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Abstract

Classification of human embryonic stem cell-derived cardiomyocytes (hESC-

CMs) into phenotypes such as atrial-like or ventricular-like is important for

applications in cardiac regenerative medicine and drug screening. However,

a key challenge is the lack of ground truth labels for the phenotype of hESC-

CMs: Whereas adult phenotypes are well-characterized in terms of the shape

of their action potentials (APs), the understanding of how the shape of the AP

of immature CMs relates to that of adult CMs remains limited. Recently, a new

metamorphosis distance has been proposed to determine if a query immature

AP is closer to a particular adult AP phenotype. However, the metamorpho-

sis distance is difficult to compute making it unsuitable for classifying a large

number of CMs.

This thesis proposes two recurrent neural networks (RNNs) with long short-

term memory (LSTM) units for classifying hESC-CMs. The first network is

trained using a semi-supervised approach, in which the parameters of the net-

work are learned by minimizing a loss function consisting of two terms: a su-
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pervised term that uses labeled data obtained from computational models of

adult CMs, and an unsupervised term that uses a contrastive loss to encourage

the labels of similar APs (as measured by the metamorphosis distance) to be

the same. The second network is trained using a domain adaptation approach

that captures the domain shift between immature and adult cells by adding

a term to the loss function that penalizes their maximum mean discrepancy

(MMD) in feature space.

Experiments confirm the benefit of integrating information from both adult

and stem cell-derived domains in the learning scheme and show that the pro-

posed semi-supervised method generates results similar to the state of the art

(94.73%) with clear computational advantages when applied to new samples.

Experimental results on the domain adapted learning approach confirm that it

not only is more computational efficient but also outperforms the state of the

art in terms of clustering quality.

In summary, the main contributions of this thesis are to formulate the clas-

sification of hESC-CM APs in the framework of artificial neural networks and

to show that this new formulation improves with respect to the state of the art

for this task in terms of both performance and computational efficiency.
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Chapter 1

Introduction

1.1 Motivation

Ischaemic heart disease (IHD), which refers to the group of diseases char-

acterized by deficient supply of blood to the heart, is the leading cause of death

not only in the US but also globally, taking the lives of more than 9.4 million

people around the world in 2016 [2]. Being an important public health issue,

worldwide efforts are focused on prevention, in terms of promoting healthy

lifestyles to reduce risk factors such as unhealthy diet or physical inactivity [3].

Although advances in pharmacological treatments and revascularization surg-

eries have significantly reduced IHD mortality over the past decades, it re-

mains the leading cause of death, which has motivated the search of innovative

sources of treatment such as cell therapy [4].
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Cell-based therapies for IHD generally rely on paracrine mechanisms of ac-

tion to promote the formation of new blood vessels or attenuate adverse ventric-

ular remodeling, but it is too late for this type of treatment in acute myocardial

infarction (MI) survivors [5], for whom the presence of scar tissue often leads to

heart failure due to the limited self-regenerative capacity of the adult human

heart. Cardiomyocyte transplantation then arises as an interesting alternative

treatment to promote direct remuscularization in post-MI heart failure. Exper-

imental work in the field demonstrates the feasibility and favorable results of

cardiomyocyte transplantation in the remuscularization of myocardial scar tis-

sue in animals [6–8], however determining the most appropriate mechanism of

delivery and finding a large-scale source of cardiomyocytes (CMs) are just some

of the important challenges to overcome before cardiomyocyte transplantation

becomes a common practice at a clinical level.

The fact that human embryonic stem cells (hESCs) can functionally and

structurally differentiate into CMs was experimentally confirmed in 2001 [9],

and since then important efforts have been put into improving the efficiency

and control of cardiac differentiation protocols. Nowadays, their unquestioned

cardiomyogenic potential [9,10] and the well-established protocols for their iso-

lation and maintenance [11] have positioned hESCs as one of the most promis-

ing sources of CMs not only for cell-based cardiac repair [12], but also for other

applications such as drug screening [13, 14]. The goal of in vitro drug screen-
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ing is to study the effect that pharmacological compounds have in cell cultures

in order to assess their potential efficacy or toxicity in a target tissue. This

has been traditionally done using animal cells, but these animal models do

not always have been capable of predicting the pharmacological response later

observed in humans. In this context, the response of differentiated hESCs to

pharmacological compounds could potentially provide better indication on how

the target tissue would react, since their human embryonic origin removes in-

terspecies variability [15,16].

The cardiac nature of human embryonic stem cell-derived cardiomyocytes

(hESC-CMs) is confirmed not only by cellular ultrastructure and the expres-

sion of cardiac-specific genes, but also by extracellular electrical activity [9,17].

However, while different studies show that the electrophysiological character-

istics of hESC-CMs approach those of human embryonic CMs through differ-

entiation, there are important electrophysiological differences between hESC-

CMs and adult CMs [16–18] (See Figure 1.1). This fact rises concerns regarding

the use of hESC-CMs in regenerative medicine, because even if the hESC-CMs

are well-integrated into the myocardium, “they could still induce rhythm dis-

turbances if their single-cell electrophysiologic properties are sufficiently dif-

ferent from those of the adult host myocardium” [12]. Regarding drug screen-

ing, the underdeveloped nature of hESC-CMs is also a source of concern since

their immature state can confound their response, impacting the effect of the

3
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pharmacological stimuli under study.

(a) Major hESC-CM AP subtypes de-
scribed by He et. al (source: [17]).

(b) Example of typical adult atrial and ventric-
ular AP phenotypes. They correspond to atrial
Nygren model [19] and ventricular O’Hara-
Rudy model [20] with nominal parameters.

Figure 1.1: Comparison between hESC-CM and adult APs phenotypes. Em-
bryonic atrial-like and ventricular-like phenotypes present slower upstroke ve-
locity and depolarized resting membrane potential compared to typical adult
phenotypes.

While hESC-CMs are developmentally immature by definition, as described

above, applications like regenerative medicine and drug screening require them

to be understood in the context of adult cells that have been under develop-

ment for years. Therefore, although the potential impact of hESC-CMs has
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been broadly noticed, their use in clinical applications is still hampered by the

limited understanding of the properties of hESC-CMs and how they relate to

adult CMs. In this context, a first step to build this understanding is to study

the presence of the major adult CM phenotypes (atrial, ventricular, nodal) in

hESC-CM populations.

The characterization of hESC-CMs can be addressed by means of the ex-

pression of specific genes or ion channel-encoding subunits [18, 21], but there

are some interesting reasons to study their electrophysiological features in-

stead. First of all, action potentials (APs) constitute the net balance between

ion currents in the cell membrane, and therefore they provide functional in-

formation by summarizing complex interactions between the cell and its envi-

ronment in just one signal, conveniently reducing this problem to classification

of single temporal series. Second, it is well-known that the shape of the APs

is clearly distinguishable between different adult CM phenotypes. This led to

the development of different computational models that describe the electro-

physiology of atrial CMs [19, 22], ventricular CMs [20, 23, 24] and, to a lesser

degree, nodal/pacemakers CMs [25]. Therefore it is reasonable to argue that

if hESC-CMs were to exhibit adult-like phenotypes, their APs would reflect it.

Lastly, high resolution imaging techniques for mapping the electrophysiology

of cells in vitro [26], as opposed to patch-clamp methods, now provide the oppor-

tunity to get hundreds of recordings from precise locations without mechanical
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disruption of the cardiac cell aggregates [27], making considerable amounts of

hESC-CM electrophysiological data available to better characterize them.

1.2 Fundamental challenges

Identifying the presence of adult CM phenotypes in hESC-CM populations

is a challenging problem from multiple perspectives. One of them, and perhaps

the most fundamental for designing a classifier, is that there is no consensus

about the existence of such phenotypes in hESC-CMs (this is also the case for

human induced pluripotent stem cell-derived cardiomyocytes iPSC-CMs [28–

31]). Therefore, most of the hESC-CM data is unlabeled, and the small amount

of labeled data available has not been categorized based on well-established

criteria.

The limited and unreliable nature of ground truth-labeled hESC-CM data

is problematic for two main reasons. First, the performance of classic machine

learning classification approaches strongly depends on the amount and quality

of the labeled data available for training. One potential workaround would be

the use of unsupervised clustering methods, since they do not require labels

to group similar samples together. However in this case hESC-CM samples

must be related to adult CM phenotypes, so simply identifying different groups

in the hESC-CM population is not enough. Second, comparison of different

6
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classification methods as well as tuning of their parameters require a metric

of performance, which usually is the classification accuracy that they achieve

in labeled datasets for test and validation, respectively. However, the scarcity

of ground truth labels for hESC-CMs forces the use of alternative and indirect

metrics, such as clustering quality criteria, to evaluate the performance of the

classification algorithms.

In this context, computational models of adult CM electrophysiology [19,20,

22–25] constitute a convenient unlimited source of labeled data, since different

samples can be generated by randomizing the value of some of their parame-

ters [32]. This synthesized labeled data of adult CMs then can be used to train

and validate classification algorithms to be tested afterwards in hESC-CM pop-

ulations. Nevertheless, traditional machine learning algorithms assume that

training and testing datasets are sampled from the same probability distri-

bution [33], an assumption that does not hold in this case since it has been

already established that hESC-CM APs resemble embryonic but not adult CM

APs [16,18]. Thus, the use of computational models to overcome the scarcity of

labeled hESC-CM data is undoubtedly appealing, but it also opens new chal-

lenges in terms of how to leverage adult CM information appropriately when

the main task must be performed on data coming from a different probability

distribution, i.e., lying in a different domain.

Beyond the lack of labeled data and the challenges that arise when adult
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CM data come into play, there are additional constraints regarding computa-

tional complexity. One of them arises from the fact that the space of action

potentials is not Euclidean, for example, the Euclidean interpolation between

two APs does not always produce a signal that resembles an AP [34]. Therefore,

important work has been done using shape theory to find a metric that better

describes the space of APs. This metric is called metamorphosis, it was intro-

duced in [35], first applied to cardiac APs in [34], and corresponds to the mini-

mum energy required to interpolate between two APs when this interpolation

is modeled as a diffeomorphism acting on an evolving template. The compu-

tation of this metric involves solving an optimization problem in two variables

(the infinitesimal change in deformation and the evolution of the template).

Therefore, it takes 12 times more to compute the metamorphosis distance than

it takes to compute the Euclidean distance, even when the most efficient meta-

morphosis computation available is used [1]. Thus, if a classification method

requires computing distances between thousands APs, the decision of whether

to use the Euclidean or metamorphosis distance involves an important trade-

off between accuracy and computational time.

8
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1.3 Prior work

Both classification and characterization of APs in adult CMs have been tra-

ditionally assessed by looking at some basic AP features. Some of the most

commonly used ones are depicted in Figure 1.2 and correspond to: (i) the ac-

tion potential duration APDp, which is the time that it takes to reach p% of the

repolarization; (ii) the resting membrane potential RMP ; (iii) the maximum

upstroke velocity max
[
dV
dt

]
; (iv) the maximum diastolic membrane potential

MDP ; and (v) the action potential amplitude APA.

Figure 1.2: Basic action potential features.

In 2003 He et al. [17] for the first time studied the existence of differ-

ent types of hESC-CMs by looking at their APs. Based on knowledge about

adult CM phenotypes and simple AP features (APD50, APD90, max
[
dV
dt

]
, MDP ,

APA), they identified 3 hESC-CM subtypes: nodal-like, embryonic atrial-like,

and embryonic ventricular-like. The last two subtypes were named embryonic

to emphasize that they exhibit slow upstroke velocity max
[
dV
dt

]
and depolarized

RMP compared to adult CMs, resembling embryonic CMs instead (See Figure

9
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1.1).

After this initial study other groups have tried to further characterize the

variability of hESC-CM APs respect to different factors, such as their in vitro

maturation [18], their response to pharmacological stimuli [16], and their spa-

tial organization [21]. None of these studies had as primary goal to design a

standard classification method; all of them rather classify the samples based on

ad-hoc thresholds adjusted to their experimental data. For example, Sartiani

et al. [18] suggests the existence of atrial-like and ventricular-like subtypes us-

ing a threshold of 200 ms in APD70, Peng et al. [16] on the other hand indicates

that a threshold of 150 ms in APD90 suitably separates atrial/pacemaker APs

from ventricular subtypes, while Vestergaard et al. [21] uses the ratio APD20

APD70

and the upstroke velocity max
[
dV
dt

]
(with thresholds 0.35 and 25V

s
respectively),

to distinguish between nodal-like, atrial-like, and ventricular-like subtypes.

The data gathered in the studies mentioned above confirms the heterogene-

ity of hESC-CM populations, and their methodology of analysis demonstrates

the need of categorizing hESC-CM data in terms of adult CM phenotypes. How-

ever, the use of handcrafted features and subjective criteria for their classifica-

tion not only makes it difficult to translate between datasets, but also discards

most of the information contained in the signals. Their transferability is re-

stricted even further by the limited amount of samples analyzed in each study

10
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(between 12 and 128 APs)1, making any conclusion drawn from these small

datasets unlikely to be representative of a larger population. Moreover, the

limited understanding about these AP features in hESC-CM APs and their

tenuously justified selection make these ad-hoc classification methods further

questionable.

Fortunately, the improvement of high-throughput in vitro recording tech-

niques has enabled the generation of large datasets, which consequently al-

lows the use of machine learning and signal analysis methods to delve into

this problem. In 2014 Gorospe et al. [36] applied for the first time an auto-

matic clustering method to a large hESC-CM dataset (6940 APs) using the

entire AP as a feature. They used a spectral clustering algorithm based on Eu-

clidean similarities between APs to study the number of clusters observed in a

population of hESC-CMs. They found that their dataset is better described by

two clusters than by three or more, and although the algorithm is not informed

by adult CM phenotypes, visual inspection of the average AP per cluster sug-

gests the presence of atrial-like and ventricular-like subtypes. Zhu et al. [27]

showed later that this automatic clustering method provides better clustering

results than automatic methods based only on basic AP features, confirming

that information relevant for the task is lost when only one or two AP features

are selected.
1The quality of the methods to induce cell differentiation and the available techniques to

acquire electrophysiological data at that time limited the size of the datasets.
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The algorithm presented in [36] successfully proved the benefit of using

the whole AP signal for this task, as opposed to the traditional approach of

considering only basic AP features. However, as any clustering algorithm it

is intrinsically limited since it does not associate a label to the clusters it cre-

ates. To address this issue, a method that can capture the relationship between

hESC-CM and adult CM phenotypes is needed.

In this context, in [34] Gorospe et al. took a different approach proposing a

1 Nearest Neighbor (1NN) method to classify hESC-CM APs. In this algorithm

20 synthetic adult APs generated from computational models of atrial [19] and

ventricular [20] phenotypes were used as templates. For any given hESC-CM

AP, metamorphosis distances to each one of the 20 templates were computed,

and then the label of the closest template was assigned to it (atrial-like or

ventricular-like). This method leverages the adult CM data by simulating the

maturation process of the AP. They showed that metamorphosis distance works

better than Euclidean distance for this purpose not only because the inter-

polants lie in AP space, but also because it leads to better results in terms of

classification accuracy in a small dataset (52 APs). However, the high compu-

tational cost of the metamorphosis distance made it unfeasible to apply this

1NN classifier to a larger dataset. In 2015, Gorospe et al. [1] proposed a much

faster way to compute the metamorphosis distance by finding a closed form

solution to part of the optimization problem. They applied the 1NN classifier

12
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to a large dataset (6940 APs) and showed that the use of the metamorphosis

distance leads to better results than the use of the Euclidean distance in terms

of clustering quality.

However, the main drawback of this approach is that although the meta-

morphosis distances are computed efficiently, they are not used in an efficient

way: even if many APs have been classified before, 20 metamorphosis distances

need to be computed every time a new sample needs to be analyzed. In [1] they

reported that it took 13 hours to classify 6940 APs with the most efficient im-

plementation, which would double if we want to use 40 templates instead of

20, or if we want to classify twice as large a dataset.

In summary, while multiple studies confirm the heterogeneity of hESC-CM

data, traditional classification methods based on basic AP features discard rel-

evant information and are hardly transferable. The use of machine learning

and signal analysis techniques to classify large datasets has not only provided

automatic tools that can be applied to different datasets, but also established

the advantages of studying the whole AP signal. However, as progress on high-

throughput recording techniques continues, larger datasets will be available,

and existing algorithms will not be able to scale up as needed due to their com-

putational complexity.
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1.4 Thesis contributions

This thesis addresses the problem of classifying hESC-CM APs according to

adult CM phenotypes, for which we propose recurrent neural networks (RNNs)

with long short-term memory (LSTM) units as classifiers. Unlike the state-

of-the-art 1NN classifier with metamorphosis distances proposed in [1], neural

networks are models with learning capabilities, which is advantageous for scal-

ability purposes. The task we are addressing corresponds to classification of

time series; thus neural networks with feedback connections, named recurrent

neural networks, are the appropriate framework because they are designed to

learn time-varying patterns using the whole time series as input. In particular

we decided to use RNNs with LSTM units [37] because of their great perfor-

mance in applications to speech recognition [38] and activity recognition [39],

among others.

LSTM units are recurrent blocks with a particular architecture, especially

designed to overcome the problem of vanishing/exploding gradient, common in

the training of recurrent neural networks. The key idea behind LSTM units

is the use of multiplicative gate variables that learn to open and close access

to the error flow across the layers in a way that depends on the task they are

trained for [40]. This uniqueness has provided LSTM networks with a distinc-

tive wide range of memory capacity, leading them to be successfully applied

14
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to many disciplines. Explicitly related to the cardiology field, they have been

used to automate the analysis of electrocardiogram (ECG) records, both from

a time series classification approach [41–43] and from a predictive approach

for anomaly detection [44, 45]. However, these methods train the LSTM net-

works using fully annotated datasets, which is not applicable to classification

of hESC-CM APs because of the lack of labels. Moreover, to the best of our

knowledge, no RNNs of any type have been used to classify hESC-CMs.

Therefore, our first contribution is to propose an RNN-based classifier of

hESC-CM APs that not only has the potential to reduce the computational cost

of the classification task, since complex relationships can be learned by the net-

work during training, but also opens the opportunity to apply to this problem

many tools that are constantly emerging in the fast-growing field of artificial

neural networks. However, training the proposed classifier is not trivial due to

the limited availability of ground truth labels.

In general, training methods are classified as supervised, unsupervised or

semi-supervised depending on how they use ground truth-labeled data. While

supervised methods use ground truth labels for training, unsupervised meth-

ods only have access to unlabeled data, so they make use of secondary infor-

mation such as similarity between samples instead. Semi-supervised methods

lie in between both approaches, using labeled as well as unlabeled samples for

training. Semi-supervised methods have drawn attention in many applications
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in which data acquisition is a relatively fast and inexpensive procedure com-

pared to ground truth labeling; hence there are large datasets available from

which only a small subset of samples is labeled.

In this context, our second contribution is to propose a semi-supervised ap-

proach for training the proposed classifier, which overcomes the scarcity of la-

beled hESC-CM data by exploiting the abundance of labeled adult CM data

that can be obtained via simulation of electrophysiological models for the typ-

ical adult phenotypes. Our semi-supervised approach uses a novel loss func-

tion that combines a crossentropy loss for adult APs (supervised part) and a

contrastive loss for hESC-CM APs (unsupervised part). We evaluated this al-

gorithm in a 6940 hESC-CM dataset and showed it is a more efficient way to

use similarities between APs: it significantly outperforms the 1NN scheme in

terms of clustering quality when only Euclidean distances are available, and

when metamorphosis distance is applied it generates similar to state-of-the-art

results with significantly less distance computations.

The main assumption of the semi-supervised approach is that a single net-

work can simultaneously classify both adult and hESC-CM APs. However, the

semi-supervised approach does not take into account the fact that the under-

lying probability distributions of adult and hESC-CM APs are different, which

might be useful information to train the network. Currently there is an emerg-

ing field in machine learning called domain adaptation, which specifically stud-
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ies cases of mismatch between training (source) and test (target) domains, aim-

ing at building classifiers trained in labeled data from the source domain that

will perform well in the target domain [33].

Our third contribution is to propose a domain adaptation approach to train

the LSTM classifier, in which the probability distributions of adult CMs and

hESC-CMs are forced to be similar in a latent space. This similarity is im-

posed by minimization of the Maximum Mean Discrepancy (MMD) [46] in the

feature space corresponding to the output of a hidden layer in the network

architecture. This approach also assumes that a single network can simul-

taneously solve the classification task in both domains but, unlike the semi-

supervised approach, it performs an adaptation step to take into account the

domain mismatch. When tested in a 6940 hESC-CM dataset it outperforms

both the semi-supervised approach and the state-of-the-art results in terms of

clustering quality. Moreover, the use of a parametric model for the classifier

allows reduction of the time that it takes to evaluate the whole large dataset

from 13 hours (state of the art) to just a couple of seconds. The proposed classi-

fier also proves to have great transferability capacity since it reaches the same

classification accuracy as the state-of-the-art method in a small and completely

different dataset without retraining, which further demonstrates the computa-

tional advantages of the proposed method.
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1.5 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2 a semi-

supervised learning approach to classification of hESC-CM APs using RNNs

is presented. Its performance is experimentally evaluated and compared to

a baseline supervised approach and to the state-of-the-art method (1NN clas-

sifier with metamorphosis distances presented in [1]). In Chapter 3 an un-

supervised domain adaptation approach to classification of hESC-CM APs is

presented and also integrated with the semi-supervised approach proposed in

Chapter 2. Experimental results are presented to evaluate its performance.

Finally, main conclusions and future work are discussed in Chapter 4.
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Chapter 2

A semi-supervised approach to

classification of APs

2.1 Problem formulation

Let Ωe = {xe
j}Ne

j=1 be an unlabeled hESC-CM APs dataset, hereafter referred

to as embryonic, where the sequence xe
j = {xej(k) ∈ R}Kk=1 represents the jth

embryonic AP and K is the total number of samples in one cycle length. Let

Ωa = {(xa
i , y

a
i )}Na

i=1 be a labeled adult dataset, where xa
i = {xai (k) ∈ R}Kk=1 is the

ith adult AP and yai ∈ {0, 1} is its ground truth label (yai = 0 denotes atrial and

yai = 1 denotes ventricular). We consider the problem of assigning a label ŷej to

each xe
j ∈ Ωe, where ŷej = 0 denotes atrial-like and ŷej = 1 denotes ventricular-

like.
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2.2 A nearest-neighbor approach to clas-

sification of APs

In this section we review the approach presented by Gorospe et al. [1], which

uses a 1 nearest-neighbor (1NN) classifier: it assigns to the embryonic AP xe
j

the label of its closest adult sample as described by

ŷej = {yai∗ | i∗ = argmin
i∈{1,2,··· ,Na}

d
(
xe
j ,x

a
i

)
}, (2.1)

where d (·, ·) is a function that measures the distance between two APs.

There are many ways in which the distance between two time series can be

defined, but only Euclidean and metamorphosis distances have been used in

the classification of APs, so they are described below.

2.2.1 Euclidean distance

The Euclidean distance dE between two APs is defined as the Euclidean

norm of the vector formed by the difference between both sequences:

d2E(x
e
j ,x

a
i ) =

1

σ2
M

xe
j − xa

i

2
2
=

1

σ2
M

K∑
k=1

(
xej(k)− xai (k)

)2
. (2.2)

In (2.2) σM is a normalization parameter introduced to make the values of

20



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

the Euclidean distance comparable to the values of other distances. Using the

Euclidean distance, the interpolation between xe and xa considering S interpo-

lation steps is described by

x(k, s) = xe(k) + s
(xa(k)− xe(k))

S
with s ∈ {0, 1, · · · , S}, (2.3)

where the interpolants x(s) = {x(k, s) ∈ R}Kk=1 are such that x(0) = xe corre-

sponds to the initial embryonic AP, and x(S) = xa is the target adult AP.

Figure 2.1a depicts an example of this point-wise Euclidean interpolation

between an embryonic AP and a ventricular adult AP for the case where S = 4.

As it can be seen, the initial (s = 0) and final (s = 4) shapes correspond to

APs, however the interpolants (s = 1, 2, 3) do not look like physiological APs

due to a dimple introduced by the interpolation method. This example shows

that the Euclidean distance, although simple to compute, is not adequate for

modeling and classification of APs, because Euclidean interpolation leads to

intermediate APs that do not lie in the space of APs. In other words, the space

of APs is not Euclidean, and therefore another metric is needed to compare

APs.
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2.2.2 Metamorphosis distance

Instead of performing a point-wise comparison of the two APs, the meta-

morphosis distance finds an interpolation path between the two APs with min-

imum deformation. The interpolation is modeled as a diffeomorphism acting on

an evolving template and the amount of deformation is measured by defining

a suitable norm on the diffeomorphism and the template.

More specifically, consider again the case in which the interpolation be-

tween an embryonic AP xe and an adult AP xa is performed in S interpola-

tion steps. The metamorphosis path x(k, s) must not only meet the boundary

constraints x(k, 0) = xe(k) and x(k, S) = xa(k), but also minimize the energy

d2M(xe,xa) = min
x,v

S−1∑
s=0

∥v(k, s)∥2Vd
+ 1

σ2
M
∥x(k + v(k, s), s+ 1)− x(k, s)∥22, (2.4)

which depends on: (i) the infinitesimal change in deformation v that primarily

takes care of the adjustment in the temporal domain; and (ii) the evolution of

the template x(k, s) that accounts for changes of amplitude. σM is a balancing

parameter between both terms and ∥ · ∥2Vd
is a discretized Sobolev norm, i.e.

∥v∥2Vd
= ⟨Ldv, Ldv⟩, where Ld is a discrete approximation of a Sobolev operator

L. For additional details please refer to [1,34].

The metamorphosis distance dM is defined as the squared root of the op-

timal energy in (2.4). Figure 2.1b shows the interpolation generated by the
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metamorphosis method between an embryonic AP (s = 0) and a ventricular

adult AP (s = 4). Unlike Euclidean interpolation, in this method not only the

initial and final shapes but also the interpolants (s = 1, 2, 3) resemble physio-

logical APs, which is indicative of a better exploration of the space of APs.

s=0

s=0

s=1

s=1

s=2

s=2

s=3

s=3

s=4

s=4(a) Euclidean interpolation

s=0

s=0

s=1

s=1

s=2

s=2

s=3

s=3

s=4

s=4

(b) Metamorphosis interpolation

Figure 2.1: Example of interpolation between an embryonic AP (s = 0) and
an adult ventricular AP (s = 4) using (a) Euclidean and (b) metamorphosis
distances.

Results presented in [1] show that the metamorphosis distance is more ap-

propriate than the Euclidean distance to study the similarity between APs not

only because of the shape of the interpolants, but also because it generates bet-

ter clustering quality in a population of hESC-CMs. However, computing the

metamorphosis distance is expensive since it requires to solve an optimization

problem with respect to x and v, which significantly limits its use.

23



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

2.3 A semi-supervised LSTM approach

to classification of APs

The main drawback of the 1NN classifier (2.1) is that Na distance computa-

tions are required every time a new sample xe
j needs to be classified. Although

this might not be a problem in some applications, it is critical when classify-

ing APs because the cost of each metamorphosis computation is far from being

negligible. We hypothesize that the use of a parametric classifier would over-

come this drawback, since the computational cost of classifying new samples is

reduced at the expense of a training stage where the optimal parameters are

learned.

2.3.1 An RNN with LSTM units as a classifier

We propose a recurrent neural network (RNN) with long short-term mem-

ory (LSTM) units as classifier. RNNs are neural networks with feedback con-

nections, which have been traditionally used to discover time-varying patterns

in time series data. However, in their simple form they are hard to train by

backpropagation because feedback information usually gets diminished as the

length of the input increases, and therefore they perform poorly in discovering

patterns with long-time delays.
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In order to overcome this problem a new type of recurrent units, named

LSTMs, was introduced by Hochreiter and Schmidhuber in 1997 [37]. These

new recurrent blocks preserve feedback information at the same time that use

multiplicative gate units to learn, depending on the task, when it is relevant

to propagate the feedback information. LSTMs have recently gained popular-

ity for time-series classification due to their great performance in challenging

tasks such as activity recognition and speech recognition, and therefore their

application to classification of APs is promising.

After the original LSTM architecture was proposed in 1997, several vari-

ants have emerged presenting different advantages and disadvantages for spe-

cific applications (a detailed study on these variants can be found in [47]). The

classifier we propose uses the LSTM architecture presented by Gers et al. [48],

which is depicted in Figure 2.2 and described by the following set of equations:

i (k) = σ (Wix (k) + Uih(k−1) + bi) ∈ Rp

f (k) = σ (Wfx (k) + Ufh (k − 1) + bf ) ∈ Rp

o (k) = σ (Wox (k) + Uoh (k − 1) + bo) ∈ Rp

c (k) = f (k) ◦ c (k − 1) + i (k) ◦ tanh (Wcx (k) + Uch (k − 1) + bc) ∈ Rp

h (k) = o (k) ◦ tanh (c (k)) ∈ Rp,

(2.5)

where its key elements are the input gates i(k), forget gates f(k) and output

gates o(k) that modulate the evolution of its state c(k) and output h(k) accord-

25



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

ing to the input sequence x(k) ∈ Rm. The scalar p denotes the dimension of the

LSTM layer, Wi,Wf ,Wo,Wc ∈ Rp×m correspond to the input weight matrices,

Ui, Uf , Uo, Uc ∈ Rp×p are the recurrent weight matrices, bi, bf , bo, bc ∈ Rp are the

bias vectors, ◦ denotes Hadamard product and σ(z) =
1

1 + e−z
corresponds to

the point-wise logistic sigmoid function.

𝜎

𝑡𝑎𝑛ℎ

𝜎

𝜎

𝑥(𝑘)

ℎ(𝑘 − 1)

𝑐(𝑘 − 1)

𝑖(𝑘)

𝑓(𝑘)

𝑜(𝑘)

𝑐(𝑘 − 1)

+

𝑐(𝑘)

ℎ(𝑘)

𝑡𝑎𝑛ℎ

𝑏𝑖

𝑏𝑐

𝑏𝑓

𝑏𝑜

𝑈𝑖

𝑈𝑐

𝑈𝑓

𝑈𝑜

𝑊𝑖

𝑊𝑐

𝑊𝑓

𝑊𝑜

Figure 2.2: LSTM block.

The architecture of the proposed classifier is depicted in Figure 2.3 and con-

sists of one input layer, one hidden LSTM layer of dimension p = 3, and a single

sigmoid unit as the output layer. This sigmoid unit operates only in the last

value of the hidden layer output, once all the input sequence x = {x(k) ∈ R}Kk=1

has been processed by the LSTM layer. The predicted label is given by ŷ =

σ
(
h(K)TW + b

)
, where W ∈ R3 and b ∈ R are parameters of the output unit;

therefore the hidden recurrent LSTM layer can be simply seen as a feature
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extraction network and h(K) ∈ R3 as the corresponding feature vector.

Output unit
4 parameters

𝑥(𝑘) ∈ ℝ

ℎ 𝑘 ℝ3
1

2

3

ො𝑦 ∈ [0,1]

LSTM, 3 cells, 
60 parameters

𝜎 ℎ(𝐾)𝑇𝑊 + 𝑏∈

Figure 2.3: Proposed semi-supervised classification approach.

To simplify notation, let W = {Wi,Wf ,Wo,Wc, Ui, Uf , Uo, Uc, bi, bf , bo, bc,W, b}

be the set of parameters of the proposed classifier. For a given set of parameters

W, we will represent the classifier as the function fW(x) = ŷ that maps an

action potential x to a predicted label ŷ.

The dimension of the proposed classifier, determined by the number of hid-

den layers and their dimension, was chosen to be small to avoid overfitting.

Thus, the total number of parameters of the network is 64 (60 parameters in

the hidden layer, and 4 parameters in the output layer).

It should be noted that this architecture can be easily extended to address

more complex cases, for example, increasing the number of units in the output

layer allows for multi-class problems. Definitions and derivations presented in

the following sections can also be easily extended to more complex scenarios.
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2.3.2 Proposed semi-supervised loss function

Along with defining the classifier architecture, it is necessary to define a

loss function to guide the search of the optimal parameters for the task. As

commonly done in classification problems, we use the binary crossentropy loss

defined by

ℓ(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) (2.6)

to quantify how close the LSTM prediction ŷ is to the actual label y. More

specifically, given Na adult APs {xa
i }Na

i=1 and their labels {yai }Na
i=1, our supervised

loss corresponds to the average of the individual losses:

1

Na

Na∑
i=1

{−yai log(ŷai )− (1− yai ) log(1− ŷai )}. (2.7)

Now, while we do not have labels for the embryonic APs {xe
j}Ne

j=1, we can still

use ℓ(ŷej , ŷej′) to compare the predicted labels for two different embryonic APs.

Intuitively, we would like similar APs to have the same labels, and dissimilar

APs to have different labels. Therefore, we define the contrastive unsupervised

loss as follows

ℓu
(
ŷej , ŷ

e
j′

)
= s(j,j′) · ℓ

(
ŷej , ŷ

e
j′

)
+
(
1− s(j,j′)

)
· ℓ
(
(1− ŷej ), ŷ

e
j′

)
, (2.8)

where s(j,j′) ∈ [0, 1] represents the similarity between AP xe
j and AP xe

j′, such

28



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

that s(j,j′) = 1 if the APs are identical. We define the similarity between two

APs based on their distance d
(
xe
j ,x

e
j′

)
(Euclidean or metamorphosis) as follows

s(j,j′) = exp

(
−
d4
(
xe
j ,x

e
j′

)
σ4
s

)
, (2.9)

where the design parameter σs is chosen as σ4
s = d4, i.e. its fourth power is the

average of the fourth power of the pair-wise distances between embryonic APs.

The unsupervised loss function presented in (2.8) penalizes prediction dis-

agreements when samples are similar and prediction agreements when sam-

ples are dissimilar. One may wonder if both terms are really needed or if we

may be able to use only the first term. The reason for needing both terms is that

weighting the loss according to the similarity between the inputs (first term in

the summation) can lead to the pathological case in which all the samples are

assigned to the same label. Therefore, the second term in the summation is

required to counterbalance.

The basic concept behind contrastive loss functions consists of applying a

specific loss if the pair of samples being evaluated are similar, and a different

loss if they are dissimilar. It was first presented in [49] to discover a low di-

mensional representation of the data but, like other works that have used it

later [50, 51], they assume the availability of binary similarity factors given

by prior knowledge, labels or a clustering algorithm, and they use loss func-
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tions that are based on Euclidean distances between the outputs of the net-

work. Therefore, our approach is novel in the sense that we consider similarity

factors as a continuous variable, so we do not assume prior knowledge about

clusters in the data.

Given Ne embryonic APs, we average the unsupervised loss (2.8) over all

the possible pairs of samples as follows

1

Ne (Ne − 1)

Ne∑
j=1

∑
j′ ̸=j

ℓu
(
ŷej , ŷ

e
j′

)
. (2.10)

Integrating supervised and unsupervised terms of the loss, we obtain the

semi-supervised loss function

1− λ

Na

(
Na∑
i=1

ℓ (yai , ŷ
a
i )

)
+

λ

Ne (Ne − 1)

(
Ne∑
j=1

∑
j′ ̸=j

ℓu
(
ŷej , ŷ

e
j′

))
, (2.11)

where λ ∈ [0, 1] is a balancing parameter between supervised and unsupervised

parts.

In this way, the proposed semi-supervised loss function leverages labeled

adult CM data as well as unlabeled embryonic CM data for training the classi-

fier.
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2.4 Metrics to evaluate classification and

clustering

2.4.1 Classification accuracy

When ground truth labels are available, the most direct way to evaluate the

performance of a binary classification algorithm is to compare the predicted

labels ŷi ∈ {0, 1} to the ground truth labels yi ∈ {0, 1} in a test dataset. More

specifically, let {(xi, yi)}Ni=1 be a labeled test dataset composed of N samples

and let {ŷi}Ni=1 be the corresponding labels predicted by a given classification

algorithm. The classification accuracy corresponds to the number of correctly

classified samples over the total number of samples

Acc
(
{yi}Ni=1, {ŷi}Ni=1

)
= 1− 1

N

N∑
i=1

|yi − ŷi| . (2.12)

In the case of the recurrent neural network, the output of the classifier is

continuous ŷi = fW(xi) ∈ [0, 1]; therefore there is a thresholding process before

computing the classification accuracy. The predicted label is considered to be 1

if ŷi ≥ 0.5 and 0 otherwise.
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2.4.2 Davies-Bouldin Index (DBI)

Since ground truth labels are rarely available for embryonic APs, the Davies-

Bouldin Index (DBI) [52] is considered as a measure of clustering quality. Let

Ω0 =
{
xe
j | ŷej < 0.5

}
and Ω1 =

{
xe
j | ŷej ≥ 0.5

}
be the sets containing the different

clusters. Let µ0 and µ1 be the average signals per cluster given by

µ0 =
1

|Ω0|
∑
xe
j∈Ω0

xe
j and µ1 =

1

|Ω1|
∑
xe
j∈Ω1

xe
j . (2.13)

Let S0 be the mean distance from elements of Ω0 to µ0, and similarly for S1

as follows:

S0 =
1

|Ω0|
∑
xe
j∈Ω0

d
(
xe
j , µ0

)
and S1 =

1

|Ω1|
∑
xe
j∈Ω1

d
(
xe
j , µ1

)
. (2.14)

Let M01 = d (U0,U1) be the distance between the averages of the clusters.

The DBI is defined as the ratio between the intra-cluster dispersion and the

distance between clusters

DBI (Ω0,Ω1) =
S0 + S1

M01

, (2.15)

and should be as small as possible. For computational reasons, and since the

Euclidean distance dE is a good approximation of the metamorphosis distance

dM for small distances, the intra-cluster dispersions S0 and S1 are computed
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using dE, whereas the distance between clusters M01 is computed using dM .

2.4.3 Variation of Information (VI)

In order to evaluate the convergence of the clustering results generated by

the network, we use the Variation of Information (VI) [53] as a metric of dis-

tance between partitions. Only the case in which the dataset is divided into two

classes is presented, since that corresponds to the problem we are studying.

Let Ωe = {xe
j}Ne

j=1 be a dataset. A clustering C divides Ωe into mutually

disjoint subsets Ω0 and Ω1. Formally,

C = {Ω0,Ω1} such that Ω0 ∩ Ω1 = ∅ and Ω0 ∪ Ω1 = Ωe. (2.16)

Consider the case of randomly picking a sample from the dataset. If we

assume that each sample has equal probability of being picked, the probability

that the outcome belongs to cluster Ωk is given by P{k} =
|Ωk|

|Ω0|+ |Ω1|
. The

uncertainty about the cluster to which the random sample would belong is

described by

H(C) = −
1∑

k=0

P{k} log (P{k}) , (2.17)

which is called “entropy associated to clustering C”. H(C) is non-negative and

takes value 0 only when there is not uncertainty (all the samples belong to the

same cluster).
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Let C∗ = {Ω∗
0,Ω

∗
1} be a different clustering of dataset Ωe. The probability that

a sample simultaneously belongs to cluster Ωk in clustering C and to cluster Ω∗
k∗

in clustering C∗ is given by

P {k, k∗} =
|Ωk ∩ Ω∗

k∗|
|Ω0|+ |Ω1|

. (2.18)

If we pick a random sample from Ωe and we want to know to which cluster

it belongs in clustering C, the “mutual information between clusterings C and

C∗” given by

I(C, C∗) =
1∑

k=0

1∑
k∗=0

P{k, k∗} log
(

P{k, k∗}
P{k}P{k∗}

)
(2.19)

represents how much uncertainty is reduced in average if we know to which

cluster the sample belongs in clustering C∗ (the other way around is also true).

Then, the conditional entropy H(C|C∗) = H(C)− I(C,C∗) represents how much

uncertainty is left in C when C∗ is given. The VI between the two clusterings is

defined as the sum of their conditional entropies:

V I (C, C∗) = H(C|C∗) +H(C∗|C) = H(C) +H(C∗)− 2I(C, C∗), (2.20)

and therefore it is a way to measure how different they are. VI satisfies the

metric axioms: non-negativity, symmetry and triangle inequality [53]. Also, if
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C and C∗ have at most K clusters with K ≤
√
n, where n is the total number of

samples,

V I(C, C∗) ≤ 2 log(K). (2.21)

In our case the number of clusters is K = 2; therefore we define the normal-

ized VI as

V I(C, C∗) =
H(C) +H(C∗)− 2I(C, C∗)

2 log(2)
∈ [0, 1] . (2.22)

2.5 Experiments

2.5.1 Adult CM data

The O’Hara-Rudy model (ORd) [20] is used to generate synthetic examples

of ventricular adult CM APs. Its main parameters are maximum conductances

and permeabilities, and their nominal values are shown in Table 2.1. One

thousand random sets of parameters were independently drawn from uniform

distributions between 80% and 120% of their nominal values.

The ORd model was paced at 1.5Hz and run for 100 beats for each set of

parameters. The effect of each given set of parameters is considered to be cap-

tured by the last AP of the simulation. Figure 2.4a shows the population of

1000 synthetic ventricular APs generated by this method, to which the Sparse

35



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

Name Symbol Nominal value Unit
Max conductance, Na+ GNa 75 mS/µF
Max conductance, transient outward K+ Gto 0.02 mS/µF
Max conductance, rapid delayed rect. K+ GKr 0.046 mS/µF
Max conductance, slow delayed rect. K+ GKs 0.0034 mS/µF
Max conductance, inward rect. K+ GK1 0.1908 mS/µF
Max conductance, Na+/Ca2+ exchange GNaCa 0.0008 µA/µF
Max conductance, background K+ GKb 0.003 mS/µF
Max conductance, sarcolemmal Ca2+ pump GpCa 0.0005 mS/µF
Max conductance, late Na+ current GNaℓ 0.0075 mS/µF
Permeability to Na+/K+ ATPase current PNaK 30 cm/s
Permeability to Ca2+ background current PCab 2.5e−8 cm/s
Permeability to Na+ background current PNab 3.75e−10 cm/s
Permeability to Ca2+ current PCa 0.0001 cm/s

Table 2.1: Ventricular model parameters.

Modeling for Representatives Selection (SMRS) method [54] was applied to se-

lect the subset of 150 APs shown in Figure 2.4b. As it can be noted, the subset

of 150 APs seems to appropriately cover the heterogeneity of the 1000 APs

dataset, even when the number of samples is significantly smaller. Normaliza-

tion was applied to each AP so that its maximum voltage is 1 and its resting

membrane potential is 0, as depicted in Figure 2.4c.

A similar process was followed using the Nygren model [19] to generate

synthetic examples of atrial adult CM APs. In the original formulation, the

Nygren model was tuned to achieve long-term stability with its nominal pa-

rameters (shown in Table 2.2) at a pacing rate of 1Hz, for which Nygren et

al. incorporated an external Na+ influx to their model. This causes a lack of

charge conservation as well as the absence of true mathematical steady-states

in the model, which have been studied [55] and even corrected in later mod-
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(a) 1000 APs (b) 150 selected APs (c) 150 selected APs
(normalized)

Figure 2.4: Ventricular adult CM data: (a) 1000 synthetic examples generated
by ORd model [20], (b) subset of 150 representatives selected by SMRS method
[54], and (c) 150 representatives after normalization.

els [22]. However, we decided to use this model because it is the one that has

been used in previous classifications of hESC-CMs [1,34], and also because the

normalization process helps reduce the effect of unstable simulations, which

in general are associated with higher resting membrane potential (RMP). In

order to avoid sets of parameters that would increase the RMP too far from

its physiological range, the values associated with GK1 and GCab were coupled

to ensure a reasonable balance between inward rectifier K+ current and Ca+

background current, keeping fixed the ratio observed between their nominal

values. Thus, for the six parameters presented in Table 2.2 only five indepen-

dent random variables were used.

The Nygren model was paced at 1.5Hz and run for 100 beats for each of

the 1000 random sets of parameters generated. Figure 2.5a shows the 1000

synthetic examples corresponding to the last beat of each simulation, Figure

37



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

Name Symbol Nominal value Unit
Max conductance, L-Type Ca2+ current GCaL 6.75 nS
Max conductance, slow delayed rect. K+ GKs 1 nS
Max conductance, rapid delayed rect. K+ GKr 0.5 nS
Max conductance, inward rect. K+ GK1 3 nS
Max conductance, Na+ background current GNab 0.060599 nS
Max conductance, Ca2+ background current GCab 0.078681 nS

Table 2.2: Atrial model parameters.

2.5b shows the subset of 150 representatives selected by the SMRS method,

and Figure 2.5c shows their normalized version.

(a) 1000 APs (b) 150 selected APs (c) 150 selected APs
(normalized)

Figure 2.5: Atrial adult CM data: (a) 1000 synthetic examples generated by
the Nygren model [19], (b) subset of 150 representatives selected by SMRS
method [54], and (c) 150 representatives after normalization.

2.5.2 hESC-CM data

2.5.2.1 Single cell recording data

The dataset generated by [17] contains 16 atrial embryonic-like, 24 nodal-

like, and 36 ventricular embryonic-like hESC-CM APs, manually labeled based
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on basic AP features. These single cell recordings were obtained under sponta-

neous beating of the cells; therefore each signal has a different length. We use

the algorithm presented by [56] to adjust them to a pacing rate of 1.5Hz, and

we normalized them to have maximum amplitude of 1, as shown in Figure 2.6.

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

16 atrial hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

24 nodal hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

36 ventricular hESC-CMs

(a) 16 atrial-like APs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

16 atrial hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1
N

or
m

al
iz

ed
 A

m
pl

itu
de

24 nodal hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

36 ventricular hESC-CMs

(b) 24 nodal-like APs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

16 atrial hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1
N

or
m

al
iz

ed
 A

m
pl

itu
de

24 nodal hESC-CMs

0 100 200 300

Samples @500Hz

0

0.5

1

N
or

m
al

iz
ed

 A
m

pl
itu

de

36 ventricular hESC-CMs

(c) 36 ventricular-like APs

Figure 2.6: Single cell hESC-CM recordings [17]: (a) atrial embryonic-like, (b)
nodal-like, and (c) ventricular embryonic-like.

This dataset is small, and the quality of its labels is questionable due to the

lack of well-known criteria. However, it is highly valuable because it is the only

source of labeled hESC-CM APs available to us. Therefore, it is not used for

training or validation, but only for testing the performance of the classifiers.

2.5.2.2 Optical mapping data

The dataset from [27] corresponds to 6940 hESC-CM APs recordings ob-

tained by Dr. Renjun Zhu in the Cardiac Bioelectric Systems Laboratory of

Johns Hopkins University from 9 cell aggregates paced at 1.5Hz and optically

mapped at a sampling rate of 500Hz. Figure 2.7a depicts the 9 cell aggregates,
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where each one of the pixels corresponds to a recording site. The APs were

averaged over beating cycles, and a 5 × 5 boxcar spatial filter was applied for

denoising. Each AP was normalized so that its maximum voltage is 1 and its

resting membrane potential is 0, as it can be seen in Figure 2.7b.

Only 1600 APs coming from 2 cell aggregates were used for training and

validation (see Figure 2.7c), but labels were predicted for the whole dataset.

Training and Validation  

Test 

(a) Cell aggregates

(b) Complete dataset
(6940 APs)

(c) Training and validation
subset (1600 APs)

(d) Test subset
(5340 APs)

Figure 2.7: Optical mapping dataset [27] (yellow indicates training and vali-
dation data, gray indicates test data): (a) 9 cell aggregates, (b) Complete APs
dataset, (c) Training and validation data, and (d) Test data.
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2.5.3 Implementation details

The classifier architecture was implemented in Keras [57] with TensorFlow

backend and trained using the RMSProp optimizer (with initial learning rate

ϵ = 0.003). The network was initialized according to the default methods: states

of the LSTM layer were initialized orthogonally, the forget bias was set as bf =

1 [48], and the rest of the weights were initialized by the method of Glorot and

Bengio [58].

The 150 representatives of ventricular APs and the 150 representatives of

atrial APs formed a dataset of Na = 300 adult samples. On the other hand,

the training and validation subset of the optical mapped hESC-CMs formed a

dataset of Ne = 1600 embryonic samples. A set of 100 random mini-batches,

each one formed of 19 samples (na = 3 adults and ne = 16 embryonic), was built

at the beginning of training1. Therefore, the gradient of the supervised part

of the loss function is estimated by the average of the na observations at each

iteration. Similarities between consecutive embryonic samples in each mini-

batch were computed, generating ne − 1 observations to estimate the gradient

of the unsupervised part of the loss function at each iteration.

90 mini-batches were used for training, and 10 for validation. Figure 2.8
1The use of a finite predefined set of mini-batches does not correspond to the classic defini-

tion of mini-batch stochastic gradient descent (mini-batch SGD), in which a random mini-batch
is built at every iteration of the algorithm. However, the computational cost of the metamor-
phosis algorithm makes the computation of distances between different APs at every iteration
impractical. We conjecture that this modification does not significantly affect the guarantees
of mini-batch SGD, and we verify it experimentally in Section 2.5.4.4.
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illustrates the training scheme described above. One epoch is considered to be

a complete pass of the training dataset, which in our case corresponds to 90

iterations of the optimization algorithm.

150 
Atrial APs

150 
Ventricular APs

1600 hESC-CMs
APs

…

<Obj fcn computation>
<Weights update>

<Obj fcn computation>
<Weights update>

<Obj fcn computation>
<Weights update>

9
0

 m
in

i-
b

at
ch

es
p

er
 e

p
o

ch

Figure 2.8: Training scheme for the semi-supervised learning approach.

Three cases are studied: Supervised learning λ = 0 (Sup-LSTM), Semi-

supervised learning λ = 0.1 with Euclidean distances (Semi-LSTM-E), and

Semi-supervised learning λ = 0.1 with metamorphosis distances (Semi-LSTM-

M).

In each case the network was trained 5 times with the same initialization

for the weights (100 epochs for the Sup-LSTM network and 200 epochs for

the Semi-LSTM networks). Each one of these 5 runs of the optimization al-

gorithm is referred to as a “trial”. The variability observed across trials for

42



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

a given method (Sup-LSTM, Semi-LSTM-E or Semi-LSTM-M) is attributable

to the stochastic implementation of the optimization algorithm by Keras with

TensorFlow backend. The metamorphosis parameter was set as σM = 0.3.

2.5.4 Results

In this section the results of the Sup-LSTM, Semi-LSTM-E, and Semi-LSTM-

M networks are presented individually. A comparative analysis of their perfor-

mances with respect to the performance of the state of the art (1NN classifica-

tion with metamorphosis distances) is presented in Section 2.5.5.

Due to the high computational cost of the metamorphosis algorithm, we im-

plemented a modified version of mini-batch stochastic gradient descent (SGD).

Experimental results regarding the effect that this modification has on the be-

havior of mini-batch SGD are presented in Section 2.5.4.4.

2.5.4.1 Sup-LSTM

Figure 2.9 depicts the training results for the Sup-LSTM case, i.e. λ = 0.

Each color represents a different trial, and whenever they are indistinguish-

able it is because they have converged to the same value. The first column

shows the loss function evaluated in the training set (top) and validation set

(bottom). Although the training and validation losses oscillate during train-
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ing2, they both converge close to zero for all trials.
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Figure 2.9: Training results of the Sup-LSTM network.

The second column of Figure 2.9 shows both the supervised and unsuper-

vised parts3 of the loss function evaluated on the training (top) and validation

sets (bottom). As it can be seen, the supervised part converges to a small value

in both cases while the unsupervised part converges to a large value in both

cases, which makes sense since the latter is not being optimized (λ = 0).

The third column of Figure 2.9 depicts the classification accuracy evaluated

in the 300 adult CM APs (top), and the normalized variation of information

of embryonic clusterings computed between consecutive epochs (bottom). They

show that at each trial the network learns to correctly classify the samples in
2It is unclear why all trials present spikes around epoch #50, it might have to do with the

specific shape of the objective function in parameter space.
3In this case the unsupervised term was computed using similarity factors based on meta-

morphosis distances, but the same behavior is observed if Euclidean distances are applied
instead
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the adult domain (classification accuracy close to 1), while the clustering result

converges (VI close to 0).

However, while each trial converges to a particular clustering result, they

do not converge to the exact same clustering. Figure 2.10 shows the sets of

network weights at the last epoch of training for each one of the five trials. As

it can be seen, their sets of parameters, although similar, are not exactly the

same at the last epoch of training4.
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Figure 2.10: Weights of the Sup-LSTM network at the last epoch of training
for five different trials.

The output of the network ŷ is interpreted as the probability that a given

sample belongs to the ventricular-like class (as opposed to belonging to the

atrial-like class). Therefore, if the output of the network for a given sample is

ŷ ≥ 0.5 it is classified as ventricular-like, and if ŷ < 0.5 it is classified as atrial-

like. We would like to combine the outputs of the different trials leveraging the
4Different sets of parameters can generate the same clustering results in a overparameter-

ized model. Therefore, the fact that the trials converge to different sets of parameters does not
fully explain the difference in clustering observed across trials.
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probability that each trial associates to the prediction. To do so, we computed

the average output ŷ over the trials per sample, and then we classified each

sample as atrial-like if ŷ < 0.5, and ventricular-like if ŷ ≥ 0.5. This can be seen

as a soft-voting classification since it considers not only the class prediction of

each trial, but also the probability associated to the prediction. This is what

we refer to as average prediction of the network across trials5 and it is used to

analyze the performance of each one of the training approaches.

For the optical mapping dataset, Figure 2.11a and 2.11b show the atrial-like

and ventricular-like population respectively6, where the black curve in each

plot represents the average AP per class. Figure 2.11c shows how the classes

are distributed in the cell aggregates. As it can be seen, the supervised learn-

ing scheme generates spatially continuous classification regions even though it

does not take into account spatial information.

For the single cell recording dataset, the output ŷ at the last epoch was av-

eraged over trials to obtain the average prediction of the network across trials.

Histograms of these values per class (based on ground truth labels) are shown

in Figure 2.12. Ideally, all the atrial-like samples would be below ŷ = 0.5 and

all the ventricular-like samples would be above ŷ = 0.5. In this case most of

the samples are just mapped close to 0, which leads to poor classification ac-

curacy (32.69%). Nodal-like samples of the single cell recording dataset are
5Please note that the performance of the average prediction (which integrates information

from different trials) need not correspond to the average performance over the trials.
6According to the average prediction of the network across trials.
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(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 2.11: Results of the Sup-LSTM network in unlabeled hESC-CM dataset
(DBI: 0.2834).

not included in the results since the network is trained only with atrial and

ventricular samples 7.

The summary of the performance of the Sup-LSTM network, understood

as the classification accuracy in the single cell recording dataset and DBI in

the optical mapping dataset8, is shown in Table 2.3 for each individual trial

and for the average prediction of the network across trials. Please note that

the performance of the average prediction of the network across trials need not

correspond to the average performance over the trials.
7This is also the case for the results of all the approaches presented in this thesis.
8The DBI corresponds to the clustering quality index computed at the last epoch of training.
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Figure 2.12: Results of the Sup-LSTM network in labeled hESC-CM dataset
(Classification accuracy: 0.3269).

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.3269 0.3269 0.3269 0.3269 0.3269 0.3269
DBI 0.2841 0.2830 0.2875 0.2826 0.2826 0.2834

Table 2.3: Summary performance of the Sup-LSTM network.

2.5.4.2 Semi-LSTM-E

In this case Euclidean distances between consecutive embryonic APs within

the mini-batches are computed before training. Figure 2.13a shows the his-

togram of the 1500 computed distances, from which the parameter σs is ob-

tained to compute the similarity factors as defined in (2.9). As their name sug-

gests, similarity factors are used to indicate whether two samples are similar

or not. Thus, they are more informative when they are close to 1 (similar sam-

ples) or 0 (dissimilar samples). As it can be seen in Figure 2.13b, the histogram

of the resulting similarity factors s(j,j′) exhibits peaks close to 1 and 0, which
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Figure 2.13: (a) Euclidean distances dE, and (b) the corresponding similarity
factors s(j,j′) with σs = 9.2597.

supports the decision of using the fourth power of the distance when computing

the similarity factors (as opposed to simply using a Gaussian function). Figure

2.14 shows how the histograms of the similarity factors would look like if the

first, second or third power of the distances were used instead.

Figure 2.15 depicts the training results over the 200 epochs. The first col-

umn shows the loss function evaluated in the training set (top) and validation

set (bottom). It can be seen that in both cases the loss function has a decreasing

trend that becomes flat by the end of training.

The second column of Figure 2.15 shows that the supervised term as well

as the unsupervised term converge to similar values across trials. It can be

seen that the unsupervised term increases its value when there is a significant

decrease in the supervised term, which is indicative of a compromise between

both terms. However, as the optimization continues, the unsupervised term
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Figure 2.14: Histograms of the similarity factors if the (a) first, (b) second, or
(c) third powers of the distances were used.
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Figure 2.15: Training results of the Semi-LSTM-E network.

decreases its value while the supervised term stays close to zero.

The third column of Figure 2.15 shows that the network learns to correctly

classify samples in the adult domain (classification accuracy close to 1). How-

ever in this case the evolution of the VI between consecutive epochs shows that
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even when the loss function has converged, the clustering results are not ab-

solutely stable. This means that different sets of network parameters lead to

similar values in the loss function, but generate different clustering results.

Actually, in Figure 2.16 the network parameters at the last epoch exhibit a

large variability across trials.
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Figure 2.16: Weights of the Semi-LSTM-E network at the last epoch of training
for five different trials.

The average prediction of the network across trials per sample was com-

puted. Figure 2.17a shows the samples classified as atrial-like in the optical

mapping dataset while Figure 2.17b shows the samples classified as ventricular-

like. Figure 2.17c depicts the average prediction of the network across trials in

the cell aggregates. As it can be seen, the Semi-LSTM-E network produces

spatially smooth classification regions.

For the single cell recording dataset, the average prediction of the network

across trials was computed. Figure 2.18 shows the histograms of these values
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(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 2.17: Results of the Semi-LSTM-E network in unlabeled hESC-CM
dataset (DBI: 0.2458).

per class (based on ground truth labels). As it can be seen, most of the atrial-

like samples are correctly classified (ŷ < 0.5), but many ventricular-like APs

are misclassified (the histogram in Figure 2.23b spans across the whole range

ŷ ∈ [0, 1]). In this case the classification accuracy reaches 76.92% for the average

prediction across trials, since 1 atrial-like and 11 ventricular-like samples are

misclassified.

Table 2.4 shows the summary of the performance per trial and for the aver-

age prediction of the network across trials. In this case the performance of the

Semi-LSTM-E network in the average prediction is better than in most of the

individual trials, which it is expected since the average prediction combines the
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Figure 2.18: Results of the Semi-LSTM-E network in labeled hESC-CM dataset
(Classification accuracy: 0.7692).

information from different trials.

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.75 0.75 0.7308 0.75 0.7692 0.7692
DBI 0.2466 0.2444 0.2469 0.2486 0.2476 0.2458

Table 2.4: Summary performance of the Semi-LSTM-E network.

2.5.4.3 Semi-LSTM-M

In this case, metamorphosis distances between consecutive embryonic APs

within the mini-batches are computed before training. Figure 2.19a shows the

histogram of the 1500 computed distances, from which the parameter σs is

obtained to compute the similarity factors. As in the Semi-LSTM-E case, the
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histogram of the resulting similarity factors s(j,j′) shown in Figure 2.19b also

exhibits peaks close to 1 and 0.
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(b) Histogram similarity factors
based on metamorphosis distances

Figure 2.19: (a) Metamorphosis distances dM , and (b) the corresponding simi-
larity factors s(j,j′) with σs = 8.9183.

Figure 2.20 depicts the training results over the 200 epochs. In this case

same observations as in the Semi-LSTM-E case hold: (i) the loss function shows

a decreasing trend in all trials for training and validation sets; (ii) the unsu-

pervised term exhibits an increase when the supervised term shows a abrupt

decrease; (iii) in all trials the network learns to correctly classify adult sam-

ples; (iv) the clustering results do not converge; and (v) the variability between

trials of the sets of parameters at last epoch shown in Figure 2.21 is large.

Figure 2.22a shows the samples classified as atrial-like in the optical map-

ping dataset, while Figure 2.22b shows the samples classified as ventricular-

like9. Figure 2.22c depicts the average prediction of the network across trials
9According to the average prediction across trials.
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Figure 2.20: Training results of the Semi-LSTM-M network.
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Figure 2.21: Weights of the Semi-LSTM-M network at the last epoch of training
for five different trials.

in the cell aggregates.

For the single cell recording dataset, Figure 2.23 shows the histograms per

class (based on ground truth labels) of the average prediction of the network

across trials. In this case the classification accuracy is 76.92%, since 5 atrial-

like and 7 ventricular-like samples are misclassified.

55



CHAPTER 2. A SEMI-SUPERVISED APPROACH TO CLASSIFICATION
OF ACTION POTENTIALS

(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 2.22: Results of the Semi-LSTM-M in unlabeled hESC-CM dataset
(DBI: 0.2390).
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Figure 2.23: Results of the Semi-LSTM-M network in labeled hESC-CM
dataset (Classification accuracy: 0.7692).

Table 2.5 shows the summary of the performance of the Semi-LSTM-M net-

work per trial and for the average prediction of the network across trials. The
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accuracy corresponds to the classification accuracy obtained in the single cell

recording dataset (considering only atrial-like and ventricular-like samples),

and the DBI is the clustering quality index obtained in the optical mapping

dataset at the last epoch of training.

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.7115 0.7308 0.7115 0.8077 0.7885 0.7692
DBI 0.2441 0.2414 0.2441 0.2379 0.2413 0.2390

Table 2.5: Summary performance of the Semi-LSTM-M network.

2.5.4.4 Effect of SGD with predefined random mini-batches

In mini-batch stochastic gradient descent method, a subset of samples (mini-

batch) is used to estimate the gradient of the cost function. The classic ap-

proach consists of building a new random mini-batch from the training set

at each iteration, however in our case that would require new metamorpho-

sis computations every time, which is unfeasible. Alternatively, we propose

to select the mini-batch from a predefined set of mini-batches that have been

randomly built before training.

We conjecture that the proposed modification does not significantly affect

the guarantees of the classic approach of mini-batch SGD. Therefore, we per-

formed experiments to evaluate how the particular set of random mini-batches

used for training affected the performance of the algorithm. Since computing
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metamorphosis distances at every iteration of the optimization algorithm is not

possible, the Semi-LSTM-E case was selected for this purpose. Four cases are

studied:

(a) No shuffle: Mini-batches are randomly built at the beginning of training

and are not updated between epochs. This corresponds to the proposed

training scheme.

(b) Shuffle only adult: Mini-batches are built at the beginning of training,

but the adult samples are shuffled across mini-batches after every epoch.

(c) Shuffle only embryonic: Mini-batches are built at the beginning of

training, but the embryonic samples are shuffled across mini-batches af-

ter every epoch. Similarity factors must be re-computed every epoch.

(d) Shuffle both: Mini-batches are randomly built at the beginning of each

epoch. Similarity factors must be re-computed every epoch. This corre-

sponds to the classic mini-batch SGD approach.

The set of mini-batches used for validation is fixed across simulations. Three

trials are simulated for each case, and the loss function evaluated in the val-

idation set is shown in Figure 2.24, where the horizontal black line has been

included as a reference. The validation loss indicates how well the network

generalizes, and therefore the fact that it converges to a similar value in all the

studied cases means that not significant bias is introduced with this finite set
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of random mini-batches. Validation loss of “Shuffle both” case oscillates more

than that of the other cases, which can be explained because it involves more

randomness; therefore it requires more time to be learned by the network.
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Figure 2.24: Validation loss different cases of mini-batch optimization.

The last value of the loss function in training set, the last value of the loss

function in validation set, the classification accuracy in the single cell recording

dataset and the DBI in the optical mapping dataset were computed and plotted

in Figure 2.25 for each case. Although the training loss reaches different values

on the different cases, there is not a significant difference in the average vali-

dation loss. However, the classic approach of mini-batch SGD (“Shuffle both”)

does generate slightly lower validation loss with significantly lower variance

than the other cases.

Although the variance of the classification accuracy is also significantly

smaller than the rest for the classic mini-batch SGD, the best classification

accuracy is obtained by the “shuffle only adult” approach. Moreover, “shuffle
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hESC-CM dataset

Figure 2.25: Indicators for cases of mini-batch stochastic optimization. ⋄ is the
average training and validation loss over trials in (a) and (b), respectively. ⋄
is the accuracy and DBI of the average prediction in (c) and (d), respectively.
Vertical lines indicate the range covered by the trials.

only adult” case also obtains the best DBI in its average prediction of the optical

mapping dataset, but it is within the range of variability of other cases.

However, the DBI observed in all the trials across cases is always better

than the results observed for Sup-LSTM case and does not reach the average

performance of Semi-LSTM-M case. Therefore, although the limited number

of trials does not allow us to conclude on which approach works best for this

given problem, we can at least conclude that the performance of the method is

not significantly affected by this particular predefined set of mini-batches used

for training.
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2.5.5 Analysis

It is worth noting that in both supervised and semi-supervised approaches

the proposed classifier learns to correctly classify samples in the adult domain.

However, that problem can be solved by looking at simple AP features and it is

not the task in which we are interested. The great performance achieved in the

adult domain is not contradictory with a good performance in the embryonic

domain. Given an AP x, we assume that the conditional probability of its class

is independent of its domain. Thus, the goal of the classifier is to approximate

a general function P{y|x} that applies to both adult and embryonic samples.

Regarding classification of embryonic samples, Figure 2.26 and Table 2.6

compare our results to those of the method presented in [1] (1NN classifier

with Na = 20 synthetic adult AP templates). In all the proposed approaches

the classifier generates spatially smooth classification regions and suggests

heterogeneity in most of the cell aggregates, which coincides with previous

findings [1,27].

Method 1NN 1NN 1NN Sup-LSTM Semi-LSTM Semi-LSTM
Templates 20 [1] 20 [1] 300 SMRS 300 SMRS 300 SMRS 300 SMRS

Metric M E E E M
Accuracy 0.9615 0.8654 0.8077 0.3269 0.7692 0.7692

DBI 0.2297 0.2558 0.2566 0.2834 0.2458 0.2390
Accuracy* N/A 0.6488 0.6290 0.4723 0.8788 0.9473

Table 2.6: Comparing the results of the proposed semi-supervised method
with the results presented in [1]. Accuracy is computed in single cell recording
hESC-CM dataset. DBI is computed in optical mapping dataset. Accuracy* is
computed in optical mapping dataset assuming 1NN classification with meta-
morphosis distance as ground truth (E: Euclidean, M: Metamorphosis).
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1 NN Euclidean

Acc: 0.8654

DBI: 0.2558

1NN Metamorphosis

Acc:  0.9615

DBI:  0.2297

Sup-LSTM

Acc:  0.3269

DBI:  0.2834

Semi-LSTM-E

Acc:  0.7692

DBI:  0.2458

Semi-LSTM-M

Acc:  0.7692

DBI:  0.2390

Figure 2.26: Comparison of the results of semi-supervised approach with the
results presented in [1]. Acc corresponds to the classification accuracy in the
single cell recording dataset, and DBI is the clustering quality index in the
optical mapping dataset.

As it can be observed in Figure 2.26, the semi-supervised approach (with

Euclidean and with metamorphosis distances) generates classification results

that are visually similar to the state of the art (1NN method with metamor-

phosis distances), while the classification results of the Sup-LSTM network

are remarkably different. Besides, the proposed semi-supervised approach sig-

nificantly outperforms the supervised approach in terms of clustering quality

and classification accuracy. This emphasizes that adult and embryonic APs

intrinsically belong to different domains, and therefore classifying embryonic

APs with a network trained only with adult APs is not adequate. Moreover,
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it validates the proposed contrastive unsupervised loss as a suitable way of

incorporating information from unlabeled embryonic samples in training.

Although the similarity factors do not look significantly different when they

are computed based on Euclidean or metamorphosis distances (see Figures 2.13

and 2.19), the use of metamorphosis distances does generate better clustering

quality results not only in the average prediction but also in individual tri-

als (compare Tables 2.4 and 2.5). Therefore, in this framework there exists

an important trade-off between computational cost of similarity factors10 and

clustering quality. However, this trade-off does not seem to be relevant in their

transferability to a new dataset, since both semi-supervised approaches obtain

the same classification accuracy in the single cell recording dataset (76.92%).

It can be seen in Table 2.6 that supervised learning shows significantly

higher DBI than the rest, which is not surprising since it does not consider

hESC-CM data during training. On the other hand, the semi-supervised learn-

ing scheme outperforms the 1NN scheme when Euclidean distances are used

(DBI 0.2458 vs 0.2558). 1NN with Euclidean distances was replicated with

the same 300 adult AP templates used to train the network (see Table 2.6)11,

confirming that the improvement in clustering quality observed in the semi-

supervised scheme is not attributable to the number of templates used, but to
10Cost of computing the Euclidean distances versus cost of computing the metamorphosis

distances.
11It is unclear how the 20 templates were selected by the authors in [1]. Therefore, the

decrease in performance observed when 300 templates are used could be attributable to the
handpicked selection of the 20 templates.
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the method itself: The Euclidean metric is a good approximation of metamor-

phosis for small distances, so it performs better when distances within hESC-

CM domain are computed (proposed semi-supervised framework) than when

distances between hESC-CM and adult CM domains are computed (1NN).

1NN metamorphosis results presented in [1] show the best clustering qual-

ity (DBI 0.2297), followed by the Semi-LSTM-M (DBI 0.2390). Since no ground

truth labels are available for this dataset, we compute the classification accu-

racy (Accuracy*) assuming 1NN metamorphosis as the ground truth in order

to quantify how similar our predicted labels are to the ones provided by the

state-of-the-art method.

The classification accuracy assuming 1NN metamorphosis as the ground

truth12 was computed and plotted versus the DBI in Fig. 2.27. In the optical

mapping dataset, the use of metamorphosis distance in semi-supervised learn-

ing not only produces lower DBI but also consistently generates better classi-

fication accuracy than when the Euclidean distance is used (small dots in Fig.

2.27 represent single trials results and squares represent the average predic-

tion per case). An improvement of 24.98% in the accuracy* is observed between

1NN (62.90%) and the semi-supervised learning scheme when 300 templates

and only Euclidean distances are used, achieving 87.88% accuracy* without any

metamorphosis distance computation.
12This assumption is based on the fact that it is the method that generates better clustering

quality (lower DBI).
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Figure 2.27: Accuracy* vs DBI. 1NN M as ground truth (E: Euclidean, M:
Metamorphosis).

Therefore, the proposed method not only successfully integrates labeled

data from a different domain to solve the task, but also proves to be a pow-

erful framework to improve the performance of Euclidean-based methods in

the classification of hESC-CM APs. Moreover, it reaches 94.73% of agreement

with the state of the art, trading off accuracy with computational complexity:

whereas the classification of a new sample in the state-of-the-art method re-

quires the solution of 20 computationally intensive optimization problems (6.74

sec/sample in 2 8-core computer nodes with 8 2.3GHz CPUs per node [1]), in

the proposed method it just needs to be processed by a small RNN with fixed

weights (less than 6 sec for the whole 6940 AP dataset in one 2.2 GHz CPU

with 2 cores, 4 threads)13.
13The reported time corresponds to testing a dataset once the network has been trained.

Training the network for 200 epochs takes approx. 30 minutes.
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2.6 Chapter summary

In this chapter we have presented a new approach to classification of hESC-

CMs, in which an RNN with LSTM units is trained using a semi-supervised

loss function. Experimental results show that the proposed semi-supervised

approach significantly outperforms a supervised approach when labeled data

is only available for adult CMs. Moreover, it exhibits important computational

advantages and achieves 94.73% of agreement with respect to the state of the

art.
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Chapter 3

A domain adaptation approach to

classification of APs

One of the main assumptions of many machine learning algorithms is the

fact that training and test data are sampled from the same probability distribu-

tion. Unfortunately, that is not always the case. In applications where ground

truth labeling is an expensive and time-consuming procedure, one might want

to use any available labeled data for training, even when it belongs to a dif-

ferent domain. In sentiment classification of customer feedback, for example,

millions of public reviews of different products and services are easily avail-

able, but labeling enough data to cover every possible domain, including books,

restaurants, computers, movies, etc., would require a lot of effort. On the other

hand, it is reasonable to argue that labels on book reviews are informative to
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classify reviews of movies, for example. But how do we use labels from one

domain to make predictions for other domains?

Domain adaptation precisely addresses the problem of optimizing the per-

formance in one domain (called target domain), given training data in a differ-

ent domain (called source domain). While domain adaptation is conceptually

different from multi-task learning, where performance is optimized for mul-

tiple tasks in multiple domains simultaneously, in both cases information is

transferred between different domains, so they both fall under a broader con-

cept called transfer learning [59].

Unsupervised domain adaptation assumes labeled data available only in

the source domain to optimize performance in the target domain, as opposed

to supervised domain adaptation, where labels from both domains are used.

In this chapter we present an unsupervised domain adaptation approach1 to

train a recurrent neural network for classifying hESC-CM APs. In our case

the target domain corresponds to hESC-CM APs, whereas the source domain

is characterized by adult CM data for which ground truth labels are available.
1Although unsupervised domain adaptation is technically a semi-supervised method be-

cause it uses labeled and unlabeled data, we reserve the term “semi-supervised approach” for
the learning method presented in Chapter 2.
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3.1 Problem formulation

Let Ωe = {xe
j}Ne

j=1 be an unlabeled dataset from the target domain, where the

sequence xe
j = {xej(k) ∈ R}Kk=1 represents the jth embryonic AP and K is the

total number of samples in one cycle length. Let Ωa = {(xa
i , y

a
i )}Na

i=1 be a labeled

adult dataset from the source domain, where xa
i = {xai (k) ∈ R}Kk=1 is the ith

adult AP and yai ∈ {0, 1} is its ground truth label (yai = 0 denotes atrial and

yai = 1 denotes ventricular). We consider the problem of assigning a label ŷej to

each xe
j ∈ Ωe, where ŷej = 0 denotes atrial-like and ŷej = 1 denotes ventricular-

like.

Let Pe{x} be the probability density function of AP x in the embryonic do-

main and Pa{x} be the probability density function of AP x in the adult domain.

The underlying probability density functions Pe{x} and Pa{x} are assumed to

be unknown, but we assume that the probability distributions of the embryonic

and adult domains are different, i.e., Pe ̸= Pa. Besides, we assume covariate

shift which means that for a given AP x, the conditional probability of its class

is independent of its domain, i.e., Pe{y|x} = Pa{y|x} = P{y|x}.

According to [33], domain adaptation approaches to this problem can be

classified as: (i) Instance weighting approaches, in which source examples

are weighted in training in order to resemble the target distribution; (ii) Self-

labeling approaches, in which an initial guess of the labels in the target domain

69



CHAPTER 3. A DOMAIN ADAPTATION APPROACH TO
CLASSIFICATION OF ACTION POTENTIALS

is generated based on labeled source data, and iteratively modified according

to relationships within target domain; (iii) clustering-based methods, in which

labels from the source domain are transferred to target domain based on simi-

larities between inter-domain samples; or (iv) feature representation methods,

in which a subset of the original feature space or a new feature representation

is used to capture shared characteristics of both domains.

Instance weighting approaches require shared support between both distri-

butions, i.e., ∀x,Pa{x} = 0 iff Pe{x} = 0. In our case there are embryonic APs

that are never observed in adult data, therefore the shared support assumption

does not hold and instance weighting approaches are discarded. On the other

hand, self-labeling approaches as well as clustering-based methods often rely

on computing similarities between samples, which in the case of APs can be

computationally expensive. Thus, we follow a feature representation approach

to unsupervised domain adaptation, in which probability distribution functions

of both domains are forced to be similar in a different feature space φ(x).

3.2 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a statistic presented by Gretton et

al. in 2007 as an approach to design statistical tests to determine if two sam-

ples are drawn from different distributions [46]. It corresponds to the distance
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between the mean of the two samples mapped into a reproducing kernel Hilbert

space (RKHS). An estimation of the MMD between two datasets Ωa = {xa
i }Na

i=1

and Ωe = {xe
j}Ne

j=1 is given by

M̂MD (Ωa,Ωe) =

 1

Na

Na∑
i=1

ψ(xa
i )−

1

Ne

Ne∑
j=1

ψ(xe
j)


H

, (3.1)

where ψ(x) is the embedding of x into the RKHS. After defining the positive

semidefinite kernel as K(x, y) = ψ(x)⊤ψ(y), the MMD estimate shown in (3.1)

can be rewritten as

M̂MD
2
(Ωa,Ωe) =

[
1

N2
a

Na∑
i=1

Na∑
i′=1

K (xa
i ,x

a
i′)−

2

NaNe

Na∑
i=1

Ne∑
j=1

K
(
xa
i ,x

e
j

)
+

1

N2
e

Ne∑
j=1

Ne∑
j′=1

K
(
xe
j ,x

e
j′

)]
.

(3.2)

A commonly used kernel is the Gaussian kernel given by

K (xi,xj) = exp

(
−∥xi − xj∥2

2σ2
k

)
, (3.3)

where σk is a design parameter.

When the probability densities Pe and Pa are unknown, the MMD estimate

in (3.2) allows us to estimate how different they are based on their samples.

The MMD estimator has been successfully applied to learn appropriate kernels

for cross-domain SVM-based classification, regression and video concept detec-

71



CHAPTER 3. A DOMAIN ADAPTATION APPROACH TO
CLASSIFICATION OF ACTION POTENTIALS

tion, among others [60, 61]. The estimator has also been recently applied with

fixed kernels as a metric to learn the parameters of generative networks [62],

and the parameters of feature extraction layers for multi-task learning in mul-

tiple domains [63], which is closely related to our task.

3.3 A domain adapted LSTM approach

to classification of APs

As discussed in Chapter 2, LSTMs are a promising candidate for classifica-

tion of time-series in general, and consequently for classification of hESC-CM

APs in particular. However, one disadvantage of LSTMs is that they do not

explicitly model the domain shift between embryonic and adult APs. In this

section we propose a domain adapted LSTM approach to classification of APs.

In the proposed approach one of the hidden layers of the LSTM is used to de-

fine a shared feature between source and target domains (see Section 3.3.1)

and the MMD loss between the distribution of these features is used to reduce

the domain shift (see Section 3.3.2).

72



CHAPTER 3. A DOMAIN ADAPTATION APPROACH TO
CLASSIFICATION OF ACTION POTENTIALS

3.3.1 An RNN with LSTM units as feature ex-

tractor and classifier

The architecture of the proposed classifier is depicted in Figure 3.1 and

consists of one input layer, one hidden LSTM layer of dimension p = 3, and

a single sigmoid unit as the output layer. As in previous chapter, let W =

{Wi,Wf ,Wo,Wc, Ui, Uf , Uo, Uc, bi, bf , bo, bc,W, b} be the set of parameters of the

proposed classifier. In this approach the LSTM layer is explicitly considered

as a feature extractor, such that x ↦→ φW(x) = h(x, K) ∈ R3, where the depen-

dency of the output cell h(·) on the input sequence x is made explicit, and K

corresponds to its last time step2.

Output unit
4 parameters

𝑥(𝑘) ∈ ℝ

ℎ 𝑘 ℝ3
1

2

3

ො𝑦 ∈ [0,1]

LSTM, 3 cells, 
60 parameters

𝜎 𝜑𝒲 x 𝑇𝑊 + 𝑏∈

𝜑𝒲 x = ℎ(x, 𝐾) ∈ ℝ3

Figure 3.1: Proposed domain adapted classification approach.

The classification itself is carried out by the sigmoid unit that operates only

on the last value of the hidden layer output, i.e., the feature vector φW(x). The

predicted label then is given by ŷ = σ
(
φW(x)TW + b

)
, where W ∈ R3 and b ∈ R

2Subindex W on φW(x) is used to emphasize that the feature vector depends on some of the
parameters of the network.
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are parameters of the output unit, and σ(z) =
1

1 + e−z
corresponds to the point-

wise sigmoid function. For a given set of parameters W, we will represent

the classifier as the function fW(x) = ŷ that maps an action potential x to a

predicted label ŷ.

Similar to the architecture presented in Chapter 2, in this case the num-

ber of parameters is also small (64 parameter in total) to avoid overfitting.

However, the architecture design can be easily extended to address cases more

complex than binary classification.

3.3.2 Proposed domain adapted loss function

The basic idea behind the loss function we use is to enforce similarity be-

tween the probability density functions of the source and target domains in

feature space, i.e. Pa{φW(x)} ≈ Pe{φW(x)}, while training a classifier with

source domain data. Thus, the network learns to classify the samples in a

feature space in which embryonic and adult data “are similar”.

The proposed objective function is

1

Na

Na∑
i=1

ℓ (yai , fW(xa
i )) + γ

[
1

N2
a

Na∑
i=1

Na∑
i′=1

K (φW(xa
i ),φW(xa

i′))+

− 2

NaNe

Na∑
i=1

Ne∑
j=1

K
(
φW(xa

i ),φW(xe
j)
)
+

1

N2
e

Ne∑
j=1

Ne∑
j′=1

K
(
φW(xe

j),φW(xe
j′)
) ]
,

(3.4)

where γ ≥ 0 is a parameter that modulates the importance given to domain
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adaptation in the optimization. The first term of (3.4) corresponds to the super-

vised loss presented in the previous chapter, where ℓ(y, ŷ) is the binary crossen-

tropy loss in (2.6), which measures how close the predicted label ŷ is to the true

label y. The domain adaptation part of the objective function corresponds to

the empirical estimator of MMD in the feature space, where K(·, ·) represents

the Gaussian kernel presented in (3.3).

In this way, when the proposed loss function for domain adaptation is min-

imized, not only is the distance between predicted labels and ground truth

labels minimized, but so is the distance between the probability density func-

tions of the source and target domains in feature space.

We integrate the semi-supervised approach presented in the previous chap-

ter with the proposed domain adaptation approach via the following general

loss function

1− λ

Na

(
Na∑
i=1

ℓ (yai , fW(xa
i ))

)
+

λ

Ne (Ne − 1)

(
Ne∑
j=1

∑
j′ ̸=j

ℓu
(
fW(xe

j), fW(xe
j′)
))

+γ

[
1

N2
a

Na∑
i=1

Na∑
i′=1

K (φW(xa
i ),φW(xa

i′))−
2

NaNe

Na∑
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Ne∑
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K
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φW(xa
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+
1

N2
e

Ne∑
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Ne∑
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K
(
φW(xe

j),φW(xe
j′)
) ]
,

(3.5)

where λ is the balancing parameter between supervised and unsupervised

terms, and γ modulates the importance given to the domain adaptation term.
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3.4 Metrics to evaluate classification and

clustering

The set of metrics used to evaluate the performance of this approach corre-

sponds to: (i) classification accuracy when labels are available for test data; (ii)

Davies-Bouldin index (DBI) as a measure of clustering quality for unlabeled

datasets; and (iii) variation of information (VI) to evaluate the convergence of

the clusterings provided by the network during training. They are presented

and described in detail in Section 2.4.

3.5 Experiments

3.5.1 Adult CM data

The population of 1000 ventricular and 1000 atrial adult APs generated

by the procedure described in Section 2.5.1 is used for training and valida-

tion. However in this case, since adult samples are used to estimated the

MMD statistic, we decided to increase the number of representatives selected

by SMRS from 150 to 800 APs per class. Figure 3.2 shows the normalized APs

selected for both classes.
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(a) 800 normalized ventricular APs (b) 800 normalized atrial APs

Figure 3.2: Adult CM data: (a) A subset of 800 normalized synthetic ventric-
ular examples generated by the ORd model [20] and selected by the SMRS
method [54], and (b) a subset of 800 normalized synthetic atrial examples gen-
erated by the Nygren model [19] and selected by the SMRS method [54].

3.5.2 hESC-CM data

The two datasets available and described in Section 2.5.2 are used:

• Labeled single cell recording dataset: 16 atrial-like, 24 nodal-like

and 36 ventricular-like APs (see Figure 2.6) used for testing.

• Unlabeled optical mapping dataset: 6940 APs coming from 9 cell ag-

gregates. 1600 used for training and validation, and 5340 used for testing

(see Figure 2.7).

3.5.3 Implementation details

The classifier architecture was implemented in Keras [57] with TensorFlow

backend and trained using the RMSProp optimizer (with initial learning rate
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ϵ = 0.003). The network was initialized according to the default methods: states

of the LSTM layer were initialized orthogonally, the forget bias was set as bf =

1 [48], and the rest of the weights were initialized by the Glorot and Bengio

method [58].

The 800 representatives of ventricular APs and the 800 representatives of

atrial APs formed a dataset of Na = 1600 adult samples. On the other hand,

the training and validation subset of the optically mapped hESC-CMs formed

a dataset of Ne = 1600 embryonic samples. A set of 100 random mini-batches,

each one formed of 32 samples (na = 16 adults and ne = 16 embryonic), was built

at the beginning of training 3. Therefore, the gradient of the supervised part

of the loss function is estimated by the average of the na = 16 observations at

each iteration, and the MMD is estimated in every iteration using 16 examples

from each domain.

90 mini-batches were used for training, and 10 for validation. Figure 3.3

illustrates the training scheme described above. One epoch is considered to be

a complete pass of the training dataset, which in our case corresponds to 90

iterations of the optimization algorithm.

Three cases are studied: domain adaptation on supervised learning (DA-
3For domain adaptation itself no metamorphosis computation is needed; therefore we could

build random mini-batches during training. However, we decided to use a finite set of mini-
batches because (i) we want to make sure that the differences of performance with respect to
the semi-supervised approach are not attributable to the way in which the mini-batches are
generated; and (ii) we want to integrate both approaches and in that case the generation of
mini-batches has to be limited.
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Figure 3.3: Training scheme for the domain adaptation approach.

Sup-LSTM), domain adaptation on semi-supervised learning with Euclidean

distances (DA-Semi-LSTM-E), and domain adaptation on semi-supervised learn-

ing with metamorphosis distances (DA-Semi-LSTM-M). Different values of γ

and different training conditions were explored, and the ones that generated

best results per case are presented:

• DA-Sup-LSTM. The network was trained in a two step process: first 100

epochs with γ = 0 and λ = 0 as a Sup-LSTM initialization stage, and then

100 additional epochs with λ = 0 and γ = 10.

• DA-Semi-LSTM-E. The network was trained for 200 epochs with γ = 1

and λ = 0.1.

• DA-Semi-LSTM-M. The network was trained in a two step process: first
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100 epochs with γ = 0 and λ = 0 as a Sup-LSTM initialization stage, and

then 100 additional epochs with λ = 0.1 and γ = 5. The metamorphosis

parameter was set as σM = 0.3.

In each case the network was trained 5 times with the same initialization

for the weights. Each one of these 5 runs of the optimization algorithm is re-

ferred to as a “trial”. The variability observed across trials for a given method

(DA-Sup-LSTM, DA-Semi-LSTM-E or DA-Semi-LSTM-M) is attributable to the

stochastic implementation of the optimization algorithm by Keras with Tensor-

Flow backend. The kernel parameter was set as σk = 0.3.

3.5.4 Results

In this section the results of the DA-Sup-LSTM, DA-Semi-LSTM-E, and DA-

Semi-LSTM-M networks are presented individually. A comparative analysis of

their performances with respect to the performance of the networks introduced

in the previous chapter (Sup-LSTM, Semi-LSTM-E and Semi-LSTM-M) and

with respect to the state of the art (1NN classification with metamorphosis

distances) is presented in Section 3.5.5.
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3.5.4.1 DA-Sup-LSTM

Figure 3.4 presents the training results for the domain adaptation approach

on supervised learning. As it can be seen, abrupt changes in the loss function

are observed at epoch 100, which is expected since the training scheme changes

from the initialization stage (Sup-LSTM) to domain adaptation itself (DA-Sup-

LSTM). It is interesting to note in the second column of Figure 3.4 that al-

though the domain adaptation term of the loss function decreases compared to

the initialization stage in training set (top), it increases in the validation set

(bottom), which can be indicative of overfitting.
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Figure 3.4: Training results of the DA-Sup-LSTM network.

The third column of Figure 3.4 shows that the classification accuracy in

the adult domain stays close to one before and after incorporating the domain

adaptation term. Although the clustering results had converged during initial-
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ization stage (VI close to zero), they do not converge when the domain adapta-

tion term is incorporated, which means that multiple sets of weights generate

similar values in the loss function but different clustering results. As it can

be seen in Figure 3.5, some variability is observed between trials in the set of

weights at the last epoch of training.
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Figure 3.5: Weights of the DA-Sup-LSTM network at the last epoch of training
for five different trials.

The average prediction of the network over trials was computed. Figure

3.6a and Figure 3.6b present the samples from the optical mapping dataset

classified as atrial-like and ventricular-like, respectively. Figure 3.6c shows

their distributions in the cell aggregates.

The average prediction of the network across trials was also computed for

the single cell recording dataset. Figure 3.7 presents the histograms per class

(according to ground truth labels). Observe that all the atrial-like samples are

correctly classified (ŷ < 0.5) and only two ventricular-like samples are misclas-
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(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 3.6: Results of the DA-Sup-LSTM network in unlabeled hESC-CM
dataset (DBI: 0.2258).

sified, which leads to 96.15% of classification accuracy.
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Figure 3.7: Results of the DA-Sup-LSTM network in labeled hESC-CM dataset
(Classification accuracy: 0.9615).
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Table 3.1 summarizes the performance of the domain adaptation approach

on supervised learning for the individual trials and also for the average pre-

diction across trials. The accuracy corresponds to the classification accuracy

obtained in the single cell recording dataset at the last epoch, and the DBI

corresponds to the clustering quality index computed on the optical mapping

dataset at the last epoch of training.

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.9423 0.9423 0.9423 0.9615 0.9615 0.9615
DBI 0.2260 0.2324 0.2269 0.2379 0.2262 0.2258

Table 3.1: Summary performance of the DA-Sup-LSTM network.

In Figure 3.8 one of the trials is taken as an example to illustrate the effect

of domain adaptation in the distribution of the samples in feature space. Fig-

ure 3.8a shows the feature space φW(x) at the end of the initialization stage

(Sup-LSTM), in which adult data is depicted as black circles, and embryonic

data as yellow dots. 1600 adult samples have been plotted, but only two black

circles are observed because all atrial samples are mapped close together, and

ventricular samples are mapped close together but far from atrial samples.

Therefore, the distribution of adult data in feature space can be modeled as the

sum of two delta functions. Embryonic samples however seem to form a “path”

in feature space that connects atrial and ventricular adult samples. Figure 3.8c

shows the same data but in a 2D view. In order to estimate the density of em-
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bryonic samples along this path we mapped the feature vector φW(x) to R by

the parameters W and b of the output layer, and the histogram of φW(x)TW + b

is shown in Figure 3.8e. A magnified version of this histogram is presented in

Figure 3.8g, where it can be easily observed that a significant amount of em-

bryonic samples is mapped to a region of the space in which there are not adult

samples.

The second column of Figure 3.8 depicts how the distribution of the data

in feature space changes after domain adaptation. As it can be seen, although

there are still some embryonic samples mapped somewhere in between, the

distribution of embryonic samples approximates much better the distribution

of samples observed in the adult domain. Consequently, the classification task

is learned in regions of the feature space that not only represent the source

domain, but also the target domain. This fact is precisely what allows the

domain adaptation approach to perform much better than the supervised and

semi-supervised approaches presented before.

3.5.4.2 DA-Semi-LSTM-E

While in the domain adapted supervised approach (DA-Sup-LSTM) described

in the previous section we trained the LSTM parameters by first running 100

epochs with γ = 0 and then 100 epochs with γ = 104, in the domain adapted
4Always using λ = 0 since it corresponds to the supervised case.
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(a) Feature space, Epoch 100

?(x)
1?(x)

2

-1
11

00

0

?
(x

) 3

-1-1

1 Adult
Embryonic

Data

-1 0 1

?(x)
1

-1

0

1

?
(x

) 2

Adult
Embryonic

Data

-10 0 10
?(x)T W + b

0

500

1000

C
ou

nt Adult
Embryonic

Data

-1
11

?(x)
1

?(x)
2

00

0

?
(x

) 3

-1-1

1 Adult
Embryonic

Data

-1 0 1

?(x)
1

-1

0

1

?
(x

) 2

Adult
Embryonic

Data

-10 0 10
?(x)T W + b

0

200

400

600

800

C
ou

nt Adult
Embryonic

Data

(b) Feature space, Epoch 200
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(c) Feature space, 2D view, Epoch 100
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(d) Feature space, 2D view, Epoch 200
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(e) Histogram φW(x)TW + b, Epoch 100
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(f) Histogram φW(x)TW + b, Epoch 200
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(g) Histogram φW(x)TW + b (zoom in), Epoch
100
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Figure 3.8: Feature space representation before and after domain adaptation
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semi-supervised approach with Euclidean distances (DA-Semi-LSTM-E) we ob-

tained better results by training all LSTM parameters at once for 200 epochs

with γ = 1 and λ = 0.1. Figure 3.9 presents the training results. The first and

second columns show that the loss function as well as its semi-supervised and

domain adaptation terms converge to similar values across trials in both the

training (top) and validation (bottom) sets. The third column indicates that

the network learns to correctly classify samples in the adult domain (top), and

although the clustering results do not converge (bottom), the distance between

clusterings in consecutive epochs (VI) is significantly reduced by the end of

training. The sets of weights at the last epoch of training for each trial are

shown in Figure 3.10, where some variability is observed.
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Figure 3.9: Training results of the DA-Semi-LSTM-E network.

The average prediction of the DA-Semi-LSTM-E network across trials per

87



CHAPTER 3. A DOMAIN ADAPTATION APPROACH TO
CLASSIFICATION OF ACTION POTENTIALS

W
i

U
i

b
i

W
c

U
c

b
c

W
f

-4

-2

0

2

4

U
f

b
f

W
o

U
o

b
o

W b

-2
0
2
4
6
8

1
2
3
4
5

Trial #

Figure 3.10: Weights of the DA-Semi-LSTM-E network at the last epoch of
training for five different trials.

sample was computed. Figure 3.11a shows the samples classified as atrial-like

in the optical mapping dataset, and Figure 3.11b shows the ones classified as

ventricular-like. Figure 3.11c depicts their distribution on the cell clusters.

This method achieves a DBI of 0.2304 in the average prediction 5.

Figure 3.12 shows the histograms of the average prediction of the network

across trials on the single cell recording dataset, organized according to their

ground truth labels. As it can be noted, all the atrial-like samples are cor-

rectly classified (ŷ < 0.5), and only 5 ventricular-like samples are misclassified,

reaching a classification accuracy of 90.38%.

Table 3.2 presents the summary of the performance of the DA-Semi-LSTM-

E network for the individual trials and for the average prediction. Observe that
5The average prediction for a given sample is computed by averaging the output of the net-

work across trials at their last epoch of training. Then the DBI is computed on the clustering
results generated by the average prediction in the optical mapping dataset.
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(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 3.11: Results of the DA-Semi-LSTM-E network in unlabeled hESC-CM
dataset (DBI: 0.2304).
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Figure 3.12: Results of the DA-Semi-LSTM-E network in labeled hESC-CM
dataset (Classification accuracy: 0.9038).
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in this case there exists significant variability of performance between trials:

while the DA-Semi-LSTM-E method achieves the best performance in Trial #5

with 96.15% of accuracy in the single cell recording dataset (only 2 misclassi-

fied samples), in Trial #4 it obtains only 76.92% of accuracy (12 misclassified

samples).

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.9038 0.8654 0.9231 0.7692 0.9615 0.9038
DBI 0.2288 0.2304 0.2294 0.2396 0.2258 0.2304

Table 3.2: Summary performance of the DA-Semi-LSTM-E network.

3.5.4.3 DA-Semi-LSTM-M

In this case the network is trained in a two step process: first minimize the

supervised term with γ = 0 and λ = 0 for 100 epochs, and then minimize the

unsupervised and domain adaptation terms with λ = 0.1 and γ = 5, also for 100

epochs. The first column of Figure 3.13 shows that the loss function exhibits

abrupt changes due to the two step training and that all trials follow similar

trajectories despite some oscillations. Again a slightly increasing trend is noted

in the loss function evaluated in the validation set, which can be indicative of

overfitting.

The abrupt increase of the semi-supervised term observed in the second col-

umn of Figure 3.13 is explained by the incorporation of the unsupervised term
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(before epoch 100 only the supervised part is plotted). The domain adapta-

tion term is always plotted (although it is not being optimized in the first 100

epochs), and its small increase at epoch 100 is explained because there is a

compromise between optimization of the unsupervised and domain adaptation

terms.

In the third column of Figure 3.13 (top), although the classification of adult

samples is not perfect across the epochs, all trials ultimately re-learn to clas-

sify adult samples after unsupervised and domain adaptation terms are incor-

porated.
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Figure 3.13: Training results of the DA-Semi-LSTM-M network.

Figure 3.14 depicts the set of weights at the last epoch of training in differ-

ent trials. As observed, there exists significant variability. Part of the variabil-

ity can be related to the oscillating behavior observed in the VI (third column
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Figure 3.14: Weights of the DA-Semi-LSTM-M network at the last epoch of
training for five different trials.

of Figure 3.13 (bottom)), showing that there is not convergence in the cluster-

ing results. Additional epochs of training might help to reduce this variability

since there is a decreasing trend in the VI that does not seem to have converged

by the end of epoch #200.

The average prediction of the DA-Semi-LSTM-M network across trials was

computed. Figure 3.15a and Figure 3.15b show the samples classified as atrial-

like and ventricular-like in the optical mapping dataset, respectively. Figure

3.15c depicts the spatial distribution of the classes in the cell aggregates. DA-

Semi-LSTM-M generates a DBI of 0.2188, which exceeds the performance of

all the alternative approaches.

Regarding the single cell recording dataset, Figure 3.16 shows the histograms

of the average output per sample, organized according to their ground truth la-
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(a) Atrial-like APs (b) Ventricular-like APs

(c) Results in cell aggregates

Figure 3.15: Results of the DA-Semi-LSTM-M network in unlabeled hESC-CM
dataset (DBI: 0.2188).

bels. As observed, all ventricular-like samples are correctly classified, while

2 atrial-like samples are misclassified. Therefore, the DA-Semi-LSTM-M net-

work achieves a classification accuracy of 96.15%.

Table 3.3 shows the performance of DA-Semi-LSTM-M network for each

trial and also for the average prediction of the network across trials. The ac-

curacy corresponds to the classification accuracy in the single-cell recording

dataset, and DBI corresponds to the clustering quality in the optical mapping

dataset. As observed, DA-Semi-LSTM-M method reaches 100% of accuracy on

the single cell recording dataset in Trial #5, but it performs better in terms of
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Figure 3.16: Results of the DA-Semi-LSTM-M network in labeled hESC-CM
dataset (Classification accuracy: 0.9615).

clustering quality in Trial #1 (lowest DBI).

Trial Trial Trial Trial Trial Average
#1 #2 #3 #4 #5 prediction

Accuracy 0.9231 0.9231 0.9231 0.9231 1.0 0.9615
DBI 0.2100 0.2438 0.2185 0.2242 0.2226 0.2188

Table 3.3: Summary performance of the DA-Semi-LSTM-M network.

3.5.5 Analysis

Experimental results show that the minimization of the MMD statistic be-

tween embryonic and adult samples in the proposed training scheme leads to

more similar distributions of embryonic and adult data in feature space (see

Figure 3.8). Moreover, the implementation of domain adaptation via minimiza-

tion of MMD proves to be a powerful tool for the classification of hESC-CM
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APs: it allows for significant improvements in the performance of the three ap-

proaches presented in Chapter 2 by simply incorporating an additional term to

the loss function. In the supervised learning case, the classification accuracy in

the single cell recording dataset improved from 32.69% (Sup-LSTM) to 96.15%

(DA-Sup-LSTM), and the DBI decreased from 0.2834 to 0.2258 in the optical

mapping dataset. In the semi-supervised learning case with Euclidean dis-

tances there was an improvement from 76.92% (Semi-LSTM-E) to 90.38% (DA-

Semi-LSTM-E) in classification accuracy and a decrease in DBI from 0.2458

to 0.2341. Moreover, the classification accuracy improved from 76.92% (Semi-

LSTM-M) to 96.15% (DA-Semi-LSTM-M) and the DBI decreased from 0.2390 to

0.2188 in the semi-supervised learning case with metamorphosis distances6.

Although the slightly increasing trend consistently observed in the domain

adaptation term evaluated in the validation set could be indicative of overfit-

ting (see Figures 3.4 and 3.13), this is contradicted by the high level of per-

formance achieved by the domain adaptation approach when tested in a com-

pletely different dataset (single cell recording dataset). Therefore, the slightly

increasing trend is attributable to the particular subset of data chosen for val-

idation, which could be further analyzed by cross-validation experiments.

Figure 3.17 presents the results of the proposed domain adapted networks

along with the results of the methods proposed in [1] (1NN method with Eu-
6Figure 4.1 shows a comparison of all these cases.
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Method 1NN 1NN DA-Sup-LSTM DA-Semi-LSTM DA-Semi-LSTM
Templates 20 [1] 20 [1] 800 SMRS 800 SMRS 800 SMRS

Metric M E E M
Accuracy 0.9615 0.8654 0.9615 0.9038 0.9615

DBI 0.2297 0.2558 0.2258 0.2341 0.2188

Table 3.4: Comparing the results of the proposed domain adaptation method
with the results presented in [1]. Accuracy is computed in single cell recording
hESC-CM dataset. DBI is computed in optical mapping dataset. (E: Euclidean,
M: Metamorphosis).

clidean and metamorphosis distances). It can be observed that the average

prediction of the domain adapted networks is visually similar to the 1NN meta-

morphosis classification in the three cases (DA-Sup-LSTM, DA-Semi-LSTM-E,

and DA-Semi-LSTM-M). Table 3.4 and Figure 3.18 further compare the per-

formance of the proposed domain adaptation method with the state of the art

for this problem (1NN with metamorphosis distances) in terms of classification

accuracy in the single cell recording dataset and clustering quality (DBI) in the

optical mapping dataset. Interestingly, the addition of the domain adaptation

term to the supervised loss is enough to not only match the accuracy of the

state of the art (96.15%), but also outperform it in terms of clustering quality.

This is a powerful result since DA-Sup-LSTM approach also has significant

computational advantages with respect to the state of the art: it does not re-

quire any metamorphosis computation, and the classification of a new sample

simply corresponds to a forward pass through a small RNN with fixed weights

(as opposed to solving 20 computational expensive optimization problems as

the state-of-the-art method requires).
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1 NN Euclidean

Acc: 0.8654

DBI: 0.2558

1NN Metamorphosis

Acc:  0.9615

DBI:  0.2297

DA-Sup-LSTM

Acc:  0.9615

DBI:  0.2258

DA-Semi-LSTM-E

Acc:  0.9038

DBI:  0.2341

DA-Semi-LSTM-M

Acc:  0.9615

DBI:  0.2188

Figure 3.17: Comparison of the results of domain adaptation approach with
the results presented in [1]. Acc corresponds to the classification accuracy in
the single cell recording dataset, and DBI is the clustering quality index in the
optical mapping dataset.
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Figure 3.18: Accuracy in single cell recording dataset vs DBI in optical map-
ping dataset. (E: Euclidean, M: Metamorphosis).

The addition of the unsupervised term with metamorphosis distances (DA-

Semi-LSTM-M) improves the clustering quality even further and still preserves
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the high accuracy in the labeled dataset. However, in the DA-Semi-LSTM-M

network the decrease in the DBI (from 0.2258 to 0.2188) comes at the cost of a

time-consuming preprocessing phase in which 1500 metamorphosis distances

need to be computed. As it can be seen in Figure 3.18, the DA-Semi-LSTM-

E does not perform better than the state of the art, but it outperforms both

1NN with Euclidean distances, Semi-LSTM-E, and Semi-LSTM-M approaches

in terms of accuracy and clustering quality. The fact that DA-Sup-LSTM per-

forms better than DA-Semi-LSTM-E would suggest that the unsupervised term

with Euclidean distances does not provide meaningful information for the task;

however additional experiments exhaustively exploring the parameter space

(λ, γ) would be required to support such a conclusion.

3.6 Chapter summary

In this chapter we have presented a domain adaptation approach to classifi-

cation of hESC-CMs that builds on the supervised and semi-supervised learn-

ing approaches presented in Chapter 2. Domain adaptation is implemented

by incorporating an estimator of the MMD statistic into the loss function to

train an RNN with LSTM units. Experimental results show that the proposed

domain adaptation approach not only outperforms the state-of-the-art method

for this problem, but also presents significant computational advantages.
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Chapter 4

Conclusions

In this thesis we have proposed a recurrent neural network with LSTM

units for classification of hESC-CM APs and we have presented two different

methods for training it: semi-supervised learning and domain adapted learn-

ing. Both of them showed significant computational advantages with respect

to the state of the art in the classification of new samples. While the state-of-

the-art 1NN metamorphosis method requires the solution of 20 computational

intensive optimization problems, our approach just requires a forward pass

through a small RNN with fixed weights. In this regard, one of the main draw-

backs of existing approaches to classification of hESC-CM APs is their inability

to efficiently scale up to large datasets, which is fairly simple in the case of our

RNN classifier. Figure 4.1 presents a summary of our results compared to those

presented in [1] for 1NN classification with Euclidean and metamorphosis dis-
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tances in terms of accuracy in the single cell recording dataset, and DBI and

spatial distribution of classes in the optical mapping dataset.

1 NN Euclidean

Acc: 0.8654

DBI: 0.2558

1NN Metamorphosis

Acc:  0.9615

DBI:  0.2297

Sup-LSTM

Acc:  0.3269

DBI:  0.2834

Semi-LSTM-E

Acc:  0.7692

DBI:  0.2458

Semi-LSTM-M

Acc:  0.7692

DBI:  0.2390

DA-Sup-LSTM

Acc:  0.9615

DBI:  0.2258

DA-Semi-LSTM-E

Acc:  0.9038

DBI:  0.2341

DA-Semi-LSTM-M

Acc:  0.9615

DBI:  0.2188

Figure 4.1: Summary of results. Acc corresponds to the classification accuracy
in the single cell recording dataset, and DBI is the clustering quality index in
the optical mapping dataset. DA-Semi-LSTM-M obtains the best performance
(lowest DBI and 96.15% classification accuracy). 1NN Metamorphosis and DA-
Sup-LSTM also achieve 96.15% of accuracy, but present higher DBI.

Compared to the 1NN method with Euclidean distances, the proposed semi-
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supervised learning scheme proves to be a more suitable way of using Eu-

clidean distances. It leverages the fact that the Euclidean metric is a good

approximation of metamorphosis when distances are small. Therefore, com-

puting Euclidean distances within the embryonic domain in terms of similar-

ity factors provides more accurate information than computing Euclidean dis-

tances between different domains. However, this seems to be valid only when

embryonic test data are similar to embryonic training data: the proposed semi-

supervised learning approach does not exhibit great transferability capacity,

since it generates lower classification accuracy than the 1NN approach when

tested on a different embryonic dataset.

One of the important challenges in the classification of hESC-CMs is the

computational complexity of the metamorphosis algorithm. That is why we

implemented a modified mini-batch SGD optimization algorithm that uses pre-

defined random mini-batches (which allows us to train the network based on

a limited number of metamorphosis distances computed before training). We

experimentally analyzed the effect of this modification, showing that it has the

potential to behave similar to classic mini-batch SGD.

The poor performance achieved by a baseline supervised learning method

trained only on adult CM data confirms the fact that adult and hESC-CM APs

belong to different domains. This is further supported by the significant im-

provement observed with the proposed domain adapted learning scheme. The
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implementation of domain adaptation via minimization of MMD in the train-

ing of the RNN classifier not only is more computational efficient than the state

of the art but also outperforms it in terms of clustering quality. Moreover, it

generates high classification accuracy in a completely different dataset without

retraining, which demonstrates its transfer learning abilities.

We have shown that the integration of domain adaptation in supervised

and semi-supervised approaches surpasses the state of the art for this prob-

lem. However, there are many ways in which this framework can be further

exploited. First of all, we restricted the problem to binary classification since,

to the best of our knowledge, computational models of human pacemaker cells

are not as validated as models of atrial and ventricular cells [64]. Nevertheless,

from a mathematical perspective the number of phenotypes is not a constraint,

so if reliable adult pacemaker APs are available, minimum modifications are

required to include them in this framework. Second, although our results satis-

factorily demonstrated the potential of the proposed approaches, an exhaustive

exploration of the space of hyperparameters (mainly λ and γ but also ne, na, ϵ,

among others) is needed to find its optimal performance. Lastly, the results

presented in this thesis are significantly limited by the use of indirect metrics

such as a clustering quality index (DBI), which is forced by the absence of a

large ground truth labeled embryonic dataset. Therefore, an important step to

further validate the proposed approaches would be to evaluate its classification
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accuracy in a large and reliably labeled hESC-CM APs dataset.
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