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Abstract 

The vasculature in the brain is formed by brain microvascular endothelial cells (BMECs) 

surrounded by pericytes and astrocytic endfeet.  Together these cellular components constitute the 

blood-brain barrier (BBB) and regulate transport into and out of the brain.  BMECs possess intrinsic 

barrier properties to regulate transport, including enriched expression of tight junctions (TJs) which 

block paracellular transport, efflux pumps which limit transcellular transport, and nutrient 

transporter systems which increase substrate transcellular transport.  In healthy individuals, these 

properties limit the passage of ~98% of small molecules into the brain, representing a major hurdle 

for brain disease treatment.  However, during some brain diseases the BBB displays structural and 

functional alterations which can directly contribute to disease progression.  In this work, tissue-

engineered three-dimensional (3D) brain microvessels are developed to enable studies of the BBB 

during health and disease.  Key advantages of 3D microvessels compared to two-dimensional 

assays (i.e., transwells) are established, including recapitulation of critical microenvironmental 

cues present within the native BBB (i.e., cylindrical geometry, cell-matrix interactions, and shear 

flow), physiological permeability, and high spatiotemporal resolution.  Chapter 1 provides an 

overview of brain microvascular plasticity; this overview highlights processes that are later studied 

within our 3D microvessel models.  Chapter 2 describes the tissue-engineering approach to form 

3D microvessels by seeding induced pluripotent stem cell (iPSC)-derived BMECs into ~150 μm 

diameter channels patterned within type I collagen.  This model is used to study: (1) brain 

specificity of barrier function, (2) efflux inhibition, (3) cytokine response, and (4) the influence of 

neurodegenerative mutations.  Chapter 3 describes a study on the mechanisms of enhanced drug 

delivery using hyperosmotic BBB opening.  The hyperosmotic agent mannitol results in dose-

dependent and spatially heterogeneous increases in paracellular permeability through the formation  
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Abstract 

of transient focal leaks; additionally, the susceptibility to opening and subsequent repair is 

modulated by growth factor treatment.  Chapter 4 describes a bead assay and tissue-engineered 

microvessel model of brain angiogenesis used to study the influence of chemical and physical 

factors on angiogenic phenotype.  Together these works show that tissue-engineered BBB 

microvessels can provide insight into the mechanisms of drug delivery and various brain disease 

states. 

                  
                                                                                                                                            

Advisor: Prof. Peter Searson 
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Chapter 1. Cerebrovascular plasticity: processes that lead to changes in the 
architecture of brain microvessels 

A version of this chapter is published in Journal of Cerebral Blood Flow & Metabolism 39 (2019) 

1413-1432. [1] 

Max I. Bogorad,1,2,† Jackson G. DeStefano,1,2,† Raleigh M. Linville,1,3,† Andrew D. Wong,1,2,4,†  

Peter C. Searson1,2 

1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD  

2 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 

3 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 

† These authors contributed equally to this work 

1.1. Introduction   

The brain has no moving parts and yet it is one of the most energy expensive organs in the body, 

consuming 15 - 20 watts [2, 3].  To power the adult human brain, nutrients are supplied to the 100 

billion neurons via a 600 km network of capillaries and microvessels [4].  Since the brain does not 

have significant capacity to store metabolic nutrients, cerebral blood flow (CBF) is generally 

proportional to cerebral metabolic rate [5], and the cell bodies of neurons are typically 10 - 20 µm 

from the nearest capillary [3].  Therefore, the cerebrovasculature is crucial to maintenance of 

normal brain function.   

The cerebrovasculature, in addition to supplying nutrients and other essential molecules, is a key 

component of the blood-brain barrier (BBB) which maintains tight control of the brain 

microenvironment by regulating fluctuations in chemistry, transport of immune cells, and the entry 

of toxins and pathogens [3, 6].  Under homeostatic conditions, the turnover of brain microvascular 

endothelial cells (BMECs) is very low and the cerebrovascular architecture is considered to be 

static.  However, due to the precise neurovascular coupling between energy supply and demand, 
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perturbations to the cerebrovasculature and the neuronal architecture are closely related.  The 

cerebrovascular architecture displays profound plasticity during development, aging, injury, and 

disease (Figure 1-1).  

Transient changes in neural activity can be accommodated by local dilation or contraction of 

arterioles and capillaries.  However, sustained changes in the global brain microenvironment, for 

example due to sensory deprivation or hypoxia, can lead to robust remodeling of the 

cerebrovascular architecture.  At the cellular level, changes in the cerebrovascular architecture 

involve changes in the rates of proliferation and loss of BMECs that are associated with addition 

or subtraction of capillary segments.  As a result of neurovascular coupling, these changes are 

usually closely associated with local gain or loss of neurons and may ultimately be associated with 

changes in cognitive function.  Although cerebrovascular plasticity is observed at all hierarchical 

levels, here we focus on the microvasculature (arterioles, capillaries and venules). 

The time scales of these process span a wide range.  For example, changes in CBF in response to 

increases in neural activity occur with a time constant on the order of seconds.  Changes in 

cerebrovascular architecture due to sustained sensory deprivation or hypoxia, occur with time 

constants of several weeks.  The cerebrovasculature displays elevated plasticity during 

development, while during aging plasticity declines.  The time scale of changes during development 

and aging is on the order of months to years, where the rate often depends on mitigating factors 

such as exercise (in the case of aging).  Injury can result in rapid damage to cerebrovascular and 

neuronal architecture, followed by partial or complete repair over weeks to months.  In contrast, 

neurodegenerative disease is characterized by highly heterogenous changes that occur over months 

to years.  Here, we review processes that lead to changes in cerebrovascular architecture.  
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Figure 1-1. Cerebrovascular architecture displays profound plasticity during the human 
lifespan.A summary of changes during: (A) development, (B) homeostasis, and (C) aging, injury, 
and disease.  (D) Microvascular density increases via angiogenesis in the brain.  Shown is the mouse 
postnatal cortex, arrowheads denote endothelial sprouts [7]. (E) The blood-brain barrier (BBB) 
displays functionally low permeability during early stages of brain development; here, a guinea pig 
embryo injected with trypan blue demonstrates restriction of dye entry into CNS [8]. (F) 
Neurovascular coupling is the process by which increases in neural activity create changes in local 
cerebral blood flow and cerebral consumption of oxygen; here, we display a change in local total 
hemoglobin concentration (dark red) in response to electrical stimulation in the somatosensory 
cortical surface of a rat [9].  (G) Chronic hypoxia results in increased microvascular density in the 
mouse motor cortex [10]. (H) TBI results in a rapid decrease in microvascular density in rats [11].  
(I) During Alzheimer’s disease, the most common neurodegenerative disease, amyloid-beta 
accumulates around human microvessels and BBB integrity is compromised (downregulation of 
the tight junction protein claudin-5) among other cerebrovascular changes [12].   
 

1.2.Cerebral Blood Supply and Metabolism 

1.2.1. Cerebral blood supply 

The brain receives blood supply from the cerebral branches of the internal carotid (which then 

branch into the anterior and middle cerebral arteries) and the vertebral arteries (that later merge to 

form the basilar artery) (Figure 1-2, A) [13].  The internal carotid arteries and the vertebral arteries 
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are interconnected in the cranial cavity to produce the Circle of Willis, which creates collateral 

circulation.  If any parts of the Circle of Willis or supplying arteries become blocked or narrowed, 

blood flow remains at least partially preserved by the other supplying vessels, reducing the 

likelihood of ischemia.  Anastomoses also occur between the branches of the three cerebral arteries 

on the surface of the brain.  In adults, if one of the four arteries delivering blood to the brain is 

blocked, the remaining three are not usually capable of providing adequate circulation, resulting in 

ischemic stroke [14].  Additionally, cerebral blood supply reflects the metabolic demands of 

specific brain regions and defines their susceptibility to vascular damage.  For example, regions 

that are supplied by a single major artery and have a continuous capillary network with weak 

collateral flow are at higher risk for hypoxic injury and stroke [15].   

1.2.2.Cerebral blood flow (CBF) 

The average CBF is determined by the Poiseuille equation for laminar flow: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜋𝜋∆𝑃𝑃𝑟𝑟4

8µℓ
= 𝐶𝐶𝑃𝑃𝑃𝑃

𝐶𝐶𝐶𝐶𝐶𝐶
  

where ∆P is the pressure gradient per unit length of vessel (l), r is the vessel radius, and µ is the 

dynamic viscosity.  The Poiseuille equation can be simplified in terms of the cerebral perfusion 

pressure (CPP = ∆P) and the cerebrovascular resistance (CVR).  The cerebral perfusion pressure is 

the difference between the mean arterial pressure (MAP) and the intracranial pressure (ICP).  In 

adults, the ICP is normally 5 - 15 mm Hg when supine.  Sustained ICP values in excess of 20 - 25 

mm Hg are considered to indicate risk for focal ischemia.  The average CBF is about 50 mL per 

100 g of brain tissue per minute (750 mL min-1 for an adult) [13].  Blood flow is about twice as 

high in grey matter due to the higher density of neuronal cell bodies.  In contrast, blood flow in 

white matter which is composed primarily of axons, is about twice as low [16]. 
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Figure 1-2. Cerebrovascular architecture.  (A) Arterial architecture. (i) Inferior view of the base 
of the brain with cerebral arterial Circle of Willis. (ii) Magnified view of the Circle of Willis.  (iii) 
Right lateral view of the right hemisphere. (B) Microvasculature ultrastructure in the cerebral 
cortex. (i) Schematic illustration of the vasculature in the cerebral cortex showing both arterial and 
venous systems. Pial arteries located on the surface penetrate deep into the cerebral cortex as 
penetrating arterioles, which branch into capillary beds that then reemerge from the cortex as 
ascending venules [9].  (ii) Scanning electron micrograph of a corrosion cast showing the 
vasculature of the temporal lobe of the human cerebral cortex [17]. (Scale bar = 375 µm) (1) Pial 
artery, (2) long cortical artery, (3) middle cortical artery, (4) short cortical artery, (5) cortical vein, 
(6) subpial zone, (7) precapillary vessel with blind ending, (8) superficial capillary zone, (9) middle 
capillary zone, and (10) deep capillary zone.  (C) Neurovascular unit. (i) Schematic illustration of 
the neurovascular unit comprised of brain microvascular endothelial cells surrounded by pericytes 
and astrocytes [7]. (ii) Electron microscope cross section of a capillary from the rat frontoparietal 
cortex [18]. BM – basement membrane. BMECs – brain microvascular endothelial cells. TJ – tight 
junction.   
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CBF is maintained at a relatively constant value over a range of cerebral perfusion pressures (50 - 

150 mm Hg) by autoregulation: changes in CPP are compensated by changes in artery diameter 

(vasodilation or vasoconstriction) [13, 19].  The lower limit corresponds to the point of maximum 

dilation and at lower pressures the CBF decreases with decreasing pressure due to vessel collapse. 

The upper limit corresponds to maximum constriction and higher pressures result in disruption of 

the BBB [16].  Autoregulation is maintained through multiple mechanisms including metabolic 

(e.g. CO2 levels), myogenic (e.g. nitric oxide) and neurogenic (e.g. sympathetic innervation) 

regulation [19].   

The average cerebral blood volume (CBV) is 3.5 - 4.5 mL per 100 g tissue (about 50 mL for an 

adult brain) [20].  A large fraction of this volume is contained in the venous sinuses and pial veins.   

Although the CBV is a small fraction of the brain vol (around 4%), it plays an important role in 

regulating intracranial pressure since it can be modulated very quickly by changing the blood flow.  

Since CBV ∝ r2 and CBF ∝ r4 (see above) it is predicted that CBV ∝ CBFn where n = 0.5 [21].  

Studies in humans and animals have reported exponents of 0.3 - 0.4 [21]. 

1.2.3.Cerebral metabolism 

The brain is one of the most energy expensive organs in the human body.  Overall the brain accounts 

for 15 - 20% of the base metabolic rate, consuming 15 - 20% of oxygen leaving the heart and 15 - 

20% of the glucose consumed daily [2, 3].   Since the brain does not have significant capacity to 

store metabolic nutrients, fuel to power the brain is provided on-demand by the lungs and GI system 

which transfer oxygen and glucose, respectively, to the vascular system.   Glucose is transported 

into the brain by glucose transporter 1 (GLUT1) localized to BMECs, while oxygen passively 

diffuses across endothelial cells [3].  
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1.3.Microvascular Architecture 

1.3.1.Microvascular ultrastructure 

Neuronal architecture, and thus cerebrovascular architecture, is spatially heterogeneous [13, 22].  

In the cerebral cortex, pial arteries on the brain surface descend to become parenchymal arterioles 

to supply microvascular beds of cortical grey matter (Figure 1-2, B) [9].  At the interface between 

gray and white matter, the microvascular density decreases substantially along with the density of 

neurons and other supporting cells.  In white matter, capillaries are generally arranged in parallel 

with axons and microvascular density is roughly 10% of that in the grey matter (consistent with the 

lower blood flow) [13, 22].  Pathological and physiological stresses can promote increases or 

decreases in microvascular density via angiogenesis or apoptosis, as addressed in subsequent 

sections.  

In mammals, capillaries have a diameter that is slightly larger than red blood cells [23], which in 

humans corresponds to 8 - 10 µm in diameter.  In the human brain, capillaries have branch points 

approximately every 30 µm, and an inter-capillary spacing of ~50 µm [17].  Venular capillaries in 

the mouse cortex are up to 20 branches away from penetrating arterioles [24], and the average path 

length of RBCs through a single capillary network in the cortex (where flow can be visualized in 

real time by two-photon microscopy) is 150 - 500 µm [25].  Wall shear stress in the capillaries 

ranges from 20 - 40 dyne cm-2 and is regulated by capillary tone via neurovascular coupling [26].  

Downstream from capillaries, post-capillary venules (PCVs) have a perivascular space that serves 

as a preferential site for extravasation of leukocytes, tumor cells, and parasites [27-29].  PCVs have 

an average wall shear stress from 1 - 4 dyne cm-2, and smaller cardiac cycle-based fluctuations 

compared to arterioles [26].  
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1.3.2.The neurovascular unit  

The neurovascular unit, which comprises the blood-brain barrier (BBB), embodies the system that 

regulates neurovascular coupling.  The cellular components of the BBB are brain microvascular 

endothelial cells (BMECs), pericytes, and astrocytes, and implicitly include neurons in the context 

of coupling (Figure 1-2, C) [6, 26].  Highly specialized BMECs provide the physical barrier 

between the vasculature and brain parenchyma.  Pericytes are mural cells with a round nucleus and 

long processes that extend along the abluminal endothelial wall.  A basement membrane (BM), 

composed of collagen IV, laminin, nidogen and heparan sulfate proteoglycans surrounds BMECs 

and pericytes [3].  Astrocytes are star-shaped glial cells with small cell bodies and long radial 

processes that contact both synapses and the BM.  In capillaries, endothelial cells, pericytes, and 

BM are completely surrounded by astrocytic end-feet [30].  Astrocytes serve multiple functions in 

the brain, including spatiotemporal modulation of local blood flow by relaying signals from 

neurons to BMECs via their end-feet to induce dilation and contraction [30, 31]. 

1.4.Cerebrovascular and Neuronal Plasticity 

Under homeostasis, the cerebrovascular architecture is assumed to be fixed, with very low cell 

turnover.  Direct evidence for cerebrovascular plasticity comes from two-photon microscopy 

studies in animal models [32-35].  In the somatosensory and motor cortex of mice, increases in 

capillary length and the number of branch points have been observed up to post-natal day 25.  

However, in adult mice there was negligible change in capillary segment diameter, capillary 

segment length, or the position of branch points over about 30 days [32, 33].  These results imply 

that there was no turnover in BMECs during the imaging period.  The subtraction or pruning of 

redundant capillary sections in short vascular loops occurred once every 6.25 days per mm3 in the 

motor cortex [32].  Subtraction events may occur in response to disturbances in shear flow and 
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could contribute to pathological processes such as vascular atrophy, rarefaction, wall degeneration, 

and the neurodegeneration observed in aged animals [32, 36].  

Increases in microvascular density occur by formation of capillaries from existing blood vessels 

(angiogenesis), or organization of proliferating precursor cells into new blood vessels 

(vasculogenesis).  Angiogenesis involves endothelial cell activation, proteolytic degradation of BM 

and matrix, migration, alignment, proliferation, tube formation, and anastomosis with other vessels.  

During maturation, capillaries develop tight intracellular junctions, produce BM, and recruit 

pericytes and astrocytic end-feet.  Arterioles recruit a layer of smooth muscle cells (SMCs), which 

allows control of vessel tone.  Vascular endothelial growth factors (VEGF) and their respective 

receptor tyrosine kinases (VEGFR) are key regulators of angiogenesis and are inducible in many 

cell types, including astrocytes, pericytes, and endothelial cells [30].  VEGF-A also supports 

neurogenesis, nerve migration, axonal guidance, and neuronal survival [37].  During adulthood, 

brain angiogenesis is observed in response to stimuli such as hypoxia, injury, or neurodegenerative 

disease, as discussed in subsequent sections.  Additionally, vasculogenesis  can occur in response 

to stimuli such as trauma or tissue hypoxia as endothelial progenitor cells (EPCs) are mobilized 

from bone marrow to participate in endothelial cell repair/regeneration and tissue 

neovascularization processes [38].  For example, a higher concentration of circulating EPCs during 

the first week after stroke onset is associated with improved patient outcomes [39].  Cerebral 

arteries also display profound plasticity; for example, during hypertension (elevated blood 

pressure) extensive remodeling of arterial walls occurs to reduce lumen diameter [40].  In 

subsequent sections, we consider the cerebrovascular plasticity of microvessels (arterioles, 

capillaries and venules). 

Neuronal plasticity is distinct from cerebrovascular plasticity in terms of location. In adulthood, 

neurogenesis occurs in only two regions of the brain: the subgranular zone of the dentate gyrus in 
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the hippocampus, and the subventricular zone [41].    These specialized regions are  often referred 

to as neurovascular niches since the vasculature has been identified as a crucial component of the 

stem cell environment [42].  In the subventricular zone, neural stem cells directly contact blood 

vessels in homeostasis as well as regeneration [43], a feature unique to this region of the brain.  It 

has also been shown that new neurons are born in close proximity to blood vessels in the 

hippocampus [44]. 

1.5.Factors that Influence Cerebrovascular Plasticity 

1.5.1.Neural Activity 

A key feature of brain metabolism is the tight coupling between energy supply and demand, 

commonly known as neurovascular coupling or functional hyperemia [31].  Local increases in 

neural activity are followed by dilation of local capillaries and upstream arterioles, increasing CBF, 

and increasing cerebral metabolic rate of oxygen consumption (CMRO2) [9, 16].  This response is 

modulated by secretion of vasodilators, such as nitric oxide (NO), vasoactive intestinal polypeptide, 

and prostaglandin  by endothelial cells, neurons, and other glial cells [31, 45].  Recently, 

extracellular K+, a byproduct of neural activity, has been shown to induce a retrograde 

hyperpolarization signal from capillaries to arterioles, resulting in dilation [46].  These chemical 

factors typically act by promoting relaxation of SMCs surrounding upstream arterioles.  There have 

been contradictory reports on the role of pericytes in dilation and contraction of capillaries [47-50].  

Increased metabolism, which follows an increase in neural activity, is quantifiable though the 

measured increase in CMRO2 [51, 52].  The response to increased neuronal activity is relatively 

fast with changes in CBF occurring within a few seconds [53].   

Neuronal activity results in increases in CBF and CMRO2, with CBF increasing 2- to 4-fold more 

than CMRO2 [52, 54].  Local changes in oxygen consumption result in downstream changes in the 

concentration of deoxygenated hemoglobin, which is the basis for blood oxygenation level 
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dependent (BOLD) contrast functional MRI (fMRI) [55-57].  Changes in the concentration of 

deoxygenated hemoglobin are most prevalent in the venous tree following consumption of 

oxygenated hemoglobin in capillaries [58].  

Cerebrovascular architecture is maintained during neurovascular coupling.  However, persistent 

changes in neural activity or nutrient supply can lead to adaptions that include remodeling of 

cerebrovascular architecture.  Examples of such changes are sensory deprivation and hypoxia. 

1.5.2.Sensory Deprivation 

Evidence for coupling between neural activity and cerebrovascular architecture comes from 

sensory deprivation studies in rats and studies of the effect of single eye vision depravation in cats 

[59-62].  Juvenile rats raised in stimulating, complex environments for 30 days were found to have 

increased density of capillary branch points, increased capillary surface area per unit tissue volume, 

and increased number of branch points per unit of capillary surface area within the striate cortex 

when compared to rats in non-complex environments [59, 60].  Similar studies have shown further 

increases in microvascular density in the cerebellar cortex of adult rats, while learning tasks 

increased the number of synapses per unit area [61].  Adult rats raised in complex environments 

showed increased microvascular density and number of branch points.  New microvessels were 

observed after 10 days with full capillary neovascularization occurring between 30 and 60 days 

compared to animals housed in individual cages.  Juvenile rats raised in the dark for up to 60 days 

showed a lower density of neurons, significantly lower cortical thickness, and lower vessel density 

in the striatum [63, 64].   

Increases in neural activity are associated with increased growth rate in the somatosensory cortex 

in rat models [65].   Increased neural activity induced by whisker stimulation for one week, from 

post-natal day 14-21, resulted in increased microvascular density and the number of branch points 

in the somatosensory cortex [66].  A reduction in sensory neural activity induced by whisker 
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plucking from post-natal day zero to five resulted in decreased microvascular density and the 

density of branch points at post-natal day 14 [66].  These results indicate relatively fast changes in 

cerebrovascular architecture in juvenile mice. 

1.5.3.Hypoxia 

Since oxygen is essential for normal brain function, transient or sustained decreases in oxygen 

supply can lead to hypoxia and result in changes in the cerebrovascular architecture.  In adulthood, 

local hypoxia is usually associated with injury or disease.  For example, ischemic stroke or 

circulating tumor microemboli can cause local hypoxic regions downstream from occlusion. In 

contrast, changes in the oxygen partial pressure of the environment can lead to global hypoxia in 

the brain.  At sea level where oxygen comprises 21% of the atmosphere, the arterial oxygen partial 

pressure (PaO2) is 75 - 100 mm Hg.  Mild hypoxia usually refers to arterial oxygen partial pressures 

down to 50 mm Hg, corresponding to an atmospheric oxygen concentration of about 10% or 

equivalent to an altitude of about 5,000 m [67].  While mild hypoxia results in numerous adaptations 

including angiogenesis, moderate hypoxia (PaO2 = 35 - 50 mm Hg) can result in cognitive deficits, 

and severe hypoxia (PaO2 < 35 mm Hg) can result in loss of consciousness.   

Acute exposure to mild hypoxia results in an increase in CBV due to vasodilation and an increase 

(up to 2-fold) in CBF which returns to baseline after a few days [67].  The renormalization in CBF 

is associated with an increase in red blood cell volume and hemoglobin concentration, a well-

known response to high altitude training in the field of human performance [68].  Rats subjected to 

chronic mild hypoxia display regional specifies increases in microvascular density; a 3-fold 

increase in density in the hippocampus and striatum was observed over 3 - 4 weeks while other 

brain regions display more modest changes [10, 69].  Increases in microvascular density are driven 

by angiogenesis through expression of hypoxia-inducible factor-1α (HIF-1α) and subsequent 
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upregulation of VEGF, while declines are achieved via BMEC apoptosis following return to 

normoxia [67].   

1.6.Development and Aging 

1.6.1.Development  

During development the cerebrovasculature is dynamic in structure and function.  Many signaling 

pathways converge to facilitate cerebrovascular plasticity [6, 7].  VEGF-A released by the 

developing neural tube initiates formation of the perineural vascular plexus (PNVP) via 

vasculogenesis.  Next, BMECs invade the brain parenchyma from the PNVP via sprouting 

angiogenesis.  Non-CNS specific signaling pathways (e.g. VEGF-A/VEGFR2) and CNS-specific 

signaling pathways (e.g. Wnt7a/b) guide angiogenesis as well as formation of the BBB 

(barriogenesis) [6, 7].  Cues in the microenvironment that guide angiogenesis and barriogenesis 

display unique temporal and spatial expression profiles.  For example, VEGF-A expression by 

neurons guides early angiogenesis, whereas postnatally, astrocytes surrounding the 

microvasculature are the predominate source of VEGF-A; chronic developmental hypoxia disrupts 

this expression pattern and results in hypervascularization [70].  Wnt/β-catenin signaling is 

uniquely required for CNS angiogenesis and barriogenesis; neural progenitor cells release Wnt 

ligands (Wnt7a and Wnt7b) that guide sprouting of BMECs and induce BBB formation via 

expression of GLUT1[71].  

The timing of angiogenesis and barriogenesis during brain development is controversial.  However, 

accumulating physiological and molecular evidence indicates that the developing brain displays 

barrier properties appropriate for each developmental stage [72].  Studies in zebrafish suggest that 

angiogenesis and barriogenesis are temporally indistinguishable [73], while histological studies in 

human embryos show that during brain angiogenesis capillaries are positive for the tight junction 

protein claudin-5 and already restrict transport of plasma proteins [74].  Postnatally, vascular 
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remodeling continues but is not well understood; however, VEGF-A and axonal growth inhibitor 

NOGO-A have been implicated [7]. 

As BMECs invade the CNS they interact with neurons, neural stem cells, glial precursors, and 

pericytes.  Sprouting BMECs release PDGF-β to recruit pericytes and initiate BBB formation 

during embryogenesis [75].  Astrocytes are not present in the developing brain when it is initially 

vascularized, however, astrocytic-derived sonic hedgehog ligands are critical in promoting BBB 

integrity and immune quiescence postnatally [76].  Glial-endothelial interactions also guide spatial 

patterning during brain development; radial glia cells provide a scaffold for BMEC migration, 

whereas BMECs later provide a scaffold for oligodendrocytes precursor migration [7, 77].  

1.6.2.Aging 

Aging is associated with heterogeneous decreases in both microvascular and neuronal density in 

the brain.  Although these decreases can be linked, evidence suggests that cerebrovascular plasticity 

and neurovascular coupling are also impaired during aging [36, 78].   Histological analysis of post-

mortem tissue in humans frequently shows a decrease in microvascular density (typically 10 – 30%) 

during normal aging, particularly in the prefrontal cortex and hippocampus [36, 78, 79].  Aging is 

also associated with thickening of the BM, pericyte degeneration/loss, and swelling of astrocytic 

end-feet [78, 80].  Age-associated functional changes include increased tight junction defects and 

increased permeability [81, 82].  Similar age-associated changes have been observed in brain 

arterioles in the cerebral cortex, including decreased density (~40%), loss of SMCs and elastin, and 

gain of BM and collagen [78]. 

Evidence from two-photon microscopy of the cerebral cortex in mouse models showed BMEC 

senescence, reduced turnover, and diminished hypoxia-induced angiogenesis compared to younger 

mice [33].  Similar to other vascular beds, impaired angiogenesis is thought to be related to HIF1-

α hyporesponsiveness, growth factor downregulation, matrix metalloproteinase inhibition, eNOS 
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inactivity, reduced bioavailability of nitric oxide, impairment of endothelial proliferation, reduced 

recruitment of EPCs, and pericyte dysfunction [83].  Enriched environments or administration of 

VEGF viral vectors, which elicit increases in brain microvascular density in juvenile and adult 

rodents, result in reduced changes in aged rodent brains [84, 85].  Age-associated failure of 

angiogenic signaling is implicated as VEGFR-2 is not properly unregulated upon stimulation [85] 

and brain-region specific changes in angiogenesis-related genes are found in aged mice [79]. 

Numerous brain-imaging studies have shown age-associated decreases in CBF and CMRO2 in 

many regions of the cerebral cortex, in particular, in regions vulnerable to neurodegeneration [86].   

In the cortex, decreases of 0.38 to 0.76% per year have been reported [20, 86-88].  Studies of 

healthy brains indicate that decreases in CBF are largely distinct from grey-matter atrophy, 

suggesting that age-associated changes in ultrastructure and hemodynamics are independent [87].  

CBF reductions may result from a loss of arterial supply to the brain (mediated by decreased IGF-

1 [89]), a hypercontractile arteriole phenotype, and impaired neurovascular coupling.  

Neurovascular coupling is impaired during aging in humans and animal models [90-93]. 

Dysfunctional neurovascular coupling causes a mismatch between supply and demand of 

oxygen/metabolites for neurons, likely contributing to cognitive decline.  Interestingly, 

pharmacologically induced cerebrovascular uncoupling in mice mimics the aging phenotype (e.g. 

impaired spatial working memory, recognition memory, and motor coordination) without changing 

basal CBF [94].  The contributions of IGF-1 deficiency, oxidative stress, endothelial dysfunction, 

and astrocyte dysfunction to cerebrovascular uncoupling during normal aging have been reviewed 

elsewhere [93].  Pericyte degeneration has also been implicated in cerebrovascular uncoupling via 

reductions in oxygen delivery and increased metabolic stress [48].  BOLD fMRI studies of neural 

activity during aging are complicated by cerebrovascular changes including the loss of 

neurovascular coupling [95].  Contrary to other reports, a recent study utilizing a deconvolution 
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technique found no significant change in BOLD neurovascular coupling during visual and auditory 

task with normal aging [96].  Thus it remains unclear if age-associated declines in neural activity 

precede cerebrovascular changes or result from impaired cerebral hemodynamics.  

1.7.Response to Injury and Disease 

Injury and disease result in profound changes in cerebrovascular structure, plasticity, and coupling.  

However, the time scale of these changes are unique.   Stroke and traumatic brain injury (TBI), the 

most common causes of cerebrovascular injury [97], result in immediate loss of cerebrovascular 

architecture, followed by repair responses mediated by the neurovascular unit over weeks to 

months.  Cerebrovascular repair is coordinated by many converging processes that depend on injury 

type and severity [98, 99].  The signaling molecules and transcription factors that regulate these 

processes are often mediators of early vascular injury but may also result in long term repair and 

restoration of normal cerebrovascular function.  During neurodegenerative disease, changes in the 

cerebrovasculature are more gradual and highly dynamic in that disease progression may include 

both increases and decreases in cerebrovascular density (Table 1-1).   Injury and disease display 

interesting epidemiological links; for example, TBI is a risk factor for both stroke [100] and 

neurodegenerative disease [101] 

1.7.1.Ischemic Stroke 

Stroke is the most common form of cerebrovascular injury and second leading cause of death 

worldwide [102].  Each year, roughly 15 million individuals experience stroke worldwide.  Of 

these, one third do not survive while another third become permanently disabled.  The most 

common site of ischemic stroke in humans is the middle cerebral artery, which affects the posterior 

frontal, lateral, and parietal lobes [103].  During a typical ischemic stroke (80% of all stroke cases), 

the human brain ages 3.6 years for each hour without treatment; this translates to loss of about 120 

million neurons and 830 billion synapses per hour [104].  Cerebrovascular plasticity is equally 
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dynamic; middle cerebral artery occlusion in mice results in rarefication (75% loss) of brain 

capillaries within the microinfarction core, while larger microvessels are unaffected [105].    

The induced occlusion of a single cortical penetrating arteriole in rats results in a cylindrical 

microinfarction core about 500 µm in diameter and extending about 1 mm into the cortex. Neuronal 

activity is completely diminished within 2 hours and conditions become severely hypoxic (PaO2 < 

10 mm Hg) in 6 hours [106].  However, occlusion of microvessels two or more branch points away 

from cortical penetrating arterioles (i.e. capillaries) does not lead to detectable microinfarctions, as 

flow in interconnected microvascular networks can reverse to compensate for the occlusion [106].  

Thus, the severity of ischemic stroke is heavily dependent on the location of the occlusion and 

presence of collateral circulation.  

The normal progression of ischemic stroke involves three phases.  In the acute phase (up to 48 

hours after onset), hypoxia leads to release of neurotransmitter glutamate which results in 

widespread excitotoxicity and subsequent neuronal injury [107].   When blood flow is restored to 

the infarction site either naturally or by intervention, reperfusion leads to further damage known as 

reperfusion injury.  Activated glial cells, damaged neurons, and other cells of the neurovascular 

unit release growth factors [108], matrix metalloproteinases [109], reactive oxygen species [110], 

glutamate [111], nitric oxide [112], and cytokines [113].  These compounds are implicated in 

diverse roles post-injury including angiogenesis, BBB breakdown, BM degradation, glial 

activation, and neurotoxicity [98, 114, 115].  Additionally, peripheral immune cells enter the brain 

with unique temporal dynamics, which in tandem with innate glial activation, generates a 

proinflammatory environment [116].  

The sub-acute phase of ischemic stroke, occurring between two days and six weeks, is associated 

with the initiation of repair.  In this phase, cerebrovascular plasticity is at its highest and many of 

the mediators of vascular injury begin to take on neuroprotective and regenerative roles.  VEGF 
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plays a critical role in post-ischemic neurovascular remodeling.  However, the route and timing of 

VEGF administration following ischemic stroke modulate its therapeutic effects;  for example, 

systemic VEGF delivery during the acute phase promotes BBB disruption and worsens brain injury, 

while local modulation of VEGF or systemic delivery during the sub-acute phase may reduce 

ischemic damage [117, 118].  Following occlusion, BMECs begin proliferating and generating 

sprouts within 12 - 24 hours, leading to formation of new capillaries within three days after 

ischemic injury [119].  Additionally, brain pericytes play various roles in promoting microvessel 

stabilization and neuroprotection following stroke [120].  An important characteristic of the sub-

acute phase is the regenerative neurovascular niche, in which angiogenic blood vessels signal to 

neural progenitor cells to mediate neurogenesis.  This model is supported by the presence of newly 

formed neurons near remodeled vessels in the rodent striatum and cerebral cortex following stroke 

[121], most likely due to recruitment by BMECs that form a niche for neural stem cells [42].  During 

the chronic phase (after approximately 3 months following stroke), endogenous plasticity declines 

while vascular repair, angiogenesis, and behavioral improvement continue (although at a slower 

rate) [122]. 

1.7.2.Traumatic Brain Injury (TBI) 

TBI has diverse causes including blast-waves (i.e. improvised explosive devices), blunt trauma (i.e. 

contact sports) and penetration trauma (i.e. firearms).  Cerebrovascular changes during TBI occur 

in two distinct phases: primary and secondary.  During primary injury, direct biomechanical 

damage to cerebral tissue results in loss of cerebrovasculature architecture, CBF abnormalities, 

BBB disruption, and often fatal hemorrhaging and edema, while during secondary injury, cellular 

and molecular responses promote repair via angiogenesis, vasculogenesis, and neurogenesis [123, 

124].  The timescale and severity of responses in these phases is dependent on the injury modality, 

severity, and location, among other factors.   
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Traumatic brain injury results in rapid and significant decreases in microvascular density [11, 125].  

In an animal model of fluid percussion trauma, the cerebrovascular density of the ipsilateral 

cerebral hemisphere decreased by approximately 50% within 24 hours, while recovery was 

dependent on the severity of the injury and associated with establishment of a proangiogenic 

environment [125].  Other ultrastructural changes following TBI include BMEC swelling, vessel 

thinning, BM thickening, and pericyte degeneration [99].  In TBI patients, reduced CBF is observed 

within 12 hours after injury, while neurovascular uncoupling is thought to occur during the 

secondary phase [126].  Additionally, BBB disruption is widely observed following TBI and is 

associated with worse long-term outcomes, and may persist for years after injury contributing to 

risk of neurodegenerative disease [127, 128].  Angiogenesis and vasculogenesis are initiated during 

the secondary injury phase, resulting in increases in microvascular density over several weeks [99, 

125, 129].    Local hypoxia is thought to be the driver of neovascularization with HIF-1α and VEGF 

acting as critical molecular regulators [129]. 

1.7.3.Neurodegeneration  

Cerebrovascular structure, plasticity, and coupling are altered during neurodegenerative disease, 

beyond the impairments observed during normal aging [130, 131].  Whether cerebrovascular 

changes precede, follow, or occur concurrently with neurodegeneration is not yet fully understood, 

however, accumulating evidence suggests that cerebrovascular changes can occur prior to the 

presentation of symptoms and promote neurodegeneration [132-141]. 

Neurodegenerative disease is characterized by progressive loss of functional neurons and 

compromised human brain function.  Age is the greatest risk factor for neurodegenerative disease 

[142].  Neurodegeneration and normal brain aging share common pathologic origins including 

oxidative stress, mitochondrial dysfunction, and proteotoxicity [142, 143].  However, 

neurodegenerative diseases are also highly heterogeneous with distinct risk factors (environmental 
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and genetic), histopathological hallmarks (neuronal loss in specific brain regions and formation of 

protein aggregates), and clinical manifestations.  Despite the pathogenic differences, several themes 

connect cerebrovascular changes during neurodegeneration: (1) BBB dysfunction [6, 80, 130], (2) 

cerebral hypoperfusion and glucose hypometabolism [144], and (3) overexpression (AD, PD, HD) 

or underexpression (ALS) of VEGF (Table 1-1) [37]. 

1.7.3.1.Alzheimer’s disease (AD) 

Cerebrovascular changes associated with Alzheimer’s disease include vascular degeneration, 

altered angiogenesis, reduced CBF, increased BBB permeability, and neurovascular uncoupling 

[130, 133]. The amyloid hypothesis states that the formation of amyloid-β (predominantly the Aβ-

42 isoform) within the brain parenchyma induces gain of toxic function and neurodegeneration.  

However, AD is also closely associated with cerebral amyloid angiopathy (CAA) which is 

characterized by perivascular accumulation of predominantly the Aβ-40 isoform in the BM of 

leptomeningeal and cortical vessels of the cerebrum and cerebellum [145].  The epidemiological 

link between cerebrovascular risk factors and AD pathogenesis is well established and has been 

reviewed elsewhere [146]. 

Postmortem analysis of AD brain reveals capillary loss, as well as atrophied BMECs and pericytes, 

swollen astrocytic end-feet, hypercontractile SMCs, BM thickening, and BM deposits [18, 147].  

In severe CAA, additional pathologies include SMC loss, duplicated lumens, fibrinoid necrosis, 

and hyaline degeneration [145].  Despite capillary loss, AD is associated with increased 

concentrations of VEGF [148, 149].  In post-mortem human AD tissue, an increase in the number 

of angiogenic vessels (integrin αvβ3 expression) was correlated with several AD pathologies 

including neurofibrillary tangles and Aβ load [150].  Transgenic AD animal models corroborate 

these findings; in aged Tg2576 mice, disruption of tight junctions was linked to increased 

microvascular density, suggesting that amyloid-β initiates hypervascularization and BBB 
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disruption in early-stage AD, while microvascular degeneration occurs in last-stage AD [151].  

However, the effects of amyloid-β on brain angiogenesis remain convoluted as amyloid-β has been 

reported to both promote and suppress angiogenesis both in vitro and in vivo [152, 153]. 

Reduced CBF, increased BBB permeability, and reduced glucose metabolism are found to precede 

AD neurodegeneration in animal models and human studies.[50]  Reduced CBF is found in patients 

at high risk of developing AD (APOE ε4 allele) and patients with mild cognitive impairment [154, 

155].  These reductions persist during AD progression and appear to correlate with the degree of 

cognitive decline and AD pathology [18].  Recently, neutrophil adhesion in brain capillaries has 

been shown to reduce cortical blood flow in AD mouse models [156].  Additionally, BBB 

permeability increases before plaque formation in an AD mouse model, while MRI studies indicate 

that increased BBB permeability of mild cognitive impairment patients correlates with AD 

cognitive decline [132, 134].  PET imaging studies find reduced glucose metabolism in patients at 

high risk of AD, which precedes brain atrophy [130, 157].  CBF, metabolic rate, and BBB 

permeability changes contribute to ischemic/hypoxic damage of the neurovascular unit and initiate 

and/or exacerbate AD pathology [50, 130].  

AD patients, APOE ε4 allele carriers, and transgenic AD mice exhibit impaired neurovascular 

coupling responses, while therapies that rescue neurovascular coupling are associated with 

cognitive improvements [93, 135, 158].  AD-associated changes in vascular reactivity factors (i.e. 

eNOS and endothelin-1) may underlie neurovascular uncoupling and chronic hypoperfusion [159].  

Interestingly, partial eNOS deficiency in mice results in CAA-like pathologies and stroke in brain 

regions associated with hypoperfusion in preclinical AD patients [160]. 

1.7.3.2.Parkinson’s disease (PD) 

Cerebrovascular changes associated with Parkinson’s disease include both vascular degeneration 

and angiogenesis.  PD is histopathologically characterized by dopaminergic neuronal loss within 
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the substantia nigra in the brainstem [161].  Additionally, Lewy bodies, aggregates of 

predominately α-synuclein, form in the cytoplasm of specific neurons in widespread brain regions.  

Impairment of α-synuclein degradation during aging may contribute to dopaminergic neuronal loss 

and downstream motor deficient (bradykinesia) observed in PD patients [143]. 

PD-associated vascular degeneration resembles that of AD; morphological changes include BMEC 

degeneration and decreases in microvascular density [147, 162].  However, other studies find 

increased angiogenic vessels (integrin αvβ3 expression) in PD-associated brain regions, without 

overt changes in microvascular density [163].  Thus, it is possible that a proangiogenic environment 

is established in PD patients, as evidenced by heighted angiogenic biomarkers [164].  Integrin αvβ3 

expression is co-localized with BBB leakage in animal models of PD (6-hydroxydopamine mouse 

model) while the striatum in postmortem PD sections demonstrates signs of BBB disruption, 

suggesting that angiogenesis disrupts the BBB, thereby contributing to vascular degradation in late-

stage disease [165, 166].  Additionally, hypoperfusion of specific brain regions of PD patients is 

correlated with motor dysfunction [167]. 

Elevated microvascular plasticity in PD patients treated with deep brain stimulation (DBS) has 

recently been reported [168].  Reductions in microvascular density, endothelial tight junction 

protein expression, and endothelial VEGF expression were found in PD patients compared to age-

matched controls.  However, in PD patients treated with subthalamic nucleus DBS, these 

cerebrovascular changes were reversed.  Increased neural activity promoted by DBS rapidly 

modulates production of neurotrophic and angiogenic factor such as VEGF and BDNF [169]. 

1.7.3.3.Huntington’s disease (HD)  

Huntington’s disease is associated with cerebrovascular alterations including increased 

microvascular density, BBB disruption, and altered cerebral hemodynamics.  HD is caused by 

expansion of cytosine–adenine–guanine (CAG) repeats in the huntingtin gene [170].  Mutant  



 

 
 
 
 
 
 
 

23 

 

Table 1-1. Changes in cerebrovascular structure, plasticity, and coupling occur in AD, PD, HD, and ALS. 

 
For each disease neuropathological hallmarks as well as cerebrovascular changes are summarized.   Across the four most common NDs there are 
reported reductions in cerebral blood flow (CBF) and increases in blood-brain barrier (BBB) permeability.   Overexpression (AD, PD, HD) or 
underexpression (ALS) of vascular endothelial growth factor which drives brain angiogenesis may underlie ultrastructural changes.  While vascular 
degeneration is widely reported in AD and PD (characterized by decreased microvessel density), elevated microvessel density may occur in early-
stage disease and contribute to BBB permeability increases also associated with these diseases.  Note: changes are brain region specific.   

 

 

Neurodegenerative 
disease 

Neuropathological hallmarks Microvascular ultrastructure Angiogenesis Hemodynamics NVU dysfunction 

Alzheimer’s 
disease (AD) Extracellular amyloid-β plaques, 

intracellular tau tangles, loss of 
synapses and neurons 
(predominately cerebral cortex) 

Cerebral amyloid angiopathy 
[145] 
vascular degeneration [18, 147] 
↓ microvascular density [36]   

↑ angiogenic vessels 
[150, 151] 
↑ VEGF [148, 149] 

↓ CBF [154] 
Neurovascular and 
neurometabolic 
uncoupling [93] 
[157] 

↑ BBB 
permeability [132, 
134, 151] 

Parkinson’s 
disease (PD) 
 

Intracellular ∝-synuclein 
aggregates and loss of 
dopaminergic neurons (substantia 
nigra, other regions) 

vascular degeneration,  
↓ microvascular density [147, 
162] 
 

↑ angiogenic vessels and 
biomarkers [163, 164] ↓ CBF [167] 

↑ BBB 
permeability [165, 
166] 

Huntington’s 
disease (HD)  
 Intracellular mutant huntingtin 

(mHTT) aggregates and loss of 
neurons (striatum, cortex, 
hippocampus, others) 

↑ microvascular density [171, 
172] 

↑ angiogenic potential of 
HD hiPSC-derived 
BMECs [137] 
↑ astrocytic VEGF [173] 

↓ CBF [138] 
Neurovascular and 
neurometabolic 
uncoupling [139, 
173] 

BBB dysfunction 
of HD hiPSC-
derived BMECs 
[137]  
↑ BBB 
permeability [136, 
171] 

Amyotrophic 
Lateral Sclerosis 
(ALS) 
 

SOD-1 or TDP-43 aggregates and 
loss of motor neurons (cortex, 
brainstem, spinal cord) 

vascular degeneration [174] ↓ VEGF [175, 176] ↓ CBF [177] 
↑ BBB 
permeability [140, 
174] 
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huntingtin (mHTT) protein, produced by neurons and astrocytes, aggregates within the brain 

parenchyma, BM of microvessels, and cells of the NVU [171].  Loss-of-function of normal HTT 

and gain-of-function of mHTT contributes to progressive loss of neurons in the striatum, cortex, 

and hippocampus, among other regions, accompanied by declines in cognitive and motor functions 

[170]. 

In HD patients and mouse models of HD, microvascular density is increased up to two-fold 

compared to age-matched healthy controls [171, 172].  BBB disruption has been observed in HD 

mouse models, brain imaging of mild-to-late stage HD patients, and postmortem studies of HD 

tissue [171].  Changes in tight junction expression that underlie increased BBB permeability were 

recently found to precede disease presentation in a mouse model (R6/2) [136]. 

Astrocytes have been implicated as a mediator of microvascular changes; increased astrocytic 

VEGF in a HD mouse model (R6/2) promoted angiogenesis and loss of pericytes contributing to 

abnormal cerebral autoregulation [173].  Recent work suggests that BMECs of HD patients are 

autonomously dysfunctional; human induced pluripotent stem cells (hiPSCs) derived into BMECs 

from HD patients exhibit elevated angiogenic potential and deficient BBB properties compared to 

healthy cell lines [137].  Additionally, reductions in cortical CBF and impaired neurometabolic 

coupling have been reported in early stage HD patients and the R6/2 mouse model, respectively 

[138, 139]. 

1.7.3.4.Amyotrophic Lateral Sclerosis (ALS) 

During amyotrophic lateral sclerosis, progressive degeneration of motor neurons in the cortex, 

brainstem, and spinal cord lead to loss of voluntary muscle control and generalized paralysis.  Many 

molecular mechanisms have been implicated in ALS pathogenesis, including failure of proteostatis, 

mutations of RNA-binding proteins, axonal transport dysfunction, cytoskeletal disarrangement, and 

dysfunction of glial and neurovascular cell types [178, 179].  ALS-associated neurovascular unit 
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dysfunction, including BBB breakdown, has been reviewed elsewhere [174].  In SOD1 mutant 

mouse models, disruption of the blood-spinal cord barrier was observed prior to the development 

of symptoms of the disease and prior to an inflammatory response [140], suggesting that vascular 

changes can precede symptomatic disease. 

Genetic alterations in expression of hypoxia-inducible genes are heavily implicated in ALS 

pathogenesis.  Mice with reduced VEGF levels develop progressive motor neuron degeneration 

resembling human ALS, and reduced VEGF accelerates motor neuron degeneration in familial ALS 

mouse models [175, 176].  Humans with genetic variations of the VEGF promoter that confer low 

levels of circulating VEGF are at heightened risk to develop ALS [176].  Interestingly, early ALS 

patients demonstrated reduced CSF VEGF levels independent of VEGF promoter polymorphisms 

[141].  Insufficient VEGF likely contributes to ALS progression by both depriving neurons of 

neurotrophic signals and by contributing to BBB dysfunction and hypoperfusion/ischemia [37]. 

1.8.Summary 

During normal brain function, local changes in neural activity are accompanied by local 

dilation/contraction of microvessels to meet current metabolic demands.  Under these conditions 

the cerebrovascular architecture is generally thought to be fixed and, at the cellular level, the 

turnover of BMECs is negligible.  However, subtraction and pruning of redundant loops suggest 

that the cerebrovasculature is not completely static during homeostasis.  During development, 

neuronal and glial interactions drive additive changes in the cerebrovasculature, while the loss of 

neurons associated with aging is accompanied by heterogeneous subtractive changes.  Injury and 

disease can also result in subtractive loss and induce subsequent repair processes.  Sustained 

changes in the global brain microenvironment due to sensory deprivation or hypoxia, can also lead 

to vascular remodeling and additive or subtractive changes in the cerebrovascular architecture.  A 
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common factor in all additive changes in the cerebrovasculature is VEGF, a protein involved in 

vasculogenesis and angiogenesis, and expressed and recognized by BMECs, glial cells, and neurons 

Model systems to study cerebrovascular plasticity are continually advancing.  Multiphoton and 

intravital microscopy support studies of cerebrovascular plasticity in living animal models.[32-35]  In 

humans, neuroimaging modalities (i.e. fMRI) provide real-time metrics of cerebrovascular 

function, while postmortem histological analyses provide information on cerebrovascular structure.  

There remains a need for techniques to study human cerebrovascular plasticity with high temporal 

and spatial resolution.  In vitro models of cerebrovascular plasticity may satisfy this need.  

However, current models fail to recapitulate in vivo structure, function or plasticity.  For example, 

while transwell assays (comprised of BMECs cultured on a permeable membrane) can achieve 

physiological permeability, it does not mimic physiological hierarchy or geometry [26].  Without 

three-dimensional structure, models of cerebrovascular plasticity will fail as they cannot 

recapitulate additive or subtractive changes of capillaries.  Recent advances in stem cell technology, 

microfluidics, and tissue engineering have led to three-dimensional cerebrovascular models with 

increasing complexity [180, 181].  However, their ability to achieve characteristic stability of 

cerebrovascular architecture during homeostasis and plasticity during perturbation has yet to be 

shown.  Development of stable three-dimensional models of the cerebrovasculature will support 

studies of brain plasticity, as animal models do not always accurately model human homeostasis or 

pathogenesis. 
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Chapter 2. Human iPSC-derived blood-brain barrier microvessels: validation of 
barrier function and endothelial cell behavior 

A version of this chapter is published in Biomaterials 190 (2019) 24-37. [181]    
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2.1.Introduction 

The blood-brain barrier (BBB) maintains tight control of the brain microenvironment by regulating 

fluctuations in chemistry, transport of immune cells, and entry of pathogens and toxins [182-184].   

The brain microvascular endothelial cells (BMECs) that form the lumen of the cerebrovasculature 

are highly specialized, expressing tight junctions which effectively block paracellular transport, 

and an array of transporters and efflux pumps which regulate transcellular transport.  Additionally, 

BMECs display low turnover and motility to maintain a quiescent state in the healthy 

cerebrovasculature. Differences in the cerebrovasculature between humans and rodents mean that 

animal models do not always recapitulate human disease [185].  Therefore, in vitro models can 

provide an important link between human physiology and animal models, and have the potential to 
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contribute to elucidating disease mechanisms and developing new strategies for drug and gene 

delivery to the brain. However, for widespread adoption, these in vitro models must achieve 

physiological barrier function and endothelial cell behavior. 

Advances in tissue engineering have led to the development of a new generation of perfusable 

three-dimensional (3D) models of the BBB [186-189].  However, recapitulating physiological tight 

junction formation and barrier function has been particularly challenging, largely due to the fact 

that primary and immortalized human and animal brain microvascular endothelial cells exhibit 

transendothelial electrical resistance (TEER) values well below the range thought to be 

physiological (1,500 – 8,000 Ω cm2) [190-193].  To overcome this limitation, many existing BBB 

models incorporate supporting cell types of the neurovascular unit (i.e. astrocytes and pericytes) 

which improve barrier function, but still do not achieve physiological TEER or permeability.  Brain 

microvascular endothelial cells differentiated from human induced pluripotent stem cells 

(dhBMECs) display many of the hallmarks of the BBB in two-dimensional (2D) transwell assays 

including physiological TEER, permeability and efflux behavior [194-197].  Interestingly, BBB 

phenotype is achieved without supporting cell types.  In previous work we have reported on the 

role of matrix composition and stiffness on the adhesion and barrier formation of dhBMECs 

relevant to tissue engineering of 3D microvessel models [198]. 

Here, we report on characterization of an in vitro model of a brain post-capillary venule (PCV).  

PCVs are characterized by diameters of around 100 µm, a relatively thick basement membrane, a 

perivascular space with limited supporting cells, and a wall shear stress of 1 - 4 dyne cm-2 [199-

202].  PCVs are the site for immune surveillance and preferential extravasation of leukocytes, 

tumor cells, parasites and viruses [28, 203-208].  We report on the structure (i.e. endothelial cell 

behavior) and function (i.e. permeability) of the human iPSC-derived PCV model, in comparison 

to non-brain-specific microvessels constructed using human umbilical vein endothelial cells 
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(HUVECs).   We show that the dhBMEC microvessels recapitulate key aspects of the human BBB 

including physiologically low solute permeability, cell turnover, and cell motility.  Compared to 

self-organizing approaches recently developed for BBB modeling, which mimic angiogenesis and 

vasculogenesis, our microvessels are functional after only two days of culture and without the 

complexities of co-culture with astrocytes or pericytes [180, 209].  In addition, endothelial cells are 

all in contact with extracellular matrix and hence the microvessel lumen is able to constrict or dilate 

in response to transmural pressure or other perturbations.  We provide proof-of-principle examples 

of how a physiological brain PCV model can be used to study biologically- and clinically-relevant 

processes, including patient-specific models of neurodegenerative disease, efflux inhibition, 

hyperosmolar opening of the BBB, and activation by inflammatory cytokines.  

2.2.Materials and Methods 

2.2.1.Cell culture 

Human brain microvascular endothelial cells (dhBMECs) were differentiated from induced 

pluripotent stem cells (iPSCs) as previously reported [196].  Briefly, iPSCs were singularized using 

StemPro accutase (Thermo Fisher) and seeded at 15,000 cells cm-2 on Matrigel-treated six-well 

plates (Corning).  Cell lines used:  BC1 and iPS12 [210], KW01, and AD6 [211].  The BC1 and 

iPS12 lines were derived from healthy individuals.  The AD6 line was derived from skin fibroblasts 

(Coriell Institute) of a 56-year-old male with Alzheimer’s disease harboring the familial AD PSEN1 

mutation A246E [211].  The KW01 line was derived from a 73-year-old male with multiple 

sclerosis.  All iPSC lines were used between passage 30 - 70.  Cells were cultured in TeSR-E8 

media (Stem Cell Technologies) for three days to approximately 40% confluence, with 10 µM 

ROCK inhibitor Y27632 (ATCC) supplemented for the first 24 hours.  The differentiation was then 

initiated in unconditioned media without bFGF (UM/F-): DMEM/F12 (Life Technologies) 

supplemented with 20% knockout serum replacement (Life Technologies), 1% non-essential amino 
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acids (Life Technologies), 0.5% GlutaMAX (Life Technologies) and 0.836 µM beta-

mercaptoethanol (Life Technologies).  After six days of UM/F- culture, cells were cultured for two 

days in BBB induction media: human endothelial cell serum-free media (Life Technologies) 

supplemented with 1% human platelet poor derived serum (Sigma), 2 ng mL-1 bFGF (R&D 

Systems), and 10 µM all-trans retinoic acid (Sigma).  Media was changed every 24 hours.  After a 

total of 11 days in culture, cells were detached using accutase and sub-cultured onto plates coated 

overnight with 50 µg mL-1 human placental collagen IV (Sigma) and 25 µg mL-1 fibronectin from 

human plasma (Sigma).  Sub-cultures were conducted at a 1:1 surface area ratio (one well of 

differentiated cells sub-cultured onto one well of six-well plate) and in BBB induction media 

supplemented with 10 µM ROCK inhibitor Y27632.  After one hour, cell monolayers were washed 

three times with phosphate buffered saline (PBS; Thermo Fisher), detached with accutase, and 

seeded into microvessels once resuspended in BBB induction media supplemented with 10 µM 

ROCK inhibitor Y27632 to 50 million cells mL-1. 

Human umbilical vein endothelial cells (HUVECs) were used up to passage six.  HUVECs were 

grown in MCDB 131 (Caisson) supplemented with 10% fetal bovine serum (Sigma), 1% pen-strep-

glut (Thermo Fisher), 1 µg mL-1 hydrocortisone (Sigma), 10 µg mL-1 heparin (Sigma), 25 µg mL-1 

endothelial cell growth supplement (Thermo Fisher), 0.2 mM ascorbic acid 2-phosphate (Sigma), 

and 80 µM dibutyryl cyclic-adenosine monophosphate (db-cAMP; Sigma).  TrypLE Express (Life 

Technologies) was used to detach cells for routine passing and seeding of microvessels.  HUVECs 

were resuspended to 10 million cells mL-1 in media for seeding microvessels. 

2.2.2.Microvessel fabrication, perfusion, and maintenance  

To fabricate microvessels, 1 cm (length) x 1.75 mm (width) x 1 mm (height) channels were 

patterned in Sylgard 184 polydimethylsiloxane (PDMS; Dow Corning) using an aluminum mold 

(Figure 2-1).  The PDMS was then plasma-treated, adhered to glass slides, and treated with 
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trimethoxysilane (Sigma) to reduce formation of bubbles at the PDMS-collagen interface.  

Neutralized 7 mg mL-1 rat tail type I collagen (Corning) was gelled around a 150 μm diameter 

super-elastic nitinol wire (Malin Co.) for 30 minutes at 37°C.  To prevent delamination of the gel, 

2% agarose was added to both sides of the collagen gel.  Following removal of the template wires, 

the bare channels were cross-linked with 20 mM genipin (Wako Biosciences) for two hours.  

Residual genipin was removed by perfusing channels under high flow (~0.5 mL h-1) with PBS for 

at least 12 hours.  Lastly, channels were coated overnight with 50 µg mL-1 collagen IV and 25 µg 

mL-1 fibronectin in either HUVEC or dhBMEC microvessel media (composition outlined below).  

Derived hBMEC microvessels were seeded and perfused using brain microvessel media: 

endothelial cell serum-free media (Life Technologies) supplemented with 1% human platelet poor 

derived serum (Sigma), 1% penicillin-streptomycin (Life Technologies), 400 µM db-cAMP, 20 

µM phosphodiesterase inhibitor Ro-20-1724 (Calbiochem), and 3% 70-kDa dextran (Sigma).  Both 

retinoic acid and bFGF (present during the last two days of the differentiation) were removed from 

the microvessel media.  Additionally, 10 µM ROCK inhibitor Y27632 was supplemented during 

the first 24 hours of microvessel perfusion to increase adhesion [198, 212]. 

HUVEC microvessels were seeded and perfused using HUVEC microvessel media: HUVEC cell 

culture media supplemented with 400 µM db-cAMP, 20 µM Ro-20-1724, and 3% 70-kDa dextran.  

These additions have previously been shown to promote barrier function and long-term stability of 

in vitro microvessels [213-215].   Confluent HUVEC microvessels do not form using brain 

microvessel media (data not shown). 

Microvessel shear stress was estimated by Poiseuille’s equation: τ = µQ / 2πd3 where µ is the fluid 

dynamic viscosity (~1.4 cP for media supplemented with 3% dextran), Q is the volumetric flow 

rate, and d is the microvessel diameter.  The volumetric flow rate was measured daily as the increase 

in fluid volume in the lower media reservoir.  A physiological shear stress of ~4 dyn cm-2 was 
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maintained with a reservoir height difference (Δh) of 5 cm, corresponding to a volumetric flow rate 

of ~ 0.5 mL h-1.   

 

Figure 2-1. Fabrication, perfusion, and maintenance of human iPSC-derived blood-brain 
barrier microvessels.  (A,B) Schematic illustrations of the side- and end-view of 150 µm diameter 
microvessel fabrication.  (C) Phase contrast images of sequential microvessel fabrication steps.  (D) 
PDMS-based microfluidic chip.  (E) Perfusion system comprised of tubing connecting inlet and 
outlet ports to an upper and lower media reservoir (∆h = 5 cm).  (F) Shear stress for BC1 dhBMEC 
and HUVEC microvessels over six days.  (G) Phase contrast images of brain-specific microvessels 
constructed from various iPSC lines including BC1, iPS12, KW01, and AD6 on day two after 
seeding.  (H,I) Fluorescence images of blood-brain barrier (BBB) markers in BC1 dhBMEC 
microvessels on day 2:  zona occluden-1 (ZO1), occludin, claudin-5, glucose transporter-1 
(GLUT1), and P-glycoprotein (P-gp).  Images shown are a 0.4 µm confocal z-slice of the bottom 
microvessel pole, or a cross-section of the microvessel.  Nuclei visualized with DAPI (blue). 
 

2.2.3.Live-cell imaging 

The strategy for live-cell imaging of dhBMEC and HUVEC microvessels is summarized in Figure 

2-2.  Microvessels were imaged using an inverted microscope (Nikon Eclipse Ti-E) maintained at 

37° C and 5% CO2.  Epifluorescence illumination was provided by an X-Cite 120LEDBoost 
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(Excelitas Technologies).  A 10x objective (Nikon) was used for all epifluorescence and phase-

contrast images.  Imaging of microvessels was conducted on days two, four and six after seeding. 

Permeability was simultaneously measured for three different molecular weight solutes introduced 

into the upper media reservoir at a final concentration of 200 µM Lucifer yellow (CH dilithium 

salt; LY) (Sigma), 5 µM Rhodamine 123 (R123) (Thermo Fisher), and 2 µM Alexa Flour-647-

conjugated 10 kDa dextran (Thermo Fisher).  A NIS Elements (Nikon) imaging protocol was 

initiated to acquire both phase contrast and fluorescence images every two minutes for two hours 

(61 total frames).  At every time point six images were collected: (1) a phase contrast image of the 

top of the microvessel (located and maintained by autofocus), (2-5) phase contrast and fluorescence 

images of the microvessel midplane, and (6) a phase contrast image of the bottom of the 

microvessel.  To independently excite and collect the emission from each fluorophore, three filter 

cubes were used: Chroma 39008 for Lucifer yellow (20 ms exposure), Chroma 49003 for 

Rhodamine 123 (50 ms exposure), and Chroma 41008 for Alexa Fluor-647-conjugated dextran 

(200 ms exposure).  The total image area was 8.18 mm x 0.67 mm, corresponding to ten adjacent 

frames using a 10x objective.   

2.2.4.Permeability 

Large images were cropped to an area of 1 mm x 0.67 mm (corresponding to a single 10x 

magnification frame); a central region of the large image was chosen to minimize contributions of 

interstitial flow of solutes from the inlet and outlet.  Intensity profiles were obtained using ImageJ 

(NIH).  The apparent permeability (cm s-1) is calculated as P = (d/4)(1/ΔI)(dI/dt), where d is the 

vessel diameter, ΔI is the initial increase in fluorescence intensity upon luminal filling, and (dI/dt)0 

is the rate of increase in fluorescence intensity as solute exits into the gel [216, 217].  Over the 

course of two hour imaging experiments there are four phases: (i) before the solute reaches the 

microvessel lumen, (ii) while the solute is filling the microvessel lumen (typically 20-30 minutes),  
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Figure 2-2. Live-cell imaging of human iPSC-derived blood-brain barrier microvessels.(A) 
representative phase contrast images of a BC1-derived brain microvessel on days two, four and six 
under a wall shear stress of about 4 dyne cm-2.  (B) Phase contrast and fluorescence images of 
perfusion with Lucifer yellow, Rhodamine 123, and 10 kDa dextran at the microvessel midplane.  
(C,D) Phase contrast images at the top and bottom planes, respectively.  (E) Representative 
fluorescence intensity for Lucifer yellow for a region of interest comprising both the microvessel 
and surrounding matrix:  (i) Prior to perfusion of the dye.  (ii)  luminal filling where ∆I represents 
the increase in fluorescence intensity.  (iii) Penetration of the dye into the surrounding matrix results 
in a linear increase in fluorescence intensity (dI/dt).   
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(iii) while the solute permeates into the ECM, and (iv) when solute continues to permeate into ECM 

and where interstitial flow of solutes interferes with quantification.  After luminal filling, the 

intensity increase (dI/dt) was calculated over twenty minutes.  For Rhodamine 123, to eliminate the 

contributions of intracellular accumulation, the permeability was also calculated by considering 

only the rate of increase in fluorescence intensity in the ECM; unless otherwise noted this value is 

reported for Rhodamine 123 permeability [218].  The detection limit for permeability of Alexa 

Flour-647-conjugated 10 kDa dextran (≤ 1 x 10-7 cm s-1) was limited by photobleaching of the 

genipin cross-linked collagen gel.  Some brain microvessels displayed macroscopic breakdown 

past day four of perfusion (~30% of devices); these microvessels were not considered in time course 

permeability analysis.  Monolayer breakdown is not observed on transwells on this timescale, 

suggesting that cell-ECM interactions may contribute to model instability.  

For studies of efflux inhibition, 2 µM tariquidar (Sigma) was supplemented in brain microvessel 

media at 36 hours after cell seeding.  Day two permeability and cell behavior analysis was 

conducted as outlined above after 12 hours of tariquidar exposure.  To determine the relative 

contributions of sequestration and transport of solutes we calculated permeability considering an 

ROI excluding the lumen and intracellular compartment, and an ROI of the entire image frame.   

2.2.5.Cell behavior 

To assess endothelial cell behavior in microvessels, we quantified cell area (µm2), proliferation rate 

(% h-1), the rate of cell loss (% h-1), turnover rate (% h-1), root mean square (RMS) displacement 

(µm), path length (µm), number of nearest neighbors, and frequency of nearest neighbor change (h-

1) of BC1 dhBMEC microvessels.  Details of the protocols have been published previously [219-

222]. Phase contrast image sequences from the top and bottom planes were independently analyzed 

at each time point using ImageJ.  Analysis was performed in a region of interest (ROI) ~100 µm 

wide centered along the top or bottom of the microvessel and over the entire length (typically 5 - 7 
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mm).  This width was selected to minimize foreshortening of the lumen due to microvessel 

curvature.  Any regions along the microvessel length that were significantly out of focus were 

excluded from the ROI. The total number of cells was quantified by identifying individual cell 

nuclei within the ROI.  Cell area was calculated by dividing the total area of the region of interest 

by the number of cell nuclei.  From analysis of fluorescence images following staining with DAPI 

and f-actin, we independently verified that there was less than 10% error between the 

measurements. 

The rates of cell proliferation and cell loss were quantified through identification of cell division 

and loss events within the ROI. Proliferation events are easily identified in time-lapse phase 

contrast images from cell compression, alignment of chromosomes, and the formation of daughter 

cells. Cell loss events were readily identifiable through cell compression, lysing of cell contents, 

and removal of the cell from the monolayer. Events were monitored over the duration of time-lapse 

imaging and labeled with their location and time at which they occurred. The rates of cell 

proliferation and cell loss (% h-1) were determined by summing the number of events in the imaging 

window and dividing by the total number of cells within the ROI (n = 16753 dHBMECs and n = 

14042 HUVEC cells sampled for analysis). 

To assess cell motility, we tracked the location of the cell nuclei within the region of interest over 

two hours of imaging.  Root mean square (RMS) displacement (µm) is a measure of how far the 

cell moved from its original position, while path length (µm) is a measure of the total distance cells 

traverse.  At least ten cells were randomly selected over the length of the microvessel per timepoint 

for motility analysis (n = 291 dHBMECs and n = 171 HUVEC cells sampled for analysis).  Using 

ImageJ, a point was placed on the centroid of the cell nucleus at each frame, resulting in an array 

of (x, y) coordinate pairs for each time point within the time-lapse sequence. A reference point 

outside the microvessel was tracked to correct for x-y shifts in the imaging plane.   
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Additionally, from phase contrast images we quantified the number of cell neighbors for each cell, 

as well as the frequency of change in cell neighbors.  Cells are considered neighbors when they 

share a border, and the number of cell neighbors can change due to proliferation, cell loss, cell 

movement, or due to redistribution of tight junctions.  From analysis of fluorescence images stained 

for f-actin, we verified that there was less than 10% error in the number of cell neighbors between 

the two methods. 

2.2.6.Immunocytochemistry 

On day two after seeding, microvessels were washed with PBS for 5 minutes, fixed with 3.7% 

paraformaldehyde (Sigma) for 15 minutes, permeabilized with 0.1% Triton X-100 (Sigma) for 15 

minutes, and blocked with 1% donkey serum (Sigma) overnight at 4°C.  Microvessels were 

incubated for 6 hours at 4°C with primary antibodies and for 20 minutes at room temperature with 

Alexa Flour-647 and Alexa Flour-488 secondary antibodies (Life Technologies) (Table 2-1).  To 

localize nuclei or f-actin, 1:500 DAPI solution (Thermo Scientific) and 1:50 AlexaFluor647 

phalloidin (Invitrogen) were added, respectively.  Confocal z-stacks were obtained on a swept field 

confocal microscope system (Prairie Technologies) with illumination provided by MLC 400 

monolithic laser combiner (Keysight Technologies).  To fully reconstruct microvessels, 

approximately four hundred 0.4 µm slices were acquired using a 40x objective (Nikon). 

Table 2-1.  Antibodies used in this study. 

Antibody Vendor Species Cat. No Dilution 
ZO-1 Invitrogen Rabbit 402200 1:200 
GLUT1 Abcam Rabbit 115730 1:100 
P-gp Sigma Mouse P7965 1:50 
Claudin-5 Invitrogen Mouse 35-2500 1:50 
Occludin Invitrogen Mouse 33-1500 1:50 
Laminin α-4 R&D Mouse MAB7340 25 µg/mL 
VCAM-1 Abcam Rabbit 134047 1:50 
ICAM-1 R&D Mouse BBA3 25 µg/mL 



 

 
 
 
 
 
 
 

38 

2.2.7.Hyperosmolar microvessel opening 

An intra-arterial osmotic procedure is used in neuro-oncology for transient opening of the blood-

brain barrier to facilitate drug delivery to tumors.  To model this procedure, 250 mg mL-1 d-

mannitol (Sigma) in brain microvessel media was introduced into the upper media reservoir for 

five minutes on day two following seeding.  Mannitol was then replaced with 200 µM Lucifer 

yellow and 2 µM Alexa Fluor647-conjugated 10 kDa dextran in brain vessel media.  Live-cell 

imaging and analysis was conducted as previously outlined.  Additionally, structural changes 

observed after exposure to mannitol (i.e. intracellular vacuoles) were counted in ImageJ using time-

lapse phase contrast images of microvessel poles cropped to an area of twenty cells; vacuole count 

was normalized to the number of cells.     

2.2.8.Leukocyte adhesion 

To determine the effect of tumor necrosis factor alpha (TNFα) activation on permeability and 

leukocyte adhesion, two media conditions were used.  In control experiments, microvessels were 

perfused with endothelial cell serum-free media supplemented with 1% human platelet poor 

derived serum and 1% penicillin-streptomycin.  To model inflammatory conditions, microvessels 

were perfused with control media supplemented with 10 ng mL-1 TNFα (Thermo Fisher) for 12 

hours. On day two, either permeability was tested (as previously summarized) or leukocyte 

adhesion was tested.  For both conditions, microvessels were maintained at ~1 dyn cm-2 shear stress 

using fluid reservoirs directly connected to the inlet and outlets.   Human peripheral blood 

mononuclear cells (PBMCs, StemCell Technologies), predominately comprised on lymphocytes 

and monocytes, were used for adhesion studies.  PBMCs were freshly thawed and resuspended in 

RPMI-1640 media supplemented with 10% FBS and 1% penicillin-streptomycin before use. Prior 

to the microvessel experiments, PBMCs were labeled by incubating with 5 µM Calcein AM 

(Thermo Fisher) in their resuspension media for 30 minutes.  PBMCs were added to the inlet at a 
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concentration of 106 cells mL-1 and allowed to flow through the microvessel for a duration of 30 

minutes.  After five minutes of washout, fluorescent images of the microvessel poles and midplane 

were taken to quantify adherent cells, which were normalized to microvessel length.   VCAM-1 

and ICAM-1 expression was visualized using immunocytochemistry as previously described.    

2.2.9.Statistical Analysis 

All statistical analysis was performed using Prism ver. 6 (GraphPad).  Experimental metrics (i.e. 

permeabilities, shear stresses, turnover) are presented as means ± standard error of the mean (SEM).  

The principle statistical tests used were a student’s unpaired t-test (two-tailed with unequal 

variance) for comparison of two groups and an analysis of variance (ANOVA) for comparison of 

three or more groups.  Reported p values were multiplicity adjusted using a Tukey test.  A one 

sample t-test was used to determine if sample mean was statistically different from zero.  

Differences were considered statistically significant for p < 0.05, with the following thresholds: * 

p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  

2.3.Results 

2.3.1.Human iPSC-derived brain microvessels express blood-brain barrier markers and 

maintain stable perfusion over at least six days 

Using a templating method we have engineered a functional model of a human brain post-capillary 

venule (PCV) with stem-cell derived brain microvascular endothelial cells (dhBMECs) (Figure 

2-1).  In previous work we screened matrix composition, stiffness, and soluble factors to promote 

adhesion and spreading of dhBMECs in tissue-engineered microvessels [198].  Here, dhBMECs 

were seeded into a cylindrical 150 μm diameter channel in 7 mg mL-1 type I collagen gels, cross-

linked with 20 mM genipin and coated with fibronectin and type IV collagen.  Additionally, ROCK 

inhibitor Y27632 was added to promote cell survival over the first 24 hours of culture.  

Microvessels were continually perfused using gravity-driven flow reservoirs, and from analysis of 
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volumetric flow rates the wall shear stress was determined to be around 4 dyne cm-2, typical of 

post-capillary venules.  This approach enabled the formation of microvessels with dhBMECs 

derived from multiple iPSC lines.  dhBMEC microvessels formed from the BC1 iPSC line 

displayed proper localization of the tight junction proteins zonula occludens-1 (ZO-1), claudin-5 

(CLDN-5) and occludin (OCLN), and blanket expression of glucose transporter 1 (GLUT1) and 

the p-glycoprotein (P-gp) efflux pump.   

2.3.2.Brain microvessels display physiological barrier function  

The permeability of dhBMEC and HUVEC microvessels was determined on days two, four and six 

from simultaneous measurement of the transport of three fluorescent probes: Lucifer yellow (LY), 

Rhodamine 123 (R123), and Alexa Flour-647-conjugated 10 kDa dextran (Figure 2-2).  LY is a 

small (444.3 Da) negatively charged water-soluble dye used in vivo and in vitro to assess BBB 

integrity.  Rhodamine 123 is a small molecule (380.8 Da) that is a substrate for efflux pumps, 

including p-glycoprotein.  10 kDa dextran conjugated to Alexa Fluor-647 is a large molecular-

weight polysaccharide used as a marker of vascular permeability.  The global permeability was 

obtained from the increase in intensity of the imaging ROI during solute perfusion. 

Representative phase / fluorescence overlays of microvessels during permeability measurements 

show perfusion of the solute in the lumen and transport into the ECM (Figure 2-3).  BC1 dhBMEC 

microvessels displayed stable permeability over six days.  The permeability of Lucifer yellow was 

2.50 ± 0.46 x 10-7 cm s-1 on day two and did not increase on days four and six (p > 0.05), with an 

average value of 2.84 ± 0.41 x 10-7 cm s-1 across all time points.  The permeability of Rhodamine 

123 in dhBMEC microvessels was 6.61 ± 0.26 x 10-7 cm s-1 on day two when considering the entire 

ROI for analysis; however, if the microvessel lumen and cells are excluded it was 1.32 ± 0.16 x 10-

7 cm s-1.  This dramatic difference, which was not observed with other solutes (data not shown), 

was due to significant intracellular accumulation of the dye.  Rhodamine 123 permeability  
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Figure 2-3. Permeability of human iPSC-derived blood-brain barrier microvessels.   
Representative phase / fluorescence overlays of Lucifer yellow, Rhodamine 123, and 10kDa 
dextran perfusion in (A) BC1 dhBMEC microvessels, and (B) HUVEC microvessels. t = 0 min 
represents the frame prior to initiation of luminal filling.  Luminal filling occurred on average over 
20 minutes for Lucifer yellow and Rhodamine 123, and 30 minutes for 10 kDa dextran.  The rate 
of fluorescence change was determined over subsequent 20 minutes after luminal filling.  (C-E) 
Permeability of Lucifer yellow, Rhodamine 123, and 10 kDa dextran in HUVEC and BC1 
dhBMEC microvessels.  (F-H) Permeability of Lucifer yellow, Rhodamine 123, and 10kDa 
dextran, in dhBMEC microvessels derived from multiple iPS cell lines (BC1, iPS12, KW01, AD6) 
on day two following seeding.  Experiments were performed on at least three microvessels for each 
condition, from at least two independent differentiations. 
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remained stable on day four and six (p > 0.05).  The permeability of 10 kDa dextran conjugated to 

Alexa Flour-647 in dhBMEC microvessels was below the detection limit at all timepoints.  We 

observed no plumes of solute entering the ECM associated with focal leaks, indicating tight 

junction stability. 

To assess whether the barrier function of BC1 dhBMEC microvessels was robust, we formed 

microvessels with dhBMECs derived from the iPS12, KW01 and AD6 lines.  The iPS12 line was 

derived from the cord blood of a healthy female [210].  The KW01 line was derived from a 73-

year-old male with multiple sclerosis, and the AD6 line was derived from an individual with 

Alzheimer’s disease with a PSEN1 A246E mutation.  Microvessels generated from the iPS12, 

KW01, and AD6 lines also display low solute permeability.  There were no statistically significant 

differences in Lucifer yellow, Rhodamine 123, or 10 kDa dextran permeability between BC1, 

iPS12, KW01 and AD6 microvessels on day two (p > 0.05 for all comparisons).    The barrier 

function of these four cell lines was also assessed by measuring transendothelial electrical 

resistance (TEER) in a standard transwell assay, as previously reported [196].  Day two TEER was 

2,260 ± 39 Ω cm2 for BC1s, 2260 ± 73 Ω cm2 for iPS12s, 1330 ± 343 Ω cm2 for KW01s, and 2160 

± 514 Ω cm2 for AD6s.   

To provide a comparison for the permeability in dhBMEC microvessels, we performed the same 

experiments in HUVEC microvessels.  HUVEC microvessels also display stable permeability over 

six days.  There were no statistically significant differences in permeability between day two, four 

and six for Lucifer yellow, Rhodamine 123, and 10 kDa dextran (p > 0.05 for all comparisons).  

From the phase / fluorescence overlays, it is evident that the extent of penetration of these solutes 

into the ECM was significantly larger than in the dhBMEC microvessels.  The mean permeability 

for Lucifer yellow over six days was 3.90 ± 0.16 x 10-6 cm s-1, more than 10-fold higher than in 

BC1 dhBMEC microvessels.  Similarly, the permeability of Rhodamine 123 was 3.00 ± 0.16 x 10-
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6 cm s-1, about 20-fold higher than in dhBMEC microvessels.  The permeability of 10 kDa dextran 

over six days was 1.23 ± 0.19 x 10-6 cm s-1.  No focal leaks were observed in HUVEC microvessels 

during solute perfusion.  A similar value for the permeability of 10 kDa dextran and the absence of 

focal leaks have previously been reported in HUVEC microvessels cultured under similar 

conditions [213].    

2.3.3.Brain microvessels display distinct endothelial cell dynamics 

The behavior of endothelial cells was assessed from analysis of phase contrast images at the 

microvessel poles (Figure 2-4).  Rates of cell proliferation, loss, and turnover were determined by 

direct counting of cell events to eliminates possible errors associated with staining markers to 

quantify mitosis and apoptosis [223]. 

In dhBMEC microvessels the proliferation rate decreased significantly over time, from 1.66 ± 0.281 

% h-1 on day two to 0.199 ± 0.064 % h-1 on day six (p < 0.0001). The cell loss rate also decreased 

significantly from 1.015 ± 0.067 % h-1 on day two to 0.334 ± 0.083 % h-1 on day six (p = 0.0004).  

The net turnover (% h-1), calculated by subtracting the rate of cell loss from the rate of proliferation, 

decreased from 0.648 ± 0.302 % h-1 on day two to -0.134 ± 0.050 % h-1 on day six (p = 0.0121); 

the resulting day six turnover was not statistically different from zero (p = 0.1146). Proliferation 

and cell loss events were equally distributed over the entire two-hour imaging window, as evident 

by linear increases in cumulative events as a function of time (r > 0.98 for each plot); while on day 

two proliferation events occurred more frequently than cell loss events, this trend reversed by day 

six. 

In HUVEC microvessels the rates of proliferation, cell loss, and turnover remained stable over six 

days (p > 0.05 for all comparisons).  HUVECs displayed lower cell rates of proliferation and loss 

than dhBMECs on day two and four (p < 0.05 for all comparisons). By day six, the rates of 

proliferation, cell loss, and turnover were not statistically different between HUVECs and  
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Figure 2-4. Endothelial cell dynamics of BC1 dhBMEC microvessels.  (A, B) Representative 
time-lapse images depicting cell division and cell loss, respectively.  (C-E) Rates of proliferation, 
cell loss, and turnover rate, respectively, on days 2, 4, and 6 following seeding. (F) Cumulative 
proliferative and cell loss events during imaging of BC1 dhBMEC microvessels.  (G) RMS 
displacement. (H) Representative path for a dhBMEC (blue line) and HUVEC (black line) cell on 
day 2 following seeding. (I) Scatter plot showing the change in dhBMEC position over two hours 
normalized to the initial position for all cells tracked, the average cell displacement vector (x, y) = 
(1.16 µm, 0.22 µm). (J) Scatter plots of dhBMEC cell path and RMS displacement (dotted black 
line denotes average cell diameter). (K) Number of cell neighbors. (L) Fluorescence image showing 
representative six cell neighbors of dhBMEC microvessels. (M) The frequency of change in the 
number of cell neighbors.  (N-O) Fluorescence images showing a stain for f-actin and basement 
membrane protein laminin α4 on the bottom pole of a microvessel on days 2 and 6. (P) Confocal 
cross-sections of laminin α4 on days 2 and 6.  Experiments were performed on at least three 
microvessels for each condition, and from at least three independent differentiations. 
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dhBMECs (p > 0.05 for all comparisons).  It is difficult to completely decouple endothelial cell 

behavior across both cell lines due to differences in media composition; however, high cAMP levels 

used in both microvessel medias have previously been found to reduce cell turnover [213]. 

Phase contrast images, DAPI stains, and f-actin stains confirm that the average dhBMEC area 

ranges from about 600 to 700 µm2, corresponding to an average cell diameter of ~28 µm.  This is 

a useful metric for comparing length scales of cell motion.  Root mean square (RMS) displacement 

for dHBMECs did not change over time (p > 0.05 for all comparisons) and was on average 8.72 ± 

0.75 µm over two hours of imaging.  The RMS displacement for HUVECs was not significantly 

different than dhBMECs (p > 0.05 for all comparisons), similarly remaining below 10 µm.  We 

observe that the typical dhBMEC and HUVEC displacement was less than the diameter of an 

average cell, and that the cell motility corresponds predominantly to small fluctuations in position 

within the monolayer.  There was no clear spatial directionality of cell motility, as across all 

dhBMECs the average displacement vector over two hours of imaging was 1.16 µm, 0.22 µm (x, 

y).  Furthermore, cell path length widely varied between individual dhBMECs, but was on average 

an order of magnitude higher than RMS displacement.  

To assess the spatial organization of endothelial cells within the microvessels, we determined the 

number of neighbors that share a boundary for each cell.  The average number of cell neighbors for 

both dhBMECs and HUVECs was between six and seven.  The frequency of change in number of 

cell neighbors for dhBMEC microvessels was 0.406 ± 0.054, suggesting that cells experience a 

change in number of cell neighbors once every 2.5 hours.  This frequency was the same across cell 

types and time points (p > 0.05 for all comparisons).  

To assess cytoskeletal organization, we stained dhBMEC microvessels for f-actin.  On day two, f-

actin was localized to cell-cell junctions with no preferred orientation.  After six days, we also 

observe some intracellular stress fibers in addition to localization at cell-cell junctions, although 
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they do not appear to be aligned with flow. These observations have previously been reported for 

HUVECs in 2D monolayers [221].  To assess basement membrane maturation we stained dhBMEC 

microvessels for laminin α4; we did not stain for collagen IV and fibronectin as they were used to 

coat collagen channels to promote cell adhesion.  On day two, expression was punctate, but by day 

six, laminin expression was uniform around the microvessel.   

2.3.4.P-gp inhibition 

To assess efflux activity, we measured the permeability of Rhodamine 123 with and without the p-

glycoprotein inhibitor tariquidar.  2 μM tariquidar treatment increased Rhodamine 123 permeability 

from 1.32 ± 0.16 x 10-7 cm s-1 to 2.66 ± 0.44 x 10-6 cm s-1 (p = 0.0149) (Figure 2-5).  The 

permeability of Lucifer yellow and 10 kDa dextran did not change in the presence of tariquidar (p 

> 0.05).  Rhodamine 123 accumulates within endothelial cells and results in increasing fluorescence 

intensity during permeability experiments.  The ratio of permeability calculated from the ECM (by 

excluding the lumen / intracellular compartment) and permeability calculated by the entire imaging 

frame (PECM / Ptotal) was ~0.8 for Lucifer yellow in BC1 dhBMEC and HUVEC microvessels, 

indicating negligible intracellular accumulation.   For Rhodamine 123, PECM / Ptotal was 0.749 ± 

0.022 for HUVEC microvessels, 0.203 ± 0.027 for BC1 dhBMEC microvessels, and 0.381 ± 0.031 

for tariquidar treated BC1 dhBMEC microvessels.  These results show that: (1) dhBMEC 

microvessels display greater intracellular Rhodamine 123 accumulation compared to HUVECs (as 

indicated by a lower ratio, p < 0.0001) and (2) tariquidar treatment increases the contribution of 

transcellular transport compared to intracellular accumulation compared to non-treated controls (as 

indicated by a higher ratio, p = 0.0046).  We note that Rhodamine 123 is an active mitochondrial 

stain and increased accumulation could result from a higher mitochondrial density in dhBMECs.  

The ratio of Lucifer yellow to Rhodamine 123 permeabilities (PLY / PR123) indicates the relative 

rates of paracellular and transcellular transport.  dHBMECs and HUVECs display values of PLY /  
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Figure 2-5. Blood-brain barrier efflux inhibition.  Microvessels were exposed to 2 µM tariquidar 
treatment for 12 hours.  (A) Phase / fluorescence overlays showing Rhodamine 123 permeability 
in BC1 dhBMEC microvessels treated with tariquidar for 12 hours.  (B) Comparison of BC1 
dhBMEC microvessel permeability with and without tariquidar treatment.  (C) The ratio of 
Rhodamine 123 permeability calculated only considering the ECM to including the ECM, lumen 
and intracellular compartments (PECM/Ptotal) in HUVEC and BC1 dhBMEC microvessels with and 
without tariquidar treatment. (D) Ratio of Lucifer yellow permeability to Rhodamine 123 
permeability (PLY / PR123).  (E) Phase contrast images of BC1 dhBMEC microvessels before and 
after tariquidar treatment.  Data collected from at least three BC1 dhBMEC microvessels, from at 
least two independent differentiations for each experimental condition.  
 
 

PR123 of ~1.9 and ~1.3, respectively.  With 12 hours of tariquidar perfusion PLY / PR123 was < 1 

suggesting an increase in the transcellular transport (no statistical significance, p > 0.05).  

Additionally, 12 hours of exposure did not result in apparent cytotoxicity as observed by preserved 

barrier function and microvessel structure. 

2.3.5.Hyperosmolar blood-brain barrier opening 

To model a protocol used clinically for transient opening of the BBB, on day two we introduced 

mannitol (1.4 M) to the upper fluid reservoir for five minutes and then immediately perfused brain 

microvessels with Lucifer yellow and 10 kDa dextran to study changes in permeability (Figure 

2-6).  Fluorescence images show both global transport of Lucifer yellow and 10 kDa dextran into  
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Figure 2-6. Hyperosmolar blood-brain barrier opening. On day two, 1.4 M mannitol was 
introduced into the upper fluid reservoir for five minutes, followed by Lucifer yellow and 10 kDa 
dextran.  (A) Phase contrast images at the pole of a BC1 dhBMEC microvessel following mannitol 
exposure.  t = 0 represents the frame prior to arrival of mannitol into the lumen.  Corresponding 
phase / fluorescence overlays for (B) Lucifer yellow and (C) 10 kDa dextran.  Plumes of 10kDa 
dextran entering the ECM are marked with arrows.  (D) Day two permeability increases with 
mannitol exposure.  (E) Vacuoles per cell over two hours of imaging.  (F) Fluorescence image 
showing f-actin phalloidin stain at the pole of a microvessel following mannitol exposure.  Data 
collected from at least three BC1 dhBMEC microvessels, from at least two independent 
differentiations for each experimental condition. 

 

the ECM, as well as focal leaks indicating disruption of endothelial cell-cell junctions.  Following 

mannitol injection, the average permeability of Lucifer yellow was 3.67 ± 1.39 x 10-6 cm s-1, 

approximately 15-fold higher than homeostatic brain microvessels on day two (p = 0.0025).   

Similarly, 10 kDa dextran permeability increased to 2.32 ± 0.86 x 10-6 cm s-1 (p = 0.0047).  Recall 

that the permeability of 10 kDa dextran was not detectable in dhBMEC microvessels.  The average 
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10 kDa dextran permeability was also approximately two-fold higher than the baseline permeability 

in HUVEC microvessels (1.23 ± 0.19 x 10-6 cm s-1), although not statistically significant (p > 0.05).    

The loss of intracellular water following mannitol exposure is associated with formation of 

vacuoles [224], which are observed in phase contrast images.  The number of vacuoles plateaued 

over approximately 20 minutes following injection of mannitol, reaching a maximum value of 

approximately six per cell.   Lucifer yellow and 10 kDa dextran remain excluded from endothelial 

cells (images not shown) indicating that vacuoles are not formed by invagination of the plasma 

membrane.  Phalloidin staining following mannitol exposure shows increased stress fiber formation 

indicating actin cytoskeleton disruption.   

2.3.6.Brain microvessels are responsive to cytokine activation 

To assess the feasibility that our model can be used to visualize immune cell interactions under 

inflammatory conditions, we stimulated microvessels with 10 ng mL-1 TNFα for 12 hours.  

Exposure of dhBMEC microvessels to TNFα resulted in upregulation of adhesion molecules 

ICAM-1 and VCAM-1 (Figure 2-7).  In non-treated microvessels ICAM-1 and VCAM-1 

expression was punctate, however, following TNFα exposure expression of these adhesion 

molecules was uniform across the microvessel lumen.  Treatment with TNFα did not alter the 

permeability of Lucifer yellow, Rhodamine 123, or 10 kDa dextran when compared to control 

microvessels (p > 0.05 for all comparisons).  Fluorescently labeled human peripheral blood 

mononuclear cells (PBMCs) were perfused in the microvessels for 30 minutes at a shear stress of 

~1 dyne cm-2.  Following a five-minute wash out, adherent PBMCs were clearly visible attached to 

the endothelium.  Microvessels exposed to TNFα showed higher numbers of adherent PBMCs (23.0 

cells cm-1) as compared to control microvessels (1.75 cells cm-1) (p < 0.0001).  While 

transendothelial migration events were not observed during the experiments, microvessels exposed 

to TNFα with adherent PBMCs displayed macroscopic breakdown within 24 hours.    
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Figure 2-7. Brain post-capillary venular model of leukocyte adhesion during 
inflammation.(A) Fluorescence images of the cross section of BC1 microvessels showing 
upregulation of surface adhesion markers (VCAM-1, ICAM-1) following 12-hour cytokine 
treatment with 10 ng mL-1 TNF-α.  (B) Permeability of Lucifer yellow, Rhodamine 123, and 10 
kDa dextran in BC1 dhBMEC microvessels following treatment with TNF-α.  (C) Representative 
fluorescence images showing PBMCs adhered to the bottom pole of BC1 dhBMEC microvessels 
with and without cytokine activation.  (D) Adhesion of human peripheral blood mononuclear cells 
(PBMCs) increases with TNF-α exposure.  (E) Phase contrast image showing macroscopic 
breakdown of cytokine treated microvessels exposed to PBMCs within 24 hours. 
 

2.4.Discussion 

2.4.1.Barrier function 

We have characterized the structure and barrier function of 150 µm diameter microvessels formed 

using human iPSC-derived BMECs (dhBMECs).   Physiological barrier function was established 

after only two days and maintained for at least four additional days, enabling time course studies 

of biologically- and clinically-relevant perturbations.    

One of the most important functions of the BBB is to restrict access to the brain.  Lucifer yellow 

permeability of BC1 dhBMEC microvessels was 2.84 ± 0.41 x 10-7 cm s-1 over six days, very close 

to values that we have previously reported for dhBMEC monolayers in a 2D transwell assay [196], 

and close to estimated values of 1 - 2 x 10-7 cm s-1 in 15 µm pial post-capillary venule microvessels 
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in rats.[225]  In addition, the permeability of 10 kDa dextran remained below the detection limit, 

showing that dhBMEC microvessels effectively block transport of large molecular weight solutes.  

Numerous studies have shown that dyes (i.e. Evans Blue), which bind to albumin (66.5 kDa), are 

excluded from the brain implying extremely low permeability [226].  Similarly, four hours after 

systemic injection of 20 kDa dextran, no dye extravasation was found in the brain parenchyma in 

a hamster model [227].  However, more recent in vivo imaging in rat pial post-capillary venules 

have reported finite and relatively high permeabilities of about 1 - 2 x 10-7 cm s-1 for 10 - 70 kDa 

dextrans [228, 229], which is inconsistent with other results showing restricted transport of large 

molecular weight solutes across the BBB.  Reconciling these differences in in vivo permeabilities, 

which may be due to the substantial regional BBB heterogeneity [230], is important towards 

validating tissue-engineered models. 

Physiological values for TEER are thought to be in the range of 1,500 - 8,000 Ω cm2 [190-193].  

As Lucifer yellow permeability in dhBMEC microvessels was the same as values obtained in 

transwell assays (where TEER was above 1,500 Ω cm2), this implies that the transendothelial 

electrical resistance (TEER) was also likely similar, as previously shown for dhBMECs cultured 

on hydrogel materials in 2D [198].  Together, these results suggest that we have achieved 

physiological barrier function within perfusable 3D microvessels.  A further implication of these 

results is that physiological barrier function is dependent on the ability of the hBMECs to form 

tight junctions, and that other cell types, such as astrocytes and pericytes, are not required for 

establishment of barrier function.  Evidence for this hypothesis comes primarily from in vitro 

transwell experiments where the presence of astrocytes or pericytes (or astrocyte extract) in the 

basolateral chamber increases TEER [231-237].  However, these experiments were performed with 

BMECs displaying non-physiological TEER (< 1,500 Ω cm2).  In most of these studies, TEER 

values increased but did not reach physiological values.   
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Other strategies for engineering microvessels using primary BMECs, regardless of inclusion of 

supporting cell types (i.e. pericytes and astrocytes), result in permeabilities still significantly higher 

than values reported here [186-189].  For example, in one model incorporating primary human 

BMECs, astrocytes, and pericytes, the permeability of 3 kDa dextran was reported to be 2 - 4 x 

10−6 cm s-1 [187].  As acknowledged by the authors, this high permeability for a large molecule did 

not recapitulate BBB barrier function, and was likely associated with their reported low TEER 

values of the primary BMECs (40 - 50 Ω cm2).  Therefore, we hypothesize that rather than being 

responsible for maintenance of barrier function, it is likely that these supporting cells provide 

factors that promote recovery of barrier function towards physiological values. This hypothesis is 

further supported by studies that utilize astrocytes and/or pericytes to improve the barrier function 

of non-brain specific endothelial cells (HUVEC or iPSC-derived) in microvascular networks [180, 

209]. 

In addition to forming functional microvessels from iPSCs from two healthy individuals (BC1 and 

iPS12), we also created microvessels from iPSCs from an individual with multiple sclerosis 

(KW01), and an individual with Alzheimer’s disease (AD6).  Disruption of the BBB is associated 

with many neurodegenerative disorders and may manifest through non-cell autonomous toxicity of 

endothelial cells [131, 179].  Recently, iPSC-derived BMECs from individuals with Huntington’s 

disease (HD) were found to display abnormal barrier function, which may contribute to HD 

pathology [137].  Here we show that the barrier function of microvessels formed from dhBMECs 

from individuals with AD and MS show no difference in permeability to Lucifer yellow, 

Rhodamine 123, and 10 kDa dextran compared to iPSCs from healthy individuals.  While these 

results suggest that the mutations associated with AD and MS in these iPSC lines do not induce 

changes in permeability, other transport systems have not yet been studied. 
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2.4.2.Endothelial cell dynamics  

Turnover is an important but often overlooked parameter in benchmarking tissue engineered 

vascular models.  The turnover of BMECs in the human brain has not been reported, and there are 

only limited data from animal models [32, 238, 239] and other tissue beds [240, 241].  Similarly, 

there are very few studies on the effect of disease (i.e. brain cancer, neurogenerative disease) on 

brain endothelial cell turnover.   Over six days, the turnover of dhBMECs in BC1 microvessels 

decreases to reach a net turnover rate close to zero.  While the proliferation rate was less than values 

previously reported in 2D dhBMEC monolayers cultured on glass under similar shear stress (0.35 

% h-1), the rate of cell loss was significantly higher than in 2D (0.01% h-1) [220].  Results from 

thymidine labeling studies in mice suggest proliferation rates for BMECs of about 0.04 % h-1 [238], 

an order of magnitude or more lower than endothelial cells in other tissues [240, 241].  Two-photon 

intravital microscopy studies in adult mice have shown: (1) no change in capillary segment 

diameter, capillary segment length, and the position of branch points over about 30 days [32], and 

(2) no detectable endothelial cell division over ten days based on BrdU labeling of cortical 

microvessels [239].  These results suggest that the rates of cell proliferation and loss need to be 

further decreased to achieve physiological turnover.  

Tracking of dhBMECs in microvessels showed that 96.5% of cells do not move more than an 

average cell diameter (28 µm) over two hours, as we have shown previously in 2D dhBMEC 

monolayers [220].  The maximum number of neighbors for an isotropic object in 2D is six, 

corresponding to a hexagonal or close-packed lattice, whereas for a random distribution the number 

of cell neighbors is expected to be five.  In dhBMEC microvessels, the average number of neighbors 

for each cell was between six and seven.  As we have hypothesized previously, a close packed 

network of cells (hexagons) is a way to minimize the total length of cell-cell junctions per unit 

length of vessel [242].  To verify cell shape we traced junctional f-actin stains for 150 cells fixed 
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on day six.  dhBMECs were relatively rounded, with a circularity of about 0.73 and an inverse 

aspect ratio of about 0.57, similar to values obtained in 2D under static conditions [220], suggesting 

that the circularity and orientation of dhBMECs was independent of geometry or shear stress. The 

number of cell neighbors changed once approximately every 2.5 hours for dhBMECs; this rate of 

change was not due to turnover since the rates of proliferation (0.19 % h-1) and cell loss (0.33 % h-

1) mean that the average time for loss / gain of a neighboring cell is about 50 hours.  Similarly, this 

change was not due to migration of cells within the monolayer because most cells do not move 

more than one cell length.  Based on observations from phase contrast videos, we suggest that the 

changes in neighboring cells are associated with formation and loss of triple junctions that result in 

dynamic changes in the number of neighbors.   Whether these transient changes in the number of 

cell neighbors play a significant role in determining paracellular permeability remains to be 

established.  

The basement membrane is an important component of the BBB, comprising several proteins 

including collagen IV, fibronectin, and laminin [243, 244].  Time course actin and laminin stains 

indicate that dhBMECs are actively modify the surrounding ECM and reorganizing their actin 

cytoskeleton; the links between these changes and cell behavior remain to be established.  

2.4.3.Efflux inhibition 

ATP-binding cassette (ABC) efflux transporters including P-glycoprotein (P-gp), actively transport 

many lipophilic compounds out of brain microvascular endothelial cells, limiting their penetration 

into the CNS [245].  Important P-gp substrates include anticancer drugs, immunosuppressive 

agents, antibiotics, corticoids, antivirals, antidepressants, antiepileptic drugs, and many other 

therapeutics [246].  Thus, modulation of efflux transporters represents a key strategy to improve 

CNS drug delivery.  However, P-gp inhibition has had limited clinical success due to issues with 

drug toxicity and poor pharmacokinetics [247].  Existing in vitro and in vivo models of P-gp 
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inhibition have several limitations.  In vitro models, such as transwell assays or substrate 

accumulation assays, enable confirmation of the polarization of efflux transporters to the luminal 

membrane but do not provide direct visualization of transport phenomena. In contrast, the 

pharmacokinetics in vivo in animal model do not precisely match that of humans [248-250]. 

Tariquidar is a potent third generation P-gp inhibitor that has undergone multiple preclinical trials 

to improve drug delivery to the brain [251-253].  Tariquidar plasma concentrations between 2 - 3 

μM are utilized to effectively limit P-gp efflux.  In our model, 12-hour perfusion of 2 μM tariquidar 

increased Rhodamine 123 permeability two-fold, while disruptions in paracellular permeability 

were not observed.  In healthy humans, continuous infusion of tariquidar, which was predicted to 

achieve near complete inhibition of p-glycoprotein, increased the verapamil distribution volume 

2.73-fold, similar to the results reported here [252]. 

2.4.4.Blood-brain barrier opening 

Many techniques have emerged to modulate BBB permeability for delivery of therapeutic 

compounds, including: focused ultrasound [254], enterotoxin analogs [255], siRNA delivery 

systems [256], and exosomes [257], however, few have been translated to the clinic.  Systemic 

intravenous injection of the hyperosmolar agent mannitol is used clinically to reduce cerebral 

edema in a wide range of acute conditions [258].  However, bolus intra-arterial injection over 1 - 2 

minutes at a high concentration (close to the solubility limit of around 1.4 M), results in endothelial 

cell shrinkage that is sufficient to induce transient opening of the BBB [259].  Hyperosmolar BBB 

opening has been used to improve delivery of chemotherapeutics, stem cells, and viral vectors into 

the brain [260-262].  Despite the more than 100-year history of research into hyperosmotic agents 

in the brain and the renewed interest in image-guided opening of the BBB [263], the procedure is 

not reproducible [264] highlighting the need for mechanistic studies at the cellular level.  

Understanding the processes occurring during hyperosmotic therapy is complicated by the complex 
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structure and function of brain vasculature. Several major arteries supply the brain and regulation 

of blood flow by the Circle of Willis results in variable and irreproducible mixing and distribution 

of solutes throughout the brain.  Animal models are valuable for studying these phenomena; 

however, there are substantial differences in vascular anatomy and cerebral blood flow between 

humans and animal models [265, 266]. Thus, in vitro models provide the opportunity to study 

hyperosmotic therapy under controlled conditions.   

In response to a five-minute bolus of 1.4 M mannitol, we observed a 15-fold increase in the 

permeability of Lucifer yellow, confirming blood-brain barrier opening.  In addition, the 

permeability of 10 kDa Dextran, which was below the detection limit under baseline conditions, 

increased to 10-fold higher than Lucifer yellow under baseline conditions.  Over two hours of 

imaging, barrier function remained disrupted, although some leakage of dye was transient.  

Previous studies have found that mannitol exposure results in transient reductions in TEER both  

in vivo [190] and in in vitro culture of primary brain microvascular endothelial cells [267].  From 

histological studies, brain penetration of herpes simplex virus following hyperosmolar BBB 

opening suggests a transient defect size up to 120 nm [268].   In our model, mannitol results in 

leakage of 10 kDa dextran, which has a hydrodynamic size of 4.8 nm [269].  Future studies will 

explore the reversibility of BBB opening and the dynamics of pore formation.  Additionally, 

hyperosmotic stress resulted in formation of vacuoles within endothelial cells.   Vacuole formation 

is a mechanism to buffer cells against increases in ion concentration that occurs due to the 

associated decrease in cell volume.  Vacuoles formation plateaus after only 20 minutes and remains 

steady over the subsequent 1.5 hours (despite an only transient exposure to mannitol).  Fluorescent 

solutes were not found to accumulate within the cells suggesting that vacuoles are not direct 

mediators of BBB disruption during hyperosmotic therapy, as suggested previously in vivo [224]. 
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2.4.5.Inflammation 

Studies of leukocyte interactions in the cerebrovasculature are usually performed in the 

autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis or in 2D in vitro models 

[270, 271].  We show that it is possible to study leukocyte dynamics within 3D models of human 

post-capillary venules, which supports visualization in a well-controlled environment [272].  

Immune trafficking across the BBB is low under physiological conditions, however, increased 

infiltration is implicated in neurological disease [273].  Endothelial ICAM-1 and VCAM-1 

expression promotes leukocyte adhesion [274, 275], an early step in extravasation, which occurs 

preferentially in PCVs of the brain [203-205].  In BC1 dhBMEC microvessels, exposure to 

inflammatory cytokine TNFα resulted in upregulation of VCAM-1 and ICAM-1, and 

corresponding increased adhesion of human peripheral blood mononuclear cells.   

We also found that TNFα activation resulted in no change in barrier function.  This observation is 

contradictory to results from in vitro 2D models [276-279], existing 3D BBB models [187, 188], 

and in vivo animal models [280], all of which report increased permeability of BMECs exposed to 

TNFα.  However, as described previously, in vitro models utilizing BMECs with non-physiological 

TEER may be more susceptible to disruptive changes in barrier function [281]. Therefore, our 

results suggest that TNFα stimulation alone, without other blood components and conditions 

associated with an immune response, is insufficient to induce BBB disruption. Interestingly, 24 

hours after TNFα activation and PBMC adhesion studies, microvessels displayed macroscopic 

breakdown suggesting a possible role of cytokine secretion. In our model, no transendothelial 

migration events were observed, presumably since there was change in barrier function, but also 

potentially due to the restrictive nature of a dense cross-linked collagen hydrogel.  Although they 

lack the biological complexity of animal models, these proof-of-principle results highlight a 
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potential advantage of in vitro models to deconvolve complex processes occurring during 

inflammation. 

2.5.Conclusions 

We report on barrier function and endothelial cell behavior of human iPSC-derived blood-brain 

barrier microvessels resembling in vivo post-capillary venules.   Microvessels are generated from 

multiple iPS cell lines and display localization of tight junction proteins, and expression of key 

transporters and efflux pumps.  Physiological barrier function is achieved within two days, requires 

no co-cultured cells, and is maintained for at least four days.  Over the course of six days, 

endothelial cells reach quiescence and develop a uniform basement membrane.  We demonstrate 

successful modulation of both transcellular and paracellular permeability using P-gp inhibitor 

tariquidar and hyperosmolar agent mannitol, respectively.  Cytokine activation using TNFα 

resulted in upregulation of leukocyte adhesion molecules (VCAM-1 and ICAM-1) and increased 

leukocyte adhesion, but resulted in no change in permeability suggesting that activation alone is 

insufficient to induce BBB disruption.  Human iPSC-derived blood-brain barrier microvessels 

serve as a robust patient-specific platform to study transport phenomena and endothelial cell 

behavior during health and disease. 

Chapter 3. Modeling hyperosmotic blood–brain barrier opening within human 
tissue-engineered in vitro brain microvessels 

A version of this chapter is published in Journal of Cerebral Blood Flow & Metabolism 39 (2019) 

1413-1432. [282] 
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3.1.Introduction 

The human blood-brain barrier (BBB) restricts delivery of therapeutics to the brain for treatment 

of CNS disease [283].  Tight junctions (TJs) between adjacent brain microvascular endothelial cells 

(BMECs) restrict paracellular transport of solutes, while expression of efflux pumps regulates 

transcellular transport [3].  Therefore, drug therapies are largely limited to small lipophilic 

molecules that have moderate to high rates of passive transport across BMEC membranes.  

However, reversible disruption of TJs can be exploited to transiently increase bioavailability of a 

broad range of therapeutics into the brain [284, 285]. 

Intra-arterial (IA) infusion of hyperosmotic agents, such as mannitol, is one approach for transient 

BBB opening (BBBO) [259].  Drug delivery techniques based on IA administration have distinct 

advantages including high regional drug concentration, high spatial selectivity, rapid onset of 

action, and limited systemic dose [286].   Systemic intravenous (IV) administration of mannitol is 

widely used in the clinic to reduce cerebral edema, however, IA injection at a sufficiently high 

concentration (close to the solubility limit of around 1.4 M), causes BMEC shrinkage which is 

sufficient to induce transient BBBO [259, 287, 288].  This technique has been used for several 

decades in both preclinical models and clinical studies to improve delivery of chemotherapeutics, 

stem cells, and gene vectors [260-262, 289-293].  The reproducibility of BBBO can be difficult to 

control due to dilution of the injected dose by collateral blood supply in the Circle of Willis, as well 

as more distally in microcirculation [265, 294]. Advances in image-guided insertion of catheters 

beyond the Circle of Willis into specific locations in the cerebrovasculature have renewed interest 

in hyperosmotic BBBO for delivery of therapeutic and diagnostic agents [263, 292, 295, 296]. 
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Although hyperosmotic therapies have been studied for more than 100 years [297], the mechanism 

of action is not fully elucidated.  The current model of hyperosmotic BBBO assumes that water 

loss from BMECs into the capillary lumen induces vasodilation, resulting in a homogeneous 

increase in BBB permeability [259].  Much of what we know about hyperosmotic therapies relies 

on magnetic resonance imaging (MRI) and positron emission tomography (PET) [295].  However, 

these techniques are not well suited for interrogating mechanisms at the cellular level.  Here, we 

report on real-time imaging of hyperosmotic BBBO on the scale of individual cells in a tissue-

engineered microvessel model of the cerebrovasculature incorporating stem cell-derived human 

BMECs (dhBMECs) [26, 181, 198].  From fluorescence imaging of different molecular weight 

solutes following exposure to different mannitol doses, we assess spatial and temporal changes in 

barrier function, while from phase contrast imaging we assess changes in BMEC structure.  The 

key observations are: (1) mannitol causes transient focal leaks that result in a significant increase 

in the overall permeability, (2) the focal leaks occur at small (1 – 2 µm) sub-cellular disruptions in 

the endothelium, (3) the global TJ network is unaffected by mannitol, and (4) the increase in 

permeability is due solely to paracellular transport.  We establish the timeline of events following 

hyperosmotic BBBO, including spatially heterogenous increases in paracellular permeability and 

BMEC vacuolation.  Finally, we show that bFGF has an important role in modulating the 

susceptibility to BBBO and recovery.  Our results highlight the ability to evaluate drug delivery 

mechanisms using a tissue-engineered microvessel model of the human BBB. 

3.2.Materials and Methods 

3.2.1.MRI during BBBO in mice 

Animal experiments were performed in accordance with guidelines for the care and use of 

laboratory animals approved by the Institutional Animal Care and Use Committee of Johns Hopkins 

University, designed in compliance with the Animal Welfare Act regulations and Public Health 
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Service (PHS) policy, and were performed in accordance with ARRIVE guidelines.  Four SCID 

mice (male, 6-8 weeks old, 20-25 g, Jackson Laboratory) were used in this study.  Carotid artery 

catheterization was performed as previously described [295], before mice were transferred to a 

Bruker 11.7 T MRI scanner.  T1 (TR/TE 350/6.7ms)-weighted and dynamic T1 imaging (TR/TE 

2000/3.5ms, field of view = 14×14 mm, acquisition time = 8 s and 40 repetitions) of the brain was 

acquired. 1.4 M mannitol (Hospira) was administered intra-arterially for 1 minute at an injection 

speed of 0.15 ml min-1.  Five minutes after mannitol dosing, mice received 0.07 mL of Gadoteridol 

(Gd; Bracco Diagnostics) intraperitoneally.  T1-weighted images were obtained 5 minutes post-Gd 

injection to visualize BBB integrity; for dynamic monitoring of BBBO, T1 scans were acquired 

during and after a 1-minute infusion of 1.4 M mannitol mixed with Gd (5.6 mg/mL).   

1 mm x 1 mm regions of interest (ROIs) were drawn on MRI images corresponding to: (1) 

contralateral hippocampus, (2) contralateral cerebral cortex, (3) ipsilateral cerebral cortex, and (4) 

ipsilateral hippocampus.  The Gd contrast ratio post-mannitol versus pre-mannitol was computed 

using ImageJ (NIH) and normalized to contralateral hippocampus (ROI 1; where BBBO does not 

occur).  For dynamic T1 measurements identical ROIs were used and contrast intensity (normalized 

between 0 and 1 for ROI 4) plotted over five minutes.   

3.2.2.Blood-brain barrier microvessel fabrication 

Human brain microvascular endothelial cells (dhBMECs) were differentiated from induced 

pluripotent stem cells (iPSCs) as previously reported [181, 196].  The BC1 iPSC line derived from 

a healthy individual was used for all experiments [210].  BC1 dhBMECs show transendothelial 

electrical resistance (TEER) values above 1500 Ω cm2 in two-dimensional culture, when cultured 

in media supplemented with retinoic acid [196, 298].  

BBB microvessels were fabricated as previously reported [181, 198].  The microfluidic device 

consists of a 150 µm diameter and 1 cm long microvessel lined with BC1 dhBMECs in a genipin-
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cross-linked type I collagen hydrogel contained in a polydimethylsiloxane housing.  Inlet and outlet 

fluid reservoirs are connected to a flow loop to maintain a shear stress of approximately 4 dyne cm-

2 [181, 198].  Functional BBB microvessels with physiological barrier function are formed two 

days following seeding dhBMECs in the microfluidic device [181, 198].  After establishing barrier 

function (defined as day 0), timelapse imaging experiments were initiated.  

Microvessels were perfused with media (denoted as BBB microvessel media): human endothelial 

cell serum-free media (Life Technologies) supplemented with 1% human platelet poor derived 

serum (Sigma), 1% penicillin-streptomycin (Life Technologies), 400 µM db-cAMP (Sigma), 20 

µM phosphodiesterase inhibitor Ro-20-1724 (Calbiochem), 3% 70 kDa dextran (Sigma), and 10 

µM ROCK inhibitor Y27632 (ATCC, only supplemented for first 24 hours after seeding).  Where 

noted, 20 ng mL-1 recombinant human basic fibroblast growth factor (R&D systems; 146 aa, bFGF) 

was supplemented for either the initial 24 hours of device perfusion (day -2 to day -1) or for 48 

hours following imaging experiments (day 0 to day 2). 

3.2.3.Live-cell imaging of BBB opening 

The experimental design and timeline of dosing and assessment of barrier function during live-cell 

imaging is summarized in Figure 3-1.  Microvessels were maintained at 37 ˚C and 5% CO2 in a 

live-cell chamber, and imaged on an inverted microscope (Nikon Eclipse TiE).  Epifluorescence 

illumination was provided by an X-Cite 120LEDBoost (Excelitas Technologies).  On day 0 (two 

days after seeding microvessels), media was removed from the upper reservoir and replaced with 

1.4 M mannitol (Sigma) and 5 µM Sodium fluorescein (Sigma) prepared in BBB microvessel media 

for two, five, or ten minutes depending on the mannitol dose.  After dosing, the upper reservoir was 

replaced with BBB microvessel media containing 200 µM Lucifer yellow (CH dilithium salt; LY) 

(Sigma) and 2 µM Alexa Fluor647-conjugated 10 kDa dextran (Thermo Fisher).  A NIS Elements 

(Nikon) imaging protocol was initiated immediately following addition of Lucifer yellow and 10  
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Figure 3-1. Live-cell imaging experimental design and timeline.Timeline over four days.  
Devices are seeded with dhBMECs (day -2) and form into BBB microvessels over two days.  On 
day 0, microvessels are dosed with or without mannitol and imaging is conducted.  On day 2 (48 
hours later) imaging is conducted again.  bFGF treatment is applied for the initial 24 hours after 
seeding, or for 48 hours after day 0 imaging.  (b) Fluorescein and mannitol are added to the upper 
reservoir at time -2 to -10 minutes.  Next, Lucifer yellow and 10 kDa dextran are added and the 
microfluidic device is immediately imaged for two hours.  Afterwards, microvessels are re-exposed 
to fluorescein for one hour.  (c)  2, 5 and 10-minute mannitol doses are visible in the microvessel 
as fluorescein fluorescence shortly after imaging begins.  Fluorescein focal leaks are counted during 
mannitol dosing and during fluorescein re-administration.  Once, 10 kDa dextran enters the 
microvessel lumen focal leaks are counted over the remaining 2-hour imaging window.  Lucifer 
yellow (LY) permeability is calculated over 20 minutes following luminal filling.  BMEC 
vacuolation is counted over the entire 2-hour imaging window. 

 
kDa dextran to the upper reservoir.  Phase contrast and fluorescence images were acquired every 

two minutes for two hours (61 frames).  At every time point six images were collected: (1) a phase 

contrast image of the top of the microvessel, (2-5) phase contrast and fluorescence images of the 

microvessel midplane, and (6) a phase contrast image of the bottom of the microvessel.  To 

independently excite and collect the emission from each fluorophore, three filter cubes were used: 

Chroma 39008 for Lucifer yellow (20 ms exposure), Chroma 49003 for fluorescein (50 ms 
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exposure), and Chroma 41008 for dextran (200 ms exposure).  The total image area was 

approximately 8.2 mm x 0.67 mm, corresponding to ten adjacent frames using a 10x objective.   

Mannitol (MW 182.2) dosing was indirectly monitored using co-administered fluorescein (MW 

376.3 Da), a small fluorescent compound that does not exhibit intracellular accumulation.  

Fluorescein begins filling the microvessel several minutes after imaging is initiated due to transit 

within 40 cm long tubing, which connects the upper reservoir and microvessel (Figure 3-5, A).  

Since convective flux is proportional to fluid velocity and not dependent on the physicochemical 

properties of a solute, it is reasonable to assume that mannitol and fluorescein are transported at the 

same rate; therefore, the fluorescein intensity can be used as a proxy to identify the duration and 

maximum of the mannitol dose.  After two hours of imaging, microvessels were re-perfused with 

fluorescein for one hour to monitor recovery of barrier function. 

3.2.4.Spatial permeability analysis 

Analysis is summarized in Figure 3-2.  Large images were sectioned into ten regions of interest 

(ROIs), each with dimensions of 820 µm x 670 µm.  Time course fluorescence intensity profiles of 

Lucifer yellow were obtained using ImageJ.  Microvessel permeability (cm s-1) was calculated as 

P = (d/4)(1/ΔI)(dI/dt), where d is the vessel diameter, ΔI is the increase in fluorescence intensity 

upon luminal filling, and (dI/dt)0 is the rate of increase in fluorescence intensity as the solute is 

transported across the endothelium into the surrounding matrix [216, 217].  The rate of increase of 

fluorescence intensity, from which the permeability is calculated, was determined from a linear 

least squares fit over twenty minutes following luminal filling.  Lucifer yellow permeability was 

calculated for each of the ten ROIs, with the minimum across all ROIs reported as Pmin(LY).  Five 

adjacent ROIs with the lowest mean permeability were used to analyze spatial heterogeneity of 

BBBO; ROIs outside this range were discarded from analysis as they were not buffered from slow 
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interstitial leakage of dye into the hydrogel from the inlet and outlet, which artificially increases 

permeability values. 

Focal leaks induced by mannitol were manually counted in ImageJ.  Focal leaks appear as radial 

extravascular plumes of fluorescence due to diffusion of dye into the hydrogel from the leakage 

site.  Focal leaks were counted over the initial dosing of mannitol and over the one-hour fluorescein 

re-administration.  In the 2 hours following dosing, the x-position along microvessels (from 0 to 

8,200 µm) and time of appearance of individual 10 kDa dextran focal leaks were recorded.  The 

total number of 10 kDa dextran focal leaks during two hours following dosing was normalized to 

microvessel length (# cm-1).   To assess penetration of 10 kDa dextran into the surrounding matrix, 

the fluorescence intensity was determined in the five adjacent ROIs with the lowest mean 

permeability excluding the microvessel lumen, corresponding to two-thirds of the imaging frame 

(total area = 1.83 mm2).  Within this region, the normalized cumulative and instantaneous change 

in fluorescence intensity was plotted as a proxy for drug extravasation. 

 

Figure 3-2. Spatial permeability analysis.  (a) Microvessels are sectioned into ten regions of 
interest (ROIs).  (b) Fluorescence is plotted over two hours for each ROI.  (c) Permeability is 
extrapolated from the shape of the curve, critical inputs are the jump in fluorescence intensity due 
to luminal filling (ΔI), the rate of increase in fluorescence after filling (dI/dt) and the microvessel 
radius. (d) Focal leaks are manually counted from fluorescein and 10 kDa dextran fluorescence 
images. 
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3.2.5.Phase contrast analysis 

Structural changes observed after exposure to mannitol (i.e. intracellular vacuoles) were counted 

in ImageJ using time-lapse phase contrast images at the microvessel poles cropped to an area of 

twenty cells; the vacuole count was then normalized to the number of cells (# cell-1).  Vacuole 

quantification was verified by comparison to the corresponding fluorescence images following 

treatment with 2 µM Calcein AM (ThermoFisher), which stains all intracellular compartments 

besides vacuoles (Figure 3-7, A).  Vacuole density did not vary substantially along the x-axis of 

microvessels, justifying sampling of a single region containing twenty cells (Figure 3-7, B). 

To probe vacuole localization and function, four fluorescence assays were used:  2 µM Calcein AM 

for live cells, 4 µM ethidium homodimer-1 (ThermoFisher) for dead/dying cells, 2 µg mL-1 Hoechst 

33342 (ThermoFisher) for nuclei, and pHrodo™ Green AM Intracellular pH Indicator 

(ThermoFisher) for intracellular pH (following manufacturer suggested protocols).  For these 

experiments, microvessels were: (1) washed with live-cell imaging solution (LCIS; ThermoFisher) 

for 5 minutes, (2) stained at 37 ˚C for 30 minutes, (3) washed with LCIS for 5 minutes, and (4) 

imaged as previously described. 

Cell loss events were recorded from time-lapse imaging at the microvessel midplane.  These events 

are visible as BMECs balling-up and detaching from the endothelium.  Events were normalized to 

the length of microvessel, based on analysis within representative ~465 μm long microvessel image 

sections.   Cell density was determined by manual counting in a 32,000 μm2 area at the pole region 

of a microvessel (~100 cells). 

3.2.6.Confocal and epifluorescence imaging of hyperosmotic BBB opening 

Blood-brain barrier microvessels were constructed using the WTC iPSC line with CRISPR-edited 

tagging of zona occludens-1 (ZO1) with enhanced green fluorescent protein (EGFP) [299].  5-

minute mannitol doses were administered as previously described.  However, fluorescein and 
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Lucifer yellow were excluded from experiments due to fluorescence overlap with the fluorescently-

tagged ZO1.  Instead, 10 kDa dextran was supplemented within the brain microvessel media during 

and after mannitol dosing to monitor formation and recovery of focal leaks.  10× epifluorescence 

and 40× confocal images were collected as previously described [300]. 

3.2.7.bFGF pre-treatment in two-dimensional assays 

Upon completion of the differentiation, dhBMECs were singularized using warm Accutase for 10 

minutes.  Corning® Transwell® polyester membrane cell culture inserts (1.12 cm2 area, 0.4 µm 

pore size) and eight-chambered borosilicate cover glass wells (Lab Tek) were seeded at 1 × 106 

cells cm-2.  All surfaces were coated overnight with 50 µg mL-1 human placental collagen IV 

(Sigma) and 25 µg mL-1 fibronectin from human plasma (Sigma).  Two cell culture medias were 

tested: (1) BBB microvessel media (as outlined in methods) and (2) BBB microvessel media 

supplemented with 20 ng mL-1 recombinant human basic fibroblast growth factor.  TEER 

recordings and immunocytochemistry were conducted 48 hours after plating on transwells (day 0) 

as previously described [196].  The density of DAPI-stained nuclei was calculated using particle 

analysis in ImageJ.  Normalized fluorescence intensity of 10× images of zona occludens-1 (ZO1) 

or claudin-5 stained monolayers was used as a proxy for protein expression. 

3.2.8.Statistical analysis 

All statistical analysis was performed using Prism ver. 8 (GraphPad).  Metrics are presented as 

mean ± standard deviation (SD).  The principle statistical tests used were a student’s unpaired t-

test (two-tailed with unequal variance) for comparison of two groups, and an analysis of variance 

(ANOVA) for comparison of three or more groups.  Reported p-values were multiplicity adjusted 

using a Tukey test.  Differences were considered statistically significant for p < 0.05, with the 

following thresholds: * p < 0.05, ** p < 0.01, *** p < 0.001.  To determine the time course of 
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experimental metrics, the beginning of the mannitol dose is designated as t = 0 and the half-time 

represents the time following dosing at which the metric reaches half its maximum value.   

3.3.Results 

3.3.1.Hyperosmotic blood-brain barrier opening in mice 

To establish a clinically relevant comparison for in vitro experiments, in vivo measurements of 

BBBO following mannitol dosing were performed in a mouse model.  Contrast enhanced T1 MRI, 

a standard technique for monitoring BBB status both clinically and in animal models [295], was 

used to imaging of BBBO following dosing with mannitol.  At hemodynamically safe IA infusion 

rates, consistent BBBO occurs in subcortical brain structures (primarily the hippocampus), while 

the cerebral cortex and the contralateral brain regions are not reproducibly opened (Figure 3-3, A).  

The Gadoteridol (Gd) contrast enhancement after mannitol dosing (compared to the value to before 

dosing) and normalized to the unaffected brain ROI, shows robust opening in the ipsilateral 

hippocampus (> 2-fold increase) compared to other regions (p < 0.01 for each comparison) (Figure 

3-3, B).  Due to the relatively low spatial resolution of MRI, opening appears to result in a uniform 

increase in permeability.  Additionally, high spatial resolution using multiphoton microscopy is not 

possible in mice as BBBO is not reproductively observed in superficial brain regions [295]. 

A 1-minute injection of mannitol, along with Gd, during real-time T1 MRI demonstrates the 

temporal and spatial signature of BBBO in the mouse brain (Figure 3-3, C).  Analysis of the 

ipsilateral hippocampus (ROI 4) shows that BBBO occurs shortly after cessation of mannitol 

infusion (less than one minute later) (Figure 3-3, D).  Additionally, while MRI enables non-invasive 

assessment of BBBO, precise calculations of vascular permeability are complicated because 

gadolinium is a contrast agent rather than a tracer, and T1 relaxivity-derived measures lack 

precision [301]. 
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Figure 3-3. Hyperosmotic BBB opening in mice. (a) T1 magnetic resonance (MR) images were 
acquired before 1-minute 1.4 M mannitol infusion and 5 minutes after subsequent Gadoteridol (Gd) 
injection.  (b) The ratio of Gd contrast post- and pre-mannitol exposure (normalized to ROI 1).  The 
ipsilateral hippocampus displays Gd enhancement, while other regions do not. (c) T1 images during 
and after a 1-minute 1.4 M mannitol injection with Gd.  (d) Dynamics of normalized Gd contrast 
across ROIs; only the ipsilateral hippocampus (ROI 4) displays significant enhancement, which 
occurs rapidly following cessation of mannitol infusion.  Pre/Post T1 (n = 4 mice), dynamic T1 (n 
= 1 mouse).  
 

3.3.2.Mannitol induces spatially heterogenous and dose-dependent increases in solute 

permeability in a tissue-engineered BBB model 

To study the mechanisms of hyperosmotic BBBO, we introduced mannitol into a tissue-engineered 

model of the BBB with a single 1 cm long microvessel that mimics the dimensions (~ 150 µm 

diameter) and wall shear stress (4 dyne cm-2) of a post-capillary venule (Figure 3-4, A-B) [181].   

Two days after seeding stem cell-derived human BMECs into genipin-crosslinked collagen 

channels (day 0), the formation of a confluent monolayer (Figure 3-4, C) results in physiological 

barrier function, as previously reported [198].  Microvessels were perfused with mannitol and the 

tracer fluorescein for 2 or 5 minutes.   Following dosing, the microvessels were then perfused with 

the fluorescent probes Lucifer yellow and 10 kDa dextran (Figure 3-4, D-E).  During this process, 

phase contrast microscopy was used to monitor the status of the endothelium, and epifluorescence 

imaging was used to visualize the transport of fluorescein, Lucifer yellow, and dextran out of the  
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Figure 3-4. Three-dimensional human in vitro model of hyperosmotic BBB opening. (a) 
Schematic illustrations of tissue-engineered iPSC-derived BBB microvessels including: (i) side 
view, (ii) front view, and (iii) three-dimensional view.  (b) Microvessels are continually perfused 
at ~4 dyne cm-2 shear stress via gravity-driven flow reservoirs.  (c) Phase contrast images of 
microvessel following seeding (day -2), microvessel formation (day 0) and 48 hours later (day 2).  
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(d) Experimental timeline over four days.  (e) Imaging protocol for studying human BBB opening.   
Mannitol and fluorescein are added to the upper reservoir for two, five or ten minutes. Next Lucifer 
yellow and 10 kDa dextran are added to the upper reservoir for two hours.  Fluorescein is re-
administered for another hour.  (f) Timelapse images of: (i) phase, (ii) fluorescein, (iii) Lucifer 
yellow, and (iv) 10 kDa dextran are shown for a representative microvessel dosed with 1.4 M 
mannitol for five minutes.  (g-h) Representative fluorescence images of fluorescein during 2-minute 
and 5-minute mannitol doses.  Fluorescein focal leaks are widely observed during 5-minute 
exposure.  White arrows denote the sites of focal leaks. 
 

lumen and into the surrounding matrix (shown for a representative 5-minute mannitol dose in 

Figure 3-4, F). 

Fluorescein provides a proxy for the time-dependent concentration of mannitol in the microvessel 

and enables visualization of BBBO during and immediately after (~10 minutes) mannitol dosing.  

Fluorescein focal leaks develop during dosing, indicating that BBBO occurs rapidly following 

exposure to mannitol.  The densities of focal leaks during dosing were 0.24 ± 0.54 cm-1 and 5.59 ± 

4.35 cm-1 for 2-minute and 5-minute mannitol doses, respectively (Figure 3-5). 

 

Figure 3-5. Fluorescein tracing of BBB microvessels. (a) Time course of fluorescein fluorescence 
for representative 5-minute mannitol microvessel.  Fluorescein fluorescence peaks during mannitol 
dosing. Re-administration of fluorescein is used to monitor short-term recovery of barrier function.  
(b) Fluorescein focal leaks (n = 5 for each mannitol dose).  Only 5-minute mannitol exposure results 
in robust focal leak formation.  (c) Fluorescein focal leaks after redoing two hours later (n = 4 for 
each mannitol dose).  100% of 2-minute and 75% of 5-minute mannitol exposures displayed no 
focal leaks.  (d) Representative images showing the absence of focal leaks after fluorescein re-
administration. 
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Following dosing with mannitol, Lucifer yellow (MW 444 Da) and 10 kDa dextran were introduced 

into the microvessel to assess barrier function over the subsequent two hours.  Mannitol induces 

dose-dependent changes in permeability (Figure 3-6, A-B).  To assess the spatial heterogeneity in 

Lucifer yellow leakage, we determined the permeabilities in five adjacent segments (820 µm in 

width) along the length of the microvessels over 2 hours after dosing with mannitol (Figure 3-6, 

C).   Under baseline conditions (no mannitol), the Lucifer yellow permeability along the length of 

the microvessel varies by less than 68% between five adjacent ROIs.  In contrast, there is substantial 

spatial variation in Lucifer yellow permeability following 2- and 5-minute mannitol doses (on 

average 228%).  This variation is due to the appearance of focal leaks in different segments.  The 

minimum Lucifer yellow permeability across ROIs was 1.59 ± 0.87 x 10-7 cm s-1 (control), 8.27 ± 

8.66 x 10-7 cm s-1 (2-minute mannitol), and 28.8 ± 18.4 x 10-7 cm s-1 (5-minute mannitol).  5-minute 

mannitol doses result in significantly higher Lucifer yellow permeability compared to the control 

and 2-minute mannitol (p = 0.004 and p = 0.033, respectively) (Figure 3-6, D).  The maximum 

Lucifer yellow segment permeability (5-minute dose) was about 8 x 10-6 cm s-1, 50-fold higher than 

the average baseline permeability (control).  This increase in permeability represents the upper limit 

for transiently enhancing drug delivery.  Additionally, mannitol dosing resulted in increased 

variation in the Lucifer yellow permeability, with a 10-fold higher standard deviation compared to 

the controls.   

Increases in Lucifer yellow permeability result from discrete disruptions in barrier function at sites 

of focal leaks.  From analysis of 10 kDa dextran images, we found that focal leaks were located 

randomly across the entire length of microvessels (Figure 3-6, E).  Over the two-hour imaging 

period immediately after mannitol dosing, control microvessels displayed no focal leaks, 2-minute 

mannitol microvessels displayed ~3 focal leaks cm-1, and 5-minute mannitol microvessels 

displayed ~18 focal leaks cm-1 (Figure 3-6, F).  In subsequent experiments we focus on 5-minute.  
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Figure 3-6. Spatially heterogeneous dose-dependent hyperosmotic BBB 
opening.Representative images at 30, 60, and 90 minutes for (a) 10 kDa dextran and (b) Lucifer 
yellow under baseline conditions (no mannitol; control) or after 2-minute or 5-minute bolus doses 
of 1.4 M mannitol.  White arrows denote sites of focal leaks.  The onset of the mannitol dose begins 
approximately 2 minutes after injection into the reservoir.  Following the mannitol dose, the 
microvessels are perfused with Lucifer yellow and 10 kDa dextran for 2 hours. (c) The spatial 
dependence of Lucifer yellow permeability along microvessels (ROI = 825 µm segment) is highly 
heterogeneous following mannitol exposure. (d) Minimum Lucifer yellow permeability (i.e. the 
segment with the lowest permeability) for each condition. (e) Focal leaks are uniformly distributed 
along the length of the microvessels. (f) Focal leak density for each condition.  (g) Cumulative 10 
kDa dextran focal leaks and (h) normalized cumulative and instantaneous 10 kDa dextran 
extravasation following a 5-minute mannitol dose.  The dotted line represents the mean, while 
upper and lower solid lines represent the mean ± SD; time is normalized to onset of mannitol dosing 
at t = 2 minutes.  Control (n = 6 microvessels), 2-minute mannitol dose (n = 5 microvessels), and 
5-minute mannitol dose (n = 5 microvessels). 
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To determine the time course of BBBO, the number of 10 kDa dextran focal leaks and the 

penetration of the dye into the matrix were analyzed as a function of time (Figure 3-6, G-H).  New 

focal leaks are not observed after ~60 minutes following onset of a 5-minute mannitol dose.  

Additionally, extravasation of 10 kDa dextran occurs rapidly; half of all extravasation occurs within 

30 minutes following onset of mannitol administration, while no extravasation is observed in 

control microvessels, as previously reported [181]. 

To assess microvessel recovery, fluorescein was re-administered after the initial two-hour imaging 

window for an additional hour.  For 2-minute mannitol doses, fluorescein focal leaks were rare 

during dosing (0.24 ± 0.54 cm-1) and none were observed during fluorescein re-administration 

(Figure 3-5, C-D), indicating that BBBO is reversed and normal barrier function is re-established.  

For a 5-minute mannitol dose, while fluorescein focal leaks were observed (5.59 ± 4.35 cm-1) during 

initial dosing, two hours later focal leaks were rare (0.91 ± 1.82 cm-1 over 1 hour) and not observed 

in most microvessels (75%) (Figure 3-5, C-D).  After fluorescein re-administration only 4% of all 

focal leaks observed during 10 kDa dextran perfusion displayed persistent opening, indicating 

general reversal of BBBO within two hours of dosing.   

3.3.3.Endothelium response to mannitol dosing 

From phase contrast images, mannitol dosing induced morphological changes including BMEC 

shrinkage, thinning of the endothelium, and vacuolation.  Upon mannitol dosing, vacuoles formed 

in the dhBMECs (Figure 3-8, A); their density increased rapidly following the onset of mannitol 

dosing and reached a plateau thirty minutes later (Figure 3-8, B).  The formation of vacuoles was 

dose-dependent; 2-minute doses resulted in 6.7 ± 2.1 cell-1, while 5-minute doses resulted in 

significantly higher vacuolation of 10.6 ± 1.9 cell-1 (p = 0.005) (Figure 3-8, C).  Vacuoles were 3.8 

± 1.5 μm in diameter within microvessels exposed to 5-minute mannitol (Figure 3-7, C), excluding 

the possibility that these structures are lysosomes or endosomes [302]. 
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To gain insight into vacuole localization, microvessels were stained with Calcein AM and DAPI.  

Interestingly, the cytoplasmic stain Calcien AM was found to distinguish cytoplasm and nucleus 

from vacuoles.  Vacuoles were distributed heterogeneously within dhBMECs including within cell 

nuclei, within the cytoplasm, or at the boundary of cell nuclei (Figure 3-7, D).  Additionally, BMEC 

nuclei appeared distorted following mannitol treatment, likely due to abrupt changes in cell shape 

which alters nuclear shape via the actin cytoskeleton [303]. 

 

 

Figure 3-7. Vacuole quantification and characterization. (a) Vacuoles appear as white circles 
using phase contrast imaging, and are distinct from cytoplasm when stained with Calcein AM.  
Similar vacuole localization and counts are observed across both methods (representative images 
shown).  (b) Longitudinal analysis of vacuoles for a sample from each condition (x-axis represents 
> 6 mm).  There is not substantial variation in vacuole density along the length of microvessels.  
(c)  Probability distribution of vacuole diameter for 5-minute mannitol exposed microvessels (n = 
1127 vacuoles across n = 5 microvessels).  The mean vacuole diameter is ~4 μm.  (d) Calcein AM 
and DAPI stains of mannitol-exposed microvessels: vacuoles are not stained with Calcien AM, 
vacuoles localize internuclear (#1), extranuclear (#2) and in contact with both nucleus and 
cytoplasm (#3).  (e) DAPI and pHrodo Green AM stains of microvessels show that intracellular pH 
does not appear to localize to vacuoles.   
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Vacuole formation could occur via multiple mechanisms.  Dextran remained excluded from 

intracellular compartments during and after mannitol dosing (Figure 3-8, D-E), indicating that 

vacuoles did not form as plasma membrane invaginations.  Dextran did not accumulate within the 

cytoplasm or vacuoles in the BMECs at any point during our experiments, implying that mannitol 

induces changes in paracellular permeability but not transcellular permeability for compounds with 

similar or higher molecular weight.  To further confirm that mannitol does not induce changes in 

membrane integrity, microvessels were stained before, or 30 minutes after, a 5-minute mannitol 

dose.  Most BMECs remained viable following mannitol treatment (Calcein AM), and although 

ethidium homodimer-1 positive cells were slightly more prevalent this was an exceedingly small 

population (~0.06 %) (Figure 3-8, F-G).  Next, we hypothesized that intracellular vacuoles were 

formed in response to an increase in hydrogen ion concentration (decrease in pH) resulting from 

the rapid loss of water.  However, there was no change in intensity or localization of a pH indicator 

dye (Figure 3-7, E).  The dye was co-localized with DAPI, suggesting that nuclei are the most 

acidic cell compartment under baseline conditions.   However, it is difficult to definitively conclude 

that vacuoles do not have a lower pH as indicator dyes could be restricted from entry into vacuoles, 

cleaved in the cytoplasm, or self-quenched at high concentrations.  Vacuoles have been observed 

in vivo following mannitol treatment, but were not correlated with BBBO [224]. 

Vacuole formation reduced the definition of dhBMECs in phase contrast imaging, making it 

difficult to measure cell loss events [181].  However, from timelapse imaging at the microvessel 

midplane, loss of dhBMECs from the endothelium is observed following mannitol dosing.  Cell 

loss is dose-dependent, with events observed ~6 or ~2 times more frequently following 5-minute 

doses, compared to control and 2-minute doses, respectively (Figure 3-8, I).  Increased apoptosis 

has previously been observed following hyperosmotic stress in other cell types [304, 305]. 
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Figure 3-8. Hyperosmotic vacuole formation and tight junction disruption in BBB 
microvessels.Vacuolation of endothelial cells is dose-dependent: (a) representative time course 
images of bottom plane of microvessel upon exposure to mannitol.  t = 0 minutes represents 
addition of Lucifer yellow and 10 kDa dextran to the upper reservoir, after which the onset of 
mannitol dose occurred eight or six minutes later for the 2-minute or 5-minute mannitol doses 
shown, respectively.  Red arrows denote examples of vacuoles visible from phase contrast 
microscopy.  (b) Time course of vacuole formation, (c) maximum vacuoles across doses.  (d-e) 10 
kDa dextran does not accumulate intracellularly following mannitol exposure: (d) representative 
10 kDa dextran and phase contrast images, (e) intensity projection of 10 kDa dextran along the 
dashed white line in subsequent subpanel. (f-g) Live-dead stains (Calcien AM, ethidium 
homodimer-1) and percentage of ethidium homodimer-1 positive cells before and after mannitol 
exposure (n = 3 microvessels).  (h) Cumulative cell loss over two hours for each condition.  (i) 
Confocal imaging at the midplane of a microvessel following a 5-minute mannitol dose shows a 
focal leak (about 1 – 2 µm) of 10 kDa dextran across the endothelium.  50 minutes later, the 
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endothelium is intact showing that the focal leak has closed.  (j) Epifluorescence image of a 10 kDa 
dextran focal leak at the midplane of a microvessel following a 5-minute mannitol dose.  Concurrent 
epifluorescence imaging of tight junctions (ZO1) shows no global changes in TJ localization during 
hyperosmotic BBB opening.  For quantification of vacuoles and cell loss: control (n = 6 
microvessels), 2-minute mannitol dose (n = 5 microvessels), and 5-minute mannitol dose (n = 5 
microvessels).  All other presented images (d-j) were following a 5-minute mannitol dose. 
 
 

 

Figure 3-9. Confocal tracing of focal leaks during hyperosmotic BBB opening (5-minute 
mannitol dose). (a)  Focal leaks are visible as a pathway of fluorescence from lumen to ECM that 
is restricted to a specific z-plane.  20 μm above or below this plane BMECs do not display 
accumulation of 10 kDa dextran or other obvious disruptions.  (b) Time lapse imaging during (open; 
t = 20 min) and after (closed; t = 70 minutes) focal leakage.  (c) Fluorescence intensity along 
projections of the y- and x-axis, respectively (dashed white lines).  Open focal leaks display 
elevated 10 kDa dextran fluorescence at the plane of the endothelium. 
 

3.3.4.Characterization of focal leaks 

Confocal images during perfusion with 10 kDa dextran shown that the focal leaks are associated 

with small gaps (1 – 2 µm) in the endothelium (Figure 3-8, I).  Images above and below the z-plane 

(0.4 μm thickness) show no leakage (Figure 3-9). There is no evidence of intracellular accumulation 

of 10 kDa dextran, indicating that focal leaks are paracellular.  Healing of the focal leak is evident  



 

 
 
 
 
 
 
 

79 

from exclusion of 10 kDa dextran from the endothelium 50 minutes later.    

To further investigate the mechanism of tight junction disruption, we performed live-cell imaging 

of BBB microvessels where the dhBMECs were differentiated from iPSCs with fluorescently 

labeled zona occludens-1 (ZO1).  Following mannitol administration the global tight junction 

structure is not perturbed (Figure 3-8, J).  Direct visualization of TJ disruption at the site of a focal 

leak is not possible due to limited z-resolution at the microvessel midplane where the focal leaks 

are visualized.  However, from analysis of the images at the top and bottom of the microvessels, 

we can show that there is no disruption in ZO1 within about 125 μm (~5 cell lengths) of a focal 

leak (Figure 3-10).  

 

Figure 3-10. Confocal tracing of focal leaks and tight junctions during hyperosmotic BBB 
opening. (a) 5-minute mannitol doses result in focal leaks visible by 10 kDa dextran leakage at the 
microvessel midplane.  (b)  Phase contrast and zona occludens-1 (ZO1) fluorescence images were 
acquired at the midplane and microvessel poles, during focal leakage.  Visualization of TJ 
disruption is challenging at the microvessel midplane, while at planes above and below the focal 
leak, tight junctions appear intact and well-localized.   
 
 

3.3.5.bFGF pre-treatment attenuates BBB opening 

To assess the role of bFGF in modulating BBB function, microvessels were treated with 20 ng mL-

1 bFGF during the initial 24 hours after cell seeding (Figure 3-11).  Control microvessels (no 
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mannitol) pre-treated with bFGF displayed similar Lucifer yellow permeability on day 0 compared 

to control microvessels (p = 0.449), although there was an increase in the number of vacuoles (p = 

0.003) (Figure 3-11, B).  Pre-treatment with bFGF increases the transendothelial electrical 

resistance (TEER) of iPSC-derived BMEC monolayers within 2D transwells (p = 0.021, Figure 

3-12, A).  However, increased TEER was not associated with increases in endothelial cell density 

(p = 0.750), total tight junction fluorescence intensity (p = 0.755), or junctional localization (Figure 

3-12, B-D).  Microvessels pre-treated with bFGF and then exposed to a 5-minute mannitol dose 

(on day 0) were less susceptible to BBBO (Figure 3-11, C).  The minimum Lucifer yellow 

permeability and the presence of focal leaks were reduced with bFGF pre-treatment (p = 0.029 and 

0.036, respectively) compared to control microvessels (Figure 3-11, D).  For example, following a 

5-minute mannitol dose, the minimum permeability was 3.02 ± 2.14 x 10-7 cm s-1, 10-fold lower 

than with no bFGF treatment.  Similarly, the number of focal leaks decreased from 18 ± 12 cm-1 to 

1.8 ± 1.6 cm-1 following pre-treatment with bFGF.   The maximum number of vacuoles per cell 

was slightly higher with bFGF pre-treatment, although not statistically significant (p = 0.113) 

(Figure 3-11, D).   

However, microvessels pretreated with bFGF and exposed to a 10-minute mannitol dose displayed 

BBBO (Figure 3-13).The minimum Lucifer yellow permeability was higher than bFGF-pretreated 

microvessels not exposed to mannitol (p = 0.0459), and similar to that of 2-minute mannitol doses 

in control microvessels; both displayed an average minimum Lucifer yellow permeability of 

approximately 7 - 8 x 10-7 cm s-1, about 5-fold higher than the control.   10 kDa dextran focal leaks 

were observed with 10-minute mannitol dose (9.3 ± 8.3 cm-1), although not significantly greater 

than controls (no bFGF).  The concentration of vacuoles increased compared to controls (p = 

0.0002) but was similar to those observed with 5-minute mannitol treatment, suggesting that 

vacuolation may plateau at high doses.  The permeability of microvessels pre-treated with bFGF  
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Figure 3-11. Basic fibroblast growth factor (bFGF) pre-treatment mitigates BBB opening. (a) 
Summary of 20 ng mL-1 bFGF treatment.  (b) Comparison of the minimum Lucifer yellow 
permeability, the number of focal leaks, and the number of vacuoles following a 5-minute mannitol 
dose with (n = 3) and without bFGF pre-treatment with (n = 6).  (c) Representative images of 10 
kDa dextran and Lucifer yellow in bFGF pre-treated microvessels following a 5-minute mannitol 
dose showing no focal leaks.  (d) Comparison of the minimum Lucifer yellow permeability, the 
number of focal leaks, and the number of vacuoles following a 5-minute mannitol dose with (n = 
4) and without bFGF pre-treatment with (n = 5).   
 

 
 
Figure 3-12. Influence of bFGF pre- and post-treatment. (a) Basic fibroblast growth factor 
(bFGF) pre-treatment increased transendothelial electrical resistance (TEER) of dhBMEC 
monolayers in a transwell on day 0, in the absence of mannitol dosing (n = 5).  (b) bFGF pre-
treatment had no effect on cell density (n = 4).  (c) Analysis of zona occludens-1 and claudin-5 in 
immunofluorescence images showed no effect on junction intensity in immunofluorescence images 
(n = 4).  (d) Immunofluorescence images of zona occludens-1 and claudin-5 in two-dimensional 
monolayers on day 0 display no clear difference with and without bFGF pre-treatment.  (e) Cell 
density obtained from analysis of phase contrast images of microvessels 2 days following a 5-
minute mannitol dose (n = 3).  bFGF post-treatment (continuous perfusion beginning 2 hours 
following mannitol treatment) resulted in a small but non-significant increase in the cell density. 
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Figure 3-13. Basic fibroblast growth factor (bFGF) pre-treatment mitigates BBB opening, 
requiring a longer dose to induce opening. (a) Representative images of 10 kDa dextran and 
Lucifer yellow in bFGF pre-treated microvessels exposed to 10-minute mannitol, focal leaks are 
denoted with white arrows.  (b) Comparison of minimum Lucifer yellow permeability, focal leaks 
and vacuoles between microvessels pre-treated with bFGF exposed to no mannitol (n = 3) or 10-
minute mannitol (n = 3).  (c) Representative images of 10 kDa dextran and Lucifer yellow in bFGF 
pre-treated microvessels exposed to 10-minute mannitol 48 hours after mannitol exposure (day 2), 
focal leaks are not observed.  (d) Comparison of minimum Lucifer yellow permeability, focal leaks 
and vacuoles between microvessels pre-treated with bFGF exposed to no mannitol (n = 3) or 10-
minute mannitol (n = 3) on day 2; BBB opening is reversible. 
 
 
 
and exposed to 10-minute mannitol doses returned to baseline levels within 48 hours (by day 2).  

On day 2, the minimum Lucifer yellow permeability, the number of focal leaks, and the vacuole 

density were indistinguishable from baseline bFGF pre-treated microvessels (p > 0.05).   

3.3.6.bFGF post-treatment enhances BBB stability 48 hours after mannitol dosing 

Endogenous bFGF circulates in human blood at concentrations in serum below ~10 pg mL-1 [306].  

To aid in recovery and repair following injuries, administration of exogenous bFGF or other growth 

factors has been explored [307-310].  Treatment with hyperosmotic agents perturbs endothelial 

homeostasis and causes significant stress to BMECs.  Previously, we showed that focal leaks two 

hours following a 5-minute mannitol dose were rare events, indicating recovery of barrier function.  
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To investigate the long-term response to mannitol stress, we investigated barrier function 48 hours 

following treatment with and without bFGF continuously administered starting 2 hours after 

mannitol dosing (Figure 3-14, A).  Without bFGF post-treatment, BBB microvessels displayed 

variable barrier function 48 hours following a 5-minute mannitol dose (Figure 3-14, B).  The 

minimum Lucifer yellow permeability decreased 48 hours following dosing (day 2) and was 

approximately three times higher than the baseline control although not statistically significant (p 

= 0.360) (Figure 3-14, C).  While widespread disruption of the monolayer was not observed 48 

hours following dosing, some microvessels did display leakage of 10 kDa dextran indicating 

instability of barrier function (Figure 3-14, D).  With bFGF post-treatment, all microvessels 

displayed stable barrier function following hyperosmotic BBBO (Figure 3-14, F).  The minimum 

Lucifer yellow permeability 48 hours following 5-minute mannitol dosing was 3.42 ± 1.74 x 10-7 

cm s-1, approaching physiological values, and similar to controls (no mannitol, no bFGF) (p = 

0.132) (Figure 3-14, G).  In addition, with bFGF post-treatment no focal leaks were observed, 

representing a significant decrease from the response immediately after mannitol dosing (p = 0.047) 

(Figure 3-14, H).  The recovery of dhBMEC vacuolation was not dependent on bFGF post-

treatment; under both conditions vacuolation decreased by ~10-fold 48 hours following 5-minute 

mannitol dosing (p = 0.007 and 0.013, for control and bFGF post-treatment microvessels 

respectively) (Figure 3-14, E, I).   Administration of bFGF after mannitol dosing was associated 

with a small, non-significant increase in cell density, possibility due to increased BMEC 

proliferation (p = 0.326, Figure 3-12, E) 
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Figure 3-14. bFGF post-treatment promotes BBB repair following hyperosmotic opening. (a) 
Microvessels were continuously perfused with 20 ng mL-1 bFGF following a 5-minute mannitol 
dose.  (b) Representative images of 10 kDa dextran and Lucifer yellow on day 2 following a 5-
minute mannitol.  Focal leaks are denoted by white arrows.  (c-e) Comparison of minimum Lucifer 
yellow permeability, the number of focal leaks, and the number of vacuoles after a 5-minute 
mannitol dose, and on day 2 following dosing (n = 3).   (f) Representative images of 10 kDa dextran 
and Lucifer yellow on day 2 following a 5-minute mannitol dose in bFGF post-treated microvessels.  
No focal leaks are observed.  (g-i) Comparison of minimum Lucifer yellow, the number of focal 
leaks, and the number of vacuoles after a 5-minute mannitol dose, and on day 2 following dosing 
in microvessels post-treated with bFGF (n = 3).     
 
 

3.4.Discussion 

MRI assessment of BBB status in animal models does not provide sufficient spatial resolution for 

studying the mechanisms of BBBO.  Here, we utilize time lapse imaging to visualize hyperosmotic 

BBBO in a tissue-engineered microvessel model with human stem cell-derived BMECs [181, 198].  

In the current model for transient hyperosmotic BBBO, removal of water induces vasodilation, and 

above a critical threshold (related to the product of osmolarity and injection duration), vasodilation 

causes sufficient mechanical stress to disrupt TJs, resulting in increased paracellular transport [259, 
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287, 288].  This model usually assumes a time-dependent but spatially homogeneous increase in 

permeability [259].  

3.4.1.Mannitol induces spatially heterogeneous increases in paracellular permeability  

The key observations from imaging mannitol-induced BBBO in microvessels are: (1) mannitol 

causes transient focal leaks that result in a significant increase in the overall permeability, (2) the 

focal leaks occur at small (1 – 2 µm) sub-cellular disruptions in the endothelium, (3) the global TJ 

network is unaffected by mannitol, and (4) the increase in permeability is due solely to paracellular 

transport.  Together these results suggest that focal leaks are formed by disruption of TJs between 

adjacent cells. 

A 1 cm long, 150 μm diameter microvessel consists of ~8,000 cells (average cell area is 625 μm2), 

with each cell having ~6 neighbors [181], corresponding to a total of 48,000 unique cell-cell 

junctions.  Therefore, the observation of 18 focal leaks (assuming that focal leaks occur when a 

single cell-cell junction is disrupted) in response to a 5-minute mannitol dose corresponds to a 

failure of 0.04% of TJs or ~0.25% of all dhBMECs.  This suggests that there is a distribution of TJ 

strengths and it is the weakest TJs that are the first to be disrupted during mannitol dosing.  

Consistent with this hypothesis, spatial heterogeneity in endothelial barrier function was reported 

in 2D monolayers in response to histamine treatment utilizing total internal reflection fluorescence 

(TIRF) microscopy [311]. 

Under baseline conditions, the permeability of 10 kDa dextran is below the detection limit and there 

is no appreciable intracellular accumulation indicating negligible paracellular and transcellular 

transport.  Following mannitol dosing, the permeability of 10 kDa dextran increases via focal leaks 

but there is no intracellular accumulation or widespread BMEC membrane permeabilization (i.e. 

low ethidium homodimer-1 fraction), consistent with negligible transcellular transport.   Despite 

the low incidence of TJ failure, dramatic increases in permeability are still observed.  For example, 



 

 
 
 
 
 
 
 

86 

the minimum Lucifer yellow segment permeability increases 20-fold over 20 minutes following a 

5-minute mannitol dose.  This increase matches previous measurements of baseline Lucifer yellow 

permeability within human umbilical vein endothelial cell microvessels (~4 x 10-6 cm s-1) [181].  

These results suggest that transient BBBO following mannitol dosing is associated with a small 

number of focal leaks that are responsible for rapid extravasation of solutes into the surrounding 

matrix.  We note that mechanisms of BBBO and response to mannitol may be different in other 

conditions, such as trauma and stroke [1, 312, 313]. 

3.4.2.Timeline of hyperosmotic BBB opening, drug delivery and recovery 

To further elucidate the timeline of opening and recovery, we normalized experimental metrics to 

the onset of a 5-minute mannitol dose (Figure 3-16).  Fluorescein focal leaks appear during 

mannitol dosing, suggesting that changes in BBB permeability can occur almost instantaneously, 

matching observations from dynamic T1 MRI.  The emergence of dhBMEC vacuolation and the 

decrease in microvessel diameter show delayed responses compared to focal leaks, with half-times 

of 6.5 and 12 minutes, respectively, after dose onset.  This suggests that vacuolation and changes 

in microvessel diameter are not direct mediators of BBBO. 

Drug delivery, based on extravasation of 10 kDa dextran, is proportional to focal leak density and 

persistence.  The cumulative number of focal leaks for 5-minute mannitol doses display a half-time 

of 20 minutes after dose onset.   The extravasation of 10 kDa dextran occurs over a longer period 

(τ = 30 minutes), due to the persistence of focal leaks.  The persistence of focal leaks following a 

5-minute mannitol dose spanned an order of magnitude, from less than 2 minutes to more than 20 

minutes (Figure 3-15).  Determining the persistence time was complicated due to impingement of 

dextran from neighboring focal leaks.  Cell loss is significantly delayed from the onset of focal 

leaks and leakage of fluorescent probes into the matrix (τ = 60 minutes), supporting the hypothesis 

that focal leaks are associated with TJ disruption and not cell loss from the endothelium  
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Figure 3-15. Mechanisms of hyperosmotic BBB opening, drug delivery, and recovery.Cross-
sectional view of BBB microvessels during and after mannitol dosing, with (b) zoom-in on tight 
junctions (TJs) between adjacent BMECs.  (c) Mechanistic timeline: fluorescein focal leaks first 
emerge during dosing followed by vacuoles and 10 kDa dextran focal leaks after dosing.  Drug 
delivery is proportional to focal leak density and persistence.  Short-term recovery is visible as 
cessation of fluorescein focal leaks, while in the long-term mannitol can compromise stability.  TJ 
strengthening (bFGF pre-treatment) mitigates BBB opening, while BMEC proliferation (bFGF 
post-treatment) promotes BBB opening.  (d) Time course of events over the initial 20 minutes of 
imaging and (e) over two hours of imaging following a 5-minute mannitol dose (n = 5 
microvessels).  All events are normalized to the 5-minute dose in which fluorescein fluorescence 
peaks, corresponding to the vertical grey bar from 2 to 7 minutes.  Half-times (τ) are reported with 
respect to onset of dose (t = 2 minutes).  The dotted line represents the mean, while upper and lower 
solid lines represent the mean plus or minus one standard deviation.   
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(Figure 3 16, E).  Over two hours following a 5-minute dose ~2% of all BMECs are lost from the 

microvessel, likely due to induced apoptosis from hyperosmotic stress [301, 302].10 kDa dextran 

extravasation into the ECM (a proxy for drug delivery into the brain) is dramatically increased by 

mannitol dosing.  In contrast, in the absence of mannitol dosing, there is no detectable leakage of 

dextran from the microvessel.  Techniques to modulate transcellular permeability, including efflux 

pump inhibition, have a more modest potential to alter CNS drug penetration. For example, p-

glycoprotein inhibition in vivo [252] and in vitro [181] modulates efflux pump substrate 

permeability by only 2- to 3-fold.  Thus, hyperosmotic methods for BBBO have a distinct advantage 

for delivery of large molecular weight compounds that are not efflux substrates. 

 

 

Figure 3-16. Persistence of 10 kDa dextran focal leaks. (a) For a representative 5-minute 
mannitol exposed microvessel, focal leaks of various persistence are shown.  White arrows denote 
an active focal leak characterized by increasing extravascular fluorescence.  (b) Normalized 
extravascular fluorescence (within the dotted ROI drawn in sub-panel a) is plotted over 30 minutes.  
Duration of extravascular fluorescence increase corresponds to focal leaks of short, medium and 
long persistence.  t = 0 minutes represents addition of Lucifer yellow and 10 kDa dextran to the 
upper reservoir, after which the onset of mannitol dose occurred two minutes later for the 5-minute 
mannitol dose shown. 
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Based on the time-dependent responses, we propose that mannitol induces shrinkage of BMECs 

which increases the tensile stress on TJs (Figure 3-16, Figure 3-17).  Cell shrinkage continues to a 

point where TJs between adjacent cells are compromised.  Assuming a distribution of TJ strength, 

the weakest TJs fail first resulting in transient focal leaks and a local increase in paracellular 

permeability.  Microvessels exposed to low doses of mannitol do not reliably open due to 

insufficient cell volume loss, while bFGF pre-treatment strengthens TJs preventing BBBO.  Long 

term failure of barrier function is likely due to accumulated hyperosmotic stress on BMECs, which 

can be recovered by promoting cell proliferation with bFGF post-treatment.  

 

 

Figure 3-17. Proposed mechanism of hyperosmotic BBB opening, drug delivery, and 
recovery.Mannitol induces cell shrinkage which increases tensile stress on tight junctions (TJs).  
Opening occurs as a function of the magnitude of cell shrinkage and TJ strength (i.e. insufficient 
cell volume loss or strengthened TJs prevent BBB opening).  Paracellular permeability increases 
due to focal leakage at the site of TJ disruption.  Once TJs are re-established, barrier integrity is 
resumed. 
  

3.4.3.Baseline permeability is not a predictor of susceptibility to BBB opening  

Pre-treatment with bFGF does not alter baseline permeability of microvessels but does increases 

the mannitol dose required to induce BBBO.  This suggests that bFGF shifts the distribution of TJ 

strengths so that longer doses are required to exert sufficient stress on the weakest TJs to initiate 

opening.  In the context of the brain, it is possible that some regions are more resistant to opening 

due differences in TJ expression, even though the permeability to small molecules is independent 
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of location.  For example, the cerebral cortex does not exhibit significant BBBO following 

hyperosmotic therapy in mice [295].  It is not well understood if this is due to heterogeneity of TJ 

strength [230] or hemodynamics and the mannitol distribution compared to other brain regions.  In 

vitro, treatment with bFGF upregulates primary hBMECs TJ proteins [308].  Additionally, while 

bFGF is not required to achieve physiological barrier function (low permeability), as shown here 

and previously [181], its removal during seeding of transwells with dhBMECs reduces 

transendothelial electrical resistance (TEER).  Thus, bFGF is likely able to shift the distribution of 

TJ strengths so that a 10-minute mannitol dose is required to induce disruption.  Importantly, these 

results imply that the culture conditions of in vitro BBB models impact interpretation of BBBO 

efficacy.  

3.4.4.Long-term recovery to BBB opening is promoted by bFGF 

Fluorescein focal leaks were not observed two hours after a 2-minute mannitol dose and were 

uncommon (25% of microvessels) following a 5-minute dose, indicating that barrier function has 

largely recovered within two hours.  However, the hyperosmotic stress on dhBMECs resulted in 

inconsistent barrier function 48 hours following dosing in the absence of exogenous growth factors.  

Focal leaks and increased permeabilities were observed 48 hours after 5-minute mannitol doses.  In 

previous work, BBB microvessels not exposed to mannitol displayed no focal leaks and stable 

permeability over six days after seeding [181].  Post-treatment of microvessels with bFGF 

promoted recovery from hyperosmotic stress in the 48 hours following dosing.  A possible 

explanation for the influence of bFGF is that it promotes cell growth, and increases cell density, 

thereby reducing the stress on the dhBMECs in response to hyperosmotic stress.   Although, we 

measure a small increase in cell density, it is not significant (p = 0.326, Figure 3-12, E).  However, 

only a small increase in cell density may be sufficient to reduce the stress on TJs.     
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In vivo studies of the duration of osmotic BBBO have reported conflicting timelines [265, 294, 

314].  These inconsistencies likely result from differences in species, anesthetic agents, infusion 

rates, doses, tracers, and imaging techniques, among other factors.  Across 38 human subjects, 

good-to-excellent BBB disruption was obtained in ~75% of patients, while the remaining 25% 

displayed poor-to-moderate disruption [294]. This study reported that the BBB remained open for 

at least 40 minutes after osmotic exposure and returned to baseline after six to eight hours following 

induction of good-to-excellent BBBO [294].  We find that BBBO is generally reversible within 

two hours.  Additionally, our results suggest that mannitol treatment induces stress in dhBMECs 

that, for larger doses, manifests two days later as disruptions in barrier function, but which can be 

recovered by bFGF treatment.  bFGF exerts a protective effect on BBB damage following traumatic 

brain injury and intracerebral hemorrhage in mice [308, 309].  While bFGF treatment is not required 

to reverse hyperosmotic therapies in vivo, supporting cells (i.e. pericytes [315] or astrocytes [316]) 

may play a role in recovery.    

3.4.5.Model advantages and limitations 

Our tissue-engineered microvessel model mimics key components of the human BBB, including 

physiological permeability, cylindrical geometry, cell-matrix interactions, and shear stress.[26]  

Microvessels formed from dhBMECs exhibit low permeability of small molecules, consistent with 

physiological BBB function in animal models [225, 317].  Previous in vitro studies have relied on 

modeling hyperosmotic BBBO within two-dimensional microfluidic systems [318] or hollow-fiber 

based platforms [267, 319], where direct visualization of cell behavior is challenging.  There are 

two main limitations to our model for studying hyperosmotic BBBO.  (1) Microvessels are 

comprised of only BMECs.  Recent evidence suggests that other cellular components of the BBB 

are not necessary to maintain physiological permeability in vitro [26, 320], but may play a critical 

role in the response to injury or stress as observed in vivo [321, 322], which is not captured here.  
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(2) Microvessels mimic features of brain post-capillary venules but are larger than brain capillaries 

(typically 8 - 10 μm).  The influence of diameter on BBBO susceptibility is unknown.  These 

differences may explain discrepancies in mannitol doses required to initiate BBB opening.   

 

Chapter 4. Three-dimensional induced pluripotent stem-cell models of human brain 
angiogenesis  

A version of this chapter is published in Microvascular Research 132 (2020) [323] 

Raleigh M. Linville,1,2 Diego Arevalo,1,2 Joanna C. Maressa,1,3 Nan Zhao,1 and Peter C. Searson1,2,3 

1 Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD  

2 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 

3 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 

4.1.Introduction 

Brain angiogenesis is a multistage process by which new capillaries sprout from existing blood 

vessels.  The culmination of brain angiogenesis during development results in a 600 km network 

of capillaries forming the blood-brain barrier (BBB) [4].  Brain microvascular endothelial cells 

(BMECs), which form the interface between the vascular system and the brain parenchyma, 

regulate transport into the brain via expression of tight junctions (TJs), efflux pumps, and nutrient 

transporters [6, 26].  The ability to study brain angiogenesis in vitro has been limited by a lack of 

3D models and an appropriate source of brain microvascular endothelial cells.  Consequently, 

previous studies have relied on two-dimensional assays such as the Matrigel tube assay and cord-

forming assays, or utilize primary / immortalized cells, which display an incomplete BBB 

phenotype [324-326].   

To enable imaging of angiogenesis in 3D, we have adapted the fibrin bead angiogenesis assay 

[327], forming a confluent monolayer of iPSC-derived brain microvascular endothelial cells 



 

 
 
 
 
 
 
 

93 

(dhBMECs) on microbeads (BBB beads).  The beads are then embedded in a collagen I hydrogel, 

which mimics the native stiffness of brain parenchyma [328].   We then explore how changes in 

the chemical and extracellular matrix microenvironment influence angiogenesis.  We report on the 

influence of pro-angiogenic cues including vascular endothelial growth factor (VEGF) [70], 

wnt7a/b [71], and basement membrane [329].  In addition, to mimic pathological angiogenesis in 

response to oxidative stress, we report on the dose-dependent effects of hydrogen peroxide.  

DhBMECs have emerged as an attractive cell source for BBB models as: (1) species differences 

mean that animal models do not always recapitulate human disease [185, 330], (2) reliable and 

diverse protocols have been developed to differentiate BMECs [194, 196, 197], and (3) patient-

specific and CRISPR gene-edited iPSCs are available for controlled studies on how genetic 

mutations impact cell phenotype [137, 331, 332].  Additionally, dhBMECs recapitulate key aspects 

of BBB phenotype including high transendothelial electrical resistance, restriction of paracellular 

permeability, and efflux activity [26] [333].  Primary and immortalized BMECs, which de-

differentiate during in vitro culture [334], are often deficient in these characteristics and are not 

easily scalable for isogenic or patient-specific studies [335]. 

We also apply our results from the BBB bead angiogenesis assay to improve design of tissue-

engineered hierarchical BBB models.  Existing 3D models of brain angiogenesis based on self-

organization approaches [180, 209, 336] fail to recapitulate the hierarchy of the human BBB, 

consisting of capillaries fed by an input arteriole and output venule.  Engineering hierarchal 

microvascular models is limited by the spatial and temporal resolution of current techniques [336-

339].  Our lab has demonstrated a hybrid approach relying on both templating and angiogenesis to 

form hierarchical microvascular networks using human umbilical vein endothelial cells (HUVECs) 

[340].  Here, after formation of microvessels resembling post-capillary venules (PCVs) by seeding 

dhBMECs into channels patterned within ECM [300], we apply optimized angiogenic factors to 
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promote sprouting and anastomosis between adjacent microvessel to recapitulate a key aspect of 

human BBB function, low solute permeability.  Our three-dimensional models provide a diverse 

toolbox for studies of brain angiogenesis.  

4.2.Materials and methods 

4.2.1.Cell culture 

Brain microvascular endothelial cells (BMECs) were differentiated from hiPSCs similar to 

published protocols [196, 300].  The WTC iPSC line [299] with red fluorescent protein-tagged 

plasma membrane (Allen Cell Institute) was used to facilitate live-cell monitoring of angiogenesis.  

WTC iPSCs were plated at 10,000 cells cm-2 on Matrigel-coated plates and grown for two days in 

mTESR1 (StemCell Technologies) to approximately 25% confluency, with 10 μM ROCK inhibitor 

Y27632 (RI; ATCC) supplemented for the initial 24 hours.  Subsequent six-day treatment with 

unconditioned media without bFGF (UM/F-): DMEM/F12 (Life Technologies) supplemented with 

20% knockout serum replacement (Life Technologies), 1% non-essential amino acids (Life 

Technologies), 0.5% GlutaMAX (Life Technologies) and 0.836 μM beta-mercaptoethanol (Life 

Technologies), and two-day treatment with RA media: human endothelial cell serum-free media 

(Life Technologies) supplemented with 1% human platelet poor derived serum (Sigma), 2 ng mL-

1 bFGF (R&D Systems), and 10 μM all-trans retinoic acid (RA; Sigma) produces dhBMECs.  

Differentiations were conducted over a ten-passage window on six-well plates using media 

volumes of 1 mL and daily media switches.  Transendothelial electrical resistance (TEER) 

measurements were used to confirm the quality of differentiations as previously reported [196]; the 

average TEER for WTC-RFP cells after 48 hours was ~2,500 Ω cm2.   

VeraVec HUVEC-TURBO-GFP cells (HUVECs; Angiocrine Bioscience) were used as a non-brain 

specific endothelial cell control.  HUVECs were grown in “HUVEC media”: MCDB 131 (Caisson) 

supplemented with 10% fetal bovine serum (Sigma), 1% pen-strep-glut (Thermo Fisher), 1 µg mL-
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1 hydrocortisone (Sigma), 10 µg mL-1 heparin (Sigma), 25 µg mL-1 endothelial cell growth 

supplement (Thermo Fisher), and 0.2 mM ascorbic acid 2-phosphate (Sigma).  HUVECs were used 

until passage 7 and routinely passed using TrypLE Express (Life Technologies). 

4.2.2.Forming endothelial monolayers on microbeads  

Assay protocols were adapted from those developed for primary endothelial cells [327].  150 μm 

diameter Cytodex 3 microcarrier beads (GE Healthcare) were prepared according to 

manufacturer recommendations.   Beads were coated overnight with 50 μg mL-1 human placental 

collagen IV (Sigma) and 25 μg mL-1 fibronectin from human plasma (Sigma).  dhBMECs were 

singularized using 30 minute StemPro accutase (ThermoFisher) treatment and incubated at a ratio 

of 1000:1 (dhBMECs:beads) for two hours under gentle agitation every 30 minutes.  “Bead seeding 

media” was comprised of human endothelial cell serum-free media (Life Technologies) 

supplemented with 1% human platelet poor derived serum (Sigma), 1% Penicillin Streptomycin 

(Thermo Fisher), 2 ng mL-1 bFGF (R&D Systems), 10 μM all-trans retinoic acid (Sigma), and 10 

μM ROCK inhibitor Y27632 (RI).  Inclusion of RI was required to enable cell adhesion, as 

previously found for collagen-based biomaterials [198].  After two hours, non-adherent dhBMECs 

were removed and beads were cultured for 24 hours on a shaker at 100 rpm in bead seeding media.  

To form HUVEC coated beads, identical protocols were used with the following differences: (1) 

incubation with cells for only one hour, (2) use of HUVEC media without supplementation with 

RI. 

4.2.3.Immunocytochemistry 

After 24 hours on a shaker (day 1), beads were fixed and stained to assess protein expression.  Beads 

were rinsed with room-temperature phosphate-buffered saline (PBS; ThermoFisher) and then 

collected using brief centrifugation (30 seconds at 0.3 g).  Beads were fixed using ice-cold methanol 

for 15 minutes, blocked for 30 minutes in PBS with 10% normal goat serum (Cell Signaling 
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Technology) and 0.3% Triton X-100 (Millipore Sigma), and then treated with primary antibodies 

diluted in blocking buffer overnight at 4 ˚C (Table 4-1).  After washing with PBS three times, cells 

were treated with 1:200 Alexa Flour-488 or Alexa Flour-647 secondary antibodies (Life 

Technologies) diluted in blocking buffer for 45 minutes at room temperature.  To physically 

constrain beads for confocal imaging and to stain cell nuclei, beads were loaded onto eight-

chambered borosilicate cover glass wells with Fluoromount-G with DAPI (Invitrogen).  Confocal 

images were acquired at 40x magnification on a swept field confocal microscope system (Prairie 

Technologies) with illumination provided by an MLC 400 monolithic laser combiner (Keysight 

Technologies).  As a negative control, beads were not exposed to primary antibodies to determine 

signal due to non-specific secondary antibody binding. To conduct immunocytochemistry of 

microvessels, antibodies and buffers were perfused through microvessel lumens with identical 

incubation times. 

Table 4-1. Antibodies used in this study. 

Antibody Vendor Species Cat. No Dilution 
Occludin Invitrogen Rabbit 40-4700 1:100 
Claudin-5 Invitrogen Mouse 35-2500 1:200 
GLUT1 Abcam Rabbit 115730 1:200 
P-gp Sigma Mouse P7965 1:100 
CD31 ThermoFisher Rabbit RB-10333 1:25 
FGFR2 R&D Mouse MAB684 1:100 
VEGFR2 R&D Mouse MAB3572 1:100 
GPR124 R&D Mouse MAB8896 1:100 

 

4.2.4.Permeability assay 

Beads were suspended in 200 μM Lucifer yellow (CH dilithium salt; LY) (Sigma) to confirm 

restriction of paracellular transport.  After three hours, confocal images were acquired at the bead 

midplane to determine accumulation of LY from the fluorescence within beads.  Three conditions 

were tested: (1) blank beads without LY, (2) blank beads with LY, and (3) dhBMEC beads with 
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LY.  A circular region of interest (ROI) within beads was used to compare normalized fluorescence 

intensity across conditions.  

4.2.5.Bead angiogenesis assay 

On day 1 (24 hours after seeding dhBMECs), beads were suspended into hydrogels at ~100 beads 

mL-1 and gelled in a 250 μL volume within eight-chambered borosilicate cover glass wells (Lab 

Tek).  Hydrogels were comprised of 6 mg mL-1 neutralized rat tail type I collagen (Corning).  After 

30 minutes of gelation, cell culture media was added on top of hydrogel and replenished daily.  

Both cell culture media and ECM conditions were toggled to optimize angiogenic growth.  Basal 

media consisted of human endothelial cell serum-free media (Life Technologies) supplemented 

with 1% human platelet poor derived serum (Sigma) and 1% Penicillin Streptomycin (Thermo 

Fisher).  Basal media was further supplemented with 20 ng mL-1 bFGF (R&D Systems), 50 ng mL-

1 recombinant human Wnt-7a (Wnt7a; Fisher Scientific), and 50 ng mL-1 recombinant human 

VEGF-165 (VEGF; Biolegend).  In some experiments, hydrogels were supplemented with 

additional ECM components, including 1.5 mg mL-1 growth factor reduced Matrigel (Corning), 1.5 

mg mL-1 fibrin, and 0.5 mg mL-1 fibronectin from human plasma.  Fibrin composite hydrogels were 

formed by combining 2 U mL-1 thrombin from bovine plasma (Sigma) with 6 mg mL-1 neutralized 

rat tail type I collagen (Corning), before addition of 1.5 mg mL-1 fibrinogen from bovine plasma 

(Sigma).  Across all experiments, media was replenished daily (250 μL volume).   

4.2.6.Imaging and analysis 

Phase contrast and epifluorescence images (Texas Red filter) of beads were acquired on an inverted 

microscope (Nikon Eclipse TiE) at 10x magnification.  For each experimental condition, ten images 

(technical replicates) of individual beads were collected at day 2, 4 and 6 after embedding in 

hydrogels.  Beads whose endothelium grew along the glass-collagen interface were excluded from 

analysis.  Angiogenic sprouts were defined as perpendicular protrusions from beads, with length 
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greater than thickness. Three measures were calculated in ImageJ (NIH): (1) Angiogenic 

percentage (%), defined as the percentage of beads that display angiogenic sprouts, (2) sprout 

density (# bead-1), and (3) maximum sprout length (μm).  

4.2.7.Modeling oxidative stress 

Hydrogen peroxide (H2O2; Sigma) was prepared in water and then supplemented in media to final 

concentrations of 1 mM and 10 μM.  Vehicle treatment consisted of 1% water.  H2O2 was added 

after embedding beads in hydrogels and was included in daily media switches.  All oxidative stress 

experiments were conducted in 6 mg mL-1 rat tail type I collagen and 1.5 mg mL-1 Matrigel, treated 

with basal media for 6 days.   

4.2.8.Microvessel fabrication 

Three-dimensional BBB microvessels were fabricated as previously reported  [300].  Briefly, 1 cm 

(length) x 1.75 mm (width) x 1 mm (height) channels were cast in polydimethylsiloxane (PDMS; 

Dow Corning) using an aluminum mold.  Neutralized 6 mg mL-1 rat tail type I collagen 

supplemented with 1.5 mg mL-1 Matrigel was gelled surrounding a template 150 μm diameter 

super-elastic nitinol wire (Malin Co.).  After 30 minutes at 37 ˚C, template wires were removed to 

leave behind a channel that was subsequently seeded with singularized dhBMECs.  Microvessels 

were perfused under ~2 dyne cm-2 shear stress using fluid reservoirs as previously reported [328].  

For the first 24 hours, “bead seeding medium” was perfused through channels to promote 

microvessel formation.  Then, experimental media were perfused for 6 days.   

4.2.9.Hierarchical model 

A hierarchical microvascular model was fabricated based on a previously reported model using 

HUVECs [340].  Two template 150 μm diameter super-elastic nitinol wires were suspended with a 

separation distance (d) of 100 – 200 μm.  Microvessels were perfused at 2 dyne cm-2 shear stress.  

All hierarchical models were generated in 6 mg mL-1 rat tail type I collagen and 1.5 mg mL-1 
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Matrigel, perfused with basal media + 20 ng mL-1 bFGF for 5 days.  To assess barrier function, 2 

μM 500 kDa dextran (Thermo Fisher) was perfused through microvessels for thirty minutes before, 

during, and after anastomosis.  Phase contrast and fluorescence images were acquired every two 

minutes, as previously reported [328].  ImageJ was used to plot fluorescence intensity over time, 

where permeability is calculated as (r/2)(1/ΔI)(dI/dt)0, where r is the microvessel radius, ΔI is the 

jump in total fluorescence intensity upon luminal filling, and (dI/dt)0 is the rate of increase in total 

fluorescent intensity over one hour [216, 300]. 

4.2.10.Statistical Analysis 

Statistical testing was performed using Prism ver. 8 (GraphPad).  Measures are reported as mean ± 

standard error of the mean (SEM).   A one-way analysis of variance (ANOVA) test was used for 

comparison of three or more groups.  Reported p-values were multiplicity adjusted using a Tukey 

test.  Differences were considered statistically significant for p < 0.05, with the following 

thresholds: * p < 0.05, ** p < 0.01, *** p < 0.001. 

4.3.Results 

4.3.1.Fabrication of a three-dimensional model of brain angiogenesis 

To assess the angiogenic potential of iPSC-derived brain microvascular endothelial cells 

(dhBMECs), we adapted the bead angiogenesis assay [327].   dhBMECs were differentiated from 

the WTC iPSC line with a fluorescently-tagged plasma membrane (Figure 4-1, A-B).  Beads were 

coated with extracellular matrix (ECM) proteins collagen IV and fibronectin, and then incubated 

with dhBMECs for 2 hours to achieve a uniform coating (Figure 4-1, C-D).  Beads were cultured 

for 24 hours to enable the formation of a confluent monolayer of dhBMECs (BBB beads).  The 

beads were then embedded within extracellular matrix (ECM) to study chemical and physical cues 

that guide angiogenesis.  An entire six-well plate of dhBMECs is sufficient for coating ~12,000 

beads, demonstrating the scalability of our approach. 
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Figure 4-1. Three-dimensional iPSC model of brain angiogenesis.  (a) Schematic timeline of 
the differentiation of human induced pluripotent stem cell (hiPSC) into brain microvascular 
endothelial cells (dhBMECs) using sequential treatments with mTESR1, UM/F- and RA media 
(composition defined in Methods) over ten days on Matrigel-coated plates.  (b) Phase contrast / 
epifluorescence overlays corresponding to steps shown in Fig. 1a.  WTC iPSC line with RFP-
tagged plasma membrane was used.  (c) Schematic timeline of the bead angiogenesis assay showing 
multiplexed coating of beads with collagen IV (Cn IV) and fibronectin (Fn), seeding with 
dhBMECs, formation of blood-brain barrier (BBB) beads, embedding of BBB beads into 
extracellular matrix (ECM), and treatment with angiogenic stimuli. (d) Phase contrast / 
epifluorescence overlays corresponding to steps shown in Fig. 1c.  
 

Beads coated with dhBMECs display expression of key BBB and endothelial markers, including 

claudin-5, occludin, glucose transporter 1 (GLUT1), p-glycoprotein (Pgp), and CD31 (Figure 4-2, 

A), as previously reported in 2D assays [194, 196, 197].  Protein expression of BBB markers was 

unique to dhBMECs, while the endothelial marker (CD31) was also expressed by human umbilical 

vein endothelial cells (HUVECs) (Figure 4-3).  Additionally, BBB beads express the critical 

angiogenic ligand receptors fibroblast growth factor receptor 2 (FGFR2), vascular endothelial 

growth factor receptor 2 (VEGFR2), and G protein-coupled receptor 124 (GPR124) (Figure 4-2, 
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B).  Since tight junction proteins (claudin-5 and occludin) restrict paracellular transport into the 

brain, barrier function was assessed by incubating beads in Lucifer yellow (LY) for 3 hours (Figure 

4-2, C).  Three conditions were tested: (1) blank beads (no dhBMECs) without LY, (2) blank beads 

with LY, and (3) beads with a dhBMEC monolayer with LY.   The core of the beads is comprised 

of a permeable dextran polymer and hence beads without a dhBMEC monolayer showed high 

fluorescence intensity after three hours incubation with LY.  In contrast, beads with a dhBMEC 

monolayer significantly restricted accumulation of solutes within the core (p < 0.001) (Figure 4-2, 

D-E).  Beads with HUVEC monolayers restrict Lucifer yellow accumulation less than dhBMECs 

(p = 0.028), consistent with previous studies showing that dhBMECs display at least 10-fold lower 

permeability compared to HUVECs [300, 341] (Figure 4-4, A).   

4.3.2.Influence of chemical factors 

To assess the influence of pro-angiogenic factors, we incubated BBB beads in three media 

conditions: (1) basal media, (2) basal media + 20 ng mL-1 bFGF, and (3) basal media + 20 ng mL-

1 bFGF + 50 ng mL-1 VEGF + 50 ng mL-1 wnt7a.  Across these conditions, the BBB beads were 

embedded within 6 mg mL-1 collagen I hydrogels.   In the absence growth factors, angiogenic 

behavior was not widely observed (Figure 4-5, A): after six days, only 10% of beads displayed 

visible sprouts (Figure 4-5, B).  In the presence of bFGF alone, some angiogenic behavior was 

observed.  The angiogenic fraction and maximum sprout lengths were increased compared to beads 

cultured in the absence of bFGF (p = 0.026 and p = 0.013, respectively), while sprout density was 

not statistically different (p = 0.097) (Figure 4-5, B-D).  The addition of VEGF and wnt7a produced 

on average higher angiogenic phenotype (Figure 4-5, A), which was increased compared to basal 

conditions (p = 0.004, 0.012, and 0.018, respectively), but not statistically significant compared to 

bFGF exposure alone (Figure 4-5, B-D).  The average sprout length for beads in VEGF and wnt7a 

increased linearly with time with a growth rate of approximately 20 µm day-1 (Figure 4-5, E).   
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Figure 4-2. Characterization of BBB beads: protein expression and function. (a) Confluent 
monolayers of dhBMECs on 150 μm diameter beads express localized tight junction proteins 
(occludin and claudin-5), the glucose transporter-1 (GLUT1) nutrient transporter, the p-
glycoprotein (Pgp) efflux pump, and endothelial markers (CD31).  (b) BBB beads express receptors 
for basic fibroblast growth factor (FGFR2), vascular endothelial growth factor (VEGFR2), and 
wnt7a (GPR124).  Beads were incubated in 200 μM Lucifer yellow (LY) for 3 hours.  Three 
conditions were tested: (1) blank beads without LY, (2) blank beads with LY, and (3) beads with 
dhBMEC monolayers with LY.  (c) Quantification of LY fluorescence in a circular region of 
interest (ROI) within the beads using confocal microscopy (shown is corresponding phase contrast 
image).    (d) Comparison of normalized fluorescence across conditions (N = 3). (e) Normalized 
fluorescence images for each condition; beads with dhBMECs significantly restrict accumulation 
of LY.  dhBMECs were generated from the plasma membrane (PM) RFP-tagged WTC iPSC line.  
* p < 0.05.  *** p < 0.001. 
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Figure 4-3. Comparison of protein expression between dhBMECs and HUVECs.  Beads were 
coated with dhBMECs or HUVECs and stained for various BBB and endothelial markers.   
HUVEC beads share expression of CD31 with dhBMEC beads, but do not express other canonical 
BBB proteins.  
 
 
 

 

Figure 4-4. Comparison of phenotype and angiogenic behavior on beads with confluent 
monolayers of dhBMECs or HUVECs.  (a)  Percentage accumulation of Lucifer yellow within 
beads containing cell monolayers relative to beads without cell monolayers for both cell types.  (b) 
Beads display identical appearances before embedding within hydrogel.  After 6 days, HUVECs 
display lower sprout density but higher sprout length were embedded within 6 mg mL-1 collagen I 
hydrogels and supplemented with basal media + 20 ng mL-1 bFGF + 50 ng mL-1 VEGF + 50 ng 
mL-1 wnt7a.   
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Figure 4-5.  Influence of chemical factors on dhBMEC angiogenesis.  Three media conditions 
were tested: (1) basal media, (2) basal media + 20 ng mL-1 bFGF, and (3) basal media + 20 ng mL-

1 bFGF + 50 ng mL-1 VEGF + 50 ng mL-1 wnt7a.  Across these conditions, dhBMEC beads were 
embedded within 6 mg mL-1 collagen I hydrogels.  (a) Representative images of beads on day 2, 4 
and 6 after embedding in hydrogels.  Sprouts are marked with red asterisks.  (b-d) Angiogenic 
fraction, sprout density and maximum sprout length quantified across conditions on day 6.  (e) Plot 
of maximum sprout length over time for treatment with basal media + 20 ng mL-1 bFGF + 50 ng 
mL-1 VEGF + 50 ng mL-1 wnt7a.  (f) Confocal image of angiogenic processes at day 6 in basal 
media + 20 ng mL-1 bFGF + 50 ng mL-1 VEGF + 50 ng mL-1 wnt7a.   The image is a maximum 
intensity projection over a depth of 240 μm, with inset demonstrating a lumen-like structure.  The 
dotted circle represents the border of the bead; the dotted line represents the location of the cross-
section shown in the inset. Data obtained from N = 5 rounds of the bead assay from unique 
differentiations, with greater than 5 technical replicates per differentiation.  * p < 0.05. ** p < 0.01. 
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Figure 4-6. Individual contributions of VEGF and wnt7a to angiogenic behavior.  For each 
condition dhBMEC beads were embedded within 6 mg mL-1 collagen I hydrogels and then exposed 
to basal media + 20 ng mL-1 bFGF with additional: (1) 50 ng mL-1 wnt7a, (2) 50 ng mL-1 VEGF, 
or (3) 50 ng mL-1 VEGF + 50 ng mL-1 wnt7a. (a-c) Angiogenic fraction, sprout density and 
maximum sprout length quantified across conditions on day 6.  Data obtained from N = 5 rounds 
of the bead assay from unique differentiations, with greater than 5 technical replicates per 
differentiation.  * p < 0.05.  
 

Confocal imaging of BBB beads cultured in VEGF and wnt7a showed extensive networks of 

angiogenic sprouts and formation of lumen-like structures (Figure 4-5, F).  Sprouts on the BBB 

beads appear predominately comprised of tip cells, while sprouts on HUVEC beads were longer 

(albeit less dense) and appeared to develop tip and stalk cell appearances (Figure 4-4, B).  We also 

analyzed the individual contributions of VEGF and wnt7a compared to the combination of these 

two angiogenic factors (Figure 4-6).  The predominant contributor to angiogenic behavior was 

VEGF, which displayed similar angiogenic fractions and maximum sprout lengths compared to the 

combination (p = 0.990 and 0.921, respectively).  However, sprout density most widely varied 

between these conditions, with wnt7a and VEGF synergistically producing the highest sprout 

density compared to wnt7a alone (p = 0.030).  

4.3.3.Influence of extracellular matrix components 

To assess the role of matrix composition, we tested four ECM conditions: (1) 6 mg mL-1 collagen 

I, (2) 6 mg mL-1 collagen I + 1.5 mg mL-1 growth factor reduced Matrigel, (3) 6 mg mL-1 collagen 

I + fibronectin, and (4) 6 mg mL-1 collagen I + fibrin.  Matrigel is predominately comprised of 

laminin, along with other ECM components [342].  Across these conditions, beads were exposed 

to basal media + 20 ng mL-1 bFGF + 50 ng mL-1 VEGF + 50 ng mL-1 wnt7a.   Changing ECM 
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composition (without dramatically altering hydrogel biomechanics) had a less dramatic effect on 

angiogenic phenotype compared to soluble angiogenic factors:  a similar sprouting morphology 

were observed across the conditions (Figure 4-7, A).  The angiogenic fraction was similar across 

additions of ECM components and significant differences were not observed (p > 0.05 for all 

comparisons) (Figure 4-7, B).  Matrigel supplementation led to increased sprout compared to 

fibronectin, suggesting that these two ECM conditions represent the most and least pro-angiogenic, 

respectively (p = 0.03) (Figure 4-7, C).  Maximum sprout length was generally increased in 

response to the addition of ECM components, but was not significantly different (p > 0.05 for all 

comparisons) (Figure 4-7, D).  For all subsequent experiments collagen I was supplemented with 

Matrigel to model angiogenic phenotype. 

 

 

Figure 4-7. Influence of extracellular matrix components on dhBMEC angiogenesis.  Four 
ECM conditions were tested: (1) 6 mg mL-1 collagen I, (2) 6 mg mL-1 collagen I + 1.5 mg mL-1 
fibrin, (3) 6 mg mL-1 collagen I + 1.5 mg mL-1 Matrigel, (4) 6 mg mL-1 collagen I + 0.5 mg mL-1 
fibronectin.  Across these conditions, a combination of bFGF, VEGF and wnt7a were applied 
(media condition #3).  (a) Representative images of dhBMEC beads on day 6 after embedding in 
hydrogels, across conditions.  (b-d) Angiogenic fraction, sprout density, and maximum sprout 
length quantified across conditions on day 6.  Data obtained from N = 5 rounds of the bead assay 
from unique differentiations, with greater than 5 technical replicates per differentiation. * p < 0.05. 
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4.3.4.Modeling pathological angiogenesis 

To model pathological brain angiogenesis, we exposed the BBB beads to high and low 

concentrations of hydrogen peroxide (H2O2) in the absence of external growth factor stimuli.   H2O2 

induces production of reactive oxygen species (ROS), whose levels are elevated during 

neurodegenerative disease, brain cancer, and stroke [343].  After two days exposure to 10 μM H2O2, 

the formation of sprouts into the ECM highlights an increased angiogenic phenotype (Figure 4-8, 

A).  The sprout density was significantly increased compared to vehicle treatment (p = 0.047) 

(Figure 4-8, B).  Interestingly, the pro-angiogenic effects of 10 μM H2O2 were not maintained over 

time as by day 6 angiogenic behavior was lost, while vehicle treatment displays minor angiogenic 

behavior (Figure 4-8, C).  This suggests that 10 μM H2O2 exerts a bimodal effect of angiogenic 

phenotype.  Interestingly, the addition of 100-fold higher H2O2 (1 mM) abrogates angiogenic 

behavior on much shorter time scales (no sprouts are observed) (Figure 4-8, A-C).   At this 

concentration cell fluorescence was gradually lost, suggesting progressive cell death, while at all 

other conditions fluorescence was maintained over six days (data not shown). 

 

 
Figure 4-8. Influence of oxidative stress on dhBMEC angiogenesis.  dhBMEC beads were 
exposed to vehicle (H2O), 10 μM, and 1 mM hydrogen peroxide (H2O2) after embedding into 
collagen I + Matrigel hydrogels supplemented with basal media. (a) Phase contrast images of 
angiogenic behavior across conditions on day 2.  Sprouts are marked with red asterisks.  (b) Day 2 
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sprout density across conditions.  (c) Time course of angiogenic fraction across conditions.  Data 
obtained from N = 4 rounds of the bead assay from unique differentiations, with greater than 5 
technical replicates per differentiation. * p < 0.05, ** p < 0.01. 
 

4.3.5.Perfusable microvessel models of brain angiogenesis 

Next, we tested the role of chemical cues for in vitro dhBMEC angiogenesis within a tissue-

engineered perfusable microvessel model.  These experiments mimic techniques previously 

demonstrated to study angiogenesis from an existing three-dimensional microvessel [340, 344, 

345].  Microvessels were formed in 150 μm diameter channels within 6 mg mL-1 type I collagen 

supplemented with 1.5 mg mL-1 Matrigel (Figure 4-9, A-B).  Channels were seeded with 

dhBMECs, which under continual ~2 dyne cm-2 perfusion, assembled into BBB microvessels, as 

previously reported [300].  After microvessel formation, we applied media conditions as tested in 

Figure 4-5 to observe angiogenic behavior (Figure 4-9, C).  

 

 

Figure 4-9.  Modeling angiogenesis from tissue-engineered brain microvessels.  (a-b) 
Schematic illustrations showing front and side views of model fabrication. Angiogenic factors are 
introduced after microvessel formation (one day after seeding BMECs) to promote sprouting.  (c) 
Phase contrast and fluorescence image overlays of fabrication process.  (d) Phase contrast and 
fluorescence image overlays of representative microvessels perfused with media conditions 
matching Figure 5.  Early sprouts are marked with white asterisks. 
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Under perfusion with basal media, angiogenic behavior was not widely observed and the 

microvessel structure remained stable over six days (Figure 4-9, D).  Supplementation with bFGF 

resulted in early sprouts within two days, which continued to grow in length and branching 

complexity (Figure 4-9, D).  Supplementation with bFGF, VEGF, and wnt7a resulted in an 

increased density of sprouts along microvessels after two days, and chaotic sprouting behavior by 

six days (Figure 4-9, D).  Both growth factor supplementation regimes were associated with loss 

of microvessel perfusion after 5 - 6 days due to overgrowth and constriction of microvessel lumens. 

Based on these results we chose to further explore bFGF supplementation over four days to promote 

formation of organized microvascular lumens. 

4.3.6.Hierarchical model of the human blood-brain barrier 

Lastly, we sought to engineer a hierarchical model of the human brain microvasculature by 

promoting sprouting between adjacent BBB microvessels.  This technique has previously been 

demonstrated using HUVECs [340].  We patterned adjacent 150 μm diameter channels within 6 

mg mL-1 type I collagen supplemented with 1.5 mg mL-1 Matrigel separated by 100 – 200 μm 

(Figure 4-10, A-B).  After microvessel formation, microvessels were perfused at ~2 dyne cm-2 with 

basal media + 20 ng mL-1 bFGF (Figure 4-10, C).  Continual perfusion over three days resulted in 

linking of sprouts between microvessels (Figure 4-10, D).    

While angiogenesis and BBB formation are simultaneous during development [73], during 

adulthood brain angiogenesis is typically associated with BBB breakdown [151, 346, 347].  Here, 

we observed that both microvessels and perfusable capillaries restricted transport of 500 kDa 

dextran, providing evidence that lumens formed between microvessels maintain barrier function 

(Figure 4-10, E).  Perfusable lumens were typically 20 – 30 μm in diameter, while smaller diameter 

connections between microvessels did not routinely display lumens (Figure 4-10, F).  Further 

studies are required to optimize lumen formation and to fully characterize the barrier properties of  
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Figure 4-10. Hierarchical model of the BBB via angiogenesis between existing tissue-
engineered brain microvessels. (a-b) Front and side view schematics of hierarchical model of 
brain angiogenesis.  (c) Flow system under to control perfusion of hierarchal model.  (d) Phase 
contrast and fluorescence image overlays of hierarchical capillary network formation.  After 
formation in basal media, microvessels are perfused at 2 dyne cm-2 with 20 ng mL-1 bFGF to 
promote anastomosis of sprouts.  Anastomosed capillaries are visible after 3 days.  (e) Hierarchical 
model perfused with 500 kDa dextran for one hour.  No leakage of dye was observed indicating 
that capillaries were intact and preserved barrier function.  (f) Confocal imaging of capillary lumen 
perfused with 500 kDa dextran.  (g) Confocal imaging of glucose transporter-1 (GLUT1) nutrient 
transporter.  Confocal images are shown at a specific z-plane, with the xz cross-section denoted as 
a dotted while line. 
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this model.  As BBB formation is induced via GLUT1 expression during development [71], we 

stained angiogenic processes to confirm robust expression of GLUT1 similar to that of parental 

microvessels (Figure 4-10, G).   

4.4.Discussion 

4.4.1.Factors that regulate in vitro brain angiogenesis  

The formation of brain capillaries during development occurs through the convergence of multiple 

signaling pathways [6, 7, 348].  Vascular endothelial growth factor (VEGF) released by the 

developing neural tube initiates formation of the perineural vascular plexus (PNVP) via 

vasculogenesis.  From the PNVP, BMECs invade the brain parenchyma via angiogenesis driven by 

chemical cues released by developing neurons (e.g. wnt7a/b) and mechanical interactions with the 

brain parenchyma [6, 7, 348].  The culmination of brain angiogenesis during development results 

in a hierarchical BBB with profound heterogeneity in structure and phenotype [230, 347, 349].  

However, after development, angiogenesis is generally restricted to pathological conditions which 

alter BBB structure and phenotype [151, 346, 347].  Here we developed an in vitro model of brain 

angiogenesis using iPSC-derived BMECs (dhBMECs) to study brain angiogenesis.  We explored 

multiple factors that alter angiogenic phenotype of brain microvascular endothelial cells, including 

growth factors, ECM composition, and oxidative stress.    

Critical chemical cues implicated in developmental brain angiogenesis include vascular endothelial 

growth factor (VEGF) [70] and wnt7a/b (WNT) [71].  WNT signaling is specifically required for 

brain angiogenesis and is harnessed during differentiation of hiPSC-derived BMECs [194].  

However, other growth factors, including basic fibroblast growth factor (bFGF), are also implicated 

in promoting brain angiogenesis [350, 351].  Here we found that all three growth factors are likely 

pro-angiogenic for dhBMECs.  In previous studies of primary brain microvascular endothelial cells 

using a tube formation assay [326], hypoxia was found to increase VEGF expression but was 
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insufficient to promote formation of new vessels.  In contrast, we found that angiogenic factors are 

sufficient to promote angiogenesis of dhBMECs within a 3D microenvironment, supporting the 

development of more physiological angiogenesis models.  

Additionally, ECM composition and stiffness are key regulators of angiogenesis [352-355].  

Numerous studies have shown that increased ECM stiffness reduces angiogenesis, likely by 

limiting cell proliferation and migration [354, 355].  Pro-angiogenic ECM proteins include collagen 

I, fibronectin, and laminin [352].  In studies specific to BMECs, fibronectin and laminin were 

shown to promote angiogenic and maturation phenotype, respectively [356].  The extracellular 

space in the brain is comprised of hyaluronic acid, lecticans, proteoglycan link proteins, and 

tenascins [357, 358].  However, as the human brain is highly cellular by volume, non-brain-specific 

ECM components are commonly used to mimic the physical properties of the brain in vitro  [26, 

359, 360].  For example, 3D BBB models commonly utilize non-brain ECM components including 

collagen I [186-189, 300, 361] and fibrin [180, 209, 336, 362].  We previously characterized and 

compared the stiffness of collagen I hydrogels to native mouse brain, and showed that 6 mg mL-1 

collagen is a reasonable proxy for brain stiffness [328].  Additionally, materials with stiffnesses 

much lower than native brain were not conducive to the formation of stable BBB microvessels 

[328].  Thus, we chose to only explore ECM materials with sufficient stiffness to form perfusable 

microvessel models, despite their absence within the brain parenchyma.  We found that addition of 

growth factor-reduced Matrigel (primarily composed of laminin) to a collagen I matrix increased 

angiogenic phenotype.  Interestingly, fibronectin which plays a critical role in vivo, was not found 

to alter sprouting in vitro; this could result from differences in integrin expression on dhBMECs, 

use of suboptimal fibronectin concentrations, or differences in other microenvironmental variables.  

Higher concentrations of fibronectin were not tested as they required substantial alteration of bulk 

hydrogel mechanical properties. 
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Under homeostatic conditions angiogenesis is not prevalent in the adult brain, however, brain 

angiogenesis is associated with pathological conditions, including neurodegenerative disease, brain 

cancer, and stroke [347].  Production of reactive oxygen species (ROS) is associated with these 

conditions and may contribute to BBB disruption and pathological angiogenesis [343].  Reactive 

oxygen species promote angiogenesis via both VEGF-dependent and independent mechanisms 

[363].  Previous work utilizing primary rat BMECs found that H2O2 displays a concentration-

dependent influence on angiogenic behavior: concentrations below 10 μM increased tube length in 

a Matrigel tube formation assay, while concentrations above 10 μM decreased tube length [325].  

Here, the use of BBB beads provides spatial and temporal resolution to study the time-dependent 

effects of oxidative stress, which have previously been ignored.  We found that H2O2 exerts a 

bimodal and concentration-dependent effect on brain angiogenesis.   

4.4.2.Model advantages and limitations 

2D models of brain angiogenesis (i.e. transwell assay or Matrigel tube forming assay) are unable 

to recapitulate the spatial dynamics of BMEC sprouting.  Recently, 3D models of the brain 

microvasculature have been engineered via mimicry of vasculogenesis or angiogenesis using co-

cultured primary ECs or BMECs, pericytes, and astrocytes [180, 209, 336].  Additionally, a 

microfluidic model of neurogenesis and angiogenesis was formed using co-cultured mesenchymal 

stem cells, primary BMECs, and neural stem cells, but was not tested for functional BBB properties 

[362].  While hiPSC-derived BMECs have been used to create microfluidic co-culture models of 

the BBB [332], this platform is not conducive for mimicking brain angiogenesis. 

The bead assay incorporates a confluent monolayer of dhBMECs on a polymer bead which can be 

used in suspension or embedded in a matrix.  Since there are no boundaries to the monolayer, this 

geometry avoids the perimeter effect associated with transwell assays.  Furthermore, the bead assay 

uses 2000x less cells per technical replicate (i.e. one bead or transwell) and enables direct 
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visualization of the endothelium.  This model supports controlled studies of microenvironmental 

cues and genetic mutations on angiogenesis, without confounding factors present in vivo. 

Additionally, previous models have utilized fibrin for creating brain microvascular networks via 

angiogenesis and vasculogenesis-like processes [180, 209, 336].  Although neither collagen I nor 

fibrin is found in native brain ECM, collagen I densities used in this study are similar to the 

mechanical stiffness of native brain.    

There are two main limitations to our model. (1) Brain angiogenesis in vivo occurs in the presence 

of complex cell-cell interactions, which are neglected in our model:  BMECs interact with neurons, 

neural progenitor cells, pericytes, and glial progenitors during brain angiogenesis.  As previously 

discussed, neurons and neural progenitor cells release critical chemical stimuli including wnt 

ligands and VEGF, which we introduce to promote sprouting in our model.  Pericytes are an 

important cellular component of the neurovascular unit as they physically support new capillaries 

and are required for the formation of the BBB during development [231, 364].  Astrocytes are not 

critically involved in angiogenesis, as they are not present during initial brain vascularization; 

however, postnatally, they release ligands that maintain BBB integrity [76].   Lastly, radial glial 

cells guide spatial patterning of angiogenesis as a physical scaffold for endothelial cell migration 

[7, 365].  Recent reports of an isogenic multicellular iPSC-based BBB transwell assay provide the 

foundations for building more complex angiogenesis models [366].  Additionally, we previously 

incorporated iPSC-derived pericytes into a 3D microvessel BBB model, showing that they do not 

significantly alter barrier properties [320].  Future work is required to examine how iPSC-derived 

pericytes and other cells of the BBB may alter angiogenesis in vitro.  (2) The stability of angiogenic 

vessels is not addressed: the adult cerebrovasculature is highly stable, with limited angiogenesis 

[347].  For example, over 30 days changes in capillary length, diameter or branching were not 

observed in the adult mouse somatosensory and motor cortex [32].  Thus, models of the 
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cerebrovasculature should aim to mimic physiological structural and phenotypic stability.  We 

previously explored the stability of BBB microvessels, finding that microvessels reach quiescence 

over several days (when rates of cell division match cell apoptosis) [300].  However, the stability 

of microvessels formed via angiogenesis has not been addressed.  As growth factor expression can 

display unique temporal and spatial expression patterns [70], transient administration or removal 

of growth factors may aid in generating stable microvessels.  Future work will explore how removal 

of growth factors after angiogenesis occurs alters the structural and phenotypic stability of tissue-

engineered cerebrovascular models.  Additionally, many other stimuli influence the morphology of 

microvasculature in vitro, including flow and shear stress [353, 367], which could be harnessed to 

promote stability.  

4.4.3.Engineering BBB hierarchy 

To promote sprouting and anastomosis of capillaries between adjacent tissue-engineered 

microvessels we applied angiogenic factors which maximized growth rates.  In previous work, 

capillary growth rates of  ~40 μm day-1 were sufficient to anastomose adjacent HUVEC 

microvessels [340].  Here we observed more modest growth rates for dhBMECs (~20 μm day-1).  

Previously it has been found that iPSC-derived endothelial cells exhibit reduced angiogenic 

potential compared to primary ECs (HUVECs), likely due to differences in MMP production [368].  

Due to limitations with primary and immortalized BMEC sources we did not explore cell source-

dependent angiogenic differences.  Importantly, our hierarchical model allows probing of how BBB 

phenotype changes across the vascular tree.  Recently, we demonstrated use of BBB microvessels 

for studying hyperosmotic BBB disruption [282], but do not know if capillaries are more 

susceptibility to opening. 
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4.5.Conclusions 

Existing in vitro models have generally failed to mimic brain angiogenesis or recapitulate 

physiological barrier function, hierarchy, and zonation of the human BBB.  Here, we develop 3D 

in vitro stem cell-based models of brain angiogenesis, including a high-throughput BBB bead assay 

and perfusable microvessel model.  These models have diverse applications in screening the 

influence of chemical, mechanical, cell genotype, and stress signals on brain angiogenesis. 
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