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Abstract

Much of this thesis concerns hypergroups, multirings, and hyperfields. These

are analogous to abelian groups, rings, and fields, but have a multivalued addition

operation.

M. Krasner introduced the notion of a valued hyperfield; The prototypical example

is K/(1 + mn
K) where K is a local field. P. Deligne introduced a category of triples

whose objects have the form Trn(K) = (OK/m
n
K ,mK/m

n+1
K , ϵ) where ϵ : mK/m

n+1
K →

OK/m
n
K is the obvious map. In this thesis I relate the category of discretely valued

hyperfields to Deligne’s category of triples.

An extension of a local field is arithmetically profinite if the upper ramification

subgroups are open. Given such an extension L/K, J.P. Wintenberger defined the

norm field XK(L) as the inverse limit of the finite subextensions of L/K along the

norm maps. Wintenberger has defined an addition operation on XK(L), and shown

that XK(L) is a local field of finite characteristic. Using Deligne’s triples, I have given

a new proof of Wintenberger’s characterization of its Galois group.

The semifield Zmax is defined as {0} ∪ {uk | k ∈ Z} with addition given by
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ABSTRACT

um + un = umax(m,n). An extension of Zmax is a semifield containing Zmax. The

extension is finite if S is finitely generated as a Zmax-semimodule. In this thesis I

classify the finite extensions of Zmax.

There are two previously known methods for constructing a hypergroup from a

totally ordered set. In this thesis I generalize these to a family of constructions

parametrized by hypergroups H satisfying x− x = H for all x ∈ H.

We say a hyperfield K is selective if 1+ 1− 1− 1 = 1− 1 and for all x, y ∈ K one

has either x ∈ x+ y or y = x+ y. In this thesis, I show that a selective hyperfield is

characterized by a totally ordered group Γ, a hyperfield H satisfying 1− 1 = H, and

an extension ϕ ∈ Ext1(Γ, H×).

We say a triple of elements (x, y, z) of an idempotent semiring is a corner triple if

x+ y = y+ z = x+ z. We say an idempotent semiring is regular if whenever (x, y, a)

and (z, w, a) are corner triples, there exists b such that (x, z, b) and (y, w, b) are also

corner triples. I prove in this thesis that the category of regular idempotent semirings

is a reflective subcategory of the category of multirings.

Readers: Caterina Consani (Advisor) and Cristian Popescu.
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Chapter 1

Introduction

In this thesis, we will study the relation between hyperstructures (e.g. hyper-

groups, multirings, hyperrings, and hyperfields) and idempotent semistructures (e.g.

idempotent semigroups, idempotent semirings, and idempotent semifields). Hyper-

structures are generalizations of classical algebraic structures in which the addition

is multivalued, i.e. the sum of two elements is no longer an element but a subset. In

the following definition, 2H will denote the power set of H.

Definition 1.0.1. A canonical abelian hypergroup consists of a set H together with

a multivalued addition operation + : H × H → 2H sending two elements of H to a

subset of H such that the following properties hold:

(i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ H.

(ii) x+ y = y + x for all x, y ∈ H.

(iii) There exists 0 ∈ H such that x+ 0 = {x} for all x ∈ H.
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CHAPTER 1. INTRODUCTION

(iv) For all x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+ (−x).

A multiring is a set H together with a multivalued addition operation and a

single valued multiplication operation such that H is a commutative monoid under

multiplication, a canonical abelian hypergroup under addition, and such that x(y +

z) ⊆ xy + xz and 0x = 0 for all x, y, z ∈ H. A hyperring is a multiring such that

x(y + z) = xy + xz. A hyperfield is a hyperring such that every nonzero element has

a multiplicative inverse.

Hyperstructures have been applied to the study of local fields by M. Krasner.5

More recently, they have been applied to quadratic forms and real algebraic geometry

by M. Marshall,24 to tropical geometry by O. Viro,17 and to number theory by A.

Connes and C. Consani11.12

In chapter 3, we will give a brief summary of Krasner’s work on limits of local

fields.5 Given a natural number k, one may associate to a local field1 K the quotient

K/(1+mk
K) ofK by the action of the subgroup 1+mk

K ⊆ K×. This quotient carries the

structure of a hyperfield. One says that K is a limit of a sequence of discretely valued

fieldsKi if for every fixed k there exists N such thatKi/1+mk
Ki

∼= K/1+mk
K for i > N

and if these isomorphisms are compatible with the projectionsK/1+mk
K → K/1+mj

K

for j < k. Krasner has shown that in this case, a finite separable extension L of K

may be understood in terms of a sequence of finite separable extensions Li of Ki.

In the discretely valued case, P. Deligne has obtained a sharper result than Kras-

1In fact, Krasner proved his results with assuming the valuation is discrete. In the non-discrete
case, one may replace the subgroup 1 +mk

K
⊆ K× with a ball around 1.
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CHAPTER 1. INTRODUCTION

ner’s using more classical algebraic structures.6 We will describe his approach in

chapter 4. Rather than working with the hyperfield K/1 +mk
K , Deligne uses a triple

of data consisting of the ring OK/m
k
K , the module mK/m

k+1
K , and the canonical homo-

morphism mK/m
k+1
K → OK/m

k
K . This triple will be denoted Trk(K). We shall study

the relation between Deligne’s triples and Krasner’s valued hyperfields in chapter 5.

Deligne has proven the following theorem.

Theorem 1.0.2. [6, 2.8]Trk(K) determines the quotient Gal(K̄/K)/Gal(K̄/K)k of

the absolute Galois group.2.

If K is the limit of a sequence of local fields Ki, then Deligne’s result implies

in particular that for any fixed k, the k-th upper ramification groups of K and Ki

agree for sufficiently large i. Since the absolute Galois group is the union of its upper

ramification filtration, this recovers Krasner’s result that the absolute Galois group

of K may described in terms of the fields Ki and the compatibility between them.

A construction of similar flavor has been provided by J. P. Wintenberger. This

construction was given in the paper2 and will be described in chapter 6. To a suitable

infinite extension L of a characteristic 0 local field K, Wintenberger associates a field

XK(L) of finite characteristic, which is called the norm field of L/K. This field is

defined as the inverse limit of the finite subextensions of L/K under the norm maps.

Wintenberger has proven the following surprising theorem.

Theorem 1.0.3. [2, 3.2.3]Let L/K be an infinite arithmetically profinite extension

2The definition of this filtration on the absolute Galois group of K is given in Definition 2.0.12.
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CHAPTER 1. INTRODUCTION

of a local field. Then Gal(XK(L)/XK(L)) ∼= Gal(L̄/L).

In chapter 7, and specifically Theorem 7.4.8 we will give a new proof of Winten-

berger’s result using Deligne’s results on limits of local fields. The local field XK(L)

is a limit in the sense of Krasner and Deligne of the finite subextensions of L/K, so

its Galois group may be understood in terms of these fields. In particular any given

group in the upper ramification filtration of the absolute Galois group of XK(L) is

determined by corresponding group for any sufficiently large intermediate field F with

K ⊆ F . On the other hand, as in the case of any algebraic extension, L is the union of

the finite subextensions of L/K. Using group-theoretic computations with the upper

ramification groups, one may show that for any fixed k, the k-th upper ramification

groups of L and F coincide when F is a suitably large finite subextension of L/K.

Since the upper ramification groups of L and XK(L) both coincide with those of suit-

ably large finite subextensions of L/K, all of the upper ramification groups of L agree

with those of XK(L). Upon proving these identification are compatible in a certain

sense, we may use the fact that the absolute Galois group is a colimit of the upper

ramification groups to obtain an isomorphism between the absolute Galois groups of

L and of XK(L).

The remaining part of this thesis will be devoted to the study of idempotent

semistructures. An idempotent semigroup satisfies the axioms of an abelian group

except that instead of requiring the existence of additive inverses we require that

x + x = x for all x. An idempotent semiring is like a ring, but forms an idempotent

4



CHAPTER 1. INTRODUCTION

semigroup under addition rather than an abelian group. An idempotent semigroup

is selective if for all x, y one has x + y ∈ {x, y}. Precise definitions will be given in

Definition 8.2.1. Idempotent and selective semigroups appear naturally in the study

of ordered sets. Idempotent semifields have been studied in connection with tropical

geometry.

The semifield Zmax has played a prominent role in the recent work of A. Connes

and C. Consani. They have shown that the epicyclic category may be interpreted

as a category of projective spaces over Zmax.
13 They have also defined a geometric

object called the arithmetic site, on which the Riemann zeta function can be viewed

as counting fixed points of a Frobenius operator.26 Their arithmetic site consists of

the semiring N̄ = (−N)max viewed as an object of the topos N×. Zmax arises as the

semifield of fractions of N̄, and furthermore, the category of points of N× is equivalent

to the category of subextensions of Qmax/Zmax.

A natural question which arises is to classify the finite subextensions of Zmax,

that is the semifields which contain Zmax and are finitely generated as a module over

Zmax. Given a positive integer n, Connes and Consani obtained an extension F (n),

which may be viewed as the subsemifield of Qmax corresponding to rational numbers

with denominator dividing n. One may also wish to understand division semirings

containing Zmax and finite dimensional as a module over Zmax. I have proven the

following theorem about finite extensions and division semialgebras over Zmax. In

chapter 8, we classify the finite extensions of the semifield Zmax, by proving the

5



CHAPTER 1. INTRODUCTION

following theorem (c.f. Theorems 8.7.3 and 8.9.8).

Theorem 1.0.4. Let n be a positive integer. Up to isomorphism, Zmax has exactly

one extension of degree n. Furthermore, if D is a division semiring containing Zmax

and is finitely generated as a semimodule over Zmax then D is commutative.

In chapters 10 and 9, we turn to the problem of relating hyperstructures with

idempotent semistructures. One expects the two types of structure to be related

because they both arise naturally in connection with tropical geometry, and with

Connes’ and Consani’s work on the Riemann zeta function and the absolute point.

Furthermore, there are two known methods for constructing a hypergroup from a

totally ordered set, or equivalently from a selective hypergroup. The first, which

was independently discovered by M. Ştefǎnescu and by Viro17,22 puts a multivalued

addition on the underlying set of the selective semifield. The second, which was

discovered by S. Henry,14 involves gluing two copies of the totally ordered group

together, and may be thought of as a modified version of the Grothendieck group

construction.

In chapter 9, we define a class of hypergroups called idempotent hypergroups by

analogy with idempotent semigroups. We show that every hypergroup H is canoni-

cally equipped with a map v to a poset Γ. In the case of idempotent hypergroups, the

definition of this map resembles that of the ordering on an idempotent semiring, and

we have proven the following theorem, which tells us that v behaves like a valuation

(c.f. section 9.2, especially Lemma 9.2.13).

6



CHAPTER 1. INTRODUCTION

Theorem 1.0.5. Let H be an idempotent hypergroup. Let v and Γ be as above. Then

v(x) = 0 if and only if x = 0. For all x ∈ H, we have v(x) = v(−x), and for all

x, y ∈ H and all t ∈ Γ with v(x) ≤ t and v(y) ≤ t, we have v(x+ y) ≤ t.

However the target Γ of the valuation we define is general only partially ordered,

rather than totally ordered. We then define the notion of a selective hypergroup by

analogy with selective semigroups. To a selective hyperfield K, one may associate

a selective hyperfield k whose valuation is trivial, and which may be viewed as the

residue hyperfield. One may also associate to K it’s value group Γ, which is the

totally ordered that appears as the image of its valuation. To the selective hyperfield

K, one may also associate a short exact sequence 1→ k× → K× → Γ→ 1. We will

show the following theorem (c.f. Corollary 9.4.15).

Theorem 1.0.6. Let k be a trivially valued selective hyperfield, and Γ be a totally

ordered group. Then selective hyperfields with residue hyperfield k and value group Γ

are classified by Ext1(Γ, k×), that is by the set of isomorphism classes of short exact

sequences 1→ k× → G→ Γ→ 1.

In chapter 9, we will also give a method of producing a selective hypergroup

T (S, k) from a totally ordered set S, and a selective hypergroup k, such that the

valuation on k is trivial. In the case where k = K is the Krasner hyperfield3, our

construction recovers the aforementioned construction of Ştefǎnescu and Viro. In the

case where k = S, our construction is that of Henry.

3c.f. Example 3.1.5.
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CHAPTER 1. INTRODUCTION

In chapter 10, we generalize the construction of Ştefǎnescu and Viro in a different

direction by relaxing the condition that the input to the construction must be totally

ordered. We introduce a class of posets, which we call regular posets, and which serve

as the setting for our construction. They are defined as follows:

Definition 1.0.7. Let S be a poset. A multiset {x1, . . . , xn} ⊆ S is called a corner

set if for all 1 ≤ j ≤ n and all z ∈ S with xi ≤ z for all i ̸= j, one has xj ≤ z. A

poset is regular if whenever x, y, z, b are chosen such that {x, y, b} and {z, w, b} are

corner sets, there exists a such that {x, z, a} and {y, w, a} are corner sets.

We prove the following theorem (c.f. Theorem 10.1.15).

Theorem 1.0.8. Every modular lattice is a regular poset. In particular, this applies

to any distributive lattice.

We may use this theorem to show in particular that any totally ordered set is

regular, that any idempotent semifield is regular, and that polynomials over a regular

idempotent semiring are regular. Furthermore, the set of ideals of a ring, or subgroups

of an abelian group is a regular poset when partially ordered by inclusion.

On any regular poset with a minimal element, and in particular on any regular

idempotent semigroup, we define a multivalued addition operation making the poset

into a hypergroup, as follows:

Theorem 1.0.9. Let S be a regular poset with minimal element. For x, y ∈ S,

let x + y = {z | {x, y, z} is a corner set.}. Then under this addition operation, S

8



CHAPTER 1. INTRODUCTION

becomes a hypergroup. This gives a functor Y from the category of regular idempotent

semigroups to the category of hypergroups. Furthermore, Y induces a functor from

regular idempotent semirings to multirings.

We prove the following theorem (c.f Theorems 10.2.6 and 10.3.3, as well as Propo-

sition 10.2.12).

Theorem 1.0.10. Let S be a regular idempotent semiring. Then ideals of Y (S)

correspond to strong ideals of S.

We show there is a functor Sf from hypergroups to regular semigroups. This

functor takes a hypergroup to the set of its finitely generated subhypergroups. We

then prove the following theorem (c.f theorems 10.4.14, 10.4.15, and 10.4.13).

Theorem 1.0.11. The functor Sf from hypergroups to idempotent semigroups is left

adjoint to the functor Y from idempotent semigroups to hypergroups. Furthermore,

Y is fully faithful and Sf ◦ Y is naturally isomorphic to the identity via the counit of

the adjunction.

When R is a multiring, Sf (R) naturally caries the structure a regular idempotent

semiring. In the case where R is a ring, Sf (R) is the target of the universal valuation

introduced by J. Giansiracusa and N. Giansiracusa25.23 Sf may be viewed as a functor

from multirings to idempotent semirings, while Y may be viewed as a functor in the

reverse direction. In section 10.5, we prove the following theorem.

9
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Theorem 1.0.12. The functor Sf from multirings to idempotent semirings is left

adjoint to the functor Y from idempotent semirings to multirings. Furthermore, Y is

fully faithful and Sf ◦ Y is naturally isomorphic to the identity via the counit of the

adjunction.

1.1 Notation

In this paper, all rings will be commutative with identity except when otherwise

stated. All semigroups will be assumed abelian. All hypergroups will be assumed to

be canonical and abelian. Until chapter 8, valuations will have values in a subgroup

of R rather than an arbitrary totally ordered group. The completion of a metric space

X will be denoted X̂

If R is a local ring, we will denote its maximal ideal by mR.

If K is a field, K̄ will denote its separable closure, and we let GK = Gal(K̄/K).

If L/K is a finite field extension, NL/K will denote the norm map from L to K.

We say K is a local field if it is complete with respect to a discrete valuation

and has a perfect residue field of finite characteristic. Note that this is more general

than the usual definition since we do not require that the residue field be finite. We

will denote the residue characteristic by p. If K is a local field, we denote its ring of

integers by OK and the maximal ideal by mK = mOK
. We will denote its valuation

by v.

10



Chapter 2

Ramification Theory

In this section we give a brief review of the upper and lower ramification filtrations

of the Galois group of a local field. Essentially all of the material in this section may

be found in [1, IV.1,IV.3]. Throughout this section, K will denote a local field.

Definition 2.0.1. If L/K is a finite Galois extension of local fields and i ∈ R, we let

Gal(L/K)i = {σ ∈ Gal(L/K) | v(σx − x) ≥ i + 1∀x ∈ L}. This gives a decreasing

filtration by normal subgroups on Gal(L/K) called the lower ramification filtration.

Remark 2.0.2. For any x, let ⌈x⌉ denote the smallest integer ≥ x. Then Gal(L/K)i =

Gal(L/K)⌈i⌉ for all i.

Example 2.0.3. Gal(L/K)−1 = Gal(L/K), Gal(L/K)0 is the inertia group, and

Gal(L/K)1 is the wild inertia group.

If K ⊆ E ⊆ L, then the canonical map Gal(L/E) → Gal(L/K) is compatible

with the filtration in the sense that it sends Gal(L/E)i to Gal(L/E)i. More precisely,

11



CHAPTER 2. RAMIFICATION THEORY

the image of Gal(L/E)i under the inclusion is Gal(L/K)i ∩ Gal(L/E). However

Gal(L/K) → Gal(E/K) is not compatible with the filtration. In order to give a

precise description of what this map does to the lower ramification filtration, we will

need the following definition.

Definition 2.0.4. Let L be a finite Galois extension of a local field K, and let

ϕL/K(u) =
 u
0

|Gal(L/K)t|
|Gal(L/K)0|

dt for u ≥ −1.

We now list some of the basic properties of this function.

Remark 2.0.5. Let L/K be finite Galois. Because the integrand in 2.0.4 is piecewise

constant, ϕL/K is piecewise linear and continuous. Because the integrand is positive,

ϕL/K is strictly increasing and hence one-to-one. Because the integrand is bounded

by 1, we always have ϕL/K(x) ≤ x. Since ϕL/K(−1) = −1 and ϕL/K(x) tends to ∞

as x → ∞, it follows from the intermediate value theorem that ϕL/K : [−1,∞) →

[−1,∞) is bijective. Also ϕL/K(x) = x for −1 < x ≤ 0.

The importance of ϕL/K comes from the following theorem.

Theorem 2.0.6. [1, IV.3 Lemma 5]Let L/K be finite Galois, and let E/K be a

Galois subextension. The image of Gal(L/K)i in Gal(E/K) is Gal(E/K)ϕL/E(i).

For future convenience we would like to define ϕL/K for non-Galois extensions. To

do this, we need the following result.

Theorem 2.0.7. [1, IV.3 Prop 15]Let L/K be finite Galois, and let E/K be a Galois

subextension. Then ϕL/K = ϕE/K ◦ ϕL/E

12



CHAPTER 2. RAMIFICATION THEORY

Definition 2.0.8. Let L/K be a finite separable extension. We define ϕL/K = ϕM/K ◦

ϕ−1
M/L where M/K is any finite Galois extension containing L.

The following result follows easily from 2.0.7.

Corollary 2.0.9. The function ϕL/K of 2.0.8 is well defined. Theorem 2.0.7 holds

even when the extensions are not Galois. Furthermore all of the statements in 2.0.5

are true without the hypothesis that L/K is Galois.

By 2.0.5, ϕL/K is invertible, so we can make the following definition.

Definition 2.0.10. Suppose L/K is finite and separable. We let ψL/K : [−1,∞) →

[−1,∞) be the inverse of ϕL/K .

It is worth mentioning the following facts, which are trivial consequences of the

corresponding facts for ϕL/K .

Remark 2.0.11. If E/K is a subextension of L/K, then ψL/K = ψL/EψE/K . The

function ψL/K is continuous, piecewise linear, bijective, and strictly increasing. For

all x ∈ [−1,∞), ψL/K(x) ≥ x. Also, ψL/K(x) = x for −1 ≤ x ≤ 0.

We will now introduce a filtration on Gal(L/K) which is compatible with the map

Gal(L/K)→ Gal(E/K), but is no longer compatible with Gal(L/E)→ Gal(L/K).

Definition 2.0.12. Let L/K be a finite Galois extension of a local field. Then we

define Gal(L/K)u = Gal(L/K)ψL/K(u). This is called the upper ramification filtration.

An easy calculation using 2.0.7 and 2.0.6 shows the following standard result.

13
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Proposition 2.0.13. 1 Let L/K a finite Galois extension. Let E/K be a Galois

subextension. Then the image of Gal(L/K)u in Gal(E/K) is Gal(E/K)u.

The fact that the lower ramification filtration is compatible with the inclusion

Gal(L/E)→ Gal(L/K) immediately implies the following standard result.

Proposition 2.0.14. 1 Let L/K a finite Galois extension. Let E/K be a subexten-

sion. Then Gal(L/E)u = Gal(L/K)ϕE/K(u) ∩Gal(L/E).

The upper ramification filtration in fact extends to a filtration on the absolute

Galois group of a local field.

Definition 2.0.15. Let Gu
K = lim←−Gal(L/K)u, where the limit is over the poset of

all finite Galois extensions L/K inside a fixed separable closure, and where the maps

Gal(L/K)u → Gal(E/K)u appearing in the limit are those given by 2.0.13. This will

be regarded as a subgroup of GK = lim←−Gal(L/K) in the obvious way.

Proposition 2.0.14 has the following corollary.

Corollary 2.0.16. 1 Let L/K be a finite separable extension of a local field. Then

Gu
L = G

ϕL/K(u)

K ∩GL.

We now give a formula for ψL/K analogous to 2.0.4.

Remark 2.0.17. If L/K is finite Galois, then ψL/K(x) =

 x

0

|Gal(L/K)0|

|Gal(L/K)u|
du. This

fact may be proven by differentiating ψL/K using the inverse function theorem. In

addition, for any finite separable L/K, ψL/K(t) =

 t

0

|G0
K |

|GLGu
K |
du. In the Galois case,

14
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this reduces to the previous formula. For the general case one reduces to the Galois

case by using the chain rule to show that if fL/K(t) denotes

 t

0

|G0
K |

|GLGu
K |
du, then

fL/K = fL/EfE/K for any intermediate extension E.

Finally we introduce some notation which will be useful in later chapters.

Definition 2.0.18. Let L/K be a separable extension of K. Let u ∈ R. We will say

L/K has ramification bounded above by u if Gu
K ⊆ GL. We say it has ramification

bounded below by u if Gu
KGL = GK .

Example 2.0.19. Let K be a local field and L/K be finite and separable. L/K has

ramification bounded above by 0 iff it is unramified. It has ramification bounded

below by 0 iff it is totally ramified.

The terminology is motivated by the following lemma. In fact,6 defines L/K to

have ramification bounded by u if Gal(L̃/K)u = 1.

Lemma 2.0.20. Let L/K be a separable extension with Galois closure L̃/K. Then

L/K has ramification bounded above by u if and only if Gal(L̃/K)u = 1.

Proof. First suppose Gal(L̃/K)u = 1. Then Gu
K ⊆ GL̃ ⊆ GL.

Conversely suppose L/K has ramification bounded above by u. Then GL ⊆ Gu
K .

Since Gu
K is normal and since GL̃ is the normal closure of GL, it follows that GL̃ ⊆ Gu

K .

Hence Gal(L̃/K)u = 1.

Definition 2.0.21. CuK will denote the category of finite separable extensions with

ramification bounded above by u

15



Chapter 3

Krasner’s valued hyperfields and

limits of local fields

In this chapter we will present a summary of Krasner’s theory about the limit

of a sequence of local fields; in particular this chapter will contain no original work.

Krasner defined the notion of the limit of a sequence of local fields by reference to

certain quotients of the local fields. Such quotients are hyperfields, which means that

they have a well behaved multivalued addition operation. Krasner has shown that if

K is the limit of a sequence Ki of local fields, then extensions of K may be understood

in terms of suitable sequences of extensions of the Ki.

16
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3.1 Hyperstructures

In this section we will present a generalization of classical algebraic structures to

those with a multivalued operation. These will often occur as quotients of algebraic

structures by an equivalence relation. In particular, by generalizing fields to hyper-

fields, we will be able to obtain interesting quotients of fields. This idea was first

pursued by Krasner, who showed essentially that the quotient K/(1 +mi
K) of a local

field retains a lot of arithmetic information about K. More recently, this idea has

been studied by Connes and Consani for the development of algebraic geometry and

arithmetic over hyperrings.

Definition 3.1.1 ( [5, §3]). We will use PX to denote the power set of a set X. A

hypergroup H is a set together with a subset valued binary operation H ×H → PH

such that for all x, y, z ∈ H, x(yz) = (xy)z and H = xH = Hx. For A,B ∈ PH, we

are using AB to denote {xy | x ∈ A, y ∈ B}, and for x ∈ H we write xA to denote

{x}A. H is called abelian if ab = ba for all a, b ∈ H.

Example 3.1.2. Let G be a group. Let ∼ be an equivalence relation on G. Let

H = G/ ∼. Define a subset valued binary operation on H by ab = {xy | x ∈ a, y ∈ b}.

Then H is readily seen to be a hypergroup.

Definition 3.1.3 ( [5, §3]). A commutative hypergroup is called canonical if it sat-

isfies the following axioms:

(i) There is an element 0 ∈ H such that x+ 0 = 0 + x = {x}∀x ∈ H.

17



CHAPTER 3. KRASNER’S VALUED HYPERFIELDS AND LIMITS OF LOCAL
FIELDS

(ii) For any x ∈ H, there is a unique element of H (denoted −x) such that

0 ∈ x+ (−x). We will write x− y to denote the set x+ (−y).

(iii) For any x, y, z ∈ H, we have x ∈ y + z if and only if x+ (−z) ∈ y.

Since we will not be interested in non-canonical or non-abelian hypergroups, for

the remainder of this thesis, the word hypergroup will refer to canonical abelian

hypergroups.

Definition 3.1.4 ( [5, §3]). A (commutative) multiring is a set H that is both a

commutative canonical hypergroup and a commutative monoid, and which satisfies

the following:

(i) (x + y)z ⊆ xz + yz, where + denotes the hypergroup operation, and concate-

nation denotes the monoid operation.

(ii) 0x = x0 = 0 for all x ∈ H, where 0 is the identity element of the underlying

hypergroup.

(iii) H ̸= {0}. A hyperring is a multiring satisfying the stronger distributive law

(x+y)z = xz+yz. A commutative hyperring is a hyperfield if every nonzero element

has a multiplicative inverse.

Example 3.1.5. Let K = {0, 1} with 1+1 = {0, 1} and with the obvious multiplication.

One may think of K as the quotient of a ring other than F2 by the relation which

identifies all nonzero elements. K is called the Krasner hyperfield. Let S = {0, 1,−1}

be equipped with the obvious multiplication and with addition satisfying 1 + 1 = 1,

−1 + (−1) = −1, and 1 − 1 = S. One may think of S as the quotient of R by the

18
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relation identifying any two nonzero elements that have the same sign. S is called the

hyperfield of signs. We let Φ = S1∪{0} be the union of the circle group and the zero

element with the usual multiplication. If x, y ∈ S1 are antipodal, we let x + y = Φ;

otherwise x+ y is the shortest arc from x to y.

Example 3.1.6. Let Y× = R≥0 equipped with the usual multiplication. We define

x + y = x if x > y and x + x = {t ∈ Y× | t ≤ x}. Let T R = R with the

usual multiplication. We define addition by x + y = x if |x| > |y|, x + x = x,

and x − x = {t ∈ T R | |t| ≤ |x|}. Let T C = C with the usual multiplication. For

x, y ∈ T C with |x| > |y| let x+y = x, and similarly for when |y| > |x|. For x, y ∈ T C

with y = −x we let x + y = {t ∈ T C | |t| ≤ |x|}. Otherwise we let x + y be the

shortest arc containing x and y on the circle of radius |x| around 0. Then Y×, T R,

and T C are hyperfields. Y×, T R, and T C were introduced by O. Viro in connection

with tropical geometry.17

The hyperfields Y×, T R, and T C played a prominent role in Viro’s work; in

particular a tropical variety may be viewed as the zero set of a family of polynomials

over Y×.

Definition 3.1.7. A homomorphism between two multirings or hyperringsH1 andH2

is a map f : H1 → H2 such that f(1) = 1, f(xy) = f(x)f(y) and f(x+y) ⊆ f(x)+f(y)

for all x, y ∈ H1.

Example 3.1.8. If R is a ring and H is a hyperring obtained as a quotient of R, then

the quotient map is a homomorphism of hyperrings.
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Example 3.1.9. Any real number q induces a hyperring homomorphism Z[t] → S

sending a polynomial f(t) to the sign of f(q). If q is algebraic we can also define

a hyperring homomorphism Z[t] → S sending f(t) to lim
x→q+

Sign(f(x)) as well as a

homomorphism sending f(t) to lim
x→q−

Sign(f(x)). One can also define homomorphisms

Z[t]→ S corresponding to ±∞. Connes and Consani have shown in11 that these are

the only homomorphisms from Z[t] to S.

Example 3.1.10. Let Y× be as in Example 3.1.6. Let F be a field with a non-

archimedean absolute value. Then the valuation v(x) := −ln|x| defines a homo-

morphism F → Y×. The fact that v is a homomorphism of multiplicative monoids

is simply a restatement of the fact that v(xy) = v(x) + v(y), while the fact that

v(x + y) ⊆ v(x)♢v(y) is a restatement of the non-archimedean triangle inequality.

Given a variety V over a non-archimedean field F , one would expect that morally

V should induce a ’variety over Y’ by base change. This idea is closely related to

tropical geometry, where one studies algebraic geometry over the semiring R ∪ {∞},

in which addition is min and multiplication is addition of real numbers.

Definition 3.1.11 ( [5, pg 144]). A valued hyperfield is a hyperfield equipped with

a map | · | : H → R satisfying the following axioms:

(i) |x| ≥ 0 with equality if and only if x = 0.

(ii) |xy| = |x||y| for all x, y ∈ H.

(iii) |x+ y| ≤ max(|x|, |y|).

(iv) |x+ y| consists of a single element unless 0 ∈ x+ y. This axiom in particular
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implies that there is a well defined metric on H given by d(x, y) = |x− y| for x ̸= y

and d(x, x) = 0 for any x ∈ H (It is guaranteed to be a metric by axioms (i) and

(iii)).

(v) There is a real number ρ > 0 such that either x + y is a closed ball of radius

ρmax(|x|, |y|) for all x and y, or x + y is an open ball of radius ρmax(|x|, |y|) for all

x, y ∈ H. The smallest such ρ is called the norm of the valued hyperfield.

Example 3.1.12 ( [5, pg 146]). Let e ∈ N be at least 1. Krasner has shown that if F

is a local field, then F/(1 + me
F ) is a valued hyperfield. In fact, he showed in10 that

the quotient of any commutative ring by a subgroup of its multiplicative group is a

hyperring, so that F/(1 +me
F ) is a hyperfield. To define the absolute value, we note

that if x ∈ y(1 + me
F ), then |x| = |y|, so |x̄| = |x| is well-defined. (i), (ii) and (iii) of

the definition of a valued hyperfield are obvious. For (v), we note that for x, y ∈ K,

x̄ and ȳ are balls of radius p−e|x| and p−e|y| respectively. For (iv), we apply (v) to

see that x̄+ ȳ is a ball around x+ y with radius less than max(|x|, |y|). The absolute

value in K is constant on any ball not containing 0.

Example 3.1.13. Given a real number ρΠ, we can define an equivalence relation on

any valued hyperfield H, in which the equivalence class of x is the ball of radius ρ|x|

around x. The quotient of H by this relation will be denoted H/Π, and can be shown

to be a hyperfield. In the case where H is a field, this is Example 3.1.12.

Definition 3.1.14 ( [5, pg 148]). A map f : H1 → H2 between valued hyperfields is

called a homomorphism if the following axioms hold:
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(i) f(xy) = f(x)f(y) for all x, y ∈ H1.

(ii) f−1(a + b) = f−1(a) + f−1(b) for all a, b ∈ H2. Note that this axiom differs

from the definition of a homomorphism of hyperrings.

(iii) |f(x)| = |x| for all x ∈ H1.

(iv) The fiber over 1 is a ball. Consequently, all fibers are balls.

3.2 Limits

In this section, we will explain how to obtain a valued field from a suitable sequence

of hyperfields. We then discuss the notion of a limit of a sequence of local fields, and

what it means for a sequence of elements of these fields to converge.

Theorem 3.2.1 ( [5, §5]). For each i ∈ N, let Hi be a complete valued hyperfield, and

let ρi be its norm. Suppose ρi → 0 as i → ∞, and suppose we are given surjective

homomorphisms θi : Hi+1 → Hi for all i. Then K = lim←−Hi is a complete valued field.

Proof. Because θi is a monoid homomorphism, K is a monoid in which every nonzero

element is a unit. Let α, β ∈ K, and let αi, βi ∈ Hi be the corresponding elements.

Since θk preserves absolute value for all k, |αj| is independent of j. We will denote

the common value by |α|.

Let θi,j : Hi → Hj be the map induced by the maps θk. I claim that for each i,

θj,i(αj + βj) converges in the sense that for any γj ∈ αj + βj, θj,i(γj) converges to a

value independent of the choice of γj. Let γ′j be another choice. Then by Definition
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3.1.11(v), d(γj, γ
′
j) ≤ ρjmax(|α|, |β|). Since lim

j→∞
ρj = 0, lim

j→∞
d(γj, γ

′
j) = 0. This shows

that the limit of θj,i(γj), if it exists, does not depend on the choice of γj. In particular,

we can take γ′j = θk,j(γk), which is in αj +βj by Definition 3.1.14(iii), and by the fact

that θi,j(αi) = αj. Doing so shows that θj,i(γj) is Cauchy (and hence convergent),

and we just saw that it is independent of the choice of γi.

It is straightforward to check that θi,k( lim
j→∞

θj,i(γj)) = lim
j→∞

θj,k(γj), so that we

have an element α+ β ∈ K defined by (α+ β)i = lim
j→∞

θj,i(γj). One then verifies that

this addition and the absolute value defined above make K into a complete valued

field.

Definition 3.2.2 ( [5, pg 154]). We retain the notation of Theorem 3.2.1 and its

proof, and we let ai ∈ Hi. We say ai converges additively if d(ai, θi(ai+1)) tends to

0 as i → ∞. We say an element l ∈ K is its limit if lim
i→∞

d(li, ai) = 0. We say ai

is multiplicatively convergent if it has finitely many nonzero terms, or if it converges

additively to a nonzero limit. The convergence is said to be canonical if ai = li for

all i.

Remark 3.2.3 ( [5, pg 154]). Every additively or multiplicatively convergent sequence

has a limit.

Definition 3.2.4 ( [5, pg 155-156]). Let K,F be local fields. We say that K and

F are residually isomorphic of norm p−e if the valued hyperfields K/(1 + me
K), and

F/(1 +me
F ) are isomorphic.
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Definition 3.2.5 ( [5, pg 156]). We say a sequence of local fields Ki converges if for

all i ∈ N, there exists ρi such that Ki and Ki+1 are residually isomorphic of norm ρi

and ρi → 0 as i → ∞. We may assume that ρi is decreasing. We say that the limit

of the sequence Ki is lim←−Ki/UKi;ρi , where UK;ρ is the closed ball of radius ρ around

1 in K.

Example 3.2.6 ( [5, pg 159-160]). Let k be a field of characteristic p. Let K0 =

Frac(W(k)).1 Then the sequence Ki = K0(p
1/i) converges to k((t)).

Definition 3.2.7 ( [5, pg 161]). Let Ki be a sequence of local fields converging to

a local field K. Let Hi = K/(1 + m
ρi
K), where ρi is as in Definition 3.2.5. We say

a sequence of elements ai ∈ Ki converges (either additively or multiplicatively) to

an element a ∈ K, if the equivalence classes āi ∈ Hi converge to a. A sequence

fi ∈ Ki[t] converges to f ∈ K[t] (additively or multiplicatively) if each coefficient of

the fi converges to the corresponding coefficient of f .

Remark 3.2.8 ( [5, pg 161]). Let fi ∈ Ki[x1, . . . , xn] be a sequence of polynomials

converging (additively) to a polynomial f ∈ K[x1, . . . , xn]. For each j between 1 and

n, we let ai,j ∈ Ki be a sequence of elements converging to some aj ∈ K. Then

fi(ai,1, . . . , ai,n) converges to f(a1, . . . , an). In particular if gi ∈ Ki[t] converges to

g ∈ K[t], then the discriminants of the gi converge to that of g. In addition the

constant terms of the gi converge to that of g, and for large i, deg(gi) = deg(g).

1
W denotes the ring of p-typical Witt vectors.
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3.3 Extensions

Let Ki be a sequence of local fields converging to a local field K. Our goal is to

relate extensions of Ki with those of K. The following theorem is used by Krasner

to establish a residual isomorphism between these extensions.

Theorem 3.3.1 ( [5, §9]). Let K,K ′ be local fields of residue characteristic p, which

are residually isomorphic of norm ρ. Let H = K/(1+m
− log ρ

log p

K ) be the common quotient.

Let L = K(α) be a finite separable extension. Let f ∈ K[t] be the minimal polynomial

of α. Let cf and Df be the constant term and discriminant of f respectively. Let

f ′ ∈ K ′[t] be a polynomial whose coefficients reduce to the same element of H as

the corresponding coefficients of f . Let α′ be a root of f ′ and let L′ = K ′(α′). If

ρ < |
D

n/2
f

c
n(n−1)/2
f

|, then the given residual isomorphism extends to a residual isomorphism

of norm ρ|
cn−1
f

Df
| between L and L′.

The following lemma, in conjunction with Krasner’s lemma, is the main tool

used by Krasner to show that the extensions he constructed are independent of any

arbitrary choices.

Lemma 3.3.2 ( [5, pg 161]). Let f be a polynomial over a local field K. Let z be

a zero of f , and let r
(z)
f be the distance to the nearest other zero of f . Let C

(z)
f be

the circle around z of radius r
(z)
f . Then C

(z)
f = {β ∈ K̄ | |f(β)| < r

(z)
f |f

′(z)|}. In

particular, if |f(β)| < r
(z)
f |f

′(z)|, then K(z) ⊆ K(β).

If f is irreducible, then r
(z)
f is independent of z, and will henceforth be denoted
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rf .

Theorem 3.3.3 ( [5, pg 187]). Let Ki be a sequence of local fields converging to a local

field K. Let fi ∈ Ki[t] be a sequence of polynomials which converges multiplicatively

and canonically to a separable irreducible polynomial f . For each i we let αi be a

root of fi. Then there exists a number N depending only on f such that for i > N ,

fi is separable and irreducible. In addition, we can choose N so that Li = Ki(αi) is

independent of arbitrary choices for i > N .

In particular this allows us to canonically associate to each finite separable exten-

sion L/K an extension Li/Ki for large i.

Corollary 3.3.4 ( [5, pg 188]). Let Ki be a sequence of local fields converging to a local

field K. Let fi ∈ Ki[t] be a sequence of polynomials which converges multiplicatively

to a separable irreducible polynomial f . Then for large i, the extension Ki[x]/fi of

Ki is associated to K[x]/f under the correspondence of Theorem 3.3.3.

Proof. Let n be the degree of f . Let gi be a sequence converging canonically to f .

Let βi be the root of gi which minimizes |fi(βi)|. We wish to show that if i is large,

fi and gi generate the same extension of Ki. Using lemma 3.3.2, it suffices to show

that |fi(βi)| ≤ rfi |f
′
i(αi)|. To do this, it suffices to check |R(fi, gi)| ≤ (rfi |f

′
i(αi)|)

n,

where R denotes the resultant. Applying 3.2.8 to the discriminant shows |f ′
i(αi)| is

independent of i if i is large. Using the Newton polygon, Krasner has shown2 that rfi

2 [5, pg 187].
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is independent of i if i is large. Thus we only need to bound |R(fi, gi)| by a certain

constant. But Remark 3.2.8 shows that |R(fi, gi)| → |R(f, f)| = 0 as i→∞.

Theorem 3.3.5 ( [5, pg 201]). Let Ki be a sequence of local fields converging to K.

Let L/K be a finite extension. Let Li/Ki be the extensions induced by L/K under

the correspondence of 3.3.3. Then L/K is Galois if and only if Li/Ki is Galois for

large i. In this case Gal(Li/Ki) ∼= Gal(L/K).
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Chapter 4

Deligne’s approach to limits of

local fields

This chapter will describe a different approach to the results of 3, which is due to

Deligne. In particular, this chapter will contain no original material except propo-

sition 7.3.1. The most obvious difference between Krasner’s approach and that of

Deligne is that rather than associating to a local field K the valued hyperfields

K/(1+mi
K), Deligne uses the triple Tri(K) consisting of the ring OK/m

i
K , the module

mK/m
i+1
K and the canonical map mK/m

i+1
K → OK/m

i
K . This difference is for the most

part inconsequential, because this triple carries the same information as the valued

hyperfield. However Deligne’s definition of this triple only applies when the valuation

is discrete, so Deligne’s results hold in a slightly less general setting than Krasner’s.

Suppose K is a limit of local fields Ki. The most significant difference between
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Krasner’s results and Deligne’s results is that rather than merely showing that the

Galois theory of K can be described in terms of all of the Ki, Deligne’s theorem tells

us how much of the Galois theory of K can be obtained from knowledge of a single

one of the fields Ki.

More precisely, Deligne shows that Gv
K can be determined from Tru(K) for u > v.

If Trui(K) ≡ Trui(Ki) for some sequence ui which tends to infinity, then this implies

that the Ki determine Gv
K for all v, and so essentially determine the Galois theory of

K.

On the other hand, rather than viewing Deligne’s theorem as a result about limits

of local fields, we may view it as a generalization of the fact that the unramified

extensions of K can be described solely in terms of the residue field of K to a similar

statement about extensions with ramification bounded by u for some fixed u.

4.1 Truncated DVRs

In this subsection, our goal is to develop an analogue of part of the theory of

DVRs for the rings OK/m
i
K .

Definition 4.1.1 ( [6, 1.1], [7, pg 3]). A truncated DVR1 is a local Artinian ring

with principal maximal ideal. If R is a truncated DVR and if x ∈ R, then we define

vR(x) = sup{i ∈ N | x ∈ mi
R}, where mR is the maximal ideal. We will write

1The name truncated DVR comes from Example 4.1.2. In particular, the truncated power series
ring k[[t]]/(tn) is a truncated DVR.

29



CHAPTER 4. DELIGNE’S APPROACH TO LIMITS OF LOCAL FIELDS

l(R) = lR(R) for the length of R as a module over itself.

For the remainder of this section, R will denote a truncated DVR, and πR will be

a generator of the maximal ideal.

Example 4.1.2. Let O be a DVR with maximal ideal m. Then O/mk is a truncated

DVR for any k ∈ N with k ≥ 1. If L/K is a finite extension of local fields, then there

is a finite flat local homomorphism OK/m
k
K → OL/m

keL/K .

Remark 4.1.3. Let x ∈ R have valuation k <∞. Then x = uπkR for some u ∈ R\mR.

Hence x generates mk
R. Using this, one can easily see that every ideal in R is a power

of the maximal ideal. Hence l(R) is the smallest nonnegative integer l such that

ml
R = 0.

As Example 4.1.2 suggests, much of the theory of DVRs has analogues for trun-

cated DVRs. The following remarks are a first step in that direction.

Remark 4.1.4. Let R be a truncated DVR. Then it is easy to show that vR(x+ y) ≥

min(vR(x), vR(y)) for all x, y ∈ R. In addition, v(xy) = v(x) + v(y) unless xy = 0.

Using Nakayama’s lemma, it is easy to see that vR(x) =∞ if and only if x = 0.

Definition 4.1.5. If ϕ : R → A is a finite homomorphism of truncated DVRs, we

define the ramification index to be eA/R = vA(ϕ(πR)) if πR ̸= 0 and eA/R = l(A) if

ϕ(πR) = 0. We define fA/R to be the degree of the extension of residue fields.2 We

say A/R is unramified if eA/R = 1 and totally ramified if fA/R = 1.

2Note that finite homomorphisms of local rings are always local homomorphisms.
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Remark 4.1.6. It is straightforward to show that if ϕ is flat (or just injective), then

vA(x) = vR(x)eA/R for all x ∈ R. In general we still have mRA = m
eA/R

A .

As in the case of extensions of DVRs, the residue class degree and ramification

index are related to the degree of an extension.

Lemma 4.1.7. Let ϕ : R → A be a finite flat homomorphism of truncated DVRs.

Then A is a free R-module of rank eA/RfA/R.

Proof. First we will treat the case where ϕ(πR) ̸= 0. By A.1.3 of,3 lR(A) = lA(A)fA/R.

By A.4.1 of,3 lA(A) = lR(R)lA(A/mRA) = lR(R)lA(A/m
eA/R

A ) = lR(R)eA/R. Then

lR(A) = lR(R)(eA/RfA/R), from which the result follows easily. In the case where

ϕ(πR) = 0, we still have lR(A) = lA(A)fA/R = eA/RfA/R by the definition of eA/R.

The following lemma gives a useful criterion for flatness.

Lemma 4.1.8. Suppose ϕ : R → A is a finite homomorphism of truncated DVRs.

Then ϕ is flat if and only if l(A) = l(R)eA/R.

Proof. Suppose ϕ is flat. By the proof of Lemma 4.1.7, l(A) = l(R)eA/R.

Conversely, suppose lA(A) = lR(R)eA/R. Then by Lemma A.1.4 of3 we find that

lR/mR
(A/mRA) = lR(A/mRA) = lA(A/mRA)fA/R = fA/ReA/R. Thus the dimension of

A/mRA as a vector space over R/mR is fA/ReA/R, so by Nakayama’s lemma, A is a

quotient of a free module F with fA/ReA/R generators. Similarly, as in the proof of

lemma 4.1.7, lR(A) = lR(R)fA/ReA/R = lR(F ). Thus the kernel of the map F → A

has length 0, so A = F is free.
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Remark 4.1.9 ( [6, pg 129]). Let R, A, and B be truncated DVRs with residue fields

kR, kA, and kB. Note that truncated DVRs are Henselian. By the proof of proposition

I.4.4 in,8 if R → A and R → B are finite étale, then HomR(A,B) = HomkR(kA, kB).

By the same proposition we know that if f : R→ A is any finite homomorphism, then

there is a unique finite étale extension R0 of R such that kR0 = kA. Then identifying

these 2 residue fields gives a totally ramified map A0 → A of R-algebras. Hence every

finite morphism of truncated DVRs factors into a finite étale morphism and a finite

totally ramified morphism.

Remark 4.1.10. We say a monic polynomial P (x) = xn + an−1x
n−1 + . . . + a0 over a

truncated DVR is Eisenstein if v(a0) = 1 and v(ai) ≥ 1 for all i. One can show, as in

the case of DVRs, that if f : R → A is a finite flat totally ramified homomorphism,

then A ∼= R[x]/P (x), where P is Eisenstein.

Proposition 4.1.11 ( [7, 1.3]). Let K be a local field, and A = OK/m
u
K. Let f :

A→ B be a finite flat homomorphism of truncated DVRs. Then there is a separable

field extension L such that B ∼= OL/m
eu
L as A-algebras for some e.

Proof. Suppose f factors as the composition of two finite flat morphisms A→ C → B

of truncated DVRs. It is easy to see that it suffices to prove the result for A→ C and

C → B. Thus without loss of generality, we may assume f is either étale or totally

ramified, and that A is generated as an R algebra by a single element. Then A ∼=

R[x]/P (x) for some P (x). Let P̂ (x) ∈ OK be a lift of P which is separable.3 Then P̂ is

3This can always be arranged by requiring the coefficient of the x term to be nonzero.
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irreducible modulo mK , so is irreducible by Hensel’s lemma. Then OL := OK [x]/P̂ (x)

is a DVR. In the totally ramified case, P (x) is Eisenstein, so we can pick P̂ (x) to

be Eisenstein, so L/K is totally ramified of degree deg(P ) = e. Then OL/m
eu
L =

OK [x]/(m
u
KOK [x] + P̂ (x)OK [x]) = (OK/m

u
K)/P (x), as desired. The unramified case

is similar.

4.2 Triples

Definition 4.2.1 ( [6, pg 126]). A triple (R,M, ϵ) consists of a truncated DVR

R with perfect residue field, a free R-module M of rank 1, and a homomorphism

ϵ : M → R whose image is mR. We define a integer valued function on M⊗i by

v(am⊗i) = i+ vR(a) for a ∈ R, where m is a generator of M.

Example 4.2.2 ( [6, 1.2]). LetO be a DVR with perfect residue field, and with maximal

ideal m. Then for u ∈ N there is a triple (O/mu,m/mu+1, ϵ), where ϵ is induced by

the inclusion m ⊆ O. If O is the ring of integers of a local field K, we will denote

this triple Tru(K).

For s > r, we can define a map ϵr,s : M⊗s → M⊗r by ϵr,s(x
⊗s) = ϵ(x)s−rx⊗r,

where x is a generator of M .

Definition 4.2.3 ( [6, 1.4]). A morphism of triples (r, f, η) : (R,M, ϵ)→ (R′,M ′, ϵ′)

consists of a homomorphism f : R→ R′, an integer r (called the ramification index)

and an R-linear map η : M → M ′⊗r, such that fϵ = ϵ′0,rη and such that M ⊗ R′ →
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M ′⊗r is an isomorphism. The morphism is called flat if l(R′) = l(R)r.4 It is finite or

totally ramified if R→ R′ is. It is étale if it is finite, flat, and has r=1. We compose

morphisms of triples by the formula (r, f, η)(s, g, θ) = (rs, fg, η⊗sθ).

Example 4.2.4 ( [6, 1.4.1]). If L/K is a finite extension of local fields with ramification

index r, then OK → OL induces a finite flat morphism Tru(K)→ Trru(L).

Remark 4.2.5 ( [6, pg 126]). If (R,M, ϵ) and (R′,M ′, ϵ′) are triples, then any isomor-

phism R→ R′ lifts uniquely to a isomorphism of triples.

Remark 4.2.6. Let (r, f, η) : (R,M, ϵ)→ (R′,M ′, ϵ′) be a morphism such that f(πR) ̸=

0. It is easy to see that r = eR′/R.

Proposition 4.2.7. Let S = (R,M, ϵ) and S ′ = (R′,M ′, ϵ′). A morphism (r, ϕ, η) :

S → S ′ can be factored uniquely as S → S ′′ → S ′ where S → S ′′ is étale and S ′′ → S ′

is totally ramified

Proof. By 4.1.9, there is a unique étale R-algebra R′′ such that R → R′ factors as

a composite of an étale morphism θ1 : R → R′′ and a totally ramified morphism of

truncated DVRs θ2 : R
′′ → R′. Let M ′′ = R′′⊗RM , and let ϵ′′ = id′′

R⊗ ϵ. It is easy to

verify that S ′′ = (R′′,M ′′, ϵ′′) is a triple, and that the canonical maps θ1 : R→ R′′ and

η1 = id⊗ θ1 :M →M ⊗RR
′′ =M ′′ give an unramified morphism (1, θ1, η1) of triples.

If R is a field, then R and R′′ both have length 1 so the morphism is flat. Otherwise

θ1(πR) ̸= 0. Then we can show (1, θ1, η1) is flat by noticing that θ1 is flat and applying

4c.f. lemma 4.1.8
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4.2.6 and 4.1.8. The map θ2 gives an action of R′′ on M ′ so allows us to lift η to a

map η2 : M ′′ = M ⊗R R
′′ → M ′⊗r. Under the identification M ′;⊗R′′R′ = M ⊗R R

′,

the map M ′′ ⊗R′′ R′ → M ′⊗r induced by η2 is the isomorphism induced by η. To

check that (r, θ2, η2) is a morphism of triples it now remains to show that θ2ϵ
′′ = ϵ′0,rη.

This follows easily from the corresponding formula for (r, ϕ, η). This morphism is

totally ramified since θ2 is. The uniqueness of the decomposition is straightforward

to verify.

The following result is an analogue of Proposition 4.1.11 for triples.

Lemma 4.2.8 ( [6, 1.4.4]). Let K be a local field. Let Tre(K) → S, be a finite flat

morphism of ramification index r. Then there is a finite separable extension L/K

with ramification index r such that S ∼= Trre(L) as objects in the coslice category5 of

Tre(K).

4.3 The Newton polygon

The key to Deligne’s proof is showing that one may recover a lot of informa-

tion about the ramification filtration of an extension L/K from the corresponding

morphism of triples. To do this we first show that in the case of a totally ramified

extension, one may recover the sizes of the ramification groups from the Newton poly-

5Recall that if C is a category and X ∈ C, then the objects of the coslice category of X are pairs
(Y, ϕY ) with Y ∈ C and ϕY : X → Y . A morphism (Y, ϕY ) → (Z, ϕZ) is a morphism Y → Z such
that the obvious triangle commutes.
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gon of a minimal polynomial of the uniformizer of L/K. We will then show that if

a certain bound on ramification is satisfied, then this Newton polygon is determined

by the morphism Tru(K)→ Treu(L).

Let L/K be a finite totally ramified separable extension of local fields. We will fix

an embedding L ⊆ K̄, where K̄ is the separable closure. Then OL = OK [πL], where

πL is a root of an Eisenstein polynomial f(x) ∈ K[x]. We will let PL/K(x) =
f(x+πL)

x
.

Definition 4.3.1. Given a finite collection of points (xi, yi) ∈ R2, the lower convex

hull of the family {(xi, yi)} is the supremum of all piecewise linear convex functions

θ(t) such that yi ≥ θ(xi) for all i. The Newton polygon associated to a monic

polynomial g(t) = tn + an−1t
n−1 + . . . + a0 with coefficients in either a DVR or a

truncated DVR is defined to be the lower convex hull of the points (i, v(ai)) for

0 ≤ i ≤ n− 1.6 For future convenience, we will extend the definition to a function on

[−1, n− 1] by linearity.

We will need the following standard result about the Newton polygon.

Theorem 4.3.2. Suppose g is a polynomial over a DVR. Each segment of the Newton

polygon has slope equal to −v(ρ) for some root ρ of g. Furthermore, the length of the

projection of this segment onto the x-axis is the number of roots with valuation v(ρ).

We will let y = nL(x) be the Newton polygon of PL/K (with respect to the

valuation vL). We will let (di, fi) be the ith vertex (so d1 < . . . < dr, where r is

6Note that I am indexing the coefficients of the polynomial in the order opposite to that used by
Deligne.
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the number of vertices). We will let si =
fi−fi+1

di+1−di
.

Remark 4.3.3 ( [7, pg 5]). For an embedding σ : L → K̄ which is not the standard

inclusion, we will let iL/K(σ) = inf
x∈OL

vL(σx − x). When L/K is totally ramifed,

iL/K(σ) = vL(σπL − πL) is the valuation of the root of PL/K corresponding to σ.

Then the number of σ ̸= 1 such that iL/K(σ) = si is di+1− di. If L/K is Galois, then

because Gal(L/K)i = {σ ∈ Gal(L/K) | iL/K(σ) ≥ i+1}, this determines the order of

each Gal(L/K)i. In fact, in this case, |Gal(L/K)i| − 1 is the greatest integer g such

that the Newton polygon has slope less than −i− 1 on (g, n− 1]. Since this Newton

polygon can be described in terms of the ramification filtration it is independent of

the choice of πL.

Let u ≥ 0. Let e = eL/K . Let S = (R,M, ϵ) = Tru(K) and S ′ = (R′,M ′, ϵ′) =

Treu(L). Let (e, θ, η/) be the standard morphism between them. We will now define

the Eisenstein polynomial of S ′/S.

It is easy to verify that because R′ is flat and totally ramified over R, R′ is a free

R-module with basis 1, πR′ , . . . , πe−1
R′ , where πR′ is any generator of the maximal ideal,

in particular when πR = ϵ(ω) where ω is a generator of M ′. Then x⊗r is in the image

of the isomorphism η : M ⊗R R
′ → M⊗r. Hence we can write ω⊗r = η(

r−1

i=0

−ciϵ(ω)
i)

with ci ∈M . It is easy to see that c0 generates M . It is clear that if πL is an element

of mL lying over ω then the ci are the reduction mod m
u+1
K of the coefficients of the

minimal polynomial of πL over K.

At the beginning of this section, instead of taking the Newton polygon of the
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Eisenstein polynomial f(x) we used f(x+ πL)/x. The analogue of the coefficients of

f(x+ πL) are the elements bi ∈M
′⊗(r−i) defined by the following equation.

bi =

r
i


ωx +



j≥i


j

j − i


ϵr−i,rη(aj)ϵ(ω)

j−i.

An easy argument using the binomial theorem and the fact that the elements

ai are reductions of the coefficients of f(x) shows that the bi are reductions of the

coefficients of f(x + πL). Hence bi+1 is the reduction of the ith coefficient of PL/K .

This motivates the following definition.

Definition 4.3.4. Let S → S ′ = (R′,M ′, ϵ′) be a flat totally ramified morphism of

triples, and let bi be defined in terms of a generator ω ofM ′ as described above. Then

we let nS′ be the lower convex hull of the points (i, bi+1) for i ≥ 0. For convenience,

we will extend nS′ to a function on [−1, 0] by declaring that it is linear on this interval

and has the same slope as on [0, 1).

The point of the Newton polygon we just defined is that nTreu(L) will hopefully

determine nL and hence the sizes of the lower ramification subgroups associated to

L/K.

Proposition 4.3.5 ( [6, 1.5.2]). Suppose we are in the situation of Definition 4.3.4,

and that we have a totally ramified separable extension L/K of degree e such that

S = Tru(K), S ′ = Treu(L), and such that S → S ′ is the morphism obtained from

L/K. The following are equivalent:

(a) The Galois closure L′/K of L/K satisfies Gal(L′/K)e = 1.

(b) nL = nS′.
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(c) nL(−1) < e(u+1), where r is the ramification index of the canonical morphism

S → T .

(d) nS′(−1) <∞.

Proof. The fact that (a) and (c) are equivalent is essentially [6, A.6.2]. In the

case where L/K is Galois on can prove it by using 4.3.3 to see that the num-

bers |Gal(L/K)i| are determined by nL and hence so are the orders of the group

Gal(L/K)e. A bit of computation will show that (c) is the inequality obtained in this

way from the equation |Gal(L/K)e| = 1.

To relate (b), (c), and (d), we let ω generate M ′, and let bi be given by Equation

4.3. Let πL ∈ mL be a lift of ω and let b̃i be the coefficients of PL/K . We noted that

the bi are reductions of the b̃i. Hence v(bi) = v(b̃i) if v(b̃i) < eu+ e− i and v(bi) =∞

otherwise. Since we always have v(b̃i) ≤ v(bi), it follows that nL ≤ nS′ .

Assume (c) holds. Proving (b) then amounts to showing that if (i, v( ˜bi+1)) is a

vertex of the Newton polygon y = nL(x), then it is also a vertex of y = nS′(x). If we

assume (c), then using the fact that each segment has an integer slope, we get that

nL(x) < e(u + 1) − (x + 1), so each (i, ˜bi+1) that occurs as a vertex of the Newton

polygon satisfies v( ˜bi+1) < eu+ e− i− 1, and hence v(bi+1) = v( ˜bi+1) holds for such

i. This implies (b).

Assume now that (d) holds. Then nS′(x) ≤ ∞ for all x. Hence each for each vertex

(i, v(bi+1)) we have v( ˜bi+1) < ∞ so v(bi) = v( ˜bi+1). If n is the lower convex hull of

(i, v( ˜bi+1)) for i satisfying v( ˜bi+1) < ∞, we have n = nS′ . On the other hand for all
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other i we have v( ˜bi+1) =∞ so v(bi+1) ≥ eu+ e− i− 1 ≥ n. Hence nL ≥ n = nS′ by

the definition of the lower convex hull in terms of a supremum, and we have already

seen nS′ ≥ nL. Hence (b) holds, and therefore (c) does as well.

Corollary 4.3.6 ( [6, 1.5.1]). We retain the notation of 4.3.5. Suppose 0 ≤ f <

u. Then the Galois closure L′/K of L/K satisfies Gal(L′/K)f = 1 if and only if

nT (−1) < r(f + 1).

Remark 4.3.7. Let S → X be a finite flat totally ramified morphism of triples. Let gi

be the greatest integer such that the Newton polygon nX has slope less than −i− 1

on (gi, n − 1]. By 4.3.3, it follows that if S → X comes from a field extension

satisfying the ramification bound appearing in reftripnp, then gi + 1 is the order of

Gal(L/K). We define ϕX/S(x) =

 x

0

gt + 1

g0 + 1
dt. When X/S is not totally ramified, we

define ϕX/S = ϕX/S0 , where S → S0 → X is the factorization from 4.2.7. If X/S is

Treu(L)/Tru(K) and L/K has ramification bounded by u, then ϕX/S = ϕL/K .

Definition 4.3.8. Let S → X be a finite flat morphism of triples. We let ψX/S be

the inverse function to the function ϕX/S of 4.3.7

4.4 Deligne’s theorem

Embeddings of fields will correspond not to morphisms of triples, but to equiva-

lence classes of morphisms. Let f ≥ 0. Let X ′, X ′′ be finite flat objects of the coslice
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category of a triple S, with X ′ = (A′, I ′, ϵ). Given two morphisms θi = (s, ϕi, ηi);

i = 1, 2, we say θ1 ≡ θ2 mod R(f) if v(η1(x)− η2(x)) ≥ s(f + 1) for all x ∈ I ′.

Lemma 4.4.1 ( [6, 2.3.1]). Let F be a local field. Suppose S = Tre(F ), and X
′, X ′′

are the extensions of S corresponding to finite separable extensions E ′, E ′′ of F .

If the Galois closure K of E ′ satisfies Gal(K/F )e = 1, then the canonical map

HomF (E
′, E ′′)→ HomS(X

′, X ′′)/R(ψX′/S(e)) is a bijection.

Lemma 4.4.2 ( [6, 2.4,2.5]). (i) Let X ′, X ′′, X ′′′ be finite flat objects of the coslice

category of a triple S. Let u1, u2 : X
′′ → X ′′′ and v : X ′ → X ′′ be morphisms in this

category. If u1 ≡ u2 mod R(f), then vu1 ≡ vu2 mod R(f).

(ii) Let X ′, X ′′, X ′′′ be finite and flat over a triple S. If u1, u2 : X ′′ → X ′′′ are

congruent mod R(f) and v : X ′ → X ′′, then u1v ≡ u2v mod R(ψX′/S(f)).

We are now ready to state the main result of this section.

Definition 4.4.3. Let S be a triple. We define CfS to be the category whose objects are

triples X equipped with a finite flat morphism S → X such that nX(−1) < r(f +1)7,

and whose morphisms X ′ → X ′′ are equivalence classes of morphisms X ′ → X ′′ in

the coslice category of S modulo the relation R(ψX′/S(f)).

Theorem 4.4.4 ( [6, 2.8]). Let F be a local field. Let S = Tre(F ). Let CfF be the

category defined in 2.0.21. Then CfF and CfS are equivalent when f ≤ e.

Proof. CfS is a category by lemma 4.4.2. The functor is fully faithful by lemma 4.4.1.

It is essentially surjective by Corollary 4.3.6 and propositon 4.3.5.

7see cor 4.3.6.
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One can use this result to develop a notion of the a limit of local fields, analogously

to Krasner’s definition. Let Ki be a sequence of local fields, and ui an increasing

sequence of natural numbers. Suppose that K is a local field such that Trui(K) ∼=

Trui(Ki) for all i. Then if L/K is a finite separable extension, one can construct an

extension Li/Ki for large i, which carries the same Galois-theoretic data as L/K.

This is because one has CuiK
∼= CuiTrui (K)

∼= CuiTrui (Ki)
∼= CuiKi

, and because L is an object

of CuiK for large i. If K is the limit of a sequence Ki in the sense just defined,

then OK ∼= lim←−OK/m
ui
K
∼= lim←−OKi

/mui
Ki
, so K ∼= Frac(lim←−OKi

/mui
Ki
). The following

converse also holds.

Proposition 4.4.5. Let ui be an increasing sequence of integers. Let Ki be a sequence

of local fields. Suppose that for each i, we are given a surjective homomorphism

θi : OKi+1
/m

ui+1

Ki+1
→ OKi

/mui
Ki
. Let K = Frac(lim←−OKi

/mui
Ki
). Then K is a local field,

and OKi
/mui

Ki

∼= OK/m
ui
K for all i. Furthermore Trui(K) ∼= Trui(Ki).

Proof. Let OK = lim←−OKi
/mui

Ki
. For the first part of the proposition, it suffices to

show OK is a complete DVR. It is clearly a ring. Let vi be the valuation on the

truncated DVR OKi
/mui

Ki
. For α ∈ OK , let αi be its component in OKi

/mui
Ki
. I claim

that vi(αi) = vi+1(αi+1) for large i. Write αi = uiπ
vi(αi)
i , where πi is a uniformizer

of OKi
/mui

Ki
. Then θi(αi+1) = θi(ui+1)θi(πi+1)

vi+1(αi+1). Since θi is a surjective homo-

morphism of local rings, θi(ui+1) is a unit and θi(πi+1) is a uniformizer. In particular,

if αi = θi(αi+1) is nonzero, then vi(αi) = vi+1(αi+1). If α ̸= 0, then this proves the

claim. If α = 0, then the claim is trivial.
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We define v(α) to be the limiting value of vi(αi). If α, β ∈ OK , then according to

4.1.4, vi(αiβi) = vi(αi)+vi(βi), as long as vi(αi)+vi(βi) < ui. Taking the limit shows

that v(αβ) = v(α) + v(β) when v(α) + v(β) <∞. The other properties of a discrete

valuation are proven similarly. Let {α(k)} denote a Cauchy sequence in OK . Let N be

a natural number. Then v(α(k)−α(l)) > N for large k and l. Thus vi(α
(k)
i −α

(l)
i ) > N

when i, k, and l are large. Since OKi
/mui

Ki
is complete, lim

k→∞
α
(k)
i exists, and will be

denoted αi. Since θi is continuous, θi(αi+1) = θi(αi), so the αi define an element

α ∈ OK . It is easy to see this is the limit of the given Cauchy sequence, and so OK

is a complete DVR.

Let n ∈ N. It is easy to see that mn
K = lim←−m

min(ui,n)
Ki

/mui
Ki
. I claim that

lim←−
1
m

min(ui,n)
Ki

/mui
Ki

= 0. Without loss of generality, I will assume ui > n for all

i. Let θi,j : OKi
/mui

Ki
→ OKj

/m
uj
Kj

for i > j be the maps induced by the sequence

{θk}. By the Mittag-Leffler condition, the claim reduces to showing that for all k,

there exists j ≥ k such that for i ≥ j, θi,k(m
n
Ki
/mui

Ki
) = θj,k(m

n
Kj
/m

uj
Kj
). But both are

generated by the image of πnKk
, so the claim holds. Then by the long exact sequence,

OK/m
n
K
∼= lim←−OKi

/m
min(ui,n)
Ki

.

If n = uj, it is easy to see that all but finitely many terms in this limit are

isomorphic (under the maps induced by the θi) to OKj
/m

uj
Kj
. Hence OKj

/m
uj
Kj

∼=

OK/m
uj
K . The final statement follows from Remark 4.2.5.

Lemma 4.4.6. Let f : S → S ′ be an isomorphism of triples. Let f ∈ R. Pullback

along f gives an equivalence of categories CfS → C
f
S′.
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Proof. It is trivial to show that pullback along f−1 is the inverse up to natural iso-

morphism
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Chapter 5

The equivalence between triples

and valued hyperfields

Deligne comments without elaboration in6 that his triples are essentially the same

as Krasner’s valued hyperfields. However, to the author’s knowledge, a precise state-

ment of their relation cannot be found in the literature. The categories of triples and

of valued hyperfields are not equivalent for a trivial reason: If one rescales the abso-

lute value on a local field by replacing it with the map x→ |x|c for some constant c,

then this changes the valued hyperfields, but not the triples that occur as quotients.

However aside from this minor issue, the categories agree. In particular we shall show

that their coslice categories are equivalent.
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5.1 Basic Definitions

Definition 5.1.1. A valued hyperfield H is discrete if the image of H−{0} under the

absolute value is discrete. A uniformizer of H is an element with maximal absolute

value among all elements whose absolute value is less than 1.

Definition 5.1.2. Let H be a valued hyperfield. A valued subhyperfield is a subset

H ′ ⊆ H containing 0 and -1 and an element whose absolute value is not 0 or 1, and

which is closed under multiplication and inversion and satisfies (x + y) ∩H ′ ̸= ∅ for

all x, y ∈ H ′.

Proposition 5.1.3. Let H be a valued hyperfield, and H ′ a valued subhyperfield.

Then H ′ is a valued hyperfield with the same multiplication and absolute value and

the addition is given by x+H′y = (x+Hy)∩H
′. The inclusion H ′ → H is a morphism.

Proof. Clearly the metric on H ′ is the subspace metric. All of the valued hyperfield

axioms are clear except associativity of addition. We will use + to denote addition

in H. Let x, y, z ∈ H ′. Let w ∈ (x +H′ y) +H′ z = (((x + y) ∩ H ′) + z) ∩ H ′. Since

w ∈ x + y + z, (y + z) ∩ (w − x) ̸= ∅. Since y + z and w − x are non-disjoint

balls, one of them is contained in the other. Then (w − x) ∩ (y + z) ∩ H ′ is either

(w− x)∩H ′ or (y+ z)∩H ′, so it is nonempty. Let a ∈ H ′ ∩ (w− x)∩ (y+ z). Then

w ∈ (x+ a)∩H ′ ⊆ (x+((y+ z)∩H ′))∩H ′. The reverse inclusion is similar. Clearly

the inclusion map is a morphism of valued hyperfields.
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5.2 Construction of the triple Tr(H)

Let H be a discretely valued hyperfield, which is not a field. Let ρ be it’s norm.

Let θ be the absolute value of a uniformizer. We will write OH for the closed unit

ball. mi
H will denote the closed ball of radius θi around 0. For x, y ∈ H we write

x ≡η y when d(x, y) ≤ η. Define Mi = mi
H/ ≡ρθi . For x ∈ H, we define v(x) = log |x|

log θ
.

Lemma 5.2.1. Mi is an abelian group for all i ∈ Z. M0 is a commutative ring, and

each Mi is a module over M0.

Proof. Let x, y ∈ Mi. Let x̂, ŷ ∈ mi
H be lifts. Let ẑ ∈ x̂ + ŷ. Then x + y ∈ Mi is

defined to be it’s equivalence class. To show this is well-defined, let x̂′, ŷ′ ∈ mi
H be

another choice of lifts. Then |x̂ − x̂′| ≤ ρθi unless 0 ∈ x̂ − x̂′. On the other hand, if

0 ∈ x̂− x̂′, then x̂− x̂′ is a ball around 0 of radius ρmax(x̂, x̂′) ≤ ρθi. Thus we have

|x̂ − x̂′| ≤ ρθi in both cases, and similarly, |ŷ − ŷ′| ≤ ρθi. Let ẑ′ ∈ x̂′ + ŷ′. Then

ẑ − ẑ′ ∈ (x̂ − x̂′) + (ŷ − ŷ′), so |ẑ − ẑ′| ≤ max(|x̂ − x̂′|, |ŷ − ŷ′|) ≤ ρθi. Thus ẑ and

ẑ′ define the same element of Mi. Each of the abelian group axioms follows easily by

using the corresponding facts in mi
H .

We now define a bilinear multiplication map Mi ×Mj → Mi+j. Let x ∈ Mi and

y ∈ Mj. Let x̂ ∈ mi
H and ŷ ∈ m

j
H be lifts. We define xy ∈ Mi+j to be the class of

x̂ŷ. Let x̂′ be a different lift. Then d(x̂ŷ, x̂′ŷ) = |(x̂− x̂′)ŷ| = |x̂− x̂′||ŷ| ≤ ρθiθj since

ŷ ≤ θj. Thus xy is independent of x̂ and similarly, it is independent of ŷ. Bilinearity

follows from the distributive law in H. It is easy to check, using the associativity of H,
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that the multiplicationM0×M0 →M0 makesM0 into a ring, and thatM0×Mi →Mi

makes Mi into a module.

Henceforth we will denote M0 by R and M1 by M .

Lemma 5.2.2. R is a truncated DVR. Its length is log ρ
log θ

.

Proof. For x ∈ R, let x̂ ∈ OH be a lift. Define v(x) = v(x̂) if x ̸= 0 and v(0) =∞. To

see this is well-defined, suppose x ̸= 0, and let x̂′ be another lift. Then |x̂′ − x̂| ≤ ρ,

but |x̂| > ρ. By the ultrametric inequality, |x̂| = |x̂′|, so v(x) is well-defined.

For x, y ∈ R such that xy ̸= 0, v(xy) = v(x) + v(y), as may be seen by picking

lifts of x and y. In addition, v(x + y) ≥ min(v(x), v(y)). Suppose that x, y ∈ R are

such that v(x) ≤ v(y). Suppose x, y ̸= 0. Pick lifts x̂, ŷ ∈ OH . Then v(x̂) ≤ v(ŷ), so

there is a ẑ ∈ OH such that ŷ = x̂ẑ. Let z ∈ R be the class of ẑ. Then y = xz. We

have shown that if v(y) ≥ v(x), then y ∈ xR.

Let π ∈ R be such that v(π) = 1. Let I be an ideal generated by a set S. Let

i = infx∈S v(x). Then S ⊆ πiR. πi ∈ I because S ⊆ I contains an element of

valuation i. Hence every ideal has the form I = πiR, so R is local and has a principal

maximal ideal. Since π
log ρ
log θ is the smallest power of π which is 0, R is Artinian, and

the assertion about the length holds.1

We will denote the maximal ideal of R by mR.

1This step is where we use the assumption that H is not a field. If H were a field, then ρ = 0,
so the length would be infinite. We would then have a DVR rather than a truncated DVR. In fact,
in this case the construction described just gives the ring of integers.
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Lemma 5.2.3. M is free of rank 1. Furthermore there is a canonical isomorphism

Mi
∼= M⊗i for i ∈ N.

Proof. Let π ∈ H be a uniformizer. Multiplication by π gives a bijection OH → mH .

It is easily seen that this induces a well-defined bijection OH/ ≡ρ→ mH/ ≡θρ. Since

this bijection is just multiplication by π̄ ∈M , it is a homomorphism of modules, and

so M is free of rank 1. A similar argument shows Mi is free and generated by πi.

We define an isomorphism Mi
∼= M⊗i sending πi to π̄⊗i. It is easy to check this is

canonical in the sense that it is independent of the choice of π.

We now construct a map ϵ : M → R. Let x ∈ M . Let x̂ ∈ mH ⊆ OH be a lift.

Then ϵ(x) is defined to be the class of x̂ in R.

Lemma 5.2.4. ϵ is a well defined R-linear map. Furthermore, its image is mR.

Proof. Let x̂, x̂′ ∈ mH be lifts of x ∈ R. Then x̂ ≡θρ x̂
′, so x̂ ≡ρ x̂

′. Thus they

give the same element of R, and so ϵ is well-defined. The R-linearity is trivial. The

description of its image is also easy.

Definition 5.2.5. Tr(H) = (R,M, ϵ).

We have proven the following theorem.

Theorem 5.2.6. Tr(H) is a triple in the sense of Deligne.
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5.3 Functoriality

Let H,H ′ be discretely valued hyperfields, which are not fields. We will retain all

the notation of the previous section. In addition we will define ρ′, θ′, ϵ′, R′, M ′, and

M ′
i in a manner analogous to that of the previous section, but using H ′ instead of H.2

Throughout this section, we let f : H → H ′ be a morphism of valued hyperfields. We

will let r = log θ
log θ′

.

Lemma 5.3.1. [5, pg149]ρ′ ≥ ρ.

Proof. Let x, y ∈ H. Let z, z′ ∈ x + y be distinct. We wish to show d(z, z′) ≤

ρ′max(|x|, |y|).

First suppose that f(z) ̸= f(z′). It is easily seen that f(z), f(z′) ∈ f(x) + f(y).

By the definition of ρ′, |f(z) − f(z′)| = d(f(z), f(z′)) ≤ ρ′max(|f(x)|, |f(y)|) =

ρ′max(|x|, |y|). Since f(z−z′) ⊆ f(z)−f(z′), |z−z′| = |f(z)−f(z′)| ≤ ρ′max(|x|, |y|).

Now we consider the case where f(z) = f(z′). Suppose for the sake of contra-

diction that d(z, z′) > ρ′max(|x|, |y|). Then d(1, z
z′
) > ρ′max(|x|,|y|)

|z′|
≥ ρ′. Let u = z

z′
.

Then |1 − u| > ρ′, and f(u) = 1. Since f(1 − u) ⊆ f(1) − f(u) = 1 − 1, and since

1− 1 is a ball of radius ρ′ around 0, it follows that |f(1− u)| ≤ ρ′. This contradicts

the fact that |1− u| > ρ′.

We define a map ϕ : R → R′ by letting ϕ(x) be the class of f(x̂) where x̂ ∈ H is

any lift.

2So for example Tr(H ′) = (R′,M ′, ϵ′).
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Proposition 5.3.2. ϕ is a well-defined ring homomorphism.

Proof. Let x̂, x̂′ ∈ H be lifts of x. Then x̂ ≡ρ x̂
′, so f(x̂) ≡ρ f(x̂

′). Then x̂ and

x̂′ define the same class in R′ by 5.3.1. Thus ϕ is well-defined. Let x, y ∈ R, and

let x̂, ŷ be lifts. Then any element ẑ ∈ x̂ + ŷ is a lift of x + y. Then f(ẑ) ∈

f(x̂ + ŷ) ⊆ f(x̂) + f(ŷ), so the class of f(ẑ) is ϕ(x) + ϕ(y). The other axioms of a

ring homomorphism are easy to verify.

Definition 5.3.3. We say f : H → H ′ is finite if there is a finite subset S ⊆ H ′ such

that for all x ∈ H ′ there is a map a : S → H such that x ∈


s∈S

a(s)s. We say that f

is flat if ρ = ρ′.

It is clear that ϕ is finite if f is.

Lemma 5.3.4. If f is flat, then l(R′) = rl(R) where l(R) denotes the length of R as

an R-module.

Proof. This follows easily from 5.2.2

We will now define a map η :M →M ′⊗r =M ′
r. For x ∈M , we pick a lift x̂ ∈ mH .

Then f(x̂) ∈ mr
H′ , and we let η(x) be the class of f(x̂).

Lemma 5.3.5. η is a well-defined R-linear map. It induces an isomorphism M ⊗

R′ →M ′⊗r.

Proof. This is proven in the same manner as 5.3.2. If we let x̂′ be another lift of x,

then since x̂ ≡θρ x̂
′, f(x̂) ≡ρ′θ f(x̂′). Since θ = θ′r, f(x̂) and f(x̂′) define the same
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element of M ′
r. R-linearity is straightforward to verify. Let π ∈ H be a uniformizer.

M ⊗ R′ is free with generator π̄, while M ′
r is free with generator f(π) = η(p̄i). Thus

M ⊗R′ →M ′⊗r maps a generator to a generator, so is an isomorphism.

Deligne defined an R′-linear map ϵ′0,r : M ′⊗r → R′ by ϵ′0,r(x
⊗r) = ϵ(x)r when x

generates M ′. It is straightforward to verify that for x ∈M ′
r, ϵ

′
0,r(x) is the class of x̂

in R′ where x̂ ∈ mr
H′ ⊆ OH′ is any lift of x.

Lemma 5.3.6. ϵ′0,rη = ϕϵ.

Proof. It is routine to verify that both composite maps have the following description:

Let x ∈ M . Let x̂ ∈ mH be a lift. Then ϵ′0,rη(x) = ϕϵ(x) ∈ R′ is the class of

f(x̂) ∈ OH′ .

Definition 5.3.7. Tr(f) will denote (r, ϕ, η).

We have proven the following theorem.

Theorem 5.3.8. Tr(f) is a morphism of triples. It is finite if f is. It is flat if f is.

Theorem 5.3.9. Tr is a functor from the category of discretely valued hyperfields

which are not fields to the category of triples. It induces a functor from the category

of discretely valued hyperfields which are not fields with finite flat morphisms to the

category of triples and finite flat morphisms.

Proof. We only need to show it is compatible with composition. That is, if f :

H → H ′ and f ′ : H ′ → H ′′ and Tr(f ′) = r′, ϕ′, η′, then we need to show Tr(f ′f) =

(rr′, ϕ′ϕ, η′⊗rη). This is a straightforward computation, which will be omitted.
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5.4 Recovering the underlying set of the

hyperfield

Let T = (R,M, ϵ) be any triple. We define v :M⊗i → Z∪{∞}3 by v(rπi) = v(r)+i

for r ∈ R, when π is a uniformizer. Let U(T ) = {0} ∪


i∈Z

{x ∈ M⊗i | v(x) = i}.

If (r, ϕ, η) : (R,M, ϵ) → (R′,M ′, ϵ′) is a morphism of triples, then it induces maps

η⊗i :M⊗i →M⊗ri which send elements of valuation i to those of valuation ri. These

give a map U(r, ϕ, η) : U(R,M, ϵ) → U(R′,M ′, ϵ). It is readily verified that U is a

functor.

Proposition 5.4.1. U ◦ Tr is naturally isomorphic to the forgetful functor from

discretely valued hyperfields which are not fields to the category of sets.

Proof. Let H be a discretely valued hyperfield which is not a field. Let T = Tr(H) =

(R,M, ϵ). Let Mi, ρ, and θ be as in §5.2. Let Ci = {x ∈ H | v(x) = i}. Suppose

x ∈ Ci and y ∈ H are chosen such that x ≡θiρ y. Then by page 145 of Krasner, x = y.

Thus the reduction map Ci → Mi is injective. Its image consists of elements with

valuation i, so we have bijections Ci
αi−→ {x ∈Mi | v(x) = i}

βi−→ {x ∈M⊗i | v(x) = i}.

If these bijections are natural4, then so is the induced bijection H = {0} ∪


i∈Z

Ci →

{0} ∪


i∈Z

{x ∈M⊗i | v(x) = i} = U(Tr(H)), and the result will follow.

Let f : H → H ′ be a morphism to another discretely valued hyperfield which is

3Since M is projective of rank 1, negative tensor powers are defined.
4Actually, we will require that α log u

log ρ

and β log u

log ρ

are natural for any fixed u, rather than fixing i.
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not a field. Let Tr(H ′) = (R′,M ′, ϵ′), and let C ′
i andM

′
i be like Ci andMi, but defined

in terms of H ′ instead of H. Let (r, ϕ, η) = Tr(f). Let x ∈ Ci. Then αri(f(x)) is the

reduction of f(x) modulo ≡θ′iρ′ . Let θi :Mi →M ′
ri be the map corresponding to η⊗i.

It is routine to verify that θi(x) is obtained by lifting x, applying f , and reducing.

Then θi(αi(x)) is obtained by reducing x, picking a lift, applying f to that lift, and

reducing again. Thus θi(αi(x)) = αri(f(x)), so the α log u
log ρ

are natural. The β log u
log ρ

are

natural by the choice of θi.

Corollary 5.4.2. Tr is faithful.

Proof. This follows from 5.4.1 and the fact that the forgetful functor is faithful.

5.5 Equivalence

Let H be a discretely valued hyperfield which is not a field. We have seen that

there is a canonical bijection ψ : U(Tr(H)) → H, so H̃ = U(Tr(H)) is a discretely

valued hyperfield5. We will now describe the addition, multiplication, and absolute

value on H̃ more explicitly. We will retain the notation of the previous section. Let

Si = {x ∈ M
⊗i | v(x) = i}, so H̃ = {0} ∪



i

Si. Let πH be a uniformizer in H, and

πM be its image in M (which must generate M). Throughout this section, we will

identify Mi with M
⊗i.

For x ∈ Si, it follows from results of the previous section that |ψ(x)| = θi, so

5By decreeing ψ to be an isomorphism.
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|x| = θi. For x ∈ Si and y ∈ Sj, we can easily verify that xy ∈ Si+j ⊆ M⊗i+j is the

image of x⊗ y under M⊗i ⊗M⊗j →M⊗i+j.

Let x ∈ Sj and y ∈ Si. Without loss of generality, we assume i ≥ j. Let

z = x+Mj
ϵj,i(y) ∈MjfootnoteWe use the notation +{Mj} to distinguish this addition

from the addition +H̃ which comes from the hyperfield structure on H̃., where ϵj,i :

M⊗i → M⊗j is the map induced by ϵ. Let x̂, ŷ ∈ H be lifts of x ∈ Mj and y ∈ Mi.

Note that ŷ is also a lift of ϵj,i(y). Then z is by definition the reduction of any

element of x̂+ ŷ. Since |x| = θj, x̂+ ŷ is a ball of radius ρθj, so it is the preimage of

z under the reduction map. Let w ∈ H̃. It is easy to check that ψ(w) ∈ H reduces

to z ∈Mi if and only if either both w = 0 and z = 0 hold or if w ∈ Sk for some k ≥ j

and ϵj,k(w) = z, because any element of H corresponding to w ∈ Mk corresponds to

ϵj,k(w) ∈ Mj. Thus x +H̃ y =

k≥j{w ∈ Sk | ϵj,k(w) = x + ϵj,i(y)}, or it is the union

of this set with {0} depending on whether x = −y.

Let H,H ′ be discretely valued hyperfields which are not fields. Let (r, ϕ, η) :

Tr(H)→ Tr(H ′) be a morphism of triples. Let f = U(r, ϕ, η) : H̃ → H̃ ′.

Proposition 5.5.1. If r = log θ
log θ′

, then f is a morphism of valued hyperfields.

Proof. By construction, f maps elements of Si to elements of S ′
ri (via the maps η⊗i),

and r = log θ
log θ′

, so f preserves absolute value. f preserves multiplication, because the

multiplication is defined in terms of M⊗i ⊗ M⊗j → M⊗i+j and the corresponding

maps for M ′, and because the maps Si → S ′
ri are just η⊗i. Let x ∈ H̃ be such

that f(x) = 1. Then x ∈ S0 ⊆ R, and ϕ(x) = 1, so x − 1 ∈ ker(ϕ). Conversely, if
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x − 1 ∈ ker(ϕ), then x ∈ S0 and f(x) = 1 when we view x as an element of H̃. But

the preimage of ker(ϕ) (or of any other ideal of R) in OH is a ball around 0. Hence

the equation f(x) = 1 is equivalent to a bound on d(1, x) = |x− 1|, so the fiber of 1

is a ball. Consequently all fibers are balls.

Let x, y ∈ H. Let z be such that f(z) ∈ f(x) +H̃′ f(y). For simplicity we will

consider only the case where z ̸= 0; the other case is trivial. Suppose i = v(x) >

v(y) = j. Let k = v(z). Then v(f(z)) = rk, and similarly for x and y. Then

ϵ′rj,rk(f(z)) = f(x) + ϵ′rj,ri(f(y)), by the description of +H̃′ . So epsilon′
rj,rk(η

⊗k(z)) =

η⊗jx+ϵ′rj,ri(ηotimesi(y)). Using the definition of a morphism of triples, η⊗j(ϵj,k(z)) =

η⊗j(x)+η⊗j(ϵj,i(y)). Since f(x) = η⊗j(x) = η⊗j(ϵj,k(z)−ϵj,i(y)), we may replace x by

ϵj,k(z)− ϵj,i(y) without changing f(x). Without loss of generality, ϵj,k(z) = x+ ϵj,i(y),

and so z ∈ x + y ⊆ f−1(f(x)) + f−1(f(y)). Hence f−1(f(x + y)) ⊆ f−1(f(x)) +

f−1(f(y)). The reverse inclusion is essentially the same argument in reverse, so in

fact f−1(f(x + y)) ⊆ f−1(f(x)) + f−1(f(y)) for all f(x), f(y) ∈ f(H). Hence f is a

morphism of valued hyperfields.

Corollary 5.5.2. Let (r, ϕ, η) : Tr(H) → Tr(H ′) be a morphism of triples such that

r = log θ
log θ′

. Then there is a morphism f : H → H ′ such that (r, ϕ, η)Tr(f).

Proof. Let f : H̃ → H̃ ′ be as above. We only need to show that (r, ϕ, η) = Tr(f). Let

(r̃, ϕ̃, ˜eta) = Tr(f). It is easy to check r = r̃. It follows from the first sentence of the

proof of 5.5.1 that η⊗i agrees with η̃⊗i on Si. Let x ∈Mi have valuation j. Let x̂ ∈Mj
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be any element such that ϵi,j(x̂) = x. Then η⊗i(x) = η⊗i(ϵj,i(x̂)) = ϵ′rj,ri(η
⊗j)(x̂), and

similarly for η̃. Then η⊗i(x) = ϵ′rj,ri(η
⊗j)(x̂) = ϵ′rj,ri(η̃

⊗j)(x̂) = η̃⊗i(x). Taking i = 0

and i = 1 gives the result.

Theorem 5.5.3. Tr is essentially surjective.

Proof. Let (R,M, ϵ) be a triple. Deligne has shown that for any truncated DVR

R, there is a DVR O such that R ∼= O/mi for some i. Let K = Frac(O). Let

H = K/(1 + mi). Let (R′,M ′, ϵ′) = Tr(H). Then R′ ∼= O/mi ∼= R. Deligne showed

that an isomorphism of truncated DVRs extends to an isomorphism of triples; hence

Tr(H) = (R′,M ′, ϵ′) ∼= (R,M, ϵ). Thus Tr is essentially surjective.

Theorem 5.5.4. Let H be a discretely valued hyperfield which is not a field. Then Tr

induces an equivalence of categories between the coslice category of H and the coslice

category of Tr(H). It also induces an equivalence between the slice category of H and

the slice category of Tr(H).

Proof. We consider the case of the coslice category; the other part is proven similarly.

Clearly this functor is faithful. Let (r, ϕ, η) : Tr(H) → S be an object of the coslice

category of Tr(H). Then there exists H ′ such that S ∼= Tr(H ′). By rescaling the

absolute value (which does not affect Tr(H ′), we may assume r = log θ
log θ′

. Then there

is a morphism f : H → H ′ such that (r, ϕ, η) = Tr(f). Hence the functor between

coslice categories is essentially surjective.

Given a morphism (r, ϕ, η) : Tr(H ′)→ Tr(H ′′) in the coslice category of Tr(H), we

57



CHAPTER 5. THE EQUIVALENCE BETWEEN TRIPLES AND VALUED
HYPERFIELDS

have r = log θ
log θ′

, because r is the ratio of the ramification indices of Tr(H) → Tr(H ′′)

and Tr(H)→ Tr(H ′). The functor between the coslice categories is full by 5.5.

Proposition 5.5.5. f is finite and flat if and only if Tr(f) is.

Proof. We only need to show that finite flat morphisms of discretely valued hyperfields

correspond to finite flat morphisms of triples. For flatness, one uses 5.3.4 and its

converse (which is proven in the same way). We have seen that if f is finite then so

is Tr(f). Let f : H → H ′ be a morphism of triples such that Tr(f) is finite. Let

Tr(H) = (R,M, ϵ) and Tr(H ′) = (R′,M ′, ϵ′), so ϕ : R → R′ is finite; the generators

will be denoted ᾱ1, . . . , ᾱn, and their lifts in H ′ will be denoted α1, . . . , αn. Let x ∈ H
′

have absolute value 1. Then there are a1, . . . , an ∈ H such that x̄ = ϕ(ā1)ᾱ1 + . . . +

ϕ(ān)ᾱn. Using the definition of addition in R′, there exists y ∈ H ′ such that x̄ = ȳ

and y ∈ f(a1)α1 + . . . f(an)αn. Because |x| = 1, x is the unique lift of x̄, and so

x ∈ f(a1)α1 + . . .+ f(an)αn.

We now let x ∈ H ′ be arbitrary. Let r be the ramification index. Let πH ∈ H and

πH′ ∈ H ′ be uniformizers. Then there exist i, j such that |f(πH)
iπ−j
H′x| = 1 and 0 ≤

j < r. Then there are a1, . . . , an such that x ∈ f(π−i
H a1)α1π

j
H′ + . . .+ f(π−i

H an)αnπ
j
H′ ,

and so x is in the span of the family of elements αkπ
j
H′ . Hence f is finite.
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Chapter 6

The Fontaine-Wintenberger theory

of norm fields

In this chapter, we will present Wintenberger’s construction of the norm field

(cf.2), which to a suitable infinite extension L/K of a local field, associates a local

field XK(L) of characteristic p whose extensions correspond to extensions of L. We

will also present the related notion of the perfect norm field. This chapter will contain

no new results.

6.1 Perfect norm fields

Before constructing the norm field, we will first introduce a related construction

called the perfect norm field. This is somewhat simpler because it uses the p-th power
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map instead of norm maps.

Definition 6.1.1. If A is a ring of characteristic p, we will let R(A) be the inverse

limit of the system . . .→ A→ A→ A, where all of the maps are the p-th power.

Remark 6.1.2. R(A) is a ring, because the p-th power map is a ring homomorphism.

An element α = R(A) is a sequence of elements αi ∈ A such that αi = αpi+1. R(A)

is then perfect because βi = αi+1 defines an element of R(A), and because the p-th

power map is injective on R(A). There is a canonical map R(A) → A sending a

sequence {αi} to α0. It is easy to check that the map R(A)→ A is universal among

maps from perfect rings of characteristic p to A in the sense that any map B → A

with B perfect induces a unique map B → R(A) such that the obvious triangle

commutes. More specifically, if f : B → A, then the corresponding map B → R(A)

sends x to the sequence whose i-th term is f(xp
−i
).

We will need the following estimate on the p-th power map.

Remark 6.1.3. Let O be the ring of integers of a valued field with residue field of

characteristic p. Then if x, y ∈ O are congruent mod p, v(xp− yp) ≥ v(x− y) + v(p).

Hence v(xp
k
− yp

k
) ≥ kv(p).

Proposition 6.1.4 ( [9, 4.3.1]). Let O be a domain which is separated and complete

with respect to the p-adic valuation and which has a perfect residue field of character-

istic p. Then lim←−
x →→xp

O ∼= R(O/p) as multiplicative monoids. In particular R(O/p) is a

domain.
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Proof. An element x ∈ lim←−
x →→xp

O is the same as a sequence of elements xi ∈ O such

that xi = xpi+1 for all i ∈ N. A similar description holds for R(O/p). We define a

map ψ : lim←−
x →→xp

O → R(O/p) by sending x to the sequence of elements xi mod p ∈ O/p.

Let xi ∈ O/p define an element of R(O/p). We let xi ∈ O denote any lift of xi.

Then I claim that lim
i→∞

xj+i
pi

is well defined and converges. Let xi
′
be another lift.

Then xi+j
′
≡ xi+j modulo p, so by Remark 6.1.3, v(xi+j

′pi

− xi+j
pi

) ≥ iv(p), which

tends to ∞. Hence the limit, if it exists, is independent of the choice of xi. For

any k ∈ N, xi+j+k
pk

≡ xi+j mod p, so for all j, v(xi+j+k
pj+k

− xi+j
pj

) tends to ∞.

Hence the sequence is Cauchy, so it converges, as was claimed. Now we define a map

θ : R(O/p) → lim←−
x →→xp

O which sends a sequence xi to the sequence lim
j→∞

xi+j
pj

. It is

straightforward to show ψθ = id. To show θψ = id, we let xi be a sequence defining

an element of lim←−
x →→xp

O, and let xi be its reduction mod p. Then one choice of a lift is

xi = xi, so lim
i→∞

xj+i
pi

= lim
i→∞

xp
i

j+i = xj.

Let K be a valued field which is complete and separated with respect to the p-adic

valuation and have residue field of characteristic p. We will write RK for R(OK/p).

An element of RK can be viewed either as a sequence xi ∈ OK/p satisfying xi = xpi+1,

or as a sequence x(i) ∈ OK satisfying (x(i+1))p = x(i).

Lemma 6.1.5 ( [9, 4.3.3/13.2.2]). RK is a complete valuation ring under the valuation

v({x(i)}i∈N) = vK(x
(0)).

The above lemma is proven by essentially the same method used for 6.2.12.
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Definition 6.1.6 (27). Frac(RK) is called the perfect norm field associated to K.

Theorem 6.1.7 ( [9, 4.3.5]). If K is a discretely valued field of characteristic 0 and

of residue characteristic p, then Frac(R(OCK
)) is algebraically closed, where CK is

the completion of the algebraic closure of K.

For any complete valued field K with residue field of characteristic p, we have a

canonical valuation-preserving action of Gal(K̄/K) on R ˆ̄K
by acting on a sequence

x(i) ∈ OK̄ component wise. We can define an embedding RK ⊆ R ˆ̄K
by using the

embedding OK ⊆ OK̄ on each component.

The following result will allow us to compare the Galois group of K with that of

Frac(RK).

Proposition 6.1.8 ( [9, 14.2.4]). Let K be a complete discretely valued field of char-

acteristic 0 and residue characteristic p. Then R
Gal(K̄/K)
ˆ̄K

= RK. Similarly, we also

have Frac(R ˆ̄K
)Gal(K̄/K) = Frac(RK).

Proof. For the first part apply O
Gal(K̄/K)
ˆ̄K

= OK to each component. For the second,

let x ∈ Frac(R ˆ̄K
)Gal(K̄/K). Then either x or 1/x is in R

Gal(K̄/K)
ˆ̄K

= RK , because R ˆ̄K

is a valuation ring. Hence Frac(R ˆ̄K
)Gal(K̄/K) ⊆ Frac(RK). The reverse inclusion is

trivial.

Let K be a local field of characteristic 0 and residue characteristic p, and K∞/K

be a totally ramified Zp extension, i.e. Gal(K∞/K) ∼= Zp. We will abuse terminology
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by assuming Gal(K∞/K) = Zp. We write Kn for the fixed field K
pnZp
∞ of the subgroup

pnZp ⊆ Gal(K∞/K).

Theorem 6.1.9 ( [9, 13.2.6]). Let M1 and M2 be finite separable extensions of K∞

with M2 ⊆ M1. Then [M1 : M2] = [Frac(RM1) : Frac(RM2)]. If M1/M2 is Galois,

then Gal(Frac(RM1)/Frac(RM2))
∼= Gal(M1/M2).

Proof. We may easily reduce this to the Galois case. Let Hi = Gal(K̄/Mi) ⊆

Gal(K̄/K). Then H1 acts trivially on Frac(RM1), so H2/H1 acts on Frac(RM1).

We have Frac(RM1)
H2/H1 = Frac(R ˆ̄K

)H2 = Frac(RM2) by Proposition 6.1.8. Then

Frac(RM1)/Frac(RM2) is a finite Galois extension, whose Galois group is a quotient of

H2/H1
∼= Gal(M1/M2).

1 By 13.3.12 of,9 Gal(Frac(RM1)/Frac(RM2))
∼= H2/H1.

6.2 Construction of the norm field

Given a suitable extension L/K of a local field, we will show that the inverse limit

of finite subextensions along the norm maps is a local field. In order to do this, we

will first need to relate the behaviour of the norm map to ramification.

Definition 6.2.1 ( [2, 1.2.1]). Let K be a local field of characteristic 0. A separable

extension L/K is said to be arithmetically profinite or APF if for each real number

u ≥ −1, the subfield of L fixed by Gu
K is a finite extension of K. Equivalently, L/K

is APF if Gu
KGL has finite index in GK for all u ≥ −1.

1More specifically the Galois group is the image of H2/H1 in Aut(Frac(RM1
)).
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In the language introduced in 2.0.18, the fixed field of GLG
u
K is the maximal

subextension of L/K with ramification bounded by u. Then the above definition

can be restated as saying that the maximal subextension of L/K with ramification

bounded by u is a finite extension of K. This will often allow us to reduce questions

about APF extensions to questions about finite extensions. This phenomenon will be

used in 6.2.3 to show that we can give a reasonable definition for the functions ψL/K

when L/K is APF. To do this we first make a definition analogous to 2.0.17.

Definition 6.2.2 ( [2, 1.2.1]). If L/K is totally ramified and APF, define ψL/K(t) =
 t

0

[GK : GLG
u
K ]du. If L/K is any APF extension, we define ψL/K(t) = ψL/K0(t),

where K0 is the maximal unramified subextension of L/K. We let ϕL/K be the

inverse function. For an APF extension, let iL/K = sup{i | Gi
KGL = GK}.

In the terminology of 2.0.18, iL/K may be thought of as the greatest lower bound

for the ramification of L/K.

Remark 6.2.3. If L/K is finite, then it is trivially APF. In this case 2.0.17 says that

our definition of ψL/K agrees with 2.0.10. The study of ψL/K in general can be reduced

to the finite case. If E/K is a finite subextension containing the fixed field of Gt
KGL

for some t, then for u ≤ t, GLG
u
K ⊆ (GEG

t
K)G

u
K = GEG

u
K , and the reverse inclusion

follows from GL ⊆ GE, so GLG
u
K = GLG

u
K for u ≤ t. Hence ψL/K(t) = ψE/K(t).

If L is the union of an increasing sequence {Ei} of finite extensions, then ψL/K =

lim
i→∞

ψEi/K . If F/K is a finite subextension of L, then ψL/F◦ψF/K = lim
i→∞

ψEi/F◦ψF/K =

lim
i→∞

ψEi/K = ψL/K .
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Proposition 6.2.4 ( [2, 1.2.3]). Let K ⊆ L ⊆M be fields, with K a local field. Then

(a) Suppose M/L is finite. Then M/K is APF if and only if L/K is APF. In

this case iL/K ≥ iM/K.

(b) Suppose L/K is finite. Then M/K is APF if and only if M/L is APF. In

this case iM/L ≥ ψL/K(iM/K) ≥ iM/K

(c) A subextension of an APF extension is APF.

Let L/K be an infinite APF extension of a local field of residue characteristic p.

Let EL/K be the poset consisting of finite subextensions of L/K.

Definition 6.2.5. Let XK(L) = lim←−
F∈EL/K

F , where the transition maps are the norm

maps. XK(L) is called the norm field of L/K.

XK(L) is a monoid under multiplication because the norm maps are monoid ho-

momorphisms. We wish to show that XK(L) is in fact a local field. Since XK(L) =

XF (L) for any finite subextension F of L/K, we can replace K by the maximal

tamely ramified subextension (which is finite over K because L/K is APF), and so

we will assume without loss of generality that L/K is totally wildly ramified. The

first step is to show that the norm maps approximately behave like surjective additive

homomorphisms in the following sense:

Lemma 6.2.6 ( [2, 2.2.1]). Let E/F be a finite separable totally wildly ramified

extension of local fields with residue characteristic p. Then

(a) vF (NE/F (a+ b)−NE/F (a)−NE/F (b)) ≥
(p−1)iE/F

p
for all a, b ∈ E.
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(b) For all α ∈ F , ∃a ∈ E such that vF (NE/F (a)− α) ≥
(p−1)iE/F

p
.

Proof. (a) I will consider only the case where E/F is Galois. The general case is

proven in 2.2.2.5 of.2 We may assume that a
b
is integral. Since vF (NE/F (b)) ≥ 0, it

suffices to show vF (NE/F (1 +
a
b
) − NE/F (1) − NE/F (

a
b
)) ≥

(p−1)iE/F

p
, so we may also

assume without loss of generality that b = 1. First we consider the case where E/F is

cyclic of degree p. By definition, Gt
FGE = GF for t < iE/F , so Gal(E/F )t = Gal(E/F )

for such t, and ψE/F (u) = u for u < iE/F . Then Gal(E/F )u = Gal(E/F )ψE/F (u) =

Gal(E/F )u = Gal(E/F ) for u < iE/F . Similarly, Gal(E/F )u ̸= Gal(E/F ) if u > iE/F

so Gal(E/F )u = 1 for such u. According to lemma V.3.5 and V.3.4 of,1 NE/F (1 +

a)−1−NE/F (a) ∈ Tr(OE) ⊆ prF , where r = ⌊
(p−1)(iE/F+1)

p
⌋ ≥

(p−1)iE/F

p
, as desired. In

general, since E/F is totally ramified, it has degree pk for some k, and we proceed by

induction on k. The base case k = 1 has already been done. Assume the result holds

for extensions of degree less than pk, and let E/F be totally wildly ramified of degree

pk. Then by the theory of p-groups, there is a degree p subextension K/F , and by

the inductive hypothesis, the result holds for E/K and K/F . Then NE/F (1 + a) −

NE/F (a)−1 = NK/F (NE/K(1+a))−NK/F (NE/K(a))−1 = NK/F (NE/K(a)+1+γ)−

NK/F (NE/K(a)) − 1 = NK/F (NE/K(a)) + 1 + NK/F (γ) − NK/F (NE/K(a)) − 1 + γ′ =

NK/F (γ) + γ′, where vK(γ) ≥
(p−1)iE/K

p
, and vF (γ

′) ≥
(p−1)iE/K

p
≥

(p−1)iE/F

p
. But

vF (NK/F (γ)) = vK(γ) ≥
(p−1)iE/K

p
≥

(p−1)iE/F

p
, so vF (NE/F (1 + a) − NE/F (a) − 1) =

vF (NK/F (γ) + γ′) ≥
(p−1)iE/F

p
, as desired. (b) Let πE, πF be uniformizers for E and
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F respectively, such that NE/F (πE) = πF . Write α =


i≥0

[xi]π
i
F , where [xi] is the

multiplicative representative of an element xi of the residue field of F . Let a =



i≥0

[xi]
[E:F ]−1

πiE. By part (a), we see that NE/F (a) ≡


i≥0

NE/F ([xi]
[E:F ]−1

)NE/F (π
i
E) =



i≥0

[xi]π
i
F = α, where ≡ denotes congruence modulo elements of valuation ≥

(p−1)iE/F

p
.

Definition 6.2.7. Let E/F be an APF field extension. Suppose Gb
FGE ̸= Gb+ϵ

F GE

for all ϵ > 0. Then we say that b is a jump in the upper ramification filtration of

E/F .

Definition 6.2.8. Let P be a poset such that any 2 elements have an upper bound.

Let X be a topological space. Let x ∈ X and let xp be a sequence of elements of

x indexed by P . We say lim
p∈P

xp = x if for every neighborhood U of x, there exists

pU ∈ P such that xp ∈ U for every p ≥ pU .

Such limits can be seen to be unique and satisfy the standard limit laws from cal-

culus by using the same proofs used in the classical case P = N. In most applications

of this definition we will use P = EL/K .

The following lemma shows that the accuracy of the approximations in lemma

6.2.6 can always be substantially improved by enlarging the field extension.

Lemma 6.2.9 ( [2, 2.2.3.1]). Let L/K be as above. Then lim
E∈EL/K

iL/E = ∞; i.e. for

every N > 0 there exists a finite extension EN/K such that iL/E > N for every finite

intermediate extension EN ⊆ E ⊆ L.
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Proof. By Proposition 6.2.4, it suffices to find EN/K such that iL/EN
> N . Let {bn}

be the sequence of jumps in the upper ramification filtration of L/K. It is easily seen

that since L/K is infinite APF, lim
n→∞

bn = ∞. Let Kn be the fixed field of Gbn
KGL. I

claim that iL/Kn = ψL/K(bn).

Let u be such that Gu
Kn
GL = GKn . Then since Gu

Kn
= GKn ∩ G

ϕKn/K(u)

K , we have

Gbn
KGL = GKn = Gu

Kn
GL = (GKn∩G

ϕKn/K(u)

K )GL = (Gbn
KGL∩G

ϕKn/K(u)

K )GL = Gbn
KGL∩

G
ϕKn/K(u)

K GL. Then Gbn
KGL ⊆ G

ϕKn/K(u)

K GL. Since bn is a jump in the filtration,

ϕKn/K(u) ≤ bn, so u ≤ ψKn/K(bn). A similar argument shows that conversely, if

u ≤ ψKn/K(bn), then Gu
Kn
GL = GKn . By definition of iL/Kn , we have iL/Kn =

ψKn/K(bn). It then suffices to show that ψKn/K(bn) = ψL/K(bn). Since ψL/Kn(t) = t

for t ≤ iL/Kn = ψKn/K(bn), and since ψL/K = ψL/Kn ◦ ψKn/K , the claim follows.

Since bn tends to infinity, so does ψL/K(bn), so we may pick n so that ψL/K(bn) ≥

N . If we take EN = Kn, then the result follows from the claim above.

The following lemma should be viewed as a sort of equicontinuity result for the

norm maps.

Lemma 6.2.10 ( [2, 2.3.2.2]). Let E/F be a finite extension of local fields. Let

α, β ∈ E. Then vF (NE/F (α)−NE/F (β)) ≥ ϕE/F (vE(α− β)).

Let {s(E)}E∈EL/K
be an increasing sequence of integers indexed by finite subex-

tensions of L/K, such that s(E) ≤
(p−1)iE/F

p
and lim

E∈EL/K

s(E) = ∞. This is possible

by Lemma 6.2.9. It is easy to see that for any subextension F of E/K, the map
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NE/F : OE/p
s(E)
E → OF/p

s(F )
F is well defined. by Lemma 6.2.6, this map is a surjec-

tive ring homomorphism.

Definition 6.2.11. Let AK(L) = lim←−
EL/K

OE/p
s(E)
E , where the transition maps in the

inverse system are those induced by the norm.

AK(L) is a ring because the transition maps are homomorphisms by 6.2.6.

Theorem 6.2.12 ( [2, 2.2.4]). Let L/K be a totally wildly ramified infinite APF

extension.

(a) AK(L) is a complete DVR of characteristic p.

(b) The residue field of AK(L) is canonically isomorphic to that of L.

(c) The field of fractions of AK(L) is canonically isomorphic to XK(L) as a

monoid.

Proof. (a) Picking an element x ∈ AK(L) amounts to picking a collection of elements

xE ∈ OE/p
s(E)
E for each finite subextension E of L such that NE/F (xE) = xF whenever

K ⊆ F ⊆ E ⊆ L. We define v(x) = lim
E∈EL/K

vE(xE), where xE ∈ OE is any lift of

xE. It is straightforward to check that if x ̸= 0, then vE(xE) is independent of xE

if s(E) is large enough. Furthermore, for such an E, we have vE(xE) = vF (xF ) for

any finite subextension F containing E because we may take xE = NF/E(xF ). It

follows that v(x) is defined, is a finite integer unless x = 0, and is independent of

xE. To verify that v is a discrete valuation on AK(L), one uses the definition of

v and the fact that vE is a valuation. To show AK(L) is complete, let {xi}i∈N be
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a Cauchy sequence. Let xE;i be the corresponding element of OE/p
s(E)
E . Using the

continuity of the projection AK(L)→ OE/p
s(E)
E , one sees that {xE;i}i∈N is Cauchy for

any fixed E, and hence converges to an element xE ∈ OE/p
s(E)
E . These elements are

clearly compatible, as seen by using the compatibility of the xE;i for each i, so they

give an element x in the inverse limit AK(L). To show that AK(L) has characteristic

p, note that v(p) = lim
E∈EL/K

vE(p) = ∞ since the ramification indices of the finite

subextensions of L/K tend to infinity. Hence p = 0.

(b) Since L/K is totally ramified, the residue field of L agrees with that of any

subextension of L/K. Let k denote this common residue field. For any finite subex-

tension E and any y ∈ OE/p
s(E)
E , we let ȳ ∈ k denote the reduction modulo the

maximal ideal. Let E/K be any finite subextension of L/K. Define f : AK(L) → k

by f(x) = x̄E
1/[E:K]. Taking the 1

[E:K]
-th power makes sense because [E : K] is a p-th

power and k is perfect. For any a ∈ E it is easy to check using the fact that E/K is

totally ramified that NE/K(a) and a
[E:K] define the same element of k. This fact al-

lows one to easily show that f is independent of the choice of E. It is straightforward

to check that f is a surjective ring homomorphism. Hence, we only need to show the

kernel of f is maximal. Suppose x ∈ mAK(L). Then v(x) > 0 so vE(xE) > 0 for all

sufficiently large E. Hence vE(xE1/[E:K]) > 0 so f(x) = 0.

(c) Let a ∈ AK(L). For each E ∈ EL/K , let (aE) ∈ OE be any lift of the element

aE ∈ OE/p
s(E) corresponding to a. I claim that for any F ∈ EL/K , lim

E∈L/F
NE/F (aE)

converges. To see this, note that for any E ′ ∈ EL/E, vE(NE′/E(aE′) − aE) ≥ s(E).
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by Lemma 6.2.6a vF (NE′/F (aE′) − NE/F (aE)) = vF (NE/F (NE′/E(aE′)) − NE/F (aE)).

by Lemma 6.2.10, vF (NE/F (NE′/E(aE′)) − NE/F (aE)) ≥ ϕE/F (s(E)) ≥ ϕL/F (s(E)).

In particular, since s(E) → ∞, {NE/F (aE)} is Cauchy, and hence converges. An

argument analogous to the above shows that the limit is independent of the choice of

aE.

Specifying an α in XK(L) is the same as specifying a choice of αE ∈ E for each

E ∈ EL/K such that NF/E(αF ) = αE for each finite extension F/E. Let OXK(L)

be the subset of XK(L) consisting of elements α such that αE is integral for all

E. By the previous paragraph we have a map η : AK(L) → OXK(L) such that

η(a)E = lim
E∈L/F

NE/F (aE). It is easy to check that the map OXK(L) → AK(L) induced

by the maps OE → OE/p
s(E) is its inverse. Furthermore, using the fact that every

element of XK(L) is the ratio of two elements of OXK(L), one sees easily that this

extends to a bijection between XK(L) and the field of fractions of AK(L).

Remark 6.2.13. Instead of taking the inverse limit over all finite extensions of L/K,

we can take the inverse limit over any increasing sequence Ki/K such that L =


i

Ki.

In particular, suppose Ki is the fixed field of GLG
i
K . Let Ni = iL/Ki

. Let s(Ki) = si

be any strictly increasing sequence of natural numbers such that psi = (p − 1)Ni.

Let i, j ∈ N be such that j > i. Then the maps OKj
/m

sj
Kj
→ OKi

/msi
Ki

induced

by the norm NKj/Ki
are well-defined surjective ring homomorphisms by 6.2.6. By a

cofinality argument AK(L) = lim←−OKi
/msi

Ki
. By 6.2.12 XK(L) if the field of fractions

of lim←−OKi
/msi

Ki
. It is this description of XK(L) that we will use in chapter 7 to link
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Wintenberger’s theorem with Deligne’s.

Corollary 6.2.14. If L/K is an infinite APF extension, then XK(L) is a local field,

in which the addition is given by (x+ y)F = lim
E∈EL/F

NE/F (xE + yE).

According to Proposition 7.3.1, part (c) of Theorem 6.2.12 states that XK(L) is

the limit of the finite subextensions of L/K in the sense of the discussion preceding

7.3.1. It is worth noting that we could have proven part (a) of this theorem simply

by appealing to 7.3.1.

6.3 Galois theory of norm fields

In this subsection, we will study separable extensions of XK(L). The first step

in this direction is to show that if M/L is finite and separable, then XK(M) is an

extension of XK(L).

Remark 6.3.1 ( [2, 3.1.1]). Let L/K be infinite APF, and let τ : L → L′ be a finite

separable embedding. Let E ′τ be the family of finite extensions E/K such that τL

and E are linearly disjoint, and have compositum equal to L′. One can verify that

this is cofinal in EL′/K , so can be used in place of EL′/K to define the norm field.

Then we can define a map XK(τ) : XK(L) → XK(L
′) by (XK(τ)(x))E = τxτ−1E for

E ∈ E ′τ . To check that the result gives an element of XK(L
′), one uses the fact that

NE/F (τα) = τNτ−1E/τ−1F for any E,F ∈ E ′τ such that F ⊆ E. It can be shown that

XK(στ) = XK(σ)XK(τ).
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Lemma 6.3.2 ( [2, 3.1.3.1]). If L′/L is finite and Galois, then Gal(L′/L) acts faith-

fully on XK(L
′).

Proof. Let σ ∈ Gal(L′/L) act trivially on XK(L
′), i.e. XK(σ) = 1. Using the fact

that Galois extensions are cofinal in EL′/K , one readily checks that the action of σ

and that of XK(σ) on the residue field of L′ are identified by the correspondence in

Theorem 6.2.12b. In particular, σ acts trivially on this residue field. Let E ′ ∈ E ′τ be

Galois and contain the maximal unramified subextension of L′/K. Let π ∈ XK(L
′)

be a uniformizer. Then σπ = π, so σπE′ = πE′ . Since σ acts trivially on the residue

field of E ′ ⊆ L′ and on a uniformizer, it acts trivially on E ′. But the collection of

such E ′ is cofinal, so σ is trivial on all of L′.

The following result shows that the extension XK(M)/XK(L) is very similar to

M/L.

Corollary 6.3.3 ( [2, 3.1.2]). (a) IfM/L is finite and separable, then XK(M)/XK(L)

is separable and has the same degree.

(b)If in addition M/L is Galois, then XK(M)/XK(L) is Galois and Gal(M/L) ∼=

Gal(XK(M)/XK(L)).

Proof. SupposeM/L is Galois. It is easy to check that the fixed field of Gal(M/L) on

XK(M) is XK(L). This together with lemma 6.3.2 shows (b). To see XK(M)/XK(L)

is separable of degree [M : L], we apply (b) to M ′/M and M ′/L, where M ′/L is the

Galois closure of M .
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Definition 6.3.4. Let L′/L be any separable extension of an infinite APF extension

L/K. Then we can define XL/K(L
′) as the direct limit of the fields XK(E), where E

runs through the intermediate extensions L ⊆ E ⊆ E ′ which are finite over L.

Remark 6.3.5. By 6.3.3, XL/K(M) is separable. If τ : L′ → L′′ is a separable em-

bedding, then the maps from Remark 6.3.1 induce a map XL/K(τ) : XL/K(L
′) →

XL/K(L
′′). XL/K is then a functor from the category of separable extensions of L to

that of XK(L). If L
′/L is finite, then clearly XK(L

′) = XL/K(L
′).

Proposition 6.3.6 ( [4, III.5.6]). XL/K is fully faithful.

Proof. Let L′/L be finite and Galois. by Lemma 6.3.2, we can embed Gal(L′/L) in

Gal(XL/K(L
′)/XK(L)). By computing the fixed field of Gal(L′/L) on XL/K(L

′), one

sees that this is an isomorphism. From this, one can deduce the corresponding fact for

infinite Galois extensions of L. To show Hom(L′, L′′) ∼= Hom(XL/K(L
′), XL/K(L

′′)),

one uses the fundamental theorem of Galois theory to express the Hom sets in terms

of Galois groups.

Theorem 6.3.7 ( [2, 3.2.5]). XL/K is an equivalence of categories.

Proof. It suffices to showXL/K is essentially surjective. This is proven in [2, 3.2.5].

Corollary 6.3.8. The categories of finite separable extensions of L and XK(L) are

equivalent.
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6.4 Relation between norm fields and per-

fect norm fields

We will now explore the relation between the norm field, and the perfect norm

field. First we will state some results of Wintenberger, which allow us to embed the

norm field inside a perfect norm field. We will then outline the construction of,9 in

which the norm field of a totally ramified Zp extension is constructed from the perfect

norm field.

We will let L̂ denote the completion of a valued field L. We assume L/K is infinite

APF and totally wildly ramified, and that K has characteristic 0. We let En be the

subposet of EL/K consisting of extensions of degree divisible by pn. Given an element

α ∈ XK(L) we let αE ∈ E denote the component corresponding to a subfield E.

Theorem 6.4.1 ( [2, 4.2.1]). Let α ∈ XK(L). Then lim
E∈En

α
p−n[E:K]
E converges in L̂. If

we let xn denote the limit, then the family of xn ∈ L̂ defines an element of RL̂. This

construction defines a continuous embedding XK(L)→ R(L̂).

Henceforth, we assume that L is a Zp extension in addition to the properties

above. We let F/K be a finite extension, and Fn = FKn. Let M = FK∞.

Definition 6.4.2 ( [9, 13.3.3]). We define E+
M to be the set of sequences xn ∈ M̂

such that xpn = xn+1 and such that xn ∈ OFn for large n.

Then according to [9, 13.3.5], the field of fractions of E+
M is the norm field associ-
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ated to M/K. We will let ϕ denote the p-th power map and ϕ−∞(E+
M) = {x ∈ RM̂ |

∃k.ϕk(x) ∈ E+
M}.

Proposition 6.4.3 ( [9, 13.3.11]). ϕ−∞(E+
M) is dense in RM̂ .

In fact, Wintenberger proves in [2, 4.3.4] that this holds for any infinite APF

extension M/K.
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Chapter 7

A link between the theories of

Wintenberger and Deligne

Let L/K be an infinite APF extension as defined by 6.2.1. Let XK(L) be the

norm field of section 6. Rather than using the standard description of XK(L), it is

more convenient for use to use the description given in 6.2.13. Our goal is to give

a new proof of 6.3.8 without using the results of 6.3. Since XK(L) is defined, not

directly in terms of L, but in terms of its finite subextensions, it is natural to prove

this by relating extensions of both L and XK(L) with those of a suitable sequence of

finite subextensions of L/K.

In sections 7.1 and 7.2, we will use the ramification filtration to prove that finite

separable extensions of L with a given bound on their ramification are equivalent

to finite separable extensions of a suitable subextension Ki/K with the same bound
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on ramification. The argument essentially reduces to the case where Ki = K has

ramification bounded below by i. The key to comparing extensions of Ki and those

of L is the linear disjointness provided by 7.1.4.1

In section 7.3, we will use Deligne’s theory, which is described in section 4, to show

that the finite separable extensions of Ki with an appropriate bound on ramification

correspond to extensions of XK(L) with the same bound on ramification.2 Combining

these results will show that extensions of L with a bound on ramification correspond

to extensions of XK(L) with the same ramification bound. This equivalence is not

obviously canonical, however; It appears to depend on the choice of the subextension

Ki.

In section 7.4, we will give an explicit description of the extension of XK(L)

corresponding to a given extension of L for large values of i. In particular, the fact

that this description does not depend on the choice of i will allow us to provide an

equivalence of categories between finite separable extensions of L and those of XK(L)

without needing to impose a bound on ramification.

Throughout this paper the absolute Galois group of a field K will be denoted GK .

We will define the upper and lower ramification filtrations and the function ψL/K as

in Chapter IV of1

1In particular, this result requires us to work with extensions of L with bounded ramification,
rather than arbitrary extensions.

2We also need to bound the ramification of the extensions, because Deligne’s theory deals with
a category of extensions with a bound on their ramification.
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7.1 Some results in ramification theory

If K is a field, we will denote the absolute Galois group of K by GK . The u-th step

in the upper ramification filtration on Gal(L/K) or GK will be denoted Gal(L/K)u

or Gu
K .

Definition 7.1.1. 2LetK be a local field. For a totally ramified APF extension L/K,

we define ψL/K(t) =

 u

0

[GK : GLG
u
K ]du. We define ϕL/K to be the inverse function.

We define Gu
L = GL ∩ G

ϕL/K(u)

K . For a Galois extension M/L, we define Gal(M/L)u

to be the image of Gu
L in Gal(M/L).

Remark 7.1.2. Let L/K be a totally ramified APF extension. Let E/K be a finite

subextension of L/K. Then the definition of Gu
L can be easily verified to be the same

if we replace L/K with L/E, since G
ϕE/K(v)

K ∩GE = Gv
E for all v.

In what follows K may be either a local field or an APF extension of a local field,

unless otherwise specified. The remainder of this section will be devoted to studying

bounds on ramification in the sense of Definition 2.0.18.

Lemma 7.1.3. Let L/K and E/K have ramification bounded above by u. Then

LE/K has ramification bounded above by u.

Proof. Gu
K ⊆ GL and Gu

K ⊆ GE so Gu
K ⊆ GE ∩GL = GLE.

Proposition 7.1.4. Let L/K be have ramification bounded below by u. Let E/K

have ramification bounded above by u. Then L and E are linearly disjoint.
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Proof. Let Ẽ/K be the Galois closure of E. It suffices to show L/K and Ẽ/K

are linearly disjoint. For this, it suffices to show that L ∩ Ẽ = K. We know that

Gu
K ⊆ GL and Gu

KGẼ = GK . Hence GK ⊆ GLGẼ so L ∩ Ẽ ⊆ K. The reverse

inclusion is trivial.

Lemma 7.1.5. Let L/K be an APF extension of a local field with ramification

bounded below by u > 0. Let E/K be finite and have ramification bounded above

by u. Then LE/L has ramification bounded above by u. In addition, LE/E has

ramification bounded below by u.

Proof. ψL/K(t) =

 t

0

[GK : GLG
v
K ]dv, and for v ≤ u, the integrand is 1. Hence

ψL/K(t) = t for t ≤ u, and so ϕL/K has this property as well. Gu
L = GL ∩G

ϕL/K(u)

K =

GL ∩G
u
K .

Since Gu
K ⊆ GE, G

u
L ⊆ GL ∩ GE = GLE, and so LE/L has ramification bounded

above by u.

We will show that LE/L has ramification bounded below by ψE/K(u) ≥ u. Since

Gu
K ⊆ GE, GLG

ψE/K(u)

E = GL(GE∩G
u
K) = GLG

u
K = GK . Hence GE ⊆ GLG

ψE/K(u)

E , so

GE ⊆ G
ψE/K(u)

E (GE ∩GL) = G
ψE/K(u)

E GLE, so EL/E has ramification bounded below

by ψE/K(u).
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7.2 Moderately ramified extensions of APF

extensions

Until otherwise noted, L/K will denote an APF extension with ramification

bounded below by u > 0. We fix an algebraic closure of K, and an embedding

of L into this algebraic closure. Our goal is to show that CuK
∼= CuL.

Proposition 7.2.1. There is a functor V : CuK → C
u
L sending an extension E/K

to EL/L, and sending a morphism of extensions E → E ′ into the corresponding

morphism LE → LE ′.

Proof. Let E ∈ CuK . By 7.1.5, LE ∈ CuL. If E → E ′ is a morphism in CuK , then by

7.1.4, E/K and E ′/K are each linearly disjoint to L/K. Then we get a morphism

LE ∼= L ⊗K E → L ⊗K E ′ ∼= LE ′, so the inclusion LE ⊆ LE ′ makes sense. This

clearly preserves composition.

Lemma 7.2.2. V is faithful.

Proof. Suppose two inclusions E → E ′ induce the same inclusion LE → LE ′. Then

the two inclusions are both given by restricting the codomain on the composite E →

LE → LE ′ to E ′, so they must be equal.

Lemma 7.2.3. V is full.

Proof. Let M,M ′ ∈ CuL with M ⊆ M ′, and suppose M = LF and M ′ = LF ′ for

some F, F ′ ∈ CuK . We have F = K(α) and F ′ = K(β) for some α and β. Then
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L(α) = M ⊆ M ′ = L(β) so LF ′ = L(β) = L(α, β) = LFF ′. By 7.1.3, FF ′/K has

ramification bounded by u, so by 7.1.4, F ′ and FF ′ are linearly disjoint from L/K.

Thus [FF ′ : F ′] = [LFF ′ : LF ′] = 1, so F ′ = FF ′ and hence F ⊆ F ′. Clearly this

inclusion induces the original inclusion M ⊆M ′. This deals with the case where the

given map M →M ′ is an inclusion. In general it is the composite of an inclusion and

an isomorphism σ : σ−1M ′ →M ′ for σ ∈ GL ⊆ GK . But this isomorphism is induced

by σ : σ−1F ′ → F .

Lemma 7.2.4. V is essentially surjective.

Proof. Let M ∈ CuL. Then Gu
L ⊆ GM . Since M/L is finite and separable, we have

M = L(α) where α is algebraic over K. Let E be the fixed field of GMG
u
K . As in

the proof of 7.1.5, ϕL/K(u) = u. Then Gu
L = GL ∩ G

ϕL/K(u)

K = GL ∩ G
u
K . GE ∩ GL =

GMG
u
K ∩ GL = GM(Gu

K ∩ GL) = GM(Gu
L) = GM , so M = LE = V(E). Hence V is

essentially surjective.

The above lemmas immediately imply the following.

Theorem 7.2.5. Let u > 0. Let L/K be an APF extension with ramification bounded

below by u. Then V : CuK → C
u
L is an equivalence of categories.

Corollary 7.2.6. Let u > 0. Let L/K be any APF extension. Let Ku be the fixed

subfield of GLG
u
K. Then the categories CvKu

and CvL are equivalent for any v ≤ u.

Proof. I claim that L/Ku has ramification bounded below by v, that isGv
Ku
GL = GKu .

Note that Gv
Ku

= GKu ∩ G
ϕKu/K(v)

K = GLG
u
K ∩ G

ϕKu/K(v)

K . If v ≤ u, then ϕKu/K(v) ≤
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v ≤ u, so Gv
Ku
⊇ GLG

u
K ∩ G

u
K = Gu

K . Then Gv
Ku
GL ⊇ Gu

KGL = GKu . The reverse

inclusion is trival, so the claim holds. Now we can simply apply the previous theorem

to L/Ku.

7.3 An application of Deligne’s theory to

norm fields

Proposition 7.3.1. Let ui be a nondecreasing sequence of integers which tends to in-

finity. Let Ki be a sequence of local fields. Suppose that for each i, we are given a sur-

jective homomorphism θi : OKi+1
/m

ui+1

Ki+1
→ OKi

/mui
Ki
. Let K = Frac(lim←−OKi

/mui
Ki
).

Then K is a local field, and OKi
/mui

Ki

∼= OK/m
ui
K for all i. Furthermore Trui−1(K) ∼=

Trui−1(Ki).

Proof. Let OK = lim←−OKi
/mui

Ki
. For the first part of the proposition, it suffices to

show OK is a complete DVR. It is clearly a ring. Let vi be the valuation on the

truncated DVR OKi
/mui

Ki
. For α ∈ OK , let αi be its component in OKi

/mui
Ki
. I claim

that vi(αi) = vi+1(αi+1) for large i. Write αi = uiπ
vi(αi)
i , where πi is a uniformizer

of OKi
/mui

Ki
. Then θi(αi+1) = θi(ui+1)θi(πi+1)

vi+1(αi+1). Since θi is a surjective homo-

morphism of local rings, θi(ui+1) is a unit and θi(πi+1) is a uniformizer. In particular,

if αi = θi(αi+1) is nonzero, then vi(αi) = vi+1(αi+1). If α ̸= 0, then this proves the

claim. If α = 0, then the claim is trivial. Note furthermore that vi(αi) = vi+1(αi+1)
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holds unless αi = 0, in which case we still have vi(αi) ≥ vi+1(αi+1).

We define v(α) to be the limiting value of vi(αi). Then vi(αi) ≥ v(α) for all i. If

α, β ∈ OK , then vi(αiβi) = vi(αi) + vi(βi), as long as vi(αi) + vi(βi) < ui. Taking the

limit shows that v(αβ) = v(α) + v(β) when v(α) + v(β) < ∞. The other properties

of a discrete valuation are proven similarly. Let {α(k)} denote a Cauchy sequence in

OK . Let N be a natural number. Then v(α(k) − α(l)) > N for large k and l. Thus

vi(α
(k)
i −α

(l)
i ) ≥ v(α(k)−α(l) > N when k, and l are large. Since OKi

/mui
Ki

is complete,

lim
k→∞

α
(k)
i exists, and will be denoted αi. Since θi is continuous, θi(αi+1) = αi, so the

αi define an element α ∈ OK . It is easy to see this is the limit of the given Cauchy

sequence, and so OK is a complete DVR.

Let n ∈ N. It is easy to see that mn
K = lim←−m

min(ui,n)
Ki

/mui
Ki
. I claim that

lim←−
1
m

min(ui,n)
Ki

/mui
Ki

= 0. Without loss of generality, I will assume ui > n for all

i. Let θi,j : OKi
/mui

Ki
→ OKj

/m
uj
Kj

for i > j be the maps induced by the sequence

{θk}. By the Mittag-Leffler condition, the claim reduces to showing that for all k,

there exists j ≥ k such that for i ≥ j, θi,k(m
n
Ki
/mui

Ki
) = θj,k(m

n
Kj
/m

uj
Kj
). But both are

generated by the image of πnKk
, so the claim holds. Then by the long exact sequence,

OK/m
n
K
∼= lim←−OKi

/m
min(ui,n)
Ki

.

If n = uj − 1, it is easy to see that all but finitely many terms in this limit are

isomorphic (under the maps induced by the θi) to OKj
/m

uj−1
Kj

. Hence OKj
/m

uj−1
Kj

∼=

OK/m
uj−1
K , under the map induced by the projection OK → OKj

/m
uj
Kj
. The isomor-

phism OK/m
uj−1
K → OKj

/m
uj−1
Kj

will be denoted ϕ.
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Using the same vanishing result on lim←−
1, mK/m

n+1
K
∼= lim←−mKi

/m
min(ui,n+1)
Ki

. Tak-

ing n = uj − 1, we get mK/m
uj
K
∼= lim←−mKi

/m
min(ui,uj)
Ki

. Since the maps θi pro-

vide isomorphisms mKi
/m

uj
Ki

∼= mKj
/m

uj
Kj
, the inverse limit is mKj

/m
uj
Kj
. Hence

mK/m
uj
K
∼= mKj

/m
uj
Kj

under the map η induced by the projection mK → mKj
/m

uj
Kj
.

One checks that (1, ϕ, η) is an isomorphism of triples.

Let L/K be an infinite APF extension. Let Ki be the fixed field of GLG
i
K .

By 6.2.13, there is an increasing sequence of natural numbers si → ∞ such that

the norm maps induce surjective homomorphisms θi : OKi+1
/m

si+1

Ki+1
→ OKi

/msi
Ki
.

Furthermore, XK(L) = Frac(lim←−OKi
/msi

Ki
). By 7.3.1, Trsi−1(XK(L)) ∼= Trsi−1(Ki).

Deligne’s theorem gives the following.

Proposition 7.3.2. Let i > 0. Let v < si − 1. Then CvXK(L) and C
v
Ki

are equivalent.

Combining this with 7.2.6 and picking i large enough that i > v and si − 1 > v

gives the following.

Theorem 7.3.3. Let v > 0. Then CvXK(L) and C
v
L are equivalent.

7.4 An explicit description of the equiva-

lence

Throughout this section we will use the following notation. Let R ≥ 1 be a large

fixed natural number. Let L/K be infinite APF. Let M/L be a finite separable
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extension. Let Ku be the fixed field of GLG
u
K and let K ′

u be the fixed field of GMG
u
K .

We will soon see that the ramification index of K ′
u/Ku is independent of u. We will

denote the common value by r and, unless otherwise specified, will only consider

extensions M/L such that r ≤ R. We will define si to be any nondecreasing sequence

si which tends to infinity such that psi ≤ pRsi ≤ (p− 1)bi where bi is a lower bound

on the ramification filtration of L/Ki, and where p is the residue characteristic. Then

by footnote 6.2.13, the norm maps induce surjective homomorphisms OKi+1
/m

si+1

Ki+1
→

OKi
/msi

Ki
. We will soon see that the norm maps induce surjective homomorphisms

OK′

i+1
/m

r(si+1)

K′

i+1
→ OK′

i
/m

r(si)

K′

i
. If ι : L → M denotes the embedding, then we define

XK(ι) : XK(L) = Frac(lim←−OKi
/msi

Ki
) → Frac(lim←−OK

′

i
/m

r(si)

K′

i
) = XK(M) to be the

map induced by the embeddings ι|Ki
: Ki → K ′

i
3. Similarly, for σ ∈ GL, we let

XK(σ) : XK(M) → XK(σM) be induced by σ : K ′
i → σK ′

i, which is well defined

since the Galois action commutes with norm maps.

Lemma 7.4.1. If M/L has ramification bounded above by u, then so does K ′
i/Ki

for i ≥ u. In particular, K ′
i/Ki and L/Ki are linearly disjoint, and the ramification

index of K ′
i/Ki is independent of i for i ≥ u.

Proof. We have Gu
L ⊆ GM . Then GK′

i
= GMG

i
K ⊇ Gu

LG
i
K = (GL ∩ G

ϕL/K(u)

K )Gi
K .

In addition, Gu
Ki

= G
ϕKi/K

(u)

K ∩ GKi
. Since ϕKi/K(u) ≥ ϕL/K(u), we have Gu

Ki
⊆

3The map lim
←−
OKi

/msi

Ki
→ lim

←−
OK′

i
/m

r(si)
K′

i

is well-defined by 7.4.2. The map

Frac(lim
←−
OKi

/msi

Ki
) → Frac(lim

←−
OK′

i
/m

r(si)
K′

i

) is well defined because lim
←−
OKi

/msi

Ki
→

lim
←−
OK′

i
/m

r(si−1)
K′

i

is injective, which follows from the fact that each OKi
/msi

Ki
→ OK′

i
/m

r(si)
K′

i

is

injective.
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GKi
∩ G

ϕL/K(u)

K = GLG
i
K ∩ G

ϕL/K(u)

K . If i ≥ ϕL/K(u), then GLG
i
K ∩ G

ϕL/K(u)

K =

(GL ∩ G
ϕL/K(u)

K )Gi
K .

4 Hence Gu
Ki
⊆ (GL ∩ G

ϕL/K(u)

K )Gi
K ⊆ GK′

i
so the ramification of

K ′
i/Ki is bounded above by u. The linear disjointness follows from the fact that the

ramification of L/Ki is bounded below by i, and hence by u if i ≥ u.

Lemma 7.4.2. The map lim←−OKi
/msi

Ki
→ lim←−OK

′

i
/m

r(si)

K′

i
is well defined.

Proof. It suffices to show that the inclusions OKi
/msi

Ki
→ lim←−OK

′

i
/m

r(si)

K′

i
form a mor-

phism of projective systems; i.e. they are compatible with the norm maps. By a

cofinality argument it suffices to show this for large i. But then 7.4.1 shows that

K ′
i/Ki and Kj/Ki are linearly disjoint for i > j, and the result follows from the

standard result that in this case NKjK′

i/K
′

i
(x) = NKj/Ki

(x) for x ∈ Kj.

Lemma 7.4.3. In the setting introduced above, the norm maps induce surjective

homomorphisms OK′

i+1
/m

r(si+1)

K′

i+1
→ OK′

i
/m

r(si)

K′

i
.

Proof. By 7.1.5, M/K ′
i has ramification bounded below by bi. Since prsi ≤ (p− 1)bi,

the result follows from Remark 6.2.13.

Lemma 7.4.4. Let v be such that M/L has ramification bounded above by v. Let

i be large enough that v < min(si − 1, i). Let r be the ramification index of K ′
i/Ki.

4More generally if G is a group and H,K,N are subgroups with H ⊆ K, then NH ∩ K =
(N ∩K)H.
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Suppose r ≤ R. The map XK(ι) induces a well-defined morphism Trv(XK(L)) →

Trrv(XK(M)). In addition, the following diagram commutes.

Trrv(XK(M))
∼
−−−→ Trrv(K

′
i)

XK(ι)∗
 ι∗


Trv(XK(L))

∼
−−−→ Trv(Ki)

Proof. First we check that the following diagram of truncated DVRs commutes.
OXK(M)/m

rv
XK(M)

∼
−−−→ OK′

i
/mrv

K′

i

XK(ι)∗
 ι∗


OXK(L)/m

v
XK(L)

∼
−−−→ OKi

/mv
Ki

Let x ∈ OXK(L) = lim←−OKj
/m

sj
Kj

with components xj ∈ OKj
/m

sj
Kj
. Let x̃j ∈ OKj

be a lift of xj. The bottom arrow of the diagram sends the class of x to the class of x̃i;

this class gets mapped to the class of ι(x̃i) by the right arrow. Let y ∈ OXK(M) be the

element whose components yj ∈ OK′

j
/m

sj
K′

j
are the classes of the elements ỹj = ι(x̃j).

Then by definition the left arrow sends the class of x to that of y, which gets mapped

by the top arrow to the class of ỹi. Since ỹi = ι(x̃i), the diagram of truncated

DVRs commutes. A similar argument shows that the diagram of free rank 1 modules

commutes. Hence the diagram of triples commutes. The fact that Trv(XK(L)) →

Trrv(XK(M)) is well-defined can be seen by viewing it as a composition of other

morphisms in the diagram.

We now prove a state a similar but easier result for the Galois action.

Lemma 7.4.5. Let v be such that M/L has ramification bounded above by v. Let

i be large enough that v < min(si − 1, i). Let r be the ramification index of K ′
i/Ki.

Suppose r ≤ R. Let σ ∈ GL. The map XK(σ) induces a well-defined morphism
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Trrv(XK(M))→ Trrv(XK(σM)). In addition, the following diagram commutes.

Trrv(XK(σM))
∼
−−−→ Trrv(σK

′
i)

XK(σ)∗
 σ∗


Trrv(XK(M))

∼
−−−→ Trrv(K

′
i)

Proof. The proof follows the strategy of 7.4.4.

Lemma 7.4.6. Let v be such that M/L has ramification bounded above by v. Let

i ≥ v. Then K ′
iL =M .

Proof. SinceM/L has ramification bounded by v, we have Gv
L = GL∩G

ϕL/K(v)

K ⊆ GM .

Since i ≥ v ≥ ϕL/K(v), GL ∩ G
i
K ⊆ GL ∩ G

ϕL/K(v)

K ⊆ GM . Hence GL ∩ GK′

i
=

GL ∩GMG
i
K = GM(GL ∩G

i
K) = GM . Since K ′

iL is the fixed field of the left side, the

result follows.

Theorem 7.4.7. Let M/L be a finite separable extension with ramification bounded

by v and ramification index bounded by R. Choose i such that v < min(si−1, i). Then

the extensionM/L corresponds to the extension XK(M)/XK(L) given by XK(ι) under

the correspondence of 7.3.3. Let M ′/L be another such extension and τ : M → M ′.

Then τ corresponds to XK(τ) : XK(M)→ XK(M
′) under 7.3.3.

Proof. We know that K ′
i/Ki has ramification bounded above by v, so the functor

CvKi
→ CvL sends K ′

i to LK
′
i = M . Determining what M corresponds to under CvL →

CvXK(L) then reduces to determining what K ′
i corresponds to under CvKi

→ CvXK(L). But

using the diagram of triples of 7.4.4 shows that K ′
i corresponds to XK(M).
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Suppose K ′′
i is the fixed field of GM ′Gi

K , and e is the ramification index of M →

M ′. The second part is proven in a similar manner to the first, using the following

diagram. The top square follows by writing τ as the composition of an inclusion and

an element of the Galois group, and applying 7.4.4 and 7.4.5.
OXK(M ′)/m

rev
XK(M ′)

∼
−−−→ OK′′

i
/mrev

K′′

i

XK(τ)∗
 τ∗


OXK(M)/m

rv
XK(M)

∼
−−−→ OK′

i
/mrv

K′

i

XK(ι)∗
 ι∗


OXK(L)/m

v
XK(L)

∼
−−−→ OKi

/mv
Ki

Theorem 7.4.8. The functor XK provides an equivalence of categories between finite

separable extensions of L and those of XK(L).

Proof. First we prove it is faithful. Let τ, τ ′ :M →M ′ be such that XK(τ) = XK(τ
′).

Let v be a bound on the ramification of M and M ′. Since v as well as the functor

XK and the maps τ, τ ′ are independent of R, we may suppose that we had picked R

large enough that M and M ′ have ramification indices bounded by R. Let i be such

that v < min(si − 1, i), where si is as at the beginning of the section5. By 7.4.7 τ, τ ′

both map under the equivalence of categories 7.3.3 to XK(τ) = XK(τ
′). Hence they

are equal.

Given any map XK(M)→ XK(M
′) where v, R, i are as in the previous paragraph,

the map has the form XK(τ) where τ ∈ HomCv
L
(M,M ′) corresponds to the given map

under the equivalence of 7.3.3. Hence the functor is full.

5In particular the sequence sk, and hence the number i depend on the choice of R.
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Let E be any finite separable extension of XK(L). We may pick v such that

E/XK(L) has ramification bounded by v. Suppose R was chosen so that E/XK(L)

has ramification index bounded by R. Let i be such that v < min(si − 1, i) and such

that i > R. Let M/L be the extension corresponding to E under 7.3.3. Let K ′
j be

the fixed field of Gj
KGM . Then according to Deligne’s theory, the ramification index

of K ′
i/Ki is bounded by R (and hence by i). Since the functor V of section 7.2 sends

CRKi
to CRL , it follows that M/L has ramification bounded by R. Hence M/L satisfies

the conditions of 7.4.7, so that it corresponds to XK(M) under the equivalence of

7.3.3. Hence E ∼= XK(M), so XK is essentially surjective.
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Chapter 8

Finite Extensions of Zmax

8.1 Introduction

There has been much interest recently in geometry over the tropical semifield

Rmax = R ∪ {∞}, in which the addition operation is max and multiplication is given

by the usual notion of addition.18 In this paper, we will instead work with a related

semifield Zmax, which is defined in a similar manner.

The semifield Zmax has been studied by A. Connes and C. Consani in connection

with the notion of the absolute point.13 In particular, they have studied projective

spaces over Zmax and shown that they give a realization of J. Tits’ ideas on a projective

geometry over the ”field with one element”.20

A natural question that arises is to study the finite extensions of Zmax, that is

semifields containing Zmax which are finitely generated as a semimodule. One reason
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for studying the finite extensions is geometric in nature. When studying varieties over

a non-algebraically closed field K, one needs to consider points with values not only

in K, but also in finite extensions of K. By analogy, one might expect that points

with values in the extensions of Zmax will be a necessary ingredient in devoloping a

notion of algebraic geometry over Zmax embodying Connes’ and Consani’s ideas about

projective space.

In,13 Connes and Consani have discovered that for each n > 1 there is a relative

Frobenius map Zmax → Zmax. Furthermore they showed that this map gives a rank

n free semimodule F (n) over Zmax which is a semifield. The goal of this paper is to

show that these are all of the finite extensions of Zmax.

To each extension L of Zmax, we may associate a group L×/Z×
max. The key to

understanding the finite extensions of Zmax is Corollary 8.6.6 which states that for

every finite extension L of Zmax the group L×/Z×
max is finite.

Section 8.2 will give the basic definitions used throughout this paper. In section

8.2 we will also classify finite extensions of the simplest idempotent semifield B.

Section 8.3 will introduce the notion of the unit index of an extension, which is

the order of the group L×/Z×
max associated to an extension L of Zmax. To show the

theory of extensions with finite unit index is nontrivial, we will give a condition in

which the unit index must be finite. We will also show in Theorem 8.3.7 that for

n > 1, any extension of Zmax has at most one subextension of a given unit index, and

we will use this fact in Corollary 8.3.9 to classify finite subextensions of Rmax/Zmax.
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Most of the results of section 8.3 will be superseded by more general results in

later sections. Thus the reader may skip section 3 except for Definition 8.3.1 and the

proof of Theorem 8.3.4. However section 8.3 provides useful motivation for caring

about whether an extension has finite unit index.

In section 8.4, we will introduce the notion of an archimedean extension of an

idempotent semifield. Roughly speaking L is archimedean over K if every element of

L is bounded above by an element of K in a certain sense. We will show that every

finite archimedean extension of Zmax has finite unit index.

We would like to say that all finite extensions of Zmax have finite unit index. To do

this we will show in sections 8.5 and 8.6 that every finite extension L of any idempotent

semifield K is archimedean. Then the results of section 8.4 will apply. The strategy

to proving this will involve constructing the maximal archimedean subextension Larch

of the extension L over K. Section 8.5 is devoted to introducing a notion of convexity

that will allow us to prove in section 8.6 that L = Larch. This will imply that L is

archimedean.

In section 8.7, we will classify extensions of Zmax with finite unit index, by showing

in Theorem 8.7.2 that they are all F (n) for some n. Since all finite extensions of Zmax

have finite unit index, this gives us a classification of the finite extensions.

Suppose L has finite unit index over Zmax. The first step to showing that L ∼= F (n)

will be to study the structure of the multiplicative group L×, which we will see to be

isomorphic to Z. To understand the addition, we show that the embedding Zmax → L
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tells us how to add nth powers. We then show that this completely determines the

additive structure by using lemma 8.2.7, which states that the nth root operation is

monotonic in a suitable sense.

After studying the finite extensions, in sections 8.8 and 8.9 we will outline how

these results may be generalized to the noncommutative case of division semialgebras

over Zmax.

8.2 Basic Definitions and Examples

Definition 8.2.1. A (commutative) semiring R is a set together with 2 binary op-

erations (called addition and multplication) such that R is a commutative monoid

under each operation and the distributive law holds. It is idempotent if x+x = x for

all x ∈ R. It is selective if for all x, y ∈ R one has either x + y = x or x + y = y. A

semifield is a semiring R in which all nonzero elements are units.

Example 8.2.2. Let B = {0, 1} in which addition is given by x + 0 = 0 + x = 0

for all x and 1 + 1 = 1, and with the obvious notion of multiplication. Then B is

an idempotent semifield. More generally let M be a totally ordered abelian group.

Then Mmax = M ∪ {−∞} is an idempotent semiring in which addition is max and

multiplication is the group operation of M . Then B = Mmax where M is the trivial

group.

Remark 8.2.3. There is an element u ∈ Zmax such that Zmax = {0}∪{u
n | u ∈ Z} and
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u + 1 = u. We will write elements of Zmax this way to avoid the ambiguity between

addition in Z and in Zmax.

Definition 8.2.4. An extension L of a semifield K consists of a semifield L and an

injective homomorphism K → L. The extension is finite if the homomorphism makes

L into a finitely generated semimodule.

Example 8.2.5. LetM be a totally ordered abelian group and N ⊆M be a subgroup.

Then Mmax is an extension of Nmax.

Example 8.2.6. Fix a positive integer n. Define a map Zmax → Zmax sending each

nonzero element uk to unk and sending 0 to 0. Then this homomorphism is injective, so

gives an extension which will be denoted F (n). It is easily checked that 1, u, . . . , un−1

generate F (n) as a semimodule over Zmax
1, so the extension is finite.

We will conclude this section by classifying finite extensions of B. To do this we

will need two lemmas. The first of these two lemmas can be obtained by translating a

standard result on lattice ordered groups into the language of idempotent semifields.

However, we will give a different, and hopefully simpler, proof.

Lemma 8.2.7. Let K be an idempotent semifield. Let x, y ∈ K be such that xn+yn =

yn for some n > 0. Then x+ y = y.

Proof. We may assume x, y ̸= 0. Then x+y ̸= 0. We compute (x+y)n = xn+xn−1y+

. . .+xyn−1+ yn = xn−1y+ . . .+xyn−1+ yn = y(xn−1+xn−2y+ . . .+xyn−2+ yn−2) =

y(x+ y)n−1. Dividing by (x+ y)n−1 gives x+ y = y.
1In fact this is a minimal set of generators, so F (n) is a rank n semimodule over Zmax.
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Lemma 8.2.8. Let K be an idempotent semifield, and x ∈ K be a root of unity.

Then x = 1.

Proof. For some n, we have xn = 1. By lemma 8.2.7, it follows that x+ 1 = 1.

x−1 is also a root of unity so lemma 8.2.7 gives x−1 +1 = 1. Hence x+1 = x. By

transitivity of equality we have x = 1.

Theorem 8.2.9. Let L be a finite extension of the idempotent semifield B. Then

L = B.

Proof. Since L is finitely generated as a semimodule over B and B is finite, it follows

that L is finite. Then L× is a finite group and hence is torsion. By lemma 8.2.8,

L× = {1}. Hence L = B.

8.3 Finite subextensions of Rmax over Zmax

In this section we will associate a number called the unit index to any extension

of semifields. As an application, and as motivation for the approach of later sections,

we will classify finite subextensions of the infinite extension Rmax over Zmax. The

first step will be to show in Theorem 8.3.4 that the finite subextensions have finite

unit index. We will then study the subextensions of Rmax with finite unit index by

relating them to finite subgroups of the circle group R/Z.

Definition 8.3.1. Let L be an extension of a semifield K. We define the unit index

of the extension to be ui(L/K) = |L×/K×|.
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Example 8.3.2. Pick v ∈ F (n) such that F (n) = {0} ∪ {vk | k ∈ Z}. Then Zmax =

{0}∪{vkn}. Then (F (n))× is cyclic with generator v while Z×
max is cyclic with generator

vn. It is easily seen that ui(F (n)/Zmax) = n.

Definition 8.3.3. A idempotent semigroup M is selective if for all x, y ∈ M either

x+ y = x or x+ y = y.

Of course Rmax is selective, as is any subsemimodule of Rmax. This property will

make it easy to show in the following thoerem that the finite subextensions of Rmax

over Zmax have finite unit index.

Theorem 8.3.4. Let L be a finite extension of Zmax in which L is selective. Then

ui(L/Zmax) <∞.

Proof. Note that because L is selective, every subset is closed under addition. Let S

be a finite set generating L as a semimodule over Zmax. Without loss of generality,

we may assume 0 ̸∈ S. SZmax is a subsemimodule of L over Zmax because it is closed

under scalar multiplation by construction, and because it is closed under addition.

Since S ⊆ SZmax, one has L = SZmax. Then L× = SZ, and S surjects onto L×/Z.

Hence |L×/Z| ≤ |S| <∞.

We will see in Theorem 8.6.6 that the above theorem holds without the hypothesis

that L is selective. However it will take several sections to develop the machinery

necessary to drop this hypothesis.
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For an extension E of Zmax, it will be helpful to understand the group structure

of the quotient group E×/Z. To do this, we will need the following standard lemma.

Lemma 8.3.5. Let G be a group. Suppose that for all n ∈ N, G has at most n

elements of order dividing n. Then every finite subgroup of G is cyclic, and there is

at most one finite subgroup of a given order.

We will make use of the following corollary with M = E×.

Corollary 8.3.6. Let M be a torsionfree abelian group. Let Z ⊆ M be an infinite

cyclic subgroup. Then for each positive integer n, M/Z has at most one subgroup of

order n and all finite subgroups are cyclic.

Proof. Let n be a positive integer. By lemma 8.3.5 it suffices to show that M/Z

has at most n elements of order dividing n. Let x̄ ∈ M/Z have order dividing

n and let x̂ ∈ M be any lift. Then nx̂ ∈ Z, and there exists k ∈ Z such that

n(x̂− k) ∈ {0, 1, . . . , n− 1}. Let x = x̂− k, which is also a lift of x̄ to M . Since M

is torsionfree, each equation nt = m with n,m ∈ Z has at most one solution t. Since

there are n possibilities for nx, there are at most n choices for x and hence for x̄.

The following theorem is the first hint that the unit index will be relevant to the

problem of classifying finite extensions of Zmax. Furthermore it will allow us to easily

classify those finite extensions which are contained inside Rmax.

Theorem 8.3.7. Let E be an extension of Zmax. Let n be a positive integer. Then

there is at most one subextension L of E such that ui(L/Zmax) = n.
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Proof. Let A be the set of all subextensions of E over Zmax. Let B be the set of

subgroups of E× containing Z×
max = Z. Define a map ϕ : A → B by ϕ(L) = L×. If

ϕ(L) = ϕ(M), then L = {0} ∪ L× = {0} ∪M× = M , so ϕ is injective. Let C be the

set of subgroups of E×/Z×
max. The fourth isomorphism theorem states that the map

ψ : B → C given by ψ(G) = G/Z×
max is a bijection. Hence the map A → C sending

L to L×/Z×
max is injective.

This map clearly restricts from an injection from the set of subextensions with

unit index n to the set of subgroups of E×/Z×
max = E×/Z with order n. By lemma

8.2.8 and Corollary 8.3.6, there is at most one such subgroup. Hence there is at most

one subextension with unit index n.

Remark 8.3.8. Suppose E is selective. Then if G is a subgroup of E× then {0} ∪ G

is a subsemifield of E; it is closed under addition because every subset of a selective

semigroup is closed under addition. Since ϕ({0} ∪G = G, the map ϕ from the proof

of Theorem 8.3.7 is bijective in this case. Hence there is a bijective correspondence

between subextensions of E over Zmax and subgroups of E×/Z.

Corollary 8.3.9. Let L be a finite subextension of Rmax over Zmax. Then there exists

n such that L = ( 1
n
Z)max

2.

Proof. Since L ⊆ Rmax, L is selective. By Theorem 8.3.4, L has finite unit index. Let

n = ui(L/Zmax). Then ( 1
n
Z)max has unit index n over Zmax. By Theorem 8.3.7 they

2This is the semifield associated to the totally ordered subgroup 1
n
Z ⊆ R via Example 8.2.5. One

can easily exhibit an explicit isomorphism of extensions ( 1
n
Z)max

∼= F (n). If we identify F (n) with
Z)max as in Example 8.2.6, this isomorphism sends a

n
to ua.
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are equal.

8.4 Finite archimedean extensions of Zmax

In this section, we will give a criterion that is useful for proving an extension has

finite unit index. In later sections, we will use this criterion to prove that every finite

extension of Zmax has finite unit index.

Definition 8.4.1. Let K be an idempotent semifield. An extension L over K is

called archimedean if for all x ∈ L, there exists y ∈ K such that x+ y = y.

The terminology comes from the following example.

Example 8.4.2. Rmax can be seen to be an archimedean extension of Zmax. This is

because of the archimedean property of the real numbers, which states that for every

x ∈ R there exists n ∈ Z such that x ≤ n or equivalently max x, n = n.

Lemma 8.4.3. Let L be an archimedean extension of an idempotent semifield K.

Then for all nonzero x ∈ L there exists nonzero z ∈ K such that x+ z = x.

Proof. There is some y ∈ K such that x−1 + y = y, which is clearly nonzero. After

multiplying by xy−1, we get y−1 + x = x, so we may take z = y−1.

For the remainder of this section, let L be finite and archimedean over Zmax, and

let S ⊆ L be a finite set which generates L as a Zmax-semimodule. We may assume

0 ̸∈ S. The goal for the remainder of the section will be to show that ui(L/Zmax) <∞.
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If we can show that SZmax = {sx | s ∈ S, x ∈ Zmax} is closed under addition, then

we can apply the proof of Theorem 8.3.4 to prove Theorem 8.4.10. Unfortunately,

there is no reason to believe that it is closed under addition.3 However, we will see

that we can construct a larger, but still finite, generating set T such that TZmax is

closed under addition.

Lemma 8.4.4. Let S be as above and let S−1S = {s−1
1 s2 | s1, s2 ∈ S}. There exists

M ∈ Z such that x+uM = uM and x+u−M = x for all x ∈ S−1S. Furthermore, any

number larger than M also has this property

Proof. Note that ifm > n and x+un = un then x+um = x+um+un = um+un = um.

Similarly if x + u−n = x and m > n then x + u−m = x. Since S−1S is finite, these

remarks allow us to construct a different value of M for each of the statements, and

take the maximum of all of them. Let x ∈ S−1S. Then since L is archimedean over

Zmax, there exists M such that x + uM = uM . By lemma 8.4.3, there exists M such

that x+ u−M = x.

For the remainder of this section we will let M be the value constructed in the

previous lemma.

Let Tn = {s +
n

i=1

ukisi | s, s1, . . . , sn ∈ S, k1, . . . , kn ∈ {−M, . . . , 0}}. Let T =


n≥0 Tn.

Lemma 8.4.5. Tn ⊆ Tn+1 for all n.

3In the case L = F (n), one can show that L = SZmax. The classification theorem that we are
working towards will then imply that SZmax is always closed under addition. However, we do not
know a direct way to show that SZmax is already closed under addition without enlarging S.
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Proof. Let s+
n

i=1

ukisi ∈ Tn. s+
n

i=1

ukisi = s+ s+
n

i=1

ukisi + uknsn ∈ Tn+1.

Lemma 8.4.6. Let N = (M + 1)|S|. Then T = TN , and T is finite.

Proof. It suffices to show for each n that Tn ⊆ TN . We know this in the case where

n ≤ N . For n > N , we proceed by induction. Let s+
n

i=1

ukisi ∈ Tn. Since there are

M + 1 choices for ki, and |S| choices for si, the pigeon hole principle implies some

term is repeated. Since addition is idempotent, we can remove the repeated term, so

s+
n

i=1

ukisi ∈ Tn−1. By the inductive hypothesis, Tn−1 ⊆ TN , so Tn ⊆ TN . It is clear

that TN is finite; in fact for any n, Tn has at most |S|n+1(M + 1)n elements.

Since S ⊆ T , T is also a finite generating set for L. The next step is to show that

T is closed under addition.

Lemma 8.4.7. Let x = s+
n

i=1

ukisi for some s, s1, . . . , sn where k1, . . . , kn are non-

positive integers. Then x ∈ T .

Proof. Suppose ki < −M . Then by lemma 8.4.4, s−1
i s + uki = s−1

i s. Hence s +

ukisi = s, so we may drop the term ukisi. After dropping all such terms, we may

suppose without loss of generality that ki ≥ M for all i. But then we trivially have

s+
n

i=1

ukisi ∈ T .

Lemma 8.4.8. Let n ≥ 1. Let z =
n

i=1

ukisi with si ∈ S and ki ∈ Z. Then z ∈ TZmax.

Conversely every nonzero element of TZmax has this form for some n.
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Proof. After rearranging terms, we may suppose without loss of generality that kn ≥

ki for all i. Then u−knz = sn +
n−1

i=1

uki−knsi. By lemma 8.4.7, u−knz ∈ T . Hence

z ∈ TZmax.

The converse is trivial.

Corollary 8.4.9. TZmax is closed under addition.

In what follows, the next theorem will play a similar role to that played by Theo-

rem 8.3.4 in section 8.3. We will later see that all finite extensions are archimedean,

and so this theorem is much more general than it would first appear.

Theorem 8.4.10. Let L be a finite archimedean extension of Zmax. Then one has

ui(L/Zmax) <∞.

Proof. Let S generate L as a semimodule. Let T be the set defined earlier in this

section. Since S ⊆ T , T also generates L. By lemma 8.4.6, T is finite. By Corollary

8.4.9, TZmax is closed under addition. One can apply the proof of Theorem 8.3.4 to

show that T surjects onto L×/Z×
max. The result follows.

8.5 Convex subsemifields

In this section we introduce the notion of a convex subsemifield of an idempotent

semifield. A convex subsemifield K ⊆ L will have the property that addition in L/K×

is well-defined. We will use this property to constrain the possible subextensions of

the extension L of K.
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The following definition is essentially the same as the definition of a convex ℓ-

subgroup given in.19

Definition 8.5.1. Let L be an idempotent semifield. A subsemifield K ⊆ L is called

convex if for any x ∈ L such that there exist y, z ∈ K with x+ y = y and x+ z = x,

one has x ∈ K.

Example 8.5.2. Give to Z × Z the lexicographical order, in which (a, b) ≤ (x, y) if

a < x or if a = x and b ≤ y. Identify Z with a subgroup of Z × Z by identifying

n with (0, n). Then Zmax ⊆ (Z × Z)max is a convex subsemifield. This follows from

the fact that the inequalities (0, a) ≤ (m,n) ≤ (0, b) imply m = 0, and the fact that

x ≤ y if and only if max(x, y) = y.

If K ⊆ L is a convex subsemifield, we consider an equivalence relation ∼ on L

given by x ∼ y if there exists u ∈ K× with x = uy. We denote the quotient by L/K×.

Theorem 8.5.3. [19, 2.2.1]Let L be an idempotent semifield, and K be a convex

subsemifield. Then L/K× is an idempotent semifield.

Proof. The only thing to check is that addition is well defined. Let x, y ∈ L and

u ∈ K. We must show that x+ y ∼ x+ uy. Equivalently we must show z ∈ K where

z = (x+ y)−1(x+ uy).

Suppose u + 1 = u. Then ux + x = ux. Hence u(x + y) + (x + uy) = u(x + y).

Then u+ z = u. Also uy + y = uy so (x+ uy) + (x+ y) = x+ uy. Hence z + 1 = z.

Since 1, u ∈ K, it follows from convexity that z ∈ K. Hence x+ y ∼ x+ uy.
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In general, we have (u + 1) + 1 = u + 1, so x + y ∼ x + (u + 1)y and it suffices

to show that x + uy ∼ x + (u + 1)y. Equivalently, it suffices to show that u−1x +

y ∼ u−1x + (1 + u−1y). But this follows from the case already considered since

(1 + u−1) + 1 = 1 + u−1.

Theorem 8.5.4. Let E be an extension of an idempotent semifield K. Suppose

K ⊆ E is convex. Then the extension E over K has no nontrivial finite subextensions.

Proof. Let L be a finite subextension of E over K. Then K is convex in L. Since L is

a finite extension, there is a finite set S such that every element x ∈ L can be written

as a finite sum x =

aisi for ai ∈ K and si in S. Then every element of L/K× can

be written as a finite sum x̄ =

āis̄i where āi ∈ K/K

× = B and s̄i ranges over a

finite set S̄. Hence L/K× is a finite extension of B. By Theorem 8.2.9, L/K× = B.

Hence for all x ∈ L, one has x = 0 or x ∈ K×. It follows that L = K.

8.6 The maximal archimedean subexten-

sion

When thinking about archimedean subextensions of a given extension, a natural

question that arises is whether there is a maximal archimedean subextension, which

contains every other archimedean subextension. In this section we will explicitly

construct this maximal archimedean subextension. Applying the results of section
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8.5 in this context will imply all finite extensions are archimedean, and so we may

drop the archimedean hypothesis from Theorem 8.4.10.

Definition 8.6.1. Let L be an extension of an idempotent semifield K. We define

Larch = {x ∈ L| x+ y = y, x+ z = x for some z, y ∈ K}.

Lemma 8.6.2. Larch is a subsemifield of L and contains K.

Proof. Let x1, x2 ∈ Larch. Then there exists y1, y2, z1, z2 ∈ K such that x1 + y1 = y1,

x2 + y2 = y2, x1 + z1 = x1, and x2 + z2 = x2. Then (x1 + x2) + (y1 + y2) = y1 + y2

and (x1 + x2) + (z1 + z2) = x1 + x2. Thus x1 + x2 ∈ Larch.

Also x1x2 + y1y2 = x1x2 + (x1 + y1)(x2 + y2) = x1x2 + y1x2 + x1y2 + y1y2 =

(x1 + y1)(x2 + y2) = y1y2. A similar computation shows x1x2 + z1z2 = x1x2. Thus

x1x2 ∈ Larch. The rest of the proposition is trivial.

Proposition 8.6.3. Let L be an extension of an idempotent semifield K. Larch is

the maximal archimedean subextension of L; In other words, it is an archimedean

subextension and every other archimedean subextension is contained in it.

Proof. By definition, for every x ∈ Larch, there exists y ∈ K such that x+ y = y.

For the converse let F be an archimedean subextension of L over K. Let x ∈ F .

Then there exists y such that x + y = y. Since x−1 ∈ F , there exists a nonzero

element z−1 ∈ K such that x−1 + z−1 = z−1 so x + z = x. Since x ∈ L, the above

equalities show x ∈ Larch. Hence F ⊆ Larch.

Theorem 8.6.4. Larch is a convex subsemifield of L.

107



CHAPTER 8. FINITE EXTENSIONS OF ZMAX

Proof. Let x ∈ L. Suppose there exist y, z ∈ Larch such that x+ y = y and x+ z = x.

By the definition of Larch, there exist y′, z′ ∈ K such that y + y′ = y′ and z + z′ = z.

Then x+ z′ = (x+ z) + z′ = x+ z = x and x+ y′ = x+ (y+ y′) = y+ y′ = y′. Hence

x ∈ Larch.

Corollary 8.6.5. Let L be a finite extension over an idempotent semifield K. Then

L is archimedean.

Proof. L is a finite extension over Larch with Larch convex inside L. By Theorem 8.5.4,

L = Larch. Hence L is archimedean over K.

We can now prove the following generalization of theorems 8.3.4 and 8.4.10

Corollary 8.6.6. Let L be a finite extension of Zmax. Then ui(L/Zmax) <∞.

Proof. Use Corollary 8.6.5 and Theorem 8.4.10

8.7 The classification theorem

In this section, we will finally prove the classification of finite extensions of Zmax.

The following lemma is a consequence of the classification of finitely generated

abelian groups.

Lemma 8.7.1. LetM be a torsion free abelian group, and N be a finite abelian group.

Suppose there is a short exact sequence 0→ Z→M → N → 0. Then M ∼= Z.
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Theorem 8.7.2. Let L be an extension of Zmax with ui(L/Zmax) <∞. Then L ∼= F (n)

as extensions of Zmax for some n.

Proof. Fix an element u ∈ Zmax as in Remark 8.2.3.

We have a short exact sequence 0 → Z×
max → L× → L×/Z×

max → 0. L× is

torsionfree by lemma 8.2.8. By assumption, L×/Z×
max is finite. By lemma 8.7.1

L× ∼= Z. Pick a generator v of L×. Then L = {0}∪{vk | k ∈ Z}. Since u ∈ Zmax ⊆ L

is nonzero there exists n ̸= 0 such that u = vn. By picking the other generator of L×

if neccessary, we may assume without loss of generality that n > 0.

To determine the addition in L, it suffices to compute va + vb for a, b ∈ Z. We

may suppose without loss of generality that a > b. Then (va)n + (vb)n = ua + ub =

ua = (va)n. By lemma 8.2.7, va + vb = va.

Hence L ∼= Zmax under the map sending v to u. Then the extension L of Zmax

may be identified with the extension given by the composite map Zmax → L ∼= Zmax

sending u to un. But this extension is F n.

Combining Theorem 8.7.2 and Corollary 8.6.6 gives us the following classification

of finite extensions of Zmax.

Theorem 8.7.3. Let L be a finite extension of Zmax. Then L ∼= F (n) as extensions

of Zmax.
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8.8 Division semialgebras with finite unit

index

Unlike the previous sections, throughout this section, we will use the term semiring

to refer to a possibly noncommutative semiring.

Definition 8.8.1. A division semialgebra over a semifield K is a division semiring

D together with an injective homomorphism from K to the center of D. It is finite if

D is finite as a left semimodule over K.

We define the unit index of a division semialgebra analogously to Definition 8.3.1.

Lemma 8.8.2. Let D be an idempotent division semiring. Let x, y ∈ D satisfy

xy = yx. Suppose xn + yn = yn for some n ≥ 1. Then x+ y = y

Proof. This can be proven as in lemma 8.2.7

Lemma 8.8.2 provides us with the following analogues of lemma 8.2.8 and theorems

8.2.9.

Corollary 8.8.3. Let D be an idempotent division semiring. Then D× is torsion

free.

Proof. Let x ∈ D× be torsion of order n. Since xn + 1 = 1, x + 1 = 1. Similarly

x+ 1 = x, so x = 1.

Corollary 8.8.4. Let D be a finite division semialgebra over B. Then D = B.
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Theorem 8.8.5. Let D be a division semialgebra over Zmax with finite unit index.

Then D is selective.

Proof. Let x, y ∈ D. We wish to show either x+ y = x or x+ y = y. If either of x or

y is zero, we are done. It suffices to show xy−1 + 1 = xy−1 or xy−1 + 1 = 1. In other

words, we can assume without loss of generality that y = 1.

Let n = ui(D/Zmax). Then by Lagrange’s theorem xn ∈ Zmax. Since Zmax is

selective, xn + 1 = 1 or xn + 1 = xn. Since x commutes with 1, we may apply lemma

8.8.2 to see that x+ 1 = 1 or x+ 1 = x.

When D is selective, the following lemma shows we can remove the commutativity

hypothesis of lemma 8.8.2.

Lemma 8.8.6. Let D be a selective idempotent division semiring. Suppose x, y ∈ D

satisfy xn + yn = yn for some n ≥ 1. Then x+ y = y.

Proof. The lemma is clear if x = 0. Let n be the smallest number satisfying the

hypotheses of the lemma. Suppose x + y ̸= y. Then x + y = x since D is selective.

Note that xyn−1 = (x + y)yn−1 = xyn−1 + yn = xyn−1 + xn + yn. Consequently

xyn−1+xn = xyn−1. Dividing by x gives yn−1+xn−1 = yn−1, contradicting minimality.

Thus x+ y = y.

Theorem 8.8.7. Let D be a division semialgebra over Zmax with finite unit index.

Let G = D×/Z×
max. Then G has at most one cyclic subgroup of each order.
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Proof. Let C ⊆ G be a cyclic subgroup of order n. Let g generate C. Let ĝ ∈ D× be

in the preimage of g. Then ĝn ∈ Z×
max. Let u denote the standard generator of Z×

max

as in Remark 8.2.3. Then there exists k such that ĝn = uk.

Let d = gcd(n, k). Then (ĝn/d)d = (uk/d)d. Since uk/d is central, (uk/dĝn/d)d = 1.

Hence uk/dĝn/d = 1. By looking at the image in G, we get gn/d = 1. Since g has order

n, d = 1.

There exist integers a, b such that an + bk = 1. Let g′ = gb; note that g′ also

generates C since gcd(b, n) = 1. Let ĝ′ = uaĝb, which is a lift of g′. Then ĝ′n =

uanĝbn = uanubk = u.

Let H ⊆ G be another cyclic subgroup of order n. For any generator h ∈ H, the

above argument gives us a new generator h′ ∈ H and a lift ĥ′ ∈ D× such that ĥ′n = u.

Since ĝ′n = ĥ′n, we have ĝ′n = ĝ′n + ĥ′n = ĥ′n. By lemma 8.8.6, ĝ′ = ĝ′ + ĥ′ = ĥ′.

Projecting down to G gives g′ = h′. Hence C = H.

Corollary 8.8.8. Let D and G be as in Theorem 8.8.7. Then G is cyclic.

Theorem 8.8.9. Let D be a division semialgebra over Zmax with finite unit index.

Then D = F (n) for some n.

Proof. Let G = D×/Z×
max. Then G is cyclic. Since the quotient of D× by a central

subgroup is abelian, D× is itself abelian. Apply Theorem 8.7.2.
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8.9 Finite division semialgebras over Zmax

As before, we do not assume semirings to be commutative.

Definition 8.9.1. Let K be an idempotent semifield. A division semialgebra L over

an idempotent semifield K is called archimedean if for all x ∈ L, there exists y ∈ K

such that x+ y = y.

Theorem 8.9.2. Let D be a finite archimedean division semialgebra over Zmax. Then

ui(D/Zmax) <∞.

Proof. The reader may verify that the commutative law was never used4 in the proof

of Theorem 8.4.10, or any of the results leading up to it.

Definition 8.9.3. Let D be an idempotent division semiring. A division subsemiring

E ⊆ D is called convex if for any x ∈ D such that there exist y, z ∈ E with x+ y = y

and x+ z = x, one has x ∈ E. E ⊆ D is called normal if E× ⊆ D× is normal.

Theorem 8.9.4. Let D be an idempotent division semiring and E ⊆ D a convex

normal division subsemiring. Then D/E× is an idempotent division semiring.

Proof. The fact that addition is well defined does not require the multiplicative struc-

ture, so an be proven the same way as the commutative case was in Theorem 8.5.3.

Multiplication is well defined because it is well defined in D×/E×.

Substituting the above theorem and Theorem 8.8.4 into the proof of Theorem

8.5.4 gives the following.

4However the fact that Zmax lies in the center of D was used frequently.
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Theorem 8.9.5. Let D,E be finite division semirings with E ⊆ D normal and

convex. Suppose D is finite as a left E-semimodule. Then D = E.

Since section 8.6 never used the commutative law, we have the following.

Theorem 8.9.6. Let D be an idempotent division semiring. There is a maximal

archimedean division subsemiring Darch ⊆ D. Furthermore Darch ⊆ D is convex and

normal.

Proof. We only need to show normality. Let x ∈ D×
arch and g ∈ D×. Then by the

construction of Darch
5, we have y, z ∈ K such that x+ y = y and x+ z = x. Then we

get gxg−1 + gyg−1 = gyg−1, and a similar formula involving z. But y and z lie in K

which is contained in the center ofD, so we have gxg−1+y = y and gxg−1+z = gxg−1.

Thus by the construction of Darch we have gxg−1 ∈ Darch.

As in section 8.6, we may combine the above results to obtain the following.

Corollary 8.9.7. Every finite division semialgebra over an idempotent semifield is

archimedean.

Theorem 8.9.8. Let D be a finite division semialgebra over Zmax. Then D = F (n)

for some n.

Proof. Since D is finite over Zmax, it is archimedean over Zmax. Since it is finite and

archimedean, it has finite unit index. We may now apply Theorem 8.8.9.

5The construction is essentially Definition 8.6.1 with L replaced by D.
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Chapter 9

Selective hyperfields

9.1 Introduction

One expects that there should be an interpretation of tropical geometry as a sort

of algebraic geometry over some field-like object. However there have been multiple

conflicting proposals as to what sort of object should serve as the base for tropical

geometry. One of the main goals of the present work is to relate some of the objects

that have been proposed as a base for tropical geometry. Hence, before discussing

the results of this chapter we will describe some of these objects.

The most traditional answer is that one should work over an idempotent semifield,

or perhaps more specifically over a selective semifield, as defined below.

Definition 9.1.1. A semigroup is a commutative monoid. It is idempotent if one

has x+ x = x for all x ∈ A. It is selective if for all x, y ∈ A one has x+ y ∈ {x, y}. If
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A is an idempotent semigroup and x, y ∈ A one writes x ≤ y to mean x + y = y. A

semiring consists of a semigroup A together with a commutative associative operation

· : A × A → A and an element 1 ∈ A such that for all x, y, z ∈ A, one has 1x = x,

(x+ y)z = xz + yz. It is a semifield if all nonzero elements are units.

Example 9.1.2. Let B = {0, 1} with the obvious multiplication and with addition

satisfying 1 + 1 = 1. Then B is an idempotent and selective semifield. Let Rmax =

{−∞}∪R have max as the addition operation, and classical addition of real numbers

as the multiplication operation. Then Rmax is an idempotent and selective semifield.

For a ring R we let I(R) be the set of ideals of R equipped with the usual notion of

addition and multiplication of ideals. Then I(R) is an idempotent semiring. However

when R is not a valuation ring, I(R) is not selective.

It is a standard fact that the relation ≤ on an idempotent semigroup is a partial

ordering and that the least upper bound of two elements x, y ∈ A is x + y. One

easily sees that selective semigroups are precisely those idempotent semigroups which

are totally ordered. In particular, removing the zero element gives an equivalence of

categories between selective semigroups and totally ordered sets, as well as between

selective semifields and totally ordered abelian groups.

Recently Zur Izhakian and Louis Rowen gave a treatment of tropical geometry

via supertropical semirings.15 Rather than defining supertropical semirings, we will

content ourselves with noting that Izhakian and Rowen showed that supertropical

semirings are equivalent to valued monoids, which we do define.
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Definition 9.1.3. A valued monoid is a triple (v, A,B) where A is a commutative

monoid, B is a totally ordered commutative monoid, and v : A → B is a monoid

homomorphism. It is a valued group if A and B are groups.

Just as using selective semifields rather than semirings amounts to using totally

ordered groups rather than totally ordered monoids, one expects here that the appro-

priate class of objects to use as a base for tropical geometry would be valued groups

rather than valued monoids. It is noteworthy that the supertropical perspective sug-

gests using valuations rather than orderings; we will see a similar phenomenon in the

next approach we discuss.

A third view of tropical geometry, which has been championed by Oleg Viro,

is that it should be viewed as geometry over a hyperfield.17 For the definitions of

hyperfields and hypergroups, see definitions 3.1.4 and 3.1.3. For the purposes of this

chapter we will use the term hypergroup to mean canonical abelian hypergroup.

When studying semifields in connection with tropical geometry, it is helpful to note

that we are interested in selective semifields, rather than arbitrary semifields. Here

too, hyperfields are too general, and one might desire to find a more restrictive class

of hyperfields which contains Y×, T R, and T C. In Definition 9.2.19 we propose such

a class of hyperfields which we call selective hyperfields. The definition of a selective

hypergroup is analogous to the definition of a selective semigroup. However, when

we attempt to mimic the construction of the ordering which we gave for selective

semigroups, we are instead confronted with a valuation. This is in line with the
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supertropical perspective that one should be working with valued objects rather than

ordered objects.

Another question which arises is how selective hyperfields relate to valued groups.

Because selective hyperfields are equipped with a valuation, the multiplicative group

of a selective hyperfield is a valued group. But this leaves the question of what

additional structure one needs to recover a selective hyperfield from a valued group.

In section 9.4, we will show that one can construct a selective hyperfield from a valued

group if one has identified the kernel of the valuation with a hyperfield k satisfying the

condition that 1− 1 = k. Furthermore, all selective hyperfields arise in this manner.

By Theorem 9.4.13, k may be thought of as the residue hyperfield of the selective

hyperfield we are trying to construct. We will show in Proposition 9.2.23 that the

condition that 1− 1 = k may be interpreted as saying that k is a selective hyperfield

whose valuation is trivial.

A final motivation for the present chapter comes from Simon Henry’s symmetriza-

tion functor, which is introduced in.14 The symmetrization functor is a universal way

of embedding a semigroup which satisfies a certain balancing condition into a hyper-

group. If the semigroup is cancellative, the resulting hypergroup is a group and this

construction is just the Grothendieck group construction. However the symmetriza-

tion functor gives more interesting results when applied to a selective semigroup.

Connes and Consani have introduced the insight that the restriction of the sym-

metrization functor to selective semigroups should be thought of as a base change
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functor – ⊗B S from B to S. This raises the question of whether one can produce a

similar construction where S is replaced by another hypergroup H. In section 9.3 we

show how to do this whenH satisfies the condition of Proposition 9.2.23. This method

of constructing hypergroups always produces selective hypergroups. This construc-

tion will be needed in section 9.4 to produce the underlying additive hypergroups of

the hyperfields we are trying to construct.

9.2 Idempotent and selective hypergroups

In this section we introduce the notions of idempotence and selectivity for hy-

pergroups. The definitions parallel those from the theory of semigroups. However

rather than inducing an ordering, the idempotent structure on a hypergroup induces

a valuation. These classes of hypergroups will contain several examples of interest in

tropical geometry, such as Y×, T R and T C.

There are three reasonable definitions of idempotence for a hypergroup. Requiring

that x ∈ x + x for all x is too weak for our purposes. On the other hand, requiring

that x = x + x is strong enough to exclude many of the examples we are interested

in, such as K. Instead we will use the following intermediate definition.

Definition 9.2.1. H is non-archimedean if x − x = (x + x) − (x + x) holds for all

x ∈ H. H is called idempotent if it is non-archimedean and for all x ∈ H, one has

x ∈ x+ x.
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Example 9.2.2. K, S, Φ, Y×, T R, and T C are all idempotent hyperfields. In fact they

are all selective hyperfields as defined below in Definition 9.2.19.

Example 9.2.3. Let K be a local field. Let n be a positive integer. Krasner introduced

the hyperfield K/(1 + mn). This hyperfield is non-archimedean, but doesn’t satisfy

1 ∈ 1 + 1, and hence is not idempotent.

Example 9.2.4. Let R be a local ring with maximal ideal m. Then the quotient

H = R/R× is a hyperring. There are two distinct cases: Either R/m ∼= F2 or

R/m ̸∼= F2. In the first case one has R× − R× = m, which is closed under addition.

This implies (1− 1)+ (1− 1) = 1− 1, so H is non-archimedean in this case. However

H is not idempotent if R/m ∼= F2, since 1 ̸∈ m/R× = 1− 1. In the second case where

R/m has more than two elements, one checks R×−R× = R. This implies H satisfies

the equation 1− 1 = H. One easily sees that 1− 1 = H implies idempotence.

Let H be an idempotent hypergroup and x, y ∈ H. To mimic the definition of the

order on an idempotent semigroup, it is natural to define x ≤ y to mean y ∈ x + y.

However, for the sake of greater generality we will give a different definition which is

equivalent to this one in the special case of idempotent hypergroups.

Lemma 9.2.5. Let H be an idempotent hypergroup. Let x, y ∈ H. Then y ∈ x+ y if

and only if x− x ⊆ y − y.

Proof. Suppose y ∈ x + y. Then x ∈ y − y. Hence x − x ⊆ (y − y) − (y − y) =

(y + y) − (y + y) = y − y. Conversely, suppose x − x ⊆ y − y. Since x ∈ x + x, we

have x ∈ x− x ⊆ y − y. Hence y ∈ x+ y.
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Definition 9.2.6. If H is a hypergroup and x, y ∈ H, we say x ≤ y if x− x ⊆ y− y.

The relation ≤ on a hypergroup H is reflexive and transitive. However unlike in

the case of idempotent semigroups, it is not a partial order, because it is possible that

x ≤ y ≤ x without x = y. For example in S we have 1 ≤ −1 ≤ 1. However, we may

obtain a partially ordered set as follows.

Definition 9.2.7. Let H be a hypergroup. For x, y ∈ H we write x ∼ y to mean

x ≤ y ≤ x. We also use ≤ to denote the induced relation on H/ ∼. The quotient

map v : H → H/ ∼ is called the valuation on H.

Lemma 9.2.8. ∼ is an equivalence relation. ≤ is a partial order on H/ ∼.

Proof. This is a standard fact about preordered sets.

Example 9.2.9. If H is one of S, K, or Φ, then H/ ∼= {0, 1} with v(0) = 0 and

v(x) = 1 for all other x. This valuation is called the trivial valuation. On Y×, ∼ is

equality, and v is the identity map. If H is either T R or T C then H/ ∼∼= R≥0, and

v is the ordinary real or complex absolute value.

Example 9.2.10. Let K be a local field, and n > 0. Let H = K/(1+mn). Let x, y ∈ K

and x̄, ȳ be their classes in H. Then one may check that v(x̄) ≤ v(ȳ) if and only if

|x| ≤ |y|, using the equation x− x = xmn/(1 +mn). Hence, one may identify v with

the non-archimedean absolute value induced by the one on K.

Example 9.2.11. Let R be a local ring with maximal ideal m such that R/m ̸= F2.

Let H = R/R×. One has x− x = xH for all x ∈ H. From this one can show that ∼
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is equality, that v is the identity, and that the partial ordering on H/ ∼= R/R× is

given by divisibility.

Remark 9.2.12. Let H be an idempotent hypergroup and x ∈ H. Then x− x = {y |

x ∈ x+ y} = {y | v(y) ≤ v(x)} is the ball of radius v(x) around 0.

Calling v : H → H/ ∼ a valuation is motivated by the fact that H/ ∼ is partially

ordered and by the following lemma. Note that if max(v(x), v(y)) exists then the

lemma is simply the ultrametric inequality, v(x+ y) ≤ max(v(x), v(y)).

Lemma 9.2.13. Let H be a non-archimedean hypergroup. Let v be its valuation. Let

x, y ∈ H and t ∈ H/ ∼ be such that v(x) ≤ t and v(y) ≤ t. Then for all z ∈ x + y,

v(z) ≤ t.

Proof. Let w be such that v(w) = t. Then x− x ⊆ w − w and y − y ⊆ w − w. Then

z−z ⊆ (x+y)−(x+y) = (x−x)+(y−y) ⊆ (w−w)+(w−w) = w+w−w−w = w−w.

Hence v(z) ≤ v(w) = t.

Lemma 9.2.13 fails for hypergroups which aren’t non-archimedean, as the following

example shows.

Example 9.2.14. We will let ∆ be the triangle hyperfield introduced by Viro. Specifi-

cally ∆ = R≥0 equipped with the multivalued operation ▽, which is given by declaring

x▽y to be the closed interval from |x − y| to x + y. Then ∆ isn’t non-archimedean.

The valuation on ∆ is the identity map v : ∆ → R≥0, which doesn’t satisfy the

ultrametric inequality. For instance 2 ∈ 1▽1 but v(2) = 2 > max(v(1), v(1)).
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For a general hypergroup, it is not true that if v(x) = v(0) then x = 0, as can

be seen by considering any abelian group. However, for an idempotent hypergroup,

this is true. It is also true for any hyperdomain which is not a ring, as the following

proposition shows.

Proposition 9.2.15. Let H be a hypergroup. Let x ∈ H. Then v(x) = v(0) if and

only if x + y is a singleton set for all y ∈ H. If H is idempotent and v(x) = v(0)

then x = 0. If H is a hyperring, which is not a ring, and if v(x) = v(0), then x is a

zero-divisor.

Proof. For the first part, suppose v(x) = v(0). Then x − x = 0. Let y, z ∈ H, with

z ∈ x+ y. Then y ∈ z − x, so x+ y ⊆ z − x+ x = z. Hence x+ y is a singleton set.

Conversely suppose that x+ y is a singleton for all y ∈ H, in particular for y = −x.

Then x− x = 0, so v(x) = v(0).

For the second part of the lemma, let H be idempotent and v(x) = v(0). Then

x ≤ 0 so x = x+ 0 = 0.

For the third part, suppose H is a non-archimedean hyperring. We assume x is

not a zero-divisor. Since v(x) = v(0), we have x(1− 1) = x− x = 0. Since x is not a

zero-divisor, 1− 1 = 0, and hence a− a = 0 for all a ∈ H. Hence v(a) = v(0) for all

a ∈ H. By the first part of the lemma a+ b is single valued for all a, b, so H is a ring.

We will show that if H is a hyperring, the valuation is multiplicative. First, we

will prove the following lemma.
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Lemma 9.2.16. Let H be a hyperring. Let x, y, z ∈ H and suppose v(x) ≤ v(y).

Then v(xz) ≤ v(yz).

Proof. We are given that x− x ⊆ y − y. Any element of xz − xz = z(x− x) has the

form zα where α ∈ x−x ⊆ y−y. Hence zα ∈ z(y−y) = yz−yz, so xz−xz ⊆ yz−yz

as desired.

Proposition 9.2.17. Let H be a non-archimedean hyperring. Then there is a unique

monoid structure on H/ ∼ such that v : H → H/ ∼ is a homomorphism of monoids.

Proof. Note every element of H/ ∼ has the form v(x) for some x ∈ H. We must

define multiplication by v(x)v(y) = v(xy). We now check is that this multiplication

is well defined. That is, we must show that if v(x) = v(a) and v(y) = v(b) then

v(xy) = v(ab). Since v(x) ≤ v(a) and v(y) ≤ v(b), lemma 9.2.16 gives v(xy) ≤

v(ay) ≤ v(ab). Similarly v(ab) ≤ v(xy). Hence v(xy) = v(ab), so multiplication is

well defined. Clearly this multiplication makes H/ ∼ into a monoid and makes v

a homomorphism. The quotient monoid structure is the only monoid structure on

H/ ∼ such that v is a homomorphism, and hence this multiplicative structure is

unique.

As an application of the valuation on an idempotent multiring, we prove the

following theorem which allows us to relate the ideals of certain multirings to strong

ideals in idempotent semirings. Recall that an ideal I in an idempotent semiring is

strong if whenever x+ y ∈ I, one has x ∈ I. The special case of this theorem where

124



CHAPTER 9. SELECTIVE HYPERFIELDS

H is the symmetrization of a selective semigroup was proven by Jai Ung Jun.21

Theorem 9.2.18. Let H be an idempotent multiring. Suppose that for all x, y ∈

H there exists z ∈ H with v(z) = sup(v(x), v(y)). Then H/ ∼ is an idempotent

semigroup. Suppose we equip H/ ∼ with a multiplication making it an idempotent

semiring such that for all x, y ∈ H one has v(xy) ≤ v(x)v(y) and there exists x′ ∼ x

and y′ ∼ y with v(x′y′) = v(x)v(y)1. Then there is a one-to-one correspondence

between ideals of H and strong ideals of the idempotent semiring H/ ∼.

Proof. It is clear that H/ ∼ is an idempotent semigroup since we assumed the ex-

istence of least upper bounds. Let J ⊆ H/ ∼ be a strong ideal. Let I ⊆ H be its

preimage under v. If x, y ∈ I then v(x), v(y) ∈ J so sup(v(x), v(y)) ∈ J . Since the

ideal J is strong, by the ultrametric inequality one gets v(x + y) ⊆ J , so x + y ⊆ I.

Suppose x ∈ I and r ∈ H. Then v(x) ∈ J so v(r)v(x) ∈ J . Since J is strong and

v(rx) ≤ v(r)v(x), v(rx) ∈ J so rx ∈ I.

For the converse, suppose I ⊆ H is an ideal. Let J ⊆ H/ ∼ be its image under v.

Suppose x ∈ I and v(y) ≤ v(x). Then y ∈ y−y ⊆ x−x ⊆ I. In particular if v(y) ∈ J

one has some x ∈ I with v(x) = v(y), so y ∈ I, which implies that I = v−1(J). The

above fact also implies that if s, t ∈ H/ ∼ with t ∈ J and s ≤ t then s ∈ J . It

remains to show that J is an ideal. To show it is closed under supremum, let s, t ∈ J .

Pick x, y ∈ I with s = v(x) and t = v(y). Then there exists z ∈ x + y ⊆ I with

sup(s, t) = v(z). Hence sup(s, t) ∈ J . We now show J is closed under multiplication.

1These conditions on the multiplicative structure are automatic if we assume thatH is a hyperring
rather than just a multiring.
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Let s = v(x) ∈ J and let t = v(y) ∈ H/ ∼. Then there exists x′, y′ with s = v(x′),

t = v(y′) and st = v(x′y′). Since x′ ∈ I, it follows that x′y′ ∈ I so st ∈ J , as

desired.

We now consider a hypergroup analogue of the notion of a selective semigroup.

Note that x and y are treated differently in the definition.

Definition 9.2.19. A hypergroupH is selective if it is idempotent and for all x, y ∈ H

one has either x = x+ y or y ∈ x+ y.

Note that the second part of the definition of selectivity implies that x ∈ x+x, so

instead of requiring selective hypergroups to be idempotent, we can instead require

that they are non-archimedean.

Just as a selective semigroup corresponds to a totally ordered set, selective hyper-

groups induce totally ordered sets.

Lemma 9.2.20. Let H be a selective hypergroup. Then H/ ∼ is totally ordered.

Proof. If x = x+ y then y ≤ x. If y ∈ x+ y then x ≤ y.

The asymmetry between x and y in the definition of a selective hypergroup is used

in the first part of the following lemma. The first part of the lemma tells us that the

valuation tells us how to add two elements with unequal valuation. The valuation

also tells us how to subtract an element from itself. The only part of the additive law

that is not determined by the valuation is how to add two elements of equal valuation
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which are not negatives of each other. The second part of the lemma shows how the

valuation constrains this part of the additive law.

Lemma 9.2.21. Let H be a selective hypergroup. Let x, y ∈ H. If v(x) > v(y), then

x+ y = x. If v(x) = v(y) and x ̸= −y then for all z ∈ x+ y, we obtain v(z) = v(x).

Proof. Suppose v(x) > v(y). Then y ̸∈ x + y. Hence, by selectivity, x = x + y. On

the other hand, suppose that v(x) = v(y) and x ̸= −y, and let z ∈ x + y. One has

v(z) ≤ v(x) by lemma 9.2.13. One also has that x ∈ z−y. Since x ̸= −y, −y ̸= z−y.

Hence by selectivity, z ∈ z − y so v(x) = v(−y) ≤ v(z). Thus v(x) = v(z).

We now give a characterization of selective hypergroups as hypergroups with a

valuation map satisfying certain hypotheses.

Theorem 9.2.22. Let H be a hypergroup. Suppose H is equipped with a surjective

map v : H → Γ to a totally ordered set Γ. Suppose that for all x, y ∈ H, and all

z ∈ x + y, one has v(z) ≤ max(v(x), v(y)). Suppose also that for all x, y ∈ H with

v(x) < v(y), one has x + y = y. Suppose that for all x ∈ H, one has x − x =

{y ∈ H | v(y) ≤ v(x)}. Then H is selective. There is an order preserving bijection

H/ ∼∼= Γ, and upon identifying the two totally ordered sets the map v becomes the

valuation of H. Conversely, if H is selective, then its valuation satisfies all of the

above hypotheses.

Proof. We have already proven the converse. Suppose v : H → Γ satisfies the hy-

potheses of the theorem. Let x ∈ H. We first check that x−x = (x+x)− (x+x), or
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equivalently x− x = (x− x) + (x− x). One inclusion is clear from 0 ∈ x− x. On the

other hand, suppose w, z ∈ x− x. If t ∈ w+ z then v(t) ≤ max(v(w), v(z)) ≤ v(x) so

t ∈ x− x. Hence w+ z ⊆ x− x so (x− x) + (x− x) ⊆ x− x. Now suppose x, y ∈ H.

We claim that either x = x+ y or y ∈ x+ y. In other words, we wish to show either

x = x + y or v(x) ≤ v(y). This follows from the hypothesis that if v(x) > v(y) then

x = x+ y.

To show there is an order preserving bijection H/ ∼→ Γ which identifies v with

the valuation of the selective hyperfield H, it suffices to show that v(x) ≤ v(y) if and

only if x ≤ y with respect to the relation ≤ of Definition 9.2.6. Suppose x ≤ y. Then

x ∈ y − y, so v(x) ≤ v(y). Conversely, suppose v(x) ≤ v(y). Then x ∈ y − y so

x ≤ y.

Finally we characterize those idempotent hypergroups which are equipped with

the trivial valuation. Such hypergroups will play a prominent role in the constructions

given in future sections of this paper.

Proposition 9.2.23. Let H be hypergroup. Suppose H is idempotent and one has

v(x) = v(y) ̸= v(0) for all x, y ∈ H satisfying x, y ̸= 0. Then x − x = H for all

nonzero x ∈ H. Conversely suppose that x− x = H for all nonzero x ∈ H. Then H

is selective and v(x) = v(y) whenever x, y ̸= 0.

Proof. Let H be idempotent with v(x) = v(y) for all x, y ̸= 0. Let x ̸= 0. Then

v(y) ≤ v(x) for all y ∈ H. Hence y ∈ x − x for all y ∈ H. This implies x − x = H.
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Conversely, suppose x − x = H for all x ̸= 0. Let x, y ∈ H. If y = 0, x = x + y.

If y ̸= 0, then x ∈ y − y so y ∈ x + y. Hence either x = x + y or y ∈ x + y. Also,

(x+ x)− (x+ x) = (x− x) + (x− x) = H +H = H = x− x. Hence H is selective. If

x, y ̸= 0, then x ∈ y − y so v(x) ≤ v(y) and similarly v(y) ≤ v(x) so v(x) = v(y).

9.3 Constructing hypergroups from totally

ordered sets

In,14 Simon Henry has produced a construction which takes a semigroup to a hy-

pergroup, and which restricts to the Grothendieck group construction on cancellative

semigroups. This construction is perhaps most interesting when applied to a selective

semigroup. The construction should perhaps be thought of as a sort of base change

from B to S. It is natural to wonder whether one can do a similar construction with

a different hypergroup in place of S. We now give such a construction.

Definition 9.3.1. Let S be a totally ordered set. Let k be a canonical abelian

hypergroup in which x − x = k for all nonzero x ∈ k. We will write k× for the

set of nonzero elements of k. We define T (S, k) = {0} ∪ S × k×. We define a

multivalued addition on T (S, k) as follows. 0 + x = x+ 0 = x for all x ∈ T (S, k). If

(x, a), (y, b) ∈ S × k× with x > y, we let (x, a) + (y, b) = (y, b) + (x, a) = (x, a). If

(x, a), (y, b) ∈ T (S, k) satisfy x = y and a ̸= −b then we let (x, a) + (y, b) = {(x, c) |
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c ∈ a + b}. We let (x, a) + (x,−a) = {(y, c) | y ≤ x}. We will let v denote the map

v : T (S, k)→ S ∪ {0} given by v(0) = 0 and v((x, a)) = x.

Example 9.3.2. Let S denote the hyperfield of signs. Let S be a totally ordered set.

Then T (S, S) gives the same result as applying Simon Henry’s symmetrization functor

to the idempotent semigroup Smax.

Some more examples will be given in section 9.4, where we will use this construc-

tion to produce hyperfields.

In Theorem 9.3.9, we shall show that, T (S, k) is a canonical abelian hypergroup.

As a first step we will state some basic properties of it’s multivalued addition opera-

tion.

Remark 9.3.3. Let x, y ∈ T (S, k) be nonzero. Then we may write x = (u, a) and

y = (v, b). Then it is easy to see that 0 ∈ x +K y if and only if u = v and a = −b.

Hence we will write −x instead of (u,−a).

Lemma 9.3.4. Let S, k be as in Definition 9.3.1. Let x, y ∈ T (S, k). Then for all

z ∈ x+ y, v(z) ≤ max(v(x), v(y)), and equality holds unless x = −y.

Proof. This is clear from the definition.

We will write v(x+ y) = {v(z) | z ∈ x+ y}. For S, T ⊆ H ∪ 0, we write S ≤ T to

mean that for all s ∈ S, t ∈ T we have s ≤ t. With this notation, the above lemma

states that v(x+ y) ≤ max(v(x), v(y)) with equality when x ̸= −y.
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Lemma 9.3.5. Let S, k be as in Definition 9.3.1. Let s ∈ S ∪ {0}. Let B = {y ∈

T (S, k) | v(y) ≤ s}. Then if v(x) ≤ s then x + B = B. If v(x) > s then x + B = x.

Let B′ = {y ∈ T (S, k) | v(y) < s}. If v(x) < s, x+B′ = B′. If v(x) ≥ s, x+B′ = x.

Proof. If v(x) > s, this follows from the definition, so we suppose v(x) ≤ s. Lemma

9.3.4 implies that x + B ⊆ B, so we prove the reverse inclusion. Let b ∈ B. First

suppose v(b) ≤ v(x). This implies that b ∈ x−x ⊆ x+B, where the second inclusion

uses the fact that −x ∈ B since v(x) ≤ h. It remains to consider b with v(b) > v(x).

But then b = x + b ∈ x + B. Thus B ⊆ x + B as desired. The claim about B′ is

proved similarly.

We can now prove associativity.

Proposition 9.3.6. The addition on T (S, k) is associative.

Proof. Let x, y, z ∈ T (S, k). We wish to show (x+ y) + z = x+ (y+ z). If any of the

variables is zero, it is clear, so we may assume otherwise.

Suppose that one of v(x), v(y), v(z) is strictly larger than the other two. If v(y) >

v(x) and v(y) > v(z) then (x+y)+z = y+z = y and x+(y+z) = x+y = y. The cases

where v(z) > max(v(x), v(y)) or v(x) > max(v(y), v(z)) are treated similarly. Thus

associativity holds unless there is a tie for the largest element of {v(x), v(y), v(z)}.

Suppose now that one of v(x), v(y), v(z) is strictly smaller than the other two.

First we consider the case v(x) < min(v(y), v(z)). Then (x + y) + z = y + z, so we

must show that x+ (y + z) = y + z. If y ̸= −z, this follows from lemma 9.3.4, which
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tells us that v(y + z) = max(v(y), v(z)) > v(x). If y = −z, then we may let s = v(y)

in lemma 9.3.5. The set B in lemma 9.3.5 is then y + z, so the lemma states that

x + (y + z) = y + z. The case where v(z) < min(v(y), v(x)) is similar, so we now

consider the case where v(y) < min(v(z), v(x)). Then (x+y)+z = x+z = x+(y+z).

In all of the remaining cases we have v(x) = v(y) = v(z). We write x = (s, a),

y = (s, b) and z = (s, c). If x ̸= −y, z ̸= −y, −x ̸∈ y + z and −z ̸∈ x + y, then

the associative law never involves adding an element to it’s negative. In this case

(x+ y) + z = (s, (a+ b) + c) = (s, (a+ (b+ c)) = x+ (y + z).

We are now reduced to the four cases where x = −y, z = −y, −x ∈ y + z or

−z ∈ x+ y. Before addressing associativity in these cases, we will show that if either

x = −y or −z ∈ x+y, then either −x ∈ y+z or z = −y. A similar argument will show

conversely that if z = −y or −x ∈ y + z then either x = −y or −z ∈ x+ y. Suppose

first that x = −y, so that a = −b. We may suppose z ̸= −y since otherwise this claim

holds. Since a + b = k, a + (b + c) = (a + b) + c = k + z = k. Thus 0 ∈ a + (b + c),

so −a ∈ b + c. Since z ̸= −y, y + z = (s, b + c), so −x = (s,−a) ∈ y + z. Suppose

instead that −z ∈ x + y but x ̸= −y. Then x + y = (s, a + b), so −c ∈ a + b. Thus

0 ∈ (a+ b) + c = a+ (b+ c). We may proceed as in the case x = −y, to see that the

claim holds.

Now we may assume that either x = −y or −z ∈ x+ y and that either z = −y or

−x ∈ y + z. Let B = {t ∈ T (S, k) | v(t) ≤ s}. If x = −y then lemma 9.3.5 implies

(x + y) + z = B + z = B. On the other hand if −z ∈ x + y then B = (−z) + z ⊆
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(x+y)+z ⊆ B, where the last inclusion follows from lemma 9.3.4. Thus we see that in

either of the two cases, (x+y)+z = B. A similar argument using the fact that either

z = −y or −x ∈ y+z shows that x+(y+z) = B. Hence x+(y+z) = (x+y)+z.

To prove that the hypergroup T (S, k) is canonical we need the following lemma.

Lemma 9.3.7. Let S, k be as in Definition 9.3.1. Let x, y ∈ T (S, k). Suppose

v(x) ≤ v(y). Then y ∈ x+ y.

Proof. This is trivial except when v(x) = v(y) ̸= 0 and x ̸= −y. Let x = (s, a) and

y = (s, b). Since a ∈ b− b, we obtain b ∈ a+ b. Then y = (s, b) ∈ (s, a+ b) = x+ y,

where the last equality uses a ̸= −b.

Proposition 9.3.8. Let S, k be as in Definition 9.3.1. Let x, y, z ∈ T (S, k). Suppose

x ∈ y + z. Then z ∈ x− y.

Proof. If any variable is zero, the result is clear by using the fact that zero is the

additive identity and using Remark 9.3.3. Suppose v(z) < v(y). Then y + z = y so

x = y. Then z ∈ x − y = y − y follows since v(z) < v(y). If v(z) > v(y), the same

argument holds. Thus we may assume v(y) = v(z). Write y = (s, a) and z = (s, b)

and x = (t, c). Let B = {u ∈ T (S, k) | v(u) ≤ s}. Suppose first that y ̸= −z. Then

x ∈ y+z = (s, a+b), so s = t and c ∈ a+b. Hence b ∈ c−a. If in addition x ̸= y, then

x− y = (s, c− a) so z ∈ x− y as desired. If x = y, then x− y = B contains z. Now

we consider the case y = −z. We have v(x) ≤ v(z). By 9.3.7, z ∈ x+ z = x− y.

We have now proved the following theorem.
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Theorem 9.3.9. Let S, k be as in Definition 9.3.1. Then T (S, k) is a canonical

abelian hypergroup.

In fact, this hypergroup is selective.

Theorem 9.3.10. The hypergroup T (S, k) is selective. Furthermore, one may iden-

tify S with T (S, k)/ ∼ and v with the valuation of Definition 9.2.7.

Proof. We check the hypotheses of Theorem 9.2.22. Lemma 9.3.4 gives the ultrametric

inequality. Let (x, a), (y, b) ∈ T (S, k). Suppose v((x, a)) > v((y, b)) so x > y. Then

by definition, (x, a) = (x, a)+(y, b) as desired. Also (x, a)−(x, a) = (x, a)+(x,−a) =

{(y, c) | v((y, c)) = y ≤ x = v((x, a))}. Clearly, v is surjective. Thus all hypotheses

hold and Theorem 9.2.22 can be applied.

9.4 The hyperfields T(G,H, v, k, α) and T (H, k)

Definition 9.4.1. Let G and H be abelian groups with H totally ordered. Let

v : G → H be a homomorphism. Let k be a hyperfield such that 1 − 1 = k. Let

α : k× → ker v be an isomorphism. We define T(G,H, v, k, α) = G ∪ {0}. We

extend v to a map T(G,H, v, k, α) → H ∪ {0}. T(G,H, v, k, α) will be given the

obvious notion of multiplication, and a multivalued addition operation defined as

follows. For x ∈ K, we let x + 0 = 0 + x = x. For x, y ∈ G with v(x) < v(y),

we let x + y = y + x = y. For x, y ∈ G with v(x) = v(y) and x ̸= α(−1)y, we let

x+ y = u(α(α−1(u−1x) +k α
−1(u−1y)) where u ∈ G is any element with v(u) = v(x),
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and +k denotes addition in k. If x = α(−1)y, we let x+ y = {z ∈ K | v(z) ≤ v(x)}.

OT(G,H,v,k,α) will denote the set of x ∈ T(G,H, v, k, α) with v(x) ≤ 1. mT(G,H,v,k,α)

will denote the set of x ∈ T(G,H, v, k, α) with v(x) < 1.

One of our main goals for this section is to show T(G,H, v, k, α) is a selective

hyperfield. We will then consider the question of which selective hyperfields arise

in this way. However, before doing these this, we will give some examples of this

construction. First we will consider a special case which contains some of the most

interesting examples.

Definition 9.4.2. Let H be a totally ordered abelian group. Let k be a hyperfield in

which 1− 1 = k. We will let T (H, k) = T(H × k×, H, p, k, j) where p : H × k× → H

is the projection and j : k× → {1} × k× is the obvious isomorphism.

This notation appears to conflict with that of Definition 9.3.1, but we will see in

Corollary 9.4.9 that they describe the same object.

Example 9.4.3. Let H be a totally ordered group. Then T (H,K) = H ∪{0} with the

addition given by x+ y = max(x, y) if x ̸= y, and x+ x = {z ∈ H ∪ {0} | z ≤ x}. By

inspection this is the same

Example 9.4.4. Let H be a totally ordered abelian group. Then T (H, S) = H ×

{1,−1}∪{0}. The addition is given by (x, s)+(y, t) = (x, s) if x > y, (x, s)+(y, t) =

(y, t) if x < y, (x, s) + (x, s) = (x, s) and (x, s) + (x,−s) = {0} ∪ {(z, t) ∈ H ×

{1,−1} | z ≤ x. One may check that this agrees with the result of applying Simon
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Henry’s symmetrization functor to the idempotent semifield Hmax. As a special case,

we note that the real tropical hyperfield can be described as T R = T (R≥0, S) =

T(R×,R≥0, | |,S, id).

Example 9.4.5. Let T be the circle group. Let k = T ∪ {0}. We define a multivalued

addition on k as follows. For all x ∈ k, we let x + 0 = 0 + x = x. For x ̸= 0, let −x

denote the antipode of x on the circle. Then we define x−x = k. For x ̸= −y, where

x and y are nonzero, we let x + y denote the shortest arc of the circle containing x

and y. Then the complex tropical hyperfield is T (R≥0, k) = T(C×,R≥0, | |, k, id).

Remark 9.4.6. If x, y ∈ T(G,H, v, k, α) then it is easy to see that 0 ∈ x +K y if and

only if y = α(−1)x. Hence we will write −x instead of α(−1)y.

Lemma 9.4.7. Let G,H, v, k, α be as in Definition 9.4.1. Then the addition on

T(G,H, v, k, α) is well defined.

Proof. Addition is clearly well-defined except when v(x) = v(y) and x ̸= −y, so we

will assume this is the case. Let u, u′ ∈ G with v(u) = v(u′) = v(x). Then uu′−1 ∈

kerv, so u(α(α−1(u−1x) +k α
−1(u−1y)) = u′(uu′−1)(α(α−1(u−1x) +k α

−1(u−1y)) =

u′(α(α−1(uu′−1)(α−1(u−1x) +k α
−1(u−1y)) = u′(α(α−1(u′−1x) +k α

−1(u′−1y)). Here

the second equality uses that α is a group homomorphism and the third uses the

distributive law on k.

Proposition 9.4.8. Let G,H, v, k, α be as in Definition 9.4.1. Suppose that v : G→

H is surjective. Let T (H, k) be defined as in Definition 9.3.1 rather than Definition
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9.4.2. Let i : H → G be any function such that v ◦ i = id. The choice of i gives a

bijection of sets η : G → H × k×, which induces a bijection η : T(G,H, v, k, α) →

T (H, k). This bijection is an isomorphism of hypergroups. Furthermore, for all x ∈

T(G,H, v, k, α), we have v(η(x)) = v(x), where the v on the left is as in Definition

9.3.1 and on the right, v is as in Definition 9.4.1.

Proof. One has a bijection G → H × ker v given by x →→ (v(x), i(v(x))−1x). Using

α to identify ker v with k× gives the bijection η(x) = (v(x), α−1(i(v(x))−1x)), which

is extended by defining η(0) = 0. It is clear from definitions that v(η(x)) = v(x) in

both cases. It remains to show the map η is an isomorphism of hypergroups.

Let x, y ∈ T(G,H, v, k, α). We must show η(x) + η(y) = η(x + y). If x = 0 or

y = 0, this is clear. If v(x) < v(y) then v(η(x)) < v(η(y)). Then x + y = y and

η(x) + η(y) = η(y) = η(x + y). If v(x) > v(y) a similar argument applies. So we

can now assume v(x) = v(y), and hence v(η(x)) = v(η(y)). One easily sees that

η(−x) = (v(x), i(v(x))−1(−x)) = −η(x). We have two cases: Either y = −x and

hence η(y) = −η(x) or y ̸= −x and hence η(y) ̸= η(x). Suppose first that y = −x.

Then x + y = {t ∈ T(G,H, v, k, α) | v(t) ≤ v(x)}, so η(x + y) = {η(t) | v(η(t)) ≤

v(η(x))} = η(x) + η(y). Now we consider the last case where v(x) = v(y) and

y ̸= −x. Let u = i(v(x)) = η−1((v(x), 1)). We easily see v(u) = v(x). Then x + y =

u(α(α−1(u−1x) +k α
−1(u−1y)). One easily sees that all z ∈ x+ y have v(z) = v(u) =

v(x). Hence for z ∈ x+y we have η(z) = (v(x), α−1(i(v(x))−1z)) = (v(x), α−1(u−1z)).

Thus η(x+y) = (v(x), α−1(u−1u(α(α−1(u−1x)+kα
−1(u−1y))))) = (v(x), α−1(u−1x)+k
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α−1(u−1y))) = (v(x), α−1(u−1x)) + (v(x), α−1(u−1y)) = η(x) + η(y), as desired.

Corollary 9.4.9. Let H, k be as in Definition 9.4.2. Then definitions 9.4.2 and 9.3.1

produce the same selective hypergroup T (H, k).

Proof. For the moment, we use the notation of Definition 9.3.1 rather than 9.4.2. We

wish to show that T (H, k) = T(H × k×, H, p, k, j) as hypergroups. As sets, both

equal H × k× ∪ {0}. Clearly v : H × k× → H is surjective. Thus by Proposition

9.4.8, η : T(G,H, v, k, α) → T (H, k) is an isomorphism. One ready checks that η is

the identity map.

Lemma 9.4.10. Let G,H, v, k, α be as in Definition 9.4.1. Let x, y ∈ T(G,H, v, k, α).

Then for all z ∈ x + y, v(z) ≤ max(v(x), v(y)), and equality holds when y ̸= −x.

Furthermore v(xy) = v(x)v(y).

Proof. This is a consequence of lemma 9.3.4.

We are now ready to prove distributivity.

Proposition 9.4.11. Let G,H, v, k, α be as in Definition 9.4.1. The addition on

T(G,H, v, k, α) distributes over multiplication.

Proof. Without loss of generality, we will assume that k× = ker v, and α = id. Let

x, y, z ∈ T(G,H, v, k, α). We wish to show z(x + y) = zx + zy. If any of x, y, z is

zero, it is clear. Suppose v(x) < v(y). Then v(zx) = v(z)v(x) < v(z)v(y) = v(zy), so

zx + zy = zy = z(x + y). The case where v(x) > v(y) is similar, so we consider the
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case where v(x) = v(y). Suppose first that x ̸= −y. Then x + y = x(1 +k x
−1y), so

that z(x+y) = zx(1+k x
−1y). Applying this argument to zx and zy instead of x and

y gives zx + zy = zx(1 +k (zx)
−1zy) = zx(1 +k x

−1y), so distributivity holds in this

case. In the remaining case x = −y so zx = −zy. Then x+y = {t ∈ T(G,H, v, k, α) |

v(t) ≤ v(x)}, and zx + zy = {s ∈ T(G,H, v, k, α) | v(s) ≤ v(z)v(x)}. One easily

sees that the map t →→ zt and it’s inverse s →→ z−1s give a bijective correspondence

between x+ y and zx+ zy, so zx+ zy = z(x+ y).

We can now conclude that T(G,H, v, k, α) is a hyperfield.

Theorem 9.4.12. Adopt the notation of Definition 9.4.1. Let K = T(G,H, v, k, α).

Then K is a selective hyperfield. Furthermore OK is a subhyperring.

Proof. We may assume without loss of generality that v is surjective because replacing

H with image(v) leaves T(G,H, v, k, α) unchanged. K is a selective hypergroup by

Theorem 9.3.10 and Proposition 9.4.8. The distributive law is Proposition 9.4.11. The

hyperfield axioms which only involve multiplication hold because K = G ∪ {0} with

G a group. Showing that OK is a subhyperring reduces to showing that it is closed

under multiplication and is closed under addition in the sense that for x, y ∈ OK ,

x+ y ⊆ OK .

We will now compute the residue hyperfield of OK .

Proposition 9.4.13. Use the notation of Definition 9.4.1. Let K = T(G,H, v, k, α).

Then mK ⊆ OK is the unique maximal ideal consisting of all non-units in OK. There
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is a canonical isomorphism OK/mK
∼= k.

Proof. mK is an ideal by lemma 9.4.10. Let x ∈ OK . This means that v(x) ≤ 1. Then

x ∈ O×
K if and only if v(x−1) = v(x)−1 ≤ 1, which is true if and only if v(x) ≥ 1. Also

x ∈ mK if and only if v(x) ≥ 1 does not hold. Then x ∈ O×
K if and only if x ̸∈ mK .

From this it follows that mK is the unique maximal ideal.

Define a map π : OK → k by π(x) = 0 if x ∈ mK , and π(x) = α−1(x) if

x ∈ ker v = O×
K . It is easy to see that π is a multiplicative homomorphism. π is

surjective since O×
K surjects onto k× and 0 maps to 0. I claim that for x, y ∈ OK ,

π(x) = π(y) if and only if x+mK = y+mK .4 In fact, by lemma 9.3.5, x+mK = mK

if x ∈ mK and x + mK = x otherwise. The claim follows easily from this statement.

Thus we have an induced bijection π̄ : OK/mK → k, which is easily seen to be

multiplicative. Thus we must only check that the addition on both sides of the

desired isomorphism agree.

Let x̄, ȳ ∈ OK/mK be the classes of elements x, y ∈ OK . We wish to show

π̄(x̄ + ȳ) = π̄(x̄) + π̄(ȳ). If x̄ = 0 or ȳ = 0, then this is clear. Hence we may

assume they are nonzero, so that v(x) = v(y) = 1. Let z̄ ∈ x̄ + ȳ. By definition

of the quotient hyperring, this is equivalent to saying that z̄ is the class of some

z ∈ OK such that z ∈ x + y. Suppose first that x ̸= −y. Then v(z) = 1 by

lemma 9.4.10, so that π̄(z̄) = π(z) = α−1(z). The assumption that x ̸= −y also

implies x + y = α(α−1(x) +k α
−1(y)). Hence z ∈ α(α−1(x) +k α

−1(y)) so π̄(z̄) =

α−1(z) ∈ α−1(x) +k α
−1(y) = π̄(x̄) + π̄(x̄). On the other hand suppose that x = −y.
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Then α−1(x) = −α−1(y), so π̄(z̄) ∈ k = α−1(x) +k α
−1(y) = π̄(x̄) + π̄(x̄). Hence

π̄(x̄+ȳ) ⊆ π̄(x̄)+π̄(ȳ). For the reverse inclusion, let π(z) ∈ π̄(x̄)+π̄(ȳ) = π(x)+π(y)2.

Suppose first that x ̸= −y. Then x + y = α(α−1(x) +k α
−1(y)) = α(π(x) + π(y)).

Then α(π(z)) ∈ x + y. Furthermore π(x) = α−1(x) ̸= α−1(−y) = −π(y), so the fact

that π(z) ∈ π(x) + π(y) implies π(z) ̸= 0. Then v(z) = 1, so z = α(π(z)) ∈ x + y.

Then π(z) = π̄(z̄) ∈ π̄(x̄ + ȳ) as desired. Now suppose instead that x = −y. Then

π̄(x̄) = −π̄(ȳ) so π̄(x̄+ ȳ) = k. Hence π̄(x̄) + π̄(ȳ) ⊆ π̄(x̄+ ȳ) in either case.

We now consider the question of which hyperfields arise via the construction of

Definition 9.4.1. The answer is provided by the following theorem.

Theorem 9.4.14. Let K be a hyperfield. Let H be a totally ordered group. Let

v : K× → H be a group homomorphism, which we extend to a map v : K → H ∪{0}.

Suppose that for all x, y ∈ K, we have v(x+y) ≤ max(v(x), v(y)). Suppose in addition

that for all x, y ∈ K with v(x) < v(y) we have x+ y = y. Suppose that for all x ∈ K,

x− x = {y ∈ K | v(y) ≤ v(x)}. Let α : OK/m
×
K → ker v be given by α(x̄) = x where

x̄ is the coset of x ∈ OK. Then α is a well defined isomorphism, k = OK/mK is a

hyperfield satisfying 1 +k (−1) = k, and K = T(K×, H, v,OK/mK , α).

Proof. Note that v(−1)2 = v(1) = v(1)2. Since Γ is totally ordered, v(−1) = v(1).

The properties of v imply that OK = {x ∈ K | v(x) ≤ 1} is closed under addition,

multiplication, and negation, and contains 0 and 1, and so is a hyperring. Similarly

2By surjectivity of π, every element has this form.
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mK = {x ∈ K | v(x) < 1} is an ideal. It is easily seen that it contains all non-units,

so is maximal and k = OK/mK is thus a hyperfield as claimed. In OK we have

1 + (−1) = OK . This can easily be seen to imply that 1 +k (−1) = k.

Let β : ker v → OK/m
×
K be the map β(x) = x̄ where x̄ is the coset of x. We will

show β is an isomorphism which will imply the claim about α = β−1. Let x ∈ OK .

If x ∈ ker v then x̄ = β(x) is in the image of β. Otherwise v(x) < 1, so x ∈ mK .

Then x̄ = 0 is not a unit. Hence β is surjective. Now suppose β(x) = β(y) for some

x, y ∈ ker v. Then x̄ = ȳ so x+mK = y+mK . But v(x) = v(y) = 1 > v(mK . Thus by

our hypothesis on adding elements with different valuation, x = x+m = y +m = y,

so β is injective. Clearly β is multiplicative, so is a group isomorphism as desired.

Let T = T(K×, H, v,OK/mK , α). Clearly K = T as sets, or even as multiplicative

monoids, since both are {0}∪K×. Furthermore, the valuations on K and T coincide.

To show they are equal as hyperfields, we must show the addition operations on both

agree. We denote the addition on K by +K and on T by +T . If v(x) > v(y) then

x+K y = x = x+T y. A similar situation holds if v(y) > v(x). Thus we may assume

that v(x) = v(y). Note that X +K y = x(1 +K x−1y) and similarly for T . Thus it

suffices to show that 1 +K x−1y = 1 +T x
−1y. Since v(x−1y) = 1, it suffices to show

that for all z ∈ K with v(z) = 1 we have 1 +K z = 1 +T z. If z = −1, then both

sides are OK . We assume otherwise. Then α(1 +k z̄) = α(1 +k α
−1(z)) = 1 +T z.

Let t ∈ 1 +T z. Then v(t) = 1 and t̄ = α−1(t) ∈ 1 +k z̄. Since k = OK/mK , there

exists t′ ∈ OK which reduces to t̄ modulo mK such that t′ ∈ 1 +K z. Since t̄ ̸= 0,
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v(t) = v(t′) = 1. Consequently t′ = t′ +K mK = t +K mK = t. Thus t ∈ 1 +K z, and

1 +T z ⊆ 1 +K z. Conversely let t ∈ 1 +K z. If v(t) < 1, then 0 ∈ 1 +k z̄, so z̄ = −1.

Then −1 = −1 +K mK = z +K mK = z, which we assumed did not occur. Hence

v(t) = 1. Now β(t) = t̄ ∈ 1 +k z̄ = 1 +k β(z). Then t ∈ α(1 +k α
−1(z)) = 1 +T z as

desired.

Corollary 9.4.15. Every selective hyperfield arises via the construction of Definition

9.4.1.

Proof. Let K be a selective hyperfield. Let H = K/ ∼. Let v be the valuation

associated to the selective hyperfield K. Apply Theorem 9.4.14.
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Chapter 10

The hypergroup structure on a

modular lattice

Ştefănescu and Viro have independently discovered that if S is a totally ordered

set, then one may make {0} ∪ S into a hypergroup by defining x + x = {t | t ≤ x}

and x + y = max(x, y) for x ̸= y17.22 In the notation of the previous chapter, this

hypergroup is T (S,K). In this chapter we will show that this construction may be

extended to a much larger class of posets, including modular lattices.

10.1 Regular posets

Definition 10.1.1. Let S be a poset. A multiset {x1, . . . , xn} ⊆ S is called a corner

set if for all j and any z ∈ S satisfying xi ≤ z for all i ̸= j, one has xj ≤ z.
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Remark 10.1.2. Let S be totally ordered. {x1, . . . , xn} is a corner set if and only if

the maximum occurs at least twice.

Definition 10.1.3. Let S be a poset, and let x, y ∈ S. We write x ∨ y for the least

upper bound of x and y if it exists, and x∧ y for the greatest lower bound if it exists.

When least upper bounds exist, we have the following alternate description of a

corner set.

Lemma 10.1.4. Suppose that any two elements of a poset S have a least upper bound.

Then {x1, . . . , xn} is a corner set if and only if for all j,
n

i=1

xi =


i ̸=j

xi.

Proof. Suppose {x1, . . . , xn} is a corner set. Fix j between 1 and n. Let y =


i≠j

xi.

Since {x1, . . . , xn} is a corner set, xj ≤ y, so y = y ∨ j =
n

i=1

xi. Conversely suppose

that for all j,
n

i=1

xi =


i ̸=j

xi. Pick an index j, and suppose z ∈ S is chosen so xi ≤ z

for i ̸= j. Then xj ≤
n

i=1

xi =


i ̸=j

xi ≤ z. Hence {x1, . . . , xn} is a corner set.

We will now show it is possible to glue two corner sets together by deleting an

element they have in common.

Lemma 10.1.5. Let S be a poset. Let x1, . . . , xt, y1, . . . , ys, a ∈ S. Suppose that

{x1, . . . , xs, a} and {y1, . . . , yt, a} are corner sets. Then {x1, . . . , xt, y1, . . . , ys} is a

corner poset.

Proof. Let z ∈ S be an upper bound for all but one element of {x1, . . . , xt, y1, . . . , ys}.

We have 2 cases: either the missing element has the form xj for some j or it has the
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form yj for some j. Without loss of generality we may assume we are in the first case,

so xi ≤ z for i ̸= j and yi ≤ z for all i. Since {y1, . . . , yt, a} is a corner set, we may

conclude a ≤ z. We now know every element of {x1, . . . , xs, a} except xj is bounded

by z. Since {x1, . . . , xs, a} is a corner set, we also have xj ≤ z, so every element of

{x1, . . . , xt, y1, . . . , ys} is bounded by z, as desired.

We now introduce regularity conditions on posets that will be used to construct

hypergroups. A strongly regular poset is one in which the converse to lemma 10.1.5

holds.

Definition 10.1.6. A poset S is regular if whenever x, y, z, w, b ∈ S are chosen so

that {x, y, b} and {z, w, b} are corner sets, then there exists a ∈ S such that {x, w, a}

and {y, z, b} are also corner sets. S is strongly regular if for any s, t ∈ N, whenever

x1, . . . , xt, y1, . . . , ys are chosen to make {x1, . . . , xt, y1, . . . , ys} a corner set there exists

a ∈ S such that {x1, . . . , xt, a} and {y1, . . . , ys, a} a corner set.

Proposition 10.1.7. A strongly regular poset is regular.

Proof. Let S be strongly regular. Let x, y, z, w, b ∈ S be such that {x, y, b} and

{z, w, b} are corner sets. By lemma 10.1.5, {x, y, z, w} is a corner set. By strong

regularity, there exists a such that {x, w, a} and {y, z, a} are corner sets.

One may worry that a poset has too few corner sets for their study to be inter-

esting. The following lemma shows that for a regular poset with a minimal element,

this is not the case.
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Lemma 10.1.8. Let S be a regular poset. Suppose either that S has a minimal

element 01, or that S is strongly regular. Let x, y ∈ S. Then there exists a ∈ S such

that {x, y, a} is a corner set.

Proof. If S has a minimal element, then {x, x, 0} and {y, y, 0} are corner sets. Hence

by regularity, there exists a ∈ S such that {x, y, a} and {x, y, a} are corner sets. The

strongly regular case is similar, but uses the fact that {x, y, x, y} is a corner set.

We will now recall some definitions from the theory of lattices, which will allow

us to produce a large class of regular posets.

Definition 10.1.9. A poset S is a lattice if the least upper bound and greatest lower

bound of any two elements exists. A lattice S is distributive if for all x, y, z ∈ S one

has x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). A lattice S is modular if for all x, y, z ∈ S with

x ≤ z, one has x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Example 10.1.10. Any totally ordered set is a distributive lattice.

Example 10.1.11. Any idempotent semifield is a distributive lattice under its canonical

order. To see this, let S be an idempotent semifield and x, y, z ∈ S. One may check

that x ∨ y = x + y and x ∧ y = (x−1 + y−1)−1 = (x + y)−1xy. Then x ∨ (y ∧ z) =

x + (y + z)−1yz = (y + z)−1(xy + xz + yz). On the other hand (x ∨ y) ∧ (x ∨ z) =

(x + y + x + z)−1(x + y)(x + z) = (x + y + z)−1(x2 + xy + xz + yz). Thus we

must check that (y + z)−1(xy + xz + yz) = (x + y + z)−1(x2 + xy + xz + yz), or

1Instead of assuming the existence of a minimal element, we actually only need to assume that
any two elements have some lower bound.
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that (x + y + z)(xy + xz + yz) = (y + z)(x2 + xy + xz + yz). But both equal

x2y + xy2 + xyz + x2z + xz2 + y2z + yz2.

Example 10.1.12. Let K be an idempotent semifield, or more generally an idempotent

semiring which is a distributive lattice under its canonical order. Then the polynomial

semiring K[x1, . . . , xn] is a distributive lattice under its canonical order. In fact least

upper bounds and greatest lower bounds may computed coefficient-wise, and the

distributivity of ∨ and ∧ may be checked coefficient-wise using the corresponding

distributive law for K.

Example 10.1.13. Let R be a multiring. Let I(R) be the set of ideals of R, partially

ordered by inclusion. Then for I, J ∈ I(R), I ∨J = I+J and I ∧J = I ∩J . Suppose

I, J,N ∈ I(R) with I ⊆ N . Then one trivially has I+(J ∩N) ⊆ (I+J)∩N . For the

reverse inclusion, if x ∈ (I+J)∩N one may write x = y+z for y ∈ I ⊆ N and z ∈ J .

Then z ∈ x− y, so z ∈ N −N = N . Thus z ∈ J ∩N and x = y + z ∈ I + (J ∩N).

Hence I(R) is modular. Similarly, if A is a hypergroup, we may let S(A) be the set

of subhypergroups. Then S(A) is modular for the same reason.

We recall the following standard result.

Proposition 10.1.14. Let S be a distributive lattice. Then S is modular.

Proof. Let x, y, z ∈ S, with x ≤ z. Then (x∨y)∧z = (x∨y)∧(x∨z) = x∨(y∧z).

We now prove a result which provides a large class of strongly regular posets. The

choice of a in the proof was suggested to the author by V. Lorman.
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Theorem 10.1.15. Let S be a modular lattice. Then S is strongly regular.

Proof. Let x1, . . . , xt ∈ S and y1 . . . , ys ∈ S be such that {x1, . . . , xt, y1, . . . , ys}

is a corner set. Let a = (
t

i=1

yi) ∧ (
s

i=1

xi). We wish to show that {x1, . . . , xt, a}

and {y1, . . . , ys, a} are corner sets. Without loss of generality it suffices to do it

for {x1, . . . , xt, a}. Note that if xi ≤ z for all i, then a ≤
t

i=1

xi ≤ z. Thus

we may assume that a ≤ z and that there exists j such that xi ≤ z for i ̸= j,

and we must show xj ≤ z. It suffices to do this for z =


i ̸=j

xi ∨ a. But then

z =


i ̸=j

xi ∨ ((


yi) ∧ (


xi)) = (


i ̸=j

xi ∨


yi) ∧ (


xi), since S is modular. It

then suffices to show that xj ≤


xi, and that xj ≤


yi ∨


i ̸=j

xi. The first of

these inequalities is trivial because xj appears as a term on the right. The inequality

xj ≤


yi∨


i ̸=j

xi follows from the fact that {x1, . . . , xt, y1, . . . , ys} is a corner set.

10.2 The hypergroup structure on a reg-

ular poset

Definition 10.2.1. Let S be a regular poset with a minimal element denoted 0.

Then for x, y ∈ S, we write x+ y = {a | {a, x, y} is a corner set}.

Remark 10.2.2. If S is totally ordered, and x ̸= y then x + y = max(x, y). If x = y,

then x+ y = {a | a ≤ x}. Thus for a totally ordered set this construction agrees with

that of Viro.
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We wish to show that Definition 10.2.1 makes every regular poset into a canonical

abelian hypergroup, and in fact into an idempotent hypergroup.

Remark 10.2.3. It is easy to see that the addition of Definition 10.2.1 is commutative

and has identity 0. If x ∈ S then 0 ∈ x + x. On the other hand if 0 ∈ x + y then

{0, x, y} is a corner set so that x ≤ y and y ≤ x so x = y. Thus each element x has

a unique additive inverse, which is equal to x. Furthermore, for all x, y ∈ S, lemma

10.1.8 implies that x+ y is nonempty.

Proposition 10.2.4. Let S be a regular poset with minimal element 0. Then the

addition of Definition 10.2.1 is associative.

Proof. Let x, y, z ∈ S. We will first show that (x + y) + z ⊆ x + (y + z). Let

w ∈ (x + y) + z. Then there exists b ∈ x + y such that w ∈ b + z. Hence {x, y, b}

and {z, w, b} are corner sets. Hence, by regularity, there exists a ∈ S such that

{x, w, a} and {y, z, a} are corner sets. Then a ∈ y + z, and w ∈ x + a. Hence

(x+ y) + z ⊆ x+ (y + z). By relabelling variables, we get (z + y) + x ⊆ z + (y + x).

Using the commutative law we get x + (y + z) ⊆ (x + y) + z. Hence associativity

holds.

Proposition 10.2.5. Let S be a regular poset with a minimal element, equipped with

the addition of Definition 10.2.1. Let x, y, z ∈ S and suppose x ∈ y + z. Then

y ∈ z − x.

Proof. Since x = −x, it suffices to show that y ∈ z+x. We are given that x ∈ y+z, or
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equivalently that {x, y, z} is a corner set. But this directly implies that y ∈ z+x.

We have verified all of the axioms of a canonical abelian hypergroup. Thus we

have proved the following.

Theorem 10.2.6. Let S be a regular poset with minimal element 0. Equip S with

the addition of Definition 10.2.1. Then S is a canonical abelian hypegroup.

In fact such hypergroups are idempotent hypergroups, as defined in 9.2.1.

Theorem 10.2.7. Let S be as in Theorem 10.2.6. Then S is an idempotent hyper-

group.

Proof. One has x− x = x+ x = {a | {a, x, x} is a corner set} = {a | a ≤ x}. Clearly

x ∈ x + x. If a, b ∈ x − x and c ∈ a + b, then {a, b, c} is a corner set and a, b ≤ x.

But this implies c ≤ x, so c ∈ x − x. Hence (x − x) + (x − x) ⊆ x − x. The reverse

inclusion follows from 0 ∈ x−x, so x+x−x−x = x−x. Hence S is idempotent.

On an idempotent hypergroup we defined a valuation induced by the relation

x ≤ y if y ∈ x+ y. In this case the relation is the partial ordering we started with.

Proposition 10.2.8. Let S be as in Theorem 10.2.6. Let x, y ∈ S. Then x ≤ y if

and only if y ∈ x+ y.

Proof. It suffices to show that x ≤ y if and only if {x, y, y} is a corner set. If {x, y, y}

is a corner set then x ≤ y follows from y ≤ y. On the other hand, suppose x ≤ y. If

x ≤ z and y ≤ z then y ≤ z. If y ≤ z then x ≤ y ≤ z so {x, y, y} is a corner set.
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Corollary 10.2.9. Let S be as in Theorem 10.2.6 and let v be as in Definition 9.2.7.

Then v is bijective and v(x) ≤ v(y) if and only if x ≤ y.

The hypergroup structure on a regular poset with minimal element satisfies the

following universal property. By a hypergroup homomorphism we mean a map satis-

fying v(0) = 0 and v(x+ y) ⊆ v(x) + v(y).

Theorem 10.2.10. Let S be as in Theorem 10.2.6. Let A be a canonical abelian

hypergroup. Suppose v : A → S is such that for any x, y ∈ A and any t ∈ S with

v(x) ≤ t and v(y) ≤ t, one has v(x+ y) ≤ t2. Suppose furthermore that for all x ∈ A

one has v(x) = v(−x) and that v(0) = 0. Then v is a homomorphism of hypergroups.

Conversely any hypergroup homomorphism v : A→ S has the properties described.

Proof. Let v satisfy the hypotheses described in the statement of the theorem. Let

x, y ∈ A. We must show that v(x+y) ⊆ v(x)+v(y). Thus for any z ∈ x+y, we must

show that v(z) ⊆ v(x)+v(y), or that {v(z), v(x), v(y)} is a corner set. If v(x) ≤ t and

v(y) ≤ t then v(z) ∈ v(x+ y) ≤ t. If v(x) ≤ t and v(z) ≤ t, then v(y) ∈ v(z− x) ≤ t,

since y ∈ z − x and since v(−x) = v(x) ≤ t. Similarly if v(y) ≤ t and v(z) ≤ t, then

v(x) ≤ t. Hence {v(x), v(y), v(z)} is a corner set so v(x+ y) ⊆ v(x) + v(y). We have

v(0) = 0 by assumption, so v is a homomorphism.

For the converse, suppose v : A → S is a homomorphism. Then v(0) = 0. Since

0 = v(0) ∈ v(x − x) ⊆ v(x) + v(−x), we see that v(−x) = −v(x) = v(x) for all

x ∈ A. Suppose x, y ∈ A and t ∈ S with v(x) ≤ t and v(y) ≤ t. Let z ∈ x+ y. Then

2By v(x+ y) ≤ t we mean that v(z) ≤ t for all z ∈ x+ y.
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v(z) ∈ v(x + y) ⊆ v(x) + v(y), so {v(x), v(y), v(z)} is a corner set. Hence v(z) ≤ t.

Thus v(x+ y) ≤ t, so all of the desired properties have been verified.

In a strongly regular poset, the sum of more than two elements has a particularly

nice form.

Proposition 10.2.11. Let S be a strongly regular poset with minimal element 0. Let

x1, . . . , xn ∈ S. Then x1 + . . .+ xn = {a | {x1, . . . , xn, a} is a corner set}.

Proof. We proceed by induction on n. The case n = 2 is Definition 10.2.1. Suppose

the result holds for n − 1. Suppose that {x1, . . . , xn, a} is a corner set. Then by

strong regularity, there exists b ∈ S such that {b, xn, a} and {x1, . . . , xn−1} are corner

sets. Then b ∈ x1 + . . . + xn−1 by the inductive hypothesis, and a ∈ b + xn. Hence

a ∈ x1 + . . . + xn. Conversely, suppose that a ∈ x1 + . . . + xn. We will show that

{x1, . . . , xn, a} is a corner set. There exists b ∈ x1 + . . .+ xn−1 such that a ∈ b+ xn.

Then {b, x1, . . . , xn−1} and {b, a, xn} are corner sets. The result follows from lemma

10.1.5.

Using the above method to construct hypergroups from regular idempotent semi-

groups is functorial, as the following proposition shows.

Proposition 10.2.12. Let S, S ′ be regular idempotent semigroups, which we endow

with the hypergroup structure of Theorem 10.2.6. Let f : S → S ′ be a semiring

homomorphism. Then f is a hypergroup homomorphism.
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Proof. Clearly f(0) = 0. Let x, y, z ∈ S be chosen so z ∈ x + y, or equivalently

{x, y, z} is a corner set. We must show that f(z) ∈ f(x) + f(y), or equivalently that

{f(x), f(y), f(z)} is a corner set. Since {x, y, z} is a corner set, by lemma 10.1.4,

x ∨ y = x ∨ z = y ∨ z. Hence f(x) ∨ f(y) = f(x) ∨ f(z) = f(y) ∨ f(z), which gives

the desired result by lemma 10.1.4.

10.3 Regular idempotent semirings

In this section the addition in an idempotent semiring will be denoted x ∨ y to

indicate that the sum is the least upper bound, as well as to avoid confusion with the

addition in the hypergroup of Definition 10.2.1.

Lemma 10.3.1. Let S be a regular idempotent semiring. Let x1, . . . , xn, y ∈ S.

Suppose {x1, . . . , xn} is a corner set. Then {x1y, . . . , xny} is a corner set.

Proof. We use the criterion of lemma 10.1.4 to see that
n

i=1

xi =


i ̸=j

xi. Multiplying

by y gives
n

i=1

xiy =


i ̸=j

xiy as desired.

We now prove a distributive law for regular idempotent semirings.

Proposition 10.3.2. Let S be a regular idempotent semiring. Use + to denote

the operation of Definition 10.2.1, and write the semiring multiplication as ordinary

multiplication. Then (x+ y)z ⊆ xz + yz.
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Proof. Any element of (x+y)z has the form az for a ∈ x+y. Then {a, x, y} is a corner

set. Hence {az, xz, yz} is a corner set. Then az ∈ xz+ yz, so (x+ y)z ⊆ xz+ yz.

Theorem 10.3.3. Let S be a regular idempotent semiring. Then S is a multiring un-

der the addition of Definition 10.2.1 and the multiplication coming from its semiring

structure.

Proof. We have proven it is a canonical abelian hypergroup in Theorem 10.2.6. We

have shown the distributive law in Proposition 10.3.2. The associativity of multi-

plication and the existence of the multiplicative identity follow from the semiring

axioms.

We now show the ideals of the multiring structure on S may be expressed in terms

of the semiring structure on S.

Theorem 10.3.4. Let S be a regular idempotent semiring. Let I ⊆ S. Then I is an

strong ideal of the semiring S if and only if it is an ideal of S regarded as a multiring

via Theorem 10.3.3.

Proof. We use Theorem 9.2.18. Note that by Corollary 10.2.9, the map v : S →

S/ ∼= S is the identity map from the multiring S to the semiring S. Since both

have the same multiplication, v(xy) = v(x)v(y) for all x, y ∈ S. If x, y ∈ S, then

x ∨ y ∈ x + y, so there exists z ∈ x + y with v(z) = sup(v(x), v(y)). All of the

hypotheses of Theorem 9.2.18 hold, so the result follows from that theorem.

We define the notion of a valuation from a multiring to an idempotent semiring.
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Definition 10.3.5. Let R be a multiring, and let S be an idempotent semiring. A

map v : R→ S is a valuation if it satisfies the following properties.

(i) v(0) = 0.

(ii) v(1) = 1.

(iii) v(x) = v(−x) for all x ∈ R.

(iv) v(xy) = v(x)v(y) for all x, y ∈ R.

(v) For all x, y ∈ R and all z ∈ x+ y, v(z) ≤ v(x) ∨ v(y).

We now prove a universal property for the multiring associated to a regular idem-

potent semiring.

Theorem 10.3.6. Let S be a regular idempotent semiring. Let R be a multiring. A

map v : R → S is a valuation if and only if it is a homomorphism of multirings,

where S is equipped with the multiring structure of Theorem 10.3.3.

Proof. By Theorem 10.2.10, v satisfies properties (i), (iii) and (v) of Definition 10.3.5

if and only if it is a hypergroup homomorphism. Since a multiring homomorphism

is the same as a hypergroup homomorphism that satisfies (ii) and (iv) of Definition

10.3.5, it is the same as a map that satisfies (i)-(v) of that definition. Thus v is a

multiring homomorphism if and only if it is a valuation.
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10.4 The semigroup of finitely generated

subhypergroups

In this section, we return to writing the addition in an idempotent semigroup

using the symbol +. The goal for this section is to construct a left adjoint to the

construction detailed in the previous sections of this chapter. Elements of the idem-

potent semigroup we construct will be finitely generated subhypergroups of a given

hypergroup.

Definition 10.4.1. Let A be a hypergroup and B ⊆ A. B is a subhypergroup if the

following hold:

(a) 0 ∈ B.

(b) −x ∈ B for all x ∈ B.

(c) x+ y ⊆ B holds for all x, y ∈ B.

Definition 10.4.2. Let A be a hypergroup and S ⊆ A. The subhypergroup generated

by A is the intersection of all subhypergroups containing A. We write ⟨x⟩ for the

subhypergroup generated by x.

Lemma 10.4.3. Let A be a hypergroup. Let B,C ⊆ A be subhypergroups. Then

B + C is the intersection of all subhypergroups of A which contain both B and C.

Hence if the subhypergroups are partially ordered by inclusion, then B+C is the least

upper bound of B and C.
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Proof. B + C contains B and C. Any subhypergroup containing both B and C

contains B + C because the subhypergroup is closed under addition.

Proposition 10.4.4. Let A be a hypergroup. Let x1, . . . , xn ∈ A. Then the subhy-

pergroup generated by {x1, . . . , xn} is ⟨x1⟩+ . . .+ ⟨xn⟩.

Proof. This is clearly true for n = 1 so we suppose it holds for n − 1. Let B be

the subhypergroup generated by {x1, . . . , xn}. Since xn ∈ B, ⟨xn⟩ ⊆ B. Since

{x1, . . . , xn−1} ⊆ B, the inductive hypothesis implies ⟨x1⟩+. . .+⟨xn−1⟩ ⊆ B. Hence by

lemma 10.4.3,⟨x1⟩+ . . .+ ⟨xn⟩ ⊆ B. Conversely, to show B ⊆< x1 > + . . .+ < xn >,

it suffices to show that {x1, . . . , xn} ⊆ ⟨x1⟩+ . . .+ ⟨xn⟩, which is trivial.

Definition 10.4.5. For a hypergroup A, we let Sf (A) be the set of finitely generated

subhypergroups of A, which we view as a poset partially ordered by inclusion.

Remark 10.4.6. Sf (A) has a minimal element 0. If B,C ∈ Sf (A), then it follows from

Proposition 10.4.4 that B + C ∈ Sf (A). Furthermore, this fact together with lemma

10.4.3 imply that B and C have a least upper bound given by B + C. Hence Sf (A)

is an idempotent semigroup equipped with its canonical order

We wish to show that the poset Sf (A) is regular. The poset S(A) of all subhy-

pergroups is regular by Example 10.1.13 and Theorem 10.1.15. We will deduce the

case of Sf (A) from this fact.

Theorem 10.4.7. Let A be a hypergroup. Then Sf (A) is regular.
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Proof. Let X, Y, Z,W,B be finitely generated subhypergroups of A. Suppose that

{X, Y,B} and {Z,W,B} are corner sets in Sf (A). We wish to construct N ∈ Sf (A)

such that {X,W,N} and {Y, Z,N} are corner sets in Sf (A). Note that {X, Y,B}

and {Z,W,B} are corner sets in S(A), as can be seen using lemma 10.1.4. Hence

we get N ′ ∈ S(A) such that {X,W,N ′} and {Y, Z,N ′} are corner sets in S(A).

That {X,W,N ′} is a corner set means X + W = X + N ′ = W + N ′. Similarly

Y + Z = Y +N ′ = Z +N ′.

Let a1, . . . , at be generators for the finitely generated subhypergroup X +W =

X + N ′ of A. For each i, write ai = ui + vi with ui ∈ X and vi ∈ N ′. Let N1

be the subhypergroup generated by v1, . . . , vt. Then ai = ui + vi ∈ X + N1 for all

i, so X +W ⊆ X + N1. We similarly construct finitely generated subhypergroups

N2, N3, N4 ⊆ N ′ such that Y +Z ⊆ Y +N2, Y +Z ⊆ Z +N3 and X +W ⊆ W +N4.

Let N = N1 + N2 + N3 + N4 ⊆ N ′, which is clearly finitely generated. Because

N1, N2, N3, N4 ⊆ N , X + W ⊆ X + N , Y + Z ⊆ Y + N , Y + Z ⊆ Z + N and

X +W ⊆ W + N . On the other hand, since N ⊆ N ′, X + N ⊆ X + N ′ = X +W ,

Y +N ⊆ Y +Z, Z+N ⊆ Y +Z, andW+N ⊆ X+W . HenceX+W = X+N = W+N

and Y +Z = Y +N = Z +N , so {X,W,N} and {Y, Z,N} are corner sets in Sf (A),

as desired.

Definition 10.4.8. Let A be a hypergroup. Let S be an idempotent semigroup. An

nonmultiplicative valuation from A to S is a map such that for all x, y ∈ A, v(x+y) ≤

v(x) + v(y), v(x) = v(−x) and v(0) = 0. We denote the set of nonmultiplicative
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valuations from A to S by Val(A, S).

We will relate nonmultiplicative valuations to the semigroup Sf (A).

Lemma 10.4.9. Let A be a hypergroup and x ∈ A. Let v : A → S be an non-

multiplicative valuation from A to an idempotent semigroup S. Let t ∈ ⟨x⟩. Then

v(t) ≤ v(x).

Proof. First I claim that for any s ∈ S, the set {y ∈ A | v(y) ≤ s} is a subhypergroup.

In fact it is closed under negation because v(y) = v(−y), and contains 0, and it

is closed under addition by the ultrametric inequality. For any x ∈ A, we have

x ∈ {y ∈ A | v(y) ≤ v(x)}, so ⟨x⟩ ⊆ {y ∈ A | v(y) ≤ v(x)}.

Lemma 10.4.10. Let A be a hypergroup. Let B ⊆ A be the subhypergroup generated

by a finite set {x1, . . . , xn}. Let S be an idempotent semigroup and v : A → S be

an nonmultiplicative valuation. Then v(x1) + . . . + v(xn) is the least upper bound of

{v(b) | b ∈ B}.

Proof. We have B = ⟨x1⟩+ . . .+ ⟨xn⟩. Let b ∈ B. Then there are elements bi ∈ ⟨xi⟩

such that b = b1 + . . . + bn. By lemma 10.4.9, v(bi) ≤ v(xi) for all i. Hence v(b) ≤

v(b1)+ . . .+ v(bn) ≤ v(x1)+ . . .+ v(xn). Hence v(x1)+ . . .+ v(xn) is an upper bound

for {v(b) | b ∈ B}. Suppose η is another upper bound. Then v(xi) ⊆ {v(b) | b ∈ B},

so v(xi) ≤ η for all i. Hence v(x1)+ . . .+ v(xn) ≤ η, so v(x1)+ . . .+ v(xn) is the least

upper bound.
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We now prove a universal property for Sf (A), which states that the map A →

Sf (A) sending x to ⟨x⟩ is the universal nonmultiplicative valuation on A. An analogue

for rings is proven in23

Theorem 10.4.11. Let A be a hypergroup. The map w : A → Sf (A) given by

w(x) = ⟨x⟩ is an nonmultiplicative valuation. Let S be an idempotent semigroup, and

let v : A → S be an nonmultiplicative valuation. Then there is a unique semigroup

homomorphism ϕ : Sf (A)→ S such that ϕ ◦ w = v.

Proof. Let x, y ∈ A. Then x, y ∈ ⟨x⟩ + ⟨y⟩, so x + y ∈ ⟨x⟩ + ⟨y⟩. Hence w(x + y) ≤

w(x) + w(y). Also w(x) = ⟨x⟩ = ⟨−x⟩ = w(−x), since subhypergroups are closed

under negation. Furthermore, w(0) = ⟨0⟩ = 0. Hence w is an nonmultiplicative

valuation.

For B ∈ Sf (A), let ϕ(B) be the least upper bound of {v(b) | b ∈ B}, which

exists by lemma 10.4.10. Let B′ ∈ Sf (A) be another element. Let x1, . . . , xn be

generators for B, and let y1, . . . , ym be generators for B′. Then x1, . . . , xn, y1, . . . , ym

generates B + B′. Hence by lemma 10.4.10, ϕ(B) = v(x1) + . . . + v(xn), ϕ(B
′) =

v(y1) + . . .+ v(ym), and ϕ(B+B′) = v(x1) + . . .+ v(xn) + v(y1) + . . .+ v(ym). Hence

ϕ(B + B′) = ϕ(B) + ϕ(B′). Since we also have ϕ(0) = v(0) = 0, ϕ is a semigroup

homomorphism. Also, by lemma 10.4.10, ϕ(w(x)) = ϕ(⟨x⟩) = v(x).

Let ψ : Sf (A)→ S be another semigroup homomorphism such that ψ◦w = v. Let

B ∈ Sf (A). Let x1, . . . , xn be generators for B. Then ψ(B) = ψ(⟨x1⟩+ . . .+ ⟨xn⟩) =

ψ(⟨x1⟩)+ . . .+ψ(⟨xn⟩) = ψ(w(x1))+ . . .+ψ(w(xn)) = v(x1)+ . . .+ v(xn). By lemma
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10.4.10, we now have ψ(B) = ϕ(B), so ϕ is unique.

Definition 10.4.12. For a regular idempotent semigroup S, we let Y (S) be the

hypergroup Y (S) = S constructed in Theorem 10.2.6. For a morphism ϕ of regular

idempotent semigroups, we let Y (ϕ) = ϕ.

By lemma 10.2.12, Y is a functor from the category of regular idempotent semi-

groups3 to the category of hypergroups. We have seen in Theorem 10.4.7 that Sf

sends hypergroups to regular idempotent semigroups. We would like to say that Sf

is left adjoint to Y . However, we have not described Sf on morphisms, so Sf is not

yet a functor. Nonetheless, we can still accomplish our goal.

Theorem 10.4.13. There is a way to associate to each hypergroup homomorphism

η : A → B a semigroup homomorphism Sf (η) so that Sf is a functor and is left

adjoint to the functor Y .

Proof. Given a hypergroup A and a morphism ϕ : S → S ′ of regular idempotent

semigroups, we define Val(A, ϕ) : Val(A, S) → Val(A, S ′) to send f ∈ Val(A, S) to

ϕ ◦ f . Given a regular idempotent semigroup S and a morphism η : A → B of

hypergroups, define Val(η, S) : Val(B, S) → Val(A, S) to send f to f ◦ η. Then one

readily sees that Val(A, S) is a covariant functor in S and a contravariant functor in

A. By Theorem 10.2.10, we have an isomorphism α : Val(A, S) → Hom(A, Y (S))

sending a map f : A→ S to f . One easily sees that this is natural in A and in S.

3Morphisms in this category are simply semigroup homomorphisms.
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By Theorem 10.4.11, we have an isomorphism β : Hom(Sf (A), S) → Val(A, S).

If w is as in Theorem 10.4.11 then β(u) = u ◦ w. To check naturality in S, let

ϕ : S → S ′ be a morphism of regular idempotent semigroups. Let u ∈ Hom(Sf (A), S).

Then (βS′ ◦ Hom(Sf (A), ϕ))(u) = βS′(ϕ ◦ u) = ϕ ◦ u ◦ w. Also (Val(A, ϕ) ◦ βS)(u) =

Val(A, ϕ)(u ◦ w) = ϕ ◦ u ◦ w. Thus the naturality square commutes and β is natural

in S. By the Yoneda lemma, there is a unique way of defining Sf on morphisms such

that β is natural in A, and furthermore this makes Sf a functor. Since α and β are

natural in A and S, so is their composite. Thus Hom(Sf (A), S) ∼= Hom(A, Y (S))

naturally in A and S, as desired.

We would also like to show that Sf provides a one-sided inverse to Y . We will use

the following theorem.

Theorem 10.4.14. The functor Y is fully faithful.

Proof. Let S and S ′ be regular idempotent semigroups. Let f : Y (S) → Y (S ′) be

a hypergroup homomorphism. Then we may view f as a function from S to S ′,

and we wish to show this function is a semigroup homomorphism. If {a, b, c} is a

corner set in S then c ∈ a + b in Y (S) so f(c) ∈ f(a) + f(b) holds in Y (S ′), which

implies that {f(a), f(b), f(c)} is a corner set in S ′. Thus f maps corner sets with

three elements to corner sets. Let x, y ∈ S with y ≤ x. Then {x, x, y} is a corner

set in S, so {f(x), f(x), f(y)} is a corner set. Hence f(y) ≤ f(x) so f is monotonic.

Write ∨ for the addition in S or in S ′. Then for any x, y ∈ S, {x, y, x∨ y} is a corner
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set. Hence {f(x), f(y), f(x ∨ y)} is a corner set in S ′. Since f(x) ≤ f(x) ∨ f(y),

and f(y) ≤ f(x) ∨ f(y), it follows that f(x ∨ y) ≤ f(x) ∨ f(y). Conversely f(x) ≤

f(x ∨ y) and f(y) ≤ f(x ∨ y) since f is monotonic. Hence f(x) ∨ f(y) ≤ f(x ∨ y)

so f(x) ∨ f(y) = f(x ∨ y). Hence f is a semigroup homomorphism, so that Y is full.

The fact that Y is faithful holds because f and Y (f) are the same function on the

level of sets.

Theorem 10.4.15. The counit of the adjunction between Sf and Y provides a nat-

ural isomorphism between Sf ◦ Y and the identity functor. The category of regular

idempotent semigroups is equivalent to a reflective subcategory4 of the category of

hypergroups.

Proof. This follows via category theory from theorems 10.4.14 and 10.4.13. The first

statement is a consequence of the Yoneda lemma, while the second follows from the

definition of a reflective subcategory.

10.5 The functor Sf on multirings

In this section we prove analogues of the results of section 10.4 for multirings. The

key difficulty lies in showing that Sf is a semiring. First we define the multiplication

operation.

4A reflective subcategory is a full subcategory such that the inclusion functor has a left adjoint.
This adjoint is called the reflector. For example the category of complete metric spaces is a reflective
subcategory of the category of metric spaces with the reflector being the completion functor.
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Definition 10.5.1. Let R be a multiring. Let A,B ⊆ R. Then we write AB for the

intersection of all subhypergroups of R which contain the set {ab | a ∈ A, b ∈ B}.

The following lemma describes this multiplication operation on subhypergroups

with one generator.

Lemma 10.5.2. Let R be a multiring and x, y ∈ R. Let A = ⟨x⟩ and ⟨y⟩. Then

AB = ⟨xy⟩

Proof. Let C = {t | ty ∈ ⟨xy⟩}. If s, t ∈ C and c ∈ s+ t then cy ∈ (s+ t)y ⊆ sy+ ty.

Since sy, ty ∈ ⟨xy⟩, cy ∈ ⟨xy⟩ so c ∈ C. Hence C is closed under addition. It is

easily seen to be closed under negation, so it is a subhypergroup. Clearly x ∈ C

so A = ⟨x⟩ ⊆ C. Thus for any a ∈ A we have ay ∈ ⟨xy⟩. For each a ∈ A, let

Da = {t | at ∈ ⟨xy⟩}. One sees, as in the case of C that D is a subhypergroup. We

have seen that y ∈ Da for all a ∈ A. Hence B = ⟨y⟩ ⊆ Da for all a ∈ A. Thus for

all a ∈ A and all b ∈ B, b ∈ Da so ab ∈ ⟨xy⟩. Thus ⟨x⟩⟨y⟩ ⊆ ⟨xy⟩. For the converse,

note that x ∈ ⟨x⟩ and y ∈ ⟨y⟩ so xy ∈ ⟨x⟩⟨y⟩. Hence ⟨xy⟩ ⊆ ⟨x⟩⟨xy⟩.

We now prove this multiplication on subhypergroups distributes over addition.

Lemma 10.5.3. Let R be a multiring. Let A,B,C ⊆ R be subhypergroups. Then

A(B + C) = AB + AC.

Proof. Because B ⊆ B +C we have AB ⊆ A(B +C) and similarly AC ⊆ A(B +C).

Hence AB + AC ⊆ A(B + C). For the reverse inclusion let a ∈ A and y ∈ B + C.
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It suffices to show ay ⊆ AB + AC. Let y ∈ b + c where b ∈ B and c ∈ C. Then

ay ∈ a(b+ c) ⊆ ab+ ac ⊆ AB + AC.

We now prove this multiplication is associative.

Lemma 10.5.4. Let R be a multiring. Let A,B,C ⊆ R be subhypergroups. Then

(AB)C = A(BC).

Proof. Let ABC be the smallest subhypergroup containing {abc | a ∈ A, b ∈ B, c ∈

C}. Then ABC ⊆ (AB)C. For an element c ∈ C, let Dc = {t ∈ R | tc ∈ ABC}.

Then as in the proof of lemma 10.5.2, Dc is a subhypergroup. Furthermore for a ∈ A,

b ∈ B and c ∈ C, one has ab ∈ Dc. Hence for c ∈ C, one has AB ⊆ Dc. Thus for

x ∈ AB and y ∈ C one has xy ∈ ABC so that (AB)C = ABC. Similarly one can

show A(BC) = ABC.

We now show multiplication of subhypergroups preserves the property of being

finitely generated.

Lemma 10.5.5. Let R be a multiring. Let A,B ⊆ R be finitely generated subhyper-

groups. Then AB is a finitely generated subhypergroup.

Proof. Using Proposition 10.4.4 we may write A = ⟨x1⟩+ . . .+ ⟨xm⟩ and B = ⟨y1⟩+

. . . + ⟨yn⟩ for some x1 . . . , xm, y1, . . . , yn ∈ R. By lemmas 10.5.3 and 10.5.2 we may

write AB = (⟨x1⟩ + . . . + ⟨xm⟩)(⟨y1⟩ + . . . + ⟨yn⟩) = ⟨x1y1⟩ + . . . + ⟨xmy1⟩ + . . . +

⟨x1yn⟩+ . . .+ ⟨xmyn⟩.
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Theorem 10.5.6. Let R be a multiring. Then Sf (R) is a regular idempotent semir-

ing.

Proof. It is a regular idempotent semiring by Theorem 10.4.7. It is closed under

multiplication by lemma 10.5.5. It satisfies the distributive law by lemma 10.5.3, and

the associative law by lemma 10.5.4.

Definition 10.5.7. Let R be a multiring. Let S be an idempotent semiring. A

multiplicative valuation v : R→ S is a nonmultiplicative valuation such that v(xy) =

v(x)v(y) for all x, y ∈ R. The set of multiplicative valuations is denoted Valm(R, S).

We now turn to the problem of showing that the map R → Sf (R) is universal

among multiplicative valuations. In the case of rings, this was observed by Macpher-

son.23

Theorem 10.5.8. Let R be a multiring. The map w : R → Sf (R) given by w(x) =

⟨x⟩ is an nonmultiplicative valuation. Let S be an idempotent semiring, and let v :

A→ S be an multiplicative valuation. Then there is a unique semiring homomorphism

ϕ : Sf (R)→ S such that ϕ ◦ w = v.

Proof. By Theorem 10.4.11, w is a nonmultiplicative valuation. It is multiplicative by

lemma 10.5.2. By Theorem 10.4.11 there is a semigroup homomorphism ϕ : Sf (R)→

S such that ϕ ◦ w = v. Let A,B ∈ Sf (R). Let A be generated by x1, . . . , xm and

B be generated by y1, . . . , yn, so that by the proof of lemma 10.5.5, AB must be

generated by {xiyj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then by the description of ϕ given in
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the proof of Theorem 10.4.11, ϕ(A)ϕ(B) = (v(x1)+ . . .+v(xm))(v(y1)+ . . .+v(yn)) =

v(x1)v(y1)+ . . .+v(xm)v(yn) = v(x1y1)+ . . . v(xmyn) = ϕ(AB). Hence ϕ is a semiring

homomorphism.

We now turn our attention to the functor Y .

Theorem 10.5.9. The functor Y restricts to a fully faithful from the category of

regular idempotent semirings to the category of multirings.

Proof. If R is a regular idempotent semiring, then Theorem 10.3.3 implies Y (R) is

a multiring. On the level of sets we take Y (f) = f . To show Y is a fully faithful

functor we must show that f is a multiring homomorphism if and only if it is a semiring

homomorphism. We know by Proposition 10.2.12 and Theorem 10.4.14 that f is a

hypergroup homomorphism if and only if it is a semigroup homomorphism. Thus f

is a hypergroup homomorphism which preserves multiplication if and only if it is a

semigroup homomorphism which preserves multiplication. The result follows.

Theorem 10.5.10. Let Y be the functor from regular idempotent semirings to mul-

tirings described above. Sf may defined on morphisms in such a way that Sf is left

adjoint to Y .

Proof. The proof is essentially identical to that of Theorem 10.4.13. Instead of using

theorems 10.4.11 and 10.2.10, we use theorems 10.5.8 and 10.3.6.

Theorem 10.5.11. The counit of the adjunction between Sf and Y provides a nat-

ural isomorphism between Sf ◦ Y and the identity functor. The category of regular
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idempotent semirings is equivalent to a reflective subcategory of the category of mul-

tirings.

Proof. This is proven in the same way as Theorem 10.4.15.
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