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Abstract 

 The treatment of cancer has long relied upon the use of non-specific and toxic 

chemotherapies and radiation that target quickly dividing cells. As a result, many patients 

experience the severe side effects associated with these therapies including vomiting, nausea, 

fatigue, and alopecia. Additionally, these therapies fail to provide durable and lasting responses in 

most cases of metastatic disease.  

The immune system has long been though to play an important role in preventing cancer 

through immune surveillance; the idea that the immune system is poised with the means to detect 

cancer early on and eliminate malignant cells. However, as evident by aggressive disease, cancer 

is able to evade immune recognition and ultimately become very advanced. In recent years, 

immunotherapy has changed the treatment paradigm for several types of cancer. Of note, 

checkpoint blockade inhibitors have provided durable and lasting responses for a minority with 

metastatic disease. While these advances in therapy have provided hope where there was none in 

the cases of aggressive disease, there is still much work to be done to expand the benefits of 

immunotherapy for a small subset of patients to the whole.  

In an effort to understand why certain patients respond to immunotherapy while other do not, 

there has been an effort to collect as much data through a variety of high-throughput ‘big data’ 

assays including whole exome sequencing, single-cell assays, and T-cell receptor sequencing. In 

this doctoral work, we develop a variety of machine learning and artificial intelligence methods to 

parse the nature of this data to unveil concepts that have helped us understand the prerequisites for 

a successful immune response to eliminate cancer. Of note, we develop a collection of deep 

learning algorithms to understand the interaction of peptide-MHC and T-cell receptor that is 

ultimately responsible for successful recognition of tumor by the immune system.  

Committee: Dr. Drew M. Pardoll (advisor), Dr. Alexander S. Baras, Dr. Steven Salzberg 
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I. Introduction 

 

The treatment of cancer has long relied upon the use of non-specific and toxic chemotherapies 

and radiation that target quickly dividing cells. As a result, many patients experience the severe 

side effects associated with these therapies including vomiting, nausea, fatigue, and alopecia1. 

Additionally, these therapies fail to provide durable and lasting responses in most cases of 

metastatic disease2.  

In recent years, there has been a significant shift in the way oncologists treat cancer with the 

advent of immunotherapy; the approach of harnessing the host immune system to target and 

eliminate malignant cells. The concept that the immune system could play a key role in prevention 

and progression of cancer first came in 1909 by Ehrlich, who proposed that through a mechanism 

of “surveillance,” the immune system could detect and eliminate cancer.6 Further work in the 2001 

showed that RAG2-deficient mice (lacking T-Cells, B-cells, and NK cells) spontaneously 

developed adenomas of the lung and intestine3. With the advent of monoclonal antibodies, 

Ritixumab (anti-CD20) was one of the first clinically implemented forms of immunotherapy used 

as a first-line therapy for low-grade or follicular CD20-positive non-Hodgkin’s lymphoma.  

In the most recent wave of cancer immunotherapy, checkpoint blockade therapy (α-PD1,α-

CTLA4) has provided the potential to unleash the immune system in novel ways. While PD1 and 

CTLA4, found on CD8+ T-cells and regulatory T-cells, are meant to control an overactive and 

potentially harmful immune response, malignant cells 

can signal through these molecules to suppress the 

immune response as a form of peripheral tolerance 

(Figure 1)4,5. By blocking these signals on T-cells, the 

‘brake’ is removed and they can carry out their 

cytotoxic activity against the tumor.  

Figure 1: Malignant cells are able to induce a form of 
peripheral tolerance by constitutively expressing 
PDL1, which engages PD1 on T-cells (6).  
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The simplicity of checkpoint blockade is that it does not require prior knowledge of the 

antigenic targets of the T-cells it activates. This allows the drug to be broadly applied to various 

types of malignancies quickly without prior sequencing of the patient’s tumor. In essence, it 

assumes that the patient’s immune system is equipped with the means to eliminate the tumor and 

simply needs to be given the right advantage through checkpoint blockade. Unfortunately, while 

responses on checkpoint blockade can be durable and are associated with far fewer side effects 

than traditional chemotherapy, the response rate is relatively low. In the initial α-PD1 trials, across 

non-small-cell lung cancer, melanoma, and renal-cell cancer (considered highly immunogenic), 

the cumulative response rates were 18%, 28%, and 27%, respectively6. Much effort has been 

placed on understanding the immunological reasons for 

successful response to therapy so that response rates can be 

increased. Initial studies demonstrate that the efficacy of 

the checkpoint blockade is highly correlated with 

mutational load (Figure 2), suggesting that the CD8 T cells 

that are being activated against the tumor are neoantigen 

specific; targeting patient-specific passenger mutations 

such as missense mutations that occur due to the 

pathogenesis of the disease7.  

While preliminary studies have elicited some themes that are associated with response to 

immunotherapy, such as total mutational burden (TMB), there still exists a lot of weakly 

understood reasons for why certain patients benefit from therapy while others do not. As a result, 

investigators have developed and applied a variety of technologically advanced techniques such 

as whole-exome sequencing (WES) to understand the genetics of different tumors, immune 

Figure 2: Kaplan-Meier Survival Curve as a 
function of mutational load. Patients with 
higher mutational loads had improved 
response to checkpoint blockade (7).  
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repertoire analysis in the form of T-cell repertoire analysis to query the adaptive immune response 

that is responsible for eradicating tumors, and a host of single-cell techniques including flow 

cytometry, CyTOF, and single-cell RNA sequencing (SC-RNAseq) to describe the phenotypic 

nature of the tumor microenvironment. The resulting tour de force has resulted in very large 

datasets that are highly complex and hold an incredible amount of information. Thus, there exists 

great opportunities in developing algorithms to parse these high-dimensional datasets in order to 

help understand the complex interaction of the immune system with cancer with the potential of 

developing better biomarkers and immunotherapies. 

In the computer science field, there has also been a similar revolution in the fields of artificial 

intelligence (AI) and machine learning (ML). In fact, the greatest use of AI/ML has been for pattern 

recognition in large datasets and the results have been in some cases, better than human 

performance8–10. In this work, we explore a variety of machine learning methods and create tools 

for the field to analyze a variety of data generated from the cancer immunology field including 

WES, TCRSeq, and CYTOF data and demonstrate the power of these methods to provide 

descriptive and predictive insights that ultimately hold promise for improving our understanding 

of how cancer evades immune recognition and how to better treat patients of the future. 
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II. ImmunoMap: A Bioinformatics Tool for T-Cell Repertoire Analysis 

Abstract 

Despite a dramatic increase in T-cell receptor (TCR) sequencing, few approaches biologically 

parse the data in a fashion that both helps yield new information about immune responses and may 

guide immunotherapeutic interventions. To address this issue we developed a method, 

ImmunoMap, that utilizes a sequence analysis approach inspired by phylogenetics to examine TCR 

repertoire relatedness. ImmunoMap analysis of the CD8 T-cell response to self-antigen (Kb-TRP2) 

or to a model foreign-antigen (Kb-SIY) in naïve and tumor-bearing B6 mice showed differences 

in the T-cell repertoire of self- versus foreign antigen-specific responses, potentially reflecting 

immune pressure by the tumor,  and also detected lymphoid organ-specific differences in TCR 

repertoires When ImmunoMap was used to analyze clinical trial data of tumor-infiltrating 

lymphocytes (TILs) from patients being treated with anti–PD-1,  ImmunoMap, but not standard 

TCR sequence analyses, revealed a clinically predicative signature in pre- and post-therapy 

samples.  
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Introduction 

The advent of high-throughput immune sequencing has allowed scientists and clinicians to 

understand antigen-specific interactions of the immune response with various pathologies from a 

systems-like perspective. Its initial applications showed the depth and breadth of the T-cell 

receptor (TCR) and B-cell receptor (BCR) repertoire11–14. Further applications of immune deep-

sequencing have contributed to vaccine development and to tracking disease progression in 

malignancies15–17. Sequencing efforts have improved our understanding of immune responses to 

cancer, characterizing the TCR repertoire of circulating as well as tumor-infiltrating lymphocytes 

(TILs)18,19.  

With the abundance of new “big data” sets, a need has arisen to develop biologically meaningful 

techniques for analysis of TCR repertoire sequences. Current analysis methods fall short of 

providing an intuitive understanding of the immune system repertoire for two reasons. First, as 

purely mathematical constructs, they focus on diversity defined as a function of the number of 

different sequences and their respective frequencies, Shannon entropy, and ignore sequence 

relatedness20,21. Second, methods that compare different repertoires apply stringent criteria by only 

comparing exact TCR clonotypes (whether at the nucleotide or amino acid level) to assess 

similarity 19,22,23. 

However, biological sequence similarity, not identity, is the relevant parameter. Ignoring sequence 

relatedness is a significant omission, becauseTCRs with similar, homologous sequences likely 

recognize related MHC/peptide targets. Several groups have sought to understand the structural 

aspects of the underlying TCR repertoire through a variety of techniques that cluster homologous 

CDR3 sequences, showing that, indeed, TCRs that recognize the same antigen have highly 

homologous sequences24–26. Although this work highlights the relevance and rationale behind 



 6 

analyzing TCR sequence repertoire data via clustering methods, we sought to create structural 

diversity metrics for whole TCR repertoires. To address this, we developed ImmunoMap, which 

visualizes and quantifies immune repertoire diversity in a holistic fashion. ImmunoMap not only 

enables assessment of similarity between TCR sequences, but displays the scope of diversity 

among different repertoires. Our approach combines information about the frequency and 

relatedness of TCR sequences by using a sequence analysis inspired by phylogenetics to determine 

relatedness among cells of an antigen-specific T-cell response, as well as the similarities of a 

particular TCR repertoire to other repertoires.  

We initially trained ImmunoMap on the TCRs used by T cells responding to Kb-TRP2, a shared 

self-peptide tumor antigen, and Kb-SIY, a model foreign-antigen, in a model of murine melanoma.  

ImmunoMap analysis showed that in naïve animals, the response to Kb-SIY was highly conserved, 

with many TCR sequences having high sequence homology, a biological observation that we 

missed when using Shannon entropy calculations. In contrast, the bulk of the self-antigen response 

was comprised of fewer and more distantly related sequences. The presence of tumor had a 

differential effect on the shaping of the repertoire in the model foreign and self-antigen responses, 

greatly altering the TCR repertoire of the self-antigen response, with a smaller effect on the 

response to the foreign antigen. To understand the clinical utility of ImmunoMap, we compared 

ImmunoMap to Shannon entropy analysis of TILs from melanoma patients on anti–PD-1 therapy. 

Whereas Shannon entropy calculations did not find any clinically relevant correlates, ImmunoMap 

found clinically relevant, predicative TCR signatures in patients who responded to anti–PD-1 

therapy after just 4 weeks on therapy. Thus ImmunoMap proved more effective in finding a 

clinically useful parameter that another repertoire analysis technique could not. 
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Materials and Methods 

Mice: C57BL/6j mice were purchased from Jackson Laboratories (Bar Harbor, ME). All mice were 

maintained according to Johns Hopkins School of Medicine IACUC 4-5 mice (gender and age 

matched) were used and pooled for each stimulation condition, based on previous T-cell expansion 

experiments, and each stimulation and sequencing run was performed once. Mice were randomly 

selected for naïve or tumor-bearing treatments and principal investigator was blinded to which 

mice received tumors. Murine experiments for naïve and tumor-bearing spleens were duplicated 

in separate pools of animals to demonstrate reproducibility of antigen-specific repertoire 

characteristics (Supplementary Fig. S7).   

Preparation of MHC-Ig dimers and nano-aAPC: Soluble MHC-Ig dimers, Kb-Ig, was prepared 

and loaded with peptides as described 27.. Nano-aAPC were manufactured by direct conjugation 

of MHC-Ig dimer and anti-CD28 antibody (37.51; Biolegend) to MACS Microbeads (Miltenyi 

Biotec) as described previously28.  

Lymphocyte isolation:  Mouse lymphocytes were obtained from homogenized mouse spleens after 

hypotonic lysis of RBC. Cytotoxic lymphocytes were isolated using a CD8 magnetic enrichment 

column from Miltenyi Biotec (Cologne, Germany) following the manufacturer’s instructions. 

Lymphocytes from lymph nodes were obtained from homogenized inguinal lymph nodes and 

enriched with nano-aAPCs and plated for 7 days. For tumor-bearing animals, murine melanoma 

cell line B16-SIY, obtained with the consent of Tom Gajewski (The University of Chicago, IL, 

USA) through Charles Drake in 2011, and re-authenticated in the past year by flow cytometry, was 

injected subcutaneously after 5 days of culture, measured by calipers and harvested when tumors 

reach over 50mm2. The B16-SIY cell line is a tumor model modified to express SIY, a completely 

foreign epitope to the murine B6 background. In naïve mice setting experiments, it was used as a 
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model foreign antigen such as would be a viral epitope and in tumor-bearing animals serves as a 

tumor antigen. Tumor-infiltrating lymphocytes were obtained from tumors by manual digestion 

and washing, a density gradient centrifugation (Lympholyte Cell Separation Media, Mouse, Cedar 

Lane), and then tumor cells plated for 3 hours at 37°C and lymphocytes washed off and plated 

with nano-aAPCs (1.25x109 particles/mL). All cell lines underwent testing for mycoplasma 

contamination. 

Enrichment and expansion: Nano-aAPC were stored at a concentration of 8.3 nM (5 x 1012 

particles/mL), and all volumes refer to particles at this concentration. Ten million CD8+-enriched 

lymphocytes at ~108
 cells/mL were incubated with 10 L of nano-aAPC for 1 hr at 4 °C, for an 

approximate bead:cell concentration of 5000:1. Cell-particle mixtures were subsequently passed 

through a magnetic enrichment column, the negative fraction was collected and the positive 

fraction eluted. Positive fractions were mixed and cultured in 96-well round-bottom plates for 7 

days in complete RPMI-1640 medium supplemented L-glutamine, non-essential amino acids, 

vitamin solution, sodium pyruvate, β-mercaptoethanol, 10% FBS, ciproflaxin, and 1% T-cell 

growth factor, a cytokine cocktail derived from stimulated PBMC as described in the literature29, 

in a humidified 5% C02, 37 °C incubator for 1 week. Specificity of CTLs was monitored on day 

7, by FACS analysis following LIVE/DEAD cell stain (Thermo Fisher), anti-CD8 (BD 

Pharmingen, Cat# 553035, 53-6.7), and dimeric MHC-Ig staining. The number of antigen-specific 

cells was calculated by multiplying the number of total T cells by the fraction of CD8+ and antigen-

specific T cells; the fraction of antigen-specific cells was calculated after subtracting the non-

cognate MHC staining from cognate MHC staining. 

Sorting and sequencing of antigen-specific CD8+ T cells: Following LIVE/DEAD cell stain 

(Thermo Fisher), anti-CD8 (BD Bioscience), and dimeric MHC-Ig staining, cells were sorted by 
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gating on cells with cognate Dimeric MHC-Ig staining over non-cognate staining. Antigen-specific 

CD8+ T cells were sent directly for CDR3 β-chain sequencing by Adaptive Biotechnologies.  

In vitro nano-aAPC functionality assay: 7 days following enrichment and expansion antigen 

specificity is confirmed by intercellular cytokine staining. Briefly, RMA-S, given by Michael 

Edidin (Johns Hopkins University, MD, USA) in 1996 (reauthenticated in the past year by peptide 

stabilization assays and cultured for 7 days prior to use) are peptide pulsed (10 M) overnight at 

room temperature with relevant or no peptide and mixed 1:2 RMAS:T-cell ratio with expanded T 

cells. Unpulsed RMAS cells were used as background stimulation. After 6 hours, cells were 

washed twice with FACS wash buffer and then stained with viability dye and anti-CD8 for 20 

minutes. Cells were then fixed and permeabilized with the Cytofix/Cytoperm kit (BD Biosciences) 

following the manufacturer’s protocol. Anti-TNFα (Biolegend, Cat# 506324, MR6-XT22) was 

added to the cells and stained for an hour. 

Precursor frequency assessment: On day 0 following CD8+ T-cell isolation from splenic cells, 

CD8+ T cells were stained with LIVE/DEAD cell stain (Thermo Fisher), anti-CD8 (BD 

Bioscience), and dimeric MHC-Ig staining viability stain with either unloaded or peptide-loaded 

MHC-Ig.  Cells gated on Live cells and anti-CD8a+ staining. 

Collection of TILs from patients undergoing α-PD1 therapy:  

Eighty-five patients, providing written consent, were accrued to a multi-arm, multi-institutional, 

institutional-review-board-approved, prospective study (BMS-038) to investigate the 

pharmacodynamic activity of nivolumab. All patients received nivolumab (3 mg/kg Q2W) until 

progression for a maximum of 2 years. Tumor samples were collected prior to and four weeks after 

initiation of nivolumab therapy. The samples were stored in RNAlater®(Ambion). 34 patients 
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permitted TCR sequencing, and DNA was extracted and submitted to Adaptive Biotechnologies 

for survey level TCR β-chain sequencing 13,30. Clinical response was assessed via CT scan after 

24 weeks of therapy. 

Deconvolution methods: Due to the fact that animals were pooled together on day 0 prior to 

expansion of antigen-specific cells, there was only one sequencing run. In order to determine the 

variance of calculated indicators of the repertoire, the reads from the sequencing file were 

randomly distributed into the number of bins corresponding to the number of animals that went 

into the experiment. This method of random deconvolution assured that the variance of the 

indicator by random chance was not greater than the difference observed between conditions.  

Weighted repertoire dendrograms:  For the antigen-specific sequencing, productive sequences 

with a frequency > 0.01% were taken for analysis. For anti–PD-1 clinical trial analysis, Adaptive 

Biotechnologies’ files were first filtered to only include sequences with reads greater than or equal 

to 5 and then top 40% of response was taken for analysis. Sequence distances were calculated 

based on sequence alignments scores using a PAM10 scoring matrix and gap penalty of 30. 

Distance matrix was used to create a dendrogram using the Bioinformatics toolbox in MATLAB. 

Circles were overlaid at the end of the branches corresponding to the CDR3 sequences with 

diameters proportional to the frequency of the sequence. When using the terminology “weighted 

repertoire dendrogram,” this does not infer that the distance matrix used to create the dendrogram 

is weighted; rather, the dendrogram is visually ‘weighted’ by frequency. 

Dominant motif analysis: Using the cluster function in MATLAB toolbox, dendrogram was 

divided into homologous clusters using a homology threshold obtained from analyzing an 

unexpanded adult CD8+ T cell population from a C57BL/6 animal (Supplementary Fig. S1). 

Clusters whose average sequence distance within cluster <= threshold and met a certain frequency 
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cutoff (3% - Supplementary Fig. S1 were denoted as “Dominant Motifs.” Cluster frequency was 

lowered to 1% for α-PD1 clinical trial analysis but held consistent across all patients due to the 

fact that this was not a single antigen-specific population of cells.  

Singular and novel clone analysis: In order to define singular clones, a matrix was setup to 

calculate the mapped sequence distance of every unique combination of sequences in the 

repertoire. Using standard matrix operations within MATLAB, a singular clone was defined as a 

clone whose frequency was 10x the sum of all other homologous clones. Homologous clones were 

those who had a sequence distance determined from the dominant motif analysis. In order to define 

novel clones, the same approach was used, but the matrix was setup in that it calculated the mapped 

sequence distance of every unique combination of sequences between the two repertoires being 

compared. A novel clone was defined as a clone whose frequency was 10x the sum of all 

homologous clones in the other sample.  

TCR diversity score: This measurement of diversity was calculated in a similar method as the 

singular & novel clone analysis. An initial matrix is created where the mapped sequence distance 

is calculated for every unique combination of sequences in the repertoire. Then the average of the 

unique combination calculations is taken, weighted by reads, and reported as the TCR diversity 

score. Additional details of the algorithm behind this calculation are shown in Supplementary Fig. 

S6.   

Shannonntropy calculations: Calculation of Shannon entropy was completed by the following 

formula where pi represents the frequency of each amino acid sequence and n represents the total 

number of sequences present in the response:  
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𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝𝑖ln (𝑝𝑖)

𝑛

𝑖=1

 

Statistical methods:  No specific statistical method was used to determine sample size for the 

stimulation cohorts. Two-tailed t-tests were used as provided by GraphPad Prism 5 software for 

all comparative statistics given we expect normal distributions across all experiments.  

Code availability: In order to use the ImmunoMap algorithms, we have developed a MATLAB-

based Graphical User Interface (GUI) that can be found along with the source code at 

https://github.com/sidhomj/ImmunoMap. Supplementary Fig. S8 demonstrates the use of the GUI. 

Data Availability: TCR β-chain sequencing raw data for the murine experiments is found in 

supplementary materials.  

Results  

Overview of ImmunoMap Algorithms 

Weighted Repertoire Dendrograms: In order to visualize the immune response, we created 

weighted dendrograms; combining information about sequence relatedness with information about 

sequence frequency. We initially applied this analysis to data (from the Adaptive Biotechnologies 

Data Portal31) on the response of tetramer-sorted human CD8+ T cells to cytomegalovirus (CMV; 

Fig. 1A). The distance from the end of the dendrogram branches denotes distance in terms of 

sequence homology; the size of the circles at the ends of the branches denotes frequency of the 

sequence, and color denotes V usage. Sequence distance is determined as a function of global 

alignment scores (Needleman-Wunsch 32, PAM10 scoring matrix 33, Gap Penalty = 30) between 

all unique combination of sequences as follows:  

https://github.com/sidhomj/ImmunoMap


 13 

𝑆𝑐𝑜𝑟𝑒12 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 1, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 2) 

𝑆𝑐𝑜𝑟𝑒11 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 1, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 1) 

𝑆𝑐𝑜𝑟𝑒22 = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒 (𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 2, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 2) 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (1 −
𝑆𝑐𝑜𝑟𝑒12

𝑆𝑐𝑜𝑟𝑒11
)(1 −

𝑆𝑐𝑜𝑟𝑒12

𝑆𝑐𝑜𝑟𝑒22
) 
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Figure 1. Elements of ImmunoMap Algorithm A) Weighted Repertoire Dendogram visualize 

relatedness of sequences within repertoire along with relative frequency of CDR3 amino acid 

sequences. B) Dominant Motif Analysis clusters homologous sequences and selects for clusters 

contributing to significant proportion of the response. 3 Dominant Motifs are shown representing 

highly represented structural motifs in this individual’s CMV response. C) Singular Clone 

Analysis defines sequences that expand significantly over the summation of all other homologous 

sequences D) Novel Clone Analysis is implemented when comparing repertoires from different 

samples and a novel clone is defined as one that expands significantly over the summation of all 

homologous sequences in the other sample.  
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Dominant Motif Analysis: In order to parse the many sequences that are detected in antigen-

specific CTL expansion, we sought to perform hierarchical clustering to determine structural 

motifs that dominated the response. Thresholds for sequence homology and frequency were set by 

analyzing the sequences of the naïve B6 CD8+ repertoire, taken from the Adaptive Biotechnologies 

Data Portal34, Supplementary Fig. S1. We used these thresholds to define homology clusters 

based on sequence distance and then examined clusters that met a predefined frequency threshold 

and termed them “dominant motifs” (Fig. 1B).  

Singular and Novel Structural Clones Analysis: We also defined a “singular structural clone” as 

one that has expanded 10x more than the summation of all other homologous clones in a sample, 

representing a singular solution in “sequence space.” (Fig. 1C). When comparing two separate 

CMV-specific sequencing samples, from different individuals, we defined a “novel structural 

clone” as one that has expanded 10x more than the summation of all homologous clones to it in 

another sequencing sample, representing a newly expanded structural clone (Fig. 1D).  

TCR Diversity Score: To quantify the diversity of the entire TCR repertoire, we created a metric 

to quantify the relatedness of an entire sample; defined as the average mapped sequence distance 

of all unique combinations of sequences in a sample, weighted by number of reads per sequence.   

𝑀𝑎𝑝𝑝𝑒𝑑 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  1 −  
1

1 + [𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒]
 

The TCR Diversity score is bounded between 0 and 1, in which a score of 0 would correspond to 

all TCRs in a response being identical and 1 would correspond to all TCRs being infinitely 

different (full details of algorithms to calculate TCR diversity score in Supplementary Fig. S6).  
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Naïve TCR Repertoires against Model Tumor Antigens  

To understand the clonal diversity of antigen responses, CD8+ T cells from naïve B6 mice were 

pooled and expanded against a model foreign-antigen Kb-SIY, or against a self-tumor antigen, Kb-

TRP2 (180-188), as described27,35. Briefly, CD8+ T cells were enriched and stimulated with 

nanoparticle artificial antigen-presenting cells (aAPCs) containing peptide-MHC-Ig molecules and 

cultured in vitro for 7 days (Fig. 2A).  The resultant CD8+ T-cell cultures were antigen-specific by 

both peptide-MHC-Ig staining and cytokine analysis, confirming their functional specificity 

(Supplementary Fig. S2). Initial precursor frequency was also measured in the endogenous 

repertoire and, even though T cells that recognize either antigen could be expanded from naïve 

animals, Kb-SIY antigen–specific T cells had a higher naïve precursor frequency (Supplementary 

Fig. S2). Antigen-specific populations were sorted and the CDR3 region of the TCR Vβ chain was 

sequenced.   

ImmunoMap analysis of Kb-SIY-specific and Kb-TRP2-specific TCRs (Fig. 2B) visualized unique 

aspects of the polyclonal response for both antigens.  Kb-SIY CD8+ T cells consisted of clones 

with homologous TCR sequences; however, the naïve response to Kb-TRP2 was more clonal in 

nature (more high frequency clones) and used more unrelated sequences, each creating a distinct 

clonal variant for antigen recognition.  

Dominant motif analysis showed that anti-Kb-SIY TCR had fewer, yet richer (more sequences per 

motif), dominant motifs than Kb-TRP2 (Fig. 2C, D). Kb-TRP2 specific T cells had a higher 

percentage of clones representing singular structural T-cell expansions and they took up a larger 

portion of the overall TRP-2 antigen-specific response (Fig. 2D – bottom). Comparing the TCR 

diversity scores, Kb-SIY stimulated a more homologous response, whereas Kb-TRP2 had a more 

diverse response. The response to Kb-SIY had a more conserved V usage, predominantly using 
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V13, whereas the response to Kb-TRP2 exhibited a more diverse use of V segments 

(Supplementary Fig. S3).   

 To demonstrate the advantages of the ImmunoMap analysis over traditional analytic methods, we 

calculated Shannon entropies for Kb-SIY vs Kb-TRP2 responses (Fig. 2E). Shannon entropies 

revealed the diversity of the Kb-SIY response to be higher than that of the Kb-TRP2 response. 

However, because the Shannon entropy is largely determined by the number of sequences that are 

present in the Kb-SIY response and not their relatedness, it missed the fact that although more 

sequences responded to Kb-SIY, they were more convergent than the fewer sequences that 

responded to Kb-TRP2. Thus, the ImmunoMap TCR diversity score and dominant motif analyses 

reflected novel relatedness-information that could not be seen by conventional Shannon entropy 

calculations.  
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Figure 2. Naïve Repertoire to Kb-SIY vs Kb-

TRP2 antigens. A) Naïve B6 Animals were 

harvested for CD8 T cells from spleens. CD8 T 

cells underwent Enrichment & Expansion 

protocol via nano-aAPC’s and then were 

cultured ex-vivo for 7 days before undergoing 

flow-sorting for antigen-specific cells and being 

sent for TCR β-chain sequencing. B) Weighted 

Repertoire Dendograms where distance of ends 

of branches denotes sequence distance, size of 

circles denotes frequency of sequence, and color 

of circle denotes specific V beta segment usage. 

C) Demonstration of dominant motif’s detected 

for Kb-SIY (left) and Kb-TRP2 (right). 

Frequency and global sequence alignment is 

shown (Red = Fully Conserved Amino Acids, 

Green = Semi-Conserved Amino Acids, Black = 

Nonconserved Amino Acids). D) Top Row – 

Quantification of Dominant Motif Analysis 

comparing the number of dominant motifs, the 

number of sequences per motif, the contribution 

of the sequences in the dominant motifs to the 

response, and the contribution to the response 

per sequence in a dominant motif. Bottom Row – 

Singular Structural Clone and TCR Diversity 

analysis metrics. (n=5). E) Shannon’s Entropy 

Calculations comparing endogenous Kb-SIY to 

Kb-TRP2 responses. (** : P-value ≤ 0.01, *** : 

P-value ≤ 0.001 using the unpaired two-tailed t-

test, bar represents mean ± s.e.m) 
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Tumor Exerts Differential Expansion Pressure on Antigen-Specific Repertoire 

Although we know that tumors exert pressure on the immune response, it is not clear how this 

alters the repertoire of responding T cells. The ImmunoMap approach can provide insight into the 

biological impact of tumors on T-cell responses and TCR usage by studying TCR repertoire 

changes in the presence of tumor (B16-SIY)36. Visualization of the TCR repertoire by 

ImmunoMap analysis (Fig. 3A) showed differential effects of tumors on the repertoire of pooled 

splenic T cells specific for Kb-SIY or Kb-TRP2. The Kb-SIY CD8+ T cell repertoire was largely 

unaltered in response to tumors. In contrast, as seen by ImmunoMap, the Kb-TRP2 response was 

not only more clonal, but also used TCR sequences that had minimal sequence homology to the 

TCRs seen in the naïve C57BL/6 response.  

Dominant motif analysis showed that the presence of tumors increased the number of dominant 

motifs in the Kb-SIY response (Fig. 3B). In contrast, the presence of tumors decreased the number 

of dominant motifs in the Kb-TRP2 response, suggesting directed immune pressure on the self vs 

foreign antigens in the context of tumor. The dominant Kb-SIY motifs were conserved (Fig. 3C). 

In contrast, no common dominant motifs were shared in the Kb-TRP2 response in tumor-bearing 

animals compared to the naïve response. When examining novel structural clones (Fig. 3D), the 

Kb-TRP2 response in tumor-bearing mice had more structurally novel sequences that, combined, 

were a larger portion of the response as compared to the naïve response. Selective pressure by 

tumors on the immune response was also seen in analyzing the V usage between naïve and tumor-

bearing animals (Fig. 3E). We saw the elimination of the use of V16 in the Kb-TRP2 response, 

and an increased use of V5. In contrast, V usage was conserved in the Kb-SIY response between 

naïve and tumor-bearing animals (Supplementary Fig. S4).  
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Figure 3. Effects of Tumor on TCR Repertoire. A) Overlapped weighted repertoire dendograms 

of tumor-bearing vs naïve antigen-specific splenic CD8 responses. (Red = Tumor-bearing 

repertoire. Blue = Naïve repertoire). B) Dominant Motif analysis for Kb-SIY and Kb-TRP2 

responses before and after exposure to tumor (n=5 mice). C) Maintenance of Dominant Motifs 

between Naïve and Tumor-Bearing Repertoire. D) Novel Structural Clone Analysis (n= 5 mice). 

E) V Beta usage of Kb-SIY and Kb-TRP between Naïve and Tumor-Bearing Repertoire. F) 

Shannon’s Entropy Calculations comparing endogenous vs tumor-bearing responses to Kb-SIY 

and Kb-TRP2. (* : P-value ≤ 0.05, *** : P-value ≤ 0.001 using the unpaired two-tailed t-test, bar 

represents mean ± s.e.m) 
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Additionally, when examining the effect of tumors on Shannon entropy (Fig. 3F), we see that 

although maintenance of entropy in the Kb-SIY response and its decrease in the Kb-TRP2 response 

generally complement the ImmunoMap dominant motif analysis, Shannon entropies are 

uninformative about the conservation, or lack thereof, of TCR sequence structure in response to 

the tumor.  

Lymphoid Organ-Dependent Differences in TCR Repertoires in Tumor-Bearing Mice 

We hypothesized that the influence of tumors on the repertoire may also vary depending upon the 

relationship of the lymphoid organ to the tumor site. This was studied by analyzing antigen-

specific TCR repertoires in the spleen versus draining lymph node (dLN), and TILs in pooled 

tumor-bearing mice lymph nodes and tumors. ImmunoMap analysis revealed that the Kb-SIY 

repertoire selects for effective structural motifs as one probes compartments closer to the tumor 

site. This is seen as the richness of dominant motifs decreases, the response contributed by singular 

clones increases, and the TCR diversity score drops as one moves from the spleen towards the 

tumor (Fig. 4B). Additionally, the structural clones expanded in the spleen, dLN, and TILs are 

generally conserved, as can be visualized by the dendrograms (Fig. 4A) and by tracking dominant 

motifs in the 3 lymphoid compartments (Fig. 4C). In contrast, the opposite trend was seen in the 

Kb-TRP2 response. Additionally, dominant motifs between the spleen and draining lymph node 

were not conserved; we were unable to expand any Kb-TRP2 specific cells from the TILs in 

multiple experiments (Fig. 4 A-C). 
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Figure 4. Effects of Tumor on TCR Repertoire in Various Lymphoid Organs. A) Overlapped 

weighted repertoire dendograms (blue = spleen, green = draining lymph node, red = TILs). B) 

Dominant Motif and TCR Diversity Metrics (Kb-SIY n=4 mice, Kb-TRP2 Spleen n=4 mice, Kb-

TRP2 dLN n=5 mice). C) Maintenance of Dominant Motifs between various lymphoid organs. (* 

: P-value ≤ 0.05, *** : P-value ≤ 0.001 using the unpaired two-tailed t-test, bar represents mean ± 

s.e.m) 

  



 23 

Analysis of anti–PD-1 Clinical Trial Data Reveals Indicators of Response 

Recent studies have implicated changes in T-cell responses as important in clinical outcomes to 

checkpoint blockade. We therefore applied ImmunoMap analysis to clinical trial data (BMS-038) 

from patients with metastatic melanoma undergoing anti–PD-1 therapy (nivolumab). For this 

analysis, formalin-fixed, paraffin embedded scrapings were taken from 34 patients, the percentage 

of TILs estimated as per Adaptive protocol (Materials and Methods) and CDR3 regions of Vβ-

chains sequenced before and while on therapy (Fig. 5A). The number of TCRs sequenced in all 

samples analyzed was not significantly different (Supplementary Fig. S5).  

ImmunoMap was used to compare the TCR repertoire before and after 4 weeks of anti–PD-1 

therapy (all ImmunoMap metrics in BMS038Results.xlsx). Weighted repertoire dendrograms (Fig. 

5B) revealed distinct differences between responders and nonresponders. Dominant motif analysis 

(Fig. 5C) showed that patients who had more dominant motifs prior to initiation of therapy had 

more favorable responses to therapy. Additionally, those patients who had a decrease in their TCR 

diversity score (Fig. 5C) on therapy had more favorable outcomes to therapy. In contrast, no 

clinically relevant signature could be found by Shannon entropy calculations (Fig. 5D). Thus 

ImmunoMap analysis was superior in its ability to reveal repertoire characteristics that could 

predict response to therapy after only four weeks of treatment. 
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Figure 5. TCR Repertoire Analysis of 

Patients Undergoing α-PD1 (Nivolumab) 

Therapy. A) Clinical Protocol for sample 

collection and response stratification. Pre-

therapy biopsies were taken from tumor sites 

prior to initiation of therapy. 4 weeks after 

initiation of α-PD1 therapy, on-therapy 

biopsies were taken from same tumor sites. TIL 

extraction was completed sent to Adaptive 

Biotechnologies for CDR3 β-chain sequencing. 

B) Token weighted repertoire dendograms for 

each of the cohorts of responders. C) Dominant 

Motif and TCR Diversity analysis (CR = 3, 

PR=5, SR=11, NR=15).D) Shannon’s Entropy 

Calculations for responses prior and after 

initiation of α-PD1. (* : P-value ≤ 0.05 using 

the Mann Whitney test, bar represents mean ± 

s.e.m) 
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Discussion 

Here we introduce ImmunoMap, a bioinformatics approach to analyze TCR repertoire sequence 

data, and used it to characterize repertoire changes in responses to model murine tumors and in 

patients undergoing immunotherapy for melanoma. By combining information about sequence 

relatedness and frequency, ImmunoMap allows an intuitive appreciation of TCR repertoire 

characteristics that reconciles the structure and function of the repertoire.  

ImmunoMap analysis comparing foreign (Kb-SIY) and self (Kb-TRP2) antigens showed distinct 

differences in the naïve repertoire to these two different antigens. Although interesting, the 

conclusions of this analysis cannot be expanded to all foreign vs self-antigens. The presence of 

more dominant motifs in the Kb-TRP2 response in combination with greater clonality suggests that 

central and peripheral tolerance mechanisms limited clonal responses, with more distinct clones 

occupying a larger portion of the TRP2-specific repertoire. Self-reactive clones, with TRP2-

specific TCRs would either be removed during central thymic development or tolerized in the 

periphery, explaining the inability to find more numerous TCR sequences per dominant motif37–

39. Because our analysis was conducted on expanded antigen-specific populations, our results 

demonstrate the “expansion potential” of the antigen-specific T-cell repertoire for a model foreign 

and shared tumor antigen in the setting of both naïve and tumor-bearing animals.  It is possible 

that the limited TCR relatedness of TRP2 responses could be due to the lower precursor frequency 

in naïve animals, and the T cells that have the ability to expand do not cluster in the same dominant 

motif due to lower initial cell frequency. The impact of pooling animals prior to expansion and 

sequencing must also be considered.  In this scenario, one could be selecting for “public” clones 

and possibly enriching for these parts of the repertoire over “private” clones, unique to each 

animal. Although individual mice are genetically identical, VDJ recombination occurs as an 
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independent process in each animal and the primary TCR repertoire capable of responding to a 

given antigen could vary between individual animals. Therefore, the effects on shaping of the 

repertoire may be most relevant to “public” or conserved sequences. Finally, the higher TCR 

diversity score of Kb-TRP2 alongside with the higher number of dominant motifs suggests that the 

immune system has to reach further to find solutions to bind the cognate antigen/MHC complex.  

Although prior work on TCR clustering has focused on understanding the structural aspects that 

confer antigen-specificity24,25, the effects of perturbations to the immune system on antigen-

specific responses has not been studied. With ImmunoMap, we studied the changes in repertoire 

in response to tumor. We observed that the effects of tumor on the anti-self-Kb-TRP 2 peptide 

repertoire indicate that tumors exert greater pressure on the self- than on the foreign-antigen. Not 

only did the presence of the tumors correlate with an increase the clonality of the response to self, 

via decreases in the number of dominant motifs and increases in their contribution to the net 

response, but tumor-bearing mice could shift their response to different, presumably suboptimal, 

motifs. Additionally, the differences in repertoire characteristics among various lymphoid organs 

for the two different model antigens indicates that tumors effectively eliminated the expansion of 

certain clones from its microenvironment. The consequences of these findings are relevant to both 

antigen-discovery and targeting for immune therapies related to treating cancer. Due to limitations 

of personalized antigen-specific therapy, targeting shared antigens like MART1, a self-antigen 

specific for melanocytes, has been a mainstay of antigen-specific cancer immunotherapy40–42. This 

approach has typically relied on TCR transgenic models in which a single TCR clone is chosen as 

the source for the antigen-specific receptor43–45. Given our analysis, several problems with this 

approach become apparent: (1) antigen-specific expansion not only generates a diversity of TCR 

sequences but one that spans the entire sequence distance of the naïve repertoire, (2) self-antigen 
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expansion represents a limited repertoire and arsenal against a given epitope due to effects of 

tolerance, and (3) the tumor can exert pressure on the self-antigen–specific immune response in a 

more profound way than in the case of a foreign antigen. Our findings call into question the 

approach of using self or over-expressed antigens as targets for immune therapy and highlight the 

importance of exploring responses to neoantigens, novel MHC-specific epitopes that arise from 

mutations in a patient’s individual malignancy46–50 . 

We also have used ImmunoMap algorithms to understand mechanisms of successful immune 

responses to cancer against 4T1, a murine breast cancer model51. In that model, when analyzing 

TILs from animals treated with anti–CTLA-4, radiation, or the combination of these therapies, 

we found that the TCR structural repertoire before therapy from TILs was highly conserved, 

seemingly targeting a single antigen, whereas after combination therapy, the structural response 

broadened within the TILs and each individual animal developed its own uniquely expanded 

repertoire51.  

Finally, we used ImmunoMap to study TILs from clinical trial specimens to determine if structural 

diversity is an important parameter in determining successful immune responses to cancer 

immunotherapy. Our analysis revealed that patients who had more dominant motifs prior to 

therapy responded more favorably to therapy. Additionally, the change in TCR diversity suggest 

that patients who respond to therapy converge on a solution of successful TCR sequences and thus 

their repertoire is actually less diverse after therapy. In contrast to previous work by Madi et. al 

that demonstrated a structural broadening of the peripheral repertoire to anti–CTLA-4 therapy in 

melanoma patients, but did not correlate this finding with response, we focused our analysis on 

studying changes in the repertoire within the TILs and could determine structural signatures of 

response26. Although our findings are significant, we note the scope of the clinical trial was limited, 
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which impacted the distribution of clinical responses. Nevertheless, taken together, ImmunoMap 

analysis revealed that patients with a broader repertoire prior to therapy have a higher probability 

of expanding effective TCR sequences and converging on them.  

ImmunoMap not only has potential for the clinical monitoring of patients on therapy, through 

predictions of their likelihood to respond, but enables the acquisition of biological insights about 

antigen-specific immune responses that could alter current immune therapies.  
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III. AI-MHC: an-allele integrated deep learning framework for improving Class I & Class II HLA-

binding  

Abstract 

Motivation: The immune system has potential to present a wide variety of peptides to itself as a 

means of surveillance for pathogenic invaders. This means of surveillances allows the immune 

system to detect peptides derives from bacterial, viral, and even oncologic sources. However, given 

the breadth of the epitope repertoire, in order to study immune responses to these epitopes, 

investigators have relied on in-silico prediction algorithms to help narrow down the list of 

candidate epitopes, and current methods still have much in the way of improvement.  

Results: We present Allele-Integrated MHC (AI-MHC), a deep learning architecture with 

improved performance over the current state-of-the-art algorithms in human Class I and Class II 

MHC binding prediction. Our architecture utilizes a convolutional neural network that improves 

prediction accuracy by 1) allowing one neural network to be trained on all peptides for all alleles 

of a given class of MHC molecules by making the allele an input to the net and 2) introducing a 

global max pooling operation with an optimized kernel size that allows the architecture to achieve 

translational invariance in MHC-peptide binding analysis, making it suitable for sequence 

analytics where a frame of interest needs to be learned in a longer, variable length sequence. We 

assess AI-MHC against internal independent test sets and compare against all algorithms in the 

IEDB automated server benchmarks, demonstrating our algorithm achieves state-of-the-art for 

both Class I and Class II prediction. 

Availability and Implementation:  AI-MHC can be used via web interface at 

baras.pathology.jhu.edu/AI-MHC 
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Introduction 

The ability for T-cells to recognize various epitopes is of paramount importance to 

mounting a potent immune response and ultimately protecting the host52. The relevance for 

understanding the ‘epitome’ for humans to viruses, bacteria, and even various cancers has been 

vital for advances in vaccine development, understanding how pathogens escape immune 

recognition, and even predicting how cancer patients will respond to immunotherapy53–55. Despite 

how much is known about epitope production including processing by the immunoproteasome, 

transport into the endoplasmic re.ticulum (ER), and binding and presentation via major 

histocompatibility (MHC) molecules, prediction of presented epitopes to the immune system is 

still a difficult task56,57. 

The complexity of the task has led many groups to use advanced methods in machine 

learning and artificial intelligence to learn patterns in known MHC-binding peptides in order to 

recognize these patterns when seen in unknown peptides58,59. Artificial neural networks (ANN’s) 

have been employed by some of the leading algorithms to date to act as feature extractors in order 

to recognize patterns59,60. Artificial neural networks, due to their flexibility in terms of changing 

their capacity, serve as universal function approximators, and therefore can learn patterns difficult 

for humans to pick up on. Building on the principal of using neural networks, groups have recently 

begun to utilize a type of neural network architecture termed convolutional neural networks 

(CNN’s) which were originally developed for the purpose of image classification where features 

in an image can be found in different locations and different orientations. By being translationally 

invariant to features, these networks put together the presence of multiple features in an image in 

order to make a decision as to what object is present in the image8. This concept as applied to 
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sequence analysis has been exploited in analyzing DNA-protein binding domains as well as 

predicting HLA Class I binding61–63. 61–63 

While these most recent advances in neural network architectures have improved the 

accuracy of these algorithms, there are still areas for improvement. As a general shortcoming, most 

neural-network based methods of conducting MHC-binding predictions create several models 

across different alleles and different sequence lengths. The result of this process is that while the 

entire data set of known allele/peptide pairings is large, the data becomes split between models 

where each model can only learn sequence features for a subset of the peptides. However, it is 

known that neural networks, especially deep learning models, show the most increase in 

performance when more data is provided for training. Andreatta et. al demonstrated that using a 

gapped-sequence alignment method, they could feed variable length sequences into a fixed-input 

neural network by providing an additional parameter that specified the length of the original 

sequence (L ≤ 8, L = 9, L = 10, L ≥ 11), showing an improvement in MHC Class I binding 

prediction from being able to leverage more data in one model.  

In order to best leverage the amount of data available for known MHC binding, we 

developed Allele-Integrated MHC (AI-MHC), a unified architecture capable of predicting binding 

for either all Class I or all Class II alleles, regardless of sequence length. By allowing MHC allele 

to be an input into the network and joining this with a global max pooling operation following 

convolutions across the peptide sequence, our architecture is able to leverage the most amount of 

data in a single model. This approach achieves state-of-the-art performance for Class I and Class 

II predictions. 
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Materials and Methods 

Dataset 

In order to train the Class I network, we pulled linear epitopes from the Immune Epitope Database 

(www.iedb.org) who had Class I restriction in humans with quantitative measurements of ic50 by 

purified MHC competitive radioactive and purified MHC competitive fluorescence assays, 

defining binding as peptide/allele pairings with ic50’s < 500nm. We transform the ic50 values by 

the equation (1) to scale from 0 to 1 where values below 1 nM are set to 1 nM and values above 

50,000 nM are set to 50,000 nM.  

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 = 1 −
𝑙𝑜𝑔10(𝑖𝑐50)

𝑙𝑜𝑔10(50,000)
 (1) 

We additionally added another large data set of Class I binding predictions from Kim et. al64. We 

then restricted our training to entries where the full allele was provided (i.e. HLA-A*02:01) and 

then aggregated multiple peptide/allele pairings, taking the median value as a consensus where 

there were multiple peptide/allele pairings. In order to train the Class II network, we used a large 

data set published by Jensen et. al, following the same data preprocessing as described above65.  

For the purpose of comparing against other algorithms, we collected all the benchmarks from the 

IEDB automated server benchmarks for both Class I and Class II and restricted our analysis to 

benchmarks collected from competitive quantitative assays given our network was trained on data 

from these types of assays.    
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Network architecture 

The conventional neural network architecture as initially conceived for image classification tasks 

generally follows the format of stacking multiple convolutional layers with some type of non-

linear activation and generally a max pooling step66. This approach transforms a photograph that 

is wide and tall with few features (RGB channels) to one that is compressed but with many features. 

The max pooling operations reduce the size of the photograph as it passes through the network but 

still maintain local spatial information. Applying this architecture to biological sequence analysis 

where peptides have variable lengths becomes problematic since neural networks require fixed 

size inputs. In the image classification world, this can be solved by rescaling or padding 

photographs so they all have the same pixel-by-pixel dimensions. Rescaling works well since RGB 

channels are continuous variables where down-sampling or interpolation algorithms can be applied 

but fails to translate to sequence analysis as sequences do not have a continuous numerical 

representation. In order to tackle this problem, Vang et. al. took an approach where they trained 

the network for a fixed size input. However, this approach would prevent training an entire allele’s 

set of peptides together which should significantly improve learning since the features between 9 

and 10mers are most likely highly conserved. In order to be able to train a single model for an 

entire class of HLA molecules, we employed an approach where each peptide zero-padded (right) 

into a 15-mer window for Class I and 40-mer window for Class II. (Figure 1A). This allows the 

network to take in sequences up to 15-mer in length for Class I predictions and up to 40-mer in 

length for Class II.  
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Figure 1: AI-MHC Architecture. A) Zero-padding scheme for handling variable length 

sequences. B) Green window highlights problem with max-pooling in segments as areas of null 

sequence can be directly compared to areas of real sequence. C) AI-MHC is designed to take a 

peptide/allele pair which are transformed with either (1) convolutional layers or (2) trainable 

embedding layers learning vector representations of alleles and (3) amino acids. 1024 10-mer 

convolutions with global max pooling are applied to the sequence resulting in a [1,1024] feature 

map for each sequence. The sequence feature map is then concatenated to the [1,512] allele feature 

map. This long-form vector [1,1536] is then followed by 3 fully-connected layers with 50% 

dropout and utilizing leaky relu activations functions with a final output node with sigmoid 

activation. 
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Since certain amino acids may share similar functional properties with others, we wanted 

to train an embedding that captures properties of each amino acid as the network is trained for 

prediction. In previous work, Vang et. al trained an embedding by using the Word2Vec algorithm 

to vectorize each amino acid based on its contextual use within the epitome. We chose to instead 

train the embedding with the classification task in mind as we believe this should learn the most 

salient embedding for the task at hand and our integrated approach would allow for the most 

amount of data to be leveraged towards training this embedding matrix. 

 In order to analyze this type of input to the network, we chose to use parallel convolutions 

of kernel length of 10-mers, knowing this should be large enough to encompass the 9-mer core 

that represents the length of the interacting peptide with the MHC molecule67.  In comparison to 

other methods of biological sequence comparisons that use sequence alignment algorithms to 

assess conserved motifs, this network learns 1024 10-mer ‘trainable’ motif detectors68. The critical 

piece of the algorithm at this point is how it handles the max pooling step following these 

convolutions. Since our inputs can have variable lengths with zero-padding, if we chose a max-

pooling strategy that divided the sequence into segments, we could be comparing segments in 

some windows where there was no sequence information to windows where there was sequence 

information (Figure 1B). This would be especially problematic with Class II molecules where the 

input length can be highly variable. However, by conducting a global max-pooling operation, one 

is able to detect the relevant binding frame regardless of where it lies within the larger sequence.  

 In order to train one unified architecture to predict binding based on sequence and allele 

input, we required an input to the network to be an allele paired to a given peptide. In order to 

integrate information about the allele into the network, we experimented with two methods: 1) 

applying convolutional layers to the actual protein sequences69 of the MHC alleles to extract 
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structural features of each allele (Figure 1C-1) or 2) training an embedding layer of 512 

dimensions in order to learn properties of each allele (Figure 1C-2). This is particularly 

advantageous because by training on a large dataset of all epitopes for various alleles, the net is 

able to learn features or train an embedding that can understand which alleles share similar 

properties and therefore, may share similar binding characteristics. Following either this 

convolutional feature extraction or embedding, this 512-dimensional vector is then joined with the 

1024-dimensional feature vector for the sequence. In experimenting with both approaches, we 

found no difference in overall performance of the classifier and chose to implement a trainable 

embedding layer, as this was more computationally efficient. At this point, 3 fully connected layers 

(combining features extracted from MHC allele and peptide sequence) are implemented in which 

has final layer has a single output from a sigmoid activation, modeling the nM binding of the given 

MHC allele to peptide sequence pairing. The entire architecture was implemented with Google’s 

TensorFlow™ deep learning library. 

Results 

Neural Network Characterization 

The presented neural network architecture contains two critical features that facilitate the use of 

the largest combined dataset of a given class of MHC for training; 1) translational invariance by 

convolutional layers that utilize a global max-pooling operation and kernel size that encompasses 

the entire possible length of the binding interaction between the peptide and MHC molecule and 

2) integration of MHC allele as paired input with peptide sequence via an embedding layer, thereby 

enabling the entirety of the MHC Class I data to be used ensemble for training as compared to 

stratification by MHC allele. Besides creating larger datasets by combining data from different 

alleles and varying sequence lengths, the architecture developed allows the network to learn the 
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properties of both amino acids and MHC molecules during its training, since each have a trained 

embedding matrix based on the data. In particular, an MHC embedding layer learns features of the 

MHC, allowing the model to learn from a larger dataset and translate knowledge of binding 

between alleles in the same supertype, sharing similar binding properties. To prove these points, 

we conducted two experiments that asses the invariance of the network as well as assess the quality 

of the embedding in its ability to cluster similar amino acids and HLA alleles and translate 

knowledge across alleles in the same supertype.  

 In order to test the invariance of the network, we created a synthetic dataset of 10,000 

peptides of varying lengths between 8-11 amino acids resembling either A0201 binding peptides, 

L at P2, V at P970, or a scrambled sequence containing a L and V at random positions (Figure 2A). 

We provided the network the ability to learn one 10-mer feature, as this is the extent of information 

the network should need to make this classification correctly and were able to show that despite 

the L-V motif being placed in various frames in variable length peptides, our network was able to 

achieve perfect classification accuracy, as would be expected from a detect system that exhibited 

translational invariance (Figure 2B).  
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Figure 2: Network Characterization. A) Examples from synthetic dataset meant to mimic A0201 

binding motifs (Leucine at P2, Valine at P9) in various frames within 8-11mer sequences. Red 

amino acids correspond to leucine and valine placed in correct and incorrect frames. B) Receiver 

Operating Characteristic of AI-MHC on synthetic dataset. C) Trained embedding layers were 

extracted from the network graph for amino acid, Class I, Class II embeddings and are visualized 

with clustermaps. 
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After training on MHC Class I and Class II data, we examined the embedding layers for both the 

amino acids and MHC alleles and noted that indeed amino acids with similar biophysical 

properties and MHC alleles in the same supertype (Supplementary Table 1)71 were indeed 

clustered together (Figure 2C), suggesting the network had learned which amino acids and HLA 

molecules share similar binding properties. While there does not exist a formal definition of 

supertypes for Class II molecules, we saw a similar clustering of related Class II molecules as well 

(Figure 2C). In order to assess the benefit of training an integrated model, we trained each of the 

sub-alleles of the HLA-A2 supertype in either individual or a unified model and compared their 

AUC values. We noted significant improvements in performance 10 of the 12 A2 supertype alleles 

(Figure 2D), suggesting the network was able to translate its knowledge about the MHC-A2 

supertype across its sub-alleles.  

Class I Metrics 

We collected a total of 148,540 unique allele/peptide pairing with 

ic50 values from the IEDB (www.iedb.org) and a previously 

published dataset by Kim et.al spanning 86 HLA-A,B,C,E alleles 

(Supplementary Table 2). For the purpose of training, we split 

these data sets into a train set of 95% and split the remaining 5% 

for validation and testing, resulting in a train size of 141,113 

peptides, a validation size of 3,713, and a test size of 3,714. The 

network was trained on the train data while validation data was 

used to determine when to stop training the neural network. In this 

set of peptides, our model achieved an overall AUC of 0.956 on 

Figure 3: ROC for Class I and 

Class II models. 

http://www.iedb.org/


 40 

our internal independent test set (Figure 3A), generally achieving higher AUC values for where 

there was more data available for a given MHC molecule (Table 1). 

 In order to gauge where our algorithm stood against the current state-of-the-art algorithms, 

we pulled all the ic50 benchmarks from the IEDB (www.tools.iedb.auto_bench/mhci/weekly/) to 

assess the performance of our algorithms against the 11 provided algorithms. Since it is unclear 

whether these are considered independent benchmarks as the IEDB cannot verify that the tested 

allele/peptide pairings have not been seen by the benchmarked algorithms, it is difficult to truly 

compare performance at an algorithmic level. Nonetheless, we removed all records in the 

benchmarks from our training data before assessing the performance of our models. Of the 47 

available benchmarks, AI-MHC performed the best on 9/36 datasets (next highest was NetMHC 

3.4 with 7/36) where we had at least 10 peptide examples for training to a given MHC allele. 

(Table 2). Full comparison of all algorithms on all benchmarks in Supplemental Table 3.  

  

http://www.tools.iedb.auto_bench/mhci/weekly/
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Table 1: AUC Values for Class I Alleles 

  

Algorithm Benchmarks Tested
# of Best 

Performances

AI-MHC 36 9

ARB 33 3

IEDB Consensus 28 2

NetMHC 3.4 (ANN) 33 7

NetMHC 4.0 (ANN) 3 3

NetMHCcons 30 6

NetMHCpan 2.8 33 4

NetMHCpan 3.0 3 1

PickPocket 30 6

SMM 36 3

SMMPMBEC 30 3

mhcflurry 5 3

Table 2: Class I – IEDB Benchmark 

Performance. We collected all benchmark datasets 

from the IEDB for which our algorithm had at least 

10 training examples for the allele tested to assess 

performance against 11 of the available algorithms. 

# of Best Performances refers to the number of 

benchmarks a given algorithm ‘won’.  

Allele Peptide Counts AUC

A0101 4609 0.950

A0201 12324 0.956

A0202 4077 0.941

A0203 6244 0.973

A0206 5561 0.937

A0211 1084 0.865

A0212 1183 1.000

A0216 919 0.991

A0217 332 0.800

A0219 1244 1.000

A0250 135 1.000

A0301 7195 0.968

A1101 6248 0.970

A2301 2416 0.953

A2402 3191 0.995

A2403 1227 0.990

A2501 960 1.000

A2601 4307 0.956

A2602 631 0.955

A2603 522 1.000

A2902 2548 0.980

A3001 2717 0.857

A3002 1847 0.775

A3101 5621 0.968

A3201 1089 1.000

A3215 74 1.000

A3301 3510 0.963

A6601 52 1.000

A6801 3708 0.960

A6802 5499 0.897

A6901 2565 0.923

A8001 1164 1.000

B0702 4513 0.937

B0801 3298 0.924

B0802 1000 0.983

B1501 4178 0.963

B1503 594 0.814

B1517 1446 0.945

B1801 2594 0.896

B2705 3433 0.897

B3501 3198 0.982

B3801 492 1.000

B3901 1623 0.906

B4001 3199 0.992

B4002 964 0.933

B4402 2117 0.991

B4403 1382 1.000

B4501 953 0.909

B4601 1806 0.955

B5101 2718 0.956

B5301 1616 0.938

B5401 1110 1.000

B5701 2781 0.963

B5801 3118 0.978

B8301 333 1.000
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Class II Metrics 

In order to test whether this type of architecture would also be relevant in predicting Class II 

binding, we collected a total of 134,281 unique allele/peptide pairings with ic50 values from a 

previously published dataset by Jensen et.al spanning 80 alleles (Supplementary Table 4). For 

the purpose of training, we again split this data set the same way as with the Class I training, 

resulting in a train size of 127,566 records, a validation size of 3,357, and a test size of 3,358. 

Training was completed in the same way as described above. In our internal independent data set, 

our model achieved an overall AUC of 0.902 (Figure 3B & Table 3). In comparison to AUC 

values published by Jensen et.al on the same data set, our model outperforms all recorded AUC 

values from the NetMHCIIpan-3.2 (AUC = 0.858 ,0.861, 0.826).  Furthermore, we pulled all ic50 

benchmarks from the IEDB (http://tools.iedb.org/auto_bench/mhcii/weekly/) to assess the 

performance of our algorithm against the 6 provided algorithms. Once again, we benchmarked our 

algorithm by removing entries from our training set that appeared within the IEDB benchmarks. 

Of the 54 available benchmarks, our model performed the best on 18/48 datasets which we had at 

least 10 training examples, the second highest number of best performances to NetMHCIIpan-3.1 

(Table 4).  Full comparison of all algorithms on all benchmarks in Supplemental Table 5. 

http://tools.iedb.org/auto_bench/mhcii/weekly/
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Table 3: AUC Values for Class II Alleles 

 

 

 

 

 

 

 

 

 

 

Algorithm Benchmarks Tested
# of Best 

Performances

AI-MHC 48 18

Comblib matrices 18 0

Consensus IEDB method 36 6

NN-align 34 2

NetMHCIIpan-3.1 48 22

SMM-align 34 3

Tepitope (Sturniolo) 29 1

Table 4:  Class II – IEDB Benchmark Performance. We 

collected all benchmark datasets from the IEDB for which our 

algorithm had at least 10 training examples for the allele tested 

to assess performance against 11 of the available algorithms. # 

of Best Per 

Allele Peptide Counts AUC

DPA10103-DPB10201 787 0.967

DPA10103-DPB10301 1563 0.932

DPA10103-DPB10401 2725 0.868

DPA10103-DPB10601 584 1.000

DPA10201-DPB10101 2447 0.966

DPA10201-DPB10501 2470 0.939

DPA10201-DPB11401 2302 0.929

DPA10301-DPB10402 2641 0.914

DQA10101-DQB10501 2946 0.917

DQA10102-DQB10501 833 1.000

DQA10102-DQB10502 800 0.897

DQA10102-DQB10602 2747 0.829

DQA10103-DQB10603 462 0.917

DQA10104-DQB10503 883 0.875

DQA10201-DQB10202 944 0.855

DQA10201-DQB10301 827 0.847

DQA10201-DQB10303 761 0.949

DQA10201-DQB10402 768 0.976

DQA10301-DQB10301 207 1.000

DQA10301-DQB10302 3111 0.945

DQA10303-DQB10402 567 0.789

DQA10401-DQB10402 2890 0.869

DQA10501-DQB10201 2897 0.928

DQA10501-DQB10301 3585 0.925

DQA10501-DQB10302 847 0.816

DQA10501-DQB10303 564 0.938

DQA10501-DQB10402 749 0.943

DQA10601-DQB10402 565 0.911

DRB10101 10412 0.851

DRB10301 5352 0.859

DRB10401 6317 0.871

DRB10404 3657 0.870

DRB10405 3962 0.923

DRB10701 6325 0.888

DRB10801 937 0.929

DRB10802 4465 0.903

DRB10901 4318 0.888

DRB11001 2066 0.951

DRB11101 6045 0.890

DRB11201 2384 0.980

DRB11301 1034 0.961

DRB11302 4477 0.894

DRB11501 4850 0.879

DRB11602 1699 0.965

DRB30101 4633 0.918

DRB30202 3334 0.868

DRB30301 884 0.825

DRB40101 3961 0.857

DRB40103 846 1.000

DRB50101 5125 0.867

H-2-IAb 1794 0.922

H-2-IAd 774 0.835

H-2-IAs 190 1.000

H-2-IEd 245 0.750

H-2-IEk 68 1.000
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Conclusion 

 In this work, we present an integrated deep learning architecture to predict MHC Class I 

and Class II binding, able to achieve state-of-the-art performance through utilizing innovative 

changes in architecture allowing the network to be trained on effectively larger datasets, which is 

a well-known requirement to better training deep neural networks. This is accomplished through 

training an entire class of MHC alleles in a unified model by learning an embedding layer for the 

allele allowing leveraging of binding information between alleles of the same supertype. 

Furthermore, the architecture becomes flexible to sequence input length by utilizing a global max-

pooling operation across the input peptide sequence following convolutions to achieve 

translational invariance where a frame of interest needs to be learned in the context of a longer, 

variable length peptide sequence.  

 In attempting to assess the performance of our algorithm, we noted the difficulty in making 

equivalent comparisons to other algorithms in the field as there are no clear train/test datasets that 

all algorithms can be benchmarked against in sense that we could determine what data should be 

training versus independent test for any given algorithm. In an attempt to conduct a robust analysis, 

we first created an internal independent test set that was not used for training purposes, as per our 

methods section. Our results for Class I and Class II (AUC – Class I = 0.956 & AUC – Class II = 

0.902) suggest our algorithm is one of the top performing algorithms. However, without the ability 

to train/test other algorithms, it is not possible to directly assess exactly where our algorithm stood. 

For Class I assessment, even when removing all IEDB examples from our training, our algorithm 

still had the highest number of best performances on benchmarks where we had sufficient training 

examples. For Class II, we felt we were able to make a fairer comparison as NetMHCIIpan-3.2 

released a large dataset on which they trained/tested. By using the same data and their reported 
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AUC values, we were confident that our algorithm was truly out-performing what is considered 

the best Class II prediction algorithm by ~4% AUC despite not having more ‘best performances’ 

in the IEDB benchmarks. While our dilemma in assessing performance against other algorithms 

is not a new one, we suggest that there needs to be a method, such as the annual ImageNet 

Challenge, by which algorithms can be compared in a fair way where training/testing datasets are 

equivalent across all algorithms to truly assess the best algorithmic approaches. That being said, 

given the volume of data we collected for MHC class I and II in conjunction with the ability of our 

algorithm to more fully leverage each of the sets of data in total, our approach of isolating an 

internal independent test set still allows for the evaluation of performance across thousands of 

allele/peptides. 

 Finally, we have provided a user-friendly website for use of our algorithms for both Class 

I and Class II predictions with performance metrics provided for each allele. We believe this level 

of transparency in the allele-level performance is important to better inform the user of the 

confidence in any prediction based on the number of peptides tested and the internal AUC achieved 

for any given allele.  
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IV. DeepTCR: a deep learning framework for revealing structural concepts within TCR 

Repertoire 

Abstract 

Deep learning algorithms have been utilized to achieve excellent performance in pattern-

recognition tasks, such as in image and vocal recognition8,66. The ability to learn complex patterns 

in data has tremendous implications in the genomics world, where sequence motifs become learned 

‘features’ that can be used to predict functionality, guiding our understanding of disease and basic 

biology61,63,72,73. T-cell receptor (TCR) sequencing assesses the diversity of the adaptive immune 

system, and while prior conventional biological sequence analysis tools have been insightful, they 

can miss signals in the data due to their rigidity68,74,75. We present DeepTCR, a broad collection of 

unsupervised and supervised deep learning methods able to uncover structure in highly complex 

and large TCR sequencing data. We demonstrate its utility across multiple basic science and 

clinical examples, including learning antigen-specific motifs and understanding immunotherapy-

related shaping of repertoire. We further extract meaningful motifs from the trained network as a 

means of explaining the sequence concepts that have been learned to accomplish a given task. Our 

results show the flexibility and capacity for deep neural networks to handle the complexity of high-

dimensional genomics data for both descriptive and predictive purposes.  
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Next-Generation Sequencing (NGS) has allowed a comprehensive description and 

understanding of the complexity encoded at the genomic level in a wide variety of organisms. The 

applications of NGS have grown rapidly as this technology has become a molecular microscope 

for understanding the genomic basis for the fundamental functions of the cell76. In parallel to this 

explosion of NGS applications, in the machine learning world, deep learning has seen a similar 

expansion of applications as computational resources have grown, large advances in algorithms 

and programming libraries have distributed these capabilities to many scientific communities, and 

in particular, big data has transcended all facets of daily life. As a result of these two technological 

revolutions, there exists many opportunities to apply deep learning in genomics as the data 

generated from NGS is very large and highly complex.  

 T-cell receptor sequencing (TCRSeq) is an application of NGS that has allowed scientists 

across many disciplines to characterize the diversity of the immune system77–79 (Supplementary 

Fig. 9). By selectively amplifying and sequencing the highly diverse CDR3 region of the β-chain 

of T-cells, scientists have been able to study the diverse repertoire the immune system generates 

to probe both foreign and native potential antigens. With this new sequencing technology, there 

has arisen a need to develop analytical tools to parse and draw meaningful concepts from the data. 

In recent work, investigators have applied conventional sequence analytics, where either targeted 

motif searches or sequence alignment algorithms have been applied to begin parsing the structural 

data within TCRSeq68,74,75. However, since many of these approaches were initially conceived to 

analyze longer biological strings for the purpose of identifying evolutionary changes at the DNA 

or protein level, problems can arise when applying them to TCRSeq data in which the strings being 

compared are quite short and the end regions are highly conserved. Finally, while these methods 
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are considered unsupervised machine learning approaches, there has been little in the way of using 

supervised approaches to guide the learning process. 

 We present DeepTCR, a package of both unsupervised and supervised deep learning 

methods for analysis of TCRSeq at both the sequence and sample level in order to learn concepts 

in the data that may be used for both descriptive and predictive purposes. In order to demonstrate 

the utility of these algorithms, we collected three previously published datasets including samples 

sorted by antigen-specificity (Glanville_2017 & Sidhom_2017), and samples taken from cohorts 

of tumor-bearing mice treated with various immunotherapies (Rudqvist_2017)51,68,74 

(Supplementary. Fig. 10,11). 

The first class of algorithms we developed are unsupervised deep learning methods that 

learn the underlying distribution of the sequence data in high-dimensional space for the purpose 

of 1) clustering TCR sequences that likely recognize the same antigen and 2) for the first time 

quantifying similarity between whole repertoires based on their structural composition. We 

implement both a variational autoencoder (VAE) and generative adversarial network (GAN) to 

perform dimensionality reductions and data re-representations at a sequence level, using 

convolutional layers in order to learn motifs that describe the distribution of data. We first 

implemented the VAE as autoencoders have been previously described as a common 

dimensionality reduction/data re-representation technique80,81. When implemented with trainable 

convolutional layers, they can become powerful as a data re-representation technique for images, 

allowing downstream analysis such as clustering of similar images. Our implementation of a 

variational autoencoder starts by taking a TCR sequence that is embedded in a fixed-length vector 

with zero right padding (Fig. 1A). We then use a trainable embedding layer, as described in Sidhom 

et. al, to learn meaning of the amino acids, moving them from a discrete to continuous numerical 
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space73. This is followed by convolutional layers, ultimately reducing the sequence to a latent space 

that is described as a multi-dimensional unit gaussian distribution. The sequence is then 

reconstructed from the latent space through the use of deconvolutional layers and the transposition 

of the trainable embedding layer that was used at the beginning of the network. The network is 

then optimized with a gradient-descent based algorithm minimizing a reconstruction loss and 

variational loss, which acts as a mode of regularization. Since this algorithm is primarily trained 

to minimize the reconstruction loss, the concept of sequence length is learned within the network. 

However, since TCR sequences are variable length sequences that describe a structural part of the 

TCR, they can contain length-independent motifs that are required for antigen-specificity, as has 

been previously demonstrated by Glanville et. al74.  
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Figure 1.  Deep Learning Architectures. (a) The variational autoencoder (VAE) is designed to take as a discrete input the amino acid sequence of 

the TCR sequence with a right zero-padding scheme. A trainable embedding layer is used to transform the sequence from discrete to continuous 

numerical domain. Convolutional and fully connected layers transform the sequence into a latent representation that is parametrized by a multi-

dimensional unit gaussian. Reconstruction of the sequence occurs via fully connected and deconvolutional layers followed by the transposition 

of the same trainable embedding layer used at the beginning of the network. (b) The generative adversarial network (GAN) consists of the 

generator and discriminator, separate networks trained with separate objective functions. The generator samples from a multi-dimensional unit 

gaussian to create a ‘fake’ TCR sequence. The discriminator learns to distinguish ‘real’ from ‘fake’ sequences through one layer of convolutions 

with a global max pooling operation to provide translational invariance to the network. Of note, the generator’s output is the continuous and not 

discrete representation of the TCR sequence. The latent space used for downstream analysis is the penultimate layer of the discriminator, here 

described as having dimensions of [256,1]. (c) The single sequence classifier follows a conventional convolutional neural network architecture 

consisting of one convolutional layer with global max pooling and three fully connected layers to a final classification layer. (d) The whole sample 

classifier utilizes a kernel that scans in a horizontal fashion across all sequences in the file resulting in a sequences-by-features tensor. This is then 

multiplied by the frequency vector for each sequence to derive weighted sequence features. These are then summed across the sequence space 

to compute sample level features that are fed into a classification layer.  
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In order to implement an unsupervised deep learning method that could learn features in a 

length independent fashion, we utilized a GAN architecture (Fig. 1B)82. This model consists of two 

networks, the generator and discriminator that train in an adversarial manner, optimizing separate 

objective functions (Supplementary Fig. 12). The generator attempts to model the distribution of 

sequencing data through a generative process where a latent vector is randomly sampled from a 

multi-dimensional unit gaussian and deconvolutional layers are used to create a TCR sequence. 

The discriminator is a network that is trained to distinguish between sequences from the ‘real’ data 

and sequences from the ‘fake’ generated data. Aside from being used to model biological sequence 

data, our implementation of the GAN differs from previously described architectures as it uses a 

discriminator that has only one convolutional layer with a global max pooling operation to achieve 

translational invariance to relevant motifs as described by Sidhom et. al73. In this manner, this 

network is designed to model the underlying sequence distribution in a length independent manner.  

In order to assess how well these unsupervised methods could learn relevant features of 

TCR sequences, we used a previously published dataset of 2067 sequences for 7 specificities used 

to train GLIPH, a state-of-the-art method for clustering TCR sequences74. We note that both 

unsupervised deep learning methods are able to cluster sequences of the same specificity (Fig. 2A) 

and at the whole sample level can make meaningful comparisons between antigen-specific 

repertoires (Fig 2B). When assessing the specificity of these methods to cluster sequences in 

groups specific to a given antigen, the VAE demonstrates comparable performance to GLIPH 

while only requiring the CDR3 β-chain sequence (Fig 2C), demonstrating that 94.48% of clustered 

TCRs (14% of all sequences clustered) were correctly grouped with other sequences of common 

specificity. Furthermore, both the VAE and GAN maintain a high clustering accuracy while 

clustering more sequences. Finally, to assess the characteristics of the clusters formed at various 
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thresholds, we examined the number of clusters and the variance of the lengths of sequences the 

clusters contained (Fig 2D). While the VAE and GAN comparably cluster sequences of common 

specificity and create the same number of clusters doing so, the GAN clusters sequences of 

different lengths far more than the VAE.   

Figure 2. Unsupervised Learning Examples. (a) Heatmaps of sequence-by-features for 7 tetramer sorted populations of antigen-

specific T-cells taken from Glanville_2017 dataset. (b) Heatmaps of samples-by-features for 7 tetramer sorted populations of 

antigen-specific T-cells taken from Glanville_2017 dataset. (c) Clustering specificity of VAE and GAN across various clustering 

thresholds following hierarchical clustering of sequences by their learned features. (d) Number of clusters vs percent of sequences 

clustered at various clustering thresholds for both VAE and GAN (top). Number of clusters vs length variance of sequences within 

clusters for both VAE and GAN (bottom) (e) Heatmaps of sequences-by-features for antigen-specific sequences taken from sorted 

SIY and TRP2 specific T-cells created by VAE and GAN. (SIY = green, TRP2 = yellow) (f) Heatmaps of samples-by-features for 

antigen-specific samples takes from sorted SIY and TRP2 specific T-cells created by VAE and GAN. (SIY = green, TRP2 = yellow) (g) 

Heatmaps of samples-by-features for the tumor-infiltrating lymphocyte (TIL) samples taken from various immunotherapies 

(Control = yellow, 9H10 = Cyan, RT = Green, RT + 9H10 = Magenta). Heatmaps for sequences-by-features in Supplementary Fig. 

14. 
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When applying these two separate approaches on the Sidhom_2017 dataset, we note the 

VAE and GAN are able to comparably cluster antigen-specific sequences as well as antigen-

specific samples (Fig. 2 E & F). However, when clustering sequences from their latent 

representations, we noted that the variances in the length of sequences in a given cluster were much 

smaller from the VAE as opposed to the GAN (Supplementary Fig. 13) as we would expect, since 

the VAE learns length dependent features while the GAN does not. When applying these two types 

of unsupervised approaches to the Rudqvist_2017 dataset, we note that both methods identify that 

the control mice have highly conserved structural profiles, as was described in the initial 

publication (Fig 2G). Our experience using these unsupervised approaches demonstrates they can 

be useful not only to cluster TCR sequences of high homology but also to compare repertoires at 

a wholistic level, allowing a method for the first time to quantify similarity between repertoires 

based on their overall structural composition. 

As noted in these datasets, there are often labels associated to TCRSeq, which can either 

be applied at the sequence or sample level. To accommodate labels at the single sequence level, 

we designed a simple convolutional neural network that learns sequence specific motifs in a length 

independent fashion (Fig 1C) to correctly classify sequences by their labels. The second, and 

arguably the more interesting architecture, is a supervised multi-instance deep learning algorithm 

that is able to learn meaningful concepts that may lie within large samples of many sequences, 

either being obscured by the noise of many irrelevant sequences or are weakly predictive at the 

single sequence level (Fig 1D). This whole sample multi-instance classifier uses convolutional 

kernels that scan the entire file, learning features for each sequence. These features are then 

weighted by the frequency of the sequences. Finally, these features are summed across the 

sequences to give a weighted average of a feature/motif within a sample. We first applied the single 
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sequence classifier to the Glanville_2017 dataset and noted there was a weak predictive signature 

that could differentiate the sequences with better performance for antigens with more TCR 

sequences (Fig 3A). However, when creating samples in-silico that used a given number of unique 

sequences per sample, we found an increase in predictive performance at the whole sample level 

as more sequences were used in each sample, demonstrating the ability of a ‘weak learner’ to 

become more predictive when provided with more evidence in aggregate (Fig 3B). When applied 

to the Sidhom_2017 dataset, we note again that while the sequence level classifier is able to achieve 

reasonable performance, the whole sample classifier does far better as it is able to use an entire 

sample of sequences to make a prediction (Fig 3C). This point is further demonstrated in the 

Rudqvist_2017 dataset as these samples are from tumor-infiltrating lymphocytes (TIL) where 

much of the signal comes from background repertoire, making it difficult for a sequence-level 

classifier to work. However, in the whole sample classifier, we see improved performance with 

particular improvement in the RT and Control groups as they have profound structural signatures 

(Fig 3D). Ultimately, the nature of how the T-cell receptor binds its cognate peptide-MHC makes 

prediction at the single sequence level difficult; however, when multiple instances of a concept are 

present, the whole sample classifier can leverage this data in order to make more accurate 

predictions. Finally, given that usually only the β-chain is sequenced, we acknowledge that this 

presents a considerable limitation in ultimately predicting antigen-specificity as both chains are 

important for recognition. Thus, we would expect improved performance across all described 

algorithms when provided both sequencing data for the α and β chains. 
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While there is inherent value in predictive models as they can be used as biomarkers for 

disease, there has been much effort in improving the ‘explainability’ of deep learning models for 

the purpose of understanding what the network learned. In the context of TCRSeq, being able to 

extract knowledge from the network can inform relevant motifs for antigen-specific recognition. 

Therefore, we established a method by which we could query for differentially used motifs at the 

cohort level from the trained network allowing us to identify relevant cohort-specific motifs (Fig 

3 E & F). By extracting the index along with the value of the feature following its convolution and 

Figure 3. Supervised Learning Examples. (a) Receiver Operating Characteristic (ROC) curve for single-sequence classifier on 

sequences taken from 7 T-cell specificities from Glanville_2017 dataset. (b) All unique sequence from Glanville_2017 dataset 

were allocated randomly without replacement into in-silico samples so no sequences were shared among any samples. Samples 

were created with either 5,10, or 20 sequences/file and whole-sample classifier was used to assess predictive power at the whole 

sample level. (c,d) Receiver Operating Characteristic (ROC) curves for single sequence and whole sample classifier for 

Sidhom_2017 and Rudqvist_2017 datasets. (e,f) Representative motifs learned by whole sample classifier for cohorts that had 

highly predictive structural signatures.  
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global max pooling operation, we can identify where in the sequence a kernel is being maximally 

activated and use this to derive the motif being learned. These supervised methods demonstrate 

how predictive models can also be used to generate descriptive results that can inform our 

understanding of the mechanisms at play.  

NGS has become one of the largest sources of big data in the biological sciences, and deep 

learning is a promising modality for analyzing big data where features need to be learned. In this 

work, we present DeepTCR, a collection of unsupervised and supervised deep learning approaches 

to characterize TCRSeq data for both descriptive and predictive purposes. Our unsupervised 

approaches use newly developed techniques from the deep learning community including the 

variational autoencoder and generative adversarial network to relate and compare repertoires at 

the sequence and sample level. We further develop supervised methods in applications where 

labels can greatly help the learning process, such as when there is buried signal in a large sample 

of sequences. While DeepTCR has been developed for analyzing TCRSeq data, the concepts 

introduced within the designed architectures could translate and be applied to a variety of other 

NGS-based technologies. These types of technologies could yield an entire new area of biomarker 

discovery as well as improving our own understanding of the complex concepts within the 

genomic code.  
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Methods 

Data Curation 

TCR sequencing files were collected as raw tsv formatted files (Supplementary Fig. 1) from the 

various sources cited within the manuscript. Sequencing files were parsed to take the amino acid 

sequence of the CDR3 after removing unproductive sequences. Clones with different nucleotide 

sequences but the same amino acid sequence were aggregated together under one amino acid 

sequence and their reads were summed to determine their relative abundance. Within the parsing 

code, we additionally specified to ignore sequences that used non-IUPAC letters (*,X,O) and 

removed sequences that were greater than 40 amino acids in length. For the purpose of the 

algorithm, the maximum length can be altered but we chose 40 as we did not expect any real 

sequences to be longer than this length.  

TCRSeq Quantitative Metrics 

Basic TCRSeq analyses were initially done to characterize all samples presented in the manuscript. 

In order to characterize the distribution of sequences by frequency, we computed the clonality for 

all samples and characterized the distribution of sequences by their lengths (Supplementary Fig 

3). The code used to generate these plots and do this analysis is attached in supplementary material. 

Data Transformations 

In order to allow a neural network to train from sequence data, we converted the amino acids to 

numbers between 0-19 representing the 20 possible amino acids. These were then one-hot encoded 

as to provide a categorical and discrete representation of the amino acids in numerical space. This 

process was applied prior to all networks being trained. 
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Training VAE 

In order to train the VAE, following creation of the computational graph as described in the 

manuscript and main figure, we applied an Adam Optimizer (learning rate = 0.001) to minimize a 

reconstruction loss and a variational loss. The reconstruction loss is the cross-entropy loss between 

the reconstructed sequence (S) and the one-hot encoded tensor of the input sequence (L) across the 

ith position in the sequence (1). The variational loss is the Kullback–Leibler (KL) divergence 

between the distributions of the latent variables and a unit gaussian (2).  

𝑅𝐿𝑜𝑠𝑠 =  − ∑ 𝐿𝑖 log(𝑆𝑖)

𝑖

     (1) 

𝑉𝑙𝑜𝑠𝑠 = 𝐷𝐾𝐿(𝑁(µ(𝑋), 𝜎(𝑋)||𝑁(0, 𝐼))     (2) 

The variational loss serves as a regularizer to the network as it prevents overfitting of the network 

and direct memorization of sequence to latent space and allows for meaningful downstream 

clustering of the sequences in their latent representation. The variational autoencoder was trained 

until the reconstruction accuracy over the penultimate 10 iterations was greater than 80%. Features 

for all sequences were then extracted from the latent space and used to create either heatmaps of 

sequences by features or a weighted average of the features by the frequency of the sequence was 

used to construct heatmap of samples by features. 

Training GAN 

In order to train the VAE, following creation of the computational graph as described in the 

manuscript and main figure, we applied an RMSProp Optimizer (learning rate = 0.0002) to 

simultaneously minimize the discriminator (3) and generator (4) loss. The training of a GAN can 
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be thought of an abstraction of the minimax algorithm where these two networks train in an 

adversarial fashion until the networks reach a Nash’s equilibrium.  

𝑑𝑙𝑜𝑠𝑠 =  − 
1

2
𝐸𝑋~𝑝𝑑𝑎𝑡𝑎

log[𝐷(𝑥)] + −
1

2
𝐸𝑍  [log (1 − 𝐷(𝐺(𝑧)))]     (3) 

𝑔𝑙𝑜𝑠𝑠 =  −
1

2
𝐸𝑍 [log 𝐷(𝐺(𝑧))]     (4) 

Since this was the first example we could find of a GAN being used in biological sequence 

analysis, there were several modifications to the traditional GAN architecture used for image 

analysis to allow our network to train in a meaningful fashion. The first of these modifications was 

the input into the discriminator. When a generator is conventionally trained, it outputs an image 

with a given x by y dimensionality with 3 RGB dimensions that are continuous. However, in our 

applications, biological sequences are represented in a discrete space and this presented hurdles in 

getting the generator to create discrete representations. Therefore, the network was trained to 

output continuous sequence representations that were already embedded in a continuous domain. 

In a sense, the generator inputs its data in the middle of the discriminator, after the real data has 

already been embedded in a trainable embedding layer. The second point of alteration to the 

traditional GAN comes from the need for the discriminator to be a dimensionality reduction 

operation as oppose to the generator creating real sequences. In order to learn length invariant 

features, our discriminator has only one convolutional layer where the kernel is global max pooled 

across the length of the sequence. This operation creates our latent representation which is 

immediately fed into the final neuron for classification. The nature of this operation results in the 

generator creating sequences which are a conglomeration of motifs found in the original data as 

there is no feedback to the generator about length of the sequences in the original distribution of 

data. Finally, given the simplicity of the discriminator, we found the network was highly 
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susceptible to mode collapse, a type of failure where the generator outputs only sequence because 

it successfully fools the discriminator every time. In order to enforce a wide variety of generated 

motifs and sequences, we applied a feature matching algorithm where we add an additional loss to 

the generator (5).  

𝑔𝑙𝑜𝑠𝑠2
=

1

𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∑‖µ(𝐹(𝑥)) − µ(𝐹(𝐺(𝑧)))‖     (5) 

This loss is the absolute difference between the average feature values for a batch of real 

data and fake data. This loss acts as a regularizer to encourage the generator to create diverse 

batches of sequences, capturing the entire distribution of the data. While this technique worked 

fairly well, we found the network could occasionally still suffer from mode collapse and further 

work is needed in the area of using GAN’s for short sequences.  

Finally, the network was trained in alternating fashion between the generator optimizer and 

discriminator optimizer over each iteration of the network. Training was halted when the average 

discriminator loss over the penultimate 10 iterations fell below 1.0 and the generator loss did not 

fall at least 1% in the penultimate 30 iterations (Supplementary Fig 4). We noted this type of early 

stopping criterion resulted in the generator initially fooling the discriminator quite easily until the 

discriminator learned the appropriate features to distinguish real from fake data. At this point, the 

generator loss would grow and eventually be unable to create sequences capable of fooling the 

discriminator and the training process was stopped at this point.  

Training Single Sequence Classifier 

In order to train the single sequence classifier, we followed a traditional conventional neural 

network architecture where a single translationally invariant convolutional layer was applied to 
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the sequence followed by three fully connected layers to a final classification layer. The network 

was trained using an Adam Optimizer (learning rate = 0.001) to minimize the cross-entropy loss 

between the softmaxed logits and the one-hot encoded representation of the discrete categorical 

outputs of the network. Training was conducted by using 75% of the data for the training set, and 

25% for validation and testing. The validation group of sequences was used to implement an early 

stopping algorithm. 

Training Whole Sample Classifier 

Designing an architecture for whole sample multi-instance classification presented unique 

challenges that were specific to the way TCRSeq data is generated. Not only are the length of 

individual sequences variable length but the length of the individual files can vary in length as well 

in terms of number of unique sequences. Since neural networks required fixed-size inputs, this 

required not only a padding scheme for the sequences but also a padding scheme for the files. 

When a given dataset was imported, we applied a right zero padding scheme to each of the 

sequences but then we padded all zero sequences until every file had the same number of 

sequences. When this tensor is fed into the network, convolutional layers with dimensionality of 

[1, kernel] are then used to scan across the entire file of sequences. This results in feature values 

for each sequence in file. Additionally, since TCRSeq is a count-based NGS technology, there are 

quantitative measurements for each sequence that can be represented as a frequency of the entire 

file. This frequency is then used to weight the features. At this point, the network takes a sum of 

the features across all the sequences for a given file, computing a weighted average of all learned 

features over the entire sample. This vector of weighted average features is then fed directly into 

the classification layer. The network is trained with an Adam Optimizer (learning rate = 0.001) to 

minimize the cross-entropy loss between the softmaxed logits and the one-hot encoded 
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representation of the discrete categorical outputs of the network. Training splits and early stopping 

algorithms are the same as described above for the single sequence classifier except for in the cases 

of the Sidhom_2017 and Rudqvist_2017 datasets as the number of samples (7 & 20) were too small 

to create proper sized train/validation/test sets. Therefore, we used a leave-one-out training 

strategy where we trained on all but one sample until the training loss plateaued and then predicted 

on the one-out. Due to the generally small nature of these cohorts, in either traditional 

train/valid/test or leave-one-out splits, we employed monte carlo cross-validation, randomly 

selecting samples for train/test and iterating a number of times to approximate the predictive 

signature in the dataset. 

Motif Identification 

Neural networks are often treated as ‘black boxes’ where their value is largely in their predictive 

performance and not in understanding how the neural network is accomplishing its task. However, 

in the area of the biological sciences, there is not only the desire to create predictive tools but use 

these tools to inform our own understanding of the mechanisms at play. This area of research is 

often termed as improving the ‘explainability of neural networks. In biological sequence analytics 

such as DeepTCR, investigators want to be able to extract the features/motifs the neural network 

learned to accomplish its task. For the supervised learning architectures, we were able to identify 

motifs the network had learned by extracting the indices of where the kernels were activated 

following the global max pooling layer. The result of this operation is the network not only extracts 

the maximum value of a kernel over the length of the sequence but also deduces its position within 

the sequence. This can be then used to not only pick up which features are activated on a given 

sequence but where in the sequence this activation occurs, allowing us to identify the motifs that 
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any given neuron in the net is learning. Sequence logos were created with 

https://weblogo.berkeley.edu/logo.cgi.  

Code and Data availability 

DeepTCR was written using Google’s TensorFlowTM deep learning library and is available as a 

python package. Source code, comprehensive documentation, and use-case tutorials along with all 

data used in this manuscript can be found at https://github.com/sidhomj/DeepTCR. DeepTCR can 

either be installed directly from Github or from PyPI at https://pypi.org/project/DeepTCR/. 
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V. ExCYT: A Graphical User Interface for Streamlining Analysis of High-Dimensional 

Cytometry Data 

Abstract 

With the advent of flow cytometers capable of measuring an increasing number of parameters, 

scientists continue to develop larger panels to phenotypically explore characteristics of their 

cellular samples. However, these technological advancements yield high-dimensional data sets 

that have become increasingly difficult to analyze objectively within traditional manual-based 

gating programs. In order to better analyze and present data, scientists partner with 

bioinformaticians with expertise in analyzing high-dimensional data to parse their flow cytometry 

data. While these methods have been shown to be highly valuable in studying flow cytometry, they 

have yet to be incorporated in a straightforward and easy-to-use package for scientists who lack 

computational or programming expertise. To address this need, we have developed ExCYT, a 

MATLAB-based Graphical User Interface (GUI) that streamlines the analysis of high-dimensional 

flow cytometry data by implementing commonly employed analytical techniques for high-

dimensional data including dimensionality reduction by t-SNE, a variety of automated and manual 

clustering methods, heatmaps, and novel high-dimensional flow plots. Additionally, ExCYT 

provides traditional gating options of select populations of interest for further t-SNE and clustering 

analysis as well as the ability to apply gates directly on t-SNE plots. The software provides the 

additional advantage of working with either compensated or uncompensated FCS files. In the event 

that post-acquisition compensation is required, the user can choose to provide the program a 

directory of single stains and an unstained sample. The program detects positive events in all 

channels and uses this select data to more objectively calculate the compensation matrix. In 

summary, ExCYT provides a comprehensive analysis pipeline to take flow cytometry data in the 
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form of FCS files and allow any individual, regardless of computational training, to use the latest 

algorithmic approaches in understanding their data.  
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Introduction 

Advances in flow cytometry as well as the advent of mass cytometry has allowed clinicians 

and scientists to rapidly identify and phenotypically characterize biologically and clinically 

interesting samples with new levels of resolution, creating large high-dimensional data sets that 

are information rich83–85. While conventional methods for analyzing flow cytometry data such as 

manual gating have been more straightforward for experiments where there are few markers and 

those markers have visually discernable populations, this approach can fail to generate 

reproducible results when analyzing higher-dimensional data sets or those with markers staining 

on a spectrum. For example, in a multi-institutional study, where intra-cellular staining (ICS) 

assays were being performed to assess the reproducibility of quantitating antigen-specific T cell 

responses, despite good inter-laboratory precision, analysis, particularly gating, introduced a 

significant source of variability86. Furthermore, the process of manually gating population of 

interests, besides being highly subjective is highly time consuming and labor intensive. However, 

the problem of analyzing high-dimensional data sets in a robust, efficient, and timely manner is 

not one new to the research sciences. Gene expression studies often generate extremely high-

dimensional data sets (often on the order of hundreds of genes) where manual forms of analysis 

would be simply infeasible. In order to tackle the analysis of these data sets, there has been much 

work in developing bioinformatic tools to parse gene expression data87. These algorithmic 

approaches have just been recently adopted in the analysis of cytometry data as the number of 

parameters has increased and have proven to be invaluable in the analysis of these high 

dimensional data sets88,89.  

Despite the generation and application of a variety of algorithms and software packages 

that allow scientists to apply these high-dimensional bioinformatic approaches to their flow 
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cytometry data, these analytical techniques still remain largely unused. While there may be a 

variety of factors that have limited the widespread adoption of these approaches to cytometry 

data90, the major hindrance we suspect in use of these approaches by scientists, is a lack of 

computational knowledge. In fact, many of these software packages (i.e., flowCore, flowMeans, 

and OpenCyto) are written to be implemented in programming languages such as R that still 

require substantive programming knowledge. Software packages such as FlowJo have found favor 

among scientists due to simplicity of use and ‘plug-n-play’ nature, as well as compatibility with 

the PC operating system. In order to provide the variety of accepted and valuable analytical 

techniques to the scientist unfamiliar programming, we have developed ExCYT, a graphical-user 

interface (GUI) that can be easily installed on a PC/Mac that pulls many of the latest techniques 

including dimensionality reduction for intuitive visualization, a variety of clustering methods cited 

in the literature, along with novel features to explore the output of these clustering algorithms with 

heatmaps and novel high-dimensional flow/box plots.  

ExCYT is a graphical user interface built in MATLAB and therefore can either be run 

within MATLAB directly or an installer is provided that can be used to install the software on any 

PC/Mac. The software is included with this manuscript. We present a detailed protocol for how to 

import data, pre-process it, conduct t-SNE dimensionality reduction, cluster data, sort & filter 

clusters based on user preferences, and display information about the clusters of interest via 

heatmaps and novel high-dimensional flow/box plots (Figure 1). Axes in t-SNE plots are arbitrary 

and in arbitrary units and as such as not always shown in the figures for simplicity of the user 

interface. The coloring of data points in the “t-SNE Heatmaps” is from blue to yellow based on 

the signal of the indicated marker. In clustering solutions, the color of the data point is based 

arbitrary on cluster number. All parts of the workflow can be carried out in the single panel GUI 
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(Figure 2 & Table 1). Finally, we will demonstrate the use of ExCYT on previously published 

data exploring the immune landscape of renal cell carcinoma in the literature, also analyzed with 

similar methods. The sample dataset we used to create the figures in this manuscript along with 

the protocol below can be found at https://premium.cytobank.org/cytobank/projects/875, upon 

registering an account.  

 

https://premium.cytobank.org/cytobank/projects/875
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Figure 1: ExCYT Pipeline & Features. (A) ExCYT begins by importing raw FCS data, applying 

optional compensation, gating, and random subsampling prior to downstream analysis. This 

ensures all events being analyzed are relevant to the experiment being analyzed. t-SNE 

dimensionality reduction is then performed to visualize all events and t-SNE heatmaps can be 

generated to visualize phenotypic distributions. Finally, a variety of clustering algorithms can be 

applied on either t-SNE transformation or high-dimensional raw data. (B) Novel sorting and 

thresholding features allow users to quickly sort through possibly hundreds of clusters to find ones 

of interest. (C) Heatmaps of clusters can be created to examine how multiple clusters compare to 

each other as well as which markers co-associate. (D) Novel high-dimensional flow/box plots can 

be generated as a form of back-gating clusters on original data while appreciating the high-

dimensional nature of the data. 
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Figure 2: ExCYT Graphical User Interface: The ExCYT graphical user interface allows for a 

streamline work flow working from the left to right of the panel as the user imports their data, 

conducts t-SNE dimensionality reduction, clustering, and final cluster analysis and visualization.  
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Table 1. Overview of All Functions Present in the ExCYT GUI 

  

No. Description Name (in GUI)

1 Select type of Cytometry NA

2 Random subsampling of raw data NA

3 Select files for analysis Select File(s)

4 Auto-compensation of raw data based on directory of single stains provided to software Auto-Compensation

5 Gating to select events for t-SNE and clustering analysis Gate Population

6 Random subsampling of gated data (absolute number) NA

7 Random subsampling of gated data (percent of gated population) NA

8 Select channels for analysis NA

9 Run t-SNE dimensionality reduction t-SNE

10 t-SNE Window NA

11 Save workspace Save Workspace

12 Load Workspace Load Workspace

13 Create t-SNE heatmap on select marker NA

14 Gate t-SNE to re-do t-SNE analysis of select population Gate t-SNE

15 Save t-SNE window as image Save TSNE Image

16 Select Clustering Algorithm Clustering Method

17 Enter Clustering Parameter for given algorithm NA

18 Cluster Analysis Cluster

19 Draw Clusters Manually Select Cluster Manually

20 Clear All Clusters to redo cluster analysis Clear Clusters

21 Show Clusters under current filter conditions Clusters (Filtration)

22 Remove select clusters from Cluster Analyze listbox Remove <--

23 Add cluster to Cluster Analyze listbox Select -->

24 Create conventional heatmap of all events in analysis HeatMap of Events

25 Sort clusters by select marker Sort

26 Set threshold by select marker Threshold

27 Create conventional heatmap of select clusters from Cluster Analyze listbox HeatMap of Clusters

28 Flip order of sort Ascending/Descending

29 Clear all thresholds Clear All Thresholds

30 Set frequency threshold for clusters Cluster Frequency Threshold (%)

31 List of current thresholds active on 'Clusters (Filtration)' listbox Thresholds

32 High Dimensional Box Plot High Dimensional Box Plot

33 High Dimensional Flow Plot High Dimensional Flow Plot

34 Horizontal axis parameter for conventional flow plot NA

35 Vertical axis parameter for conventional flow plot NA

36 Data transformation for conventional flow plot on horizontal axis NA

37 Data transformation for conventional flow plot on vertical axis NA

38 Create conventional flow plot Conventional Flow Plot

39 Show Clusters for Analysis NA
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Protocol 

1. Collecting and Preparing Cytometry Data 

1.1. Place all single stains in a folder by themselves and label by the channel name (by 

fluorophore, not marker).  

2. Data Importation & Pre-Processing 

2.1. To pause or save throughout this analysis pipeline, use the Save Workspace button at the 

bottom left of the program to save the workspace as a ‘.MAT’ file that can later be loaded via the 

Load Workspace button. Do not run more than one instance of the program at a time. Therefore, 

when loading a new workspace, make sure to check there is no other instance of ExCYT running. 

2.2. To begin analysis pipeline, first select type of cytometry (Flow Cytometry or Mass 

Cytometry – CYTOF), under the File Selection Parameters, and 2000 events  to sample from the 

file. Once data has been successfully imported, a dialogue box will pop up informing the user that 

the data has been successfully imported.  

2.3. Press the Auto-Compensation button to conduct an optional auto-compensation step, as 

done by Bagwell & Adams91. Select the directory containing single stains. Select the unstained 

sample within the user interface dialogue.  

2.3.1. Place a forward/side-scatter gate on any of the samples in this directory that will be used 

to select events to calculate the compensation matrix. It is recommended to use the unstained 

sample for this purpose. At this point, an algorithm has been implemented to set consistent 

thresholds at the 99th percentile of the unstained sample to define positive events in each of the 

single stains to calculate the compensation matrix. When this is finished, a dialogue box will 

inform the user that the compensation has been performed.  



 73 

2.4. Next, press Gate Population and select the populations of cells of interest, as is the 

convention in flow cytometry analyses. When population of cells is selected, enter 10,000 events 

or % of File to use for downstream analysis.  

2.5. Next, select the channels to be used for analysis in the listbox in the far right of the Pre-

Processing box.  

3. t-SNE Analysis  

3.1. Press the t-SNE button to have the program begin start to compute the reduced 

dimensionality data set for visualization in the window below the t-SNE button. To save image of 

t-SNE, press Save TSNE Image. On a machine with 8 CPU @ 3.4 GHz each and 8 GM RAM this 

step should take about 2 minutes for 10,000 events, 10 minutes for 50,000 events, and 20 minutes 

for 100,000 events.  

3.2. To create a ‘t-SNE heatmap’, as seen in several CYTOF publications92,93, select an option 

from the Marker-Specific t-SNE pop-up menu such as CD64 or CD3. A figure will pop up 

showing a heatmap representation of the t-SNE plot that can be saved for figure generation.  

3.3. Select areas of interest in the t-SNE plots by the user for further downstream analyses using 

the Gate t-SNE button.  

4. Cluster Analysis 

4.1. To begin clustering analysis, select option in Clustering Method listbox such as DBSCAN 

with a distance factor of 5 in dialogue box to the right of the listbox. Press the Cluster button.  

4.2. Use one of the following options for automated clustering algorithms found in the 

‘Automated Clustering Parameters’ panel: 

4.2.1. Hard KMEANS (on t-SNE): Apply k-means clustering to the reduced 2-dimensional t-SNE 

data and requires the number of clusters to be provided to the algorithm94.  
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4.2.2. Hard KMEANS (on HD Data): Apply k-means clustering to the original high-dimensional 

data that was given to the t-SNE algorithm. Once again, the number of clusters needs to be 

provided to the algorithm.  

4.2.3. DBSCAN: Apply the clustering method of clustering, called Density-Based Spatial 

Clustering of Applications with Noise95 that clusters the reduced 2-dimensional t-SNE data and 

requires a non-dimensional distance factor that determines the general size of the clusters. This 

type of clustering algorithm is well suited to cluster the t-SNE reduction as it is able to cluster non-

spheroidal cluster that are often present in the reduced t-SNE representation. Additionally, due to 

the fact that it operates on the 2-dimensional data, it is one of the faster clustering algorithms.  

4.2.4. Hierarchical Clustering: Apply the conventional hierarchical clustering method to the 

high-dimensional data where the entire Euclidean distance matrix is calculated between all events 

before providing the algorithm a distance factor that sets the size of the cluster.  

 

4.2.5. Network Graph-Based: Apply a clustering method that has been most recently introduced 

into analyzing flow cytometry data when there are rare subpopulations that the user wants to 

detect93,96. This method relies on first creating a graph that determines the connections between all 

events in the data. This step consists of providing an initial parameter to create the graph, which is 

the number of k-nearest neighbors. This parameter generally governs the size of the clusters. At 

this point, another dialogue box pops up asking the user to employ one of 5 clustering algorithms 

that is applied to the graph. These include 3 options to maximize the modularity of the graph, the 

Danon Method, and a spectral clustering algorithm96–100. If one wants a generally faster clustering 

solution, we recommend Spectral Clustering or the Fast Greedy Modularity Maximization. While 
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the Modularity Maximization methods along with the Danon method determine the optimal 

number of clusters, Spectral Clustering requires the number of clusters to be given to the program.  

4.2.6. Self-Organized Map: Employ an artificial neural network to cluster the high-dimensional 

data.  

4.2.7. GMM – Expectation Maximization: Create a Gaussian Mixture Model using Expectation 

Maximization (EM) technique to cluster the high-dimensional data101. This type of clustering 

method also requires the user to input the number of clusters.  

4.2.8. Variational Bayesian Inference for GMM: Create a Gaussian Mixture Model but unlike 

EM, it can automatically determine the number of the mixture components k102. While the program 

does require a number of clusters to be given (larger than the expected number of clusters), the 

algorithm will determine the optimal number on its own.  

 

4.3. To study a particular area of the t-SNE plot, press the Select Cluster Manually button to 

draw a set of user-defined clusters. Of note, clusters cannot share members (i.e., each event can 

only belong to 1 cluster).  

5. Cluster Filtration 

5.1. Set(s) of clusters identified either manually or via one of the automatic methods described 

above can be filter via as follows.  

5.1.1. To sort clusters (in the Cluster Filter panel) by any of the markers measured in the 

experiment, select an option from the Sort pop-up menu. To set whether the order is ascending or 

descending, press the Ascending/Descending button to the right of the Sort pop-up menu. This 

will update the list of Clusters in the ‘Clusters (Filtration)’ listbox and re-order them in descending 
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order of median cluster expression of that marker. The percentage denoted in the ‘Clusters 

(Filtration)’ listbox denotes the percent of the population that this cluster represents. 

5.1.2. To set a minimum threshold value for a given cluster across a certain channel, select an 

option from the Threshold pop-up menu such as CD65 and set a threshold at around 0.75.  Either 

type a value in the numerical box below the graph or use the slide-bar to set a threshold. Once 

threshold is set, press Add Above Threshold or Add Below Threshold to specify the direction 

of threshold. Once this threshold has been set, it will be listed in the Thresholds box next to the 

‘Cluster Filter’ panel where the marker, the threshold value, and the direction will be listed so the 

user is aware of which thresholds are currently being applied. Finally, the t-SNE plot will update 

by blurring out clusters that do not meet the requirements of the filtration and the ‘Clusters 

(Filtration)’ listbox will update to show clusters that meet the filtration requirements.  

5.1.3. To set a minimum threshold for frequency of a cluster, enter a numerical cut-off in the 

Cluster Frequency Threshold (%) box in the Cluster Filter panel such as 1%.  

6. Cluster Analysis & Visualization 

6.1. To select clusters for further analysis and visualization, select clusters In Clusters 

(Filtration) listbox and press the Select → button to move them to the Cluster Analyze listbox.  

6.2. To create heatmaps of clusters, select the clusters of interest in the Cluster Analyze listbox 

and press the HeatMap of Clusters button. When this button is pressed, a figure will pop up 

containing a heat map along with dendrograms on the cluster and parameter axes. The dendrogram 

on the vertical axis will group clusters by those that are closely related while the dendrogram on 

the horizontal axis will group markers that are co-associated. To save heatmap, press File | Export 

Setup | Export. 
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6.3. To create a ‘High Dimensional Box Plot’ or ‘High Dimensional Flow Plot,’ select the 

clusters of interest in the Cluster Analyze listbox and press either the High Dimensional Box 

Plot button or the High Dimensional Flow Plot button. These plots can be used to visually assess 

the distribution of given channels of various clusters across all dimensions. 

6.4. To show clusters in traditional 2D flow plots, select the transformation (linear, log10, 

arcsinh) and channel in the Conventional Flow Plot panel and press Conventional Flow Plot.  

 

Representative Results 

In order to test the usability of ExCYT, we analyzed a curated data set published by 

Chevrier et al. titled ‘An Immune Atlas of Clear Cell Renal Carcinoma’ where the group conducted 

CyTOF analysis with an extensive immune panel on tumor samples taken from 73 patients93. Two 

separate panels, a myeloid and lymphoid panel, were used to phenotypically characterize the tumor 

microenvironment. The objective of our study was to recapitulate the results of their t-SNE and 

cluster analysis, showing that ExCYT could be used to come to the same conclusions as well as 

show additional methods of visualization and cluster analysis.  

In the original manuscript, the group described 22 T cell clusters identified by the lymphoid 

panel and 17 cell clusters identified by the myeloid panel. In Figures 3 & 4 of the publication, the 

group shows heatmaps of clusters, t-SNE plots with color-coded clustering solutions, and t-SNE 

heatmaps in subpanels A, B, & C. In order to perform the analysis, we obtained the manually gated 

data from Cytobank and sampled 2000 events from each file or took the entire file if it had less 

than 2000 events, following the analysis pipeline illustrated in the original manuscript. At this 

point, we sampled a total of 100,000 events via our post-gating subsampling parameter, conducted 

t-SNE analysis, and used a variety of clustering methods to explore the data in various ways.  
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First, we examined the myeloid panel by following the same analysis pipeline as the 

original manuscript by completing the t-SNE analysis and creating heatmaps of the various 

markers (Figure 3A). While the original manuscript normalized the t-SNE heatmaps to the 99th 

percentile of each marker, ExCYT does not do this type of normalization for its heatmaps. 

However, similar distributions of marker co-expression were observed as described in the original 

manuscript. We then applied a Network Graph-Based method of clustering the data by creating 

the graph with 100 k-nearest neighbors and clustering the graph via optimizing the modularity of 

the graph by using the Fast-Greedy implementation within ExCYT, where we found 19 sub-

populations of cells (Figure 3B). When comparing the heatmap of these clusters created by 

ExCYT with the heatmap published in the original manuscript, we noted that we were able to 

identify similar clusters of myeloid cells (Figure 3C). Of note, the original manuscript identified 

and contrasted two sub-populations of myeloid cells that we identified in our analysis defined by 

HLA-DRintCD68intCD64intCD36+CD11b+ (Cluster 13) and HLA-DR+CD4+CD68+CD64+CD36-

CD11b- (Cluster 18). Visualization by high-dimensional box plot of these two populations revealed 

statistically significant differences (Mann-Whitney) in the six markers mentioned (Figure 1D). 

Next, we analyzed the lymphoid panel with a more conventional and faster hierarchical 

clustering approach. This approach yielded similar marker distributions via t-SNE heatmaps 

(Figure 4A). Furthermore, clustering of the data via hierarchical clustering (Figure 4B), 

demonstrated similar clusters of lymphoid cells (Figure 4C). Of note, we also identified the unique 

regulatory T cell population from the original manuscript defined as CD4+CD25+Foxp3+CTLA-

4+CD127- (Cluster 17) via our high-dimensional flow plot (Figure 4D).  

Finally, we wanted to employ a method within ExCYT to quickly and quantitatively assess 

co-associations among markers. We began by using a hard k-means clustering algorithm to lay 
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down 5000 clusters on the two-dimensional t-SNE data (Figure 4E). We then used the median 

expression of all the markers of all these clusters to create a heatmap from these clusters (Figure 

4F). Since these heatmaps cluster rows as well as columns that are similar, this method of 

abstracting the data by applying a fine mesh of clusters and then creating a heatmap allows us to 

pick up co-associations easily, such as the co-association of Tim-3, PD-1, CD38, and 4-1BB. 
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Figure 3: Recapitulation of Myeloid Sub-Populations from Chevrier et al. (A) Token t-SNE 

heatmaps of myeloid panel (B) t-SNE plot of myeloid panel color coded by Network-Graph 

clustering algorithm (C) Heatmap of clusters identified by clustering solution on myeloid panel 

(D) Comparative high dimensional box plot comparing contrasting myeloid subpopulations 

(Clusters 13 & 18) referenced in original manuscript  
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Figure 4: Recapitulation of Lymphoid Sub-Populations from Chevrier et al. (A) Token t-SNE 

heatmaps of lymphoid panel (B) t-SNE plot of lymphoid panel color coded by hierarchical 

clustering algorithm (C) Heatmap of clusters identified by clustering solution on lymphoid panel 

(D) High dimensional flow plot of identified regulatory T cell population (Cluster 17) in original 

manuscript (E) Clustering solution of 5000 cluster hard k-means analysis on t-SNE data (F) 

Heatmap of clusters identified by k-means clustering solution on lymphoid panel showing marker 

co-associations.  
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Discussion 

Here we present ExCYT, a novel graphical user interface running MATLAB-based algorithms to 

streamline analysis of high-dimensional cytometry data, allowing individuals with no background 

in programming to implement the latest in high-dimensional data analysis algorithms. The 

availability of this software to the broader scientific community will allow scientists to explore 

their flow cytometry data in an intuitive and straightforward workflow. Through conducting t-SNE 

dimensionality reduction, applying a clustering method, being able to sort/filter through these 

clusters quickly, and make flexible, customizable heatmaps and high-dimensional flow/box plots, 

scientists will be able to not only understand the uniquely defined subpopulations in their samples 

but will be able to create visualizations that are intuitive and easily understood by their colleagues.  

While the program is flexible in handling a variety of data types (conventional flow 

cytometry vs mass cytometry), there are a few considerations for optimal utility of the program. 

The first of these is regarding the data quality, specifically of flow cytometry data. Proper 

compensation and resolution of overlapping emission spectra is of paramount importance. Poorly 

compensated data can inadvertently lead to false co-associations of markers and formation of 

clusters that are not of true biological significance. Therefore, it is highly advisable that the input 

data is of sound quality before proceeding with the t-SNE analysis and further downstream 

analysis. Furthermore, use of the automatic compensation algorithm implemented in ExCYT 

requires clear single stains for all channels in order to accurately calculate the compensation 

parameters.  

Another important consideration for use of ExCYT is when concatenating multiple FCS 

files into one analysis (as demonstrated in this manuscript), they must be comparable across all 

channels. First, this means that the same panel needs to be used across all samples and that there 
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is no drift between samples across all channels. For example, if one were to read two samples on 

separate days and stained CD8 in FITC on both days but the voltage of the cytometer was set 

differently on one day resulting in a slightly shifted CD8 population, one could generate false 

clusters in the downstream analysis, as this shift was generated as a function of instrument variation 

and not due to biological significance. While future versions of ExCYT may be able to normalize 

samples to their single stains, at this point, careful consideration must be made that FCS files can 

be compared to each other before importing them into ExCYT.  

Finally, the process of clustering is not one that is absolute/rigid. Different clustering 

algorithms and parameters can generate different clustering solutions. Whether the solution of the 

algorithm is appropriate is for the user to determine by synthesizing their understanding of the 

biology with the clustering solution. For example, when understanding the immune environment 

of tumors, one may be interested in macroscopic clusters (i.e., T cells vs B cells vs Myeloid cells) 

while another may be interested in subpopulations of macroscopic clusters. The resolution of the 

clusters is determined by the user and therefore, no single clustering solution is ‘correct.’ This is 

one of the main advantages of using the high dimensional flow plots available in ExCYT. The 

ability to visualize the distribution of a given cluster across all channels can help the user determine 

whether they have clustered in not only a biologically relevant way but in a way that is relevant to 

the scientific question being asked in the experiment. While our goal is to provide a plethora of 

methods used in the literature to cluster high-dimensional flow cytometry data while providing 

additional methods of clustering, we recommend using methods such as k-means and DBSCAN 

to explore the data via quickly iterating on cluster number and size and move towards network-

graph and gaussian-mixed model approaches for more robust but more time-consuming 

approaches. 
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Given these considerations, ExCYT is still a highly flexible and valuable tool for exploring 

high dimensional cytometry data, and offers unique/differentiating features than other available 

packages available to conduct this type of analysis (Table 2). First, ExCYT differentiates itself 

over most flow cytometry analysis approaches utilizing dimensionality reduction and clustering 

algorithms by its ability to be used without any scripting/programming knowledge. Additionally, 

by aggregating many clustering algorithms cited throughout the literature, we believe we provide 

the most options for clustering data. Finally, our unique feature of cluster filtration and sorting 

along with display via novel high dimensional flow plots, allows users to explore the 

characteristics of their clusters quickly and efficiently, making the process of ‘discovering’ rare 

subpopulations simple and efficient. 
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Table 2: Overview of Software-assisted Flow Cytometry Analysis Solutions  

  

Name of Software/Package ExCYT CYT FCS Express flowCore openCyto FlowMeans

Program Type Matlab Matlab Stand-Alone Application R R R

Price to User Free Free $1,000 Free Free Free

Graphical User Interface Yes Yes Yes No No No

Dimensionality Reduction Techniques t-SNE t-SNE,PCA t-SNE, PCA, SPADE none none none

Clustering Algorithms 

K-Means

DBSCAN

Hierarchical Clustering

Self-Organized Map

Multiple Network-Graph Based 

Methods

GMM - EM

GMM - Variational Bayesian 

Inference 

K-Means

GMM - EM

Single Network-Graph Based 

Method (Phenograph)

K-Means none
automation of manual gating 

workflow
K-Means

Ability to Sort/Filter Clusters Yes No No No No No

High Dimensional Flow Plots Yes No No No No No
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VI. Convolving Pre-Trained Convolutional Neural Networks at Various Magnifications to 

Extract Diagnostic Features for Digital Pathology 

Abstract 

 

Deep learning is an area of artificial intelligence that has received much attention in the past few 

years due to both an increase in computational power with the increased use of graphics 

processing units (GPU’s) for computational analyses and the performance of these class of 

algorithms on visual recognition tasks. They have found utility in applications ranging from 

image search to facial recognition for security and social media purposes. Their continued success 

has propelled their use across many new domains including the medical field, in areas of 

radiology and pathology in particular, as these fields are thought to be driven by visual 

recognition tasks. In this paper, we present an application of deep learning, termed ‘transfer 

learning’, using ResNet50, a pre-trained convolutional neural network (CNN) to act as a ‘feature-

detector’ at various magnifications to identify low and high level features in digital pathology 

images of various breast lesions for the purpose of classifying them correctly into the labels of 

normal, benign, in-situ, or invasive carcinoma as provided in the ICIAR 2018 Breast Cancer 

Histology Challenge (BACH).  
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Introduction  

While artificial intelligence and machine learning have revolutionized many scientific fields, 

perhaps no other method has had the widespread adoption and practical use as much as deep 

artificial neural networks, or otherwise known as ‘deep learning.’ Of note, deep learning has had 

a profound impact on tasks associated with visual recognition, bringing about technologies capable 

of object classification and image recognition66. With the reduction to practice in many fields such 

as social media and communication technologies, there has been a recent advent to bring deep 

learning into the medical field. One of the initial applications of deep learning in the medical field 

was by a group at Stanford led by Sebastian Thrun who used transfer learning to classify skin 

lesions into benign, non-neoplastic, and malignant subtypes10. This proof of concept has led an 

initiative to bring deep learning into other visual recognition tasks in the medical field including 

radiology and digital pathology103,104. Not only have these approaches been shown effective in 

providing diagnostic power, comparable to medical professionals, but they also have shown 

promise to help learn features possibly missed by humans that can help differentiate various 

pathologies105.  

Despite the promise of deep learning for applications in the medical field, due to the 

novelty of these applications, there exists little labeled data for supervised machine learning. 

However, prior work in the fields of deep learning has shown the power of a technique called 

‘transfer learning,’ the idea being that pre-existing designed architectures (i.e. ResNet50, 

AlexNet, VGG16) that have been trained on possibly millions of images for over 1000 image 

classes can serve as ‘professional feature detectors’ for new visual recognition tasks where data 

may not be as abundant. While it may seem far fetched that a convolutional neural network (CNN) 

trained to recognize dogs and cats could recognize relevant features in medical imaging, Sebastian 
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Thrun and his group demonstrated this exact concept could be utilized, generating results even 

better than when training a CNN de-novo to diagnose skin lesions10. In this manuscript, we 

propose a method by which one can use ResNet50, a pre-trained CNN, as a feature detector for 

classification of normal, benign, in-situ, and invasive breast carcinoma. We propose a method by 

which convolving this pre-trained net at various magnifications of labeled pathology image tiles 

can serve to detect low and high-level features in digital pathology that can be ultimately used for 

the task of lesion classification.   

Methodology  

Data-Set  

For the task of classifying various types of breast pathology images, we were provided a set of 

400 images (100 per class) of normal, benign, in-situ, and invasive breast carcinoma. 

Additionally, with a set of 20 whole slide images (WSI), we were able to extract an additional 

648 image tiles of invasive, in-situ, and normal breast tissue with the assistance of a pathologist. 

For the remaining of the manuscript, we will refer to the first set as Data Set A and the latter set 

as Data Set B.   

Color Normalization & Image Augmentation  

In order to account for the variation in color we conducted an image color augmentation routine 

in which we characterized each of the tiles provided in the first part of this competition using the 

Reinhard method106 , which transforms the RGB color image to the CIELAB colorspace. We then 

converted the CIELAB projections into the HSV colorspace and then selected 5 representative 

tiles from the spectrums observed at the 10th, 25th, 50th, 75th, and 90th percentiles for both hue 

(H) and value (V). We then made 10 color transformation for each input image to the 10 
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representative tiles identified above using the Reinhard color transfer method, thus constituting 

our image color augmentation approach.  

Neural Network Architecture  

In initial tests using ResNet50 as a pre-trained feature extractor for the pathology image tiles, we 

noticed a lack of resolution and detail as many of these pre-trained CNN’s take fairly small images 

(244 x 244 pixels). In order to maintain resolution of important features of the pathology while 

also approaching the problem with the inspiration of how a pathologist examines slides, we 

decided to convolve ResNet50 at two magnifications (100x100 μm, 400x400 μm) with a stride 

length that was half of the kernel length (Figure 1). The output of each convolution was a [n-

windows, 2048] feature map on which we took the maximum value for each ResNet50 feature. 

This feature extraction was done with the Keras implementation of ResNet50 where the top layer 

was not included and an average pooling was done to obtain the 2048 features for each window. 

At the end of this step, each magnification has a 2048-element vector that reflects the presence 

of a given ResNet50 feature at a given magnification of the pathology image tile. At this point, 

we concatenate the 2048-element vector from both magnifications used to create a [2,2048] tensor 

that is then flattened and used as an input to a trainable fully-connected layer of 512 neurons, 

trained with a 20% dropout rate, followed by the final multi-class classification layer for the 4 

output classes (normal, benign, in-situ, and invasive) with a softmax activation layer. 

Creation/training of this part of the neural network was implemented in tensorflow.   
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Training  

In order to train the fully-connected layers of the CNN, we split up our data-set into training, 

validation, and test sets. We used an 90/5/ split across these respective sets, 5 batches of images 

per epoch, with 100-fold cross-validation to assess performance via receiver operating 

characteristic (ROC) curves, confusion matrices to examine individual class accuracy, and 

measured overall accuracy of the algorithm. We implemented an early stopping approach where 

after a minimum of 100 epochs, we stopped training when the validation loss did not decrease by 

2% in the previous 50 epochs or the validation accuracy did not increase by 5% in the previous 

200 epochs. After 100-fold training, we averaged the weights of each training session to arrive at 

final kernel and bias weights for the fully connected layers of the graph.   
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Results  

We wanted to assess the ability of neural network to learn the underlying pathologies from two 

separate sources of pathology images so we conducted a series of experiments where we ran 100x 

Monte Carlo cross validation with a train/test split of 90/10 percent. We then varied the data 

available for training, as shown in the figures below while assessing performance on the original 

Data Set A. We varied the training data based on combination of Data Sets A & B (as described 

in the methods above) and the use of the image color augmentation approach we implemented, 

which is described in the methods.  

  

  

Figure 2. Train on Data Set A, Test on Data Set A - No Image Color Augmentation  

With these 400 images, we obtained an overall accuracy of 84.3% across all four classes.  
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Figure 3. Train on Data Set A, Test on Data Set A - Image Color Augmentation  

When introducing augmented images into the training set, we saw an increase in overall accuracy 

up to 86.2%.  

  

Figure 4. Train on Data Set A & Data Set B, Test on Data Set A - No Image Color 

Augmentation  

When introducing a second data set into our training set, we saw an increase in overall accuracy 

up to 85.3%.  
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Figure 5. Train on Data Set A & Data Set B, Test on Data Set A - With Image Color 

Augmentation  

When introducing color augmentation into the training of both data sets A and B, we observed an 

overall accuracy of 84.4%.  

In comparing figure 2 and 3, we observed that the introduction of our image color augmentation 

approach increased the accuracy in the validation data by a small factor of approximately 2%. In 

comparing figure 2 and 4, we also noted a small increase of approximately 1 % in performance 

when including the additional images (Data Set B) derived from the WSI data also provided in 

the ICIAR 2018 BACH challenge. Somewhat surprisingly, when comparing figure 2 to figure 5, 

we did not observe an increase in performance with image color augmentation applied to the 

training set that include data sets A & B.   

Conclusion  

Here we present a method of convolving ResNet50, a pre-trained convolutional neural network, 

across pathology image tiles at various magnifications to identify low and high-level features that 

can be later fed into trainable fully-connected layers for the purpose of accurately classifying 

various types of breast lesions. While we were able to get a respectable accuracy through this 
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method, we believe we were still making mistakes in classification that would be considered 

obvious to a pathologist. While we never explored the idea of re-training or fine-tuning the 

weights within ResNet50, we hypothesize this approach may be able to push the performance 

further beyond what we have been able to show here.   

Furthermore, when examining the clinical utility of such an algorithm, we felt future 

directions should focus differentiating cancer from non-cancer primarily as algorithms such as 

this one will initially have value in the capacity of being screening tests. We believe in order to 

make this a viable, clinically useful algorithm, future efforts should be placed in ruling out normal 

images with a high degree of confidence, regardless of the false positive rate for cancer detection 

by the algorithm.  
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VII. Conclusion 

In this work, we demonstrate the power of artificial intelligence to have tremendous 

potential for generating insights in a variety of datasets within the field of cancer immunology. 

Through the development of ImmunoMap and DeepTCR, we exhibit how two types of machine 

learning approaches can provide structural insights into T-cell repertoire. Ultimately, tools such as 

these will be useful to understanding the antigenic-composition of the adaptive immune response 

in cancer. AI-MHC attempts to understand the other side of the immune synapse in attempting to 

better predict Class I and Class II antigens for the purpose of improved neoantigen prediction. 

Finally, we demonstrate how conventional high-dimensional analytics can be packaged into useful 

tools for the broader community through the development of ExCYT, a software package for high-

dimensional cytometry analysis. I believe the concepts developed within this doctoral work will 

be foundational for a comprehensive assessment of all the players that are involved in the immune 

system-cancer interaction that will lead to breakthroughs in understanding that advance therapy 

and treatment of cancer patients.  
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35. Perica, K., Bieler, J., Schütz, C. & ACS …, V. J. Enrichment and expansion with nanoscale 

artificial antigen presenting cells for adoptive immunotherapy. (2015). 

doi:10.1021/acsnano.5b02829  

 

36. Blank, C., Brown, I., Peterson, A., iotto & research, I. Y. PD-L1/B7H-1 inhibits the effector 

phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. (2004). 

doi:10.1158/0008-5472.CAN-03-3259  

 

37. Kyewski, B. & Immunol., K. L. A central role for central tolerance. (2006).  

 

38. Hogquist, K., Baldwin, T. & Immunology, J. S. Central tolerance: learning self-control in the 

thymus. (2005).  

 

39. Piccirillo, C. & in immunology, T. A. Cornerstone of peripheral tolerance: naturally 

occurring CD4+ CD25+ regulatory T cells. (2004).  

 

40. Chodon, T., Comin-Anduix, B. & Cancer …, C. B. Adoptive transfer of MART-1 T-cell 

receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic 



 99 

melanoma. (2014). doi:10.1158/1078-0432.CCR-13-3017  

 

41. Wang, F., Bade, E., Kuniyoshi, C., Spears, L. & Cancer …, J. G. Phase I trial of a MART-1 

peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma. (1999).  

 

42. Rosenberg, S., Zhai, Y. & of the …, Y. J. Immunizing patients with metastatic melanoma 

using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. (1998).  

 

43. Hanson, H., Donermeyer, D., Ikeda, H. & Immunity, W. J. Eradication of established tumors 

by CD8+ T cell adoptive immunotherapy. (2000).  

 

44. Morgan, R. A. et al. Cancer Regression in Patients After Transfer of Genetically Engineered 

Lymphocytes. Science 314, 126–129 (2006).  

 

45. Vatakis, D., Koya, R. & of the …, N. C. Antitumor activity from antigen-specific CD8 T 

cells generated in vivo from genetically engineered human hematopoietic stem cells. (2011). 

doi:10.1073/pnas.1115050108  

 

46. Dudley, M. & Cancer, R. S. Adoptive-cell-transfer therapy for the treatment of patients with 

cancer. (2003).  

 

47. Speiser, D., Miranda, R. & of …, Z. A. Self antigens expressed by solid tumors do not 

efficiently stimulate naive or activated T cells: implications for immunotherapy. (1997). 

doi:10.1084/jem.186.5.645  

 

48. Schumacher, T. & Science, S. R. Neoantigens in cancer immunotherapy. (2015). 

doi:10.1126/science.aaa4971  

 

49. Lennerz, V., Fatho, M. & of the …, G. C. The response of autologous T cells to a human 

melanoma is dominated by mutated neoantigens. (2005). doi:10.1073/pnas.0500090102  

 

50. Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral 

blood of melanoma patients. Nature Medicine 22, nm.4051 (2016).  

 

51. Rudqvist, N., Pilones, K. & Immunol …, L. C. Radiotherapy and CTLA-4 blockade shape 

the TCR repertoire of tumor-infiltrating T cells. (2018).  

 

52. Cell, G. MHC-dependent antigen processing and peptide presentation: providing ligands for 

T lymphocyte activation. (1994).  

 

53. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. 

Nature 547, 217–221 (2017).  

 



 100 

54. Timm, J., Lauer, G. & of …, K. D. CD8 epitope escape and reversion in acute HCV 

infection. (2004).  

 

55. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint 

blockade immunotherapy. Nature (2017). doi:10.1038/nature24473  

 

56. Vyas, J., der Veen, V. A. & Immunology, P. H. The known unknowns of antigen processing 

and presentation. (2008).  

 

57. Neefjes, J., Jongsma, M. & Reviews …, P. P. Towards a systems understanding of MHC 

class I and MHC class II antigen presentation. (2011).  

 

58. Nielsen, M. et al. Reliable prediction of T‐cell epitopes using neural networks with novel 

sequence representations. Protein Science 12, 1007–1017 (2003).  

 

59. Andreatta, M. & Bioinformatics, N. M. Gapped sequence alignment using artificial neural 

networks: application to the MHC class I system. (2015).  

 

60. Nielsen, M., Lundegaard, C. & computational …, B. T. Quantitative predictions of peptide 

binding to any HLA-DR molecule of known sequence: NetMHCIIpan. (2008). 

doi:10.1371/journal.pcbi.1000107  

 

61. Zeng, H., Edwards, Liu, G. & Bioinformatics, G. D. Convolutional neural network 

architectures for predicting DNA–protein binding. (2016).  

 

62. Sabour, S., Frosst, N. & in Information, H. G. Dynamic routing between capsules. (2017).  

 

63. Han, Y. & bioinformatics, K. D. Deep convolutional neural networks for pan-specific 

peptide-MHC class I binding prediction. (2017).  

 

64. Kim, Y. et al. Dataset size and composition impact the reliability of performance benchmarks 

for peptide-MHC binding predictions. BMC bioinformatics 15, 241 (2014).  

 

65. Jensen, K., Andreatta, M., Marcatili, P. & … B. S. Improved methods for predicting peptide 

binding affinity to MHC class II molecules. (2018). doi:10.1111/imm.12889  

 

66. Krizhevsky, A., Sutskever, I. & in neural, H. G. Imagenet classification with deep 

convolutional neural networks. (2012).  

 

67. Matsumura, M., Fremont, D. & Science, P. P. Emerging principles for the recognition of 

peptide antigens by MHC class I molecules. (1992). doi:10.1126/science.1323878  

 

68. Sidhom, J.-W. et al. ImmunoMap: A Bioinformatics Tool for T-Cell Repertoire Analysis. 



 101 

Cancer Immunology Research 6, canimm.0114.2017 (2017).  

 

69. Szolek, A., Schubert, B., Mohr, C. & … S. M. OptiType: precision HLA typing from next-

generation sequencing data. (2014).  

 

70. Drijfhout, J., Brandt, R., D’Amaro, J. & immunology, K. W. Detailed motifs for peptide 

binding to HLA-A∗ 0201 derived from large random sets of peptides using a cellular binding 

assay. (1995).  

 

71. Sidney, J., Peters, B. & BMC …, F. N. HLA class I supertypes: a revised and updated 

classification. (2008).  

 

72. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence 

specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology 33, 

831–838 (2015).  

 

73. Sidhom, J.-W., Pardoll, D. & Baras, A. AI-MHC: an allele-integrated deep learning 

framework for improving Class I &amp; Class II HLA-binding predictions. bioRxiv 318881 

(2018). doi:10.1101/318881  

 

74. Glanville, J. et al. Identifying specificity groups in the T cell receptor repertoire. Nature 547, 

94–98 (2017).  

 

75. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor 

repertoires. Nature 547, 89–93 (2017).  

 

76. Buermans, H. P. J. & den Dunnen, J. T. Next generation sequencing technology: Advances 

and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842, 

1932–1941 (2014).  

 

77. ... et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. 

(2017).  

 

78. Gerlinger, M., Quezada, S. & of …, P. K. Ultra‐deep T cell receptor sequencing reveals the 

complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. (2013).  

 

79. Wang, G., Dash, P. & translational …, M. J. T cell receptor αβ diversity inversely correlates 

with pathogen-specific antibody levels in human cytomegalovirus infection. (2012).  

 

80. Pu, Y., Gan, Z., Henao, R., Yuan, X. & in neural …, L. C. Variational autoencoder for deep 

learning of images, labels and captions. (2016).  

 

81. Doersch, C. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016).  



 102 

 

82. Goodfellow, I., Pouget-Abadie, J. & in neural …, M. M. Generative adversarial nets. (2014).  

 

83. Benoist, C. & Science, H. N. Flow cytometry, amped up. (2011). 

doi:10.1126/science.1206351  

 

84. Ornatsky, O., Bandura, D., Baranov, V. & of …, N. M. Highly multiparametric analysis by 

mass cytometry. (2010).  

 

85. Tanner, S., Bandura, D. & and Applied …, O. O. Flow cytometer with mass spectrometer 

detection for massively multiplexed single-cell biomarker assay. (2008).  

 

86. Maecker, H., Rinfret, A. & BMC …, D. P. Standardization of cytokine flow cytometry 

assays. (2005).  

 

87. Brazma, A. & letters, V. J. Gene expression data analysis. (2000).  

 

88. Pyne, S., Hu, X., Wang, K. & of the …, R. E. Automated high-dimensional flow cytometric 

data analysis. (2009). doi:10.1073/pnas.0903028106  

 

89. Ge, Y. & Bioinformatics, S. S. flowPeaks: a fast unsupervised clustering for flow cytometry 

data via K-means and density peak finding. (2012).  

 

90. systems research, V. V. Determinants of perceived ease of use: Integrating control, intrinsic 

motivation, and emotion into the technology acceptance model. (2000).  

 

91. Bagwell, C. & of the of, A. E. Fluorescence spectral overlap compensation for any number of 

flow cytometry parameters. (1993).  

 

92. Lavin, Y., Kobayashi, S., Leader, A., Amir, E. & Cell, E. N. Innate immune landscape in 

early lung adenocarcinoma by paired single-cell analyses. (2017).  

 

93. Chevrier, S., Levine, J., Zanotelli, V. & Cell, S. K. An immune atlas of clear cell renal cell 

carcinoma. (2017).  

 

94. Hartigan, J. & of the Wong, - MAC. Algorithm AS 136: A k-means clustering algorithm. 

(1979). doi:10.2307/2346830  

 

95. Ester, M., Kriegel, H., Sander, J. & Kdd, X. X. A density-based algorithm for discovering 

clusters in large spatial databases with noise. (1996).  

 

96. Levine, J., Simonds, E., Bendall, S. & Cell, D. K. Data-driven phenotypic dissection of AML 

reveals progenitor-like cells that correlate with prognosis. (2015).  



 103 

 

97. Blondel, V., Guillaume, J. & of statistical …, L. R. Fast unfolding of communities in large 

networks. (2008).  

 

98. Martelot, L. E. & Journal, H. C. Fast multi-scale detection of relevant communities in large-

scale networks. (2013).  

 

99. review MEJ, E. Fast algorithm for detecting community structure in networks. (2004). 

doi:10.1103/PhysRevE.69.066133  

 

100. Barbara, H. J., CA & of California, U. An efficient matlab algorithm for graph partitioning. 

(2004).  

 

101. processing magazine, M. T. The expectation-maximization algorithm. (1996).  

 

102. 대한토목학회지 B. C. Pattern recognition and machine learning, 2006. (2012).  

 

103. Djuric, U., Zadeh, G., Aldape, K. & precision oncology, D. P. Precision histology: how 

deep learning is poised to revitalize histomorphology for personalized cancer care. (2017).  

 

104. Lee, J., Jun, S., Cho, Y. & journal of …, L. H. Deep learning in medical imaging: general 

overview. (2017). doi:10.3348/kjr.2017.18.4.570  

 

105. Kao, C. & preprint arXiv:1707.05809, M. L. A Novel Deep Learning Architecture for 

Testis Histology Image Classification. (2017).  

 

106. Reinhard, E., Adhikhmin, M. & graphics and …, G. B. Color transfer between images. 

(2001).  

 

 

 

  



 104 

IX. Appendices 

 

 

 

 

Supplementary Figure 1. In order to set thresholds for motif detection, two variables were optimized on 

a Naïve Adult B6 CD8 Repertoire (taken from Adaptive Biotechnologies ImmunoSeq Sample Data). Motif 

detection was completed across a range of phylogenetic distances and frequency thresholds and number 

of motifs detected was monitored. Since our analysis was looking for dominant motifs above what is 

present in an unexpanded population, we chose a frequency threshold of 0.03 and Phylogenetic Distance 

threshold of 0.35, at which 0 motifs were detected in Naïve B6 background.  
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Supplementary Figure 2. A) FACS analysis of antigen-specific CD8 T cells on D7 in Naïve and Tumor-bearing 

lymphoid organs. B) ICS staining of antigen-specific CD8 T Cells confirming specificity and functionality. C) 

Comparison of Dimer+ and TNF+ CD8. D) Antigen-specific CD8 T cells staining from splenic CD8 T cells 

directly ex vivo compared to unloaded Kb-Ig staining. N = 3, Statistical 2-tailed T-test. 
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V-beta Usage of CD8 Response
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Supplementary Figure 3. V-beta usage for Naïve Kb-SIY & Kb-TRP2 Response 
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Supplementary Figure 4. V-beta usage for Tumor-Bearing Kb-SIY & Kb-TRP2 Response in Various 

Lymphoid Organs 
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Supplementary Figure 5. In order to determine number of tumor-infiltrating lymphocytes that were 

sequenced for each patient, Adaptive reported amount of total DNA in nanograms that underwent 

sequencing and based on the assumption of 6.5pgDNA per cell, we were able to calculate the number of 

total cells that underwent sequencing. Furthermore, Adaptive calculated a %TIL metric based on number 

of non-recombined to recombined sequence reads. With this information, we were able to deduce the 

number of starting lymphocytes that were sequenced for each patient.  
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A) 

 

 

 

 

 

B)   

for i=1:size(DistanceMatrix3,1); 
        for j=1:size(DistanceMatrix3,2); 
            if i==j 
                if Reads(i)==1 
                    ScorePreOut(i,j)=0; 
                else 
                    ScorePreOut(i,j)=DistanceMatrix3(i,j)*combntns(Reads(i),2); 
                end 
            else 
                ScorePreOut(i,j)=DistanceMatrix3(i,j)*Reads(i)*Reads(j); 
            end 
        end 
    end 
 
   TCRDiversityScore=1-(sum(sum(ScorePreOut))/combntns(sum(Reads),2)); 

 

 

Supplementary Figure 6. Calculation of TCR Diversity Score. A) Initially, all pair-wise distances are 

calculated with sequence distance based on global alignment scores. Sequence distance is then converted 

to a mapped sequence distance with values between 0 and 1. This Mapped Sequence Distance is defined 

as 0 being infinite sequence difference and 1 being identify. B) The distance matrix that is calculated is 

then weighted by the number of reads. The purpose of this step is to determine the average distance 

between every cell in the analysis. The piece of code iterates through the distance matrix calculated in A. 

If i==j (meaning that we are examining the same sequence against itself) and there exists only 1 read of 

that sequence, the new matrix calculation is 0, meaning there is no need to calculate a distance between 

a read and itself. If there is more than 1 read, then the new matrix entity calculation is the distance of the 

sequence and itself multiplied by the total number of all possible combinations of those reads. For 

example, if there are 10 reads of a given sequence, this new matrix entity is calculated as 1 (sequence 

distance) * 45 (all possible combinations of 10 reads). In all other cases, where the two sequences are 

different, the new matrix entity is calculated as the distance between those two sequences multiplied by 

the number of reads of the first sequence multiplied by the reads of the second sequence. Finally, this 

new matrix is summed and divided by the number of possible combinations of all reads. This number is 

then subtracted by 1 to give the final Mapped Sequence Distance where 0 represents identity and 1 

represents infinite difference. 
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Naïve SIY vs. TRP2 Repertoire 

 

Naïve vs. Tumor-Bearing SIY & TRP2 Repertoire 

 

Supplementary Figure 7. Duplicates of Murine Experiments. Corresponding duplicate figures to Figures 

2&3 in main manuscript showing differences in SIY/TRP2 repertoire in naïve and tumor-bearing setting.  
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Supplementary Figure 8. ImmunoMap Graphical User Interface & Instructions for Use. 

1) User selects files for analysis by pressing the ‘Select Files’ button and importing tsv files of TCRSeq 

Data exported by Adaptive Biotechnologies. If one has a different source of TCRSeq, one can 

submit a tsv file with the first column being nucleotide sequences, the second column being amino 

acid sequence, and the third column being number of counts.  

2) After importing the files, one can set a variety of ImmunoMap parameters including how much of 

the file to use, structural homology thresholds, cluster frequency thresholds as well as parameters 

such as the scoring matrix used and the gap penalty.  

3) After parameters have been set, one highlights the files under the ‘Select Files’ button they want 

to analyze at once. At this point, the user can press ‘Run Immunomap’ and get a table of all 

relevant ImmunoMap metrics for their respective files. For each file, they can view the multiple 

alignments of their dominant motifs by selecting the file and the motif in the window to the right 

and pressing ‘Visualize Dominant Motifs.’ Finally, one can save a csv file with all the summarized 

ImmunoMap metrics by pressing the ‘Save Table to CSV’ button. This file can be opened by 

Microsoft Excel using a comma as the delimiter.  

4) If one desire to compare multiple files by visualizing them by the Weighted Repertoire 

Dendrograms, they can highlight the desired files for visualization in the window beneath the 

‘Select Files’ button and press ‘View Weighted Repertoire Dendrogram.’  

5) Finally, if one desires to compare two repertoires by seeing the percent of structural overlap as 

well shared dominant motifs, one should select the two files they want to compare in the drop 

menu’s provided and press the ‘Compare Two Repertoires’ button.  
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Supplementary Figure 9. TCRSeq File Structure. Following processing by Adaptive 

Biotechnologies, we received data in this general format. The first column is the nucleotide level 

sequence of the T-cell clones. The second column is translated from the first column. The counts 

and frequency columns are used to determine the abundance of a given clone. During processing 

of the data, we collapse all nucleotide clones that share the same amino acid sequence and sum the 

counts to determine their relative abundance. 
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Dataset Host Pathology Description 

Glanville_2017 Human None T-cells were tetramer sorted for 7 Class I specificities.  

Sidhom_2017  Murine None 
CD8 T-cells were stimulated and expanded against SIY 
and TRP2 antigens before being sorted and 
sequenced. 

Rudqvist_2017 Murine Cancer 
Tumor-infiltrating lymphocytes were collected from 
mice who either received no treatment, radiation 
therapy, anti-CTLA4 (9H10), or combo therapy. 

 

 

Supplementary Figure 10. Dataset Descriptions. DeepTCR was piloted on three sources of data 

that covered both human and mouse TCR’s including samples taken from normal and cancer 

pathology. 
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Supplementary Figure 11. Quantitative TCRSeq Metrics. (a) Distribution of clonalities across 

all samples used in this manuscript. We note the majority of samples have a high clonality. (b) 

Distribution of length of sequences analyzed in this manuscript.  
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Supplementary Figure 12. GAN Losses. Prototypical discriminator and generator losses during 

training of Generative Adversarial Network.  
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Supplementary Figure 13. VAE vs. GAN Clusters. We used the Sidhom_2017 dataset to do 

hierarchical clustering on the latent feature space for both the VAE and the GAN to note 

differences in the clustering solutions. Since the objective function of the VAE is to reconstruct 

the sequence, we note the latent space contains knowledge about the length of the sequences and 

thus, clusters use sequences of similar length. In contrast, since the GAN’s objective functions do 

not rely on reconstruction of the sequences, the clusters use sequences of variable length. (a) 

Hierarchical clustering was performed on SIY-specific sequences, creating 100 flat clusters 

following dimensionality reduction via VAE or GAN. The distribution of the variance of sequence 

length in all clusters is shown. (b) Prototypical clusters from both unsupervised methods. 
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Supplementary Figure 14: Rudqvist_2017 Sequence Features. A subset of sequences is shown 

by their learned unsupervised features from either the variational autoencoder or the generative 

adversarial network for the Rudqvist_2017 dataset.  
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Supplementary Table 1. 

Supertype Classification of Class 

I Alleles as determined by Sidney 

et. al. XV. U = unclassified. 

 

A6901 A02

A8001 A01

B0702 B07

B0801 B08

B0802 B08

B0803 B08

B1402 B27

B1501 B62

B1502 B62

B1503 B27

B1509 B27

B1517 B58

B1542 B62

B1801 B44

B2701 B27

B2702 B27

B2703 B27

B2705 B27

B2720 B27

B3501 B07

B3503 B07

B3508 B07

B3701 B44

B3801 B27

B3901 B27

B3906 B27

B4001 B44

B4002 B44

B4013 U

B4201 B07

B4402 B44

B4403 B44

B4501 B44

B4506 U

B4601 B62

B4801 B27

B5101 B07

B5301 B07

B5401 B07

B5701 B58

B5801 B58

B5802 B58

B7301 B27

B8301 U

C0401 U

C0602 U

C1402 U

E0101 U

Alleles Supertype

A0101 A01

A0201 A02

A0202 A02

A0203 A02

A0205 A02

A0206 A02

A0207 A02

A0210 U

A0211 A02

A0212 A02

A0216 A02

A0217 A02

A0219 A02

A0250 A02

A0301 A03

A0302 A03

A0319 U

A1101 A03

A1102 A03

A2301 A24

A2402 A24

A2403 A24

A2501 A01

A2601 A01

A2602 A01

A2603 A01

A2902 A01A24

A3001 A01A03

A3002 A01

A3101 A03

A3201 A01

A3207 A01

A3215 U

A3301 A03

A6601 A03

A6801 A03

A6802 A02

A6823 A03
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Supplementary Table 2. All Class I 

alleles trained with Counts of 

Peptide/Allele 

 

A6901 2565

A8001 1164

B0702 4513

B0801 3298

B0802 1000

B0803 455

B1402 80

B1501 4178

B1502 165

B1503 594

B1509 816

B1517 1446

B1542 357

B1801 2594

B2701 2

B2702 4

B2703 875

B2705 3433

B2720 87

B3501 3198

B3503 13

B3508 1

B3701 30

B3801 492

B3901 1623

B3906 33

B4001 3199

B4002 964

B4013 56

B4201 8

B4402 2117

B4403 1382

B4501 953

B4506 355

B4601 1806

B4801 882

B5101 2718

B5301 1616

B5401 1110

B5701 2781

B5801 3118

B5802 42

B7301 121

B8301 333

C0401 352

C0602 54

C1402 87

E0101 1

Alleles Counts

A0101 4609

A0201 12324

A0202 4077

A0203 6244

A0205 88

A0206 5561

A0207 69

A0210 18

A0211 1084

A0212 1183

A0216 919

A0217 332

A0219 1244

A0250 135

A0301 7195

A0302 10

A0319 29

A1101 6248

A1102 14

A2301 2416

A2402 3191

A2403 1227

A2501 960

A2601 4307

A2602 631

A2603 522

A2902 2548

A3001 2717

A3002 1847

A3101 5621

A3201 1089

A3207 87

A3215 74

A3301 3510

A6601 52

A6801 3708

A6802 5499

A6823 80
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Supplementary Table 3. Detailed assessment IEDB Class I ic50 benchmarks.  Shown are AI-MHC along with 11 

provided algorithms on the website. AUC values are reported for a given benchmark (identified by IEDB 

reference, Allele Name, Peptide Length, Peptide Count, and Measurement Type). Bold indicates the algorithm 

that performed the best on a given benchmark. 
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Supplementary Table 4. All Class II 

alleles trained with Counts of 

Peptide/Allele 

 

Alleles Counts

DPA10103-DPB10201 787

DPA10103-DPB10301 1563

DPA10103-DPB10401 2725

DPA10103-DPB10402 45

DPA10103-DPB10601 584

DPA10201-DPB10101 2447

DPA10201-DPB10501 2470

DPA10201-DPB11401 2302

DPA10301-DPB10402 2641

DQA10101-DQB10501 2946

DQA10102-DQB10501 833

DQA10102-DQB10502 800

DQA10102-DQB10602 2747

DQA10102-DQB10604 61

DQA10103-DQB10302 6

DQA10103-DQB10603 462

DQA10104-DQB10503 883

DQA10201-DQB10201 23

DQA10201-DQB10202 944

DQA10201-DQB10301 827

DQA10201-DQB10303 761

DQA10201-DQB10402 768

DQA10301-DQB10201 4

DQA10301-DQB10301 207

DQA10301-DQB10302 3111

DQA10302-DQB10303 6

DQA10302-DQB10401 27

DQA10303-DQB10402 567

DQA10401-DQB10402 2890

DQA10501-DQB10201 2897

DQA10501-DQB10301 3585

DQA10501-DQB10302 847

DQA10501-DQB10303 564

DQA10501-DQB10402 749

DQA10505-DQB10301 1

DQA10601-DQB10402 565

DRB10101 10412

DRB10102 8

DRB10103 42

DRB10301 5352

DRB10302 37

DRB10401 6317

DRB10402 53

DRB10403 59

DRB10404 3657

DRB10405 3962

DRB10406 14

DRB10411 2

DRB10701 6325

DRB10801 937

DRB10802 4465

DRB10803 8

DRB10804 3

DRB10901 4318

DRB11001 2066

DRB11101 6045

DRB11104 27

DRB11201 2384

DRB11301 1034

DRB11302 4477

DRB11402 1

DRB11501 4850

DRB11502 23

DRB11503 1

DRB11602 1699

DRB30101 4633

DRB30202 3334

DRB30301 884

DRB40101 3961

DRB40103 846

DRB50101 5125

DRB50102 2

H-2-IAb 1794

H-2-IAd 774

H-2-IAk 115

H-2-IAq 31

H-2-IAs 190

H-2-IAu 56

H-2-IEd 245

H-2-IEk 68
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Supplementary Table 5. Detailed assessment IEDB Class II ic50 benchmarks.  Shown are AI-MHC along with 

11 provided algorithms on the website. AUC values are reported for a given benchmark (identified by IEDB 

reference, Allele Name, Peptide Length, Peptide Count, and Measurement Type). Bold indicates the algorithm 

that performed the best on a given benchmark. 
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