role of SEF in value based decision-making. Previous studies showed that in humans, 

lesions in SEF and SMA disrupt the automatic inhibitory control of motor plans that are 

evoked by external stimuli (Goldberg and Bloom, 1990; Sumner et al., 2007). Here, in 

our experiment paradigm, when inactivating the neuronal activity in SEF, the monkeys 

show less consistency and more randomness when making value based decisions. This 

inactivation is akin to taking out the executive control signal based on the value 

information, Although both monkeys could still make decision in a relatively rational 

way due to several possible reasons as discussed in section 6.3.2 , the magnitude of the 

SEF inactivation effect is comparable to the effect of permanent lesions of the 

orbitofrontal cortex through ablation (Noonan et al., 2010). 

7.3 Concluding remarks 

This dissertation study focuses on the neuronal mechanism underlying value 

based decision-making. Together with modeling, psychophysics research, 

neurophysiology recording, and perturbation technique, this study investigated the 
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functional role of SEF during value based decision making. Further it studied how value 

representation and action representation can interact with each other during the decision-

making process. Specifically, the pilot psychophysics research suggests how visual 

salience can influence the onset time of value representation and can influence action 

selection. After that, the main body of the research focused on neurophysiology recording 

in SEF, a value-action association area linking the value representation and motor control. 

The recording in SEF suggests that the action value information represented in SEF 

participate in choice selection process. The perturbation experiment produced further 

evidence supporting the causal role of SEF in value based decision-making. As an 

association area, SEF provides us a special opportunity in the study of the relation 

between value representation and action representation. Different from both of the 

currently prevalent theories of decision-making, we suggest a cascade hypothesis, in 

which competition occurs in both value space and motor space during value based 

decision-making. If the motor competition is balanced, such as in our experiment design, 

the imbalanced competition in value space which happens earlier can bias the 

competition process in the motor space. 
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