
 

 

SIGLEC-8 LIGANDS IN HUMAN AIRWAY AND AIRWAY 

SECRETIONS 

by 

Anabel G. Alvarenga 

A dissertation submitted to Johns Hopkins University in conformity with the 

requirements for the degree of Doctor of Philosophy 

Baltimore, Maryland 

April, 2018 

 

 

 

 

  



ii 

ABSTRACT 

Siglecs – sialic acid binding Ig-like lectins – are regulatory molecules expressed on 

subsets of immune cells where most inhibit inflammation when engaged by complementary 

sialoglycan ligands on target tissues. Both eosinophils and mast cells express Siglec-8 on 

the cell surface, and when Siglec-8 binds to sialoglycan ligands on tissues apoptosis of 

eosinophils and inhibition of mediator release by mast cells is induced, limiting 

inflammation. Although Siglec-8 has been shown to bind a synthetic glycan 6’-sulfated 

sialyl N-acetyllactosamine, the endogenous Siglec-8 ligand in human airways was still 

unknown.  

This study provides evidence of endogenous high molecular weight Siglec-8 ligands in 

human airway and airway secretions that are sensitive to sialidase and keratanase treatment. 

Siglec-8 ligands were isolated and identified from normal postmortem human airways or 

from nasal lavage. Glycoproteins were separated by size exclusion chromatography and 

resolved by composite agarose-acrylamide gel electrophoresis, blotted, and probed with 

human Fc-tagged Siglec-8, revealing three binding species (270 kDa, 600 kDa and 1000 

kDa) in tracheal extracts and one major binding specie (~900 kDa) in nasal lavage. Ligand-

containing fractions were pooled, and ligands were captured by immunoprecipitation using 

His-tagged pentameric Siglec-8 bound to nickel-Sepharose beads. Siglec-8-precipitated 

ligands were subjected to mass spectrometric proteomic analysis, revealing the 

proteoglycan aggrecan as the predominant protein in all three-size species of Siglec-8 

ligands extracted from trachea and glycoprotein-340 as the predominant protein in sample 

purified from nasal lavage. Anti-aggrecan antibody immunoblots of electrophoresed 

tracheal purified Siglec-8 ligand revealed co-migrating aggrecan immunoreactivity that 
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was sensitive to aggrecanase treatment. Anti-GP340 antibody immunoblots of 

electrophoresed nasal lavage purified Siglec-8 ligand revealed co-migrating GP340 

immunoreactivity. All Siglec-8 ligands were sensitive to sialidase and keratanase 

treatment. In conclusion, human airway Siglec-8 ligands are sialylated keratan sulfate 

chains presented on different proteins dependent on where they are expressed. 
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CHAPTER 1: INTRODUCTION 

Section 1.1- Siglecs and Immune Regulation 

Siglecs (Sialic acid binding ImmunoGlobulin-like LECtins) are cell surface proteins, 

members of the immunoglobulin gene superfamily that bind sialylated glycans.1-4 All 

siglecs are single pass transmembrane proteins with extracellular domains containing one 

or more Ig-like C2-set domains and an amino terminal variable Ig-like-domain that 

specifically binds sialic acid3. Siglecs are classified in two major subgroups, classic siglecs 

which are evolutionary conserved across mammalian species and CD33-related siglecs 

which are not.3,5-7 Because CD33-related siglecs have evolved rapidly it is hard to 

determine a homolog of some of them in mouse and therefore, those mouse siglecs were 

assigned letters instead of numbers (Fig. 1.1).8-10 Unlike other sialic acid binding lectins, 

siglecs bind to sialic acids with strict specificity for sialic acid linkage.2,3 

Figure 1.1 Human and 

mouse Siglecs. To the 

left, human and mouse 

siglecs are shown as a 

cartoon diagram. Sialic 

acid binding domain in 

purple, variation in 

number of C2-set domain 

in different siglecs and 

small cytosolic tail containing ITIM and ITIM like motifs.11  
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Interest in siglecs and their natural ligands has increased in the past decade due to 

their potential for therapeutics and treatment of inflammatory diseases. 8,12,13 There is a 

constant fight between host and pathogens where a balance between activation and 

inhibition of immune cells is critical to resolve infection while avoiding 

hyperinflammation. Many siglecs have a cytosolic tail with immunoreceptor tyrosine-

based inhibitory motifs or ITIMs involved in intracellular signaling.2,3,7,11,14 Most siglecs 

when engaged to their natural glycan ligand induce downregulation or apoptosis of the cell 

they are expressed on. 2,3,7,11,14 Selective expression of siglecs on subsets of inflammatory 

cells (Fig. 1.2) and their potential to mediate natural signaling pathways through the ITIM 

motif makes them an appealing therapeutic target to suppress ongoing inflammation and 

limit inflammatory tissue damage downstream of immune responses.12,15-17 

Figure 1.2 Siglecs 

selective expression 

in human immune 

and hematopoietic 

cells. Each cell type 

expresses a set of 

siglecs on the cell 

surface and some of 

them share similar 

siglecs. Siglec-8 is expressed mainly on cells involved in asthma and allergy (mast cells, 

basophils and eosinophils) whereas Siglec-9 is expressed on neutrophils, monocytes, 

myeloid progenitor cells and some natural killer cells (NK cells).12 
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Section 1.2- Siglec-8 and Siglec-9 

Among the siglecs expressed in human immune cells is Siglec-8. Siglec-8 discovered in 

2000 was found to be highly and selectively expressed on eosinophils, basophils and mast 

cells.18 Later studies found that Siglec-8 expressed on inflammatory cells associated with 

asthma and allergy could function as a regulatory molecule.19 Further analysis of Siglec-8 

revealed its high selectivity against alpha-2-3 linked sialic acids and preferential binding 

to sialyl-Lewis structure 6’-sulfated-sialyl-LewisX [6’-sulfo-sLex; NeuAcα2-3Gal(6-O-

SO3) β1-4(Fucα1-3) GlcNAc].20 A synthetic glycan array of more than 600 glycans, further 

confirmed its high specificity for the 6’-sulfated-sialyl-LacNAc and 6’-sulfated-sialyl-

LewisX.21 When Siglec-8 was crosslinked on inflammatory cells by antibodies or 

polyvalent 6’-sulfated-sialyl-LacNAc glycan it induced eosinophil apoptosis and inhibited 

release of inhibitory mediators from mast cells.16 This regulatory function was even greater 

in the presence of proinflammatory mediators.22 At the time this thesis research was 

initiated, it was already established that Siglec-8 plays a role in inflammatory regulation, 

however, the structure of the endogenous human glycan ligand was still unknown. Our 

hypothesis was that ligands are produced in the lung where they engage inflammatory cells 

expressing Siglec-8 ligand and control inflammation. Knowledge of the natural ligands for 

Siglec-8 can provide improved leads for glycomimetic drug development, produce better 

drugs that halt eosinophilic and mast cell mediated inflammation and improve outcomes of 

asthma, allergy, and chronic rhinosinusitis. 

Siglec-9 is expressed on a broader range of immune cells, neutrophils, monocytes, 

dendritic cells, and some natural killer cells.12 Unlike Siglec-8, Siglec-9 has a broader 

glycan binding specificity. On a custom glycolipid microplate array, Siglec-9 bound to 
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sialyl-Lewis structure 6-sulfated-sialyl-LewisX [6-sulfo-sLex; NeuAcα2-3Gal β1-

4(Fucα1-3) GlcNAc (6-O-SO3)], the 6’-sulfated-sialyl-LacNAc, as well as to the 

gangliosides GD1a and GT1b.21 Similar to Siglec-8, when Siglec-9 is crosslinked on 

neutrophils by antibodies or polyvalent glycans it reduces the presence of proinflammatory 

mediators.8 The original intent of this thesis work was to study Siglec-8 and Siglec-9 

ligands in human airways but later focused on purifying and identifying Siglec-8 ligands. 

Section 1.3- Airway Inflammatory Diseases 

Asthma is a lung inflammatory disease that affects about 235 million people 

estimated by World Health Organization (http://www.who.int/respiratory/asthma/en/). It is 

an incurable disease clinically diagnosed by three components airflow obstruction, airway 

hyperresponsiveness and airway inflammation.23,24 Currently, patients either try to prevent 

allergen exposure or are treated with drugs that ease symptoms and but do not decrease or 

halt disease progression.25-28 Different leukocytes are well established factors in the 

pathogenesis of asthma.24,26,29 The disease is characterized by the recruitment of 

eosinophils, mast cells, and CD4+ T-cells into the lung larger airways.29-31 Pathogenesis 

involves airway remodeling characterized by airway wall thickening and enhanced smooth 

muscle mass.32,33 Current treatment for asthma includes the use of inhaled corticosteroids 

that control inflammation through a limited understood mechanism.31,34 Anti-inflammatory 

corticosteroids decrease the number of eosinophils in asthmatic patients and remain a key 

component in asthma management, but prolonged use reduces its effectivity.35. Patients 

with severe asthma have a high number of eosinophils in blood and airway that persist 

despite treatment with oral and inhaled corticosteroids.23,36-38 Interleukin-5 (IL-5) is an 

eosinophil specific growth factor and humanized antibodies against it have been produced, 
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clinically tested, and shown to reduce asthma exacerbations, further associating eosinophils 

in the pathophysiology of asthma.39-41  

COPD is an inflammatory lung disease marked by the influx of neutrophils, 

macrophages and CD8+ T-cells42,43. COPD pathogenesis involves squamous epithelial 

metaplasia and airway wall fibrosis.30,43 COPD predominantly affects the smaller airways 

and lung parenchyma.43 A marked difference between asthma and COPD is the alveolar 

destruction characteristic of emphysema.42-44 Alveolar destruction is most likely due to 

protease-mediated degradation of connective tissue elements, particularly elastin by 

neutrophil-derived elastase, and perhaps apoptosis of lung parenchymal cells.45 Several 

studies associate neutrophils with the pathophysiology of COPD. COPD patients have 

increased neutrophils in sputum which is correlated with disease severity.42-47 Increased 

levels of elastolytic enzymes, such as neutrophil elastase and several matrix 

metalloproteinases (MMPs), are present in the lung of COPD patients.45,46,48 Current 

therapies primarily treat symptoms but do not achieve disease stabilization, remission, or 

cure.25,49 Most COPD patients respond poorly to available drugs, except for prevention and 

management of acute exacerbations.50,51 Novel therapeutic targets that limit ongoing 

inflammatory responses associated with asthma and COPD may help address the need for 

new therapeutics. Understanding and exploring siglec roles in regulating inflammation 

may provide better therapeutic leads to make better drugs. 

 In summary, inflammatory cells expressing Siglec-8 or Siglec-9 on their cell 

surface are associated with persistent inflammatory diseases and crosslinking of Siglec-8 

or Siglec-9 on these cells induce apoptosis.13,15,18,52-56 Our aim was to identify the natural 

ligand produced in human airways. 
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CHAPTER 2: METHODS 

Methods described in this section apply to experiments carried out throughout the thesis 

work. Two types of extraction methods were used to identify Siglec-ligands in human 

airways and different gel compositions were used to resolve these ligands by 

electrophoresis. Siglec-8-ligands were further purified using gel chromatography and 

affinity purification. Enzymatic treatments of Siglec-8 ligands revealed the nature of the 

ligand glycan structure as well as the protein carrier of these ligands in human airway. 

Section 2.1 Tissues and tissue extraction 

Tissues 

Human lungs or airway were received from organ donors within 24 hours of death. At the 

time of collection, tissues were flushed and stored in HTK (histidine-tryptophan-

ketoglutarate) or UW (University of Wisconsin) solutions used routinely to preserve tissues 

prior to transplantation. Upon receipt, the trachea, bronchi, smaller airways, and 

parenchyma were dissected free of surrounding tissue and portions of each separated for 

histology, extraction, and intact cell isolation.  
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Tissue extraction  

Airway tissue (trachea or bronchus) was placed in Detergent Extract Buffer (Detergent), 1 

mL per gram of tissue (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM CaCl2, 2 mM MgCl2, 

0.3% CHAPS, 1% NP-40 and protease inhibitor cocktail) and the luminal surface scraped 

with a cell scraper (Sarstedt Cat# 83.1830) to release the mucosa and submucosa layers. 

Scraped tissue was homogenized by passing through a 20-gauge syringe needle, 

centrifuged at 20,000 x g for 5 min, supernatant was collected, stored at -70°C and the 

pellet discarded. Remaining cartilage after scraping was diced, frozen under liquid nitrogen 

and pulverized using a cold mortar and pestle. Pulverized tissue was weighed and added at 

a ratio of 100 mg of pulverized tissue per 1 mL of Guanidinium Extract Buffer (GuHCl) 

[10 mM sodium phosphate (pH-6.5), 6 M GuHCl (OminPur, EMD Millipore), 5 mM 

EDTA, and 0.1 mM phenylmethylsulfonyl fluoride], incubated with mixing end over end 

for ≥16 h at 4 °C. After incubation, extract was centrifuged at 22,000 x g for 30 min and 

the supernatant stored at -20°C. Lung parenchyma was homogenized in Detergent Extract 

Buffer using a Potter-Elvehjem glass-Teflon homogenizer on ice or pulverized under liquid 

nitrogen and extracted with Guanidinium Extraction Buffer. 

Section 2.2 Dialysis, gel electrophoresis, blotting and detection 

Dialysis  

Samples in GuHCl buffer were first dialyzed against 1M urea, 20 mM sodium phosphate 

pH 7.4 using a 0.1 mL Slide-A-Lyzer mini dialysis device, 10K molecular weight cutoff 

(MWCO), from Thermo Fisher Scientific (Waltham, MA) before loading on a denaturing 

gel.  

Gel electrophoresis 
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Two types of gels were used to resolve and detect Siglec-ligands. Standard sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed using 4–12% 

NuPAGE Bis-Tris precast gels (Thermo Fisher) run in MOPS buffer, at 200V for 1 hour. 

To resolve larger molecules, composite 2% agarose, 1.5% acrylamide gels were prepared 

in house. To a 125-ml Erlenmeyer flask was added 10.3 mL of 2 M Tris-HCl (pH 8.1), 8.9 

mL of water, 27.5 mL of 8 M urea, and 1.1g agarose (Lonza Seakem Gold #50152). After 

swirling, the suspension was microwaved for 30-45 seconds and mixed to completely 

dissolve the agarose. The mixture was placed in an oven preheated to 65°C for 30 minutes 

then 5.5 mL of glycerol were added, the solution swirled to mix, and 2.8 mL of 30% 

acrylamide/0.8% bisacrylamide (Biorad cat# 161-0158) and 18.5 μL of N,N,N´,N´-

tetramethylethylenediamine (TEMED) was added and the solution thoroughly mixed. The 

solution was quickly distributed equally into four 15-mL conical tube (~13 mL each). An 

aliquot (24 μL) of freshly prepared 40% ammonium persulfate (APS) was added to each 

tube, the solution mixed thoroughly, slowly pippetted into Life Technologies gel cassettes 

(#NC2015) and sealed with sample combs. After 30 minutes at ambient temperature, 

cassettes with polymerized gel were transferred to 4 °C for 1 h. Each cassette was wrapped 

with absorbent paper, moistened with 10 mL running buffer per gel cassette and stored at 

4 °C for 24 hours before used. Gels can be stored for up to a month without affecting its 

properties. Gel electrophoresis was performed using 0.192 M Tris-borate buffer (pH 8.3), 

1 mM EDTA, 0.1% SDS. Gels were run at 80 V for 2.5 hours. Samples were prepared 1:1 

with NuPAGE LDS Sample Buffer (Thermo Fisher) containing 400 mM dithiothreitol 

(DTT) before loading on wells. 

Blotting and detection 
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Gels were transferred to polyvinylidene difluoride (PVDF) membranes using a Thermo 

Fisher first generation iBlot dry transfer device at setting P3. Standard gels were transferred 

for 10 minutes and composite gels were transferred for 7 minutes. Membranes were 

blocked with 5% nonfat dry milk in Dulbecco’s phosphate-buffered saline containing 0.1% 

Tween-20 (PBST) for 30 min. During blocking, Siglec-Fc chimeras were precomplexed 

with secondary antibody in a solution of PBST containing 20 µg/mL of Siglec-8-Fc or 

Siglec-9-Fc and 14 µg/mL of horseradish peroxidase (HRP)-conjugated anti-human Fc 

(Sigma-Aldrich). After incubation on ice for ≥30 minutes, the solution was diluted 40-fold 

with additional PBST. Blots were quickly rinsed once with PBST, overlaid with 6 mL of 

precomplexed siglec-Fc solution and incubated for 16 h at 4°C. After incubation, 

membranes were washed 3 times with PBST, 5 minutes each wash and developed using 

enhanced chemiluminescence (Amersham ECL Prime Western Blotting Detection 

Reagent, GE Healthcare, Pittsburgh, PA).  

Molecular weight marker used with standard gels was MagicMark XP Western 

protein standard (up to 220 kDa, Thermo Fisher). Molecular weight markers used with 

composite gels included HiMark Pre-stained protein standard (up to 460 kDa, Thermo 

Fisher) or crosslinked human IgM prepared in house as follows: To 1 mg/mL human-IgM 

in PBS pH 7.6 (Thermo Fisher Cat# 31146) at ambient temperature was added 

bis(sulfosuccinimidyl)suberate (BS3, Thermo Fisher Cat# 21580) to a final concentration 

of 2.5 mM. After 20 minutes the reaction was stopped by adding 1 M TrisHCl pH 7.2 to a 

final concentration of 91 mM. The marker was stained using Visio real-time stain kit 

(Advansta Cat# K-11053-B30). 
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Section 2.3 Size exclusion chromatography 

Sample preparation 

Samples extracted with GuHCl were dialyzed against 4 M GuHCl, 10 mM sodium 

phosphate, pH 7.0 buffer using Float-A-Lyzer G2 100 kDa MWCO (G235059, 

Spectra/Por) dialysis tube to remove smaller molecular weight proteins before loading on 

the size exclusion column. 

Separation, collection, and detection 

Siglec-8 ligands in airway extracts were resolved by size exclusion chromatography on a 

HiPrep 26/60 Sephacryl S-500 HR column (GE-Healthcare Life Sciences) using an AKTA 

chromatography system (GE-Healthcare Life Sciences). The size exclusion column was 

equilibrated in 4 M guanidinium hydrochloride, 10 mM sodium phosphate, pH 7.0, then 

4.5 mL of sample was injected and the flow rate was set to 0.8 mL/min. After injection, 48 

ml (~15% of the total column volume) of eluate was discarded, then 1.8-mL fractions were 

collected until a full column volume (320 ml) was eluted. Aliquots from each fraction were 

dotted onto PVDF membranes using a Bio-Dot Microfiltration Apparatus (BioRad), the 

membrane was blocked and probed as described in Section 2.2. Positive fractions were 

dialyzed in Urea Buffer (1M urea, 20 mM sodium phosphate pH 7.4) before running 

samples on composite gels and blotting as described above. Fractions were pooled based 

on molecular weight (migration on composite gels) for further purification by lectin 

precipitation. 
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Section 2.4 Affinity capture of Siglec-8 ligand using pentameric Siglec-8-COMP 

Sample preparation 

Combined size exclusion fractions were dialyzed against Urea Buffer using a Float-A-

Lyzer G2 100kDa MWCO (G235059, Spectra/Por) before loading on an affinity capture 

column. 

Immobilization of Siglec-8-COMP on Nickel beads 

To explore natural and synthetic Siglec-8 ligands, a pentameric Siglec-8 chimera was 

developed. A natural pentamerizing polypeptide domain from cartilage oligomeric matrix 

protein (COMP) was used to engineer pentameric Siglec-8. Recombinant pentameric 

Siglec-8 (Siglec-8-COMP) contains the entire extracellular domain of Siglec-8, a BAP 

biotinylation site, a Factor Xa or TEV cleavage site, Ig-like domains 3 & 4 of CD4 (as a 

spacer), the COMP pentamerization domain, and a 6-His C-terminal tag (Figure 2.1). The 

6-His C-terminal tag was used to capture and purify Siglec-8-COMP using nickel 

Sepharose beads. 

Figure: 2.1 Schematics of 

recombinant Siglec-8-

COMP construct. The tail 

represents the C-terminal 6-

His tag, the gray box 

represents the pentamerizing 

domain (COMP), in green 

the CD4 spacer, black and white boxes the BirA site and Factor Xa site, in blue the two 

constant Ig-like domains of Siglec-8 and in red the sialic-acid binding domain. 
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Siglec-8-COMP was transiently expressed in an optimized HEK293 suspension 

culture system, because the construct had a secretory signal peptide, protein was secreted 

into media. To immobilize Siglec-8-COMP on nickel beads, a chromatography column 

(Biorad, Cat# 731-1550) was packed with 1 mL of nickel Sepharose resin (GE Healthcare, 

Cat# 17-5268-01), the beads washed with 30 mL of binding buffer (500 mM NaCl, 20 mM 

sodium phosphate, 20 mM imidazole, pH-7.4) and 200 mL (~400 µg) of Siglec-8-COMP 

media cycled through nickel beads for 24 h using a peristaltic pump at 4 °C. Next day, the 

column was washed with 30 mL of High Salt Elution Buffer (1M urea, 1M NaCl, 20 mM 

sodium phosphate, 20 mM imidazole, pH-7.4) and then pre-equilibrated with 30 mL of 

Urea Buffer (Siglec-8 column). Combined and dialyzed size exclusion fractions (starting 

material, SM) was pre-cleared by cycling 3 times through 1 mL of underivatized nickel 

Sepharose resin that had been pre-equilibrated with 30 mL of Urea Buffer. The cleared 

sample (CL) was then loaded on the Siglec-8-COMP column and cycled through 3 times. 

The flow-through (FT) was collected and the column was washed with 10 mL of Salt Wash 

(1M urea, 150 mM NaCl, 20 mM sodium phosphate, 20 mM imidazole, pH-7.4) collecting 

2 mL fractions. Siglec-8 ligands were eluted with 4.5 mL of High Salt Elution buffer, 

collecting one 0.5 mL fraction followed by four 1 mL fractions. These conditions released 

the Siglec-8 ligands without eluting Siglec-8-COMP from the nickel beads, making it 

possible to recycle the beads for sequential runs. Equal volumes of each fraction were 

loaded on composite gels and analyzed as described in Section 2.2. 

Section 2.5 Enzymatic treatment of purified Siglec-8 ligands 

Ligands were dialyzed against Dulbecco’s PBS before enzymatic digestion. 

Sialidase 
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Sialic acid binding specific ligands were detected by treating samples with or without 

sialidase Siglec-8-Fc binding bands that disappeared after treatment with sialidase were 

pursued. Sialidase treatment was done as follows: tissue extracts or purified samples were 

treated with 50-100 mU/mL of Vibrio cholerae sialidase and incubated at 37 °C for 1.5 h. 

Samples were analyzed as described in Section 2.2. 

Chondroitinase 

Chondroitinase ABC degrades chondroitin sulfate and dermatan sulfate chains into 

disaccharides containing 4-deoxy-beta-D-gluc-4-enuronosyl groups. To determine if 

chondroitin sulfate chains were Siglec-8-ligands, purified samples were digested with 

chondroitinase ABC. A 10x Tris-acetate working buffer (500 mM Tris HCl, 500 mM 

sodium acetate, pH 8.0) was diluted to 1x with ligand, and Chondroitinase ABC 

(Seikagaku, Code # 100332) was added to a final concentration of 25-500 mU/mL and 

incubated at 37 °C for at 16-24 h. Samples were analyzed as described in Section 2.2. 

 

Aggrecanase (ADAMTS4) 

Aggrecanase-1 or ADAMTS4 is a protease that selectively cleaves proteoglycans from the 

lectican family including aggrecan, versican, brevican and neurocan. To determine if 

aggrecan was a Siglec-8 ligand protein carrier, purified samples were treated with 

ADAMTS4 as follow: added ADAMTS4 (R&D Cat# 4307-AD-020) was added to purified 

samples to a final concentration of 0.2-0.5 mU/ml ADAMTS4 and incubated at 37 °C for 

16-24 h. Samples were analyzed as described in Section 2.2. 

Keratanase I 
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Keratanase I cleaves keratan sulfate chains at the beta-galactoside linkage where galactose 

is not sulfated. To determine if keratan sulfate chains were Siglec-8-ligands, purified 

samples were digested with keratanase I Pseudomonas sp. (Amsbio Cat# 100810-1). A 10x 

sodium acetate working buffer (100 mM sodium acetate, pH 6.0) was diluted to 1x with 

ligand, and keratanase I was added to a final concentration of 1-40 mU/mL and incubated 

at 37 °C for 16-24 h. Samples were analyzed as described in Section 2.2. 

Keratanase II 

Keratanase II cleaves keratan sulfate chains at the 1,3-β-N-acetylglucosamine linkage 

where galactose sulfation does not inhibit cleavage. To determine if highly sulfated keratan 

sulfate chains were Siglec-8-ligands, purified samples were digested with keratanase II 

from Bacillus sp. (Amsbio Cat# 100812-1). A 10x sodium acetate working buffer (100 mM 

sodium acetate, pH 6.0) was diluted to 1x with ligand, and keratanase II added to a final 

concentration of 1-40 mU/mL and incubated at 37 °C for 16-24 h. Samples were analyzed 

as described in Section 2.2. 
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CHAPTER 3: DISCOVERY OF SIGLEC-8 AND SIGLEC-9 

LIGANDS IN HUMAN LUNG AIRWAYS 

Section 3.1 Introduction 

The goal of this research project was to identify the endogenous sialylated-glycan-ligands 

for Siglec-8 and Siglec-9 present in human airways. Immunohistochemistry (IHC) of 

sections taken from different compartments of human lung revealed that expression of 

Siglec-ligands was cell specific. Culture of primary human lung epithelial and submucosal 

gland cells supported the evidence gathered from IHC as well as from tissue extracts. Sialic 

acid specific ligands were extracted from tissue, treated with sialidase and binding detected 

with a recombinant Siglec-Fc construct that contained the extracellular domains of Siglec-

8 or Siglec-9.  

As the project developed, the method of extraction was changed as well as the 

method to resolve the ligands. The first experiments used a combination of detergents to 

extract all proteins without denaturing them to avoid affecting further purification methods. 

However, this method was not successful to extract all siglec ligands, and a harsher 

denaturant, guanidinium hydrochloride, was used. Analysis by electrophoresis revealed 

siglec ligands were large molecular weight proteins insufficiently resolved by gel 

electrophoresis using 4-12% Bis-Tris polyacrylamide gels, therefore, a composite agarose-

acrylamide gel was adopted to provide better resolution of ligands extracted. The improved 

method of extraction and gel electrophoresis was effective in extracting large molecular 

weight siglec ligands that were sensitive to sialidase treatment. These findings revealed not 

only that siglec ligands are present in human airways, but also that their expression is 

restricted to different cell types and compartments within human lung.  
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Section 3.2 Additional experimental procedures 

Siglec overlay histochemistry21 

Tissues were fixed in neutral 4% paraformaldehyde in Dulbecco’s phosphate-buffered 

saline (PBS) at 4°C for 16 h, embedded in paraffin, sectioned to 5 µm and captured on 

glass slides. Following deparaffinization, the slides were heated briefly in 10 mM sodium 

citrate (pH 6.0) for antigen retrieval. Subsequent steps were performed at ambient 

temperature. Slides were incubated in endogenous enzyme Blocking Reagent (Dako North 

America, Carpinteria, CA) for 10 min, and then in Fc Receptor Blocker (Innovex 

Biosciences, Richmond, CA) for 30 min. Siglec-8-Fc (160 μg/ml) or Siglec-9-Fc (120 

μg/ml) was pre-incubated in PBS with AP-conjugated goat anti-human antibody (16 μg/ml, 

product 109-055-008, Jackson Immunoresearch, West Grove, PA) for 30 min at ambient 

temperature. The solution was diluted 8-fold in PBS, then overlaid on blocked slides and 

incubated 60 min. Slides were washed with PBS, bound lectin conjugate detected with 

Vector Red AP substrate (Vector Laboratories, Burlingame, CA), slides counterstained 

with Hematoxylin QS (Vector Laboratories), dehydrated, mounted in Krystalon (EMD 

Millipore) and imaged using a Nikon Eclipse 90i microscope.  

For comparative siglec overlay of mouse and human airway sections, the above 

procedure was modified as follows. Prior to treatment with blocking reagents, slides were 

incubated in PBS supplemented with 0.1% Tween-20 and 10 mg/ml BSA (Sigma-Aldrich) 

for 30 min. Siglec-8-Fc (15 μg/ml), Siglec-9-Fc (15 μg/ml), or Siglec-F-Fc (5 μg/mL) in 

the same buffer were pre-incubated with AP-conjugated goat anti-human IgG (2 μg/ml, 

product 109-055-044, Jackson Immunoresearch, West Grove, PA) for 30 min at 4°C. 

Alternatively, Siglec-E-(mouse Fc) (5 µg/mL) was similarly pre-incubated with AP-
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conjugated goat anti-mouse IgG (2 μg/mL, product 115-055-003, Jackson 

Immunoresearch). Pre-conjugated siglec-Fc chimeras were pipetted onto the washed slides 

and incubated for 16 h at 4°C. Slides were washed with PBS/0.1% Tween-20, then with 

100 mM Tris-HCl (pH 8.3)/0.1% Tween 20 for 10 min prior to conjugate detection, 

counterstaining and imaging as above. 

Primary airway epithelial and submucosal gland cells21 

Isolation of airway epithelial and submucosal gland cells was performed as described. 57,58 

The trachea was rinsed in sterile Ham’s F-12 medium, opened longitudinally, and then 

treated with 0.1% pronase in Ham’s F12 medium containing antibiotics (100 U/ml 

penicillin, 100 μg/ml streptomycin, 2.5 μg/ml fungizone) at 4 °C overnight to release 

epithelial cells, which were collected as a suspension (see below). Gland-rich submucosal 

tissue was dissected from the remaining airway and incubated for 24 h in 0.01% 

dispase/collagenase in Dulbecco’s modified Eagle medium (DMEM) supplemented with 

100 U/ml penicillin, 100 μg/ml streptomycin, 2.5 μg/ml amphotericin and 50 μg/ml 

gentamicin (DMEM-AB). Each strip was scraped after digestion to release the remaining 

gland cells. Cells were collected by centrifugation, washed in DMEM-AB, and then 

resuspended in trypsin-EDTA (0.25%, Thermo Fisher) and triturated to dissociate 

remaining clumps of cells. Digestion was stopped by addition of fetal bovine serum, cells 

collected by centrifugation and resuspended in DMEM-AB. Gland cells were plated on 

collagen-coated 12-well plates (BD Biosciences, Billerica, MA) in 1:1 DMEM-AB-Ham’s 

F-12 supplemented with hydrocortisone (0.5 μg/ml), insulin (5 μg/ml), transferrin (10 

μg/ml), epinephrine (0.5 μg/ml), triiodothyronine (6.5 ng/ml), and human EGF (25 ng/ml). 

Cultures were maintained at 37°C in an atmosphere of 5% CO2 in air. 
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Airway epithelial cells were plated on collagen-coated T25 flasks and cultured in 

DMEM/F12 (Thermo Fisher) containing 20% fetal bovine serum, 100 U/ml penicillin, 100 

μg/ml streptomycin and 2.5 μg/ml fungizone until confluent. Cells were then dissociated 

with trypsin-EDTA and plated on 6-well Falcon 0.4 μm porous culture inserts (Corning 

Inc., Corning, NY). The cultures were maintained at an air-liquid interface with medium 

below the culture insert (DMEM-BEGM (1:1) plus SingleQuots (Lonza Inc, Mapleton, 

IL)). Culture medium was replaced every third day. Cultures were maintained for 10 days 

prior to mechanical release, collection by centrifugation and detergent extraction. Protein 

concentrations in extracts and exudates was determined by Pierce BCA protein assay 

(Thermo Fisher). 

To collect secretion material, intact bronchus and bronchioles were dissected clean 

of surrounding parenchyma and incubated in RPMI-1640 containing 100 U/mL penicillin 

and 100 μg/mL streptomycin for 48 h at 4°C. Tissue was removed and soluble exudate 

analyzed.  

Section 3.3 Results and discussion 

Siglec-8 and Siglec-9’s role in immune regulation of cells associated with airway 

inflammatory diseases led us to investigate the nature of the endogenous sialoglycan 

ligands that induce suppression of immune cells. The hypothesis is that upon inflammation, 

specific cells in surrounding tissue produce these sialoglycan ligands to control 

inflammation. Two techniques were used, immunohistochemistry staining and western 

blotting to detect Siglec-8 and Siglec-9 ligands using a recombinant Siglec-Fc construct. 

Sialidase treatment revealed sialic acid specific interactions. In western blots, bands that 

did not disappear upon sialidase treatment were not pursued. The datum support the idea 
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that Siglec-8 and Siglec-9 ligands are being produced by surrounding tissue, however, the 

nature of these ligands was still to be determined. 

Siglec-specific downregulation of inflammation requires Siglecs to interact with their 

glycan specific ligand. Our hypothesis was that Siglec-8 and Siglec-9 ligands are produced 

in tissues that they may come in contact with inflammatory cells. A common inflammatory 

cell involved in asthma and allergy are eosinophils15,18,23,30,31,37,39,52,53. Eosinophils are 

often seen infiltrated in patient’s airways but rarely seen in parenchyma tissue30. 

Eosinophils express Siglec-8 on their cell surface and not surprisingly we observed Siglec-

8 ligands in trachea but not parenchyma in lung sections overlaid Siglec-8. Siglec-8 

intensely stained serous cells in submucosal glands and cartilage but not epithelial cells or 

connective tissue (Fig. 3.1). Tissue extracts showed similar Siglec-8 ligand pattern of 

expression. Large molecular weight, sialidase sensitive Siglec-8 ligands were detected in 

trachea and small airway tissue extracts but not lung parenchyma extracts. Most Siglec-8 

ligands were extracted with guanidinium extract buffer and small portion was extracted 

with detergent extract buffer (Fig. 3.2).  
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Figure 3.1: Siglec-8 and Siglec-9 ligand distribution in human airways.21 Serial 

sections of trachea or lung parenchyma stained with H&E or overlay with siglec-Fcs. Low 

power microscopic images of trachea (A, E, I, M), higher power microscopic images of 

tracheal submucosal glands (B, F, J, N), tracheal airway epithelium (C, G, K, O) and lung 

parenchyma (D, H, L, P). Sections stained with H&E (A-D), overlaid with precomplexed 

Siglec-8-Fc (E-H), Siglec-9-Fc (I-L) or secondary (control AP-conjugated anti-human Fc, 

M-P). Sections were counterstained with Hematoxylin QS and Lectin staining detected 

with Vector Red AP Stain. Scale bars are 0.5 mm (A, E, I, M) and 100 μm for all other 

panels. Asterisk: Cartilage, arrowhead: epithelium, arrows: submucosal glands.  
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Figure 3.2: Siglec-8 binds predominantly to tracheal and smaller airway extracted 

with guanidinium but not much to detergent extracts or parenchyma. Trachea (Tr), 

Small Airway (SmA) or Lung Parenchyma (LP) tissues were extracted with detergent (A) 

or guanidinium (B) extract buffer, treated with or without vibrio cholera sialidase (49 

mU/mL). Equal volumes of extracts were loaded on standard gel electrophoresis and 

blotted with Siglec-8-Fc to detect ligands. Magic Marker’s highest molecular weight band 

is 250 kDa.  

Unlike Siglec-8, Siglec-9 has a broader binding specificity and ligand distribution 

in airways. Siglec-9 ligands, were found to be broadly expressed in epithelial cells, 

connective tissue, submucosal gland cells, cartilage, and alveolar cells. Siglec-9 strongly 

bound to epithelial cells and submucosal glands but faintly to cartilage in tracheal sections. 
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It also bound strongly to parenchyma tissue which Siglec-8 did not (Fig 3.1). Tissue 

extracts showed similar Siglec-9 ligand pattern of expression. Large molecular weight, 

sialidase sensitive Siglec-9 ligands were detected in trachea, small airway, and parenchyma 

extracts (Fig. 3.3).  

Figure 3.3: Siglec-9 binds equivalently to all tissue extracts. Trachea (Tr), Small Airway 

(SmA) or Lung Parenchyma (LP) tissues were extracted with detergent (A) or guanidinium 

(B) extract buffer, treated with or without vibrio cholera sialidase (49 mU/mL). Equal 

volumes of extracts were loaded on standard gel electrophoresis and blotted with Siglec-9-

Fc to detect ligands. Magic Marker’s highest molecular weight band is 250 kDa.  

Due to the nature of Siglec-8 ligands standard gels insufficiently resolved the different 

binding species and thus, it appeared as if Siglec ligands were one species. However, 
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composite gels resolved Siglec-8 binding species and revealed multiple binding large 

molecular weight ligands with migration comparable to that of mucins. Multiple binding 

large molecular weight sialoglycoprotein Siglec-8 ligands were present in trachea. It seems 

like Siglec-8 binding species in trachea extracted with detergent extract buffer were 

different from those extracted with guanidinium extract buffer. Tracheal detergent extracts 

Siglec-8 bound to two large molecular weight sialoglycoproteins running at around 900 

kDa and 4,000 kDa. On the other hand, guanidinium tracheal extracts showed strong 

Siglec-8 binding to three large molecular weight sialoglycoproteins running at around 

1,000 kDa, 600 kDa and 250 kDa (Fig. 3.4). 

Opposite to Siglec-8, Siglec-9 bound stronger to trachea extracted with detergent than with 

guanidinium extract buffer. The amount of Siglec-9 ligand in lung parenchyma extract was 

small compared to ligands in trachea (Fig. 3.4). 
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Figure 3.4: Composite gel electrophoresis resolves Siglec-8 and Siglec-9 large 

molecular weight ligands. Trachea tissue extracted with detergent (TrD) or guanidinium 

extract buffer (TrG) and Lung Parenchyma (LP) extracted with detergent were treated 

with (+) or without (-) vibrio cholera sialidase (49 mU/mL). Equal volumes of extracts 

were loaded on composite gel electrophoresis and blotted with Siglec-8-Fc (Siglec-8 

ligands) or Siglec-9-Fc (Siglec-9 ligands) to detect their respective ligands. HiMark 

molecular weight marker running position shown to the left. 

Expression of Siglec-8 ligands in parenchyma tissue was rare. When parenchyma 

tissue extracts from 7 donors were analyzed only 2 out of 7 donors showed some expression 

of Siglec-8 ligands very similar to those observed in detergent tracheal extracts (Fig. 3.5). 

Ligands detected in detergent tracheal extracts varied a lot donor to donor, but two binding 

species were predominant in most extracts (900 kDa and 4M) with donor 1 showing the 

strongest binding and donors 3 and 7 no binding at all (Fig. 3.6). Guanidinium tracheal 
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extracts on the other hand, showed robust Siglec-8 staining in all donors and consistent 

binding showing three major binding species (Fig. 3.7). All donors were smokers, some 

even had asthma and although it would be interesting to determine ligand expressions’ 

correlation with disease that was not the focus of this project. Donor demographics are 

detailed in Table 3.1. 

Expression of Siglec-9 ligands in parenchyma tissue was consistent. When 

parenchyma tissue extracts from 7 donors were analyzed all donors showed expression of 

a large molecular weight Siglec-9 ligand of about 4,000 kDa (Fig. 3.5). The 4,000 kDa 

binding specie Siglec-9 ligand in detergent tracheal extracts was consistent in all donors, 

however, there was a 900 kDa binding specie that was not observed in parenchyma and 

appeared in some donors (Fig. 3.6). Guanidinium tracheal extracts also showed robust 

Siglec-9 staining to all donors and consistent binding showing two major binding species 

running at around 4,000 kDa and 900 kDa that were observed in other tissue extracts (Fig. 

3.7). 
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Figure 3.5: Donor variability in Siglec-8 and Siglec-9 ligand expression in lung 

parenchyma. Lung parenchyma from 7 donors were each extracted with detergent extract 

buffer, equal protein concentration loaded on composite gel electrophoresis and blotted 

with Siglec-8-Fc (Siglec-8 ligands) or Siglec-9-Fc (Siglec-9 ligands) to detect their 

respective ligands. HiMark molecular weight marker running position shown to the left.  
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Figure 3.6: Donor variability in Siglec-8 and Siglec-9 ligand in tracheal tissue 

extracted with detergent extract buffer. Tracheal tissue from 7 donors were extracted 

with detergent extract buffer, equal protein concentration loaded on composite gel 

electrophoresis and blotted with Siglec-8-Fc (Siglec-8 ligands) or Siglec-9-Fc (Siglec-9 

ligands) to detect their respective ligands. HiMark molecular weight marker running 

position shown to the left. 
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Figure 3.7: Donor variability in Siglec-8 and Siglec-9 ligand in tracheal tissue 

extracted with guanidinium extract buffer. Tracheal tissue from 7 donors were extracted 

with guanidinium extract buffer, equal protein concentration loaded on composite gel 

electrophoresis and blotted with Siglec-8-Fc (Siglec-8 ligands) or Siglec-9-Fc (Siglec-9 

ligands) to detect their respective ligands. HiMark molecular weight marker running 

position shown to the left. 
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Table 3.1: Donors demographics21 Gender, age, tobacco usage, (R) right lung, (L) left 

lung, respiratory disease and cause of death of each donor is noted in the table above as 

well as the assigned donor number. 

In an effort to produce Siglec-8 ligands in vitro and manipulate cells to determine 

the nature of Siglec-8 ligands primary tracheal epithelial cells (TEC) and submucosal gland 

cells (TGC) were culture. Siglec-8 ligands were not detected in TECs extracts but were 

detected in TGCs (Fig. 3.8), however, TGCs that were passaged for a third time did not 

express ligand (Data not shown) suggesting synthesis of Siglec-8 ligands in airways is 

complex and cannot be supported in vitro. To obtain Siglec-8 ligands it was necessary to 

use human tissue to extract ligand, purify and analyze it. Analysis of bronchus exudate 

suggests Siglec-8 ligand is being secreted into airways, however, amount of ligand present 

is very small compared to what is extracted from trachea with guanidinium extract buffer. 

Therefore, ligands extracted from trachea were pursued for identification of glycan ligand 

and the protein carrier. 

Primary epithelial cell culture, reiterated the broad expression of Siglec-9 ligands. 

Siglec-9 ligands were detected in TECs and TGCs extracts no matter the passaged cells 
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were able to synthesize Siglec-9 ligands (Fig. 3.8). Siglec-9 also bound strongly to 

bronchus exudate suggesting ligand is secreted into the airway and what function it may 

exert still needs to be investigated. 

Figure 3.8: Differential Siglec-8 and Siglec-9 ligand expression in primary cell 

cultures. Loaded equal protein concentration of detergent cell lysates, tracheal epithelial 

cells (TEC), tracheal submucosal gland cells (TGC), bronchus exudate (BrE), lung 

parenchyma (LP) detergent extract, tracheal tissue detergent extract (TrD) and 

guanidinium extract (TrG). HiMark molecular weight marker running position shown to 

the left. 
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CHAPTER 4: SIGLEC-8 LIGANDS IN HUMAN TRACHEA AND 

BRONCHUS 

Section 4.1 Introduction 

Siglec-8 ligand was shown to be abundantly present in guanidinium tracheal extracts 

(Chapter 3). Therefore, in this part of the project we pursued to extract, purify, and identify 

the endogenous glycan structure present in lung as well as the protein carrier of such ligand. 

Guanidinium extracted trachea was subjected to size exclusion chromatography, fractions 

collected were dotted and active fractions were analyzed by gel electrophoresis. Siglec-8 

binding species running around the same molecular weight were combined and subjected 

to immunoprecipitation using pentameric Siglec-8-COMP immobilized on nickel 

sepharose beads. Siglec-8 ligands were eluted with synthetic ligand (as proof of principle) 

or with buffer containing high concentration of salt. Immunoprecipitated material was sent 

to our collaborators at CCRC for mass spectrometric analysis. Major species present in the 

immunoprecipitated material was validated by antibody detection, comigration with 

Siglec-8 ligand and shift in migration upon treatment enzymatic digestion. A portion of the 

purified ligands were also sent for eosinophil activity assay to our collaborators at 

Northwestern University. The data suggest that Siglec-8 ligands are sialylated keratan 

sulfate chains carried on aggrecan and that it is biologically active in causing human 

eosinophils apoptosis. 
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Section 4.2 Additional Experimental Procedures 

Siglec-8 endogenous tracheal ligand S8-1M capture and elution with synthetic ligands 

Purified Siglec-8-COMP (44 µg) was immobilized on 140 µL magnetic nickel Sepharose 

beads (GE Healthcare Life Sciences Cat#28967388). Size separated S8-1M, Siglec-8 

ligand (200 µL) was incubated with Siglec-8-COMP bound nickel beads overnight mixing 

end-over-end at 4 °C. Unbound material was collected, the beads were washed 3 times with 

500 µL of 100 mM salt wash buffer (100 mM NaCl, 10 mM sodium phosphate, 20 mM 

imidazole, pH 7.4), then resuspended in 1 mL of Urea Buffer and split equally into 5 

microcentrifuge tubes. Urea Buffer was removed and 30 µL of glycan elution solution was 

added into each tube, comprised of either Urea Buffer (control) or 15 mM of 6’-Sulfo-3’-

SLN, 6-Sulfo-3’-SLN, 3’-SLN, or LacNAc in Urea Buffer. After 24 h shaking at 4 °C, the 

solution was collected and 30 µL Imidazole Elution Buffer (1M urea, 150 mM NaCl, 20 

mM sodium phosphate, 500 mM imidazole, pH-7.4) were added to the beads to elute 

Siglec-8-COMP along with any ligand still bound to it. The remaining beads were boiled 

in 30 µL of Solubilizing Buffer (NuPAGE LDS Sample Buffer; Thermo Fisher; containing 

400 mM dithiothreitol; DTT) to detect any material that was not eluted with imidazole. 

Periodate treatment of S8-250k 

Purified S8-250k ligand was treated sequentially with periodate and reducing agent 

(treated) or with reducing agent alone (control, untreated). Freshly prepared periodate 

solution (100 µL of 120 mM NaIO4) or water (100 μl, control) was added to 2 mL of 

purified S8-250k ligand and the samples incubated on ice in the dark for 30 minutes. After 

incubation, 50 µL of glycerol were added to each sample, the samples were mixed, then 

100 µL of 200 mM NaBH4 were added and the samples incubated on ice in the dark for 
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another 30 minutes. After incubation, 2 mL of each sample were dialyzed against RPMI 

medium supplemented with 2mM GlutaMAX, 25 mM HEPES (Cat # 72400120) and 100 

U/mL Penn/Strep using a 10 kDa MWCO dialysis cassette. Samples were dialyzed for 21 

hours and media was changed to fresh media and dialyzed an additional 6 hours. Samples 

were sterilized by passing through a 0.22 µm filter, aliquoted and frozen before sending to 

our collaborators at Northwestern University for eosinophil apoptosis assay. 

Eosinophils apoptosis assay 

Freshly isolated eosinophils were primed in medium containing 30 ng/mL IL-5 overnight. 

Following priming, eosinophils were plated at 200,000 per well, in a 96-well plate. Ligand 

was thawed shortly before experiment and allowed to come to proper temperature. Cells 

were incubated for 24 hrs at 37°C with or without 14 ng/µL of treated or untreated S8-

250k. Apoptosis was assessed using Annexin V flow cytometry59. 

Mass Spec Analysis 

Mass spectrometry was performed by our collaborators at the Complex Carbohydrate 

Research Center (CCRC) at the University of Georgia, Athens, Georgia. To analyze 

samples resolved by composite agarose-acrylamide gel electrophoresis, bands of gel at the 

migration level of ligands were excised, cut into small pieces with a scalpel and placed into 

a glass tube (13 x 100 mm) with a Teflon-lined screw top. Gel pieces were washed 

sequentially with 40 mM ammonium bicarbonate and acetonitrile, followed by reduction 

with 10 mM dithiothreitol (DTT) for 1 h at 55°C and carboxyamidomethylation with 55 

mM iodoacetamide (IAD) in the dark for 45 min. After reduction and alkylation, the gel 

pieces were sequentially washed with 40 mM ammonium bicarbonate and acetonitrile. The 

washed gel pieces were rehydrated in 50mM ammonium bicarbonate containing Sequence 
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Grade of a mixture of rLys-C and trypsin (Promega) and incubated at 37°C for 16 h. The 

resulting peptides were extracted by sequential incubations with 20%, 50% and 80% 

acetonitrile in 5% formic acid.  The washes were combined, dried, and then further purified 

by C18 zip-tip (Pierce). Peptides were eluted with 60% acetonitrile in 0.1% TFA.  

For salt eluted affinity chromatography samples (not electrophoretically resolved), 

the eluate was desalted on 100K MWCO membrane filter (Amicon, Ultra 0.5ml 100K, 

Merk-Millipore) reduced with DTT (10mM), carboxyamidomethylated with 

iodoacetamide (20mM) and digested with rLys-C and trypsin. The peptides were purified 

by C18 ziptip.  

The purified rLys-C/tryptic peptides were reconstituted in 39 μl of mobile phase A 

(0.1% formic acid in water) and 1 μl of mobile phase B (80% acetonitrile and 0.1% formic 

acid in water). The peptide solutions were passed through Nanosep MF Centrifugal 

Devices (0.2 μm) and transferred to autosampler vials capped with septa caps. The sample 

vial was loaded into the autosampler compartment maintained at 4 °C prior to MS analysis. 

The peptide samples were analyzed using an Orbitrap Fusion Lumos tribrid mass 

spectrometer (Thermo Fisher) equipped with UltiMate3000 RSLCnano liquid 

chromatograph. The LC system was equipped with a C18 analytical column (Acclaim 

PepMap 300, 150 mm length × 0.075 mm inner diameter, 5 μm particles, 300 Å pores, 

Thermo Fisher) and a 20 μL sample loop. Six microliter of the sample solution was used 

for the analysis.  

Peptides were eluted using a multistep gradient at a flow rate of 300 μL/min from 

0.1% formic acid in water to 0.1% formic acid in acetonitrile over 90 min. Peptides were 

fragmented using higher energy collisional dissociation (HCD), electron transfer 
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dissociation (ETD), and collision-induced dissociation (CID). The electrospray ionization 

voltage was set to 2.2 kV and the capillary temperature was set to 280 °C. Full-scan mass 

spectra were acquired in the positive ion mode over the range m/z = 400 to 1600 using the 

Orbitrap mass analyzer in profile format with a mass resolution setting of 30,000.  MS2 

scans were collected in the quadrupole or ion trap for the most intense ions in the Top-

Speed mode within a 3-s cycle, in centroid format, using Fusion instrument software 

(version 2.0, Thermo Fisher) with the following parameters: isolation width 4 m/z units, 

normalized collision energy 30%, charge state 2+ ~ 5+, activation Q 0.25, and activation 

time 30 ms. To avoid the occurrence of redundant MS/MS measurements, real-time 

dynamic exclusion was enabled to preclude reselection of previously analyzed precursor 

ions, with the following parameters: repeat count 1, exclusion duration 35 s, and mass 

tolerance within 10ppm.  

Mass Spec Data Analysis Procedures (PD analysis) 

The raw data was processed using Proteome Discoverer (PD) software (version 1.4.1, 

Thermo Fisher) and searched against the human-specific SwissProt-reviewed protein 

database downloaded on October 18, 2017. Indexed databases for rLys-C/tryptic digests 

were created allowing for up to three missed internal cleavage sites, one fixed modification 

(carboxyamidomethylcysteine, + 57.021 Da), and variable modifications (methionine 

oxidation, + 15.995 Da). Precursor ion mass tolerances for spectra acquired using the 

Orbitrap and linear ion trap (LTQ) were set to 10 ppm. The fragment ion mass tolerance 

was set to 0.8 Da.  High probability assignments were inspected for validity. 
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Section 4.3 Results and Discussion 

Here we present evidence that Siglec-8 binds to sialylated keratan sulfate chains on 

aggrecan. In guanidinium extracts of human trachea Siglec-8 bound strongly to three large 

molecular weight species that were separated by size exclusion chromatography (Figs. 4.1 

and 4.2).  

 

Figure 4.1: Guanidinium extracted tracheal Siglec-8 ligands separated by size 

exclusion. (A) Tracheal guanidinium extract prior to size exclusion (MW marker at left). 

(B) Size exclusion chromatography: A280 (protein, mAU) and relative Siglec-8 binding 

dot blot. (C) Dot blot of fractions at the specified elution volume was blotted with Siglec-

8-Fc. 
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Figure 4.2: Siglec-8 binds to three size classes of sialoglycan ligands. Lung extract was 

resolved by size column chromatography (Sephacryl S500) and equal volumes of fractions 

run on composite gel electrophoresis and blotted with Siglec-8-Fc to detect ligands. Three 

large molecular weight ligands eluted from the size exclusion column. The first large 

molecular weight ligand runs about 1 million Dalton (S8-1M, first blot), second ligand runs 

about 600 kilo Daltons (S8-600k, second blot) and third ligand runs about 250 kilo Daltons 

(S8-250k, third blot).  

Three species were named based on the size at which they migrated 1000 kDa (S8-1M), 

600 kDa (S8-600k) and 250 kDa (S8-250k). Size resolved Siglec-8 ligands were further 

purified by immunoprecipitation with Siglec-8-COMP. As a proof of concept, S8-1M 

ligand was captured on Siglec-8-COMP beads and selectively eluted with the synthetic 

Siglec-8 sialoglycan ligand (Table 4.1, Fig. 4.3).  
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Glycan 

Abreviation 
Glycan Structure MW 

LacNAc 

 

452.42 

3’-SLN 

 

743.67 

6-Sulfo- 

3’-SLN 

 

823.73 

6’-Sulfo- 

3’-SLN 

 

823.73 

Table: 4.1 Synthetic ligands used for elution of natural ligands captured on Siglec-8 

beads. Prepared 50 mM stock solutions of each glycan in water, diluted with 1M Urea 

buffer to corresponding concentration to elute endogenous human Siglec-8 ligands from 

Siglec-8-COMP beads. 
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Figure 4.3: S8-1M elution with synthetic glycan ligands. Combined fractions of S8-1M 

ligand starting material (SM) was incubated with Siglec-8-COMP beads overnight and 

collected sample after incubation (unbound, UB). Siglec-8-COMP beads were washed 

three times (W1-3), incubated with synthetic glycan ligand or urea buffer overnight and 

collected glycan eluted sample (E1). Siglec-8-COMP was eluted from beads with 

imidazole elution buffer (E2) and beads were boiled in sample loading buffer (BB). Equal 

volumes of sample were run on composite gel electrophoresis and blotted with Siglec-8-

Fc to detect ligands. Respective synthetic glycan ligands used for elution is shown above 

image.  
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Since synthetic glycans are monovalent and natural Siglec-8 ligands are likely multivalent, 

relatively high concentrations of glycan ligands (15 mM) were tested. S8-1M was 

selectively eluted with Siglec-8 specific sialoside glycan ligand 6’-sulfo-3-sialyl-LacNAc.  

Only small amounts of ligand were eluted with the structurally similar 6-sulfo-3-sialyl-

LacNAc but none with nonsulfated or nonsialylated structures (Fig. 4.3). Once the presence 

of a glycan ligand specific interaction of Siglec-8 with material purified from tracheal 

extract was confirmed, we pursued to upscale the purification and find another means of 

elution. 

A series of capture and elution trials determined that Siglec-8 binding to its ligands was 

susceptible to high salt concentrations (data not shown). This strategy helped us elute 

Siglec-8 ligand without eluting Siglec-8-COMP bound to it. S8-1M, S8-600k and S8-250k 

were successfully purified and material eluted was subjected to mass spec analysis (Fig. 

4.4). The predominant species in the purified ligands was aggrecan (Table 4.2). Interesting 

to note is the fact that Siglec-8 or COMP were not detected in mass spec analysis validating 

that the ligand was eluted without them.  
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Figure 4.4: Purification of Siglec-8 ligands and specific ligand elution with high salt 

buffer. Combined fractions of S8-1M (A), S8-600k (B) or S8-250k (C) ligand starting 

material (SM) was incubated with Siglec-8-COMP beads and collected sample after 

incubation (unbound, UB). Siglec-8-COMP beads were washed three times (W1-3), eluted 

ligand in three fractions with high salt elution buffer (E1-3). Equal volumes of sample were 

run on composite gel electrophoresis and blotted with Siglec-8-Fc to detect ligands. 

 

A B C 
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Table 4.2: Mass spectrometry proteomic analysis of purified Siglec-8 ligands 

extracted from trachea. Top protein hits found in purified Siglec-8 ligands S8-1M (A), 

S8-600k (B), and S8-250k (C). In all cases, keratin is presumed to be an environmental 

contaminant. 

(A) 

(B) 

(C) 
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Aggrecan is a large chondroitin sulfate proteoglycan, extensively glycosylated with two 

known types of glycan chains, chondroitin sulfate and keratan sulfate.60,61 It is abundant in 

cartilaginous tissue like trachea. Aggrecan protein core has three globular domains 

interspaced by linear regions that are highly glycosylated with chondroitin sulfate chains 

or keratan sulfate chains (Fig. 4.5).60  

Figure 4.5: Aggrecan protein structure and glycan chains. (A)Schematic diagram of 

Aggrecan structure including globular domains (G1, G2 and G3), interglobular domain 

(IGD) between G1 and G2, keratan sulfate rich region (KS-rich), and chondroitin sulfate 

rich regions 1 and 2 (CS-1 and CS-2). Keratan sulfate chains depicted in red squiggly lines 

and chondroitin sulfate chains in blue. (B) Chair conformation of disaccharide units in 

keratan sulfate and chondroitin sulfate chains.  
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To validate aggrecan as S8-ligand carrier, purified ligands S8-1M, S8-600k and S8-

250k were run on composite gel electrophoresis and overlaid with Siglec-8-Fc or anti-

aggrecan antibodies. Two aggrecan antibodies were used to distinguish the length and 

nature of the aggrecan core protein. One antibody was against the N-terminus globular 

domains that binds protein containing the G1-IGD-G2 minimum domain. The other 

antibody is against the C-terminal G3 globular domain, this domain is lost through 

aggrecanase-mediated degradation of aggrecan commonly seen in osteoarthritis and 

rheumatoid arthritis patients62. Blotting of purified Siglec-8 ligands with Siglec-8-Fc and 

anti-aggrecan antibodies revealed that S8-1M, S8-600k and S8-250 commigrated in 

composite gel electrophoresis. All three S8-ligands were detected with aggrecan antibody 

against the N-terminus of aggrecan but only the largest ligand, S8-1M, was detected with 

aggrecan antibody against the C-terminus G3 domain (Fig. 4.6).  
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Figure 4.6: Comigration of Siglec-8 ligands with Aggrecan. Equal volumes of S8-1M, 

S8-600k and S8-250k was run on composite gel electrophoresis and blotted with Siglec-8-

Fc to detect ligands (Siglec-8 ligands), anti-Aggrecan-Antibody against the G1-IGD-G2 

globular domains of aggrecan (G1-2), or anti-Aggrecan-Antibody against the G3 globular 

domain of aggrecan.  

These findings led us to investigate if aggrecanase treatment of purified S8-ligands 

would generate the other ligands. Aggrecanse-1, also known as ADAMTS4 (a disintegrin 

and metalloproteinase with thrombospondin motifs) is a protease that specifically cleaves 

large chondroitin sulfate hyaluronan-binding proteoglycans (CSPGs) such as aggrecan, 

brevican, neurocan and versican.62,63 Purified ligands were treated with ADAMTS4 and 
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also with chondroitinase ABC to determine if chondroitin sulfate chains were Siglec-8 

ligands. Removal of chondroitin sulfate chains by Chondroitinase ABC did not affect 

Siglec-8 binding to S8-600k or S8-250k and for S8-1M it resulted in increased 

electrophoretic migration and an increase in Siglec-8-Fc binding (Fig.4.7 and Fig.4.8). On 

the other hand, proteolytic cleavage of aggrecan with ADAMTS4 resulted in a shift of 

ligand migration as well as reduction in Siglec-8-Fc binding (Fig.4.7 and Fig.4.8). Both, 

S8-ligand and aggrecan comigrated on composite gel electrophoresis even after treatments 

with chondroitinase and aggrecanase. Tracheal Siglec-8 ligands were indeed carried on 

aggrecan protein and were not chondroitin sulfate chains. S8-1M, S8-600k and S8-270k 

Siglec-8 ligands appear to be differential proteolytic cleavage on aggrecan. Chondroitinase 

treated Siglec-8 ligands that were treated with or without ADAMTS4 showed S8-1M after 

treatment migrated at about the same position of S8-600k. When the S8-600k was treated 

with ADAMTS4 it yielded a mixture of molecules, one of which migrated at the S8-270k 

position (Fig. 4.9). To this point, aggrecan was confirmed as a protein carrier of Siglec-8 

ligands and chondroitin sulfate chains dismissed as the possible Siglec-8 ligand. 
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Figure 4.7: Aggrecanase (ADAMTS4) and chondroitinase treatment of purified S8-

1M and S8-600k. Purified Siglec 8 ligands were treated with control buffer (1 and 5), 

chondroitinase ABC (2), both chondroitinase ABC and ADAMTS4 (3), or ADAMTS4 (4). 

Equal volumes of sample were run on composite gel electrophoresis and blotted with 

Siglec-8-Fc to detect ligands. (A and C) or anti-Aggrecan-Antibody G1-2 (B and D). 
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Figure 4.8: Aggrecanase (ADAMTS4) and chondroitinase treatment of purified S8-

250k. Purified S8-250k ligand was treated with control buffer (1 and 5), chondroitinase 

ABC (2), both chondroitinase ABC and ADAMTS4 (3), or ADAMTS4 (4). Equal volumes 

of sample were run on (2% agarose, 3% acrylamide) composite gel electrophoresis and 

blotted with Siglec-8-Fc to detect ligands (A) or anti-Aggrecan-Antibody G1-2 (B). 
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Figure 4.9: Purified Siglec-8-ligands chondroitinase and adamts4 treated. Purified 

Siglec 8 ligands previously treated with chondroitinase were treated with or without 

ADAMTS4. Equal volumes were run on composite gel electrophoresis and blotted with 

Siglec-8-Fc to detect ligands (Siglec-8-ligands) or anti-Aggrecan-Antibody G1-2. 

 In the literature, chondroitin sulfate chains have not been reported to be terminated 

with sialic acid but keratan sulfate (KS) chains, have.61 In keratan sulfate chains extracted 

from bovine trachea, Lauder et. al. identified a small portion of KS capped with N-acetyl-

neuraminic acid α(2-3)-linked to a galactose that may or may not be sulphated (Fig. 4.10 

A).61 KS structures previously reported resemble the synthetic Siglec-8 glycan ligand 
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identified by glycan arrays. A monoclonal IgG1 antibody (5D4) against highly sulfated 

keratan sulfate chains was used to detect the presence of keratan sulfate chains in purified 

Siglec-8 ligands (Fig. 4.10 B). Keratan sulfate antibody (5D4) binding to Siglec-8 purified 

ligands treated with chondroitinas ABC and ADAMTS4 comigrated and correlated. 

Reduction in Siglec-8 binding with ADAMTS4 treated samples also showed reduction in 

5D4 binding, suggesting KS chains may be Siglec-8 ligands (Fig. 4.11).  

 

Figure 4.10: Schematic structure of keratan sulfate showing antibody binding motifs 

and sites of cleavage with different keratanases. (A) Galactose sulfation levels of keratan 

sulfate chains attached to bovine aggrecan.61 (B) Anti-keratan-sulfate antibody 5D4 binds 
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highly sulfated keratan sulfate chains.64,65 Keratanase I cleaves the beta-1-3 linkage of the 

disaccharide units only if the galactose is not sulfated and keratanase II can cleave if the 

galactose is sulfated.66,67 Anti-keratan-sulfate stub antibody recognizes keratanase I created 

stubs after reaction.68  

 

 

Figure 4.11: Tracheal extracted Siglec-8-ligands co-migrate with antibody staining of 

highly sulfated keratan sulfate chains (5D4) and binding is shifted and reduced after 

aggrecanase (ADAMTS4) treatment. Purified Siglec 8 ligands previously treated with 

chondroitinase were treated with or without ADAMTS4. Equal volumes of treated samples 

were run on composite gel electrophoresis and blotted with Siglec-8-Fc to detect ligands 

(Siglec-8-ligands) or anti-Keratan-Sulfate-Antibody (5D4). 
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To further validate these findings, purified S8-ligands were individually treated 

with two different endoglycosidases. Keratanase I is an endo-β-galactosidase that cleaves 

KS chains at the 1,4-β-galactosidic linkage as long as the GlcNAc is sulfated and galactose 

is not. Anti-keratan sulfate antibody Bks-1 detects the glycosidic product of KS I digested 

KS chains and was used to show that the reaction occurred. Although, galactose sulfation 

inhibits keratanase I, it does not inhibit the endo-β-glucosaminidase keratanase II.66 

Keratanase II cleaves at the 1,3-β-GlcNAc linkage and sulfation of galactose or N-acetyl-

glucosamine does not affect its activity. Purified Siglec-8 ligands were treated with 

keratanase I and keratanase II to determine if KS chains were carrying the motif Siglec-8 

binds to. Treatment of all purified S8-ligands with either keratanase I or keratanase II 

eliminated Siglec-8 binding (Fig. 4.12-14 A).  

 

 

Figure 4.12: Keratanase treatment of purified S8-1M eliminates Siglec-8 binding. 

Purified S8-1M was treated with buffer control (1), 40.0 mU/mL keratanase I (2), or 40.0 

mU/mL keratanase II (3). Equal volumes of treated samples were run on composite gel 

electrophoresis and blotted with Siglec-8-Fc (A), anti-Keratan-Sulfate-Antibody (5D4) 

(B), anti-Keratan-Sulfate-Antibody (Bks-1) (C), or anti-Aggrecan-Antibody G1-2 (D). 

Exposure of A-B 15 seconds and C-D 300 seconds. 
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Figure 4.13: Keratanase treatment of purified S8-600k eliminates Siglec-8 binding. 

Purified S8-600k was treated with buffer control (1), 40.0 mU/mL keratanase I (2), or 40.0 

mU/mL keratanase II (3). Equal volumes of treated samples were run on composite gel 

electrophoresis and blotted with Siglec-8-Fc (A), anti-Keratan-Sulfate-Antibody (5D4) 

(B), anti-Keratan-Sulfate-Antibody (Bks-1) (C), or anti-Aggrecan-Antibody G1-2 (D). 

Exposure of A-B 15 seconds and C-D 300 seconds. 
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Figure 4.14: Keratanase treatment of purified S8-250k eliminates Siglec-8 binding. 

Purified S8-250 was treated with buffer control (1), 40.0 mU/mL keratanase I (2), or 40.0 

mU/mL keratanase II (3). Equal volumes of treated samples were run on composite gel 

electrophoresis and blotted with Siglec-8-Fc (A), anti-Keratan-Sulfate-Antibody (5D4) 

(B), anti-Keratan-Sulfate-Antibody (Bks-1) (C), or anti-Aggrecan-Antibody G1-2 (D). 

Exposure of A-B 15 seconds and C-D 300 seconds. 

Keratanase I treatment of purified sample reduced 5D4 staining to samples whereas 

keratanase II completely eliminated antibody staining confirming digestion of KS chains 

(Fig. 4.12-14 B). Only keratanase I treated samples showed staining with Bks-1 antibody 

as expected (Fig. 4.12-14 C). Loss of Siglec-8 binding to S8-ligands was not due to 

protease activity in sample because anti-aggrecan antibody showed similar binding to all 

treated samples (Fig. 4.12-14 D). Sialidase and keratanase treatment of purified S8-ligands 

eliminate S8-binding and reveal KS chains capped with sialic acid are Siglec-8 ligands 

(Fig. 4.15). 
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Figure 4.15: Purified Siglec-8-ligands treated with sialidase and keratanase. Purified 

Siglec 8 ligands S8-1M (A-B), S8-600k (C-D) and S8-250k (E-F) was treated with buffer 

control (1), 67 mU/mL sialidase (2), or 6.0 mU/mL keratanase II (3). Equal volumes of 

treated samples were run on composite gel electrophoresis and blotted with Siglec-8-Fc 

(A, C and E) or anti-Aggrecan-Antibody G1-2 (B, D or F). Schematic of Siglec-8 ligand 

keratan sulfate chain sensitive to keratanase II. (G). Straight line shows migration of the 

largest molecular weight band (460 kDa) of HiMark marker. 

Siglec-8 binds to KS chains on aggrecan. To confirm it is a functional ligand we needed to 

show that it induces Siglec-8 mediated cellular responses, such as human eosinophil 

apoptosis. This was tested using S8-250k, which was relatively abundant and well resolved. 

S8-250k was oxidized with mild periodate to selectively trim the glycerol side chain of 

sialic acid69, which abrogated Siglec-8 binding without affecting the protein carrier (Fig. 

4.16 A). The use of small chemicals for removal of sialic acid binding specific interaction 
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was preferred over using sialidase because small chemicals are easily removed whereas 

enzymes like sialidase or keratanase are not. Amino acids in Siglec-8 binding pocket make 

specific hydrogen bonding interactions with the glycerol side chain of sialic acid and 

removal of it reduces affinity for the glycan structure (Fig. 4.16 B)70. Treatment of 

eosinophils with periodate-treated S8-250k (no S8-binding) did not significantly increase 

eosinophil apoptosis above background levels. However, treatment of eosinophils with 

untreated S8-250k (intense S8-binding) significantly increased eosinophil apoptosis 15% 

above background levels (Fig. 4.16 C). Ligand activity was sialic acid specific since only 

intact S8-250k induced eosinophil apoptosis, validating the ligand as a functional ligand. 
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Figure 4.16: Effect of purified S8-250k on eosinophil survival. (A) Purified S8-250k ligand (ctrl) was treated with periodate (treated) 

or with reducing agent only (untreated), equal volumes of treated samples were run on composite gel electrophoresis and blotted with 

Siglec-8-Fc (Siglec-8 ligands) or with anti-Aggrecan-Antibody G1-2. HiMark loaded on first lane, largest band is 460 kDa and the one 

bellow is 250 kDa. (B) Schematic illustration of Siglec-8 interaction network with synthetic glycan ligand. Circled in red are the 

hydrogen bond interactions of the glycerol side chain of sialic acid with amino acids in Siglec-8 binding pocket. Modified from Pröpster, 

et. al.70 (C) Activated eosinophils were incubated with media containing 14 ng/µL of treated or untreated ligand for 24 hours and 

determined viability of cells staining with Annexin V and DAPI. Percent change in apoptosis from background, P < 0.02, paired t test 

vs control (n=6).                                                                     . 
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In summary, Siglec-8 binds to sialylated keratan sulfate chains on aggrecan extracted from 

human tracheal airways. Upon Siglec-8-Fc overlay staining of human tracheal sections we 

observed strong Siglec-8 binding to cartilage (Fig. 3.1) but also to submucosal gland cells. 

Anti-aggrecan immunohistochemistry detected aggrecan in cartilage, but not in 

submucosal glands (data not shown) suggesting another protein may carry Siglec-8 ligands 

in airway secretions. However, Siglec-8 ligand are sialylated keratan sulfate chains because 

treatment of tracheal sections with keratanases or sialidase completely abrogates Siglec-8 

binding (data not shown). What the protein carrier’s role is in control of inflammation still 

needs to be determined as well as what other proteins may carry these modified structures 

that Siglec-8 binds to. 
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CHAPTER 5: SIGLEC-8 LIGANDS IN THE HUMAN AIRWAY MUCUS 

LAYER 

Section 5.1 Introduction 

Previously, Siglec-8 ligand extracted from human trachea was purified and identified as 

sialylated keratan sulfate chains on aggrecan. Aggrecan is an extracellular protein widely 

studied for its function in cartilaginous tissue but less so in other tissues.71 To this date, 

there is no evidence that aggrecan is expressed in tracheal gland cells in human airway. If 

aggrecan is carrying Siglec-8 ligands, how is it coming into contact with inflammatory 

cells to reduce inflammation? Immunohistochemistry staining of human trachea sections 

showed aggrecan present abundantly only in cartilage but not in submucosal gland cells 

where Siglec-8 stained strongly. Therefore, it could be possible Siglec-8 ligands are found 

on another protein carrier in submucosal gland cells. Our hypothesis is that material 

produced in submucosal gland cells is secreted into the airway lumen where they come in 

contact with inflammatory cells. In 2015, we showed expression of Siglec-8 ligands on 

human inferior turbinate tissue from patients with and without chronic rhinosinusitis.72 

However, we did not analyze secretions from patients and in this project, we pursue to 

analyze airway secretions for Siglec-8 ligand expression. 

Chronic rhinosinusitis (CRS) is diagnosed if a patient suffers persistent upper 

airway inflammation for more than 12 weeks without resolving73. Patients suffer extreme 

discomfort due to airway congestion making it difficult for them to breathe accompanied 

by pain and discomfort.74,75 Sometimes it can be accompanied by abnormal growths in the 

sinuses called nasal polyps75. Treatments available are designed to help patients with 

symptoms but does not reverse or decrease disease progression.76,77 Most patients with 
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nasal polyps undergo surgery to get relief but polyps usually come back within a few years 

after surgery.74 These polyps are filled with mucus secretions and inflammatory cells such 

as eosinophils.78,79 If Siglec-8 ligands are produced in tissue, eosinophils should undergo 

apoptosis and inflammation should resolve. If ligands are produced in tissue but are not 

secreted into the lumen this could explain the high expression of Siglec-8 ligands in 

inflamed tissue and the of lack inflammation control. To determine if ligands were being 

secreted into the lumen of healthy patients and diseased patients we investigated the level 

of expression of Siglec-8 ligands. Ligands were purified and analyzed by mass spec 

analysis to determine Siglec-8 ligand protein carrier in secretions. Also, samples were 

treated with keratanases and sialidase to determine if the glycan ligand is similar to that 

one previously found in tracheal cartilage. 

 

Section 5.2 Additional Experimental Procedures 

Siglec-8 endogenous secreted ligand capture with Siglec-8-Fc beads 

Nasal lavage from 4 different donors were combined and purified over a size exclusion 

chromatography column as described in Chapter 2. Combined fractions containing Siglec-

8 ligand running at 900 kDa were dialyzed against Urea Buffer before incubating with 

beads. Dialyzed material was precleared with human IgG-Fc bound protein A/G magnetic 

beads. Then, incubated with Siglec-8-Fc bound protein A/G magnetic beads (Siglec-8 

beads) to capture ligands. Beads were incubated with sample mixing at 4 °C for 2 h. 

Unbound material was collected, beads washed 5x with Urea Buffer/PBST (4:1), and 

ligand eluted Siglec-8 with Salt Elution Buffer. Beads were treated with glycine Fc-elution 

buffer (100 mM glycine, pH-2.7) and then boiled in Solubilizing Buffer.  
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Section 5.3 Results and Discussion 

 Here we present evidence that sialylated keratan sulfate Siglec-8 ligands are 

secreted onto human airways. Siglec-8 ligands in secretions have similar properties to those 

observed in ligands extracted from human trachea: large molecular weight proteins 

carrying Siglec-8 ligands sensitive to sialidase and keratanases. Analysis of nasal 

secretions from more than 20 patients revealed Siglec-8 bound to a protein of ~900 kDa 

that was detected with anti-keratan sulfate antibody as well (Fig. 5.1 A-C). Ligand 

expression was variable and did not correlate with patients’ disease (Fig. 5.1 E), however, 

anti-keratan sulfate detection and Siglec-8 binding intensity correlated with each other, 

further supporting the presence of sialylated keratan sulfate Siglec-8 ligands (Fig. 5.1 D).  
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Figure 5.1: Siglec-8-ligand in 

nasal lavage co-migrate and 

correlates with antibody 

staining of highly sulfated 

keratan sulfate chains (5D4). 

Equal volumes of aliquoted 

soluble lavage from 21 patients 

was loaded per lane. Samples were blotted with soluble Siglec-8-Fc or anti-Keratan-Sulfate 

antibody (A-C). Correlation of Siglec-8 binding intensity with anti-Keratan-Sulfate 

antibody (D). No significant difference observed in Siglec-8 ligand expression in samples 

from normal patients or diseased patients with (CRSwNP) or without polyp (CRSsNP) (E). 
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First lane in (A) shows the HiMark marker migration with the largest band 460 kDa 

followed by 250 kDa band below. 

When nasal lavage secretions were treated with keratanase I or sialidase, Siglec-8 

binding to sample was completely abolished. Treatment with keratanase II reduced Siglec-

8 binding significantly but was not as profound as keratanase I (Fig. 5.2 A). This differs 

from S8-1M purified from tracheal extracts, which was equally sensitive to both, 

keratanase I and II (Fig. 5.2 B). Enzymatic digestion of the Siglec-8 ligand was effective 

as seen in blots probed with keratanases. Samples treated with keratanase II lost all binding 

to anti-keratan sulfate antibody and samples treated with keratanase I were positive with 

the anti-keratan sulfate stub antibody (Fig. 5.2 C). Keratanase II has a higher preference 

for di-sulfated LacNAc rather than monosulfated and partial decrease of Siglec-8 binding 

suggests that a portion of Siglec-8 ligands may be at the terminus of chains that contain 

monosulfated keratan sulfate dimers that are not efficiently cleaved by keratanase II but 

cleaved by keratanase I.  

 

Figure 5.2: Siglec-8-ligand in human nasal lavage is sensitive to keratanase and 

sialidase treatment. Nasal lavage from donor 2 treated with buffer control (Buf), 
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keratanase I (K1), keratanase II (K2) or sialidase (Sia), blotted and detected with Siglec-8-

Fc (A). Siglec-8 ligand extracted from trachea (1M) and nasal lavage treated with 

keratanases, blotted, and detected with Siglec-8-Fc (B) or anti-KS-antibodies (C). 

Siglec-8 ligands in human airway were further purified by size exclusion 

chromatography to determine what protein was carrying sialylated keratan sulfate chains 

in human airway secretions (Fig. 5.3). The fractions containing Siglec-8 ligand migrating 

at 900 kDa on composite gel electrophoresis were combined and further purified over a 

Siglec-8 column (Fig. 5.4). Siglec-8 ligands were efficiently captured and eluted with 

Siglec-8-Fc affinity beads providing us with enough material for mass spec analysis (Fig. 

5.5). Mass spec analysis revealed that Siglec-8 ligand in airway secretions was not 

aggrecan but glycoprotein 340 (Fig. 5.6). Glycoprotein 340 (GP340) is a mucin like protein 

secreted in body fluids and know to have anti-microbial activity.80-84 A gene expression 

profile of human nasal polyp tissues identified GP340 as one of four proteins that were 

upregulated in nasal polyp tissues.85 The upregulation of GP340 may be an attempt to 

resolve inflammation without success for some reason. To validate the data obtained from 

mass spec analysis, fractions collected from size exclusion chromatography column were 

overlaid with Siglec-8-Fc to detect ligand or with anti-GP340 (Fig. 5.7). Both, Siglec-8 

ligand and anti-GP340 showed comigration and coelution from the column. To further 

confirm these findings, Siglec-8 lectin precipitated samples were blotted with Siglec-8-Fc 

or anti-GP340 antibody (Fig. 5.8). Blotting revealed GP340 eluted with Siglec-8 ligand 

and comigrated at the same position on composite gel electrophoresis. 
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Figure 5.3: Nasal lavage Siglec-8 ligands separated by size exclusion. (A) Nasal lavage 

prior to size exclusion (MW marker at left). (B) Size exclusion chromatography: A280 

(protein, mAU) and relative Siglec-8 binding dot blot. (C) Dot blot of fractions at the 

specified elution volume overlaid with precomplexed Siglec-8-Fc HRP-conjugated anti-

human Fc. 
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Figure 5.4: In nasal lavage Siglec-8 binds to two size classes of sialoglycan ligands. 

Nasal lavage was resolved by size column chromatography (Sephacryl S500) and equal 

volumes of fractions run on composite gel electrophoresis and blotted with Siglec-8-Fc to 

detect ligands. Major Siglec-8 binding species runs at 900 kDa (S8-900k) and a minor 

species is observed running above. 
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Figure 5.5: Purification of S8-900k major Siglec-8 ligand species in nasal lavage. 

Fractions containing the major Siglec-8-ligand (S8-900k) were combined (SM), pre-

cleared with magnetic-Protein A/G beads (CL) then incubated with magnetic-Protein A/G 

beads with bound Siglec-8-Fc. Aliquots of flow through (FT), washes (W1-5), salt elutions 

(E1-3), glycine elutions (E4-5) and boiled beads (BB) were resolved and blotted with 

Siglec-8-Fc (Siglec-8 ligands). 
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Figure 5.6: Mass spectrometry proteomic analysis of purified S8-900k from nasal 

lavage. The major hit in proteomic analysis of purified Siglec-8 ligand was glycoprotein 

340 (GP340). Schematic of GP340 and unique peptides picked up by mass spec with high 

confidence and XCorr are highlighted in green. 
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Figure 5.7: Comigration of nasal lavage S8-900k ligand with GP340. Equal volumes of fractions were run on composite gel 

electrophoresis and blotted with Siglec-8-Fc to detect ligands (Siglec-8 ligands) or anti-GP340 antibody. First lane is marker, 900 kDa 

band is the darkest band. 
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Figure 5.8: Co-precipitation of GP340 with Siglec-8 ligands. Fractions containing the major Siglec-8 ligand were combined (SM), 

pre-cleared with magnetic-Protein A/G beads (CL) then incubated with magnetic-Protein A/G beads with bound Siglec-8-Fc. Aliquots 

of flow through (FT), washes (W1-5), salt elutions (E1-3), glycine elutions (E4-5) and boiled beads (BB) were resolved and blotted 

with Siglec-8-Fc to detect ligands (Siglec-8 ligands) or anti-GP340 antibody. 
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In conclusion, Siglec-8 ligands are sialylated keratan sulfate chains that can be carried on 

different proteins based on the tissue where it is expressed. In cartilage, Siglec-8 ligands 

are present on aggrecan but in airway secretions it is present on GP340. It was not possible 

to definitively determine from what cell type the material secreted into the airway was 

coming. Nevertheless, based on the presence of Siglec-8-Fc overlay histochemistry, our 

hypothesis is that this material is secreted by serosal cells in the submucosa layer of the 

human airway. Further investigation is needed to define the biological function of these 

ligands purified from airway secretions. We showed in chapter 4, purified aggrecan 

carrying Siglec-8 ligands was able to increase eosinophil apoptosis above control levels 

compared to aggrecan that did not have Siglec-8 ligands. A similar approach should be 

taken with material purified from airway secretions. 

 

Section 5.4 Summary and Future Directions 

In conclusion, we identified sialylated keratan sulfate chains as Siglec-8 ligands in human 

airway tissue and airway secretion. Although the ligands are similar, the protein carriers 

are different, and many questions remain to be answered. What’s the optimal length of 

keratan sulfate needed to induce biological function? Is the protein carrier necessary to 

exert a potent anti-inflammatory response? We can hypothesize that in a healthy patient 

the ligand is added unto the right protein carrier with the correct valency to exert a potent 

anti-inflammatory response. However, in a patient with inflammatory disease, the process 

may be accelerated to resolve inflammation resulting in secretion of protein with fewer 

Siglec-8 ligands and lower valency and decreased ability to resolve inflammation. To test 

this hypothesis, Siglec-8 ligands from normal and diseased patients need to be purified and 
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incubated with human eosinophils to determine their effectivity in inducing eosinophil 

apoptosis. Concurrently, techniques such surface plasmon resonance (SPR) can be used to 

determine the dissociation constant (Kd) of each purified ligand. Both purified ligands, 

may have similar biological activity and Kds which would suggest ligand production is not 

the issue in patients with inflammatory diseases. It is important to understand the 

underlying mechanism that causes inflammatory diseases to develop better therapeutics 

with reduced off target effects. These findings take us one step closer to understanding 

inflammatory diseases involving eosinophils, mast cells and basophils. Once endogenous 

Siglec-8 ligands are fully characterized and their role in controlling inflammation is further 

investigated this could lead to state of the art medical treatment for patients suffering from 

such diseases. 
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