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Abstract

This thesis addresses two topics in statistics that rely on the likelihood function for

statistical inference. These topics include novel statistical research in conjoint analysis

and a method to approximate the profile likelihood and create approximate profile

likelihood confidence intervals.

After introducing choice-based conjoint analysis, we introduce a method to empirically

assess and compare different conjoint analysis design strategies. A key feature of this

method of comparison is that it makes very few assumptions about the data-generating

process (essentially just that the respondents answer the surveys independently of

one another) while remaining statistically valid; in particular, the respondents are not

assumed to use the multinomial logit model.

We then turn to the statistical analysis of conjoint analysis survey results. We introduce

a method to plot in two-dimensional space the heterogeneity in preferences across the

respondents as inferred from the conjoint analysis survey results that can be used for

visualization as well as mixture model assessment. We also introduce a novel method

to accurately infer the number of natural clusters in preferences across the respondents.

This method is shown in simulation studies to give more accurate results than latent

class segmentation with AIC and BIC. We additionally suggest regressing estimated

respondent preferences on their demographic variables as a strategy for hypothesis

generation and model building.

We show that the profile likelihood can be well approximated near the maximum
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likelihood estimate by the [2,2] Padé approximant. This approximation is shown to be

better than that provided by a second-order Taylor series approximation. However, like

a second-order Taylor series approximation, it can be used to construct a confidence

interval with endpoints found using the quadratic formula. The resulting confidence

interval is similar to a profile likelihood interval but with computation time similar to

that of a Wald interval.

Thesis Readers: Charles A. Rohde (Advisor), Gary L. Rosner (Committee Chair),

John F.P. Bridges, and Brian S. Caffo.
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Chapter 1

Introduction

1.1 Summary

This thesis addresses two topics in statistics. Novel statistical research in conjoint

analysis is discussed in Chapters 2 and 3, and a method to approximate the profile

likelihood and create approximate profile likelihood confidence intervals is described

in Chapter 4. These topics are related in their reliance on the likelihood function for

statistical inference.

There have been numerous applications of likelihood methods in public health. Like-

lihood methods are often used in public health to infer parameters that equal or

represent quantities of significant public health interest, such as the risk of tuberculosis

(Clark and Vynnycky 2004), breast cancer (Consortium and others 1999), and heart

disease (Anderson et al. 1991). Such quantities can be termed “parameters of interest”

and analyzed using the methods of Chapter 4. In applications of conjoint analysis

in public health, the parameters of the likelihood represent the patient’s preferences

regarding medical choices, such as among Medicare Part D plans (Heiss, McFadden,

and Winter 2010).
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The profile likelihood is definable for any likelihood with more than one parameter,

and the statistical methods in conjoint analysis model a person’s choices using a

multinomial logistic likelihood or a mixture model of such likelihoods. Because of this,

methods involving the profile likelihood are usefully employed in conjunction with

the statistical methods described for conjoint analysis. For example, in Swait’s work

on the role of the scale parameter in the estimation and comparison of multinomial

logit models in conjoint analysis, a profile likelihood is used to estimate and create a

confidence interval for the scale parameter (Swait and Louviere 1993).

1.2 Overview

In Chapters 2 and 3, novel statistical methods in conjoint analysis developed to solve

specific real-world problems are described. Chapter 2 introduces conjoint analysis as

well as a novel statistical method related to evaluating the design of discrete choice

experiments, whereas Chapter 3 introduces novel statistical methods related to the

analysis of discrete choice experiments.

Chapter 2 presents a novel statistical test to compare empirically the statistical

efficiency of different design techniques. This test has been used to demonstrate

that a design without attribute overlap outperforms a design with attribute overlap,

without biasing the estimates of respondent preferences. This method avoids making

assumptions about the data-generating process, and instead uses resampling of model-

robust standard errors to create a confidence interval for the relative statistical

efficiency of two designs.

Chapter 3 presents a novel statistical method for conjoint analysis for making cor-

rect inferences about the distribution of preferences across respondents, especially

regarding the inference of the number of natural clusters of preferences. This method
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demonstrates that inspection of individual respondents’ preferences provides insight

into the mixing distribution even when the parametric form that is hypothesized for

it during the model fitting process is false. Finally, techniques for visualizing the

estimates of individual respondents’ preferences are presented which provide greater

insight into respondents’ preferences than the values of inferred model parameters or

goodness-of-fit statistics alone.

Chapter 4 presents a method for obtaining confidence intervals when the sample

size is small or there are many nuisance parameters. This method involves the Padé

approximation of the profile likelihood function. The approximation involves no

additional numerical maximizations of the the full likelihood after the maximum

likelihood estimate is found. Instead, this method uses derivatives of the profile

likelihood function at its maximum in order to obtain an approximation, and so in that

way it is conceptually similar to methods described by Viveros (1987) and DiCiccio

(2001).

Chapter 5 concludes with a summary of the thesis and of the limitations of the methods

discussed.
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Chapter 2

Conjoint Analysis and a Novel

Method for Experimental Design

Assessment

2.1 Overview

This chapter presents a novel statistical method developed to solve a specific real-world

problem related to the design of conjoint analysis surveys. Specifically, a statistical

test to compare empirically the statistical efficiency of different design techniques

is presented. This method avoids making assumptions about the data-generating

process, and instead uses resampling of model-robust standard errors to create a

confidence interval for the relative statistical efficiency of two designs. Additionally,

this chapter provides background and context with which to understand the problem

and its solution.

Section 2.2 provides background on conjoint analysis. Section 2.3 describes the

multinomial logit model, a probabilistic statistical model that is often used to make
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inferences from conjoint analysis data. Section 2.4 provides an overview of areas of

research in the design of conjoint analysis surveys. Section 2.5 presents a research

problem in conjoint analysis survey design that was addressed using statistics, i.e., the

comparison of the statistical efficiency of conjoint analysis survey design strategies.

2.2 Background

2.2.1 What is conjoint analysis?

Conjoint analysis began with a theoretical paper by Luce and Tukey (1964) in the

form of “simultaneous conjoint measurement,” a concept that was later introduced in

an applied context in market research on consumers of goods (Green and Rao 1971),

where it eventually became known as “conjoint analysis” (Green and Srinivasan 1978).

In typical applications of conjoint analysis, a person (e.g., a consumer or a patient) is

presented with a choice between two or more “alternatives,” where each alternative

is composed of two or more “attributes,” the “levels” of which differ between the

alternatives. The person must choose exactly one of the alternatives; their “response”

to the “choice task” reveals which attributes are most impactful on the choice and

the manner in which specific levels of those attributes impact the choice. Figure 4.1

displays the terminology using as an example a choice of preferred credit card.

As another example, a person could be asked to choose between a car that costs

$20,000 with a gas mileage of 25 miles per gallon and another car that costs $35,000

with a gas mileage of 35 miles per gallon. That person’s response shows what is

more important to him when considering purchasing a car – gas mileage or car price.

This particular kind of conjoint analysis is sometimes referred to as “choice-based

conjoint analysis” or a “discrete choice experiment,” since the respondent is asked

to make a choice between two or more items. This is in contrast to metric conjoint

5



Brand Visa MasterCard American Express Chase

Credit Limit $10,000 $20,000 $5,000 $2,500

Balance Transfer No Yes Yes No

Introductory Rate 0% on purchases only 0% on purchases and transfers None 0% on purchases only

Introductory Period 15 months 12 months None 6 months

Regular Rate 12.9% 21.9% 26.9% 9.9%

Reward Type Cash back Airline miles None Cash back

Cash Back Reward 2% N/A N/A 3%

Airline Miles Reward N/A 2 miles per dollar spent N/A N/A

Annual Fee $129 $39 $0 $89

Choose one:

If you had to choose one of the following to be your primary credit card, which would you select?

attributes

alternative

levels (of an attribute)

Figure 2.1: An example of a choice task from an online survey

analysis, where, for example, a respondent might be asked to assign, on a rating scale,

how much he values gas mileage and car price, in general, as attributes of a car. In

choice-based conjoint analysis, the importance of the attributes to the respondent is

inferred from their response to the choice task as opposed to being elicited directly

from the respondent.

If the respondent makes a choice under the conditions of a carefully engineered and

calibrated survey between hypothetical alternatives (as opposed to a choice in a real

economic or healthcare market, such as deciding whether or not to use a health savings

account), then the technique is referred to as a “stated preference” method (as opposed

to a “revealed preference” method).

This chapter focuses on choice-based conjoint analysis in stated preference surveys.

Broadly, conjoint analysis is concerned with the identification of important attributes

and the measuring of their importance, and the term encompasses all aspects of that

process, from the formation of focus groups of experts and potential respondents to

identify attributes important to the choice at hand, to the experimental design and
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validation of choice tasks and surveys, to the statistical analysis of those surveys and

the interpretation of the results (Bridges, Hauber, et al. 2011). This chapter discusses

statistical methods used both in the design of such surveys and in the analysis of the

responses obtained.

2.2.2 When is conjoint analysis used and why?

Green and Rao (1971) described their excitement for the possibility of shaping public

policy by using conjoint analysis to assess trade-offs between various attributes of

potential policies. Stated preference methods can be used to ascertain the value of

goods that are not on the market since they do not yet exist or are not usually assigned

value in traditional economic markets, such as attributes of the environment. Because

of this, conjoint analysis is especially useful for evaluating the potential of new goods

(e.g., as in the development of new consumer products) and potential policies (e.g.,

health policies, environmental policies, and economic policies).

Conjoint analysis has been employed successfully in myriad settings. Conjoint analysis

has been used to investigate people’s willingness to pay to preserve culturally significant

marble monuments in Washington, DC (Morey and Rossmann 2003). Morey and

Rossman found that most people would be willing to pay to preserve the historical

monuments, but that a significant proportion of the young and non-white would either

not be willing to pay anything to preserve them or would actually pay to ensure

their deterioration. Eisen-Hecht et al. (2005) used conjoint analysis to determine

which attributes of potential wetland restoration policies were most appealing to

North Carolina landowners. Whitty et al. (2011) used conjoint analysis to ascertain

the public’s preferences regarding subsidies of pharmaceutical companies. Conjoint

analysis has been used to understand what factors would most influence parents to

use booster seats for their children (Cunningham et al. 2011). Conjoint analysis
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has also been used to ascertain patient preferences for cost, severity of side effects,

and life expectancy in men with prostate cancer (Sculpher et al. 2004). By asking

respondents to make choices among realistic alternatives, it is possible to obtain

patients’ preferences for attributes like life expectancy that they might otherwise

refuse to directly place a value on. Even if patients are willing to verbalize directly

their value for an attribute like life expectancy, the monetary values obtained in

this way can be grossly biased with respect to their true preferences; hence, conjoint

analysis becomes a useful inferential tool.

The use of conjoint analysis in health care settings has increased in recent years. Heiss

et al. (2010) used conjoint analysis to analyze consumer choices of Medicare Part D

prescription drug plans. Geerts et al. (2013) used conjoint analysis to understand

physician and nurses’ attitudes toward long-acting injectable antipsychotics. Schellings

et al. (2012) used conjoint analysis in the development of quality indicators for mental

health care by surveying inspectors at psychiatric institutes. Bridges et al. (2011) used

conjoint analaysis to obtain preferences for schizophrenia treatments directly from

patients diagnosed with schizophrenia, and Hiligsmann et al. (2013) used conjoint

analysis similarly for osteoporosis treatments. Conjoint analysis takes on special

usefulness in mental health care settings because there are fewer objective measures of

patient improvement (e.g., laboratory tests, biomarkers) than in other patient settings;

typically, the patient reports his recent experiences or is observed by a physician.

Johnson and Hauber et al. (2010) use conjoint analysis to examine discrepancies

between patients’ and physicians’ perceptions of serious adverse events associated

with Crohn’s disease treatments. Marshall et al. [@-marshall2010conjoint] review

systematically an increase in popularity of conjoint analysis applications in health

care.

Conjoint analysis is especially useful for measuring the importance of what might
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otherwise be considered subjective attributes of a patient experience. Conjoint analysis

is also increasingly thought of as providing representations of people’s preferences

that are more accurate than those gained from other kinds of surveys, since the act of

making a realistic choice is what people do on a daily basis, while being asked directly

the monetary loss associated with, e.g., back pain, is more alien. Conjoint analysis can

be used both for hypothetical choice scenarios or applied to real choices that patients

have made; historically, it has been often applied to real choices of transportation

among commuters (Boyd and Mellman 1980).

2.3 The multinomial logit model

2.3.1 Methodological origins

Statistical methods used in conjoint analysis have evolved greatly since Luce and

Tukey’s “simultaneous conjoint measurement” (1964). In fact, Luce and Tukey’s paper

contained no statistical methods whatsoever, but rather a set of axioms under which an

ordinal response can be transformed into interval scales for the attributes composing

the alternatives. Inspired by Luce and Tukey, Green and Rao (1971) explored using

various different algorithms to transform ordinal responses to interval scales for

attributes. Most of these algorithms involved using a mathematical transformation

(e.g., logarithm square root, etc.) on ordinal responses and then using ANOVA on

the transformed responses to explain them with respect to the varying attributes.

Soon thereafter, McFadden (1973) detailed an approach using a probabilistic model

involving the logistic transformation to infer attribute importances from consumer

choices. While techniques such as least squares with monotone transformations of

the data have fallen out of favor, analyses based on the framework of McFadden’s

“conditional logit” (now referred to as “multinomial logit”) remain popular.
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2.3.2 Description

The multinomial logit (MNL) model is easily interpretable, since it actually involves

a statistical model that could reasonably explain the responses. This is in contrast

to using least squares, which does not automatically provide predictions of choice

responses, but rather maximizes an ad hoc objective function. The MNL model is

generally better at predicting responses, and especially outperforms a linear regres-

sion when the respondents choose items lexicographically as opposed to in a purely

compensatory way (Green and Srinivasan 1978). A disadvantage of using the MNL

model has been that it requires more computer time to fit, but that disadvantage has

essentially disappeared with increasing computer speeds.

The MNL model has an intuitively appealing connection to random utility theory,

which is essentially that, if the “value” of an alternative is given by the product of a

vector of attribute preference coefficients and a vector of the levels of the attributes of

the alternative, and if respondents pick the alternative with the highest value, then

the MNL model results when the additive error term attached to the value of each

alternative has a Gumbel distribution (McFadden 1973). We describe this connection

below, after some notation.

2.3.3 Notation

Suppose the respondent is asked to choose one of J alternatives and that there are

I attributes, which take on different levels across the alternatives. Denote the level

taken by the i-th attribute for the j-th alternative by xij. Denote the parameters

of the model, which in practice are unknown and typically are estimated, by βi.

The parameter βi is interpreted as describing the extent to which respondents favor

alternatives with larger values of the i-th attribute. The collection of βi is sometimes
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referred to as “partworth utilities”, “partworths”, “taste coefficients”, or “preference

coefficients” because of this interpretation. Denote the response to the choice task as

follows: let yj = 1 if the j-th alternative is chosen and 0 otherwise. Then the MNL

model can be expressed as follows:

Vj =
I∑
i=1

βixij

pj = eVj/
J∑
k=1

eVk

[y1, ..., yJ ] ∼ multinomial (p1, ..., pJ)

(2.1)

Note that ∑J
j=1 pj = 1; that is, the probabilities of choosing each individual alternative

sum to 1 across the alternatives. Additionally, the above model is sometimes also

used in a sense where the word “attribute” is replaced by the word “characteristic”,

where a “characteristic” is any characteristic of the alternative in that choice situation,

including any known function of the attributes, the time of day, the gender of the

respondent, etc., including “interaction terms” given by the multiplicative products of

any of those quantities. Categorical attributes are typical in this setting, and they are

typically dummy-coded in the statistical model (Bech and Gyrd-Hansen 2005).

2.3.4 Random utility theoretic formulation

McFadden (1973) showed that the multinomial logit model (2.1) results from the

following choice situation:
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Vj =
I∑
i=1

βixij

εj ∼ i.i.d. Gumbel()

Uj = Vj + εj

j∗ = argmaxjUj

yj =


1 j = j∗

0 j 6= j∗

(2.2)

Note that the Gumbel distribution has cumulative distribution function F (x) = e−e
−x ,

and its mode is zero. In (2.2), j∗ represents the alternative chosen by the respondent.

The values Uj are called “utilities”, and the formulation is called “random utility

theoretic” because the utilities have an additive random error term. In random utility

theory, respondents choose the alternative that maximizes their utility. When this

model is applied across multiple respondents, the Gumbel error terms mostly represent

differences in preferences among the respondents. When this model is applied to a

single respondent, the Gumbel error terms represent quixotic error and misspecification

of the functional form of the dependence of Vj on the attributes. Train (2003) provides

more discussion of the interpretation of these error terms.

2.3.5 Estimation

Consider a scenario in which N respondents each answer a conjoint survey, which

will be allowed to differ in its number of choice tasks across respondents as well as

the attribute levels and number of alternatives across choice tasks, but which has the

same I attributes for all choice tasks. Denote the number of choice tasks for the n-th

respondent by Mn. Denote the number of alternatives for the m-th choice task for

the n-th respondent by Jmn, and denote that choice task’s attribute levels by x(mn)ij,
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where i indexes attributes and j indexes alternatives.

The MNL model is typically estimated by maximum likelihood using Newton-Raphson.

Let j∗(mn) denote the alternative chosen by the n-th respondent for his m-th choice task,

so that it encapsulates all the observed data. Then the full multinomial likelihood for

the observed data is written as follows:

L(β) =
∏
n

∏
m

p(mn)j∗(mn)
(2.3)

where p(mn)j∗(mn)
is as pj in (2.1) except with xij replaced by x(mn)ij and evaluated at

the alternative that was chosen, j∗(mn). In words, this is the product of the probabilities

assigned by the model (which, of course, depend on the value of its model parameters)

to the alternatives that were chosen, across all choice tasks.

The log-likelihood l(β) = logL(β) is given in (2.4):

l(β) =
∑
n

∑
m

log p(mn)j∗(mn)
(2.4)

The first derivative (column vector) of the log-likelihood is given by

∂l

∂β
=
∑
n

∑
m

x(mn)·j∗(mn)
−
∑
j

p(mn)jx(mn)·j

 (2.5)

where x(mn)·j is the column vector of the attribute levels for the j-th alternative of

the n-th respondent’s m-th choice task. The second derivative (Hessian matrix) of

the log-likelihood is given by

∂l2

∂βt∂β
=
∑
n

∑
m

∑
j

(
x(mn)·j − x̄(mn)

)
p(mn)j

(
x(mn)·j − x̄(mn)

)t
(2.6)
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where x̄(mn) = ∑
j x(mn)·jp(mn)j and t denotes transpose.

2.3.6 Inference

In the literature and applications of conjoint analysis, the matrix inverse of (2.6),

evaluated at the MLE, is often used to estimate the variance-covariance matrix of

the MLE. In the comparison of design performance (e.g., as in Section 2.5), this

technique gives inaccurate and misleading results, and a different estimate for the

variance-covariance matrix must be used instead. Using the matrix inverse of (2.6)

directly to estimate variance requires the following assumptions:

i) Respondents are sampled randomly in a representative way from the population

of potential respondents.

ii) Respondents all share the same preferences β, and they all respond to conjoint

choice tasks using that same value of β, and they do so according to the

multinomial logit formula (2.1).

An adjustment described below gives an estimate for the variance that requires only

the following assumptions:

i) Respondents are sampled randomly in a representative way from the population

of potential respondents.

In particular, with this adjustment it is not required that the respondents actually

respond to choice tasks using a multinomial logit model (which is simply not a tenable

assumption), and it is also not required that the respondents all have the same

preferences (which is usually also not a tenable assumption). The formula for the

adjustment used here is described by Royall (1986).

Let β̂ denote the MLE obtained from estimating the MNL model. An estimate for the

variance-covariance matrix of the MLE that only requires assumption i) is given by
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V̂β̂ =
(

∂l2

∂βt∂β

)−1∑
n

(∂ln
∂β

)(
∂ln
∂β

)t( ∂l2

∂βt∂β

)−1
∣∣∣∣∣∣
β=β̂

(2.7)

where ln is the log-likelihood of the n-th respondent’s responses. In particular, the

n-th respondent has Mn responses, and the derivative of their log-likelihood is given

by the inner sum in (2.5), as follows:

∂ln
∂β

=
∑
m

x(mn)·j∗(mn)
−
∑
j

p(mn)jx(mn)·j

 (2.8)

Combining (2.6), (2.7), and (2.8), we can make correct inferences regarding the

respondents’ preferences. Additionally, we are enabled to compare different design

strategies by inspecting the overall size and other differences in the variance-covariance

matrices of the estimators that they produce.

2.3.7 A note about the scale of errors

Consider the following data-generating processes, which is slightly generalized from

(2.2) by the addition of a “scale factor” σ > 0 to the random error.

Vj =
I∑
i=1

βixij

εj ∼ i.i.d. Gumbel()

Uj = Vj + σεj

j∗ = argmaxjUj

yj =


1 j = j∗

0 j 6= j∗

(2.9)

It can be shown that the data-generating process resulting from (2.9) is the same as the
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data-generating process from (2.2) where the taste parameters are replaced by (βi/σ).

So, when comparing data from different data sources, it is possible that a difference in

estimated taste parameters is caused by a difference in the scale of the random error

between the two sources. The methodology for assessing experimental design and for

statistical analysis in conjoint analysis studies described in this thesis largely ignores

the issue of the scale of respondent’s preferences. The issue of respondent scale arises

especially when comparing multinomial logit models estimated from different data

sources (Swait and Louviere 1993; Hensher, Louviere, and Swait 1998). Specifically,

Swait suggests testing for differences in estimated taste parameters that arise purely

from differences in scale before testing for more general differences between estimated

taste parameters.

2.4 Research in experimental design

2.4.1 Introduction

Research in conjoint analysis is multifaceted, with areas of research varying in impor-

tance across domains of its application. Broadly, there are two main areas of research

in conjoint analysis: experimental design and statistical analysis. This section gives

an overview of research areas in the experimental design of conjoint surveys. Aspects

of statistical analyses are discussed in Section 3.2.

2.4.2 Experimental design

In conjoint analysis, experimental design refers to the way in which the alternatives

are constructed and displayed, the selection of the number of alternatives, the number

of attributes per alternative, the number of questions asked per respondent, and
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similar design issues that can have a large impact on the statistical results. The

chief statistical concerns in experimental design are usually the estimability of the

parameters of the statistical model that is likely to be used to analyze the data and

the smallness of standard errors for parameters relevant to the investigator.

2.4.3 Attribute balance and statistical efficiency

Several guidelines have been proposed for generally good experimental design such

as orthogonality, level balance, minimum overlap, and utility balance (Huber and

Zwerina 1996). Research in experimental design in conjoint analysis gained renewed

interest in the 2000s; Louviere et al. (2011) provide an overview of this literature.

An example of this more recent statistical research in experimental designs is Scarpa

and Rose’s (2008) statistically efficient designs: these designs are made with the

intention of obtaining small standard errors specifically, for example, for the estimates

of willingness-to-pay derived from conjoint analysis.

2.4.4 Adaptive designs

The design of adaptive surveys, in which new choice tasks are generated “on the fly”

in order to maximally provide further information about the respondent given his

previous responses, is another important area of research in experimental designs.

These designs also naturally entail statistical research into estimating respondents’

parameters with very small sample sizes. Adaptive survey designs have been explored

by Dahan et al. (2002) and Cunningham et al. (2010).
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2.4.5 Respondent fatigue

Another important issue in experimental design is how to deal with respondent fatigue,

the empirically observed phenomenon that survey respondents will tend to become

fatigued and answer randomly, irrationally, or in some way that is inconsistent with

their true preferences (e.g., selecting only the leftmost alternative displayed) when

taking too long a survey or when asked to complete too many choice tasks especially

when not incentivized. Empirical research, including statistical analyses, have been

used to investigate the number of questions that a respondent can answer reliably

under different conditions and incentives. For example, Savage and Waldman (2008)

compare respondent fatigue in surveys conducted online and through mail.

2.4.6 Attribute selection

Other aspects of the design of conjoint analysis surveys include the process by which

the attributes and attribute levels are selected. Hiligsmann (2013) details a method

to select attributes in health care using a structured discussion technique in a focus

group of potential respondents, where he argues that “a discrete choice experiment

requires a rigorous and transparent approach to select attributes [to be included in

the experiment].” It is similarly important to use a structured technique of some kind

to pilot the initial version of the conjoint survey in small groups of respondents.

2.4.7 Opt-out and follow-up

Choice tasks in conjoint questionnaires often have an alternative or follow-up question

allowing the respondent to choose “none of the above,” “I would not use this treatment,”

“I would not buy this product,” or more generally “opt-out.” For example, in a health

care setting, it could be the option not to undergo any presented procedure, and
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in a marketing setting, the “opt-out” can be the option to express disinterest in all

products. It can be important to include such an option to ensure that parameter

estimates for preference attributes are not overly optimistic. Statistical methods

related to the treatment of opt-out are important for identifying the factors in the

choice task that lead people to opt out (e.g., was the decision too difficult), as well as

simply for allowing correct inferences in the variety of different ways “opt-out” can be

allowed in the survey design. The statistical treatment of opt-out has been explored

in (Ryan and Skåtun 2004).

2.5 Research problem: Judging statistical effi-

ciency of conjoint analysis survey designs

A wide variety of methods exist for the design of experiments of a conjoint ques-

tionnaire that purport to provide best results in terms of statistical efficiency (Olsen

and Meyerhoff 2017). For example, there are designs that maximize “D-efficiency”,

“Bayesian D-efficiency”, “S-efficiency”, “C-efficiency”, “G-efficiency”, and “A-efficiency”

(Scarpa and Rose 2008). There are also orthogonal designs and “optimal” orthogonal

designs. Thus, in practice, an investigator using conjoint analysis has a wide variety

of methods to choose from when designing the questionnaire, all of which claim to

be efficient. The natural question, “Which method should be used?” is still an open

one, as there have been few comparisons of the results obtained from the various

design techniques (Olsen and Meyerhoff 2017). This article’s novel contribution to

this research question is a method to empirically compare the statistical efficiency of

two designs. That method is described in this section.
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2.5.1 Motivation

Suppose that each respondent is to be asked to complete n choice tasks and that,

for simplicity, each attribute has only two possible levels, each choice task has only

two alternatives, and all respondents are given the same survey. Then there are

2I ×2I = 4I possible choice tasks, from which n are selected to create a survey. Ideally,

we would like to know what the respondent’s response would be for all possible choice

tasks. However, it has been shown that respondents can only reliably complete up to

about ten choice tasks before they become fatigued and no longer answer in a way

that is consistent with their true preferences. Even for a small number of attributes,

such as I = 3, there are 64 possible choice tasks, which is much greater than ten.

Therefore, in most situations, the designer is forced to design the survey using a subset

of the possible choice tasks that is significantly smaller than the set of all possible

choice tasks. Supposing that n has been decided upon, then there are (4I)n = 4In

possible survey designs. For example, if there are I = 4 attributes, which is quite

typical, and n = 10 questions per respondent, which is also typical, then there are

44·10 = 440 > 1× 1024 possible survey designs.

This is to say that the design of the survey is an important and non-trivial exercise.

There is typically a very large number of possible designs that could be used, none of

which is clearly superior to all others. Thus, the designer should formulate choice tasks

that best elicit information about preferences for attributes that are of interest to

the investigator, under the constraint of limiting the survey to roughly ten questions.

This section concerns a method to compare two designs to determine which is better

at eliciting information.
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2.5.2 Design strategies

There are various strategies employed to select a design from the large number of

all possible designs. The most recent of these is a wave of statistically motivated

“efficient” designs. These techniques hypothesize a true model, usually an MNL model,

then choose a design that gives estimators from an MNL model fit a small variance

about their true value.

This formula resulted in a large swath of design techniques, using different true models

and different notions of “small variance.” Because the actual data generating process

of a respondent is not the true model that is used to generate the design, there is no

assurance that a design obtained from one of these techniques is in any way more

“efficient” than any other potential design. Hence, these techniques must be empirically

evaluated. In this chapter, we present a method for empirically comparing the results

of different designs.

2.5.3 Comparing parameter estimates from two designs

There is no guarantee that estimators from different designs converge to the same

value. Thus, the first step in empirically comparing two designs is to compare the

parameter estimates yielded by them. Suppose that you have administered two designs

to two independent groups of respondents, respectively. Suppose that the responses to

your first design yield a vector of coefficients β̂1 with an estimated variance-covariance

matrix V1 using (2.7), and similarly β̂2 and V2 for the second design. A reasonable

test of the difference between parameters is to examine (β̂2− β̂1)t(V1 + V2)−1(β̂2− β̂1),

comparing it to the values taken by a chi-square distribution with dim(β1) degrees of

freedom. If the parameters are significantly different, it is less sensible to compare the

variance of the estimators, since the primary difference between the designs is that they
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result in different coefficients. Even if the parameter estimates are not significantly

different, it can still be the case that the variance-covariance of the estimators are

significantly different.

2.5.4 Comparing the statistical efficiency of two designs

It is possible to have two designs for which the two estimators approach the same

value, but one of the estimators approaches it faster. In this case, it can be said that

one of the designs is more statistically efficient than the other. In conjoint analysis,

it is desirable to use a design that is maximally statistically efficient; this provides

better estimates of respondents’ preferences, or, alternatively stated, allows fewer

respondents to be interviewed while achieving the same quality of estimation results.

Suppose that there are two groups of respondents; the first group receives questionnaires

with design 1, resulting in a vector of coefficients β̂1 with an estimated variance-

covariance matrix V1 and similarly β̂2 and V2 for design 2. Ideally, we would prefer a

design that results in a variance-covariance matrix, say V1, that has |v1ij| < |v2ij| for

all i and j. However, this comparison is too gross; there are many pairs of designs for

which no such inequality holds but the investigator may still vastly prefer one design

over the other. For example, consider these two variance-covariance matrices:

V1 =

2 0

0 3

 V2 =

0.1 0

0 3.1

 (2.10)

In this situation, if the investigator is interested relatively equally in the values of the

first and second parameters, then the investigator would probably vastly prefer V2

over V1, since it tells him almost exactly the value of the first parameter, while having

a variance for the second parameter that is only slightly greater. Nevertheless, V2 does
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in fact have greater variance for the second parameter than V1 does. Because there

is some ambiguity in deciding which variance-covariance matrix is “better” for the

investigator, there have been many different proposed methods to place a total ordering

on these variance-covariance matrices in order to find the best design. Generally, these

methods assume that the investigator is interested relatively equally in the values of

all the parameters. Some of these methods are described below.

2.5.4.1 D-efficiency

The D-efficiency of a variance-covariance matrix is one of the first measures of its

size that was used in conjoint analysis survey design. The D-efficiency of a variance-

covariance matrix V of dimension k is related to the size that a normal distribution

with that variance-covariance matrix occupies in the space of the estimated parameters:

larger sizes have smaller D-efficiencies. In particular, the size of the occupied space

is proportional to the square root of |det(V )|, so D-efficiency is usually defined as

Deff(V ) = 1/|det(V )| 1k . In other words, the D-efficiency is the reciprocal of the

geometric mean of the eigenvalues of the matrix.

2.5.4.2 A-efficiency

The A-efficiency of a variance-covariance matrix V of dimension k is related to the

average size of the variances for the estimated parameters. In particular, A-efficiency

is usually defined as 1/ 1
k

∑k
i=1 vii. In other words, A-efficiency is the reciprocal of the

average size of the variances for the estimated parameters.

23



2.5.4.3 G-efficiency

The G-efficiency of a variance-covariance matrix V of dimension k is related to the

maximum size of the variances for the estimated parameters. In particular, G-efficiency

is usually defined as 1/maxi vii. In other words, G-efficiency is the reciprocal of the

largest of the variances for the estimated parameters.

2.5.4.4 Comparing the designs

There are myriad similar definitions of statistical efficiency. For simplicity, we will

focus on D-efficiency. Suppose that there are two groups of respondents; the first

group receives questionnaires with design 1, resulting in a vector of coefficients β̂1

with an estimated variance-covariance matrix V1 and similarly β̂2 and V2 for design

2. Suppose that Deff(V1) > Deff(V2). Should we conclude that design 1 is better than

design 2? Clearly we need a statistical test for the differences in the D-efficiencies.

Equivalently, we can use a statistical test for a more natural quantity, the ratio of the

D-efficiencies, which is more closely related to equivalent sample sizes between the

two designs. The following outlines such a procedure:

1. Resample respondents, with replacement, from group 1. Fit the model to these

resampled respondents and obtain the variance-covariance matrix V ∗1 .

2. Resample respondents, with replacement, from group 2. Fit the model to these

resampled respondents and obtain the variance-covariance matrix V ∗2 .

3. Calculate and store the ratio Deff(V ∗1 )/Deff(V ∗2 ) in a list d.

4. Repeat steps 1, 2, and 3 to obtain a suitably dense set bootstrapped sample for

the ratios of the D-efficiencies; e.g., repeat the steps 100 times so as to calculate

and store 100 ratios in d.
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5. Form a confidence interval for the ratio of D-efficiencies, e.g., by taking the

interval from the 2.5th percentile to the 97.5th percentile of d to obtain a 95%

confidence interval.

2.5.5 Discussion

Importantly, this technique assumes nothing about the actual method that respondents

use to complete their choice tasks - in particular, the above method does not assume

that the respondents complete choice tasks according to an MNL model, but rather

analyzes the behavior of the maximum likelihood estimate for an MNL model in a

statistically valid way in the presence of the unknown data-generating process provided

by the respondents. This idea has been a point of confusion in the literature for some

researchers, who have mistakenly assumed that differing designs must be compared in

a conceptual framework in which respondents are assumed to complete choice tasks

truly according to an MNL model. The only assumption in the above method is that

the respondents have in fact been sampled randomly in a representative way from the

population of potential respondents.

2.5.6 Usage

In one study, this technique found no statistically significant difference between the

inferred MNL parameters or their standard errors between an orthogonal design and

a D-efficient design (Kinter et al. 2012). However, in the discussion of that article, it

was hypothesized that a larger sample size could lead to discoverable differences in

the standard errors.

A larger study compared a design without attribute level overlap to one with attribute

level overlap (Bridges 2013). The two designs were found to estimate the same
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parameters, and the design with no overlap was found to have statistically significantly

higher D-efficiency. The D-efficiency of the design with no overlap was found to be 1.21

times greater than that of the design with overlap, with confidence interval (1.15,1.26).

In other words, the statistical test described in Section 2.5.4.4 found that the design

without overlap was more efficient. This finding tends to support the usage of designs

without attribute level overlap in similar choice situations in the future.
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Chapter 3

Novel Statistical Methods in

Conjoint Analysis

3.1 Overview

This chapter presents methods in statistical analysis developed to solve real-world

problems in conjoint analysis. Specifically, a statistical method is presented for

making correct inferences about the distribution of preferences across respondents,

especially regarding the inference of the number of natural clusters of preferences.

Additionally, this chapter demonstrates how inspection of individual respondents’

preferences provides insight into the mixing distribution even when the parametric

form that is hypothesized for it during the model fitting process is false. Techniques

for visualizing the estimates of individual respondents’ preferences are presented which

provide greater insight into respondents’ preferences than the values of inferred model

parameters or goodness-of-fit statistics alone. This chapter also provides an overview

of areas statistical challenges in conjoint analysis to give context to the described

statistical methods.
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Section 3.2 provides an overview of areas of research in the analysis of responses to

conjoint analysis surveys. Section 3.3 presents a research problem in the analysis of

responses to conjoint analysis surveys that was addressed using statistics, i.e., making

inferences on the distribution of preferences in the population, including correctly

describing the number of clusters of respondent preferences, when the number of choice

tasks per respondent is small. Section 3.4 concludes with a summary of the results.

3.2 Research in statistical analysis

3.2.1 Heterogeneity of preferences across respondents

The formulation of the MNL choice probabilities as arising from an intuitively appealing

and relatively simple model has allowed researchers to expand it in various directions to

cover increasingly complicated applications by incorporating their research situations

into the probabilistic model used. For example, if each respondent makes multiple

choices, then the data is panel data, and a model that allows heterogeneity between

respondents’ preferences is appropriate. This situation is common to stated preference

conjoint analysis, where each respondent is typically presented with between 8 and 15

choice tasks.

Conjoint analysis researchers have developed finite mixture models and normal mixture

models of multinomial logits for this situation. McFadden (1976) theorized about the

practical usefulness of mixture models of multinomial logits; however, computational

speed and advances in model estimation techniques (e.g., expectation-maximization

algorithms, simulated maximum likelihood, and Gibbs sampling) did not emerge until

later to allow the fitting of these kinds of models. These methods are important

techniques used currently in the estimation of aggregate preferences and individual

respondents’ preferences from conjoint analysis surveys.
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Conjoint analysis researchers have developed other models, such as the nested logit,

which occurs when the error terms in the utility structure are correlated across

alternatives, such that certain alternatives are “nested” together in that they tend

to be related and so both have higher utility or both have lower utility (i.e., they

are similar products). The nested logit has the advantage that a closed form has

been derived for it that is similar to the multinomial logit’s (except with additional

“nesting” coefficients which are estimable). The nested logit model has been generalized

to a class of models called generalized extreme value models. Other choice models

specialized to various applications are numerous.

3.2.2 Statistical methods for estimating individuals’ prefer-

ences

It has always been desirable in conjoint analysis to obtain estimates of individual

respondents’ preferences, but it was previously thought that doing so would require

asking too many questions of the respondent (Hauser and Rao 2004). Advances in

computational speed and in statistical methods (e.g., finite mixture models, normal

mixture models, Gibbs sampling) enabled the estimation of individual-level preferences

by borrowing information across conjoint analysis respondents.

Finite mixture models were first applied to conjoint analysis data by Kamakura and

Russel (1989). Allenby and Lenk (1994) were the first to use a normal mixture model

with conjoint data, which they estimated using a Gibbs sampler. The same model can

also be estimated via the method of maximum simulated likelihood, as detailed by

Train (2003). This model has increased in popularity in recent years due to increasing

speeds at which it can be estimated, its ease of interpretation, and the flexibility of the

model in terms of the distributions of aggregate preferences that it can produce. There

have also been numerous studies, both empirical and simulation-based, demonstrating
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the capability of the model to estimate individuals’ preferences even when the number

of questions per respondent is low (Lenk et al. 1996; Huber and Train 2001).

3.2.3 Optimization and machine learning

Estimating a normal mixture model of multinomial logits using a Gibbs sampler or

maximum simulated likelihood is faster than it once was (on the order of tens of

seconds at the time of this writing). However, these methods of estimation are not

fast enough for every application. For example, some adaptive conjoint questionnaries

require estimation of individual-level preferences in a fraction of a second in order to

allow the formulation of the most useful next questions for the respondent while he is

taking the questionnaire. New methods continue to advance conjoint analysis both in

speed and scope in various application areas, such as in the automatic identification

of nonlinear utility structure or attribute interactions.

Among these methods are the analytic-center method designed explicitly to improve

adaptive conjoint questionnaires (Evgeniou, Pontil, and Toubia 2007; Toubia, Evgeniou,

and Hauser 2007; Dahan et al. 2002), a support vector machine method to estimate

aggregate utility structure that is nonlinear (Evgeniou, Boussios, and Zacharia 2005),

and an optimization-based method for estimating individual-level preferences that

shrinks them toward their mean that is somewhat analogous to estimating the normal

mixture model, but can be faster (Evgeniou, Pontil, and Toubia 2007).
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3.3 Research problem: Understanding the distri-

bution of preferences among the respondents

A wide variety of methods exist for the statistical modeling of the distribution of pref-

erences among the respondents. In practice, researchers typically specify a parametric

distribution, such as multivariate normal, triangular, or lognormal, and estimate its pa-

rameters (Train 2008). Super-parametric inference of the mixing distribution has been

attempted by Fosgerau et al. (2008), Bajari et al. (2007), and Train (2008) using finite

mixtures of point masses or normal distributions to approximate the true preference

distribution. Typically, there is not enough information to reliably nonparametrically

estimate the distribution of preferences among the respondents. However, there is often

enough information to estimate certain aspects of that distribution, such as its mean,

its variance-covariance, and its number of natural clusters or modes. Based on research

suggesting that there is only a weak dependence of posterior1 estimates of individual

preferences on the choice of mixture model (Huber and Train 2001), I propose in

this chapter performing inference on the set of inferred individual preferences from a

simple model, such as multivariate normal, as an approach for understanding the true

distribution of preferences in practical conjoint analysis applications. Additionally,

motivated by Zhu et al. (2009), this chapter suggests regressing the inferred individual

preferences on respondent characteristics as the best method to find predictors of

respondent preferences.

There is a misconception that the existence of well-fitting super-parametric approaches

involving mixtures with several components implies that the true distribution of

preferences is comprised of several natural clusters. However, this is not the case. To

better understand the extent to which preference distributions exhibit true natural
1Whether the model is fit using Bayesian techniques, maximum simulated likelihood, or some

other method, there will always be a posterior distribution of a given respondent’s MNL model
coefficients implied by their responses.
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clustering of preferences, this chapter presents a cluster validation technique for

responses to choice experiments that is shown to reliably infer the correct number of

clusters. This is in contrast to inferring a number of preference clusters using measures

of model fit such as Akaike’s Information Criterion (AIC) or Bayesian Information

Criterion (BIC) to select a number of components for a mixture model and then

concluding that the number of clusters is equal to the number of components in the

mixture model, a practice that is somewhat widespread in conjoint analysis and which

usually overestimates the true number of clusters. Also presented is a method to

visualize the distribution of individual-level preferences, so human visual faculties can

be used to observe any natural groupings or clusters that exist, instead of relying on

mechanical and opaque criteria like AIC and BIC alone.

3.3.1 Choice of mixture distribution in the analysis

Consider the set of modeling techniques that model preference heterogeneity by assign-

ing each respondent his own MNL model, and then assume that the coefficients of those

MNL models come from a shared specified mixture distribution with unknown parame-

ters (e.g., normal with unknown mean and variance, triangular with unknown location

and width, finite with unknown number and location of points, etc.). Importantly,

it has been found that in conjoint analysis applications, the exact parametric form

assumed for the mixture distribution has very little effect on the resulting estimates

of individuals’ coefficients. According to Huber and Train (2001), using a normal

mixture distribution achieves very similar results in terms of estimating individuals’

preference coefficients to any other, possibly more complicated, mixture distribution,

such as mixtures of normals, finite mixtures with many points, etc.2 These two facts
2A normal mixture distribution has distribution N(µ, V ) for unknown mean µ and unknown

variance-covariance matrix V . A more general class of candidate distribution is provided by a mixture
of normals, which for three components has distribution π1N(µ1, V1) + π2N(µ2, V2) + π3N(µ3, V3)
where µ1, µ2, µ3, V1, V2, V3, π1, π2, and π3 are unknown and where π1, π2, π3 > 0 and π1 +π2 +π3 = 1.
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suggest that a) inference on the distribution of heterogeneity is not best achieved by

making inferences using the estimated values of the parameters of any parametric

mixture distribution, b) inference on the distribution of preferences is better achieved

by making inferences on the set of estimated individual-level preferences among all

the respondents, and c) since most methods give similar results, the analyst should

use a neutral approach by assuming a normal mixture distribution when intending

to perform inference using the individual-level preferences instead of imposing other

parametric assumptions, such as triangularity, lognormality, or other distributions

with support smaller than the real line, or overly flexible distributions such as finite

mixtures of normals, which do not improve estimation of individual-level preferences

in conjoint analysis applications but do impose a parametric assumption of clustered

preferences.

3.3.1.1 The finite mixture model is a latent class model

The finite mixture model supposes that there is a specific, finite number, e.g. K = 3, of

“ideal patients”, and that each patient responds exactly as one of those ideal patients

does. The choice patterns and proportions in the population of these ideal patients

are then estimated. The model is described thoroughly in Section 3.3.5.2. In conjoint

analysis, this model is often referred to as a “latent class model” (Vermunt 2014), and

its usage to divide respondents into K groups depending on which ideal patient their

choice patterns are closest to is referred to as “latent class segmentation” (Bhatnagar

and Ghose 2004).

3.3.2 Visualizing the distribution of preferences

Conjoint analysts often perform inference on the distribution of preferences in the

population, but they rarely ever visualize it before relying on an inferred parametric
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form that strongly biases the result. In the following sections I discuss a technique to

visualize in two dimensions the estimated distribution of preferences in the population

without relying on parametric inference. In practical applications, when introduced to

such visualizations, conjoint analysts have found such images illuminating, providing

much greater insight to respondents’ preferences than the values of inferred model

parameters alone. These visualizations also help guide the modeling process, providing

greater insight into features like the adequacy of the mixing distribution, the extent

to which there is variation and clustering in preferences, and the general shape of such

variation and clustering. For example, McFadden and Train (2000) describe a general

test for the adequacy of the mixing distribution, but its power is low, and it offers no

suggestion as to what the mixing distribution should be in the case that it is deemed

inadequate. Visualization techniques help the analyst and investigator discover and

describe what the mixing distribution should be or is in such a case.

3.3.3 Multidimensional scaling

Typically, conjoint questionnaires have at least four attributes, so if individual respon-

dents are modeled as making choices according to an MNL model, their preferences

are represented by a vector containing at least four coefficients. Multidimensional

scaling is a set of statistical techniques that can be used to plot these preference

vectors in a two-dimensional space in a way that attempts to preserve as closely as

possible the distances between the preference vectors. In this manner, the major axes

of variation in preferences among the respondents and any major clustering behavior

can be observed in one graphic, as opposed to making pairwise scatterplots for every

possible pair of coefficients and visually inferring the major patterns in the data only

from them.

For example, in a conjoint analysis of incentives for participating in a genetic study,
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plotting the first two principal components, as shown in Figure 3.1, revealed that the

respondents formed three natural clusters, between which the biggest difference was

the number of choice tasks for which the respondent chose not to participate in the

study (all, some, none). It was found, for example, that people who chose not to opt

out also placed greater value on receiving a free examination by a physician. Such a

diagram is useful in conjunction with the results of statistical tests to infer clusters of

the respondents’ preferences.
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Figure 3.1: Preferences for participation in a genetic study with 12-dimensional
preference vectors, scaled

3.3.4 Determining the number of clusters

Conjoint analysts often use AIC and BIC with a finite mixture model of MNLs (referred

to as a “latent class” model) to determine the number of clusters when analyzing

respondents’ preferences. In this method, a sequence of models with different numbers

of clusters as a varying hyperparameter are all fit to the data. Then, measures of

model fit such as AIC and BIC are compared across the models to select the “best”
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one. Unfortunately, choosing models with AIC and choosing models with BIC do not

typically result in the same number of clusters. That leaves the investigator to choose

heuristically his favorite number of clusters and then proceed to describe the results

using that number of clusters. It is not always mentioned when the results are reported

that this choice of clustering is one of many different possible clusterings, with varying

number of clusters, all of which aptly describe the respondents’ preferences. Here we

discuss a method to infer the extent to which there is natural clustering inherent in

the data. This could be considered inference on the number of clusters, as opposed to

what is usually done in conjoint analysis, which is more similar to data description,

where an arbitrary and non-unique cloud of points is used to describe the data.

The proposed method is as follows:

1. Fit a normal mixture model of MNLs with flexible variance-covariance matrix

to the data.

2. Obtain estimates of the coefficients of each respondents’ MNL model from the

posterior (e.g., take posterior means).3

3. Cluster, e.g., using k-means, the estimates of the respondents’ preference vectors.

4. Validate the clustering, e.g., using prediction strength (Tibshirani and Walther

2005).

5. Report the maximum number of clusters n that is statistically validated by the

data.

After using this method, the true distribution of preferences can be understood as

being composed of at least n clusters. The rest of the variation in preferences can be

more accurately described by the analyst as variation within those clusters as opposed

to the existence of additional clusters in different locations, which attempting to use
3The “posterior” here refers to the distribution of a respondent’s MNL model coefficients given

his or her responses and given the estimated parameters of the mixing distribution. This posterior is
available whether or not a Bayesian method is used to fit the model.
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AIC and BIC often results in.

3.3.5 Simulation study A: determining the number of clus-

ters

To demonstrate the utility of this method compared to traditional AIC and BIC, I

performed a simulation study where the data-generating process has four clusters

of preferences. The advantages of using a normal mixture model are demonstrated.

The normal mixture model (see Section 3.3.5.3) correctly identifies the true number

of clusters, whereas the finite mixture model (see Section 3.3.5.2) does not. Also,

the final determination of the number of clusters using the normal mixture model is

greatly aided by a visualization of the preference clusters, whereas the finite mixture

model provides no such visual aid, leaving the investigator essentially to guess the

true number of clusters from n ∈ {4, 5, 6} based on measures of model fit such as AIC

and BIC.

3.3.5.1 Data-generating process

Consider a scenario in which N = 200 respondents each answer one conjoint survey,

which differs in its attribute levels across choice tasks and respondents, but which has

the same I = 3 attributes, number of choice tasks M = 10, and number of alternatives

J = 2 for all choice tasks.

Denote the attribute level taken on by the i-th attribute of the j-th alternative for

the m-th choice task for the n-th respondent by x(mn)ij. Given m,n, i, and j, x(mn)ij

is a single scalar real value (often simply 0 or 1 in the common case of categorical

attributes).

Denote the responses to the choice tasks as follows: let y(mn)j = 1 if the j-th alternative
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is chosen by the n-th respondent for his m-th choice task and 0 otherwise.

The true model that generates the data is multinomial logit where the coefficients

come from a distribution with four clusters, with equal probability. The clusters have

the following centers:

β1 = [3,−2, 1] β2 = [−1, 3,−2] β3 = [2, 2, 2] β4 = [−2,−2,−2] (3.1)

The rest of the data-generating process can be described as follows, where β(n)

represents the preference vector assigned to the n-th respondent:

β̄(n) ∼ i.i.d. uniform({β1, β2, β3, β4})

β(n) = β̄(n) + ε(n)

ε(n) ∼ i.i.d. N(0, Id)

x(mn)ij ∼ i.i.d. N(0, 1)

V(mn)j =
I∑
i=1

β(n)ix(mn)ij

p(mn)j = eV(mn)j/
J∑
k=1

eV(mn)k

[
y(mn)1, ..., y(mn)J

]
∼ multinomial

(
p(mn)1, ..., p(mn)J

)

(3.2)

Only the responses y(mn)j and the choice tasks x(mn)ij are observable to the conjoint

analyst. In words, the data-generating process is that there are four preference

centers, and each respondent has preferences given by a small, normally distributed

perturbation about one of those four preference centers, chosen at random. In

particular, the distribution across the respondents is continuous, due to the nature

of the perturbation. One data set was generated from this process and used for the
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analysis in the following sections.

3.3.5.2 Finite mixture of multinomial logits

The data was first analyzed using a finite mixture of multinomial logits with unknown

number of components. The model was fit by maximum likelihood using an expectation-

maximization algorithm. In particular, the model is as follows, whereD is a distribution

on the (three-dimensional) coefficients of MNL models defined as a mixture of K point

distributions with probabilities πk of taking values βk, respectively:

p(D = d) =
K∑
k=1

πkI(d = βk) ;
K∑
k=1

πk = 1 ; 0 < πk < 1

β(n) ∼ i.i.d. D

V(mn)j =
I∑
i=1

β(n)ix(mn)ij

p(mn)j = eV(mn)j/
J∑
k=1

eV(mn)k

[
y(mn)1, ..., y(mn)J

]
∼ multinomial

(
p(mn)1, ..., p(mn)J

)

(3.3)

The parameters of the model are the probabilities πk and the locations of the points,

βk, of which there are K each, where K is the number of components. Note that

in the first line of (3.3), I represents an “indicator function,” not the number of

attributes. Note that D is estimated through the estimation of {πk}k and {βk}k. In

this model, D is the distribution of preferences across respondents, and unlike the

distribution of preferences across respondents in the data-generating process, it is

discrete, not continuous. Hence, the D estimated from this model cannot equal the

true distribution of preferences across respondents of the data-generating process.

The number of clusters was inferred as follows: Individual model fits were performed

for K = 1, 2, 3, 4, 5, 6 components. Then, the AIC, BIC, and Integrated Likelihood
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Criterion (ICL) (Biernacki, Celeux, and Govaert 2000) were obtained for each number

of components. The number of components in the model with the smallest model

fit statistic was inferred to be the number of clusters. In this example, even though

there were four clusters, all three meaures of model fit were minimized for K = 5

components. Figure 3.2 plots the three measures of model fit for each number of

components used. From the plot, one can see that, no matter which measure of model

fit is preferred, the number of clusters inferred is incorrect, and there is little difference

in the measures of model fit among K = 4, 5, 6 components, so the analyst is left

essentially to guess the true number of clusters when using this technique, with little

guidance from the data.
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Figure 3.2: AIC, BIC, and ICL by number of components in finite mixtures of
multinomial logits

3.3.5.3 Normal mixture of multinomial logits

The data was then analyzed using a normal mixture of multinomial logits. The

model was fit using a Gibbs sampler4 (alternatively, the model can be fit using
4The priors used were noninformative. Specifically, the priors were µ ∼ N(0, 100Id) and V ∼

inverse Wishart with two degrees of freedom and scale matrix 0.3Id. In the Gibbs sampling, there
were 4,000 iterations, of which the first 2,000 were treated as “burn-in” iterations and discarded.
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maximum simulated likelihood). In particular, the model is as follows, where N(µ, V )

is a multivariate normal distribution on the (three-dimensional) coefficients of MNL

models with unknown mean and variance-covariance matrix.

β(n) ∼ i.i.d. N(µ, V )

V(mn)j =
I∑
i=1

β(n)ix(mn)ij

p(mn)j = eV(mn)j/
J∑
k=1

eV(mn)k

[
y(mn)1, ..., y(mn)J

]
∼ multinomial

(
p(mn)1, ..., p(mn)J

)
(3.4)

The parameters of the model are the mean µ and variance-covariance matrix V of the

distribution of preferences (V is conceptually unrelated to V(mn)j). In this model, the

distribution of preferences across respondents is estimated through the estimation of

µ and V . In particular, the model’s distribution of preferences across respnodents is

unimodal and so cannot equal the true distribution of preferences across respondents

of the data-generating process, which has multiple modes.

The number of clusters was inferred as follows: Extracted from the model fit are

estimates of each respondents’ preferences, β̂(n). These estimates come “for free” if

Monte Carlo methods are used to fit the model, by taking, for example, the posterior

mean of each individual respondent’s MNL coefficients. If other methods are used

to fit the normal mixture, the individual respondents’ MNL coefficients can still be

estimated using the posterior of their coefficients, given the responses chosen and the

estimates for µ and V .

Because estimates of each respondents’ preferences β̂(n) are available, it is straight-

forward to perform more exploratory data analysis with them. For example, the

respondents’ preferences can be plotted. Since the number of attributes is so small,

it is useful to look both at the pairwise scatterplots of the coefficients and at a sum-
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mary plot with coordinates from multidimensional scaling. Figure 3.3 shows pairwise

scatterplots of the estimated individual respondents’ preference coefficients. This

plot provides a very helpful visual aid in determining the actual number of clusters.

Figure 3.4 provides a similarly useful visual aid, the utility of which increases with

the number of attributes involved in the choice tasks.

β̂(n)1

-4 -2 0 2 4

-4
-2

0
2

4

-4
0

2
4

β̂(n)2

-4 -2 0 2 4 -2 0 2

-2
0

2

β̂(n)3

Figure 3.3: Pairwise scatterplots of individual respondents’ preference coefficients

The respondents’ preference vectors can be clustered using k-means. Using prediction

strength to validate the number of clusters shows that the data clearly supports four

natural clusters and does not support five. Figure 3.5 shows the prediction strength

by number of clusters.

Note that prediction strength is a measure of the reproducibility of the clustering

under subsampling. Essentially, prediction strength is computed as follows: Divide

the sample equally and randomly into a “test” set and a “training” set. Cluster both

sets separately. For each “test” cluster, compute the proportion of observation pairs

in that cluster that are also assigned to the same cluster by the “training” set. Take

the minimum of this proportion across all “test” clusters. More details can be found

in (Tibshirani and Walther 2005). Tibshirani and Walther suggest that prediction
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Figure 3.4: Individual respondents’ preferences coefficients, after multidimensional
scaling

strength greater than 0.8 is indicative of clustering.

3.3.6 Simulation study B: determining the number of clus-

ters when there is only one underlying cluster

This simulation study compares the novel method to infer the number of clusters

presented in this Chapter to latent class segmentation using AIC and BIC to infer the

number of clusters in the case where there is no real clustering (in other words, there

is only one natural cluster) in the data-generating process.

The advantages of using a normal mixture model with posthoc clustering are demon-

strated. The normal mixture model (see Section 3.3.5.3) correctly identifies the true

number of clusters (which is 1), whereas the finite mixture model (see Section 3.3.5.2)

does not. Also, the final determination of the number of clusters using the normal

mixture model is greatly aided by a visualization of the preference clusters, whereas
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Figure 3.5: Prediction strength for clusters of respondents’ preferences

the finite mixture model provides no such visual aid, leaving the investigator essentially

to guess the true number of clusters from n ∈ {4, 5, 6} based on measures of model fit

such as AIC and BIC.

3.3.6.1 Data-generating process

Consider a scenario in which N = 200 respondents each answer one conjoint survey,

which differs in its attribute levels across choice tasks and respondents, but which has

the same I = 2 attributes, number of choice tasks M = 10, and number of alternatives

J = 2 for all choice tasks.

Denote the attribute level taken on by the i-th attribute of the j-th alternative for

the m-th choice task for the n-th respondent by x(mn)ij. Given m,n, i, and j, x(mn)ij

is a single scalar real value (often simply 0 or 1 in the common case of categorical

attributes).

Denote the responses to the choice tasks as follows: let y(mn)j = 1 if the j-th alternative
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is chosen by the n-th respondent for his m-th choice task and 0 otherwise.

The true model that generates the data is multinomial logit where the coefficients

come from a distribution with only one natural cluster. Specifically, the distribution

used was the uniform distribution on a circle of radius 3. The data-generating process

is described in (3.5):

β(n) ∼ i.i.d. uniform(circle of radius 3)

x(mn)ij ∼ i.i.d. N(0, 1)

V(mn)j =
I∑
i=1

β(n)ix(mn)ij

p(mn)j = eV(mn)j/
J∑
k=1

eV(mn)k

[
y(mn)1, ..., y(mn)J

]
∼ multinomial

(
p(mn)1, ..., p(mn)J

)

(3.5)

3.3.6.2 Finite mixture of multinomial logits

The data was first analyzed using a finite mixture of multinomial logits with unknown

number of components. The number of clusters was inferred as follows: Individual

model fits were performed for K = 1, 2, 3, 4, 5, 6 components. Then, the AIC, BIC,

and ICL were obtained for each number of components. The number of components

in the model with the smallest model fit statistic was inferred to be the number of

clusters. In this example, even though there was only one cluster, all three meaures of

model fit were minimized for more than one component. Specifically, minimizing AIC

resulted in 6 components, BIC in 5 components, and ICL in 4 components.Figure 3.6

plots the three measures of model fit for each number of components used. From the

plot, one can see that, no matter which measure of model fit is preferred, the number

of clusters inferred is incorrect, and there is little difference in the measures of model

fit among K = 4, 5, 6 components, so the analyst is left essentially to guess the true
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number of clusters when using this technique, with little guidance from the data.
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Figure 3.6: AIC, BIC, and ICL by number of components in finite mixtures of
multinomial logits

3.3.6.3 Normal mixture of multinomial logits

The data was then analyzed using a normal mixture of multinomial logits. The model

was fit using a Gibbs sampler5 (alternatively, the model can be fit using maximum

simulated likelihood). The number of clusters was inferred as follows: Extracted from

the model fit are estimates of each respondents’ preferences, β̂(n). The respondents’

estimated preferences were then plotted. Since there are only two attributes, there

is no reason to use multidimensional scaling and the attributes can be plotted on a

two-dimensional plot. Figure 3.7 shows a plot of the respondents’ estimated preference

coefficients. This plot provides a very helpful visual aid in determining the actual

number of clusters.

The respondents’ preference vectors can be clustered using k-means. Using prediction

strength to validate the number of clusters shows that the data supports only one
5The priors used were noninformative. Specifically, the priors were µ ∼ N(0, 100Id) and V ∼

inverse Wishart with two degrees of freedom and scale matrix 0.3Id. In the Gibbs sampling, there
were 4,000 iterations, of which the first 2,000 were treated as “burn-in” iterations and discarded.
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Figure 3.7: Individual respondents’ estimated preferences coefficients

natural cluster and does not support four, five, or six. Figure 3.8 shows the prediction

strength by number of clusters.

3.3.6.4 Discussion of simulation study B

This example demonstrates that, as long as there is any taste heterogeneity, latent class

segmentation will find more than one segment, even if there is no natural clustering.

In other words, latent class segmentation conflates the concepts of taste heterogeneity

and of clustering of tastes. On the other hand, using prediction strength only finds

more than one cluster when there is taste heterogeneity and there are distinct clusters

of different tastes. The methods presented in this Chapter provide data visualization

techniques to aid the investigator in selecting a parametric model to describe any

taste variation that exists within each cluster, such as multivariate normal, should

this be desired.
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Figure 3.8: Prediction strength for clusters of respondents’ preferences

3.3.7 Real-world example: a study of incentives to partici-

pate in a hypothetical genetic study

To provide an example of the usage of the methods in this chapter on a real data set,

we apply them to the results of a discrete choice experiment that was embedded in a

survey of 1,524 respondents. Each respondent was presented with nine choice tasks.

The attributes that varied between the alternatives of the choice tasks are presented

in the following table. The goal of the study was to assess the impact of different

incentives on respondents’ desire to participate (or not) in a genetic study.

Table 3.1: A description of the variables involved in the

study

Description Name 0 1 2

Return of individual research

results

ind none few all
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Description Name 0 1 2

Researchers with access to

study data

res US only US and

foreign

US and US

industry

Length of participation in

the study

leng 5 years 10 years 15 years

Compensation for the

participant

comp $0 $50 $100

Method of ascertaining

health status

medical records survey physical exam

Additional activities in the

study

addact diet

journal

fitness test home visit

The choice tasks each had three alternatives. For each choice task, two of those

alternatives were hypothetical genetic studies populated with values for each of the

six different incentive attributes. The third alternative was always the option not to

participate in either of the two hypothetical genetic studies.

The third alternative was treated in the statistical analysis by adding another variable

called “optout” which takes the value 1 for that alternative and 0 for the other two

alternatives. The third alternative always took on the value 0 for all of the other six

incentive attributes.

Each of the six attributes was treated as categorical and was “dummy coded” with

0 as the “reference level” (Bech and Gyrd-Hansen 2005). Then, a “main effects”

multinomial logit model was fit to the data. The results of the model fit are below. In

the results table, “comp1” indicates the extent to which $50 is preferred over $0, and

“comp2” indicates the extent to which $100 is preferred over $0, and similarly for the

other attributes.
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Table 3.2: Multinomial logit model fit on 1,524 respon-

dents

Variable Estimate Standard error t-value p-value

ind1 0.42 0.03 12.9 < 1× 10−16

ind2 0.55 0.03 17.4 < 1× 10−16

res1 -0.16 0.03 -5.1 3× 10−7

res2 -0.11 0.03 -3.7 2× 10−4

leng1 -0.12 0.03 -6.4 1× 10−10

leng2 -0.43 0.03 -13.7 < 1× 10−16

comp1 0.66 0.03 20.0 < 1× 10−16

comp2 0.99 0.03 30.3 < 1× 10−16

medical1 0.01 0.03 0.1 0.88

medical2 0.17 0.03 5.3 1× 10−7

addact1 0.12 0.03 3.9 9× 10−5

addact2 0.04 0.03 1.3 0.21

optout 0.82 0.05 16.3 < 1× 10−16

The interpretation of each of the coefficients follows.

• (ind): On average, respondents favored studies from which they would receive

access to some or all of the health information that could be gleaned from their

genetic data. This information held, on average, significant value to respondents.

• (res): On average, respondents preferred that as few researchers had access to

their data as possible. US industry researchers were disliked less than foreign

academic researchers. On average, the type of researchers receiving access to

the data had relatively little impact on the respondents’ decisions compared to
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the other incentive attributes.

• (leng): On average, respondents disliked longer studies. Respondents significantly

disliked the notion of participating in a study that would take 15 years to

complete.

• (comp): On average, respondents favored studies with larger compensation

for the respondents. Respondents significantly valued the $50 compensation

and even more significantly valued the $100 compensation. The difference in

the model between $100 and $0 compensation was the greatest among all the

incentive attributes in the study.

• (medical): On average, respondents were indifferent between having their health

data accessed through their medical records or through a survey they completed.

On average, respondents preferred a free physical exam to those options. On

average, this attribute had relatively little impact on the respondents’ decisions

compared to the other incentive attributes.

• (addact): On average, respondents were largely indifferent between keeping a

diet journal, undergoing a fitness test, or having a home visit, while slightly

preferring the fitness test to the other options. On average, this attribute had

relatively little impact on the respondents’ decisions compared to the other

incentive attributes.

• (optout): On average, respondents did exercise the option to opt out of partici-

pating in either of the presented hypothetical genetic studies. On average, the

presence of favorable study conditions, such as a shorter study length, larger com-

pensation and the return of individual research results, could sway a respondent

to participate.
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3.3.7.1 Finite mixture of multinomial logits

The data was first analyzed using a finite mixture of multinomial logits with unknown

number of components. The number of clusters was inferred as follows: Individual

model fits were performed for K = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 components. Then,

the AIC, BIC, and ICL were obtained for each number of components. The number of

components in the model with the smallest model fit statistic was inferred to be the

number of clusters. In this example, AIC, BIC, and ICL were minimized for different

numbers of components. Specifically, minimizing AIC resulted in 11 components,

BIC in 6 components, and ICL in 4 components. Figure 3.9 plots the three measures

of model fit for each number of components used. As AIC, BIC, and ICL disagree,

the analyst is left essentially to guess the true number of clusters when using this

technique. These opaque measures give little insight to the data, in contrast to the

methods proposed in this thesis, whose application is discused in the next section.
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Figure 3.9: AIC, BIC, and ICL by number of components in finite mixtures of
multinomial logits
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3.3.7.2 Normal mixture of multinomial logits

The data was then analyzed using a normal mixture of multinomial logits. The model

was fit using a Gibbs sampler6 (alternatively, the model can be fit using maximum

simulated likelihood). The number of clusters was inferred as follows: Extracted from

the model fit are estimates of each respondents’ preferences, β̂(n). The respondents’

estimated preferences were then plotted. Figure 3.10 shows a plot of the respondents’

estimated preference coefficients, after multidimensional scaling. This plot provides a

very helpful visual aid in determining the actual number of clusters. We immediately

see that there are three distinct natural clusters of preferences. This is unlike the

approach in Section 3.3.7.1, where no obvious conclusion can be reached using AIC,

BIC, and ICL as to the number of clusters. The plot of prediction strength in

Figure 3.11 agrees with our visual assessment that the number of natural clusters of

preferences is 3. Figure 3.12 plots the same multidimensionally scaled coordinates as

Figure 3.10, except with added labels for the clusters.

Table 3.3: Mean multinomial logit coefficients by cluster

on 1,524 respondents

Variable Cluster 1 Cluster 2 Cluster 3

ind1 0.90 1.15 0.47

ind2 1.32 1.36 1.05

res1 -0.93 -0.26 -1.53

res2 -0.79 -0.10 -1.51

leng1 -0.55 -0.38 -0.69

leng2 -1.36 -1.07 -1.55

6The priors used were noninformative. Specifically, the priors were µ ∼ N(0, 100Id) and V ∼
inverse Wishart with two degrees of freedom and scale matrix 0.3Id. In the Gibbs sampling, there
were 4,000 iterations, of which the first 2,000 were treated as “burn-in” iterations and discarded.
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Variable Cluster 1 Cluster 2 Cluster 3

comp1 1.73 1.64 1.52

comp2 2.76 2.64 2.33

medical1 -0.34 0.20 -0.90

medical2 -0.06 0.56 -0.67

addact1 0.25 0.44 0.03

addact2 -0.15 0.18 -0.48

optout 1.56 -8.00 10.58

cluster size 361 (24%) 768 (50%) 395 (26%)

Let us examine the kind of conclusions that can be reached by examining the three

respective means of the three clusters of preferences. Table 3.3 presents the mean

preference coeffcients for each cluster. The most noticeable difference between the

respondents in the three clusters is the way they responded to the “optout” attribute,

the alternative of not participating in either of the presented genetic studies. Respon-

dents in cluster 3 had a strong preference for not participating in the study; in fact,

those respondents chose the alternative of not participating on all nine of their choice

tasks. Essentially, the inference here is that about 26% of the population would refuse

to participate in a genetic study regardless of the incentives in the range considered

in the study. This kind of inference was not obtainable through an aggregate MNL

analysis. About 50% of respondents fell into cluster 2. The respondents in this cluster

always chose to participate in one of the two hypothetical genetic studies presented

to them in their choice tasks. The untempered inference from this is that about

50% of the population would be eager to participate in a genetic study regardless

of the incentives offered to them as long as they were in the range considered in

the study. About 24% of respondents fell into cluster 1. The respondents in this
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Figure 3.10: Individual respondents’ preferences coefficients, after multidimensional
scaling

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12

number of clusters

p
re
d
ic
ti
on

st
re
n
gt
h

Figure 3.11: Prediction strength for clusters of respondents’ preferences
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Figure 3.12: Individual respondents’ preferences coefficients, after multidimensional
scaling

cluster decided not to participate in either genetic study in some of their choice tasks,

while choosing to participate in one of the two genetic studies presented in other

choice tasks. Analysis of these respondents allows one to infer which incentives might

encourage someone to participate in a study who otherwise would not participate.

The analyses of clusters 1 and 2 both allow one to infer importances of the incentives

as considered relative to one another, but only cluster 1 allows one to, say, place a

monetary value on study participation. The coefficients besides “optout” of clusters 1

and 2 are similar, with biggest difference being the “res” attribute. Respondents in

cluster 2 were relatively insensitive to changes in this attribute, whereas respondents

in cluster 1 reacted negatively to researchers outside US academics’ having access to

their genetic data. It could be that one of the reasons the respondents in cluster 1

opted out more frequently was because of privacy concerns. Respondents in cluster

2 also appeared to actually gain utility by undergoing a physical exam, whereas a

physical exam presented a disutility to respondents in cluster 1. It could be the case
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that respondents in cluster 2 are more altruistic and trusting of medical institutions,

hence their desire to participate, their eagerness for physical exams, and their lack

of privacy concerns. Respondents in cluster 1 also reacted more negatively to longer

study periods than respondents in cluster 2. Both respondents in cluster 1 and cluster

2 placed a high value on their compensation.

Further analysis of cluster 1 also shows that respondents who placed higher values on

compensation also were more likely to opt out. This kind of inference is obtained from

the correlation of the preference attributes for “comp1” and “comp2” with “optout”

for the respondents in cluster 1. This kind of inference is not obtainable from an

aggregate MNL analysis or a latent class segmentation. This is inference on the

taste heterogeneity within cluster 1. Respondents with high “comp1,” “comp2,” and

“optout” who participate in a genetic study are primarily focused on their monetary

gain. Since there appears to be a large pool of respondents who are more altruistic

and less financially motivated, it may be wise not to target this group by offering

large compensation.

3.3.7.3 Discussion of real world example

In addition to providing more insight into the data-generating process, the methods of

Section 3.3.7.2 can be used to analyze the data much more quickly than the methods

of Section 3.3.7.1. Fitting the finite mixture models for each of 1 ≤ K ≤ 12 took over

12 hours on the author’s personal computer, whereas fitting the normal mixture model

of 3.3.7.2, obtaining individual preference estimates, and validating that clustering

with prediction strength took less than 5 minutes.
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3.3.8 Discussion

Besides clustering, the estimates of the respondents’ preferences can be regressed on

demographic variables or other covariates of interest with practically any regression

technique. This allows for rapid exploratory analysis and hypothesis generation that

fitting simple models for component membership within a finite mixture model does

not provide.

3.4 Conclusion

There are myriad techniques for design of experiments for conjoint analysis surveys.

However, there is a paucity of comparative studies demonstrating the relative supe-

riority of these different design techniques, despite the practical importance of such

studies. This chapter details a statistical test to compare empirically the statistical

efficiency of different design techniques. This method has been successfully used to

show that a design without attribute overlap outperforms a design with attribute

overlap without biasing the estimates of respondent preferences (Bridges 2013). This

method uses resampling of model-robust standard errors to create a confidence interval

for the relative statistical efficiency of two designs without making assumptions about

the data-generating process.

Responses to conjoint analysis surveys are often analyzed using a mixture distribution

of multinomial logit models to model preference heterogeneity. This chapter details

statistical methods for making correct inferences about the distribution of preferences

across respondents, especially regarding the inference of the number of natural clusters

of preferences, if any. This method is contrasted with other methods that are commonly

used. Importantly, inspection of individual respondents’ preferences allows description

of the mixing distribution that is more general than any parametric form that is
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hypothesized for it during the model fitting process. Additionally, techniques for

visualizing the estimates of individual respondents’ preferences are discussed, and it is

noted that estimates of individual respondents’ preferences can be further regressed

on other characteristics of the respondents to find predictors of respondent preferences.

Overall, this chapter presents a methodology for analyzing data from discrete choice

experiments that can replace or be combined with commonly used methods in order to

gain a more comprehensive understanding of the data-generating process in a fraction

of the time.
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Chapter 4

Padé Approximation of the Profile

Likelihood

4.1 Overview

In this chapter, a method is presented for obtaining confidence intervals when the

sample size is small or there are many nuisance parameters. This method involves

the Padé approximation of the profile likelihood function. In particular, this method

uses derivatives of the profile likelihood function at its maximum in order to obtain

an approximation, and so in that way it is conceptually similar to methods discussed

in (Viveros and Sprott 1987) and (DiCiccio and Monti 2001).

4.2 Introduction

The goal of this chapter is to describe a way in which the profile likelihood can be

approximated in a computationally inexpensive way for values of the parameter of

interest near the maximum likelihood estimate (MLE). The approximation involves no

60



additional numerical maximizations of the the full likelihood after the MLE is found.

Instead, the approximation relies on derivatives of the full likelihood at the MLE.

Using this technique, one can compute an approximation to the profile likelihood-

based confidence interval that is very close to the actual interval. This approximation

by Padé rational functions has the special property that, while it provides a good

approximation of the function near the MLE, including allowing for skewness in the

distribution of the estimator, the approximate confidence interval resulting from it

can still be computed in closed form.

Section 4.3 provides background on the profile likelihood function. Section 4.4 intro-

duces the use of such an approximation for a likelihood with a single scalar parameter

of interest and no nuisance parameters. In Section 4.5 we describe the use of such an

approximation for a likelihood with a single scalar parameter of interest and a single

nuisance parameter. In Section 4.6 we describe the use of such an approximation for a

likelihood with a single scalar parameter of interest and a vector nuisance parameter.

Section 4.7 describes the use of such an approximation for likelihoods with a vector

parameter of interest. In Section 4.8 we discuss possible adjustments to the profile

likelihood. Section 4.9 provides examples of the usage of the approximations described

in the previous sections. Section 4.10 reviews the results.

4.3 Background

4.3.1 The profile likelihood

The profile likelihood is an important tool for performing statistical inference for a

finite-dimensional parameter of interest in the presence of nuisance parameters. The

profile likelihood for a parameter of interest ψ is defined as
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Lp(ψ) = sup
λ
L(ψ, λ) (4.1)

where L(ψ, λ) is the likelihood of the observed data, which depends on both the

finite-dimensional parameter of interest ψ and the nuisance parameter λ. The profile

likelihood only depends on the parameter of interest ψ. For example, the parameter of

interest could represent the treatment effect of a certain medicine, while the nuisance

parameter could represent the effects of other characteristics of a patient, such as age,

which are not of direct interest to the investigator. The nuisance parameter could also

represent parameters related to the scale of random errors in a statistical model which

are in the final analysis not of interest to the investigator, e.g., “σ2”. The nuisance

parameter may also be a function, such as a baseline hazard function. For simplicity,

in this article, the parameter of interest is taken to be a single scalar value while the

nuisance parameter is a single scalar value or a finite-dimensional vector.

4.3.2 Inference with the profile likelihood

If (ψ̂, λ̂) is a value of the parameters that maximizes the full likelihood function, then

ψ̂ maximizes the profile likelihood function. So, the profile likelihood achieves its

maximum at the ψ-component of the maximum likelihood estimate. Also, under

typical regularity conditions (Cramér 1946; Geyer 2013; Patefield 1977), the downward

curvature of the profile likelihood at its maximum is an estimate of the variance of

ψ̂ about the true parameter value. Additionally, the set of values of ψ for which

the profile likelihood in Equation (4.1) attains at least 0.151 of its maximum value

constitutes an approximate 95% confidence interval for the true parameter value.

Denote the natural logarithm of the profile likelihood by lp(ψ) and denote the natural
10.15 ≈ exp(− 1

2χ
2
0.95) where χ2

0.95 is the 95th percentile of the chi-square distribution with 1
degree of freedom.
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logarithm of the full likelihood by l(ψ, λ). It is typically the case that the maximum

likelihood estimates (ψ̂, λ̂) satisfy Equation (4.2). In Equation (4.2), subscripts denote

partial derivatives, and lλ(ψ, λ) is a vector of derivatives if there is more than one

nuisance parameter.

lψ(ψ̂, λ̂) = 0

lλ(ψ̂, λ̂) = 0
(4.2)

4.3.3 Drawbacks of using the profile likelihood for applied

statistical inference

A drawback of using the profile likelihood for inference in applied statistical settings

is that the profile likelihood is often difficult to calculate over a range of values of ψ,

even in relatively simple problems. This is because to evaluate the profile likelihood

for just a single value of ψ, a maximization needs to be carried out. Even in relatively

simple problems, this maximization is often a numerical maximization, which can be

time-consuming. For example, evaluating the relative profile likelihood for multiple

different values of ψ to find which ones attain a value greater than 0.15 may be very

computationally expensive. In many problems, evaluating the profile likelihood for

any given single value of ψ takes the same amount of time as it takes to compute

the full maximum likelihood estimate. The technique described in Section 4.2 and

detailed in the following sections obviates those concerns.
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4.4 Approximation of a likelihood with a single

scalar parameter

Consider a likelihood with a single scalar parameter L(θ) and its natural logarithm

l(θ). Suppose that there is a value θ̂ that maximizes the likelihood; typically it

will also be the case that l′(θ̂) = 0. In some situations it is useful to consider the

relative log-likelihood h(θ) = l(θ) − l(θ̂). For example, a 95% confidence interval

for the parameter can be expressed succinctly in terms of the relative log-likelihood:

{θ| h(θ) ≥ −1.92} = {θ | L(θ)/L(θ̂) ≥ 0.15} = {θ | L(θ)/L(θ̂) ≥ exp(−1
2χ

2
0.95)}. The

relative log-likelihood only takes negative values, and it takes the value zero at θ̂, the

MLE. A typical relative log-likelihood is displayed in Figure 4.1.
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Figure 4.1: log-likelihood for an exponential distribution’s mean from a sample with
size n = 30 and mean x̄ = 4

The straight line in Figure 4.1 corresponds to the value −1.92 ∼= −1
2χ

2
0.95, the negate of

the 95th percentile of the chi-square distribution. The values of θ for which the relative

log-likelihood lies above this line are values of θ with high likelihood. Together they
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form the likelihood-based confidence interval described in Section 1. Typically, the

values that lie above this line do actually form an interval. In that case, the interval

can be characterized by its two endpoints, which solve the equation h(θ) = −1.92.

For many likelihoods, this equation can only be solved numerically. In situations

where is possible to take derivatives of the log-likelihood at the maximum likelihood

estimate, it can be useful to approximate the likelihood by a simpler function such

as a parabola and then solve for the points where that approximation intersects

the straight line in order to approximate the likelihood-based confidence interval.

This is especially useful if it is difficult to solve h(θ) = −1.92 but easy to solve the

analogous equation for a simpler approximating function q(θ) given by q(θ) = −1.92.

If a parabola from a second-degree Taylor series approximation is used, then the

solutions for the two endpoints follow quickly from the quadratic formula. When the

parabola qw(θ) = 1
2 l
′′(θ̂)(θ − θ̂)2 is used to approximate the log-likelihood and the

likelihood-based confidence interval in this way, the resulting interval is called a Wald

confidence interval.

Wald intervals are useful but sometimes have coverage that is too large or too small

compared to their nominal level (e.g., of 95%). This often occurs when the likelihood

function for values of θ of high likelihood cannot be well-approximated by a parabola,

which happens when the sample size is small. By using a better approximation to

the likelihood function, coverage closer to the nominal level can often be obtained.

Additionally, closeness to the likelihood-based confidence interval can be obtained,

which, in addition to often having more correct coverage, has more theoretical and

philosophical support as a region of the parameter space that is actually plausible

(Berger and Wolpert 1988).
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4.4.1 Padé approximation and rationale

An approximation that is similar to the second-degree Taylor approximation that

results in the Wald interval, in that it is also based on derivatives of the likelihood

at the MLE, is the [2,2] Padé approximant (or simply “Padé approximation” in this

dissertation). While the Taylor approximation is a second-degree polynomial, the Padé

approximation is the ratio of two second-degree polynomials. The Padé approximation

incorporates additional information from the third and fourth derivatives at the

MLE and thereby obtains a better approximation. At the same time, the Padé

approximation retains the useful property that the equation q(θ) = −1.92 can be

solved easily by the quadratic formula. Typically the Padé approximation is much

better than a second-degree Taylor approximation at approximating the likelihood

near the MLE, and so it results in intervals much closer to the actual likelihood

interval. The formula for the Padé approximation for the relative log-likelihood is

given by (4.3). The use of the Padé approximation for the relative log-likelihood in

this way requires that l′′(θ̂) < 0, and its formula is simplified by the fact that l′(θ̂) = 0

and h(θ̂) = 0. Note that the relative log-likelihood h(θ) = l(θ)− l(θ̂) differs only by an

additive constant from the log-likelihood and so h(θ) and l(θ) have equal derivatives

of all orders.

qpadé(θ) =
1
2 l
′′(θ̂)(θ − θ̂)2

1− l′′′(θ̂)
3l′′(θ̂) (θ − θ̂)− (−4l′′′(θ̂)2+3l′′(θ̂)l′′′′(θ̂))

36l′′(θ̂)2 (θ − θ̂)2
(4.3)

Perhaps the most succinct way of expressing superiority of the Padé approximation

over a second-degree Taylor expansion (parabola) in approximating the likelihood

near the MLE is that h(θ) = qw(θ) + o((θ − θ̂)2), while h(θ) = qpadé(θ) + o((θ − θ̂)4).

This latter fact about the Padé approximation can be proved directly from (4.3);

however, it is also a result that follows from the general theory of Padé approximants,
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as described in (Baker and Graves-Morris 1996). The interpretation of this result

is that, for values of θ close to the MLE, the Padé approximation is much closer to

the actual likelihood than is the second-degree Taylor approximation. Because of

this property, it is useful for approximating the likelihood when creating a confidence

interval. Note that solving the equation qpadé(θ) = −1.92 is immediate, since the

resulting equation is a quadratic polynomial in (θ − θ̂), and so it has exactly two

solutions that can be solved for using the quadratic formula. These two solutions give

the endpoints of the approximation to the likelihood-based confidence interval. Unlike

for the Wald interval, these two endpoints need not be symmetric about the MLE.

As an example, Small (2010) uses this method to obtain an approximate confidence

interval for the parameter of an exponential distribution.

4.4.2 About the [2,2] Padé approximant

The [2,2] Padé approximant described in Section 4.4.1 is defined for any function

f(x) that is four times differentiable at a given point x0. In the simplifying case that

f(x0) = 0 and f ′(x0) = 0, then as long as f ′′(x0) 6= 0, the [2,2] Padé approximant

is given by Equation (4.4), and it satisfies that f(x) = fpadé(x) + o((x − x0)4) as

x→ x0. In Equation (4.4), f (3)(x0) and f (4)(x0) denote the third and fourth derivatives

respectively of the function f , evaluated at x0.

fpadé(x) =
1
2f
′′ (x0) (x− x0)2

1 +
(
−1

3
f (3)(x0)
f ′′(x0)

)
(x− x0) +

(
4f (3)(x0)2−3f ′′(x0)f (4)(x0)

36f ′′(x0)2

)
(x− x0)2

(4.4)

The Padé approximation is the only ratio of two second-degree polynomials that

satisfies the specified order condition. A corollary of the order condition is that the

first four terms of the Taylor series of fpadé(x) about x0 agree with the first four
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terms of the Taylor series of f(x) about x0. Because, in this chapter, the relative-log

likelihood satisfies the simplifying conditions that h(θ̂) = 0, h′(θ̂) = 0, and h′′(θ̂) 6= 0,

we have described this case first before reviewing Padé approximants more generally.

4.4.3 General [2,2] Padé approximants

Alternatively, if both f ′(x0) = 0 and f ′′(x0) = 0, then there is no ratio of second-

degree polynomials that satisfies the order condition. In this latter case, the [2,2]

Padé approximant is sometimes defined to be the constant value fpadé(x) = f(x0),

which is deficient since it satisfies f(x) = fpadé(x) + o((x − x0)2) but not f(x) =

fpadé(x) + o((x − x0)4) when f(x) has nonzero higher order derivatives. In general,

the order condition will be satisfied when f ′ (x0) f ′′′ (x0)− f ′′ (x0)2 6= 0. In particular,

at the MLE, it is typically the case that the first derivative is zero and the second

derviative is strictly negative, so the order condition is satisfied.

4.4.4 General [m,n] Padé approximants

Given a function f(x) and a point to expand about, x0, an [m,n] Padé approximant can

be defined in general as p(x)/q(x) where p(x) is an m-th (at most) degree polynomial,

q(x) is an n-th (at most) degree polynomial, and

p(x)− f(x)q(x) = o((x− x0)m+n). (4.5)

There will exist at least one Padé approximant as long as f(x) has derivatives at x0 of

order up to m+ n. If the derivatives of f(x) at x0 satisfy a nondegeneracy condition

(see Equation (4.7)) then the Padé approximant is defined uniquely and satisfies the

order condition
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f(x) = p(x)/q(x) + o((x− x0)m+n). (4.6)

In this case where the derivatives are nondegenerate, then the Padé approximant

is also definable as the unique ratio of polynomials that satisfies this latter order

condition (4.6). The nondegeneracy condition can be expressed as follows: Let cj

denote the j-th derivative of f(x) at x0 for j ≥ 1, let c0 denote f(x0), and let cj

denote 0 for j < 0. Consider the matrix

Q0 =



cm−n+1 cm−n+2 ... cm

cm−n+2 cm−n+3 ... cm+1

... ... . . . ...

cm cm+1 ... cm+n−1


. (4.7)

The nondegeneracy condition is that det(Q0) 6= 0. This corresponds to the existence

of a denominator polynomial q(x) with a nonzero constant term in the first definition

(4.5) of the Padé approximant. Note that Q0 is always a square matrix, no matter

the relative sizes of m and n. Any combination of m ≥ 0 and n ≥ 0 can be used in a

Padé approximant, and there is no restriction on their relative size.

The nondegeneracy condition is mild in the sense that it is violated only on a set of

Lebesgue measure zero, so if the Padé approximant is of a likelihood from a continuous

distribution, the likelihood derivatives will typically satisfy it with probability 1. As

noted previously, the [2, 2] Padé approximant about the MLE will typically satisfy the

nondegeneracy condition. That is to say, nondegeneracy of Padé approximants does

not present difficulties when a Padé approximant is used to approximate a likelihood

function.
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4.4.5 The coefficients of the [m,n] Padé approximant

In the case where the derivatives satisfy the nondegeneracy condition, the coefficients

of the Padé approximant can be solved for from the linear system ofm+n+1 equations

that results from (4.5) where f(x) is freely replaced by∑m+n
i=0 cj(x−x0)j+o((x−x0)m+n).

To form the linear system of equations, collect terms by powers of (x− x0); all the

coefficients for (x−x0)j with j ≤ m+n must equal zero for the asymptotic relationship

(4.5) to be satisfied. The polynomial p(x) presents m unknown coefficients, and the

polynomial q(x) presents n unknown coefficients. A unique solution will result if the

system of equations is supplemented with the additional constraint that the constant

term in the polynomial q(x) is set to equal, for example, the value 1; of course, the

ratio p(x)/q(x) does not depend on this choice.

4.4.6 Likelihood-based confidence intervals with higher order

approximants

There is nothing preventing the use of higher order approximants such as a [3,2] or [4,4]

approximant to a log-likelihood function about its maximum. Solving for the equation

hpadé(θ) = −1.92 in that case will result in more than two solutions, including possibly

complex values, which presents the slight difficulty of deciding which roots are the

“right” ones to use for the endpoints of an approximate likelihood interval. When using

a Padé approximant of order [m,n], the equation hpadé(θ) = −1.92 will require finding

the roots of an order max(m,n) polynomial. In particular, the roots will typically

be found numerically if max(m,n) ≥ 5, and the roots are quite simple to find in the

case of m = 2, n = 2 in which case max(m,n) = 2 and the quadratic formula can

be used. Generally, the improvement in the approximation of a log-likelihood from

using Padé approximants of order greater than [2, 2] is minimal, but the improvement
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from using the [2, 2] approximant over the [2, 0] approximant (the Taylor second

degree approximation used in the construction of the Wald confidence interval) can

be substantial. For these reasons, this chapter focuses on the use of the [2,2] Padé

approximant. Further discussion of Padé approximants can be found in (Baker and

Graves-Morris 1996).

4.5 Approximation in the case of a scalar nuisance

parameter

Consider a likelihood L(ψ, λ) with two scalar parameters, where one is the parameter

of interest ψ and the other is a nuisance parameter λ. For example, the parameter of

interest could be the log-odds ratio β that represents a treatment effect in the logistic

regression p(x) = logit−1(α + βx), where x = 0 for the untreated group, x = 1 for

the treated group, and p(x) is the probability of recovery, while the reference level α

might be a nuisance parameter. Denote the natural logarithm of the likelihood by

l(ψ, λ).

Suppose that there is a value (ψ̂, λ̂) that maximizes the likelihood; typically Equation

(4.2) holds in this case. That is, typically it will be the case that the likelihood will

be maximized at a point which lies in the interior of the parameter space in R2, and

so the likelihood will be locally flat there, hence the two partial derivatives are equal

to 0 there.

For a general value of ψ, there is often a value λψ that maximizes the constrained

likelihood. Suppose that this is indeed the case for general values of ψ; typically it

will also be the case that lλ (ψ, λψ) = 0, by the same reasoning as above. Let λ(ψ)

denote the function that maps ψ to λψ (for simplicity suppose there is only one such

λψ for each ψ). Note that, because of the way λ(ψ) is defined, λ(ψ̂) = λ̂.
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With this notation, the profile log-likelihood is given by lp(ψ) = l(ψ, λ(ψ)). As noted

in Section 4.3.2, ψ̂ maximizes the profile log-likelihood and the relative profile log-

likelihood h(ψ) = lp(ψ) − lp(ψ̂). Recall that h(ψ̂) = 0 and also h′(ψ̂) = 0. Because

h(ψ) is a function of a single scalar variable that satisfies h(ψ̂) = 0 and h′(ψ̂) = 0, we

can in principle use Equation (4.2) (with l replaced by the profile log-likelihood lp) to

obtain a Padé approximation of h(ψ) about the MLE ψ̂. That Padé approximation

could then be used to approximate a profile likelihood-based confidence interval.

Note that the relative profile log-likelihood h(ψ) = lp(ψ) − lp(ψ̂) differs only by an

additive constant from the profile log-likelihood and so h(ψ) and lp(ψ) have equal

derivatives of all orders. To calculate the Padé approximation of h(ψ) about ψ̂ using

Equation (4.2), we need to know the values of the derivatives h′′(ψ̂), h(3)(ψ̂), and

h(4)(ψ̂), which equal the same derivatives of lp(ψ) evaluated at ψ̂.

It may not be immediately obvious how to calculate the derivatives of lp(ψ) = l(ψ, λ(ψ))

at ψ̂. Note that the first derivative is typically zero since ψ̂ maximizes lp(ψ). If λ(ψ)

is obtained by numerical maximization, as is typically the case, then a symbolic

derivative of l(ψ, λ(ψ)) with respect to ψ cannot obviously be obtained through taking

derivatives of a closed form for λ(ψ). This approach is described in Section 4.5.2; a

more straightforward but more computationally expensive approach is described first

in Section 4.5.1.

4.5.1 Numerical finite differences

In principle, one way to deal with this difficulty is to use a numerical finite difference

approximation for the second derivative of lp(ψ) such as

l′′p(ψ̂) ∼=
(
lp(ψ̂ + ∆)− lp(ψ̂)

)/1
2∆2
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with ∆ taken to be small (e.g., ∆ = 1 × 10−5). This involves performing another

numerical maximization to obtain λ(ψ̂+∆). Obtaining the third and fourth derivatives

in this way will add one more numerical maximization each, for a total of four numerical

maximizations, so obtaining the required derivatives in this way will take about four

times as long as finding the MLE. In some settings, this time is neglible and this method

works well. Another weakness of this method is that if the numerical maximizer is

poor, ∆ will have to be taken to be something larger (e.g., ∆ = 1 × 10−2). When

larger values of ∆ are used, the numerical derivatives suffer in quality and so the curve

approximating the likelihood suffers as well.

4.5.2 Symbolic implicit differentiation

Another option for calculating the derivatives of lp(ψ) = l(ψ, λ(ψ)) is to use the chain

rule to take the total derivative with respect to ψ. Let superscripts denote derivatives

so that the equation lλ (ψ, λψ) = 0 can also be expressed as l(0,1)(ψ, λ(ψ)) = 0. The

chain rule results in Equations (4.8), which are valid for any value of ψ. In the latter

two formulas, the arguments of the function h have been suppressed for readability. As

discussed earlier, at the MLE we have that l(1,0)(ψ̂, λ(ψ̂)) = 0 and so the first derivative

is zero there. Importantly, and as discussed previously, l(0,1)(ψ, λ(ψ)) = 0 for every

value of ψ, which simplifies the formulas below. Note that h can be taken to be either

the profile log-likelihood itself or the relative profile log-likelihood l(ψ, λ(ψ))−l(ψ̂, λ(ψ̂))

in Equations (4.8); they differ only by a constant and so have the same derivatives.

It can be seen that derivatives of λ(ψ) up to third order are needed to calculate

derivatives of lp(ψ) to fourth order.
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dh(ψ, λ(ψ))
dψ

= h(1,0)(ψ, λ(ψ))

d2h(ψ, λ(ψ))
dψ2 = λ′(ψ)2h(0,2)(ψ, λ(ψ)) + 2λ′(ψ)h(1,1)(ψ, λ(ψ)) + h(2,0)(ψ, λ(ψ))

d3h(ψ, λ(ψ))
dψ3 = 3h(1,1)λ′′(ψ) + h(0,3)λ′(ψ)3 + 3h(1,2)λ′(ψ)2 + 3h(2,1)λ′(ψ)

+ 3h(0,2)λ′(ψ)λ′′(ψ) + h(3,0)

d4h(ψ, λ(ψ))
dψ4 =

4h(1,1)λ(3)(ψ) + 3h(0,2)λ′′(ψ)2 + 6h(2,1)λ′′(ψ) + h(0,4)λ′(ψ)4 + 4h(1,3)λ′(ψ)3

+ 6h(2,2)λ′(ψ)2 + 4h(3,1)λ′(ψ) + 4h(0,2)λ(3)(ψ)λ′(ψ) + 6h(0,3)λ′(ψ)2λ′′(ψ)

+ 12h(1,2)λ′(ψ)λ′′(ψ) + h(4,0)

(4.8)

If no closed form is available for λ(ψ), it might appear difficult to obtain its derivatives

for use in Equations (4.8). However, the derivatives of λ(ψ) can be usefully expressed

in terms of the derivatives of the original log-likelihood l(ψ, λ). If the original log-

likelihood can be differentiated without numerical maximization, thereby so can λ(ψ).

To see this, recall that λ(ψ) solves the equation for local maxima, l(0,1)(ψ, λ(ψ)) = 0.

Taking the total derivative with respect to ψ yields the relationship λ′(ψ)l(0,2)(ψ, λ(ψ))+

l(1,1)(ψ, λ(ψ)) = 0. From this we obtain that λ′(ψ) = −l(1,1)(ψ, λ(ψ))/l(0,2)(ψ, λ(ψ)).

Note that this equation holds for all values of ψ, including at the MLE. Further

differentiating λ′(ψ) yields the identities (4.9).
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λ′(ψ) = − l
(1,1)(ψ, λ(ψ))
l(0,2)(ψ, λ(ψ))

λ′′(ψ) = −
l(2,1)

(
l(0,2)

)2
− 2l(1,1)l(1,2)l(0,2) + l(0,3)

(
l(1,1)

)2

(l(0,2))3

λ′′′(ψ) = 1
(l(0,2))5

[
−l(3,1)

(
l(0,2)

)4
+ 3l(1,2)l(2,1)

(
l(0,2)

)3

+ 3l(1,1)l(2,2)
(
l(0,2)

)3
− 6l(1,1)

(
l(1,2)

)2 (
l(0,2)

)2

− 3
(
l(1,1)

)2
l(1,3)

(
l(0,2)

)2
− 3l(0,3)l(1,1)l(2,1)

(
l(0,2)

)2

+ l(0,4)
(
l(1,1)

)3
l(0,2) + 9l(0,3)

(
l(1,1)

)2
l(1,2)l(0,2)

−3
(
l(0,3)

)2 (
l(1,1)

)3
]

(4.9)

That the derivatives of λ(ψ) can be obtained in this way allows the derivatives of lp(ψ)

at a given point ψ to be computed without any additional numerical maximizations

besides the ones needed to compute λ(ψ). Note that the expression for the first

derivative λ′(ψ̂) and its use in the formula for the second derivative of the relative

profile log-likelihood in (4.10) is the main result in (Patefield 1977). Equations (4.8)

and (4.9) can be combined to yield Equations (4.10), which express the derivatives of

the relative profile log-likelihood at any given ψ in terms of the partial derivatives of

the full likelihood at (ψ, λ(ψ)).
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dh(ψ, λ(ψ))
dψ

= h(1,0)(ψ, λ(ψ))

d2h(ψ, λ(ψ))
dψ2 = h(2,0)(ψ, λ(ψ))− h(1,1)(ψ, λ(ψ))2

h(0,2)(ψ, λ(ψ))

d3h(ψ, λ(ψ))
dψ3 = −

h(0,3)
(
h(1,1)

)3

(h(0,2))3 +
3h(1,2)

(
h(1,1)

)2

(h(0,2))2 − 3h(2,1)h(1,1)

h(0,2) + h(3,0)

d4h(ψ, λ(ψ))
dψ4 = −

3
(
h(0,3)

)2 (
h(1,1)

)4

(h(0,2))5 +
h(0,4)

(
h(1,1)

)4
+ 12h(0,3)h(1,2)

(
h(1,1)

)3

(h(0,2))4

+
−4h(1,3)

(
h(1,1)

)3
− 12

(
h(1,2)

)2 (
h(1,1)

)2
− 6h(0,3)h(2,1)

(
h(1,1)

)2

(h(0,2))3

+
6h(2,2)

(
h(1,1)

)2
+ 12h(1,2)h(2,1)h(1,1)

(h(0,2))2 +
−3

(
h(2,1)

)2
− 4h(1,1)h(3,1)

h(0,2)

+ h(4,0)

(4.10)

4.6 Approximation in the case of a vector nuisance

parameter

Conclusions similar to those in Section 4.5 can be reached when the nuisance parameter

λ is a vector. Suppose that there are p nuisance parameters, so the log-likelihood can

be written as l (ψ, λ1, λ2, ..., λp). Let λ denote the vector of nuisance parameters, so

the log-likelihood is l(ψ, λ) and the profile log-likelihood is lp(ψ) = l (ψ, λ(ψ)). Given

a value of ψ, λ(ψ) typically solves the equation for the local maxima, lλ (ψ, λ(ψ)) = 0.

Taking the total derivative with respect to ψ results in a linear system of p equations

for the p-dimensional unknown λ′(ψ), where the coefficients are derivatives of the

full likelihood, just as in Section 4.5. As in (4.9), the solution can be written as

λ′(ψ) = −l(0,2)(ψ, λ(ψ))−1l(1,1)(ψ, λ(ψ)), where the notation is denoting a matrix
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inverse. As in Section 4.5, further differentiation yields λ′′(ψ) and λ′′′(ψ), which are

both vectors, as well as the required derivatives h′(ψ), h′′(ψ), h′′′(ψ), and h(4)(ψ).

Specifically, λ′(ψ), λ′′(ψ), and λ′′′(ψ) are given by the following three formulas, in

which a, b, and c are p-dimensional vectors. Note that the formula for λ′′(ψ) contains

references to λ′(ψ) and that the formula for λ′′′(ψ) refers both to λ′′(ψ) and λ′(ψ),

which in both cases are readily available from the previous formulas.

λ′(ψ) = −l(0,2)(ψ, λ(ψ))−1a

λ′′(ψ) = −l(0,2)(ψ, λ(ψ))−1b

λ′′′(ψ) = −l(0,2)(ψ, λ(ψ))−1c

am = ∂2l

∂ψ∂λm

bm = ∂3l

∂ψ2∂λm
+ 2

p∑
i=1

∂3l

∂ψ∂λi∂λm

dλi
dψ

+
p∑
i=1

p∑
j=1

∂3l

∂λj∂λi∂λm

dλj
dψ

dλi
dψ

cm = ∂4l

∂ψ3∂λm
+ 3

p∑
i=1

∂4l

∂ψ2∂λi∂λm

dλi
dψ

+ 3
p∑
i=1

p∑
j=1

∂4l

∂ψ∂λj∂λi∂λm

dλj
dψ

dλi
dψ

+ 3
p∑
i=1

∂3l

∂ψ∂λiλm

d2λi
dψ2 +

p∑
i=1

p∑
j=1

p∑
k=1

∂4l

∂λk∂λj∂λi∂λm

dλk
dψ

dλj
dψ

dλi
dψ

+ 3
p∑
i=1

p∑
j=1

∂3l

∂λj∂λiλm

dλj
dψ

d2λi
dψ2

(4.11)

Differentiating the expression for the relative profile log-likelihood h(ψ) = lp(ψ) −

lp(ψ̂) = l(ψ, λ(ψ)) − l(ψ̂, λ(ψ̂)) with respect to ψ expresses the derivatives required

for the Padé approximant, h′(ψ), h′′(ψ), h′′′(ψ), and h(4)(ψ), in terms of derivatives of

the full likelihood and in terms of λ′(ψ), λ′′(ψ), and λ′′′(ψ). By using the solutions

provided by by Equation (4.11) in Equation (4.12), we are provided with the derivatives

needed for the Padé approximant of the relative profile log-likelihood h(ψ) in terms of

derivatives of the full likelihood.
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h′(ψ) = ∂l

∂ψ

h′′(ψ) = ∂2l

∂ψ2 +
p∑
i=1

∂2l

∂ψ∂λi

dλi
dψ

h′′′(ψ) = ∂3l

∂ψ3 + 2
p∑
i=1

∂3l

∂ψ2∂λi

dλi
dψ

+
p∑
i=1

p∑
j=1

∂3l

∂ψ∂λj∂λi

dλj
dψ

dλi
dψ

+
p∑
i=1

∂2l

∂ψ∂λi

d2λi
dψ2

h(4)(ψ) = ∂4l

∂ψ4 + 3
p∑
i=1

∂4l

∂ψ3∂λi

dλi
dψ

+ 3
p∑
i=1

p∑
j=1

∂4l

∂ψ2∂λj∂λi

dλj
dψ

dλi
dψ

+ 3
p∑
i=1

∂3l

∂ψ2∂λi

d2λi
dψ2

+
p∑
i=1

p∑
j=1

p∑
k=1

∂4l

∂ψ∂λk∂λj∂λi

dλk
dψ

dλj
dψ

dλi
dψ

+ 3
p∑
i=1

p∑
j=1

∂3l

∂ψ∂λj∂λi

dλj
dψ

d2λi
dψ2

+
p∑
i=1

∂2l

∂ψ∂λi

d3λi
dψ3

(4.12)

For an example of the [2,2] Padé approximant of a profile log-likelihood with a vector

nuisance parameter, see Example 4.9.4.

4.7 Approximation in the case of a vector param-

eter of interest

There may be times when there is more than one parameter of interest. In that case,

the method of Section 4.6 can be applied separately, once for each parameter of interest.

However, there may be occasions where it is desirable to consider two parameters

simultaneously. For example, consider the case where the two parameters of interest

are the (x, y) coordinates of a 2-D location, and a confidence region is desired for the

location. In that case, it makes more sense to consider the two parameters jointly

rather than separately. The profile likelihood can be used to create 2-D confidence

regions for parameters of this type. In this case, the profile likelihood forms a surface

in three-dimensional space, and the two-dimensional region of the parameters for
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which it is highest forms a confidence region. The approximate coverage probability for

this confidence region is given by the likelihood ratio test: the region of the likelihood

for which it attains one twentieth2 of its maximum value forms an approximate 95%

confidence region. In other words, the region of the parameters attaining relative

log-likelihood greater than (−3) forms an approximate 95% confidence region.3 In this

section, we will restrict attention to the case where there are exactly two parameters

of interest.

Let us first consider the case where there are two parameters of interest and there

are no nuisance parameters. It is possible to define a Padé approximant for this case.

However, there is no consensus on a single “best” extension of the Padé approximant

to the case of more than one variable. The extension in the literature that is probably

closest to the univariate Padé approximant is Cuyt’s homogeneous Padé approximant

(Cuyt 1999); this is what we will use here to approximate the log-likelihood for

the two parameters of interest. As an example of the close relationship between

the homogeneous and univariate Padé approximant, it can be shown that the [n,m]

homogeneous Padé approximant has the property that it reduces to the [n,m] univariate

Padé approximant for any coordinate when the other coordinates are fixed (Cuyt

1999). Unfortunately, unlike the [2,2] univariate Padé approximant, the closed form

for the [2,2] homogeneous Padé approximant is a very long expression that spans

multiple pages. Instead of presenting it directly, we will instead show how to obtain

the system of equations that yields its coefficients. An example that demonstrates the

usage of the [2,2] Padé approximant on a bivariate log-likelihood is given in Example

4.9.5.
2 1

20 = exp(− 1
2χ

2
2)

3−3 ∼= − 1
2χ

2
2
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4.7.1 The homogeneous Padé approximant

The [ν,µ] homogeneous Padé approximant can be defined for any function f(x, y)

about any expansion point that has partial derivatives up to total degree ν +µ at that

expansion point, which we will assume without loss of generality to be (x, y) = (0, 0);

that is, the function must have derivatives ∂i+jf
∂ix∂jy

for i+j ≤ ν+µ at its expansion point.

The homogeneous Padé approximant is a ratio of two polynomials whose coefficients

are a function of those derivatives.

To define the approximant, first define coefficients cij as follows:

cij = 1
i!j!

∂i+jf

∂ix∂jy

Also, define the following polynomials:

Al(x, y) =
∑

i+j=νµ+l
aijx

iyj, l = 0, ..., ν

Bl(x, y) =
∑

i+j=νµ+l
bijx

iyj, l = 0, ..., µ

Cl(x, y) =
∑
i+j=l

cijx
iyj, l = 0, 1, 2, ...

p(x, y) =
ν∑
l=0

Al(x, y)

q(x, y) =
µ∑
l=0

Bl(x, y)

(4.13)

The system of equations that yields aij and bij is obtained as follows:

Ensure that (∑ν+µ
l=0 Cl(x, y))q(x, y)− p(x, y) has a coefficient of 0 for all terms of total

degree νµ+ ν + µ or lower.

This condition can also be written as follows:
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C0(x, y)B0(x, y) = A0(x, y)

C1(x, y)B0(x, y) + C0(x, y)B1(x, y) = A1(x, y)
...

Cν(x, y)B0(x, y) + · · ·+ Cν−µBµ(x, y) = Aν(x, y)

Cν+1(x, y)B0(x, y) + · · ·+ Cν+1−µ(x, y)Bµ(x, y) ≡ 0
...

Cν+µB0(x, y) + · · ·+ Cν(x, y)Bµ(x, y) ≡ 0

(4.14)

where Cl(x, y) ≡ 0 for l < 0. As in the univariate case, there is one more unknown than

the number of equations; one can set b0,νµ = 1; the ratio p(x, y)/q(x, y) is unaffected

by this choice. Solving the linear system of equations from (4.14) for aij and bij and

using their values in p(x, y)/q(x, y) yields the [ν,µ] homogeneous Padé approximant.

4.7.2 Vector parameter of interest with vector nuisance pa-

rameter

To obtain the derivatives of the profile log-likelihood needed for the multivariate

homogeneous Padé approximant when there are one or more nuisance parameters, one

can form the equations analagous to (4.11) and (4.12) in order to express the partial

derivatives of the profile log-likelihood with respect to the parameters of interest in

terms of derivatives of the full log-likelihood. After obtaining the partial derivatives

up to total order ν + µ of the profile log-likelihood, one can form the [ν,µ] Padé

approximant and use it to create a confidence region. Unfortunately, the confidence

region does not arise from the quadratic formula or any other exceedingly simple

formula in the multivariate case, whether there are nuisance parameters or not. See
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Example 4.9.6 for an example with a vector parameter of interest and vector nuisance

parameter.

4.8 Other applications and discussion

4.8.1 Adjusted profile likelihood and pseudolikelihoods

When there are many nuisance parameters, the profile likelihood may not perform

inferentially as well as adjusted profile likelihoods and other pseudolikelihoods. These

pseudolikelihoods often are expressible as small adjustments to the profile likelihood.

For example, an adjusted profile log-likelihood from (Severini 2000) is given by

la(ψ) = lp(ψ) − 1
2 log |−lλλ(ψ, λ(ψ)) |. A Padé approximation can be used to in the

same way to calculate confidence intervals based on the adjusted profile log-likelihood.

The same technique can be used, except the derivatives of the profile log-likelihood

will clearly have to be added to the derivatives of the second term (which are also

expressible in terms of λ(ψ)’s derivatives) to obtain the derivatives of the adjusted

profile log-likelihood.

4.9 Examples

4.9.1 The mean of an exponential distribution

In this example, we consider a likelihood for a single scalar parameter of interest, the

mean parameter θ of an exponential distribution. The probability density function

for a single observation x > 0 is given by f(x) = θ−1e−x/θ. Suppose that you have

observed a sample of n = 4 independently and identically distributed (i.i.d.) values

with sample mean x̄ = 4. Then the log-likelihood is l(θ) = −16θ−1 − 4 log(θ). This
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function achieves its maximum at θ̂ = 4, so the relative log-likelihood is given by

h(θ) = 4− 16θ−1 + 4 log(4θ−1). Calculating the three derivatives of the log-likelihood

required for the Padé approximation, we find that h′′(θ̂) = −1/4, h′′′(θ̂) = 1/4, and

h(4)(θ̂) = −9/32. Using Equation (4.4) we find that

qpadé(θ) =
−1

8(θ − 4)2

1 + 1
3(θ − 4) + 5

288(θ − 4)2 .

We can also write the second-degree Taylor expansion as qw(θ) = −1
8(θ − 4)2. Figure

4.2 compares the relative log-likelihood h(θ), its Padé approximation qpadé(θ), and

its second-degree Taylor expansion qw(θ). The bold horizontal line denotes the value

−1.92; values of θ for which h(θ) > −1.92 constitute an approximate 95% confidence

interval.
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Figure 4.2: log-likelihood for an exponential distribution’s mean from a sample with
size n = 4 and mean x̄ = 4. The horizontal line is the value −1.92 ∼= −1

2χ
2
0.95.
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4.9.2 The index of a gamma distribution

In this example, we consider the profile likelihood for a scalar parameter of interest

in the presence of a scalar nuisance parameter. The parameter of interest is the

index α of a gamma distribution and the nuisance parameter is the scale parameter

β. The probability density function for a single observation x > 0 is given by

f(x) = Γ(α)−1β−αxα−1e−x/β. Suppose that you have observed a sample of n i.i.d.

values from a gamma distribution with unknown α and β. Then the log-likelihood is

given by l(α, β) = −nlogΓ(α) + n(α− 1)log(x)− nx̄/β − nα log(β) where x̄ denotes

the observed sample mean and log(x) denotes ∑n
i=1 log(xi)/n. In this example, given

a value of α, the maximizing value of the nuisance parameter follows quickly from

lβ(α, β) = 0, which yields β(α) = x̄/α. Because β(α) has a simple closed form,

Equations (4.10) are not needed to obtain the derivatives of the relative profile log-

likelihood; the derivatives of the profile likelihood can be obtained from its simple

closed form lp(α) = l(α, β(α)) = −nlogΓ(α) + (α− 1)nlog(x)− nα− nα log(x̄/α).

The first four derivatives of the profile log-likelihood are given by (4.15). In these

formulas, ψ(j)(α) represents the (j + 1)-st derivative of the function logΓ(α). The

maximizer of the profile likelihood α̂ is generally found numerically. After α̂ has been

found, the Padé approximation to the profile log-likelihood about α̂ can be computed

using (4.4) with the derivatives in (4.15).

lp(α) = −nlogΓ(α) + n(α− 1)log(x)− nα− nα log(x̄/α)

l′p(α) = −n log(x̄/α) + nlog(x)− nψ(0)(α)

l′′p(α) = n/α− nψ(1)(α)

l(3)
p (α) = −n/α2 − nψ(2)(α)

l(4)
p (α) = 2n/α3 − nψ(3)(α)

(4.15)
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Suppose from a sample size of size n = 12 you observe x̄ = 30 and log(x) = 3.22537.

Numerically maximizing the likelihood we find that α̂ = 3 and β̂ = 10. Evaluating

the derivatives of the profile log-likelihood and at α̂ = 3, we find that l′′p(α̂) = −0.74,

l(3)
p (α̂) = 0.52, and l(4)

p (α̂) = −0.54. Using Equation (4.4), we can write the Padé

approximation to the relative profile log-likelihood as

qpadé(α) = −0.37(α− 3)2

1 + 0.23(α− 3)− 0.006(α− 3)2 .

We can also write the second-degree Taylor expansion as qw(α) = −0.37(α − 3)2.

Figure 4.3 compares the relative log-likelihood h(α), its Padé approximation qpadé(α),

and its second-degree Taylor expansion qw(α). The bold horizontal line denotes the

value −1.92; values of α for which h(α) > −1.92 constitute an approximate 95%

confidence interval.
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Figure 4.3: profile log-likelihood for a gamma distribution’s index from a sample with
size n = 12, mean x̄ = 30, and mean log log(x) = 3.22537. The horizontal line is the
value −1.92 ∼= −1

2χ
2
0.95.

Because the maximizing value of the nuisance parameter has a simple closed form, it is
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particularly easy to understand the effect of using adjustments to the profile likelihood.

Consider the adjusted profile likelihood la(α) = lp(α)−0.5 log (−lββ(α, β(α))). Taking

derivatives, we see that the additional term adds −0.5 ln (α3) to the profile log-

likelihood, which penalizes larger values of α. If n = 7 and α = 3, then a nominal

95% profile likelihood interval for α has 91.4% coverage, a Wald interval has 97.3%

coverage, and the likelihood interval using the adjusted profile likelihood (or a Padé

approximation about its maximum) has 94.5% coverage. The form of the adjustment

here is from (Severini 2000), which also provides a discussion of why adjustments to

the profile likelihood should be considered in cases where the sample size is small or

there are many nuisance parameters.

4.9.3 Logistic regression

In this example, we apply Equations (4.10) to the likelihood for a scalar parameter of

interest and a scalar nuisance parameter. This example differs from that of Section

4.9.2 in that, here, λ(ψ) is difficult to express in closed form and is typically obtained

using numerical methods. Consider drawing samples from two different binomial

distributions, x1 ∼ binomial (m1, p1) and x2 ∼ binomial (m2, p2). That is, group 1

is size m1 and has probability p1 of success per unit; group 2 is of size m2 and has

probability p2 of success per unit; and x1 and x2 are the numbers of successes observed

from those two groups, respectively. Suppose that the parameter of interest is the

log odds ratio β = log (p2/(1− p2))− log (p1/(1− p1)), which measures the difference

in success rates between the two groups. When p2 > p1, β > 0. The single scalar

nuisance parameter can be chosen with a great deal of freedom, but conventionally

it is taken as α = log (p1/(1− p1)). No other nuisance parameters are needed, since

we are considering m1 and m2 to be known. The parameters (α, β) are in one-to-one

correspondence with the parameters (p1, p2) as long as p1, p2 6= 0, 1.
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In the framework of logistic regression, the problem is p(x) = logit−1(α+ βx), where

x = 1 indicates membership to group 2 and x = 0 indicates membership to group

1 so that p(0) = p1 and p(1) = p2. The function p(x) denotes the probability of

success given group membership. By the invariance principle of maximum likelihood,

the MLE (α̂, β̂) is easily obtainable by evaluating the definitions of α and β with p1

and p2 replaced by their maximum likelihood estimates p̂1 = x1/m1 and p̂2 = x2/m2.

However, constrained estimates of the nuisance parameter α when the parameter

of interest β is fixed at any value other than the MLE (as in a profile likelihood)

are obtainable only numerically. In this case then, the use of a Padé approximation

obtains to great accuracy the profile likelihood interval for the parameter of interest

without any numerical maximizations.

The derivatives of the profile log-likelihood can be obtained using the formulas in

(4.10), yielding the following:

l′′p(β) = − m1m2

2 (m1 cosh(α(β) + β) +m2 cosh(α(β)) +m1 +m2)

l(3)
p (β) = m1m2 (m2

1(2 sinh(α(β) + β) + sinh(2(α(β) + β)))−m2
2(2 sinh(α(β)) + sinh(2α(β))))

4 (m1 cosh(α(β) + β) +m2 cosh(α(β)) +m1 +m2)3

The formula for l(4)
p (β) is omitted for space considerations.

Suppose from samples of size m1 = 10 and m2 = 11 you observe x1 = 1 and x2 = 9.

Then p̂1 = 0.10 and p̂2 = 0.82, and, by the invariance property, α̂ = −2.2 and β̂ = 3.7.

Using the formulas for the derivatives of the profile log-likelihood and evaluating

them at the MLE, we find that l′′p(β) = −0.58, l(3)
p (β) = 0.24, and l(4)

p (β) = −0.04.

Using formula (4.4), we can write the Padé approximation to the relative profile

log-likelihood as
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qpadé(α) = −0.29(β − 3.7)2

1 + 0.14(β − 3.7)− 0.013(β − 3.7)2 . (4.16)

We can also write the second-degree Taylor expansion, which requires only the second

derivative l′′p(β̂), as qw(α) = −0.29(β − 3.7)2. Figure 4.4 compares the relative

log-likelihood h(β), its Padé approximation qpadé(β), and its second-degree Taylor

expansion qw(β). The bold horizontal line denotes the value −1.92; values of β for

which h(β) > −1.92 constitute an approximate 95% confidence interval.
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Figure 4.4: profile log-likelihood for the log odds ratio between two binomial distribu-
tions from samples with sizes m1 = 10 and m2 = 11 and number of successes x1 = 1
and x2 = 9. The horizontal line is the value −1.92 ∼= −1

2χ
2
0.95.

Suppose the true values of the parameters are p1 = 0.3 and p2 = 0.6. Then a nominal

95% profile likelihood interval for the log odds ratio β has 95.2% coverage; a Wald

interval has 97.0% coverage; and the interval obtained using a Padé approximation also

has 95.2% coverage. A likelihood interval based on the likelihood of x2 given x1 + x2

(a hypergeometric distribution) has 94.8% coverage. Unlike the profile likelihood or

its parabolic approximation, the hypergeometric distribution is a bona fide likelihood,
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and it does not depend on the reference level α. A Padé approximation to the

hypergeometric likelihood can also be considered, which results in 94.8% coverage as

well.

4.9.4 Logistic regression with vector nuisance parameter

In this example, we apply the results of Section 4.6 to the likelihood for a scalar

parameter of interest and a vector nuisance parameter. This example differs from

that of Section 4.9.3 in that, here, the nuisance parameter is a vector. Consider

drawing samples a binomial distribution with probability of success p(x) = logit−1(α+

β1x1 + β2x2), where x1, x2 = 0, 1 and where the paramter of interest is α and the

vector nuisance parameter is (β1, β2). Data is generated from a true model with

α = 0.5, β1 = −1.0, and β2 = 1.5. A total of n = 16 samples are taken, four where

x1 = 0, x2 = 0, four where x1 = 1, x2 = 0, four where x1 = 0, x2 = 1, and four where

x1 = 1, x2 = 1, with observed numbers of successes 2,2,4, and 3 respectively. The full

likelihood for the observed data is displayed in Equation (4.17).

l(α, β1, β2) = 2 log
(

eα+β1

eα+β1 + 1

)
+ 4 log

(
eα+β2

eα+β2 + 1

)
+ 3 log

(
eα+β1+β2

eα+β1+β2 + 1

)

+ 2 log
(

1− eα+β1

eα+β1 + 1

)
+ log

(
1− eα+β1+β2

eα+β1+β2 + 1

)
+ 2 log

(
eα

eα + 1

)

+ 2 log
(

1− eα

eα + 1

)
(4.17)

Maximizing the likelihood, we find that the MLE is α̂ = 0.353277, β̂1 =

−0.706554, β̂2 = 1.99237.

Using Equation (4.11), we find that β′1(α̂) = −0.828126, β′2(α̂) = −0.477817, β′′1 (α̂) =

−0.0320928, β′′2 (α̂) = 0.143191, β′′′1 (α̂) = −0.025675, and β′′′2 (α̂) = 0.0170632.
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Using Equation (4.12), we then find that h′′(ψ) = −1.13605, h′′′(ψ) = 0.195582, and

h(4)(ψ) = 0.47019.

Figure 4.5 displays the relative profile log-likelihood for α, a quadratic approximation

about its maximum, and also the [2,2] Padé approximant about its maximum.
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Figure 4.5: profile log-likelihood for α, the log odds of success in the case of x1 =
0, x2 = 0. The horizontal line is the value −1.92 ∼= −1

2χ
2
0.95.

4.9.5 Confidence region for parameters of a gamma distribu-

tion

In this example, we consider the likelihood for two parameters of interest in the absence

of nuisance parameters. The two parameters of interest are the index parameter α

and scale parameter β of a gamma distribution. The probability density function for

a single observation x > 0 is given by f(x) = Γ(α)−1β−αxα−1e−x/β. Suppose that you

have observed a sample of n i.i.d. values from a gamma distribution with unknown α

and β. Then the log-likelihood is given by l(α, β) = −nlogΓ(α) + n(α − 1)log(x)−
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nx̄/β − nα log(β) where x̄ denotes the observed sample mean and log(x) denotes∑n
i=1 log(xi)/n.

As noted in Section 4.7, the region of the parameters for which the likelihood attains

one twentieth of its maximum value forms an approximate 95% confidence region

for the true parameters. Suppose one observes a sample of n = 150 independent

observations from a gamma distribution with unknown (α, β) with x̄ = 28.2544 and

log(x) = 3.1791. Then the MLE is given by (α̂, β̂) = (3.2411, 8.7175). Figure 4.6

displays the 95% confidence region arising from the full log-likelihood, its [2,2] homoe-

geneous Padé approximant, and the full log-likelihood’s quadratic approximation. The

derivatives required for the Padé approximant and the quadratic approximation follow

straightforwardly from explicitly differentiating the full likelihood. The confidence

region from the Padé approximant is closer to the desired region than the confidence

region from the quadratic approximation. However, the confidence region from the

Padé approximant is not indistinguishable from the desired region.

4.9.6 Confidence region for parameters in a Poisson regres-

sion

In this example, we consider the profile likelihood for two parameters of interest in

the presence of two nuisance parameters. We consider a Poisson regression where

y ∼ Poisson(exp(β0 + β1x + β2x
2 + β3x

3)) for x ∈ [−2, 2]. The two parameters of

interest are β1 and β3; the two others are nuisance parameters.

As noted in Section 4.7, the region of the parameters for which the profile likelihood

attains one twentieth of its maximum value forms an approximate 95% confidence

region for the true parameters. Suppose one observes a sample of n = 10 (x, y) pairs,

with xi = −2 + 4
9(i− 1) and y = (0, 0, 0, 0, 1, 0, 3, 1, 31, 377). Then the MLE is given
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Figure 4.6: 95% Confidence regions for the parameters of a gamma distribution

by (β̂0, β̂1, β̂2, β̂3) = (−0.77, 1.47, 0.06, 0.44). Figure 4.7 displays the 95% confidence

region for (β1, β3) arising from the profile log-likelihood, its [2,2] homoegeneous Padé

approximant, and the profile log-likelihood’s quadratic approximation. The derivatives

required for the Padé approximant and the quadratic approximation follow from the

multivariate analogues of Equations (4.11) and (4.12). The confidence region from the

Padé approximant is closer to the desired region than the confidence region from the

quadratic approximation. However, the confidence region from the Padé approximant

is not indistinguishable from the desired region.

4.10 Discussion

The Padé approximation to the profile likelihood discussed in this chapter provides a

confidence interval that is numerically similar to a likelihood interval but is computa-
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Figure 4.7: 95% Confidence regions for the parameters of a Poisson regression

tionally more comparable to a Wald interval. The method is especially useful when

the likelihood is explicit in the parameters, so that it can be explicitly differentiated;

in this case, the computation time is essentially the same as that of a Wald interval.

The likelihood will generally not be explicit in the parameters when, for example, it is

the marginal likelihood of a random effects model with arbitrary mixing distribution.

However, as seen in (DiCiccio and Monti 2001), approximations of this kind can be

used to usefully decrease computation time even for complicated likelihoods. There,

the computation time requirement is made more important since the method is used

in construction with the bootstrap. The use of the Padé approximation is not limited

to profile likelihoods; in small samples it is seen to be most usefully combined with

the technique of adjusting the profile likelihood, such as with the modified profile

likelihood or other adjusted likelihoods. When the Padé approximation is used with

these techniques, the resulting confidence interval is similar to a Bayesian credible

interval with noninformative prior in the way it improves upon the Wald interval.
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However, the Padé method requires less computation time and allows the possibility

of a confidence interval that is robust to the model, in the sense discussed in (White

1982) and (Royall and Tsou 2003), through the Bartlett correction of the likelihood

ratio statistic.
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Chapter 5

Conclusions

5.1 Summary

After introducing choice-based conjoint analysis, we introduced a method to empiri-

cally assess and compare different conjoint analysis design strategies. A key feature

of this method of comparison was that it makes very few assumptions about the

data-generating process (essentially just that the respondents answer the surveys

independently of one another) while remaining statistically valid; in particular, the

respondents are not assumed to use the multinomial logit model.

We then turned to the statistical analysis of conjoint analysis survey results. We

introduced a method to plot in two-dimensional space the heterogeneity in preferences

across the respondents as inferred from the conjoint analysis survey results that can

be used for visualization as well as mixture model assessment. We also introduced

a novel method to accurately infer the number of natural clusters in preferences

across the respondents. This method was shown in simulation studies to give more

accurate results than latent class segmentation with AIC and BIC. We additionally

suggested regressing estimated respondent preferences on their demographic variables
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as a strategy for hypothesis generation and model building.

We showed that the profile likelihood can be well approximated near the maximum

likelihood estimate by the [2,2] Padé approximant. This approximation is shown to be

better than that provided by a second-order Taylor series approximation. However, like

a second-order Taylor series approximation, it can be used to construct a confidence

interval with endpoints found using the quadratic formula. The resulting confidence

interval is similar to a profile likelihood interval but with computation time similar to

that of a Wald interval.

5.2 Limitations

The methodology for assessing experimental design and for statistical analysis in

conjoint analysis studies described in this thesis largely ignores the issue of the scale

of respondent’s preferences. The issue of respondent scale arises especially when

comparing multinomial logit models estimated from different data sources (Swait and

Louviere 1993; Hensher, Louviere, and Swait 1998).

There are difficulties extending the Padé approximant to more than one dimension.

Because of this, there are difficulties when using the Padé approximant to approximate

a profile likelihood with a multidimensional parameter of interest. Additionally, the

presence of a multidimensional nuisance parameter complicates the exposition of the

Padé approximation.

96



Bibliography

Allenby, Greg M, and Peter J Lenk. 1994. “Modeling Household Purchase Behavior

with Logistic Normal Regression.” Journal of the American Statistical Association 89

(428): 1218–31.

Anderson, Keaven M, Patricia M Odell, Peter WF Wilson, and William B Kannel.

1991. “Cardiovascular Disease Risk Profiles.” American Heart Journal 121 (1): 293–98.

Bajari, Patrick, Jeremy T Fox, and Stephen P Ryan. 2007. “Linear Regression

Estimation of Discrete Choice Models with Nonparametric Distributions of Random

Coefficients.” The American Economic Review 97 (2): 459–63.

Baker, George A, and Peter Russell Graves-Morris. 1996. Padé Approximants. Vol.

59. Encyclopedia of Mathematics and Its Application. Cambridge University Press,

Cambridge.

Bech, Mickael, and Dorte Gyrd-Hansen. 2005. “Effects Coding in Discrete Choice

Experiments.” Health Economics 14 (10): 1079–83.

Berger, James O, and Robert L Wolpert. 1988. “The Likelihood Principle.” Lecture

Notes-Monograph Series 6: iii–199.

Bhatnagar, Amit, and Sanjoy Ghose. 2004. “A Latent Class Segmentation Analysis

of E-Shoppers.” Journal of Business Research 57 (7): 758–67.

Biernacki, Christophe, Gilles Celeux, and Gérard Govaert. 2000. “Assessing a Mixture

97



Model for Clustering with the Integrated Completed Likelihood.” IEEE Transactions

on Pattern Analysis and Machine Intelligence 22 (7): 719–25.

Boyd, J Hayden, and Robert E Mellman. 1980. “The Effect of Fuel Economy Standards

on the Us Automotive Market: An Hedonic Demand Analysis.” Transportation

Research Part A: General 14 (5-6): 367–78.

Bridges, John FP. 2013. “Overlap and the Efficiency of Discrete-Choice Experiments:

Evidence from a Randomized Experiment.” In The 35th Annual Meeting of the Society

for Medical Decision Making. The Society for Medical Decision Making.

Bridges, John FP, A Brett Hauber, Deborah Marshall, Andrew Lloyd, Lisa A Prosser,

Dean A Regier, F Reed Johnson, and Josephine Mauskopf. 2011. “Conjoint Analysis

Applications in Health—a Checklist: A Report of the Ispor Good Research Practices

for Conjoint Analysis Task Force.” Value in Health 14 (4): 403–13.

Bridges, John FP, Elizabeth T Kinter, Annette Schmeding, Ina Rudolph, and Axel

Mühlbacher. 2011. “Can Patients Diagnosed with Schizophrenia Complete Choice-

Based Conjoint Analysis Tasks?” The Patient: Patient-Centered Outcomes Research

4 (4): 267–75.

Clark, Michael, and Emilia Vynnycky. 2004. “The Use of Maximum Likelihood

Methods to Estimate the Risk of Tuberculous Infection and Disease in a Canadian

First Nations Population.” International Journal of Epidemiology 33 (3): 477–84.

Consortium, Breast Cancer Linkage, and others. 1999. “Cancer Risks in Brca2

Mutation Carriers.” Journal of the National Cancer Institute 91 (15): 1310–6.

Cramér, Harald. 1946. Mathematical Methods of Statistics (Pms-9). Princeton

University Press.

Cunningham, Charles E, Beth S Bruce, Anne W Snowdon, Yvonne Chen, Carol

Kolga, Caroline Piotrowski, Lynne Warda, Heather Correale, Erica Clark, and Melanie

98



Barwick. 2011. “Modeling Improvements in Booster Seat Use: A Discrete Choice

Conjoint Experiment.” Accident Analysis & Prevention 43 (6): 1999–2009.

Cunningham, Charles E, Ken Deal, and Yvonne Chen. 2010. “Adaptive Choice-Based

Conjoint Analysis.” The Patient: Patient-Centered Outcomes Research 3 (4): 257–73.

Cuyt, Annie. 1999. “How Well Can the Concept of Padé Approximant Be Generalized

to the Multivariate Case?” Journal of Computational and Applied Mathematics 105

(1): 25–50.

Dahan, Ely, John Hauser, Duncan Simester, and Olivier Toubia. 2002. “Application

and Test of Web-Based Adaptive Polyhedral Conjoint Analysis.” Center for EBusiness

@ MIT. Online at Ebusiness.mit.edu.

DiCiccio, Thomas J, and Anna Clara Monti. 2001. “Approximations to the Profile

Empirical Likelihood Function for a Scalar Parameter in the Context of M-Estimation.”

Biometrika 88 (2): 337–51.

Eisen-Hecht, Jon, Randall A Kramer, Joel Huber, and others. 2005. “A Hierarchical

Bayes Approach to Modeling Choice Data: A Study of Wetland Restoration Programs.”

Unpublished PhD Dissertation, Nicholas School of the Environment, Duke University,

Durham, NC.

Evgeniou, Theodoros, Constantinos Boussios, and Giorgos Zacharia. 2005. “General-

ized Robust Conjoint Estimation.” Marketing Science 24 (3): 415–29.

Evgeniou, Theodoros, Massimiliano Pontil, and Olivier Toubia. 2007. “A Convex

Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation.”

Marketing Science 26 (6): 805–18.

Fosgerau, Mogens, and Stephane Hess. 2008. “Competing Methods for Representing

Random Taste Heterogeneity in Discrete Choice Models.” MPRA Paper, University

99



Library of Munich, Germany.

Geerts, Paul, Guadalupe Martinez, and Andreas Schreiner. 2013. “Attitudes Towards

the Administration of Long-Acting Antipsychotics: A Survey of Physicians and Nurses.”

BMC Psychiatry 13: 58.

Geyer, Charles J. 2013. “Asymptotics of Maximum Likelihood Without the Lln or

Clt or Sample Size Going to Infinity.” In Advances in Modern Statistical Theory

and Applications: A Festschrift in Honor of Morris L. Eaton, 1–24. Institute of

Mathematical Statistics.

Green, Paul E, and Vithala R Rao. 1971. “Conjoint Measurement for Quantifying

Judgmental Data.” Journal of Marketing Research 8 (3): 355–63.

Green, Paul E, and Venkatachary Srinivasan. 1978. “Conjoint Analysis in Consumer

Research: Issues and Outlook.” Journal of Consumer Research 5 (2): 103–23.

Hauser, John R, and Vithala R Rao. 2004. “Conjoint Analysis, Related Modeling, and

Applications.” In Marketing Research and Modeling: Progress and Prospects, 141–68.

Springer US.

Heiss, Florian, Daniel McFadden, and Joachim Winter. 2010. “Mind the Gap!

Consumer Perceptions and Choices of Medicare Part d Prescription Drug Plans.” In

Research Findings in the Economics of Aging, 413–81. University of Chicago Press.

Hensher, David, Jordan Louviere, and Joffre Swait. 1998. “Combining Sources of

Preference Data.” Journal of Econometrics 89 (1): 197–221.

Hiligsmann, Mickael, C van Durme, Piet Geusens, Benedict GC Dellaert, Carmen

D Dirksen, TT van der Weijden, Jean-Yves Reginster, and Annelies Boonen. 2013.

“Nominal Group Technique to Select Attributes for Discrete Choice Experiments:

An Example for Drug Treatment Choice in Osteoporosis.” Patient Preference and

100



Adherence 7: 133–39.

Huber, Joel, and Kenneth Train. 2001. “On the Similarity of Classical and Bayesian

Estimates of Individual Mean Partworths.” Marketing Letters 12 (3): 259–69.

Huber, Joel, and Klaus Zwerina. 1996. “The Importance of Utility Balance in Efficient

Choice Designs.” Journal of Marketing Research 33 (3): 307–17.

Johnson, F Reed, Brett Hauber, Corey A Siegel, Steven Hass, and Bruce E Sands.

2010. “Are Gastroenterologists Less Tolerant of Treatment Risks Than Patients?

Benefit-Risk Preferences in Crohn’s Disease Management.” Journal of Managed Care

Pharmacy 16 (8): 616–28.

Kamakura, Wagner A, and Gary Russell. 1989. “A Probabilistic Choice Model for

Market Segmentation and Elasticity Structure.” Journal of Marketing Research 26:

379–90.

Kinter, Elizabeth T, Thomas J Prior, Christopher I Carswell, and John FP Bridges.

2012. “A Comparison of Two Experimental Design Approaches in Applying Conjoint

Analysis in Patient-Centered Outcomes Research.” The Patient: Patient-Centered

Outcomes Research 5 (4): 279–94.

Lenk, Peter J, Wayne S DeSarbo, Paul E Green, and Martin R Young. 1996. “Hierar-

chical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced

Experimental Designs.” Marketing Science 15 (2): 173–91.

Louviere, Jordan J, David Pihlens, and Richard Carson. 2011. “Design of Discrete

Choice Experiments: A Discussion of Issues That Matter in Future Applied Research.”

Journal of Choice Modelling 4 (1): 1–8.

Luce, R Duncan, and John W Tukey. 1964. “Simultaneous Conjoint Measurement: A

New Type of Fundamental Measurement.” Journal of Mathematical Psychology 1 (1):

101



1–27.

McFadden, Daniel. 1973. “Conditional Logit Analysis of Qualitative Choice Behavior.”

In Frontiers in Econometrics, 105–42. Academic Press, New York.

McFadden, Daniel L. 1976. “Quantal Choice Analaysis: A Survey.” In Annals of

Economic and Social Measurement, 5 (4):363–90.

McFadden, Daniel, and Kenneth Train. 2000. “Mixed Mnl Models for Discrete

Response.” Journal of Applied Econometrics 15 (5): 447–70.

Morey, Edward, and Kathleen Greer Rossmann. 2003. “Using Stated-Preference

Questions to Investigate Variations in Willingness to Pay for Preserving Marble Mon-

uments: Classic Heterogeneity, Random Parameters, and Mixture Models.” Journal

of Cultural Economics 27 (3-4): 215–29.

Olsen, Søren Bøye, and Jürgen Meyerhoff. 2017. “Will the Alphabet Soup of Design

Criteria Affect Discrete Choice Experiment Results?” European Review of Agricultural

Economics 44 (2): 309–36.

Patefield, WM. 1977. “On the Maximized Likelihood Function.” Sankhyā: The Indian
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