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Abstract

Cross domain face synthesis refers to the problem of synthesize faces across different

domains, for example, forensic sketches vs. digital photograph, visual light vs. thermal

and faces with various attributes. It has a wide range of applications from law

enforcement to digital entertainment. However, cross domain synthesis remains a

challenging problem due to the fact that images in different domains have different

characteristics. In this thesis, we consider the task as an image-to-image translation

problem and explored the recently popular generative adversarial networks (GANs)

to generate high-quality realistic images. Earlier GAN-based methods have shown

promising results on image-to-image translation problems, however, they are known

to have limited abilities in generating high-resolution realistic images. To this end,

we proposed a novel synthesis framework that iteratively generates low resolution to

high resolution images in an adversarial way. The hidden layers of the generator are

supervised to first generate lower resolution images followed by implicit refinement in

the network to generate higher resolution images. Furthermore, since cross domain

synthesis is a coupled/paired translation problem where translations at both directions

are equally important, we leverage the pair information using CycleGAN framework.

Evaluation of the proposed method is performed for photo-sketch synthesis problem

specifically, two datasets: CUHK and CUFSF are used in this thesis. Both Image

Quality Assessment (IQA) and Photo-Sketch Matching experiments are conducted

to demonstrate the superior performance of our framework in comparison to existing

state-of-the-art solutions. Additionally, ablation studies are conducted to verify the
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effectiveness iterative synthesis and various loss functions. Moreover, several future

works are discussed in this thesis, including the multimodal visible to polarimetric-

thermal facial image generation and attention guided image-to-image generation.
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Chapter 1

Introduction

Research in biometrics has made significant progress in the past few decades and

face remains the most commonly studied biometric modality primarily due to the

convenience of data collection. Cross-domain, or heterogeneous face recognition

technique focuses on recognizing the identity of an individual imaged in one domain

from a gallery database containing facial images acquired in another domain (e.g.

sketch probe against photo database, thermal probe against visible database). In law

enforcement and criminal cases, automatic retrieval of photos of suspects from the

police mug shot database can enable the authorities to rapidly narrow down potential

suspects [1]. In practice, photos of suspects are usually hard to acquire and it is known

that commercial softwares or experienced artists are sought to generate sketches of a

suspect based on the description of eyewitness. Other than the applications in security,

face photo-sketch synthesis also has several applications in digital entertainment.

Photo sketches have also become increasingly popular among the users of smart

phones and social networks where sketches are used as profile photos or avatars.

Thus, photo-sketch synthesis and matching are important and practical problems.

Meanwhile, it is not until recently the community started to develop methods for

face recognition in the infrared spectrum due to the increasing amount of usage of

infrared sensors in modern video surveillance systems. However, in many scenarios,

visible images of an subject are not available, instead thermal images are captured.
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Therefore, visible-thermal synthesis and recognition are also very important.

Earlier studies on heterogeneous face recognition focused on directly matching

image from source domain to image from target domain and vice versa [1]. However,

due to differences in style and appearance of two separate domains, it is not practical

to directly perform matching between the two modalities. A common approach to

reduce this domain gap is to perform face photo-synthesis technique prior to matching.

Several works have successfully exploited Convolutional Neural Networks (CNNs)

to perform different image-to-image translation tasks. Recently, generative models

such as Generative Adversarial Networks (GANs) [2] and Variational Auto-Encoders

(VAE) [3, 4] have been more successful in such tasks due to their powerful generative

abilities. In particular, GANs [2] have achieved impressive results in image generation,

image editing and representation learning [5–9]. Recent studies also adopt the original

method for conditional image generation tasks such as image-to-image translation

[10]. While Isola et al.([10]) considered paired data for learning the image-to-image

translation, Zhu et al.[11] and Yi et al.[12] separately proposed unsupervised image-

to-image translation methods without the use of paired data. Similar to [10], [12]

and [11], in this work, cross domain face synthesis is considered as an image-to-image

translation task. In fact, Yi et al.[12] presented some preliminary results specifically

for photo-sketch synthesis. On evaluating these methods in detail for our task, it was

found that they had limitations in generating higher resolution images (as shown in

Fig.1-1). As argued in [13], it is difficult to train GANs to generate high-resolution

realistic images as they tend to generate images with artifacts. This is attributed to the

fact that as pixel space dimension increases, the overlap between natural distribution

of images and learned model distribution reduces. To overcome this issue, a novel

high-quality cross domain face synthesis framework based on GANs is proposed. Since

in our task, cross domain synthesis in both directions have practical applications, we

adopt the recently introduced CycleGAN [11] framework. Similar to [11], the proposed
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method has two generators GA and GB which generate images in domain A from

image in domain B and images in domain B from images in domain A, respectively.

In contrast to [11], two major differences can be noted: 1) To address the issue of

artifacts in high-resolution image generation, we propose the use of multi-discriminator

network. 2) While CycleGAN uses only cycle-consistency loss, we additionally use L1

reconstruction error between generated output and target image. The use of additional

loss functions behaves as a regularization during the learning process.

(a) (b) (c) (d)

Figure 1-1. Sample results on photo and sketch synthesis. Top Row: Photo Synthesis,
Bottom Row: Sketch synthesis. (a) Input Image. (b) Synthesis using single stage adversarial
network. (c) Synthesis using multi-stage adversarial network (proposed method). (d)
Ground truth. Artifacts in (b) are marked with red rectangles.

Existing GANs use generators that are constructed similar to encoder-decoder

style where the input image is first forwarded through a series of convolutions, non-

linearities and max-pooling resulting in lower resolution feature maps which are then

forwarded through a series of deconvolutions and non-linearities. Noting that the

deconvolutions iteratively learn the weights to upsample the feature maps, this implicit

presence of feature maps at different resolutions is leveraged in this work by applying

adversarial supervision at every level of resolution. Specifically, the feature maps at
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every deconvolution layer are convolved using 3 × 3 convolutions to produce outputs

at different resolutions (3 in particular). A discriminator network is introduced at

every resolution. By doing so, supervision is provided directly to hidden layers of

the network which will enable iterative refinement of the feature maps and hence the

output image. To summarize, in this thesis we make the following contributions:

• A novel face cross domain synthesis framework based on GANs involving multi-

adversarial networks where adversarial supervision is provided to hidden layers

of the network.

• While [12] and [14] present generic adversarial methods to perform image-

to-image translation and show some preliminary results on face photo-sketch

synthesis, to the best of our knowledge, ours is the first work to study in detail

the use of adversarial networks specifically for face photo-sketch synthesis.

• Detailed experiments are conducted to demonstrate improvements in the syn-

thesis results. Further, ablation studies are conducted to verify the effectiveness

of iterative synthesis.

• Several future works on cross domain face synthesis are discussed, including

multimodal visible to polarimetric-thermal face image generation and attention

guided image to image generation.
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Chapter 2

Photo Sketch Synthesis

Earlier studies on face photo-sketch matching have focused on directly matching photos

to sketches and vice versa [1]. However, due to differences in style and appearance of

photo and sketch, it is not practical to directly perform matching between the two

modalities. A common approach to reduce this domain gap between photo and sketch

is to perform face photo-synthesis technique prior to matching. Several algorithms are

proposed on this topic in the literature. Existing approaches can be generally classified

into four categories based on the types of sketches used[15]: (i) hand-drawn viewed

sketch [1],[16], (ii) hand-drawn semi-forensic sketch [17], (iii) hand-drawn forensic

sketch [18, 19], and (iv) software-generated composite sketch [20].

Existing works can be categorized based on multiple factors. Wang et al.[21]

categorize photo-sketch synthesis methods based on model construction techniques

into three main classes: 1) subspace learning-based, 2) sparse representation-based,

and 3) Bayesian inference-based approaches. Peng et al.[22] perform the categorization

based on representation strategies and come up with three broad approaches: 1)

holistic image-based, 2) independent local patch-based, and 3) local patch with spatial

constraints-based methods.

Subspace learning based methods involve the use of linear and non-linear subspace

methods such as Principal Component Analysis (PCA) and Local Linear Embedding
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(LLE). Tang and Wang [23, 24] assume linear mapping between photo and sketch and

synthesized the sketch by taking a linear combination of the Eigen vectors of sketch

images. Finding that the assumption of linear mapping to be unreasonable, Liu et

al.[25] proposed a non-linear method based on LLE where they perform a patch-based

sketch synthesis. The input photo image is divided into overlapping patches and

transformed to corresponding sketch patches using the LLE method. The whole sketch

image is then obtained by averaging the overlapping areas between neighboring sketch

patches. However, it leads to blurring effect and ignores the neighboring relationships

among the patches and thus is unable to take advantage of global structure. This

work was extended by Wang et al.[26], Gao et al.[27] and Change et al.[28] using

sparse representation-based techniques. In a different approach, several methods were

developed using Bayesian inference techniques. Gao et al.[29] and Xiao et al.[30]

employed Hidden Markov Model (HMMs) to model non-linear relationship between

sketches and photos. Wang and Tang [1] proposed Markov Random Field (MRF)

based technique to incorporate relationship among neighboring patches. Zhou et

al.[16] improved over [1] by proposing Markov weight fields (MWF) model that is

capable of synthesizing new target patches not existing in the training set. Wang et

al. [31] proposed a novel face sketch synthesis method based on transductive learning.

More recently, Peng et al.[32] proposed a multiple representations-based face sketch

photo-synthesis method that adaptively combines multiple representations to represent

an image patch by combining multiple features from face images processed using

multiple filters. Additionally, they employ Markov networks to model the relationship

between neighboring patches. Zhang et al.[33] employed a sparse representation-based

greedy search strategy to first estimate an initial sketch. Candidate image patches

from the initial estimated sketch and the template sketch are then selected using

multi-scale features. These candidate patches are refined and assembled to obtain the

final sketch which is further enhanced using a cascaded regression strategy. Peng et
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al.[22] proposed a superpixel-based synthesis method involving two stage synthesis

procedure. Wang et al.[34] recently proposed the use of Bayesian framework consisting

of neighbor selection model and weight computation model. They consider spatial

neighboring constraint between adjacent image patches for both models in contrast

to existing methods where the adjacency constraint is considered for only one of the

models. CNN-based method such as [35] and [36] were proposed recently showing

promising results. There is also a recent work on face synthesis from facial attribute

[37] applying sketch to photo synthesis as a second stage in their approach.

2.1 Image-to-image translation

In contrast to the traditional methods for photo-sketch synthesis, several researchers

have exploited the success of CNNs for synthesis and cross-domain photo-sketch

recognition. Face photo-sketch synthesis is considered as an image-to-image translation

problem. Zhang et al.[38] proposed an end-to-end fully convolutional network-based

photo-sketch synthesis method. Several methods have been developed for related tasks

such as general sketch synthesis [14], photo-caricature translation [39] and creation of

parameterized avatars [40].

In this work, we explore generative modeling techniques which have been highly

successful for several image-to-image translation tasks. GANs [2, 11] and VAEs [3,

4] are two recently popular classes of generative techniques. GANs [2] are used to

synthesize realistic images by learning the distribution of training images. GANs,

motivated by game theory, consist of two competing networks: generator G and

discriminator D. The goal of GAN is to train G to produce samples from training

distribution such that the synthesized samples are indistinguishable from actual

distribution by discriminator D. In another variant called Conditional GAN , the

generator is conditioned on additional variables such as discrete labels, text and

images [10]. Recently, several variants based on original GAN have been proposed
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for image-to-image translation tasks. Isola et al.[10] proposed Conditional GANs for

several tasks such as labels to street scenes, labels to facades, image colorization, etc.

In an another variant, Zhu et al.[11] proposed CycleGAN that learns image-to-image

translation in an unsupervised fashion. Similar to the above approach, Yi et al.[12]

proposed an unsupervised method to perform translation tasks based on unpaired

data.

2.2 Formulation

Given a dataset (D) consisting of a set of face photo-sketch pairs represented by

{(Ai, Bi)}N
i=1, the goal of photo-sketch synthesis is to learn two functions: (1) B′=fps(A)

that represents photo (A) to sketch (B) synthesis and (2) A′=fsp(B) that represents

sketch (B) to photo (A) synthesis. In this work, we consider this problem as an

image-to-image translation task. Since both forward (photo to sketch) and inverse

(sketch to photo) transformations are of equal practical importance, this problem

can be easily accommodated into the CycleGAN [11] framework. Similar to [11], the

proposed method consists of two generator sub-networks GA and GB which transform

from photo to sketch and from sketch to photo, respectively. GA takes in a real face

photo image RA as input and produces synthesized (fake) sketch FB as output. The

aim of GB is to transform sketch to photo, hence, it should transform FB back to

input photo itself, which we represent as RecA here. Thus, the general process can be

expressed as:

FB = GA(RA), RecA = GB(FB). (2.1)

Similarly, sketch to photo generation can be expressed as:

FA = GB(RB), RecB = GA(FA), (2.2)

where RB, FA and RecB are real sketch, synthesized (fake) photo, and reconstructed

sketch from fake photo, respectively. Note that in the following context, the term
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“fake" is same as “synthesized".

Figure 2-1. Network structure of the proposed PS2-MAN framework. Adversarial
supervision is provided through multiple discriminators at the hidden layers. Note that,
in addition to adversarial loss, cycle-consistency and L1-loss are also used to train the
network. However, for the purpose of illustration, we show only adversarial loss in this
figure.

2.3 Objective

As in GAN framework [2], the generators (GA and GB) are trained using adversarial

losses that come from discriminator sub-networks. The goal of the generator sub-

networks is to produce images that are as realistic as possible so as to fool the

discriminator sub-networks, where as the goal of the discriminator sub-networks is to

learn to classify between generated and real samples. The use of adversarial loss is

known to overcome the issue of blurred outputs that is often encountered when only

L1 or L2 loss is minimized [10]. In theory, GANs can learn a mapping that produce

outputs identically distributed as target domain and although generic image-to-image

translation GANs have been successful in generating visually appealing results, they

tend to produce artifacts in the output (as shown in Fig 1-1) which adversely affects

the face/sketch matching performance. Hence, it is crucial to generate outputs that

are free from artifacts.
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As discussed in [13], these artifacts arise due to known training instabilities

while generating high-resolution images. These instabilities are potentially caused

due to the fact that the supports of natural image distribution and implied model

distribution may not overlap in high-dimensional space. The severity of this problem

increases with an increase in the image resolution. Thus, to avoid these artifacts

while generating realistic images, we propose a stage-by-stage multi-scale refinement

framework by leveraging the implicit presence of features maps of different resolutions

in the generator sub-network. Considering that most GAN frameworks have generators

similar to encoder-decoder style with a stack of convolutional and max-pooling layers

followed by a series of deconvolution layers. The deconvolution layers sequentially

upsample the feature maps from lower resolution to higher resolution. Feature maps

from every deconvolutional layers are forwarded through 3 × 3 convolutional layer

to generate output images at different resolutions. As shown in Fig 2-1, output

images are generated at three resolution levels: 64 × 64, 128 × 128 and 256 × 256

for both generators GA and GB. Further, three separate discriminator sub-networks

are employed to provide adversarial feedback to the generators. By doing so, we

are providing supervision directly to hidden layers of the network which will enable

implicit iterative refinement of the feature maps resulting in high-quality synthesis.

For simplicity, images at different resolutions are represented as: RAi
, FAi

, RecAi
,

RBi
, FBi

, and RecBi
, where i = 1, 2 and three corresponds to resolution of 64 × 64,

128 × 128 and final output size, which is 256 × 256.

Thus, as shown in Fig. 2-1, for a photo image RA, GA generates {FB1 , FB2 , FB3} as

outputs. Then FB3 , which is the output at the last deconvolution layer, is sent as input

to GB resulting in three reconstructions {RecA1 ,RecA2 ,RecA3}. Similarly, for a sketch

input, GB will output {FA1 ,FA2 ,FA3}. And GA will produce {RecB1 ,RecB2 ,RecB3}

by taking FA3 as input. We then add supervision at these different outputs to force

outputs to be closer to targets at different resolution levels. Three discriminators are
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defined for each generator: DA64, DA128, DA256 for GA and DB64, DB128, DB256 for GB,

which are applied on deconvolution layers with resolutions of 64 × 64, 128 × 128 and

256 × 256, respectively. The objective function is expressed as:

LGANAi
=EBi∼pdata(Bi)[log DAi

(Bi)]

+ EA∼pdata(A)[log(1 − DAi
(GA(RA))i)],

(2.3)

and
LGANBi

=EAi∼pdata(Ai)[log DAi
(Ai)]

+ EB∼pdata(B)[log(1 − DBi
(GB(RB))i)],

(2.4)

where (GA(RA))i = FBi
, (GB(RB))i = FAi

and i = 1, 2, 3 corresponds to discriminators

at different levels.

To generate images which are as close to target images as possible, we also minimize

synthesis error Lsyn which is defined as the L1 difference between synthesized image

and corresponding target image. Similar to adversarial loss, Lsyn is minimized for all

three resolution levels and is defined as:

LsynAi
= ∥FAi

− RAi
∥1= ∥GB(RB)i − RAi

∥1

LsynBi
= ∥FBi

− RBi
∥1= ∥GA(RA)i − RBi

∥1.
(2.5)

In spite of using Lsyn and the adversarial loss, as discussed in [11], we may

have many mappings due to the large capacity of networks. Hence, similar to [11],

the network is additionally regularized using forward-backward consistency thereby

reducing the space of possible mapping functions. This is achieved by introducing

cycle consistency losses at different resolution stages, which are defined as:

LcycAi
= ∥RecAi

− RAi
∥1= ∥GB(GA(RA))i − RAi

∥1

LcycBi
= ∥RecBi

− RBi
∥1= ∥GA(GB(RB))i − RBi

∥1.
(2.6)

The final objective function is defined as:

L(GA, GB, DA, DB) =
3∑

i=1
(LGANAi

+ LGANBi
+ λAi

LsynAi

+ λBi
LsynBi

+ ηAi
LcycAi

+ ηBi
LcycBi

).
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To summarize, the final objective function is constructed using L1 error between

synthesized and target images, adversarial loss and cycle-consistency loss. L1 error

enables the network to synthesize images that are closer to the target, however, they

often result in blurry images. Adversarial loss overcomes this issue thereby resulting

in relatively sharper images. However, the use of adversarial loss at the final stage

results in artifacts, which we overcome by providing supervision to the hidden layers.

Cycle-consistency loss provides additional regularization while learning the network

parameters.

2.4 Network Architecture

The generator sub-networks are constructed using stride-2 convolutions, residual

blocks [41] and fractionally strided convolutional layers. The network configuration is

specified as follows:

C7S1-64, C3-128, C3-256, RB256×9, TC64, TC32, C7S1-3, where, C7S1 − k denotes

7×7 Convolution-BatchNormReLU layer with k filters and stride 1, Ck denotes a 3×3

Convolution-BatchNorm-ReLU layer with k filters, and stride 2, RBk × m denotes m

residual block that contains two 3 × 3 convolutional layers with the same number of

filters on both layers, TC denotes a 3 × 3 Transposed-Convolution-BatchNorm-ReLU

layer with k filters and stride 1
2 .

The discriminator networks are constructed using 70 × 70 PatchGANs [10] that

classify whether 70 × 70 overlapping image patches are real or fake. The network con-

figuration is specified as: C64-C128-C256-C512, where Ck denotes a 4×4 Convolution-

BatchNorm-LeakyReLU layer with k filters and stride 2.
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2.5 Experimental Results

2.5.1 Datasets

The proposed method is evaluated on existing viewed sketches datasets. CUHK Face

Sketch database (CUFS) [1] is a viewed sketch database which includes 188 faces from

the Chinese University of Hong Kong (CUHK) student database, 123 faces from the

AR database [42], and 295 faces from the XM2VTS database [43]. For each face, there

is a sketch drawn by an artist based on a photo taken in a frontal pose under normal

lighting condition, and with a neutral expression.

CUFSF [1, 44] database includes 1,194 persons from the FERET database [45].

For each person, there is a face photo with lighting variation and a sketch with

shape exaggeration drawn by an artist when viewing this photo [44]. This dataset

is particularly challenging since the photos are taken under different illumination

conditions and sketches have shape exaggeration as compared to photos, however, the

dataset is closer to forensic sketch scenario.

Both datasets contain facial landmark coordinates which can be easily applied for

alignments. There also exist several recent datasets without landmark information,

recent face alignment algorithms such as [46] can be applied in the preprocessing stage.

2.5.2 Training Details

During model training procedure, each input image is resized to the size of 256 × 256.

Data augmentation is performed on the fly by adding random noise to input images.

The network is trained from scratch, similar to the network initialization setup in [11],

the learning rate is set to 0.0002 for the first 100 epochs, and linearly decaying down

to 0 for next 100 epochs. λi are all set to 1 and ηi are all set to 0.7 in (2.3). Weights

were initialized from a Gaussian distribution with mean 0 and standard deviation

0.02. The network is trained using the Adam solver [47]. For the CUHK dataset,
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188 face-sketch pairs are divided such that 60 pairs are used for training, 28 pairs

for validation and 100 pairs for testing. We augmented training set by horizontally

flipping images so that training set has 120 images in total. For the CUFSF dataset,

1194 image pairs are divided to 600 for training, 297 for validation and 297 for testing.

All images are pre-processed by simply aligning center of the eyes to the fixed position

and cropping to the size of 200 × 250.

(a) (b) (c) (d) (e)

Figure 2-2. Results of ablation study: (a) Input. (b) Ground truth. (c) C − D256. (d)
C − D256,128. (e) C − D256,128,64. Row 1 and Row 2: Photo synthesis from sketch. Row
3 and Row 4: Sketch synthesis from photo. It can be observed from (e) that the artifacts
are minimized and the results are more realistic.

2.5.3 Ablation Study

To demonstrate the advantage of our multi-adversarial network structure over the single

adversarial approach, we compare the results of the following network configurations
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on the CUHK dataset:

• C − D256: Proposed method with single discriminator at the final resolution

level (256 × 256).

• C − D256,128: Proposed method with two discriminators at last two resolution

levels (256 × 256 and 128 × 128).

• C − D256,128,64: Proposed method with two discriminators at three resolution

levels (256 × 256, 128 × 128 and 64 × 64).

Fig. 2-2 shows sample results from the above configurations on the CUHK

dataset. It can be observed that the performance in terms of visual quality improves

as more levels of supervision are added. Similar observations can be made using the

quantitative measurements such as SSIM [48] and FSIM [49]) as shown in Table 2-I.

Table 2-I. ABLATION STUDY: QUANTITATIVE RESULTS FOR PHOTO AND SKETCH SYNTHESIS FOR DIF-
FERENT CONFIGURATIONS ON CUHK DATASET

C − D256 C − D256,128 C − D256,128,64
SSIM (Photo Synthesis) 0.7626 0.7851 0.7915
SSIM (Sketch Synthesis) 0.5991 0.6034 0.6156
FSIM (Photo Synthesis) 0.7826 0.7920 0.8062
FSIM (Sketch Synthesis) 0.7271 0.7280 0.7361

2.5.4 Comparison with state-of-the-art methods

In addition to ablation studies, the proposed method is compared with recent state-

of-the-art photo-sketch synthesis methods such as MWF [16], MrFSS [32], Pix2Pix

[10], CycleGAN [11] and DualGAN [12]. Sample sketch and photo synthesis results

on the CUHK dataset are shown in Fig. 2-3 and Fig. 2-4, respectively. It can be

observed that MrFSS synthesis results in blurred outputs. The generative models

(Pix2Pix, CycleGAN and DualGAN) overcome the blurred effect by using adversarial
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Figure 2-3. Comparison of photo to sketch synthesis results on the CUHK dataset.
From top to bottom: Input, Ground truth, MrFSPS, Pix2Pix, DualGAN, CycleGAN and
PS2-MAN. PS2-MAN has minimal artifacts while generating realistic and sharper images.

loss in addition to L1 loss. However, they tend to have undesirable artifacts due

to instabilities in training while generating high-resolution images. In contrast, the

proposed method (PS2-MAN) is able to preserve high-frequency details and minimize

the artifacts simultaneously. Also, photo synthesis using CycleGAN results in color
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Figure 2-4. Comparison of Sketch to photo synthesis results on the CUHK dataset.
From top to bottom: Input, Ground truth, MrFSPS, Pix2Pix, DualsAN, CycleGAN and
PS2-MAN. PS2-MAN has minimal artifacts while generating realistic and sharper images.

distortion. A potential reason is the lack of L1 loss while training the network. Hence,

in our case, we use L1 reconstruction error between target and synthesized image to

train the network, thus providing the network with further regularization.
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Figure 2-5. Comparison of photo to sketch synthesis results on the CUFSF dataset.
From top to bottom: Input, Ground truth, Pix2Pix, DualGAN, CycleGAN and PS2-MAN.
PS2-MAN has minimal artifacts while generating realistic and sharper images.

Table 2-II. PERFORMANCE COMPARISON: QUANTITATIVE RESULTS FOR PHOTO AND SKETCH SYNTHESIS
ON CUHK DATASET

MWF MrFSPS pix2pix CycleGAN DualGAN Ours
SSIM (Photo Synthesis) 0.6057 0.6326 0.6606 0.7626 0.7908 0.7915
SSIM (Sketch Synthesis) 0.4996 0.5130 0.4669 0.5991 0.6003 0.6156
FSIM (Photo Synthesis) 0.7996 0.8031 0.6997 0.7826 0.7939 0.8062
FSIM (Sketch Synthesis) 0.7121 0.7339 0.6174 0.7271 0.7312 0.7361

Sample sketch and photo synthesis results on the CUFSF dataset for the generative

techniques are shown in Fig. 2-5 and Fig. 2-6, respectively. The CUFSF dataset is
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Figure 2-6. Comparison of sketch to photo synthesis results on the CUFSF dataset.
From top to bottom: Input, Ground truth, Pix2Pix, DualGAN, CycleGAN and PS2-MAN.
PS2-MAN has minimal artifacts while generating realistic and sharper images.

particularly challenging since the sketches have over-exaggerated features as compared

to the ones present in the real photos. It can be observed that in case of both sketch

and photo synthesis that the generative methods (Pix2Pix, CycleGAN and DualGAN)

introduce undesirable artifacts especially at facial features resulting. In contrast, the

proposed method is able to minimize the artifacts while generating realistic images as

compared to the other methods.
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Similar to ablation studies, we also compare the results of all the above methods

using quantitative measures (SSIM and FSIM) as shown in Table 2-II. The proposed

method achieves the best results in terms of SSIM and FSIM as compared to the

other methods. Additionally, the methods are also compared using photo-sketch face

matching rates using two approaches: (1) Synthesize sketches from photos and used

these synthesized sketches to match with real sketch gallery. (2) Synthesize photos

from sketches and use these synthesized photos to match with real photos gallery. The

matching rates were calculated by computing the LBP features and cosine distance.

The matching rates using generative techniques on the CUHK and CUFSF datasets for

various are illustrated in Fig. 2-7 and 2-8 and respectively in terms of the Cumulative

Matching Characteristic (CMC) curves. Table 2-III summarize the rank-1 matching

rates. It can be observed from Fig. 2-7 and 2-8 that the proposed method achieves

best matching rates at all ranks.

To summarize, through various experiments it is demonstrated that the proposed

method PS2-MAN is able to generate realistic results with minimal artifacts as

compared to existing methods. This is mainly due to the multi-adversarial network used

in our approach. Additionally, the proposed method achieves significant improvements

over the other techniques in terms of various quality measures (such as SSIM and

FSIM ) and matching rates while generating visually appealing outputs.

Table 2-III. RANK-1 MATCHING RATES FOR GENERATIVE METHODS ON CUHK AND CUFSF DATASETS

Dataset Photo/Sketch Pix2Pix CycleGAN DualGAN PS2-MAN

CUHK Photo Matching 100 99 100 100
Sketch Matching 78 95 98 99

CUFSF Photo Matching 37 25 35 47
Sketch Matching 40 44 40 51
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Figure 2-7. Matching rates using generative techniques on CUHK dataset for different
ranks (a) Photo matching rates (b) Sketch matching rates.
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Figure 2-8. Matching rates using generative techniques on CUFSF dataset for different
ranks (a) Photo matching rates (b) Sketch matching rates.
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Chapter 3

Future Works

3.1 Multimodal Visible to Polarimetric-Thermal
Facial Image Generation

Face recognition has been an active research area for decades. However, most state of

the art methods are focusing on visible spectrum images which usually can not perform

well on different domains such as infrared. It is not until recently the community

started to develop methods for face recognition in the infrared spectrum due to the

increasing amount of usage of infrared sensors in modern video surveillance systems.

The infrared spectrum usually refers to the near-infrared (NIR), short-wave infrared

(SWIR) and thermal infrared, where the thermal infrared spectrum is composed of

mid-wave infrared (MWIR) and longwave infrared (LWIR) bands. Moreover, the facial

images acquired in the NIR and SWIR bands are more similar to the ones acquired

in visible spectrum because of the fact that the phenomenology of such two bands

are reflection dominated. On the other hand, imaging in thermal band (MWIR and

LWIR) is typically emission dominated so that the facial signatures collected in these

bands are significantly different from their visible correspondences.

A polarimetric thermal image is usually represented by stroke parameters, also

known as stroke images S0, S1, S2 and S3, where S0 represents the conventional

thermal image, S1 contains the horizontal and vertical polarimetric information, and
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S2 contains the diagonal polarimetric information. [50] Note that for most applications

S3 is usually very small and taken to be zero. A degree-of-linear polarizaton (DoLP)

image is then defined as

DoLP =

√
S1

2 + S2
2

S0
. (3.0)

Therefore, for most applications, a complete set of strokes images contains S0, S1,

S2 and DoLP. A sample set of stroke images are shown in Fig 3-1

(a) (b) (c) (d) (e)

Figure 3-1. Sample set of polarimetric thermal face images: (a) Visible Image, (b) S0,
(c) S1, (d) S2 and (e) DoLP.

The ARL dataset [50] protocols for Volume 1 and Volume 2 were approved by

the respective Institutional Review Boards (IRBs) where each collection occurred.

The Volume 1 collection involved two experimental conditions: range and expressions.

Acquisitions were made at distances of 2.5 m, 5 m, and 7.5 m. At each range, a 10

second video sequence was first collected of the subject with a neural expression, and

then a 10 second “expressions” sequence was collected as the subject counted out loud

numerically from one upwards, which induced a continuous range of motions of the

mouth and, to a lesser extent the eyes. In the experimental setup for Volume 1, a

floor lamp was placed 1 m in front of the subject at each range to provide additional

illumination.

Cross-spectrum, or heterogeneous face recognition technique is focusing on rec-

ognizing the identity of an individual imaged in one spectral band from a gallery

database containing facial images acquired in another band (e.g. thermal probe and
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visible database). Among different infrared bands, thermal-to-visible face recognition

is more challenging due to the difference in phenomenology between two spectra.

In many scenarios, images of a subject in a certain modalities are not available.

To address this issue, we propose an integrated framework for multi-modal visible to

polarimetric-thermal facial image generation which can benefit data augmentation

and cross-spectrum face recognition performance.

As discussed above, for a polarimetric thermal face image, the most information

are captured in S0, S1 and S2, therefore, in the future we will focus on these three

modalities. Our goal is to learn a multi-modal mapping. Given a visible image we

hope to simultaneously generate a set of thermal images in different modalities {S0,

S1, S2}. Intuitively, even though the appearance differs from domain to domain,

the identity of the same person should be preserved. Recent conditional GANs [10]

with encoder-decoder structure have achieved promising performance in image-to-

image translation tasks, however, it is designed for specific single domain-to-single

domain mapping. Since three thermal modalities are highly correlated, we propose an

integrated framework which maps visible image into S0, S1 and S2 simultaneously.

Given a dataset (D) consisting of a set of visible image and its corresponding

polarimetric thermal images represented by {(Vi, S0i, S1i, S2i)}N
i=1, the goal of multi

modal generation is to learn a function: {Ŝ0, Ŝ1, Ŝ2} = f(V ) that represents the visible

to polarimetric generation.

Consider this problem as an image-to-image translation task, the popular generative

adversarial network (GAN) is applied in the proposed framework. Zhu et al.proposed

a BicycleGAN framework in [54] for mutimodal image-to-image translation. However,

it is focusing on modeling a distribution of possible outputs in conditional generative

modeling setting and the outputs follows Gaussian distribution. Different from

BicycleGAN which has output modalities following a Gaussian distribution, our target

modality are pre-defined three polarimetric domains.
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As shown in Fig 3-2, the proposed framework contains an auto encoder (E0 and

D0), where E0 maps input visible image V into latent embedding z0, and then D0

maps latent embedding into V̂ . Meanwhile, three parallel encoders D1, D2 and D3

are introduced which take latent embedding as input and generate synthesized Ŝ0, Ŝ1

and Ŝ2 respectively. Since the output of the network is a triplet set {S0, S1, S2}, three

separate discriminator sub-networks are employed for each modality.

Figure 3-2. Network structure of the proposed multimodal thermal facial image generation
framework. Parallel decoders are introduced to generate multimodal output. Meanwhile,
latent space constraint is provided through L1-loss among latent features. Note that
GAN-loss are also applied for each modality.

In the proposed framework, encoder E0 paired with decoders Di, i ∈ {0, 1, 2, 3}

can be considered as a multi modal generator G that consists of sub-generators G0,

G1, G2 and G3 where all sub-generators share the same encoder E0. Same as in GAN

framework [2], the generators are trained using adversarial losses that come from

discriminators at every modality. The goal of the generators is to produce multi modal

images that are as realistic as possible so as to fool the discriminators, whereas the

goal of the discriminator is to learn to classify between generated and real samples.

While the lower level feature maps containing the low-level information such

as edges and shapes, the latent embedding tends to contain high-level information

including the identity. Naturally, different domains can be decomposed into several
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semantically meaningful components. For a set of multi modal face images, they

should contain domain invariant latent information which represents the identity of

the subject, and domain specific information which represents characters of different

modality.

Therefore, in our framework, to constrain the identicalness among visible, S0, S1

and S2 domains, three additional encoders(E1, E2, E3) are then introduced to map

synthesized Ŝ0, Ŝ1 and Ŝ2 into ẑ0, ẑ1 and ẑ2. L1 loss is introduced between latent

embeddings z0, ẑ0, ẑ1 and ẑ2 to force latent space having similar distributions. For

reconstruction loss, the perceptual loss based onthe VGG-Face features is leverages

instead of the L1 loss in the image space. During testing, only E0, D1, D2 and D3 are

used such that giving a visible image as input, three synthesized Ŝ0, Ŝ1 and Ŝ2 images

will be generated respectively.

We hope to continue to work on this problem in the future.

3.2 Attention Guided Thermal to Visible Facial
Image Generation

As discussed in previous section, thermal to visible face recognition is challenging

due to the difference in phenomenology between two spectra. Therefore, there are

many attempts towards this problem. Similar as photo-sketch recognition problem,

traditional methods focus on metric learning approaches, aim to learn a domain

invariant feature. Differently, several recent CNN based methods [51–53] are proposed

to synthesize visible image from polarimetric image and then using synthesized image

for verification. Learning explanations of CNNs has attracted increasing attention

recently as deeper networks dominating most of the computer vision tasks [55–

58]. To date, most of the techniques for explaining CNNs focus on either gradient-

based methods, i.e., collecting gradients backpropagated to the convolutional layer

[57] from the given image-level label or response-based methods, i.e., adding and

26



learning additional layers in the original CNN architecture [55, 56] to retrieve the

“attention maps", in order to localize the attentive and informative image regions

contributing to the model prediction given the image-level label. Comparing to the

response-based approach, gradient-based approach does not need to modify the original

model architecture, making it much more flexible to be integrated into various model

architecture and tasks.

There has been some attempts in using learned attention as a principled part

of the training process to improve the model performance. For example, Fukui et

al.[56] proposed to incorporate perception and attention branch into a single and

unified framework, in which the attention maps are learned from the attention branch

based on model decision, and then sent into the perception branch for improving

recognition performance. Li et al.[59] developed an end-to-end learning pipeline for

image segmentation tasks, which in the first step deploys gradient-based explanation

techniques to learn attention maps, and then apply the learned localization map as

the guidance for learning more accurate and fine-grained segmentation masks.

Grad-CAM [57] is a gradient back propagation based method to visualize model

attention in CNNs. It interprets the gradient of the prediction score of a specific class

and generate attention map corresponding to the class label, which provides a visual

explanation of the CNN and its decision.

Considering that common image-to-image generation using GAN framework, and

the discriminator is a two class classifier, in our future work we hope to introduce

Grad-CAM module in the generation framework so that the attention map provides

guidance to the generation.

As shown in Fig 3-3, the discriminator is followed by a Grad-CAM module, the

predicted real or fake label is then used for generating attention maps. Intuitively, the

attention map obtained from real and fake images should highlight similar regions,

meaning such region contains the most discriminative information. Therefore, we
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Figure 3-3. Attention guided thermal to visible generation framework. Grad-CAM module
is introduced to generate attention map for both generated and ground truth images.

enforce attention maps to be as close as possible by introducing the attention consis-

tency loss LAC , which tries to maximize the overlapping area between two attention

maps. Meanwhile, the standard GAN loss and reconstruction loss between generated

and ground truth images are applied. The overall objective of our framework is a

weighted sum of above losses.
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Summary

We explored the problem of cross domain face synthesis using the recently introduced

generative models. A novel synthesis method using multi-adversarial networks and

attention guided image to image translation framework are presented in this thesis.

The proposed methods are developed specifically to enable GANs to generate high

quality images. This is achieved by providing adversarial supervision to hidden layers

of the generator sub-network. Additionally, the forward and backward synthesis

are trained iteratively in the CycleGAN framework, i.e., in addition to minimizing

L1 reconstruction error, cycle-consistency loss is also used in the objective function.

These additional loss functions provide appropriate regularization thereby generating

high-quality and high resolution synthesis.

Evaluations are performed on the standard benchmarks and the results are com-

pared with recent state-of-the-art generative methods. It is demonstrated that the

proposed methods achieve significant improvements in terms of visual quality and

matching rates.
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