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Abstract 

The success of Oral Poliovirus Vaccine (OPV) in eradicating poliovirus has set an 

example for the immense potential of oral vaccines in preventing enteric infections. It is 

widely considered the standard for oral vaccines aiming to elicit a mucosal immune 

response. Despite being validated in diverse populations worldwide, there still remain 

some individuals that fail to mount an adequate response to vaccination with OPV. It 

has been hypothesized that this may be due to host genetics, as the heritability is 

estimated to be high (60%) and there have been ethnic differences in response. To 

address this question we conducted a genome-wide association study (GWAS) in 357 

Bangladeshi children comparing individuals that fail to mount an immune response to 

high responders of OPV. Four different approaches were conducted to elucidate genetic 

risk loci: (1) a traditional GWAS analysis, (2) a correlation of the GWAS results with 

signatures of positive selection, (3) an application of gene-level methods to the GWAS 

results, and (4) an application of pathway-level methods to the GWAS results. Because 

there is no consensus as to the best gene- and pathway-level methods, a simulation 

experiment was conducted to systematically evaluate their relative performance. 

The traditional GWAS assessed the association of 6.6 million single nucleotide 

polymorphisms (SNPs) across the human genome, adjusted for stunting (height-for-age 

Z-score (HAZ) < -2). While there were not any genome-wide significant results (P<5x10-

8), several suggestive associations were found on chromosomes 7 and 14 (P<5x10-6). On 

chromosome 7, the top association was found at rs55906254 (OR=0.31, P=3.5x10-6). Found 
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upstream of SHH (sonic hedgehog), the minor allele of this SNP conferred decreased 

odds of high seropositive status versus seronegative. On chromosome 14, the top 

association was downstream of MAPK1IP1L (mitogen-activated protein kinase 1 

interacting protein 1-like) at rs113427985 (OR=0.22, P=2.9x10-6). To measure regions 

under positive selection, the cross-population extended haplotype homozygosity (XP-

EHH) was calculated. To correlate these with the GWAS results, a filter was used in 

which SNPs had to have a P-value from the GWAS less than 0.001 and a P-value from 

the selection scan below 0.01. A total of 32 SNPs reached this threshold, half of which 

were between FAM86A (family with sequence similarity 86, member A) and RBFOX1 

(RNA-binding protein, fox-1 homolog). The non-ancestral alleles of these SNPs were 

associated with high seropositive status. Therefore, it is likely that mutations arose in 

this region that were beneficial to either OPV immunity or another ancestral pathogen 

and were preserved. 

Before the gene- and pathway-level methods were applied to the OPV GWAS, a 

simulation experiment was conducted to determine which methods were the best. These 

methods were developed to aggregate signals from the GWAS into gene- and pathway-

level units, increasing the power to detect associations and offering biological 

interpretation. Using genotypic data from the Wellcome Trust Case Control Consortium 

(WTCCC), a phenotype was simulated assuming an additive polygenic model.  A total 

of 12 gene-level methods and 10 pathway-level methods were systematically evaluated. 

The gene-level method with the best balance of sensitivity and specificity was VEGAS 
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using only the top 10% of the associated SNPs within the gene. MAGENTA and GSA-

SNP had the best performance of all the pathway-level methods. These methods were 

then applied to the GWAS of OPV. The gene-level results highlighted the potential role 

of histone modifications as the top results included many histone marks within histone 

cluster 1 on chromosome 6. Pathway-level methods using the Gene Ontology Biological 

Processes showed enrichment in gene sets related to cyclic AMP as a second messenger 

and its relationship with G-protein signaling. Additional associations were found in 

neurological development.  

Taken together, this dissertation seeks to elucidate the host genomics of immunity to 

OPV. The four different approaches were complementary to each other, highlighting 

different genes and pathways that may relate to the underlying mechanisms of the 

immunological response. The population-level results may be related to the individual 

response. Further investigation into the associations may reveal potential adjuvants and 

improved vaccines, not only for oral poliovirus vaccine but also for other mucosal 

vaccines for enteric infections.  
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Chapter 1: Introduction  

 

Oral poliovirus vaccine (OPV) has contributed to the global control of polio, with a 

99% decrease in cases over the last twenty-five years. Both the safety and efficacy of the 

vaccine have been proven through the near eradication of polio with less than 300 cases 

in four countries in 2012.(WHO 2013) However, there still remain individuals who fail to 

elicit an immunological response to numerous doses of viable vaccine. By identifying 

the reasons why these individuals fail OPV, lessons may be learned to inform the 

development of other less well-characterized oral vaccines, such as those against cholera 

and rotavirus infections. 

Upon vaccination with all four recommended doses of OPV, levels of systemic 

immunity can be measured by looking at the natural log titers of neutralizing antibodies. 

A large amount of variation has been observed in different populations around the 

world. (Richardson et al. 1995; Sabin et al. 1960; Habib et al. 2013; Reichler et al. 1997; 

World Health Organization Collaborative Study Group on Oral Poliovirus Vaccine 1995) 

While the CDC standard for seropositive status is having a log serum neutralizing 

antibody titer (LT) above 3 (serial dilution of less than 1:8), individuals can range from 

slightly above this cut-off to strong responders (LT > 7) adding another dimension to the 

systemic response to OPV. (World Health Organization Collaborative Study Group on 

Oral Poliovirus Vaccine 1995) 
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It has been hypothesized that an individual’s response to vaccination may be in part 

due to host genetics because differential responses arise despite controlling for both host 

health-related factors, such as nutritional status, as well as vaccine-related factors, such 

as viral serotype concentrations. (Paul 2007; Newport et al. 2004) One way of 

investigating this hypothesis is through genome-wide association studies (GWAS), 

which test for the association of single nucleotide polymorphisms (SNPs) at various 

locations across the human genome. This method has been successful at elucidating risk 

loci for complex traits like asthma, hypertension, prostate cancer and age-related 

macular degeneration over the past 10 years, with 11,334 genome-wide significant 

variants identified. (Hindorff et al. 2009; Hindorff et al. 2013) GWAS of response 

vaccines, such as hepatitis B and smallpox, have identified significant associations with 

HLA-DPB1 and WDR92, respectively. (Ovsyannikova et al. 2012; Kennedy et al. 2012; 

Png et al. 2011) The heritability, or proportion of phenotypic variability due to the host 

genetics, of the systemic response to OPV has been estimated to be high (60%), and is 

comparable to that of hepatitis B (77%).(Newport et al. 2004) This is also comparable 

with the heritability of human height (70%), and nearly double an estimated heritability 

of 30% for Type II Diabetes.(Zaitlen et al. 2013) GWAS of hepatitis B, human height, and 

type II diabetes have all previously found genome-wide significantly associated loci. 

This indicates that there is likely a genetic basis for the immune response to OPV.   

To address this question, a GWAS of response to OPV was conducted among a birth 

cohort of Bangladeshi infants. These children had received four doses of vaccine by one 



 3 

year of age. This thesis aims to identify the host genetic factors that underlie the 

systemic immune response to oral poliovirus vaccine (OPV) in a cohort of Bangladeshi 

children using different genetic methods to elucidate genetic loci, genes, and pathways 

involved in this immune response. The specific aims are as follows: 

Aim 1: To identify genetic single nucleotide polymorphisms associated with the systemic immune 

response after four doses of oral poliovirus vaccine within a cohort of Bangladeshi children and 

correlate these signals with signatures of positive selection. (Chapter 3) 

Aim 2a: To conduct a review and evaluation of gene-level methods for genome-wide association 

studies through simulation. (Chapters 4 and 5) 

Aim 2b: To conduct a review and evaluation of pathway-level methods for genome-wide 

association studies through simulation. (Chapters 4 and 6) 

Aim 3: To apply gene- and pathway-level methods to a genome-wide association study of oral 

poliovirus vaccine response in Bangladeshi children. (Chapter 7) 

  
Throughout human history, infectious pathogens have been strong agents of 

selective pressure on human populations. (Novembre and Han 2012; Fumagalli et al. 

2011) The most well known example of this effect is malaria and sickle cell anemia. 

Malaria exerts selective pressure on individuals, as the illness could be fatal before an 

individual can reach reproductive age therefore discontinuing the further propagation 

of their genes.  When beneficial mutations arose within the gene HBB (hemoglobin, 
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beta), they were preserved within human populations by defending these individuals 

against the potentially fatal infection, leading to reproduction and the transmission of 

the protective alleles.(Jallow et al. 2009) The selective pressure of malaria was so great 

that these mutations persisted despite individuals with two copies developing sickle-cell 

anemia, a potentially fatal syndrome.(Gouagna et al. 2010) This phenomenon is not 

limited to malaria. Through the examination of global genetic adaptation, it has been 

suggested that many pathogens may be the main selective pressure throughout human 

evolution. (Fumagalli et al. 2011) Specifically, viruses have had a large influence on the 

innate immune system. (Zinkernagel, Hengartner, and Stitz 1985; Fumagalli et al. 2010) 

Among the top human genetic pathways that correlate with pathogen diversity within a 

human population, pathways involved in viral infection and subsequent replication are 

enriched when compared to bacterial or amoebic infection. (Fumagalli et al. 2011) 

Recently, measures of natural selection were estimated in Bangladeshi children and 

correlated with susceptibility with cholera, identifying risk loci in potassium channel 

genes and the NF-kB signaling pathways.(Karlsson et al. 2013)  We will correlate 

measures of positive selection with our GWAS results to elucidate genomic regions that 

may have been beneficial to reduced morbidity and mortality with OPV or other disease 

with a similar mechanism and therefore preserved throughout multiple generations. 

(Aim 1) 

Traditionally, genome-wide association studies require large sample sizes (>5,000) to 

identify an association using stringent significance thresholds (p-values) to correct for 



 5 

multiple comparisons for the 500,000-2.5 million SNPs being tested. SNPs that have low 

P-values (0.001≤P≤5x10-8) but which do not reach this threshold are often ignored in the 

initial analysis. Gene- and pathway-level methods have been developed to look at SNPs 

that may be suggestive but not reach the stringent significance threshold. By combining 

signals from multiple SNPs within a gene, and subsequently in multiple genes in 

pathways, the enhancement of statistical signal in these regions can be determined. 

There is currently no consensus on the best method for this type of analysis, so a 

simulation will be conducted to evaluate gene- and pathway-level methods (Aims 2a 

and 2b). The best methods determined by this simulation will then be applied to the 

OPV GWAS data (Aim 3).  

In the last fifty years, the efficacy of oral poliovirus vaccine has been proven by the 

eradication of wildtype poliovirus from many regions around the world. It is not well 

understood why some individuals fail to respond to OPV, a well-characterized and 

proven vaccine, while their peers with a seemingly similar health status respond 

robustly. As OPV can serve as a prototype for the future of oral vaccines, individuals 

who fail to respond to OPV may be likely to fail other oral vaccines. There are currently 

licensed oral vaccines for 5 pathogens: poliovirus, rotavirus, Salmonella typhi and two for 

Vibrio cholera infection, with varying efficacies.(Lycke 2012) By elucidating the genes and 

pathways that are involved with failure to respond to OPV, the underlying mechanisms 

inherent to oral vaccination may be better characterized and applied to the development 

of other oral vaccines.  
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Chapter 2: Epidemiology of Polio and the Oral Poliovirus 

Vaccine 

 

2.1: Poliovirus and Clinical Pathogenesis 

Poliovirus (PV) was discovered to be the causative agent for poliomyelitis in 1909 by 

Karl Landsteiner and Erwin Popper.  (De Jesus 2007) It is a small positive single-stranded 

RNA virus that is approximately 7400 nucleotides long.  Poliovirus contains three 

serotypes: 1 [Mahoney], 2 [Lansing], and 3 [Leon]. PV uses the fecal-oral route for 

transmission, although the specific cell types that it replicates in immediately after entry 

are unknown. It is hypothesized that it likely replicates first in the lymphatic tissue of 

the gastrointestinal (GI) tract, such as in the tonsils, the Peyer’s patches (PP) of the ileum, 

and the mesenteric lymph nodes (De Jesus 2007). Infection by PV is only in humans and 

other primates. It is highly infectious, most often in children under 5 years of age. (WHO 

2013) 

The majority of infected individuals (95%) are either completely asymptomatic, or 

experience a mild viremia. In these individuals, no neurological conditions occur. In the 

remaining 5% of infected individuals, the infection spreads to other sites of the 

reticuloendothelial system. In 4-8% of these individuals who develop a substantial 

primary viremia, a secondary major viremia develops which is described as the “minor, 

non-specific illness”, or abortive poliomyelitis. These symptoms include an upper 
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respiratory infection, GI illness, and an illness mimicking influenza. Of those who 

experience abortive poliomyelitis, only a very small percentage (<2%) go on to develop 

symptoms implicating the entry of PV into the central nervous system (CNS). This leads 

to either non-paralytic aseptic meningitis or paralytic poliomyelitis. Non-paralytic 

aseptic meningitis affects 1-2% of all PV infections, while paralytic poliomyelitis affects 

0.1-1% of all infections. (Figure 2.1) This attack rate differs in virulence by the infecting 

serotype, with serotype 2 found less often in cases of paralytic poliomyelitis compared 

to the two other serotypes. (Ogra et al. 2011) 
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Figure 2.1: Flowchart of Poliovirus Infection of Pathogenesis with Percentages of Terminal Symptoms within OPV-Naïve Infected 

Individuals. Only the major outcomes are listed. Estimates are imprecise and are from numerous studies.
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Paralytic poliomyelitis’ with no effect on sensation or cognition are classified into 

three groups: Spinal poliomyelitis, bulbar poliomyelitis, and bulbospinal poliomyelitis. 

Spinal poliomyelitis causes acute flaccid paralysis because of the selective destruction of 

spinal motor neurons and the denervation of the associated skeletal muscles. Bulbar 

poliomyelitis results in the paralysis of respiratory muscles caused by infected neurons 

in the brainstem that regulate breathing. Bulbospinal poliomyelitis involves both the 

brain stem and the spinal cord. Paralytic poliomyelitis has a 2-5% case fatality rate in 

children, and a 15-30% fatality rate in adults with the highest rates in cases of bulbar 

poliomyelitis (De Jesus 2007).  

The poliovirus is ingested and multiplies in the oropharyngeal and intestinal 

mucosa. The exact tissue that it colonizes first is unknown, partly due to the lack of an 

accurate mouse model for the natural pathogenesis of poliovirus. Despite this limitation, 

some advancement has been made. The cell receptor for poliovirus was discovered in 

the early 1990s to be CD155 (Koike et al. 1991) (Ren et al. 1990). CD155 is a glycoprotein 

that is part of the Immunoglobulin (Ig) superfamily (Racaniello 2006). It has 3 

extracellular Ig-like domains used to bind poliovirus. The interaction of the V-type 

domain I of CD155 and the poliovirus capsid lead to a conformational change that 

releases the virus’ RNA genome into the cytoplasm for replication and translation. 

CD155 is also a recognition molecule for natural killer cells (NK), working with CD226 

and CD96 to induce cytotoxic activity. (Racaniello 2006) Transgenic mice have been 

developed to express CD155, but it is not expressed on gut mucosal cells. The region 
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surrounding CD155 was the target of ancient positive selection in simians. (Suzuki 2006) 

Because the receptor is deleterious to the fitness of an individual through polio infection, 

it is believed that it formed through the preferential binding of an unknown molecule. 

While CD155 defines the tropism of the initial infection, the route of invasion into the 

CNS is not known and the crossing of the blood-brain barrier is thought to be 

independent of the presence of cellular receptor CD155.(Racaniello 2006) Other popular 

theories are that the virus invades by retrograde axonal transport, or that it is imported 

by infected macrophages, deemed the “Trojan horse mechanism”. 

Because of the presence of intracellular RNA, it is hypothesized that TLR7/8 

pathway is involved in poliovirus pathogenesis. In a subset of people, the virus spreads 

from the primary mucosal sites to the cervical and mesenteric lymph nodes, then to the 

blood. In 1-2% of poliovirus infections, the virus will then invade the central nervous 

system (CNS). It is hypothesized that because invasion of the CNS is unnecessary for the 

spread of the virus, it is an accidental diversion of the enteric stage. (Racaniello 2006) 

Tropism, or the tissues that poliovirus invades, is thought to be determined by IFNα/β 

in conjunction with CD155. In 99% of infections, this pathway limits the infection of 

poliovirus to the gastrointestinal tract. When poliovirus remains in the gastrointestinal 

tract, illness is restricted to milder non-fatal symptoms with little associated morbidity. 

It is when the virus crosses into the central nervous system that it may result in the most 

devastating effects of polio infection. 
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2.2: Poliovirus Vaccines 

Jonas Salk developed the inactivated polio vaccine (IPV) in 1955 by exposing 

purified poliovirus to low concentrations of formaldehyde, therefore inactivating it. (De 

Jesus 2007; Nathanson and Kew 2011) Due to crosslinks in the external capsid proteins 

of the virus, it is unable to infect the patient; however, the formaldehyde leaves the 

antigenic epitopes capable of inducing neutralizing antibodies. IPV is administered 

intra-muscularly and provides systemic immunity. This is meant to prevent paralytic 

poliomyelitis by attacking the virus when it enters the bloodstream on the way to the 

central nervous system.(Nathanson and Kew 2011) IPV only provides low titers of 

mucosal immunity, and therefore allows colonization of the GI tract. Even with 

enhanced potency, IPV is less effective than OPV in inducing mucosal immunity to 

prevent and limit intestinal infection. (Belyakov and Ahlers 2009)  

The oral polio vaccine (OPV) has been widely used since 1963. It was developed by 

Albert B. Sabin by successive tissue culture of virulent wild poliovirus and the isolation 

of individual clones. (Sabin et al. 1960; Belyakov and Ahlers 2009) Two key genetic 

properties of the virus segregated independently. This allowed the isolation of clones 

with attenuated neurovirulence that were still able to replicate in the GI tract. 

Administered in four doses, OPV produces both circulating and mucosal immunity. 

(Nathanson and Kew 2011) The mucosal immunity is essential for the prevention of 

poliovirus infection, a feature that the inactivated poliovirus vaccine (IPV) does not 

have. (Belyakov and Ahlers 2009) IPV provides strong systemic immunity, but unlike 
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OPV it does not provide strong intestinal immunity, and therefore does not prevent 

infection.  

OPV does not offer the same level of protection to all three serotypes. In the original 

clinical trial in 1959 in Toluca, Mexico, at the end of 10 weeks after a single dose of 

trivalent OPV, seroconversion for type 1, 2, and 3, was found to be 68%, 82%, and 43%, 

respectively. (Sabin et al. 1960) Both monovalent OPV (mOPV), one for each serotype, 

and trivalent OPV (tOPV) are available but there are differences in seroconversion rates 

based on these vaccines. In studies from Leningrad in the 1970s, the seroconversion rates 

using tOPV were 82%, 80%, and 71% for serotypes 1, 2, and 3, respectively. For mOPV, 

seroconversion rates increased to 97%, 100%, and 96% for serotypes 1, 2, and 3, 

respectively. The reduced efficacy of tOPV is because the presence of all three serotypes 

introduces interference between the serotypes, however the efficacy of tOPV has been 

maximized by changing the proportions of virus for each serotype to minimize this 

interference since the original formulation. (Patriarca, Wright, and John 1991) The 

current vaccine has the proportions for serotypes 1, 2, and 3 as 10:1:3, which maximize 

efficacy for all three serotypes.(De Jesus 2007) Although the trivalent form of OPV was 

originally the most thermally labile vaccine in the World Health Organization’s 

Expanded Program of Immunization (WHO EPI), it has been chemically stabilized to 

minimize a loss of potency. (Patriarca, Wright, and John 1991) Because OPV is a live 

attenuated vaccine, the virus is capable of reversion to its virulent form. These 

circulating vaccine-derived polioviruses (cVDVP) can cause paralytic poliomyelitis. 
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However, in the United States it is estimated that there was one case of vaccine-

associated paralytic poliomyelitis (VAPP) for every 2-3 million doses of OPV before the 

change to IPV. (De Jesus 2007)  

The first priority in determining between the inactivated poliovirus vaccine (IPV) 

and the oral poliovirus vaccine (OPV) is the goal of the vaccination effort. If the goal is to 

stop transmission of wild-type poliovirus, OPV offers strong intestinal immunity, 

therefore preventing infection and subsequent shedding that propagates the virus. OPV 

is less expensive than IPV and is fast-acting.(Paul 2007) It is easily administered orally, 

while the administration of IPV is more invasive (injection) and requires trained 

personnel.(Nathanson and Kew 2011) OPV is a live attenuated vaccine and there is the 

probability of secondary spread to contacts of the vaccinated, protecting them against 

infection from wild type poliovirus. However, OPV can revert back to its virulent form, 

allowing cVDPV to infect unprotected children and cause vaccine-associated paralytic 

poliomyelitis (VAPP). (Paul 2007) If the goal of the vaccination campaign is instead to 

eliminate risk for paralytic poliomyelitis, then IPV offers strong circulating neutralizing 

immunity in the blood stream, preventing poliovirus from crossing the blood-brain 

barrier and causing paralysis. However, it does not induce adequate mucosal immunity 

allowing the infection and transmission of wildtype virus, leaving unvaccinated 

individuals susceptible to infection. IPV does not replicate and shed, offering no 

protection to the contacts of the vaccinated. (Paul 2007) 

2.3: Polio Eradication Effort 
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In 1988, encouraged by the eradication of smallpox less than ten years earlier, the 

World Health Organization (WHO) launched a campaign to eradicate polio. (WHO 

2013) This Global Polio Eradication Initiative (GPEI) was led by the WHO, Rotary 

International, the US Centers for Disease Control (CDC), and UNICEF. Its objectives 

were to interrupt the transmission of wild-type PV and to achieve certification of global 

polio eradication, while contributing to health systems development and strengthening 

routine immunization and surveillance in a systematic way. Because of the goal to 

interrupt transmission of the wild-type PV and a higher cost-effectiveness, OPV was the 

chosen vaccine. To achieve this, four strategies were adopted. First, infants were 

immunized with 4 doses within the first year of life at high rates. Second, 

supplementary doses of OPV would then be given to all kids under the age of 5 during 

Supplementary Immunization Activities (SIAs). Third, surveillance for wild poliovirus 

infection would be monitored through reporting and testing of all acute flaccid paralysis 

cases among children under the age of 15. Finally, there would be targeted “mop-up” 

campaigns once transmission was significantly decreased and limited to specific areas. 

(WHO 2013) To be certified as being polio-free, a region must meet three conditions: (i) 

they would have to be free of polio cases due to wild PV for at least 3 years, (ii) disease 

surveillance systems in the regional countries would need to meet international 

standards, and (iii) each country must demonstrate the ability to detect, report and 

respond to “imported” polio cases. As of 2010, this massive eradication effort has saved 

greater than 5 million people from getting paralytic poliomyelitis, and has immunized 

greater than 2 million children in SIAs. (WHO 2013) The annual incidence of 
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poliomyelitis is now <1% of the pre-vaccination levels. The wild-type serotype 2 PV was 

eradicated globally in 1999. (Nathanson and Kew 2011) In 1994, the WHO Region of the 

Americas was certified as being polio-free, followed by the Western Pacific Region in 

2000, and the European Region in 2002. (WHO 2013) 

Due to large-scale vaccination efforts, the incidence of poliomyelitis has greatly 

decreased over the past 25 years. Since 1988 there has been > 99% decrease in cases, from 

350,000 to 1,604 (WHO 2013). However, there still remain cases of poliomyelitis 

worldwide. During 2009-2010, 23 countries had imported cases, comprising a little over 

75% of the annual incidence. As of 2013 only three countries had endemic wild-type PV 

transmission (Nigeria, Pakistan, and Afghanistan). Obstacles to eradication in these 

countries are the low efficacy of tOPV, as well as a failure to immunize a sufficient 

percentage of infants and toddlers. (Nathanson and Kew 2011)  

2.4: Oral Poliovirus Vaccine Failure 

The first reports of OPV failure were in the 1970s. (Patriarca, Wright, and John 1991) 

Developing countries showed low seroconversion for serotypes 1 and 3, while 

seroconversion reached 100% of recipients in developed countries. Reasons for failure 

have been cited to be both viral, as well as host-related. One potential issue is the 

vaccine’s stability. Trivalent OPV is the most thermally labile in the WHO’s EPI 

vaccination schedule. It requires a cold chain however it is chemically stabilized to 

minimize a loss of potency when exposed to higher temperatures. It has been shown to 

be resistant to numerous freezing and thawing cycles. There are differences in heat 
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stability for the three serotypes, as well as interference from type 2. Despite these 

concerns, it has been shown that even with the proper handling of tOPV, there still exist 

failures. (Patriarca, Wright, and John 1991)  Another variable is the vaccine’s 

administration and schedule. The standard is 3 doses, with one supplemental dose at 

birth in countries that are endemic for poliomyelitis. In 1985, the Global Advisory Group 

suggested an accelerated immunization schedule, in which protection was provided at 

the youngest possible age. The first dose is less effective when administered at less than 

4 weeks of age due to the interference of passively acquired maternal antibodies. 

Women in developing countries have a higher level of exposure to wild-type poliovirus, 

therefore they have higher circulating antibodies. This leads to infants passively-

acquiring a higher concentration of antibodies and a higher level of interference with the 

first dose. (Patriarca, Wright, and John 1991) The median length of excretion of OPV was 

21 days and continued excretion could interfere with subsequent doses. To minimize 

this potential interference, the EPI suggests 4-week intervals between the doses.(Table 

2.1) Other vaccine factors include the vaccine potency, formulation, and dosage volume; 

however none of these have shown a high effect on seroconversion, especially after 

recent standardizations. Vaccine failure is cited as the major problem in the Indian 

provinces of Uttar Pradesh and Bihar. Vaccine efficacy against serotype 1 is 9% in Uttar 

Pradesh, 18% in Bihar, and 21% in the rest of India. Children in Uttar Pradesh also have 

similarly low seroconversion for serotype 3. (Paul 2007)  
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Figure 2.1: Timeline of Vaccinations for OPV (India/Bangladesh EPI Schedule) and IPV (United States Schedule). IPV is 

administered in most developed countries, while OPV is still the recommended vaccine for the majority of countries where eradication has either 

not been achieved, or is recent.



 21 

 

2.5: Epidemiological and Genetic Risk Factors for Vaccine Failure 

2.5.1: Chronic Environmental Enteropathy and Immune Status 

Host factors hypothesized to contribute to both mucosal and systemic vaccine failure 

include the interference of maternal antibodies, the nutritional status of the infant, as 

well as concurrent enteric infections. During the first few weeks of life, the newborn 

passively receives maternal antibodies through breast milk. These maternal antibodies 

can then attack the vaccine when it is administered, leading to vaccine failure. When the 

child stops receiving the maternal antibodies through breast milk, they will be 

unprotected without vaccination. This is not a major issue with older infants because of 

the lack of exclusive breast-feeding. (Patriarca, Wright, and John 1991) Concurrent 

enteric infections can produce lower rates of seroconversion in children. It is 

hypothesized that the diarrheal state with enteric infections alters the mucosal 

architecture, leading to more rapid gastrointestinal transit. (Patriarca, Wright, and John 

1991) This leads to reduced colonization of the live attenuated virus, and a diminished 

antibody response to the vaccine. If this condition is ongoing, it is called chronic 

environmental enteropathy (CEE). Children in extreme poverty are highly susceptible to 

CEE because of poor sanitation, malnutrition, and intestinal flora overgrowth. 

(Czerkinsky and Holmgren 2009) This condition leads to histological changes through 

the inflammation and blunting of the small intestinal villi, leading to malabsorption of 

nutrients as well as vaccine antigens. (Korpe and Petri 2012) Strategies for improving 
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vaccine response in children with CEE include a co-administration of the vaccine with 

agents that can improve the GI tract’s integrity, such as zinc, vitamin A and probiotics. 

(Czerkinsky and Holmgren 2009) Other options include treatment for helminth 

infections before administration, as well as withdrawal of breast milk for a few hours 

before administration. It is hypothesized that CEE may contribute to the failure of oral 

vaccines due to the lack of gut integrity. (Korpe and Petri 2012; Guerrant et al. 2012)  

2.5.2: Genetic Risk Factors 

Genetic risk factors for OPV failure have not been extensively characterized, but 

there is evidence that genetic factors may play an important role. In 2004, Newport et al 

conducted a study of the genetics to OPV response, among other childhood vaccines (i.e. 

hepatitis B), in the Gambia. Using twins, they estimated that the heritability, the 

proportion of phenotypic variability due to human genetics, of antibody responses to 

OPV was 60% [CI:43-73%], using an additive genetic model with a unique environment. 

(Newport et al. 2004) Monozygotic (MZ) twins, who inherit identical genetic sequences, 

had a correlation of 64% in their serum-neutralizing antibodies titers for OPV. Dizygotic 

(DZ) twins, whom only share on average half of their genetics, had a 29% correlation in 

their titers. The variance between the twins due to environment is assumed to be the 

same. When twins that share a smaller proportion of their genetics (DZ) also have lower 

correlations in titers when compared to twins that share all of their genetics (MZ), it 

indicates that there may be a role for genetics with phenotype.  
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2.7: Conclusions 

Within the past one hundred years, remarkable progress has been made to identify 

poliovirus, develop safe and efficient vaccines against it, and eradicate it from much of 

the world. Two major vaccines were developed: oral poliovirus vaccine (OPV) and 

inactivated poliovirus vaccine (IPV). OPV provides both mucosal and systemic 

immunity and is both easier and cheaper to administer, thus it has become the primary 

tool for the eradication of poliovirus. OPV has become the example that many oral 

vaccines developers (i.e. rotavirus) wish to emulate. However, despite the high efficacy 

of the vaccine, some individuals fail to mount an adequate response. This failed immune 

response remains after controlling for vaccine-related factors, such as potential 

variability in concentrations and attenuation, as well as host-related factors, such as 

general health status. One hypothesis has been that host genetic factors may play a role 

and this is supported by the high heritability of OPV response (60%) and distinct ethnic 

population failure of the vaccine. To-date, no large-scale genetic study to elucidate 

potential risk loci for the response to OPV has been performed. The aim is to identify 

genes and pathways that can inform future development and implementation of oral 

vaccines. 
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Chapter 3: Genome-wide association study of Oral 

Poliovirus Vaccine response and signatures of selection in 

Bangladeshi infants (Paper 1) 

 

3.1: Abstract 

 

Background: The Oral Poliovirus Vaccine (OPV) has been widely successful in the 

eradication effort of polio infection. However, it does not provide protection in some 

individuals despite multiple doses of viable vaccine. It was previously hypothesized that 

human genetics may be responsible for immune response failure to the oral vaccine. To 

examine the role human genetics may play, we performed a genome-wide association 

study (GWAS) of the response to OPV in 357 Bangladeshi infants. We also conducted a 

genome-wide scan for signatures of natural selection that may be relevant to poliovirus 

infection or immune response and may correlate with the GWAS results. 

Methods: A genome-wide association study was performed using the log serum-

neutralizing antibody titers (LTs) to OPV in 357 Bangladeshi children. The study 

compared seronegative (LT<3) to high seropositive (LT>7) individuals after four doses of 

OPV.  Logistic regression was conducted on 6.5 million imputed SNPs across the human 

genome, adjusting for stunting (height-for-age Z-score <-2). A genome-wide scan of 
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selection was conducted in the full cohort of 473 Bangladeshi children, calculating a 

standardized cross-population extended haplotype homozygosity (XP-EHH) score using 

the HapMap Nigerian Yoruba and Kenyan Luhya populations as a reference. Genetic 

locations were examined for overlap between the two genetic scans, GWAS (P<0.001) 

and selection (XP-EHH P<0.01).  

Results: The GWAS did not identify any genome-wide significant (P<5x10-8) variants, 

however two regions were suggestive of an association (P<5x10-6). The top association 

was on chromosome 14 at SNP rs113427985 and showed a decreased odds of an 

adequate immune response for individuals with an LT > 7 compared to those with an LT 

< 3 (OR= 0.22, P=2.9x10-6). This SNP is located downstream of MAPK1IP1L and is in 

strong linkage disequilibrum with SNPs in SOCS4. An additional association was 

identified on chromosome 7 within the Sonic Hedgehog gene, SHH, and an SHH cis-

regulatory element within a neighboring gene LMBR1. This SNP, rs55906254, also 

showed a decreased odds of OPV immune response for individuals with an LT > 7 

compared to those with an LT < 3 (OR=0.31, P=3.6x10-6). The selection scan identified 

significant regions under positive selection in this Bangladeshi population as compared 

to a Nigerian reference population (HapMap YRI). 32 SNPs had a both a GWAS P-value 

<0.001 and a selection P-value < 0.01, comprising 9 distinct regions. Half of these 32 SNPs 

were between the genes FAM86A and RBFOX1 on Chromosome 16. 

Conclusions: Genomic methods were used to identify loci associated with the immune 

response to OPV in a cohort of Bangladeshi children. The genome-wide association 
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study identified two regions associated with seronegative status after four doses of OPV, 

and when coupled with the selection scan additional suggestive regions were found.  

The derived (non-ancestral) alleles at this location were associated with a high 

seropositive status in response to OPV as well as strong positive selection, suggesting 

that beneficial mutations arose and were maintained in this genomic location that may 

have conferred protection against poliovirus. This study highlights the benefits of 

coupling a traditional GWAS with selection scans for immune or infectious traits like 

OPV response to identify novel host genetic regions that may warrant additional study.  



 29 

3.2: Introduction 

Poliovirus is the infectious agent responsible for poliomyelitis, a crippling infection 

that can result in flaccid paralysis. Over the past hundred years, vast leaps of progress 

have been made to identify this causative agent, develop two viable vaccines, and 

eradicate the virus from many regions of the world. In the past 25 years, there has been a 

99% decrease in cases worldwide, with only 223 reported cases in four countries in 

2012.(WHO 2013) An invaluable tool in this fight has been the oral poliovirus vaccine 

(OPV). Developed in 1960 by Albert B. Sabin, OPV is a live attenuated vaccine that 

contains all three serotypes (1-3).(Sabin et al. 1960) It is efficacious at eliciting both 

mucosal and systemic immune responses, with results replicated in diverse populations. 

(Ogra et al. 2011; John and Vashishtha 2013; Patriarca, Wright, and John 1991; Racaniello 

2006)  

The systemic immunity developed from OPV administration is measured as the log 

serum-neutralizing antibody titers (LTs). The World Health Organization (WHO) and 

Centers for Disease Control (CDC) standard cut-off for an adequate response is an LT > 

3, with recognized variation occurring both within and between populations.(WHO 

2013; World Health Organization Collaborative Study Group on Oral Poliovirus Vaccine 

1995) Failure to mount an adequate systemic response to OPV may be due to numerous 

factors in both the vaccine and the host. Vaccine-related factors include the stability of 

the vaccine, relative concentrations of the three serotypes, as well as the timing of 

doses.(Sabin et al. 1960; Estívariz et al. 2013) Host-related factors include the child’s 
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nutritional status, whether or not the child is exclusively breast-fed, and any concurrent 

infections. (Habib et al. 2013)Even after controlling for these factors with identical viable 

vaccines and children from the same background, some individuals still fail to mount an 

immune response to the vaccine. It has been hypothesized that his may be due to 

differences in host genetics.(Paul 2007) The heritability, or percentage of phenotypic 

variability due to genetics, for the immune response to OPV has been estimated to be 

60%. In a Gambian study of twins, the LTs of monozygotic twins had a higher 

correlation of titers (64%) than dizygotic twins (29%)(Newport et al. 2004)  This 

increased correlation in monozygotic twins is expected if a disease has a higher 

heritability as monozygotic twins share identical genetic sequence and dizygotic twins, 

like other siblings, share only half of their genetic sequence on average. To identify host 

genes that may play a role in the immune response to OPV, we conducted a genome-

wide association study in 357 children from Bangladesh who received four doses of OPV 

at one year of age and compared individuals at the extremes to OPV response; 

seronegative individuals (LT<3) to high seropositive individuals (LT>7). 

To complement this study, we also conducted a population genetics scan of positive 

natural selection across the human genome in the same children. Throughout human 

history, it is thought that infectious pathogens have been responsible for the majority of 

selective pressure shaping the human genome.(Fumagalli et al. 2011) This is especially 

true for viruses, which have high mutation rates that allow them to adapt quickly to any 

changes in the human immune landscape. (Fumagalli et al. 2010; Zinkernagel, 
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Hengartner, and Stitz 1985) Any mutations that are beneficial at preventing infection or 

limiting viral infections are likely to be preserved throughout successive generations, 

leading to positive selection. Positive selection can be detected by examining long runs 

of genotype homozygosity across the human genome. When the beneficial genetic 

variants are maintained in a population, the genetic sequence surrounding them is 

sometimes also preserved and can lead to long haplotypes of homozygosity. These 

extended regions of homozygosity can serve as markers harboring selected genetic 

variants. The cross population extended haplotype homozygosity (XP-EHH) is 

calculated by comparing these runs to a different reference population and 

standardizing across the genome. This method has been utilized successfully to identify 

verified signatures of positive selection in many global populations.(Pickrell et al. 2009) 

In this study, we identify regions of positive selection through the estimation of XP-EHH 

in a Bangladeshi population of children and then correlate these identified selection 

signals with loci associated with OPV LTs in the same Bangladeshi children. These 

overlapping regions may have been selected for in the development of immunity to 

poliovirus. 

3.3: Materials and Methods 

3.3.1: Study Population 

Children were recruited at birth in Dhaka, Bangladesh and followed from birth until 

at least 2 years of age. All were recruited from Mirpur, an urban slum in Dhaka City.  

Mirpur, one of the 14 Thanas (subdistricts) of Dhaka, has a population density of one 



 32 

million people per 59 square kilometers. The average monthly expenditure in this 

population was 6000 BDT (Bangladesh Taka), which translates to roughly 77 US 

dollars.(Mondal et al. 2011) Despite being geographically closer to Nepal, the inhabitants 

of Dhaka are genetically closer to an Iranian-Indian-Afghan clade.(Roychoudhury and 

Nei 1985) The participants are visited bi-weekly in their homes, and in a clinical setting. 

Diarrheal episodes are recorded and stool samples collected. The stool samples are 

evaluated for the presence of numerous enteric infections, including E. histolytica, 

Cryptosporidium, rotavirus, and E. coli. Anthropometric measurements are available 

every few months, including height, age, and BMI, allowing the calculation of height-

for-age Z-score (HAZ), weight-for-age Z-score (WAZ), and weight-for-height Z-scores 

(WHZ) standardized according to WHO guidelines.  

For children completing at least one year of follow-up, serum-neutralizing antibody 

responses to the full 4-dose regimen were available for all three serotypes. Serum-

neutralizing antibody titers were estimated at the CDC in triplicate according to the 

standard WHO procedure of a modified microneutralization technique in dilutions 

ranging from 1:4 to 1:1024 (LT of 2-10).(World Health Organization Collaborative Study 

Group on Oral Poliovirus Vaccine 1995) Of 448 children with OPV serum neutralizing 

antibody titers, 425 also had genotype data available. Vaccine failure was defined using 

the CDC standard cutoff of a log2 serum neutralizing antibody levels of 3, or a 1:8 

dilution factor. Seroconversion rates were 93.41% for serotype 1, 96.47% for serotype 2, 
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and 88.71% for serotype 3 (Figure 3.1). Due to the high rates of seroconversion for 

serotypes 1 and 2, only serotype 3 was examined. 

 

Figure 3.1: Serum neutralizing antibody titers for serotypes (A) 1, (B) 2, and (C) 3. The red 

dashed line indicates an LT of 3 (1:8 dilution), the WHO/CDC cut-off for seropositive status. 
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The titers were both right- and left-censored data (right at 10.5, left at 2.5) and do not 

represent a normal distribution, thus they could not be evaluated as a quantitative trait. 

Instead, the extremes were examined, with seronegative individuals classified as a titer 

below or equal to 3 (n=48), and a strong seropositive individual having a titer equal to or 

greater than 7 (n=309).  

3.3.2: Genotype Data and Quality Control 

DNA was extracted from whole blood at the ICDDR, B and shipped to the 

University of Virginia for genotyping. Two genome-wide arrays were used: 1M Illumina 

Duo and the 1M Illumina Quad. The overlap between these two Illumina arrays was 

613,778 SNPs. The average call rate was 99.79%. Additional samples were genotyped 

using Illumina’s 2.5M Quad array. To synchronize these three different genotyping 

arrays all samples were imputed to a 1000 Genomes reference data set using 

IMPUTE2.(Howie et al. 2012) SNPs were filtered for information content (>90%), minor 

allele frequency (>0.01) and a Hardy-Weinberg equilibrium (HWE) threshold of P<10E-5. 

The overall SNP and sample genotype missiningness was 5% or less. In addition, 

individuals with an excess or underrepresentation of heterozygosity were removed. 

Individuals were examined for identity-by-state clustering to identify duplicates and 

cryptic relatedness within the program Plink.(Purcell et al. 2007) This left 457 

individuals and 6.5 million SNPs.  
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3.3.3: Analytical Methods 

Association analysis was run using the program SNPTEST(Marchini et al. 2007) 

under an additive frequentist Expectation-Maximization (EM) model. The associations 

were adjusted for stunting, or a height-for-age Z-score (HAZ) below -2. SNPs were 

filtered by an information content of the test > 80%, and a minor allele frequency > 5%.  

To identify regions of positive selection, cross population extended haplotype 

homozygosity (XP-EHH) was calculated.(Pickrell et al. 2009) Chromosomes were phased 

using the SHAPEIT(Delaneau, Zagury, and Marchini 2013) program using the 1000 

Genomes phase 1 integrated data set, version 3 as a reference.(Delaneau, Zagury, and 

Marchini 2013) The genome was phased by using the genomic data and creating 

haplotypes. XP-EHH requires a reference population that is different from the study 

population for comparison, we used the 1000 Genomes African population (Yoruba 

(YRI) and Luhya (LWK)).  

Both measures were standardized separately across all chromosomes. Because iHS is 

dependent upon allele frequency, it must be standardized within minor allele frequency 

bins genome-wide. We used bins with 5% frequency increments (5-10%, 10-15%, etc). 

From this standardized distribution a P-value was calculated under a normal 

distribution with a mean of 0 and standard deviation of 1. 
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Figure 3.2: Distribution of Standardized XP-EHH (sXP-EHH). After standardization, 

the XP-EHH estimates followed a normal distribution. 

 

Regions of interest were identified within three scenarios: the GWAS alone, the 

measures of selection alone (either sXP-EHH or stIHS), and the joint association between 

the two. The top associations for each scenario was investigated. To determine the joint 

association, regions with a GWAS p-value below 0.001 and an sXP-EHH p-value below 

0.01 were used to filter for candidate regions. Fisher’s combination test was used to 

combine the two p-values into an aggregate signal.  



 37 

3.4: Results 

3.4.1: Genome-wide association study 

No genome-wide associated regions reached the threshold of significance (P<5x10-8), 

but the top results were promising. (Figure 3.3, Table 3.1) The two main associations are 

on chromosomes 14 and 7. The top association on chromosome 14, rs113427985, was 

found 23 kilobases (kb) upstream of MAPK1IP1L (mitogen-activated protein kinase 1 

interacting protein 1-like) (Figure 3.4). For each additional minor allele (T) an individual 

was less likely (OR=0.22) to be seropositive (P=2.9x10-6) compared to those with the 

major allele (C; minor allele frequency = 0.07). Sixty kilobases away another association 

was identified on chromosome 14 was at rs112185488, within SOCS4 (suppressor of 

cytokine signaling 4). A similar effect size was found with each additional minor allele 

(C) resulting in decreased odds of being seropositive (OR=0.21, P=5.8x10-6). On 

chromosome 7 66kb upstream of SHH, or Sonic Hedgehog (Figure 3.5) at rs55906254 the 

minor allele was found to be associated with decreased odds of an adequate response 

(OR=0.31, P=3.6x10-6).  
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Table 3.1: Top 20 Results from GWAS 

SNP Chr Position A1 A2 
All 

MAF 
SP 

MAF 
SN 

MAF 
OR P Genes 

rs113427985 14 55560164 C T 0.07 0.05 0.22 0.22 2.89E-06 MAPK1IP1L(dist=23252),LGALS3(dist=35771) 
rs78866519 14 55561453 C T 0.07 0.05 0.22 0.22 3.08E-06 MAPK1IP1L(dist=24541),LGALS3(dist=34482) 
rs79358122 14 55562841 A G 0.07 0.05 0.22 0.22 3.24E-06 MAPK1IP1L(dist=25929),LGALS3(dist=33094) 
rs77273572 14 55563834 G T 0.07 0.05 0.22 0.22 3.35E-06 MAPK1IP1L(dist=26922),LGALS3(dist=32101) 

rs111628620 14 55566290 G A 0.07 0.05 0.22 0.22 3.40E-06 MAPK1IP1L(dist=29378),LGALS3(dist=29645) 
rs6541250 1 231173427 C T 0.25 0.28 0.09 5.19 3.41E-06 FAM89A 

rs55906254 7 155664061 C T 0.50 0.47 0.70 0.31 3.61E-06 SHH(dist=59094),LOC285889(dist=566422) 
rs79749285 11 84484264 G A 0.11 0.08 0.25 0.23 4.13E-06 DLG2 

rs112185488 14 55507179 T C 0.07 0.05 0.21 0.22 5.82E-06 SOCS4 
rs78575209 14 55505487 A T 0.07 0.05 0.21 0.22 6.35E-06 SOCS4 
rs6459953 7 155668247 A T 0.46 0.49 0.25 0.34 6.60E-06 SHH(dist=63280),LOC285889(dist=562236) 

rs112642967 14 55501802 C T 0.07 0.05 0.21 0.22 6.68E-06 SOCS4 
rs75495314 14 55502757 T C 0.07 0.05 0.21 0.22 6.69E-06 SOCS4 

rs111366012 14 55504297 C T 0.07 0.05 0.21 0.22 6.71E-06 SOCS4 
rs74364684 14 55500486 T C 0.07 0.05 0.21 0.22 6.81E-06 SOCS4 
rs76503733 14 55498451 A G 0.07 0.05 0.21 0.22 7.24E-06 SOCS4 
rs4716555 7 155665755 T C 0.46 0.49 0.25 0.35 7.57E-06 SHH(dist=60788),LOC285889(dist=564728) 

rs76518514 14 55495866 T A 0.07 0.05 0.21 0.22 7.84E-06 SOCS4 
rs12690728 7 155667439 A T 0.39 0.43 0.19 2.96 7.98E-06 SHH(dist=62472),LOC285889(dist=563044) 
rs112457757 14 55539891 G A 0.07 0.05 0.20 0.21 8.10E-06 MAPK1IP1L(dist=2979),LGALS3(dist=56044) 

 
*SNP= Single Nucleotide Polymorphism, Chr=Chromosome, MAF=Minor Allele Frequency, SP MAF= MAF in Seropositive Group, SN MAF=MAF 
in Seronegative Group, OR= Odds Ratio 
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Figure 3.3:  Manhattan Plot of GWAS Results for OPV Serotype 3 at 12 Months, Adjusted for Stunting. The y-axis indicates 

significance in the form of –log10 transformed P-values, and the x-axis is organized by chromosome (different colors) and position. The grey dashed 

line indicates genome-wide significance at 5x10-8. 

SHH/LMBR1 
MAPK1IP1L/SOCS4 
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Figure 3.4: Association Results for Chromosome 14 Region. The y-axis indicates the 

significance of the SNP-level P-values in terms of a –log10 transformation, with the x-axis 

indicate position along chromosome 14. The red line indicates genome-wide significance of 5x10-8. 

Genes are annotated above in black, with thicker lines symbolizing exons. 
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 Figure 3.5: Association Results for Chromosome 7 Region. The y-axis indicates the 

significance of the SNP-level P-values in terms of a –log10 transformation, with the x-axis 

indicate position along chromosome 7. The red line indicates genome-wide significance of 5x10-8. 

Genes are annotated above in black, with thicker lines symbolizing exons. 
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3.4.2: Selection Scan 

At 1,158,046 locations across the human genome, XP-EHH was calculated to detect 

signals of positive selection. Using two African populations from HapMap as a reference 

population for Bangladesh, the mean unstandardized XP-EHH was 0.57 with a standard 

deviation of 0.44. Since the mean genome-wide unstandardized XP-EHH was greater 

than 0 (0.57) it indicates that this Bangladeshi population has longer haplotype lengths 

than the Yoruba. This is expected as it has previously been noted that African 

populations have shorter haplotype blocks when compared to non-African populations 

due to their older age and decaying linkage disequilibrium.(Tishkoff and Williams 2002) 

For statistical evaluation, XP-EHH was standardized to the empirical distribution of 

statistics. From this standardized distribution a P-value was calculated assuming a 

normal distribution with a mean of 0 and standard deviation of 1. 

The strongest signal was found within BVES at rs9391267 on chromosome 6 with an 

sXP-EHH of 4.29 (P=1.19x10-6) (Table 3.2). BVES, or blood vessel epicardial substance, is 

also called POPCD1 (popeye domain-containing protein 1). Another top region was on 

chromosome 1 within EIF2C1, now denoted AGO1, for argonaute RISC catalytic 

component 1. With an sXP-EHH of 4.23 (P=1.19x10-5), haplotypes in this region are 

longer in this Bangladeshi population when compared to the Yoruba. In total, there were 

9 different regions with an absolute value of sXP-EHH > 4. These results confirm prior 

findings for selection. (Tang, Thornton, and Stoneking 2007; Pickrell et al. 2009; Voight et 

al. 2006) 
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Table 3.2: Top 20 Selection Scan Results from Standardized XP-EHH 
Chr Position SNP A1 A2 MAF -log(HWE-P) XP-EHH XP-EHH,P-value Region Gene 

6 105565251 rs9391267 G A 0.16 0.81 4.29 8.85E-06 intronic BVES 
6 105566414 rs9500032 G A 0.16 0.67 4.28 9.19E-06 intronic BVES 
6 105562120 rs2001119 G A 0.16 0.67 4.27 9.87E-06 intronic BVES 
6 105568685 rs9404601 G A 0.15 1.00 4.26 1.00E-05 intronic BVES 
6 105569970 rs12523767 T A 0.08 1.25 4.26 1.03E-05 intronic BVES 
6 105606018 rs768781 T C 0.08 0.46 4.23 1.19E-05 ncRNA_UTR3 POPDC3 
1 36363475 rs636832 A G 0.18 0.12 4.23 1.19E-05 intronic AGO1 
6 105561560 rs9486037 C A 0.15 1.00 4.22 1.22E-05 intronic BVES 
6 105583387 rs9500040 A G 0.07 0.15 4.21 1.28E-05 intronic BVES 
6 105585511 rs9404605 G A 0.16 0.52 4.21 1.30E-05 upstream BVES,BVES-AS1 
6 105559609 rs1018810 T C 0.15 1.02 4.20 1.32E-05 intronic BVES 
3 96789865 rs7640007 A G 0.08 0.30 4.20 1.35E-05 intronic EPHA6 
6 105558337 rs9322831 G A 0.15 1.00 4.20 1.35E-05 intronic BVES 
1 36359669 rs2296470 G A 0.14 0.25 4.19 1.37E-05 exonic AGO1 
6 105591282 rs6571219 G A 0.07 0.15 4.19 1.38E-05 ncRNA_intronic BVES-AS1 
6 105596568 rs1933236 G A 0.07 0.30 4.19 1.38E-05 ncRNA_intronic BVES-AS1 
6 105600322 rs6924620 C T 0.08 1.25 4.19 1.42E-05 ncRNA_intronic BVES-AS1 
6 105599671 rs4626463 G A 0.08 1.69 4.19 1.42E-05 ncRNA_intronic BVES-AS1 
3 96790746 rs9847081 G T 0.08 0.30 4.18 1.43E-05 intronic EPHA6 
6 105595261 rs1190274 G A 0.07 0.15 4.18 1.44E-05 ncRNA_intronic BVES-AS1 

 
*Chr=Chromosome, SNP= Single Nucleotide Polymorphism, A1=major allele, A2=minor allele, -log(HWE-P)= P-value associated with Hardy-
Weingberg Equilibrium transformed by –log base 10. 
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Figure 3.6: Selection Associations for sXP-EHH for the Bangladeshi population. The Yoruba from Nigeria (HapMap YRI) were used as a 

reference population. The y-axis indicates significance through a –log10 transformed P-value from the standardized XP-EHH. The x-axis indicates 

chromosome (by color) and position. 

BVES 
AGO1 EPHA6 
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3.4.3: Regions of Overlap between Selection Scan and GWAS for OPV 

Response 

A total of 32 SNPs in 14 distinct regions overlapped between studies using a 

threshold of P<0.001 for the GWAS and P<0.01 for the selection scan (Table 3.3). Half of 

these SNPs (16/32) were found on chromosome 16 between FAM86A and RBFOX1 at 

16p13.3. Within this region, the SNP with the most significant P-value from the GWAS, 

rs11076928 (OR=2.62, PGWAS=8x10-5, PsXP-EHH=1.6x10-3), is within a retained intron of a non-

coding transcript RP11-420N3.2. This SNP had a standardized XP-EHH of 2.94, 

indicating longer haplotype lengths when compared to the Yoruba. Each additional 

minor allele conferred 2.6 times the odds of having a high seropositive response to OPV 

versus being seronegative. 

There were four other regions that had more than one signal within these 32 SNPs. 

Two signals were on 6q27 between FRMD1 and DACT2. The top associated SNP in this 

region rs2054476 has a standardized XP-EHH of -2.49 (P=0.006), which indicates shorter 

haplotype lengths than the Yoruba. Located 22 kilobases upstream of DACT2 

(disheveled-binding antagonist of beta-catenin 2), the minor allele of this SNP (A) was 

associated with decreased odds of seropositivity (OR=0.39, P=1.7x10-4) or individuals 

were less likely to mount a strong immune response to OPV if they carried 1 or 2 copies 

of the A allele. The top dual GWAS and selection scan association was in DOCK10 

(dedicator of cytokinesis 10). The SNP rs9989765 had a standardized XP-EHH of -2.71 

(P=3.4x10-3) and a GWAS P-value of 1.7x10-5. The Odds Ratio was large (4556) due to the 
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minor allele frequency in the seronegative individuals being very small (<1%) while the 

high seropositive individuals reflected the general population with a minor allele 

frequency of 8%. Therefore, having the minor allele of this SNP (C) made an individual 

very likely to mount a high immune response to OPV. 
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Table 3.3: Cross-Method Associations between the Selection Scan and GWAS 

Chr Position 
A
1 

A
2 

SNP MAF 
sXP-
EHH 

sXP-EHH  
P-Value 

OR 
GWAS 
P-Value 

FCT 
P-Value 

Gene 

2 225850923 T C rs9989765 0.08 -2.71 3.37E-03 4556.45 1.72E-05 1.02E-06 DOCK10 

16 5598818 G A rs11076928 0.28 2.94 1.64E-03 2.62 8.01E-05 2.21E-06 
FAM86A(dist=451029), 
RBFOX1(dist=470314) 

11 122458831 T C rs6589931 0.39 -2.38 8.63E-03 2.66 2.26E-05 3.21E-06 
MIR100HG(dist=385061), 

UBASH3B(dist=67567) 
12 52915172 G T rs89962 0.22 -2.35 9.32E-03 4.07 3.29E-05 4.91E-06 KRT5 

16 5599065 T C rs4387604 0.17 2.84 2.27E-03 0.35 1.51E-04 5.44E-06 
FAM86A(dist=451276), 
RBFOX1(dist=470067) 

16 5587922 G A rs12930002 0.17 2.60 4.62E-03 0.34 1.08E-04 7.74E-06 
FAM86A(dist=440133) 
,RBFOX1(dist=481210) 

16 5586594 T C rs3893314 0.17 2.57 5.04E-03 0.34 1.10E-04 8.51E-06 
FAM86A(dist=438805), 
RBFOX1(dist=482538) 

16 5590073 G T rs1486422 0.17 2.56 5.23E-03 0.34 1.09E-04 8.74E-06 
FAM86A(dist=442284), 
RBFOX1(dist=479059) 

16 5598466 G C rs11639793 0.17 2.60 4.71E-03 0.35 1.43E-04 1.02E-05 
FAM86A(dist=450677), 
RBFOX1(dist=470666) 

16 5594270 A G rs11076925 0.17 2.52 5.85E-03 0.35 1.21E-04 1.08E-05 
FAM86A(dist=446481), 
RBFOX1(dist=474862) 

16 5593455 A G rs11648316 0.17 2.57 5.08E-03 0.35 1.48E-04 1.13E-05 
FAM86A(dist=445666), 
RBFOX1(dist=475677) 

16 5604602 A G rs3927119 0.17 2.90 1.89E-03 0.37 3.98E-04 1.14E-05 
FAM86A(dist=456813), 
RBFOX1(dist=464530) 

16 5602219 C G rs8058741 0.17 2.86 2.15E-03 0.37 3.57E-04 1.16E-05 
FAM86A(dist=454430), 
RBFOX1(dist=466913) 

16 5607327 C T rs11645332 0.17 2.89 1.95E-03 0.37 3.97E-04 1.17E-05 
FAM86A(dist=459538), 
RBFOX1(dist=461805) 

16 5603855 A C rs11646049 0.17 2.89 1.95E-03 0.37 3.98E-04 1.17E-05 
FAM86A(dist=456066), 
RBFOX1(dist=465277) 
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16 5602467 G A rs8057985 0.17 2.86 2.15E-03 0.37 3.77E-04 1.22E-05 
FAM86A(dist=454678), 
RBFOX1(dist=466665) 

16 5602716 C T rs8063667 0.17 2.87 2.04E-03 0.37 3.98E-04 1.22E-05 
FAM86A(dist=454927), 
RBFOX1(dist=466416) 

16 5598729 C G rs4442812 0.17 2.54 5.55E-03 0.35 1.47E-04 1.23E-05 
FAM86A(dist=450940), 
RBFOX1(dist=470403) 

16 5606961 A G rs11640260 0.17 2.81 2.49E-03 0.37 3.96E-04 1.46E-05 
FAM86A(dist=459172), 
RBFOX1(dist=462171) 

4 29909867 A C rs16882465 0.09 2.74 3.06E-03 10.30 3.54E-04 1.60E-05 
MIR4275(dist=1088577), 

PCDH7(dist=812163) 

6 168685559 G A rs2054476 0.40 -2.49 6.36E-03 0.39 1.74E-04 1.62E-05 
FRMD1(dist=205720), 
DACT2(dist=22025) 

9 124985785 G A rs10818652 0.45 -2.89 1.95E-03 2.24 5.98E-04 1.71E-05 LHX6 

20 53497150 G A rs12329616 0.15 2.49 6.43E-03 0.36 2.00E-04 1.87E-05 
DOK5(dist=229440), 

CBLN4(dist=1075263) 

19 4571589 C T rs9304911 0.28 -2.51 5.97E-03 2.32 2.60E-04 2.23E-05 
SEMA6B(dist=11818), 

TNFAIP8L1(dist=67938) 
5 112152920 C T rs17164132 0.09 2.42 7.69E-03 11.94 2.04E-04 2.25E-05 APC 

14 75729732 G A rs17183482 0.26 -2.72 3.25E-03 0.42 4.92E-04 2.29E-05 
TMED10(dist=86383), 

FOS(dist=15749) 

6 168685533 A G rs9346682 0.40 -2.33 9.95E-03 0.39 1.74E-04 2.47E-05 
FRMD1(dist=205694), 
DACT2(dist=22051) 

14 75709566 T C rs8013918 0.36 -2.63 4.33E-03 0.44 5.23E-04 3.17E-05 
TMED10(dist=66217), 

FOS(dist=35915) 

20 53493309 T C rs6023667 0.14 2.50 6.19E-03 0.39 6.61E-04 5.48E-05 
DOK5(dist=225599), 

CBLN4(dist=1079104) 
10 552355 C T rs11252842 0.05 2.47 6.73E-03 0.26 8.99E-04 7.87E-05 DIP2C 

5 162031048 T C rs7708539 0.08 2.42 7.74E-03 0.30 1.00E-03 9.88E-05 
GABRG2(dist=448503), 
CCNG1(dist=833529) 

20 12926358 C T rs3903702 0.14 -2.38 8.76E-03 2.76 9.07E-04 1.01E-04 
BTBD3(dist=1019115), 
SPTLC3(dist=63269) 
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3.5: Discussion 

A GWAS of extreme responses to oral poliovirus vaccine in Bangladeshi children 

revealed two associations on 7q36.3 and 14q22-23. The chromosome 7 signal highlighted 

the role of SHH and a cis-regulatory element in LMBR1. Within intron 5 of LMBR1 lies a 

long-range cis-regulatory sequence for SHH.(Lettice et al. 2002) and mutations within 

this intron are known to alter SHH expression.(Furniss et al. 2008) Previous studies of 

selection have found evidence of balancing selection within this regulatory region.(He et 

al. 2008) SHH is a gastric morphogen that drives epithelial cell differentiation. After 

acute injury, it helps to reconstruct the gastric epithelium.(Xiao et al. 2012) Other studies 

have shown that after infection with Helicobacter pylori, an enteric pathogen, the 

regeneration of the gastric epithelium is accompanied by the re-expression of 

SHH.(Nishizawa et al. 2007) A study done in mice found that a higher concentration of 

the SHH protein resulted in increased expression of the human poliovirus receptor, or 

CD155.(Solecki 2002) This direct link between the sonic hedgehog signaling pathway 

and poliovirus indicates that SHH may be important for the development of immunity 

against polio.  

The other signal is near SOCS4, which is a negative regulator of cytokine activity, 

specifically STAT signaling. A study in biliary epithelial cells showed that infection with 

Cryptosporidium parvum, an enteric pathogen, resulted in an interaction between 

miRNAs (micro RNA) miR-98 and let-7 with SOCS4 expression.(Hu et al. 2010)  The let-

7 family were the first microRNAs discovered, and are involved in the epithelial 
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immune response.(Aalaei-andabili and Rezaei 2013) Despite the two top signals on 

chromosome 14 (rs113427985 and rs112185488) being over 50 kb away from each other 

and mapping to different genes (MAPK1IP1L/LGALS3 and SOCS4, respectively), they 

are in high linkage disequilibrium, with an r2 of 0.94 and a D’ of 0.98. Much of the 

association signals in this region exhibit high long-range linkage disequilibrium (Figure 

3.4). In fact, a SNP (rs17128156, P=2.76x10-6) located 20 kilobases downstream from 

MAPK1IP1L is an expression quantitative trait loci (eQTL) for SOCS4.(Zeller et al. 2010) 

The overall top GWAS association was rs113427985, which is located less than 7 kb away 

from this eQTL, indicating that it may also be involved in SOCS4 expression.  

The selection scan was performed on all the children in the study from Dhaka, 

Bangladesh regardless of OPV response outcome. Therefore, the genes under selection 

are not specific to an OPV response, but rather represent historic evolutionary pressures. 

The top associated region is on chromosome 6 within BVES—a highly conserved 

transmembrane protein that is expressed primarily in epithelial cells, such as the gut 

epithelium.(Osler, Smith, and Bader 2006) This region was previously identified under 

positive selection by looking at Continuous Regions of Tajima’s D Reduction (CRTRs) 

within a European-descent population.(Carlson et al. 2005) Using the Composite of 

Multiple Signals (CMS), a measure of selection that incorporates both iHS and XP-EHH 

and other statistics, this region also exhibited signals of selection within a European 

population (CEU) with a CMS of 7.32 (CMS>3 is considered significant). (Grossman et al. 

2013; Grossman et al. 2010; Karlsson et al. 2013) Selection was also high in Asian 
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populations (Chinese and Japanese (CHB/JPT), CMS=9.88) and within an African 

population (YRI, CMS=6.25) using HapMap Phase II data. Genome-wide association 

studies have identified SNPs within BVES associated with age at menarche and human 

height, both of which are known to be under selective pressures. (Amato et al. 2011; 

Treloar and Martin 1990)   

AGO1 located on chromosome 1 part of a cluster of closely related genes in this 

location including argonaute 3 and argonaute 4 that play a role in RNA interference. In 

our study, this region was under selection with a standardized XP-EHH of 4.19 

(P=1.2x10-5). Highly active immunologically, it is part of both the adaptive and innate 

immune systems. When compared to other studies, this region seems to be under 

selection in only non-African populations, such as Europeans and to a lesser extent 

Asian populations. Looking at CRTRs, enrichment was only found within the European 

populations.(Carlson et al. 2005) This is consistent when examining CMS for the three 

HapMap Phase II populations. Strong selection is found within CEU (CMS=11.89), and 

weaker selection in the CHB/JPT populations (CMS=3.53), while there isn’t a CMS above 

0 for this region within the YRI. This was consistent in a previous study looking at 

extended haplotype homozygosity (EHH) within a European population.(Tang, 

Thornton, and Stoneking 2007)  

When it came to the overlap between the selection scan and the genome-wide 

association study, only 32 SNPs had a PGWAS<0.001 and a PsXP-EHH<0.01 within 14 distinct 

regions. Half of the associations were found in an intergenic region on chromosome 16 
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between FAM86A and RBFOX1. The region between FAM86A (family with sequence 

similarity 86, member A) and RBFOX1 (RNA binding protein, fox-1 homolog 1), has 

previously been implicated in a genome-wide association study of visceral adipose 

tissue within women.(Fox et al. 2012) RBFOX1 was also associated with weight, BMI, 

and fat mass in Hispanic children.(Comuzzie et al. 2012) An additional associated region 

was between DACT2 and FRMD1 on chromosome 6. DACT2 is part of the TGF-beta 

receptor-signaling pathway. FRMD1 (FERM domain containing 1) is associated with IL-

2 secretion following smallpox vaccination (Kennedy et al. 2012) 

The top region for the dual associations was in DOCK10. The minor (derived) allele 

for this SNP (rs9989765) was not found in any individuals seronegative for OPV 

antibodies, while it was found in 9.5% of individuals who were seropositive after four 

doses of OPV. This is consistent with European populations, in which the minor allele 

frequency (MAF) is 9%, while it is more rare in African populations (MAF=3%). The 

DOCK proteins are part of a family of Rho GTPase proteins.(Yelo et al. 2008) Inducible 

by IL-4, the mRNA transcripts of DOCK10 are mainly expressed in peripheral blood 

leukocytes.(Yelo et al. 2008) IL-4 is essential for the development of adaptive immunity 

after vaccination of OPV indicating a potential link between DOCK10 and the immune 

response to OPV.(Katrak et al. 1991)  

By examining both the genetic polymorphisms that are associated with systemic 

immunity to OPV administration, as well as signatures of selection, we are able to 

elucidate genes involved in polio pathogenesis. Because the majority of poliovirus 
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infections do not result in fatal sequelae such as flaccid paralysis, it is hard to justify that 

the positive selection found is due to poliovirus in its current form. By looking in 

simians, it was estimated that ancient positive selection acted on CD155, the poliovirus 

receptor.(Suzuki 2006) Positive selection refers to a beneficial mutation rising in 

frequency due to its increased fitness. Because positive selection is not likely to have 

arisen in response to an increased susceptibility to infection, it is likely that this selection 

was due to the ability to bind with another molecule.(Suzuki 2006) Therefore, the 

regions under selection and associated with response to OPV may be more universally 

relevant to the immune response to an enteric pathogen. By examining these regions we 

may better understand the biological mechanisms that are utilized to develop effective 

oral vaccines against enteric infection.
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Chapter 4: Background and Review of Gene- and Pathway-

Level Methods 

 

4.1: The Success of Genome-wide Association Studies and 

Limitations 

In less than a decade after their advent, genome-wide association studies (GWAS) 

have been remarkably successful in identifying risk loci for various complex diseases. As 

of September 2013, the National Human Genome Research Institute (NHGRI) Genome-

wide Association Studies (GWAS) Catalog contained 1,673 publications and 11,194 SNP 

associations. (Hindorff et al. 2009; Hindorff et al. 2013) Working under the hypothesis of 

“common disease, common variants”, GWAS has elucidated many loci that are 

moderately (Odds Ratio (OR)=1.2) to highly associated (OR>5) with complex 

phenotypes. However, there is still a large amount of “missing heritability”. This 

missing heritability is the discrepancy between the low amount of within-population 

variation explained by GWAS results and the higher estimates of narrow-sense 

heritability, or proportion of phenotypic variance explained by additive genetics.(Vineis 

and Pearce 2010) One explanation for the missing heritability is that current studies are 

underpowered to identify variants that may be contributing to the overall heritability. 

Due to the large number of statistical tests, consideration of multiple comparisons 

requires conservative adjustment of the significance threshold (alpha) for the 1-2.5 
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million tests resulting in a threshold of ~5x10-8.(McCarthy et al. 2008) To counteract this 

limitation, larger sample sizes are needed to achieve adequate power.  

Another potential reason for the missing heritability is that GWAS were not 

designed to uncover all types of associations, but to identify common variants. Under 

the hypothesis of “common disease, common variant”, the SNPs included in the current 

GWAS panels have minor allele frequencies (MAFs) on average > 1%. Therefore, rare 

variants (MAF<0.05) are underpowered for association. Standard analytical methods for 

GWAS cannot handle low allele counts in a stable manner. Better methods for handling 

these markers, such as collapsing methods used commonly in sequence analysis, must 

be developed and evaluated.  

Many GWAS have been unable to replicate their findings. This can be due to 

numerous reasons, such as Type I error in the original analysis or unmeasured 

confounders in either the original discovery set or replication. It could also be due to 

allelic heterogeneity, in which different populations will have different alleles within the 

same locus or gene is associated with the outcome. Therefore, when SNPs are followed-

up from the discovery set, they do not replicate even though the same gene may be 

involved in the pathogenesis of the outcome. The last factor that limits the performance 

of GWAS is alleles that only have a modest to small effect on the outcome of interest. 

The infinitesimal model states that there are many common variants of small effect, 

which contribute to the genetic variance of a phenotype (Figure 4.1).(Gibson 2012) 

GWAS are poorly equipped to handle these variants, as due to strict significance 
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thresholds these variants would likely never be noticed without enormous sample sizes. 

Under this model, the heritability is not missing, but rather hidden. The truth is likely in 

between the CDCV and infinitesimal models, with the missing heritability being due to 

a finite number of smaller effect variants.(Bloom et al. 2013) 

To address both of these limitations, a multitude of gene- and pathway-level 

analyses have been developed. These methods aggregate markers into biologically 

relevant units, such as a gene or pathway, and then analyze the effects within that unit. 

This method allows for allelic heterogeneity, as the exact alleles that are associated with 

the outcome are not important, only that there is an enrichment of signal in the unit of 

association. Also, by aggregating multiple signals, this may increase the power in weak 

or moderate associations. Another motivation to analyze variation at a gene or pathway 

level is that the analysis yields a biologically interpretable result in terms of the disease 

pathogenesis. Genes or pathways can be selected based on prior biological knowledge, 

or evaluated without prior biological information in a genome wide approach. While 

many of the issues surrounding these analytical methods are similar, the following 

review will discuss gene and pathway level separately. 
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Figure 4.1: The Common Disease, Common Variant (CDCV) Model versus the Infinitesimal Model.  The CDCV model on the left 

indicates a few common variants being responsible for large proportion of the phenotypic variance (>1%), while the infinitesimal model on the 

right indicates that many variants (infinite) may be responsible for smaller percentages of the variance (<1%).
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4.2: Gene-Level Review 

4.2.1: Methods 

The goal of GWAS is to identify genetic variation associated with the phenotype, 

hopefully implicating a responsible gene. It is difficult to interpret when the significant 

variants lie in intergenic regions, even with the recent availability of the Encyclopedia of 

DNA Elements (ENCODE) data highlighting regulatory regions. Limiting markers to 

genic regions may ignore distant cis-regulatory elements or other functional regions 

associated with a gene, but it also reduces the potential of statistical noise clouding the 

interpretation of GWAS results. The set of SNPs assigned to a gene can be determined 

by either the physical location, or the functional variation.(la Cruz et al. 2010) 

Additionally, there are different methods to handle the correlation structure due to 

density of SNP coverage and linkage disequilibrium. These methods generally fall into 

three groups: classical methods, updates to classical methods, and newer methods that 

directly estimate the correlation structure.  

4.2.1.1: SNP Classification 

Publicly available databases such as RefSeq (NCBI) or Uniprot provide the physical 

location of the gene on the chromosomes. The SNPs that are included in these sets are 

determined by various criteria, such as exonic regions, translated regions, the entire 

genic region, or flanking regions ranging from 5-200 kilobases (kb). The flanking region 

size can be determined by the user’s priorities. Previous eQTL mapping showed that 

most cis-regulatory SNPs are within 100kb of the transcribed region, while more than 
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93% of relevant functional nucleotides are found within 20kb of the transcribed 

region.(Huang et al. 2011) Because of this, a flanking region of 20 kb from the translated 

start and end sites is commonly used. Using these criteria, SNPs may contribute to more 

than one gene. This can be due to overlapping genes, or genes in close proximity having 

overlapping flanking regions. This will decrease the independence of the tests, and must 

be taken into consideration when interpreting results.  

SNPs within a gene can also be categorized by their functional variation. This can 

include nonsynonymous SNPs (nsSNPs), variation around the transcription start and 

end sites, cis and trans-eQTLs, or variation only found in transcription factor binding 

sites. These classifications may be less interpretable than the physical location because 

only a fraction of information is available on known functional variation and the existing 

databases are not comprehensive.(la Cruz et al. 2010) 

4.2.1.2: Classical Methods  

1. Fisher’s Combination Test (FCT) (Peng et al. 2009) 

All SNP p-values within the genes are combined, assuming independence. 

The resulting Z-score follows a 𝛸2𝐾2  distribution, where K indicates the number of 

SNPs in the unit. 

𝑍𝐹 = −2 �log𝑃𝑖

𝑘

𝑖=1

 

2. Sidak’s Combination Test (SCT) (Peng et al. 2009) 
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Only the best SNP in the gene (as determined by the lowest p-value) is used. 

This is also called minSNP, or Sidak’s correction. The Z-score is distributed as 

follows to correct for the number of SNPs in the unit: 𝑃(𝑍𝐵 ≤ 𝑤) = 1 − (1 − 𝑤)𝐾. 

3. Simes’ Test (ST) (Peng et al. 2009) 

The SNP p-values are ordered from least to most significant. For each of these 

p-values, the following adjusted p-value (Ps) is calculated: 𝑘 ∗ 𝑃𝑖
𝑖
, where (k) is the 

ordered position of the original p-value. The minimum 𝑃𝑠 is the p-value for the 

gene. 

4. False Discovery Rate (FDR) (Peng et al. 2009) 

The SNP p-values mapped to the gene are ordered and a standard false 

discovery rate adjustment is applied to account for the number of SNPs within 

the gene. The minimum ordered false discovery rate is then assigned to the gene. 

The user must determine what the acceptable significance level is (α).  

5. Logistic Regression (LR) 

In this standard model, each SNP is coded in the additive format of 0, 1, or 2 

copies of the minor allele. The response variable is the case-control status. All 

SNPs in the gene are included as covariates in this logistic regression. The gene-

level p-value is calculated using a likelihood ratio test comparing the full model 

with all the SNPs to a null model without any SNPs.  

6. meanT (Lehne, Lewis, and Schlitt 2011) 
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The GWAS test statistics (𝜒2) are aggregated over the genic region and the 

average test statistic is calculated over the entire genic region. Empirical p-values 

can be determined using multiple phenotype permutations and re-averaging the 

permuted genic test statistics. 

*This method was not freely available, and was therefore not incorporated for further analysis.  

7. topQ (Lehne, Lewis, and Schlitt 2011) 

Using the GWAS test statistics, only the top quartile of test statistics as 

determined by significance are considered. The mean test statistic of these top 

quartile SNP test statistics is calculated for the gene test statistic. Empirical p-

values can be determined using phenotype permutations and recalculating the 

average test statistic in the top quartile.  

*This method was not freely available, and was therefore not incorporated for further analysis.  

 

These methods were developed before GWAS and were not meant to handle 

correlated variables. Many aggregate single marker p-values into one test statistic (FCT, 

LR, meanT, topQ) that is tested for association against a null model and the markers are 

assumed to be independent. This assumption is violated with GWAS data due to the 

high density of markers, many of which are correlated or in linkage disequilibrium. This 

results in the inflation of test statistics, leading to increased type I error rates. Others 

only use the most significant SNP from the set, but may assume the SNPs within the 
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gene represent a distribution (FDR). This still requires the lowest-level statistics to be 

independent of one another.  

It should be noted that logistic regression is the only method that requires the raw 

genotype data for the classical methods. The other classical methods in their original 

form only require the statistics resulting from a GWAS, such as P-values or Χ2 test 

statistics. However, to control the inflated type I error due to the presence of linkage 

disequilibrium violating the independence assumption, raw data may be used to run 

computationally intensive permutations.  

4.2.1.3: Updates to the Classical Method 

8. SLAT (la Cruz et al. 2010) 

SLAT (Set-Level Association Testing), is related to Fisher’s Combination Test. 

It employs two different basic modifications: truncation and weighting. The 

truncation consists of only including SNPs that reach a certain significance 

threshold in the original GWAS. The remaining SNPs are then weighted 

according to their linkage disequilibrium structure. To account for these two 

aspects, the Fisher’s Combination Test becomes the following: 

𝑇𝑆𝑆𝐿𝐴𝑇 = −�𝑤𝑖 log(𝑝𝑖) 𝐼𝑝𝑖<𝛼𝑖

𝐾

;𝑤𝑖 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑎𝑟𝑘𝑒𝑟 

The 𝛼 used can be adaptive, or the same for all genes. The weights can be 

either LD, or possible functional relevance.  

*This method was not freely available, and was therefore not incorporated for further analysis.  
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9. GATES (M.-X. Li et al. 2011) 

GATES is a Gene-based Association Test using Extended Simes procedure.  

The original Simes’ test is detailed above. The altered p-value is as below: 

𝑃𝐺𝐴𝑇𝐸𝑆 = min�
𝑚𝑒𝑝(𝑗)

𝑚𝑒(𝑗)
� 

The modification to the original Simes’ test is that 𝑚𝑒 is the effective number 

of independent p-values among the m SNPs, and 𝑚𝑒(𝑗) is the effective number of 

independent p-values among the top j SNPs. This is to account for the 

assumption inherent in the Simes’ test, which requires the input to be the results 

from independent tests. The value of 𝑚𝑒 is determined through a new approach 

using the following procedure of principal components analysis: 

𝑚𝑒 = 𝑀 −�[𝐼(𝜆𝑖 > 1)(𝜆𝑖 − 1)]𝜆𝑖 > 0
𝑀

𝑖=1

 

In this equation 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue of the p-value correlation coefficient 

matrix of the SNP-based statistic tests. With this procedure, negative eigenvalues 

are ignored by setting it as zero, which should be rare and only arises in the 

presence of missing data. If the SNPs are all independent, then the eigenvalues 

should all be 1 and they are all weighted equally.  

10. aSUM (Han and Pan 2010) 

This method combines the logistic regression, as well as the sum test, into an 

adaptive framework in five steps. The first step requires the original data, in 

which a marginal regression model is fit to each individual SNP, obtaining a 𝛽𝑀,𝑗 
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and a  𝑝𝑀,𝑗. The second step uses a pre-defined initial significance threshold, 𝛼0, 

to reclassify SNPs. If 𝛽𝑀,𝑗 < 0 and 𝑝𝑀,𝑗 < 𝛼0, then the alleles are reclassified as the 

number of minor alleles -2. The other alleles are unchanged. In the third step, the 

new data is fitted on a common-effect model with a usual score statistic U, with 

its associated variance and p-value. The fourth step consists of permuting the 

disease variable, repeating steps 1-3. In the final step, the aSUM test statistic is 

calculated from the sample mean and variance from the permutations.  

 

These methods have taken the classical methods described above, and altered them 

to account for the genetic architecture of the gene and the violation of the independence 

assumption found in GWAS data due to linkage disequilibrium. SLAT handles linkage 

disequilibrium by weighting SNPs based on their relative linkage disequilibrium, while 

GATES estimates the number of independent and representative SNPs  

4.2.1.4: Methods that directly estimate correlation structures  

11. Linear Combination Test (LCT) (Luo et al. 2010) 

The LCT directly estimates the correlation matrix of the association statistics 

from the GWAS, and then transforms the association statistics by the inverse of 

the correlation matrix. This down-weights statistics that are highly correlated 

while up-weighting independent statistics. The equations for this are as follows: 

𝑒 = (1,1,1,1, … ,1)𝑇 

𝑅𝑔 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑍 = �𝐶𝑜𝑟𝑟�𝑥𝑖 − 𝑦𝑖, 𝑥𝑗 − 𝑦𝑗��
𝑘∗𝑘
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𝑍𝑖 = 𝜙−1(1 − 𝑃𝑖), 𝑍 = (𝑍1, … , 𝑍𝑘)𝑇    [𝜙 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛] 

𝑇𝐿𝐶𝑇 =
𝑒′𝑍

�𝑒′𝑅𝑔𝑒
 

After the transformation, the SNP-level test statistics are summed across the entire 

genic region. 

*This method was not freely available, and was therefore not incorporated for further analysis.  

12. Quadratic Test (Luo et al. 2010) 

The QT directly estimates the correlation matrix as well, but weights the test 

statistic matrix differently, instead applying a quadratic approach instead of the 

previous method’s linear approach. 

𝑇𝑄𝑇 = 𝑍𝑇𝑅𝑔−1𝑍 

This method assumes that the test statistic is asymptotically distributed as a 

central 𝜒𝑘2 distribution. The quadratic approach consists of multiplying the test 

statistics by each other, instead of summing. 

*This method was not freely available, and was therefore not incorporated for further analysis.  

13. Decorrelation Test (Luo et al. 2010) 

The Decorrelation test (DT) directly transforms the dependent variables into 

independent variables. Once they are decorrelated, they can be combined using a 

traditional test, such as Fisher’s Combination Test, or Sidak’s Combination Test 

that was previously described. To decorrelate the variables, the following 

procedure is used: 

𝑅𝑔 = 𝐶𝐶𝑇; 𝐶 = 𝑛𝑜𝑛𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 
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𝑊 = 𝐶−1𝑍 = [𝑊1,𝑊2, … ,𝑊𝑘]𝑇 

𝐶𝑜𝑣(𝑊,𝑊) = 𝐶−1𝐶𝑜𝑣(𝑍, 𝑍)(𝐶𝑇)−1 = 𝐶−1𝐶𝐶𝑇(𝐶𝑇)−1 

𝑊~𝑁(0, 1) 

 

Now each variable in W are independent and a new p-value can be determined 

from that distribution using FCT, ST, or any other methods that require 

independent signals.  

*This method was not freely available, and was therefore not incorporated for further analysis.  

14. VEGAS (Liu et al. 2010) 

VEGAS, or a Versatile Gene-Based Association Study, considers results from 

a variety of GWAS designs, taking the p-values from the n SNPs assigned to the 

gene and converting them to a series of 𝜒1𝑑𝑓2  test statistics. These are then 

summed across the gene into a 𝜒𝑛𝑑𝑓2  statistic.  VEGAS accounts for the linkage 

disequilibrium present by using simulations from a multivariate normal 

distribution. A Monte Carlo approach cuts down on the computational resources 

required. VEGAS takes a gene with n SNPs and simulates an n-element 

multivariate normal with the covariance matrix (𝛴) being an nxn matrix of 

pairwise LD (r) values. These variables are then multiplied by the Cholesky 

decomposition matrix of 𝛴. This new random vector will have a multivariate 

normal distribution, which is then transformed into a vector of uncorrelated 𝜒1𝑑𝑓2  

variable. The final test statistic is then the sum of these values. This is repeated a 

large number of times, and the empirical p-value is calculated as the proportion 
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of these simulated test statistic that are greater than the observed original test 

statistic. This procedure is known as VEGAS-Sum. An alternative approach 

within VEGAS is known as VEGAS-Max. This procedure only considers the most 

significant SNP in the gene for the original test statistic. For each simulation, only 

the highest simulated test statistic from each run is used to create the empirical 

distribution. The best method between the VEGAS-Sum and VEGAS-Max tests 

will depend upon the genetic architecture of the gene.  

These methods directly estimate the correlation structure of the SNPs assigned to the 

genic region. They then transform the association statistics from this region by the 

correlation structure, or linkage disequilibrium, seen with the markers. The resulting 

independent signals are combined for an aggregate test statistic. 

4.2.2: Limitations 

When evaluating these methods, various factors must be taken into consideration. 

One is the incorporation of potential confounders in the model. Methods that use the 

GWAS P-values as input can control for these variables by including variables in the 

original GWAS analysis, such as principal components to control for population 

substructure or known confounders for the outcome of interest. Methods (like SLAT) 

that require raw genotypes are unable to control for potential confounders, and 

therefore may be susceptible to bias in the same way as an unadjusted GWAS.  

Another limitation is rare variants. GWAS genotyping panels and methods are not 

appropriate for rare variant detection and analysis. A simple model testing for the 
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association of a marker with the outcome will be underpowered to detect an association 

with a rare variant (MAF<1%). Most often, these rare variants will be removed in 

standard GWAS quality control procedures before any analyses are done. Even if the 

rare variants are included in subsequent analyses, these methods do not account for the 

markers allele frequency as they are all weighted equally. An exception to this is aSUM, 

which was developed for both common and rare variants. While some methods may be 

able to manually handle weights determined by the user, they are not an inherent part of 

the method.  

A last limitation of these methods is that they are highly dependent upon databases, 

which are continuously changing, being updated and improved on an irregular basis. 

Any results that are produced using these methods are therefore contingent on the build 

of the human genome, as well as the versions of the databases used. This may result in 

inconsistencies between studies done at different times. 

4.2.3: Discussion 

Previous literature has evaluated some of the programs described above. Lehne et al 

compared three basic methods: the most significant statistic from within the gene 

(Sidak), the mean test statistic of all SNPs (meanT) and the mean of the top quartile of 

test statistics (topQ).(Lehne, Lewis, and Schlitt 2011) In addition to these “uncontrolled” 

statistics, an empirical p-value was derived using permutations. They found that the 

maxT statistic, which only uses the strongest SNP P-value as the gene P-value, is subject 

to gene size bias. This is because large genes contain more SNPs and therefore are more 
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likely to have a SNP be significant by chance. Because maxT only uses the top SNP, it 

does not account for this bias. The statistic meanT had the opposite problem, where the 

smaller genes were subject to extremes due to only have a small number of SNPs. 

Spurious associations will affect these smaller genes much more than when they may be 

averaged out with a larger number of SNPs in larger genes. The same problem occurred 

with topQ, in which smaller genes were found to be on the extremes more often than 

they would be by chance. All three of these methods performed similarly, with less than 

2% difference between their Area Under the Curve (AUC) estimates. Lehne et al 

conclude that the performance is highly dependent upon the number of SNPs found in 

the gene, or genic region. When applied to real data, the different methods can rank 

genes very differently. For example, using a GWAS of Crohn’s Disease, the known risk 

gene of ZNF365 ranked 18th using maxT, 149th using meanT, and 67th using topQ. This 

gene is fairly large and had a total of 91 SNPs assigned to the region.  

In a more recent study Bacanu and colleagues evaluated 6 different tests: VEGAS, 

GATES, Simes, aSUM, and a hybrid test that the author proposed.(Bacanu 2012) Using 

simulations, they determined that the different methods were optimized based on the 

number of variants, gene lengths. For multiple causal variants in smaller genes, aSUM 

had the best performance while Simes was the fastest and the best-performing method 

for single causal variant genes. For longer gene lengths, VEGAS performed better than 

the other methods. To optimize performance, the authors propose a two-step method, in 

which Simes is used as the first step to screen for suggestive signals. These genes are 
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then followed up with more computationally intensive methods, aSUM or VEGAS 

depending on the gene length.  

 Further evaluation of gene-level methods is required to assess their relative 

performance in terms of sensitivity and specificity, as well as type I and II error. With 

nearly 20,000 genes currently cataloged with the National Center for Biotechnology 

Information (NCBI), multiple comparisons will remain an issue. Therefore, the ideal 

method would have low type I error to control false positives due to spurious 

associations.  The balance between sensitivity (true positives) and specificity (true 

negatives) will depend on the priorities of the study. High sensitivity should be desired 

in the case of high-cost follow-up, in which there are heavier consequences for false 

positives. On the other hand, if the goal of the study is to generate hypotheses, a high 

specificity coupled with a lower sensitivity may be adequate.  

 Gene-level methods were developed to detect genes that were enriched for 

associations in GWAS. Signals that would otherwise be ignored by the traditional 

GWAS significance threshold are brought to the forefront allowing further examination. 

A thorough evaluation of these methods will provide insight into the relative 

performance of the programs, as well as the questions that could be answered with the 

application of gene-level methods to GWAS results.  
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Table 4.1: Review of Gene-Level Methods 

Group Program/Method Citation Input Output Used in Aim 2a 
C

la
ss

ic
al

 

Fisher’s 
Combination Test 

(Peng et al. 
2009) 

 

SNP P-values Chi-squared Test Statistic X 

Sidak’s Correction SNP P-values Minimum P-value X 

Simes’ Test SNP P-values Minimum Ranked P-value X 

FDR SNP P-values Minimum False Discovery Rate X 

Logistic Regression Raw Genotype Likelihood Ratio Test X 

meanT (Lehne, 
Lewis, and 

Schlitt 2011) 
 

SNP P-values Average P-value  

topQ SNP P-values Average P-value (from top quartile)  

U
pd

at
ed

 
C

la
ss

ic
al

 SLAT 
(la Cruz et 

al. 2010) 
SNP P-values Chi-squared Test Statistic  

GATES 
(M.-X. Li et 

al. 2011) 
SNP P-values P-value X 

aSUM 
(Han and 
Pan 2010) 

Raw Genotypes Empirical P-value X 

D
ir

ec
t C

or
re

la
tio

n 
Es

tim
at

io
n 

LCT 
(Luo et al. 

2010) 

Raw Genotypes T-Statistic  

DCT Raw Genotypes Chi-squared Test Statistic  

QT Raw Genotypes Normally-distributed Test Statistic  

VEGAS 
(Liu et al. 

2010) 
SNP P-values Empirical P-value X 
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4.3: Pathway-Level Review 

A level higher than genes is grouping markers together within gene “sets”. These 

methods are adapted from gene expression studies, in which gene sets were investigated 

for enrichment of signal within a ranked list of differential gene expression. The 

fundamental question of these approaches is different than in the gene-level analyses. 

Since these methods are typically “enrichment” analyses, they are a way of visualizing 

GWAS results on a pathway-level. They do not take into account multiple independent 

signals within a gene, and therefore may not increase power to identify multiple weaker 

signals. Instead, this approach will use the genes that your mid-level significance GWAS 

results represent, and summarize the results in an approachable format.  

4.3.1: Databases 

These gene sets are often genes found in known biological pathways, but can also be 

determined by protein-protein interaction (PPI) or other bioinformatics-informed 

networks. For this analysis, we will be focusing on biological pathways, as determined 

by canonical pathway databases such as the Kyoto Encyclopedia of Genes and Genomics 

(KEGG) or BioCarta. A brief description of each of these databases is below.  

KEGG (Kyoto Encyclopedia of Genes and Genomes): KEGG is a database created 

from molecular-level information about understanding the functions and utilities 

of the biological system. Most of the large-scale molecular datasets were 

generated by genome sequencing and other high-throughput experimental 

technologies. Both the PATHWAY and BRITE aspects of KEGG are available. 
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KEGG PATHWAY details molecular interactions and reactions in manually 

drawn pathway maps. It uses datasets found in genomics, transcriptomics, 

proteomics, and metabolomics to inform these pathways. KEGG BRITE draws 

upon many other different types of relationships, such as bioinformatics and 

predicted networks. Pathways are classified by functional relevance, such as a 

particular product, as well as disease-specific pathways.  

BioCarta: BioCarta is a commercial company that develops, supplies, and 

distributes reagents and assays for research. Their pathway database is open 

source with the academic community integrating emerging proteomic 

information. It currently has information about >120,000 genes in many different 

species. Pathways are classified by functional relevance, such as adhesion, 

apoptosis, and metabolism. 

PANTHER (Protein Analysis Through Evolutionary Relationships): PANTHER 

classifies genes by their functional relevance. It draws upon scientific 

experimental evidence, and if not available, it uses evolutionary relationships to 

inform function. These genes are then classified by their families and subfamilies, 

Gene Ontology classes, PANTHER-specific protein classes, as well as known 

pathways. It is part of the Gene Ontology Reference Genome Project. It was 

developed for work with gene expression data. Some pathways are community-

curated.  

Reactome: Reactome is also an open source database that is manually curated and 

peer-reviewed. It is cross-referenced to many other databases, such as NCBI 
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Entrez Gene, Ensembl, and UniProt, as well as the UCSC and HapMap Genome 

Browsers. They also cross-reference with KEGG and ChEBI small molecule 

databases, PubMed and Gene Ontology. The focus for this database is the 

reaction, and therefore it mainly catalogs the small molecules involved in a 

specific reaction. 

Gene Ontology (GO): The GO Consortium consists of a variety of collaborations, 

including Reactome and PANTHER. It is an effort to catalog and classify various 

bioinformatic information. It is separated into three groups: biological processes, 

molecular functions, and cellular components. GO is an ontology, meaning that 

these processes are not independent, but rather arranged in an hierarchical 

fashion. Cellular components are parts of a cell or the extracellular environment. 

Molecular functions detail the elemental activities of gene products. Lastly, a 

biological process is a set of events that has a start and an end, similar to a 

canonical biological process. 

Molecular Signatures Database (MSigDB):  This database is curated by the Broad 

Institute and includes 6 major collections: positional gene sets, curated gene sets, 

motif gene sets, computational gene sets, GO gene sets, and oncogenic 

signatures. MSigDB draws from numerous other databases into one central 

place. Originally developed to aid with gene expression data and GSEA, it can 

also be adapted for other uses. This site also hosts the original GSEA software.  
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4.3.2: Methods 

Pathway-level methods differ in the treatment of gene-level associations, the 

handling of linkage disequilibrium, databases utilized, and the underlying hypotheses. 

These factors must be taken into account when considering the best, or most 

appropriate, program. 

1. ALIGATOR (Holmans et al. 2009) 

This program exclusively tests for overrepresentation of association signals in 

Gene Ontology (GO) categories from a genome-wide association analysis. SNPs 

are mapped to the GO gene sets and filtered based on a pre-determined 

significance threshold. The genes that these SNPs represent are then determined 

to be significant, regardless of the number of SNPs in the gene. Further analyses 

are restricted to GO categories that have at least 2 significant genes. Replicate 

gene lists are simulated drawing the same number of SNPs as in the filtered GO 

categories from the original analysis. From these replicate gene lists, an empirical 

p-value is calculated. The simulations assume that the LD structure is identical 

between the different GO categories. A violation of these assumptions will lead 

to an overly conservative estimate in the presence of high LD. This method only 

requires the rsID of the SNP, as well as the associated p-value from the GWAS. 

2. GenGen (Wang, Li, and Bucan 2007) 

The first incarnation of GenGen was developed in 2007 as a direct adaptation 

of the Gene Set Enrichment Analysis (GSEA) methods being used in gene 

expression analysis. SNPs are assigned to genes, in the coding regions, as well as 
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a 500 kb region around the gene. For each gene, the most significant SNP test 

statistic is used as the gene test statistic. These gene scores are then sorted by 

strength of association. Using these rankings, the gene sets are analyzed using a 

“Kolmogorov-Smirnov-like running-sum statistic”. This statistic tests for an 

overrepresentation of the genes in that set being highly ranked overall. The user 

provides the gene and pathway mapping, thus this method can be adapted to 

numerous pathway databases. Standard mapping files are available for some 

commercial arrays, as well as a composite of GO, BioCarta, and KEGG.  

3. Gene Set-based Analysis of Polymorphisms (GeSBAP) (Medina et al. 2009) 

GeSBAP is flexible with user input. It takes SNP-level p-values, gene-level p-

values, or raw genotype data in Plink format.(Purcell et al. 2007) Gene Ontology, 

KEGG and Biocarta pathways are used for the analysis. SNPs are mapped to 

genes using a 5 kilobase flanking region on either side of the coding regions. The 

most significant SNP p-value is used as the gene-level p-value. These genes are 

then mapped to the pathways and ranked by significance. Fisher’s Exact Test is 

then used to assess overrepresentation of functional categories in the top-ranked 

genes. P-values are FDR-corrected for multiple testing. GeSBAP is a web-server 

program.  

*This method was not freely available, and was therefore not incorporated for further analysis.  

4. Gene Set Ridge Regression in Association Studies (GRASS) (Chen et al. 2010) 

GRASS uses two steps for analysis. In the first step, the raw genotype data is 

aggregated into gene-level units, which are then decomposed into orthogonal 
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components using Principal Components Analysis. The SNPs, which have the 

largest eigenvalues, are then called “nontrivial EigenSNPs”. These SNPs are 

considered individual signals within the gene. All of these SNPs are then 

considered predictors in the group ridge regression, which selects the 

representative SNPs associated with the outcome. The representative SNP beta 

estimates are then aggregated into a gene-level estimate. These statistics are 

evaluated for enrichment within a gene set, adjusting for gene size. Permutation 

is used to standardize the estimates. 

5. GSA-SNP (Nam et al. 2010) 

GSA-SNP is a stand-alone package that takes SNP p-values as input. SNPs 

are assigned to genes, including a 20 kilobase flanking region on either side of 

the coding region. The p-values are negative log10 transformed, and then the 2nd 

top SNP is selected. This was done to get the SNP most representative of the 

SNPs in the gene, not just the most significant by chance. Each gene-level p-value 

has a Benjamini-Hochberg multiple testing correction applied. These gene-level 

p-values may be evaluated at the pathway-level using three different analyses: Z-

statistic, MAXMEAN, and iGSEA.  

6. GSEA-SNP (Holden et al. 2008) 

GSEA-SNP was developed as a direct adaptation of the original GSEA 

methods for gene expression data. SNP data is tested for association using an 

allele- or genotype-based statistic, such as the MAX-test. The MAX-test calculates 

three Cochrane-Armitage trend statistics according to the three different 
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inheritance models (recessive, dominant, and additive). It uses the maximum of 

these three. A standard chi-squared model may also be used. The SNPs are 

ranked into a list according to significance and then compared to a gene set-

specific list of SNPs. The gene sets are user-defined. Within each gene set, an 

enrichment score is calculated. This score shows if the SNPs in the gene set are 

overrepresented at the top of the original list including all SNPs ordered by 

significance. A running-sum statistic is used to determine overrepresentation. 

The phenotype is permuted to give the empirical P-value of the enrichment 

scores. A false discovery rate correction is applied to each SNP in the gene set. 

This program is available in R.  

7. HYST (M.-X. Li, Kwan, and Sham 2012) 

HYST was developed as a direct extension to GATES.(M.-X. Li et al. 2011) 

After performing GATES, an extended Simes procedure used for gene-level 

associations, HYST performs a scaled chi-squared test upon GATES output (SNP 

p-values). The procedure is similar to Fisher’s Combination Test, but applied to 

gene-level p-values instead of SNP p-values. User-defined prior weights can be 

incorporated into the test statistic to account for functional significance of 

different members of a gene set. 

8. i-GSEA4GWAS (Zhang et al. 2010) 

This program is a web-server that performs a gene set enrichment specifically 

for GWAS. Given an input of SNPs and their p-values, i-GSEA4GWAS assigns 

SNPs to genes using various flanking regions, or the user can determine to only 
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use functional SNPs. The maximum statistic or –log(P-value) within a gene is 

selected as the score for that gene. Permuting the SNP label normalizes these p-

values. This corrects for gene variation, such as gene size or number of SNPs per 

gene.  After this is done for all genes, they are ranked according to their scores. A 

Kolmogorov-Smirnov-like statistic is then calculated as the enrichment score for 

each gene. A significance proportion-based enrichment score (SPES) is calculated 

for a gene set, in which the number of significant genes in that set is divided by 

the number of significant genes in the entire dataset. A gene needs to have a SNP 

within the top 5% of SNPs to be considered significant. I-GSEA4GWAS draws 

upon pathways from MSigDB, which includes KEGG, BioCarta, and GO. The 

user may upload customizable gene sets.  

*This method was not freely available with the current genomic build, and was therefore not 

incorporated for further analysis.  

 

9. INRICH (Lee et al. 2012) 

INRICH is a unique method when compared to all the other methods in this 

review. Instead of taking input in the form of SNP-level test statistics or raw 

genotypes, it accepts genomic ranges that are found to be associated with 

outcome in the original GWAS. This can be done in Plink by scanning for all 

SNPs above a certain p-value threshold.(Purcell et al. 2007) The SNPs 

surrounding these index SNPs are then scanned for all SNPs below a less-

stringent p-value threshold. After these intervals are estimated, INRICH 
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calculates the number of intervals that overlap with a user-defined gene set. 

Permutations are conducted with intervals of the same length to assign empirical 

p-values to the gene set. An additional round of permutations using all gene sets 

is used to correct for multiple comparisons. 

10. MAGENTA (Segrè et al. 2010) 

MAGENTA uses gene set enrichment analysis (GSEA), adapted from gene 

expression studies, to evaluate the association of genetic data with pathways 

taken from public databases. These databases include KEGG, PANTHER, 

Reactome, BioCarta and Gene Ontology.(Segrè et al. 2010) It is a standalone 

package that runs on genome build 37 (hg19) or the older build 36 (hg18). 

MAGENTA’s input is the SNP p-values, as well as their chromosomal positions. 

This can be from either a single GWAS, or a meta-analysis. MAGENTA maps the 

SNPs to genes using the UCSC genome browser coordinates from either hg18 or 

hg19. A gene is determined as the genic region, as well as user-defined flanking 

regions up and downstream of the transcribed start and end sites.  In the second 

step, the minimum P-value from that gene is used to calculate a Z-score. The 

third step consists of correcting for possible confounders using a step-wise 

regression method. The six gene properties that are possibly corrected for are as 

follows: (1) physical gene size, (2) number of SNPs per kb, (3) number of 

independent SNPs per kb, (4) number of recombination hotspots per kb, (5) LD 

units per kb, and (6) genetic distance per kb. The adjusted gene p-value is then 

combined into gene sets, as determined by the databases previously mentioned. 
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Before an altered GSEA algorithm is applied to these sets, genes without any 

SNPs in the flanking regions are removed, as well as genes within a gene set that 

have the same most significant SNP to account for spurious associations. For 

each gene set, the proportion of genes with a corrected p-value below a certain 

cut-off is then calculated. This cut-off is predetermined as the 95th percentile of all 

the corrected gene-level p-values or the 75th percentile if a polygenic model is 

assumed. The GSEA p-value is then calculated using randomly sampled gene 

sets of the same size. A Bonferroni correction is applied to account for multiple 

testing.    

11. PARIS (Pathway Analysis by Randomization Incorporating Structure) 

(Yaspan et al. 2011) 

PARIS differs from other pathway-level methods in that it does not first 

assess significance at a gene-level, and then collapse it into a pathway, or gene-

set. Instead it looks for independent “features” within the gene set. These 

features include LD blocks and individual SNPs in linkage equilibrium. LD 

blocks are defined using the HapMap CEU samples with the Gabriel et al 

method, and therefore may not be appropriate for GWAS of other ethnic groups. 

Any features that overlap with a gene’s coding region is included in that gene’s 

bin. PARIS then creates a “randomized feature collection” that has the same 

characteristics of the pathway’s features from the rest of the genome. This is done 

to account for potential gene/pathway biases.  An empirical p-value is then 

calculated comparing the enrichment of significance in the original pathway to 
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the “randomized feature collection”. This is done by calculating the number of 

significant features within the pathway, compared to the randomized set. 

Significance of at least one SNP with a p<0.05 within the feature.  

*This method was not freely available for the server architecture used for analysis, and was 

therefore not incorporated for further analysis.  

12. PLINK Set-Based Test (Purcell et al. 2007) 

PLINK’s set-based test was designed originally to be for candidate gene 

studies, not GWAS due to its computational needs. The gene sets are user-

defined. Within each gene set, the individual SNP association is conducted. Out 

of each gene set, the independent SNPs are extracted for further analyses. The 

mean of these independent SNPs’ statistics is then calculated as the gene set 

statistic. The phenotype is then permuted for a user-specified number of times, 

repeating the same process. This maintains the LD structure found in the dataset. 

The empirical p-value for that gene set is then determined as the number of times 

the permuted set-statistic is greater than the original statistic for the set. While 

this corrects for the number of SNPs in the gene set, it does not correct for 

multiple testing on account of the number of gene sets. The r2 threshold, p-value 

threshold, as well as the maximum number of independent SNPs selected per 

gene set can be user-specified.  

13. RS-SNP  (D'Addabbo et al. 2011) 

RS-SNP is a Matlab package that can be used to assess if the significance 

found in a particular gene set is more than it should be by chance. In the first 
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step, the association statistic is calculated for each SNP with five different 

models: general, dominant, recessive, multiplicative and additive risk models. 

After the individual SNP associations are computed, the enrichment of these 

associations in the user-defined gene sets is determined. This is done by using a 

hypergeometric distribution to calculate statistical significance under two null 

hypotheses simultaneously. The first null hypothesis is that there is no 

association between genotype and phenotype. The second null hypothesis is that 

the SNPs that are significant are not found in the gene set by chance. Significance 

is done by permutations in which the outcome status is permuted. For each 

permutation, the number of significant SNPs overall in the gene set is calculated 

using the mean and variance under the hypergeometric distribution. A false 

discovery rate and family wise error rate are computed to control for multiple 

testing. 

*This method was not freely available, and was therefore not incorporated for further analysis.  

14. SNPtoGO  (Schwarz et al. 2007) 

SNPtoGO evaluates the enrichment of GO terms mapped to a set of SNPs. 

The input is a list of SNPs. SNPtoGO then maps the SNPs to GO terms, including 

a user-defined flanking region. A Fisher’s exact test is used to determine if a GO 

term is overrepresented in a list of SNPs, compared to a random sample of SNPs. 

Because GO terms are hierarchical in structure, the elim algorithm is used {Alexa 

et al, 2006} to accommodate the tree structure and prevent there from being too 
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many statistically relevant terms. A Bonferroni correction is applied to all results 

to account for multiple testing.  

*This method was not freely available, and was therefore not incorporated for further analysis.  

15. SRT (SNP Ratio Test) (O'Dushlaine et al. 2009) 

The SNP Ratio Test takes raw genotype files as an input, and computes the 

SNP-level association statistics as its first step. These SNPs are they aggregated 

into pathways using a user-defined database, ignoring the gene-level unit. The 

pathway-level units are evaluated by calculating the ratio of significant SNPs 

from a GWAS over a pre-determined threshold to the number of SNPs in the 

pathway unit. To assess significance, permutations are conducted using the raw 

genotype files given as input. The ratio of cases to controls is maintained 

throughout the outcome permutations. To prevent inflation, the same p-value 

threshold is not used as in the original analysis. Instead, the lowest M p-values 

are used from each pathway to create the new ratio. The empirical p-value is 

then calculated as the number of simulations that have a ratio larger than the 

original over the total number of simulations. Both the numerator and 

denominator have 1 added to them, to prevent a p-value of 0.  

4.3.3: Limitations  

The pathway-level methods have all of the same limitations as the gene-level 

methods. These include the inclusion of potential confounders, a lack of support for rare 

variants, and being dependent upon the databases used. In addition to these concerns, 
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pathway-level analyses have their own issues. One of the fundamental differences 

between gene- and pathway-level analyses is that pathway-level analyses were not 

developed to find numerous additive effects within the same gene. Most of the 

programs only use the most significant SNP p-value as a surrogate for the overall gene 

p-value. This ignores all structure within the gene and all its information.  Some 

programs ignore the gene structure all together. These programs directly map SNPs to 

their gene sets. While they may ignore this structure, the benefit is that they are much 

less computationally intensive without this extra step. Most of the programs take SNP p-

values as their input, increasing the ease of computation.  

An additional difference is the use of canonical pathway databases, such as GO and 

KEGG and the lack of directionality. While the program may indicate a pathway, it does 

not define a certain aspect of the pathway, nor the process that it may directly affect. The 

use of these canonical pathways may also limit the investigator’s hypotheses. Other 

methods exist that only use the actual data to elucidate gene-gene interactions and 

potential networks of association through protein-protein interaction analyses (PPI).   

4.3.4: Discussion  

GWAS typically use a genome-wide significance threshold of 5x10-8. Associations 

with SNPs below this threshold are often ignored, at least in the first phase of analysis, 

leading to the loss of potential biologically relevant associations. These pathway 

methods were designed to look for enrichment of genes that are typically ignored within 

gene sets or pathways.  All of these programs are highly dependent upon the databases. 



 90 

Many are able to accept user-defined databases, which is especially helpful for disease-

specific studies. The use of canonical pathways in GO, KEGG, and BioCarta contribute 

to a standardization of comparisons between various studies. 

The interpretation of these programs should always be in the context of their 

methodology, as some programs rely upon the strength of associations for the genes 

within the gene sets. Others only rely upon the ranking of the genes, looking for 

enrichment within the top ranked genes regardless of their strength of association. Two 

of the methods (SNP Ratio Test and Plink Set Test) ignore gene structure altogether and 

only look at the SNPs in the gene set as a whole. It should be emphasized that pathway-

level methods do not evaluate gene-gene or any other types of interactions. Results do 

not offer directionality or pinpoint the part of the pathway that is affected. To 

investigate these relationships, a different set of methods is required, such as protein-

protein interactions or classical interaction analyses. The goal of pathway-level methods 

for GWAS is to visualize the data that is suggestive but not significant, looking for 

enrichment in some biological processes versus others. By evaluating enrichment of 

pathways, it offers the investigator the ability to see connections between the associated 

genes.  
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Table 4.2: Review of Pathway-Level Methods  

Program/Method Citation Input Group Pathways 
Adjusted for Multiple 

Comparisons 
Evaluated in 

Aim 2b 
ALIGATOR (Holmans et al. 2009) P (SNP) C GO  X 

GenGen 
(Wang, Li, and Bucan 

2007) 
Raw 

Genotype 
C User-defined  X 

GeSBAP (Medina et al. 2009) 
P (SNP or 

Gene) 
C GO, KEGG, BioCarta FDR  

GRASS (Chen et al. 2010) 
Raw 

Genotype 
SC User-defined  X 

GSA-SNP (Nam et al. 2010) P (SNP) C GO Benjamini-Hochberg X 

GSEA-SNP (Holden et al. 2008) 
Raw 

Genotype 
C User-defined  X 

HYST 
(M.-X. Li, Kwan, and 

Sham 2012) 
P (SNP) C User-defined  X 

i-GSEA4GWAS (Zhang et al. 2010) P (SNP) C GO, KEGG, BioCarta   

INRICH (Lee et al. 2012) 
Genomic 
Ranges 

SC User-defined Permutations X 

MAGENTA (Segrè et al. 2010) P (SNP) C 
KEGG, PANTHER, 

Reactome, BioCarta, GO 
Bonferroni, FDR X 

PARIS (Yaspan et al. 2011) P (SNP) SC User-defined   

PLINK Set Test (Purcell et al. 2007) 
Raw 

Genotype 
SC User-defined  X 

RS-SNP 
(D'Addabbo et al. 

2011) 
Raw 

Genotype 
SC User-defined   

SNPtoGO (Schwarz et al. 2007) SNP IDs SC GO Bonferroni  

SRT 
(O'Dushlaine et al. 

2009) 
Raw 

Genotype 
C User-defined  X 
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Chapter 5: Evaluation of Gene-Level Methods (Paper 2) 

 

5.1: Abstract 

 

Background: Genome-wide association studies (GWAS) have successfully identified 

more than 10,000 SNPs associated with 840 traits. Despite this success, there still remains 

the problem of “missing heritability” for most traits. One contributing factor may be the 

result of examining single markers at a time as opposed to a group of markers that are 

biologically meaningful in aggregate. To address this problem, a variety of gene-level 

methods were developed to identify putative biologically relevant associations. A 

simulation was performed to systematically assess the performance of gene-level 

methods. 

Methods: Using genetic data from the Wellcome Trust Case Control Consortium 

(WTCCC), we simulated case-control status based on an additive polygenic model 

where cases have more risk alleles than controls. A total of 20 gene sets and 226 genes 

were selected from Gene Ontology (GO). We evaluated 12 methods based on the 

sensitivity, specificity, as well as type I and type II error of each test. The influences of 

gene size, number of causal single nucleotide polymorphisms (SNPs) in each gene, and 

effect size were assessed. The effect of sample size was also examined using a 
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traditionally underpowered (n=250 cases, 250 controls) and a larger (n=2,250 cases, 2,250 

controls) set of cases and controls. 

Results:  Despite the low overall sensitivity (18-59%), across methods the specificity was 

high (89-100%) with low type I error (0.1-6%). Classical methods, not designed to handle 

linkage disequilibrium, had higher sensitivity, but also higher type I error. Newer 

methods that directly estimate correlation structures were underpowered to detect genes 

with smaller effect sizes, but type I error was low. All programs were significantly 

underpowered to detect signals in small sample sizes (n=500). Sensitivity was lowest for 

genes that had few causal SNPs, while they were increased if multiple independent 

signals were present.  

Conclusions: The low type I error and high specificity found in most methods increase 

confidence in identified genes. Larger effect sizes and a higher number of causal SNPs 

increased accuracy in all programs. All methods were successful at identifying genes 

that would not been detected in a traditional GWAS. 
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5.2: Introduction 

In less than a decade, genome-wide association studies (GWAS) have proven to be a 

useful tool in identifying risk loci for various complex diseases. As of August 2013, the 

NHGRI GWAS Catalog contained 1,666 publications and 11,082 associations.(Hindorff 

et al. 2009) Working under the hypothesis of “common disease, common variants”, 

GWAS has elucidated many loci that are moderate to highly associated with complex 

phenotypes. However, there is still a large amount of “missing heritability”. One 

example of this is human height. The heritability, or proportion of phenotypic variance 

due to genetics (as opposed to environmental influences), of human height has been 

estimated to be 80%.(Zaitlen et al. 2013) Through GWAS, 50 variants have been 

identified as being genome-wide significant, yet only 5% of the phenotypic variance has 

been explained. By including nearly 300,000 variants, 45% of the variance can be 

explained in a linear model.(Yang et al. 2010) The discrepancy between these two 

estimates is largely due to many of the variants not having a large enough effect size to 

be detected with stringent GWAS thresholds.  

One method to detect these smaller effect sizes is through gene-level programs. 

These programs look for an enrichment of independent association signals within a 

gene. The underlying framework theorizes that genes that have multiple alleles 

associated with the outcome of interest (allelic heterogeneity) would not have any single 

nucleotide polymorphisms (SNPs) with a large enough effect size to be detected. This 

gene would be apparent when these SNPs are assessed for statistical significance in 
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aggregate because many SNPs would have suggestive P-values. In recent years, a 

plentitude of methods have been developed to address this question. However, there 

has been no consensus as to the best method as determined by their sensitivity and 

specificity, as well as type I and II error rates. We seek to systematically evaluate gene-

level programs for GWAS through a simulation that examines the effect of gene size, 

number of causal alleles, as well as sample size, on their relative performance.  

5.3: Materials and Methods 

5.3.1: Simulation Methods 

5.3.1.1: Genotype Quality Control  

The common control data was ascertained from the Wellcome Trust Case-Control 

Consortium following the appropriate IRB procedures. Data included the 1958 Birth 

Cohort (N=2,930) and the National Blood Service samples (n=2,737). These samples were 

collected to represent the overall population of the United Kingdom, regardless of health 

status. Within the original study, SNPs were filtered for having a Hardy-Weinberg 

Equilibrium p-value > 10-20, an information content > 90%, genotype missingness <5 %, 

and a minor allele frequency (MAF) > 1%. This lead to a loss of 191,544 SNPs in the 

National Blood Service samples, and 192,375 SNPs in the 1958 Birth Cohort. The two 

studies were then combined for all further analyses. This resulted in a total of 926,604 

SNPs, and 5,667 individuals. Quality control was repeated when the two studies were 

combined with the same criteria as within each original study. This resulted in a total of 

913,763 SNPs in the same 5,667 individuals. Samples were then screened through 
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individual-level quality control measures, including individual missingness < 5%, as 

well as heterozygosity outliers. For missingness, 5 people were dropped for having 

more than 5% of their SNPs missing. Heterozygosity was estimated and individuals 

more than 5 standard deviations away from the mean were dropped, leaving 5,627 

individuals.  

The data were converted from the probabilities in the Wellcome Trust format, to 

called genotypes in Plink format.(Purcell et al. 2007) Genotypes had to have a posterior 

probability of greater than 90%, otherwise they were annotated as missing. Data was 

again screened for genotype missingness (<5%, N=741), MAF (>1%, N=61), and 

individual missingness (<5%, N=19). Individuals were screened for excessive identity-

by-descent (IBD). First-degree relatives were excluded (N=114).  

To ascertain a relatively homogenous population, principal components analysis 

(PCA) was conducted. Non-autosomal markers were removed, as well as markers in 

known regions of population substructure.  Markers were selected to be independent 

using Plink with a maximum r2 cutoff of 0.05. A total of 42,913 SNPs were used in PCA 

analysis of 5,494 individuals. SNP weights in each analysis were examined for outliers, 

but none were found. Two successive rounds of PCA were conducted to remove outliers 

from the first two principal components. A total of 4,500 individuals remained in a 

homogeneous population.  

Markers were then filtered for a Hardy-Weinberg Equilibrium p-value > 10-5, MAF > 

1%, and missingness < 5%. Marker coordinates were updated from hg18 to a more recent 
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build of hg19 for further analyses. This was done using liftOver, a utility from the 

University of California, Santa Cruz (UCSC) Genome Browser.(Hinrichs 2006) SNPs that 

could not be mapped to the newer build were dropped from analysis (N=208). The 

cleaned data resulted in 4,500 individuals and 906,298 SNPs.  

5.3.1.2: Pathway and Gene Selection 

Pathways were downloaded from the Molecular Signatures Database (MSigDB) for 

Gene Ontology Biological Processes.(Subramanian et al. 2005) This database was chosen 

because the majority of the methods could use this database. The Gene Ontology (GO) 

Biological Processes (BP) are categorized as a series of events or molecular functions that 

have a beginning and an end. This is similar to a canonical pathway, which is found in 

KEGG and BioCarta, in that there is a process that begins and ends with an ultimate 

goal. There were 825 biological processes in this database, with a median size of 28 

genes. A total of 20 pathways were randomly selected within two groups: 10 with over 

28 genes (big) and 10 with under 28 genes (small).  Features of these pathways are 

detailed in Table 5.1. The Entrez IDs from these pathways were then mapped using 

Ensembl and the BioMart package within Bioconductor in R under build hg19. The 

median gene size was 28.32 kilobases (kb) and the mean gene size was larger at 71.09 kb. 

This gene size includes introns. The median gene size is nearly on par with the average 

gene size estimated from the human genome of 27 kb.(Venter et al. 2001) However, the 

mean gene size is much larger. This is partly due to a few large genes that skew the 

distribution, but it is also due to a bias with well-characterized functional genes tending 
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to be larger than those that are smaller, including pseudo-genes.(Venter et al. 2001) 

There was no difference in the distribution of gene size by the size of pathways (P<0.05).  

From each class of pathways (big and small), a number of genes were selected to be 

“causal”. Within each group, four pathways were selected to have only one associated 

gene, four pathways were selected to have 20% of their genes “causal”, and two 

pathway were selected to have 50% of their genes “causal”. Genes were removed that 

were found to be in numerous pathways to create relatively independent units of 

analysis. This lead to a total of 226 selected genes blind to the genes’ various features 

such as size and SNP density. (Table 5.1) 
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Table 5.1: Pathway Characteristics 

Group Biological Process # Genes 
Median Gene 

Size (kb) 
Mean Gene 

Size (kb) 
Percentage of 

Genes 
# Simulated 

Genes 
# Simulated 

Genes (Truth) 

SM
A

LL
 

CDC42 Protein Signal Transduction 12 51.81 77.27 50% 6 4 
Defense Response to Virus 11 32.59 56.27 20% 3 3 

Establishment of Vesicle Localization 10 28.71 118.26 (1) 1 1 
G-Protein Signaling Adenylate Cyclase 

Activating Pathway 
25 15.48 49.20 20% 5 4 

G1 Phase of Mitotic Cell Cycle 12 15.46 37.58 20% 3 3 
Morphogenesis of an Epithelium 17 31.64 53.37 20% 4 2 

Protein Complex Disassembly 15 23.55 98.05 (1) 1 1 
Protein Polyubiquitination 10 59.82 58.39 (1) 1 1 

Spindle Organization and Biogenesis 10 33.72 32.83 50% 5 5 
Ribonucleotide Metabolic Process 17 38.18 96.72 (1) 1 1 

BI
G

 

Anatomical Structure Morphogenesis 363 30.45 93.98 20% 73 70 
Cellular Defense Response 55 16.67 33.56 (1) 1 1 

Establishment and/or Maintenance of 
Chromatin Architecture 

71 37.70 69.97 50% 36 36 

G-Protein Coupled Receptor Protein 
Signaling Pathway 

332 14.78 59.50 20% 67 65 

Leukocyte Activation 65 20.87 59.77 (1) 1 0 
Lipid Transport 29 27.22 42.68 50% 15 13 

Membrane Lipid Metabolic Process 98 31.07 56.37 (1) 1 1 
Regulation of DNA Binding 44 25.79 53.89 (1) 1 1 

Response to Hypoxia 28 41.34 65.78 20% 6 6 
T-Cell Activation 41 26.30 42.52 20% 9 8 
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5.3.1.3: Phenotype Generation 

SNPs that were within the genic region and a 20 kb flanking region on either side of 

the genomic coordinates were extracted from the GWAS genotype file. From each gene 

unit, tag SNPs were selected using Tagger and a cut-off of r2<0.2 for “independent” 

SNPs.(de Bakker et al. 2005) Between the 226 genes, 75 (~1/3) genes had one SNP 

selected as causal, 76 (~1/3) had 2 SNPs selected as causal, and 75 (~1/3) had 5 SNPs 

selected as causal. This resulted in a total of 602 SNPs tagging 226 genes in 20 different 

pathways.   

 These causal SNPs were extracted from the genotype file and converted into an 

additive format, indicating the number of minor alleles per individual (0, 1, or 2). Genes 

were split into two groups, with effect size being assigned at random between an odds 

ratio (OR) of 1.2 and an OR of 2. The effect sizes were log transformed (log2) and 

multiplied by the individual’s number of minor alleles to assume an additive model. 

This led to an individual per-marker score, with all SNPs in a gene having the same 

effect size.  All 602 markers were then summed over an individual, leading to a liability 

score per person.  Subtracting out the mean and dividing by the standard deviation of 

the overall distribution standardized the individual liability scores. To introduce a 

stochastic element into the phenotype assignment, scores had a random amount of 

variation added from a normal distribution. Individuals were then assigned a case or 

control status based on their underlying score using a binomial distribution. The 

resulting distribution can be seen in Figure 5.1. The study was evenly split between 

cases and controls, with 2,250 individuals in each group. The score distribution of cases 
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and controls overlaps and was done intentionally to create a realistic additive polygenic 

model. 

 

Figure 5.1: Frequencies of the standardized liability scores by simulated case (pink) and 

control (blue) status. 

 

Two rounds of analyses were conducted with two datasets: one of a larger 

traditional GWAS sample size (N=4500), and another on a smaller sample size (N=500). 

The 500 individuals in the second analysis were randomly selected from the 4,500 

individuals from the first analysis. This group consisted of 247 cases and 253 controls. 
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5.3.1.4: Genome-wide association study 

Using the case-control phenotype assigned in the previous section, a genome-wide 

association study was conducted. Under an additive model, a logistic regression was 

performed for each marker. Genome-wide significance (P<5X10-07) was reached for two 

regions: chromosomes 1 and 22 (Figure 5.2). No SNP with an effect size below 1.25 

reached genome-wide significance (Figure 5.3).  

To check the validity of the simulation, the correlation between an individual’s SNP 

score and their case-control status was plotted versus that SNP’s negative log p-value 

from the GWAS. They were separated out by the simulated effect sizes, 1.2 and 2 (Figure 

5.4.1 and 5.4.2). It can be seen that the higher the correlation with the outcome, the more 

significant the association. This is more pronounced for the higher effect sizes, as 

expected, because of the increased power. While the effect sizes were split evenly 

between the genes, the more significant SNPs are highly skewed towards the larger 

effect size. However, this is consistent with many GWAS in which there is increased 

power for larger effect sizes. This will limit conclusions about the influence of effect sizes 

in later analyses for both gene- and pathway-level methods. 



 106 

Figure 5.2: Manhattan Plot of genome-wide association by chromosome. Significance is shown along the y-axis with the –log10 

transformation of the GWAS P-values. The grey line indicates genome-wide significance at 5x10-8. SNPs are organized by chromosome (different 

colors) and position along the y-axis. 
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Figure 5.3: Manhattan Plot of SNPs with an effect size below 1.25 by chromosome. Significance is shown along the y-axis with the –log10 

transformation of the GWAS P-values. The grey line indicates genome-wide significance at 5x10-8. SNPs are organized by chromosome (different 

colors) and position along the y-axis. 
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Figure 5.4.1: SNP score correlation with outcome (x-axis) versus significance for lower 

effect sizes (OR=1.2, y-axis).  

 

Figure 5.4.2: SNP score correlation with outcome (x-axis) versus significance for higher 

effect size (OR=2, y-axis). 
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5.3.2: Gene-Level Programs 

A total of 12 programs were compared: VEGAS (all SNPs), VEGAS (Top 10% of 

SNPs), Fisher’s Combination Test, Sidak’s Combination Test, Simes’ Test, False 

Discovery Rate (FDR), GATES, HYST, Weighed GATES, Weighted HYST, aSum, and the 

Score Test. While these methods were previously described in Chapter 4, they will be 

briefly summarized below. 

1. Fisher’s Combination Test: Fisher’s combination test (FCT) takes the natural 

log of the SNP P-values, summing across all SNPs in the gene, and then 

multiplies by -2. The resulting chi-squared test statistic’s degrees of freedom 

is determined by the number of SNPs in the gene.(Peng, Zhao, and Xue 2009)  

2. Sidak’s Combination Test: Sidak’s Combination Test, also called Sidak’s 

Correction, takes the minimum SNP from the gene and corrects for the 

number of SNPs.(Peng, Zhao, and Xue 2009)  

3. Simes’ Test: SNPs are ordered from the most to least significant, multiplied 

by the total number of SNPs, and divided by their rank. The minimum 

transformed P-value is then used as the gene-level P-value.(Peng, Zhao, and 

Xue 2009)  

4. False Discovery Rate (FDR): The SNP P-values are ordered from most to 

least significant and are corrected for the False Discovery Rate. The minimum 

False Discovery Rate is then used as the gene-level output.(Peng, Zhao, and 

Xue 2009)  
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5. GATES/Weighted GATES: SNP P-values are assessed for correlations and 

independent representative SNPS are selected for each gene. The 

representative SNPs are then corrected using the Simes’ procedure. The 

Weighted GATES methods incorporates weights for the SNPs depending on 

their functional relevance (intron, exon, nonsynonymous, etc).(Li et al. 2011)  

6. HYST/Weighted HYST: HYST is part of the GATES package in which a 

modified hypergeometric test is used to determine a gene-level test statistic 

for enrichment. The weighted HYST procedure weights SNPs based on their 

functional relevance.(Li, Kwan, and Sham 2012)  

7. VEGAS (All/Top 10%): VEGAS directly estimates the correlation structure of 

the genes by using a Cholesky decomposition. Permutations are conducted to 

determine an empirical P-value. All SNPs can be used within the gene, or just 

the top 10% of associated SNPs within each gene.(Liu et al. 2010) 

8. ASUM: ASUM is an adaptive sum test that can be used for both rare and 

common variants. The effect size is first evaluated in a multivariate 

regression analysis for variants with a significant protective effect, which is 

then flipped. Then all variants are collapsed across the region and evaluated 

using the score test with logistic regression.(Han and Pan 2010)  

9. Score Test: All variants are considered in a multivariate logistic regression 

using the score test with no transformations regarding effect size.(Han and 

Pan 2010) 
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All programs defined genic regions as the translated gene region plus 20 kilobases 

on either side. Because of the stochastic nature of the GWAS simulation, the 

determination of true positive and negative genes was dependent upon the GWAS 

results and the original framework. In order to be a “true positive”, genes had to be one 

of the original list that the GWAS was simulated upon, as well as have at least one SNP 

with a P-value of less than 0.01. The “true negative” genes were then determined to be 

those that were not within 50 kilobases of either the start or stop of any of the original 

simulation genes. A total of 49 true positive genes and over 17,000 true negative genes 

were used to measure type I and type II error. To assess sensitivity and specificity, a 

subset of 50 true negative genes were randomly chosen to compare with the 49 true 

positive genes. Within the smaller sample size analyses, these sets of true negative and 

true positive genes were used, as well as an additional round in which a true positive 

gene had to have at least one SNP with a p-value of less than 0.01 within the smaller 

sample size GWAS results. This reduced the number of true positive genes to 23, instead 

of the previous 49 true positive genes from the larger analysis. A p-value threshold of 

0.001 was used to determine statistical significance for all analyses. Due to the nearly 

17,000 genes being evaluated, a Bonferonni correction would need a p-value threshold of 

2.9x10-6 for α=0.05λ. However, this is a conservative estimate since many genes are in 

linkage disequilibrium. Bias was assessed for effect size, gene size, SNP density for the 

gene, and number of “causal” variants upon which the simulation was conducted.  
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A total of 10 different programs were compared for their sensitivity and specificity, 

as well as their type I and type II error rates (Table 5.2).  

 

Table 5.2: Evaluation Methods 

Measure Data Assessment 

Sensitivity 50 true negative and 49 true positive 
genes 

Ability to detect true positive 

Specificity Ability to detect true negative 

Type I Error Genome-wide (~17,000) true negative 
and 49 true positive genes 

Incorrectly detecting false positives 

Type II Error Incorrectly detecting false negatives 

 

 Two of the programs evaluated (ASUM and Logistic Regression test) required 

individual raw genotype data making them computationally intensive. While this is not 

practical for a GWAS, a sub-analysis was performed using the 99 true positive and 

negative genes. Type I and type II error was not assessed due to only a subset of genes 

being run for these methods.  

 The role of potential biases was evaluated using the “gold standard” of true 

positive and negative genes. The accuracy of their prediction determined by accordance 

between the “truth” and statistical significance as determined by P<0.001. Correlation 

between ten of the programs (not aSum and Score test) were calculated for genes found 

in all the methods.  
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5.4: Results 

5.4.1: Overall Results 

Of the twelve programs evaluated, Fisher’s Combination Test had the highest 

sensitivity. (Table 5.3) However, this statistical test also had the highest type I error 

(5.9%) and the lowest specificity. Sidak’s Combination Test had the lowest sensitivity, 

despite having the lowest type I error rate (0.11%). Sidak’s Combination Test only 

considers the most significantly associated SNP, ignoring any joint signals, leading to a 

conservative test.  

Table 5.3: Performance Metrics of Gene-Level Methods 

Group Method Sensitivity Specificity Type I Error 
Type II 
Error 

Classical 

Fisher 59.18 88.64 5.89 40.82 
Sidak 18.37 97.73 0.11 81.63 
Simes 46.94 97.73 1.33 53.06 
FDR 24.49 97.73 0.13 75.51 

Updated 
Classical 

GATES 24.49 98.00 0.17 75.51 
WGATES 26.53 98.00 0.16 73.47 

HYST 24.49 98.00 0.16 75.51 
WHYST 24.49 98.00 0.16 75.51 

Novel 
VEGAS 20.41 100.0 0.16 79.59 

VEGAS (top10) 28.57 98.00 0.40 71.43 

Regression 
aSUM 24.49 100.00 - - 
Score 18.37 100.00 - - 

*Type I and type II error rates were not estimated for aSUM and Score test due to them being 
computationally intensive. 

 

Newer methods all performed similarly. GATES and HYST were nearly identical in 

their predictions with sensitivity of 24.49%, specificity of 98%, and type I error rates of 

0.17% and 0.16% respectively. VEGAS had similar performance with a sensitivity of 
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20.41% and 100% specificity. Type I error rate was 0.16%. With the exception of Fisher’s 

and Simes’ Test, all methods had a type I error rate below 1%.  

Correlation was calculated using all genes from the 10 genome-wide programs 

(Fisher’s, Sidak’s, Simes’, FDR, GATES, Weighted Gates, HYST, Weighted HYST, 

VEGAS, and VEGAS Top 10%). Correlation in the p-values ranged from 31-98% (Figure 

5.5).  

 

Figure 5.5: Genome-wide Correlation in P-values for Gene-Level Methods 
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The highest correlation is found within the previously assigned groups (Classical, 

Updated Classical, Novel). The updated classical programs (GATES, Weighted GATES, 

HYST, and Weighted HYST) all had high correlation with each other (>95%). The two 

VEGAS programs (all and top 10%) had similarly high correlation in their p-values 

(88%). Surprisingly, the lowest correlation was found between the GATES-associated 

programs and Simes’ (31-34%), considering that GATES is an extended Simes procedure.  

Using a α=0.001, concordance was calculated between the 10 programs. Concordance 

was much higher than correlation, ranging from 93-100%. The high levels of 

concordance are more due to the large number of true negatives when compared to any 

other cell. When restricted to the subset of true negative and true positives, the 

concordances fell to 73-99% (Figure 5.6).  
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Figure 5.6: Concordance for Significance for Gene-level Methods (α=0.001) Within Gold 

Standard Set of True Negative and True Positive Genes 



 117 

The lowest concordance was found with Fisher’s Combination Test and Simes’ Test 

with any other method. This is likely due to these programs having the highest type I 

error. Therefore, they are more likely to call genes as significant that other programs do 

not call significant. As expected, the highest correlations were within related programs, 

such as the updated classical methods and the two versions of VEGAS. 

5.4.2: Stratified Results 

To examine the influence of effect size, sensitivities were estimated among genes that 

were simulated to have a strong effect size (OR=2) and a weaker effect size (OR=1.2). 

However, due to the underlying model, only 6 of the true positive genes were simulated 

based on a weaker effect size. The resulting sensitivities are found in Table 5.4 below. 

Table 5.4: Stratified Sensitivities by Effect Size 

Group Method 
Sensitivity 
(OR*=2) 

Sensitivity 
(OR*=1.2) 

Classical 

Fisher 66% 17% 

Sidak 18% 33% 

Simes 50% 17% 

FDR 27% 17% 

Updated 
Classical 

GATES 25% 17% 

GATES [Weighted] 27% 17% 

HYST 25% 17% 
Weighted 

GATES/HYST 25% 17% 

Novel 
VEGAS 23% 17% 

VEGAS [Top 10%] 32% 17% 
*OR=Odds Ratio 
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 Sensitivity was higher in the stronger effect sizes when compared to the weaker 

effect sizes, with the exception of Sidak’s Combination Test. Additionally; the stratified 

sensitivity of strong signals (OR=2) was higher than the overall sensitivity from Table 

4.3. This is expected as the genes that were simulated to have a stronger effect size will 

have lower p-values on a SNP-level which translates to the gene-level analyses. 

Genes were also stratified based on the number of causal SNPs from the simulation. 

Out of the fifty total true positive genes, 8 were simulated using 1 causal SNP, 22 had 2 

causal SNPs, and 20 had 5 causal SNPs.  

Table 5.5: Stratified Sensitivities by Number of Causal SNPs 

Group Method 
Sensitivity 

(1 SNP) 
Sensitivity 
(2 SNPs) 

Sensitivity 
(5 SNPs) 

Classical 

Fisher 50% 64% 60% 
Sidak 12% 18% 20% 
Simes 50% 50% 45% 
FDR 25% 27% 25% 

Updated 
Classical 

GATES 12% 18% 35% 
GATES [Weighted] 25% 18% 30% 

HYST 12% 18% 40% 
GATES/HYST [Weighted] 12% 18% 35% 

Novel 
VEGAS 0% 27% 25% 

VEGAS [Top 10%] 0% 32% 40% 
 

 Within the classical methods, the sensitivity estimates remain relatively 

consistent between the different number of causal SNPs. For the newer methods, 

sensitivity increased with the number of causal SNPs. This is consistent with their 

methodology, which is designed to combine independent signals for an enriched signal. 

The most extreme sample was in VEGAS [Top10%]. Neither version of VEGAS deemed 
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genes with only one causal SNP as significant. Within genes with two causal SNPs, the 

sensitivity increased to 32% from the original overall 29%. When there were five causal 

SNPs, the sensitivity increased to 40%.  

5.4.3: Smaller Sample Size Analysis 

Within the smaller sample size analysis (n=500), measures of performance were 

recalculated. Using a significance threshold of P<0.001, type I error was found to be 

consistent from the larger analysis. Within the true negative and true positive genes 

from the original larger analysis, the majority of methods were unable to detect 

significant genes in the true positive categories (sensitivity=0%), with the exception of 

Fisher’s Combination Test (sensitivity=12.24%) and Simes’ Test (sensitivity=4.08%) 

(Table 5.6).  

 

Table 5.6: Evaluation of Gene-Level Methods in Smaller Sample Size 
Group Method/Program Sensitivity Specificity Type I Error Type II Error 

Classical 

Fisher’s 12.24 95.45 5.32 87.76 
Sidak’s 0.00 100.00 0.03 100.00 
Simes’ 4.08 100.00 0.98 95.92 
FDR 0.00 100.00 0.05 100.00 

Updated 

GATES 0.00 100.00 0.10 100.00 
Weighted GATES 0.00 100.00 0.13 100.00 

HYST 0.00 100.00 0.10 100.00 
Weighted HYST 0.00 100.00 0.12 100.00 

Novel 
VEGAS 0.00 100.00 0.10 100.00 

VEGAS, Top 10% 0.00 100.00 0.26 100.00 
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All specificity measures were above 95%, with only Fisher’s Combination Test not 

reaching 100% specificity (specificity=95.45%). This is consistent with prior results 

showing the highest sensitivity and type I error within Fisher’s Combination Test when 

compared to all other methods. 

The generation of true positive and true negative genes was recalculated for the 

smaller analysis using the same steps used in the larger sample size analysis. This lead 

to only 23 true positive genes which had at least one SNP with a P-value <0.01, and the 

50 original true negative genes. The programs were reevaluated with these updated gold 

standards. The only programs that were affected were Fisher’s and Simes’ Tests, with 

their sensitivities elevated to 47.83% and 13.04%, respectively.  

If we lower the alpha value to adjust for the smaller sample size and reduced power 

to α=0.01 while using the updated gold standard of 23 true positive and 50 true negative 

genes, the performance increases for a few of the programs (Table 5.7).  

Table 5.7: Evaluation of Gene-Level Methods in Smaller Sample Size, α=0.01 
Group Method Sensitivity Specificity Type I Error Type II Error 

Classical 

Fisher’s 60.87 90.91 8.91 39.13 
Sidak’s 8.70 100.00 0.54 91.30 
Simes’ 100.00 93.18 8.28 0.00 
FDR 8.70 100.00 0.75 91.30 

Updated 

GATES 0.00 97.73 1.09 100.00 
Weighted GATES 0.00 97.73 1.11 100.00 

HYST 0.00 97.73 1.05 100.00 
Weighted HYST 4.35 97.73 1.01 95.65 

Novel 
VEGAS 0.00 100.00 0.92 100.00 

VEGAS, Top 10% 30.43 100.00 2.15 69.57 
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The most striking differences is seen in Simes’ Test with the sensitivity increasing 

from 4% to 100% by decreasing α by an order of 10. This is likely due to the selection of 

true positive genes having at least one SNP with p<0.01, and Simes’ Test weighting the 

most significant SNP. With a less stringent α, the type I error increased across the board, 

increasing by an order of 10 for the majority of the programs.  

5.4.4: Potential Biases in Estimation 

Gene-level methods for GWAS can be subject to a number of biases, such as gene 

size, SNP density, and the number of SNPs (both causal and all) considered within the 

gene.  The effect of these variables was estimated using logistic regression. The mean 

gene size was 83.2 megabases (mb), with on average 176.1 SNPs, while the median gene 

size was 39.2 mb and 16 SNPs. Accuracy was determined as agreement between the 

“truth” and significance using α=0.001 for each of the program. Only 2 associations had 

a P<0.1. Fisher’s Combination Test had a p-value of 0.08 showing that the accuracy of the 

method decreased with an increase in the number of SNPs within the gene. This is 

consistent with the method violating the inherent assumption of independent tests due 

to extensive linkage disequilibrium. The other association was between VEGAS using 

the top 10% of SNPs and the proportion of causal SNPs to total number of SNPs in the 

gene. Because this method only uses the top 10% of SNPs found in the gene, if the 

number of causal SNPs makes up a higher proportion of the SNPs, then the program is 

more accurate. This is consistent for there being enrichment for significance of 

independent signals in the top 10% of the genic SNPs. 
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Figure 5.7: Heat map of the -log10 transformation of P-values from univariate logistic 

regression analyses for the effect of gene characteristics on accuracy. Programs are 

organized alphabetically on the y-axis, with the variables on the x-axis. A lower P-value (more 

significant) is indicated in red. 
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5.5: Discussion 

 The highest sensitivity was found using Fisher’s Combination Test (59.18%), 

which was accompanied by the lowest specificity (88.64%) and the highest type I error 

(5.89%). This is expected, as Fisher’s Combination Test is prone to test statistic inflation. 

FCT combines P-values which are assumed to be independent, but which are not 

because of linkage disequilibrium between genic SNPs on a GWAS panel. This 

generalized inflation leads to the highest sensitivity, paired with the highest type I error. 

The highest specificity was found with VEGAS, one of the more conservative 

approaches with a sensitivity of 20.41%. VEGAS adjusts for linkage disequilibrium with 

HapMap data from the CEPH population. This may be an overadjustment, as VEGAS is 

the most underpowered program, especially when it comes to smaller effect sizes. 

Within programs that have a type I error rate below 1%, the best balance between the 

two measures is likely VEGAS using the top 10% of SNPs with a sensitivity of 28.57% 

and specificity of 98%.  

 Both correlation and concordance between the programs clustered within related 

programs, such as GATES and the other updated classical methods (Weighted GATES, 

HYST, Weighted HYST), as well as the two VEGAS methods (All and Top 10%). The 

lowest correlation in p-values was found between Simes’ Test and any other program 

(31-53%). This is likely due to Simes’ Test only using the weighted most significant SNP, 

which is influenced by both the number of SNPs in the gene and the distribution of 

signals within the gene. Surprisingly, the lowest correlation is found between Simes’ 
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Test and the GATES family, which is an extended Simes procedure. Using an α=0.001, 

concordance rates between the programs was much higher (73-99%). This may be  due 

to the large number of “true negative” genes, which outweighs any other cell in the 

tabulation. Again, concordances were highest within related programs. The lowest 

concordance was between Fisher’s Combination Test and the other programs (73-79%), 

most likely due to the highest type I error leading to the most false positives that are not 

found in other programs.  

 The stratified analyses reinforce the theory behind genome-wide association 

studies and a truly polygenic model. Within the simulation, the smaller effect sizes are 

underrepresented within SNPs with P<0.01, despite originally having equal weighting 

with the genes simulated upon higher effect sizes. Out of the 50 true positive genes, only 

6 of them were originally simulated to have the smaller effect size (OR=1.2), despite that 

the original 226 genes were split evenly between the two effect sizes (OR=1.2 vs OR=2). 

This is consistent with larger effect sizes having increased power compared to smaller 

effect sizes. Sensitivity was increased for all programs within the stronger effect genes. 

The number of independent causal SNPs also had a large effect on the program’s 

sensitivity. For most programs, sensitivity increased when the number of causal SNPs, 

and therefore independent signals, was increased. VEGAS, in either iteration, was 

unable to detect genes which only had one causal SNP while increasing the sensitivity 

within genes with 2 or 5 independent causal SNPs. If the underlying hypothesis is that 

there are multiple causal SNPs within a gene that could be contributing to the outcome 
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as is the case with allelic heterogeneity, then this program will help to differentiate 

between genes that have multiple signals due to linkage disequilibrium or multiple 

independent biologically relevant signals.  

 A GWAS with a smaller sample size is woefully underpowered to detect signals, 

both in a traditional analysis as well as with these gene-level methods. Using the 

previously defined α=0.001, only Fisher’s and Simes’ Test detected any significant true 

positive genes. When α was increased to 0.01, sensitivity increased, however 4/10 

programs still did not find any of the true positive genes to be significantly associated. 

There was also a large increase in type I error, leading to 7/10 programs having type I 

error above 1%, an unacceptable rate. Because of this large type I error, it is not 

recommended to lower the threshold for significance just because of sample size. On the 

other hand, if a gene is deemed significant with α=0.001 within smaller sample sizes, 

there is more confidence in the results.  

 All programs were relatively immune to theoretical gene size biases, however the 

absolute number of SNPs in the gene made more of a difference. Consistent with 

violating the underlying assumption of independence in Fisher’s Combination Test, an 

increase in the number of SNPs resulted in a less accurate analysis. The proportion of 

causal SNPs to the total number of SNPs in the gene influenced the accuracy of VEGAS 

using the top 10% SNPs, increasing the accuracy with the higher proportion of causal 

SNPs.  
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 When using gene-level methods to elucidate biological significance within 

GWAS results that fail to reach the genome-wide significance threshold, it is important 

to keep in mind the limitations of gene-level methods. Power to detect signals is limited, 

especially for smaller effect sizes. However, all programs identified genes that would 

have otherwise been ignored by a traditional GWAS. Fisher’s Combination Test had the 

highest sensitivity, but also the highest type I error, therefore it should only be used if 

there is a low cost follow-up in place. VEGAS had the highest specificity, being the most 

conservative program with low type I error (0.16%). A good compromise would be to 

use VEGAS with the option of only using the top 10% of SNPs within a gene, with 

higher sensitivity (29%) and specificity (98%) coupled with low type I error (0.40%). 

Additionally, VEGAS was able to distinguish between genes with only one versus 

multiple causal variants. Gene-level methods can help to find genes that would 

previously have been ignored, but the programs are not all the same and they have 

individual caveats and limitations  
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5.6: Supplementary Methods 

5.6.1: Code for Gene-Level Methods 

Fisher’s, Sidak’s and Simes’ Tests were performed within R using a user-created 

script. The major functions are shown below.  

Fisher 

for (i in 1:nrow(fish)){ 
  x=key[key$gene==fish[i,1],] 
  y=merge(x, res, by.x="rsid", by.y="SNP") 
  fish[i,2]=nrow(y) 
  fish[i,3]=-2*sum(log(y$P)) 
  fish[i,4]=1-pchisq(as.numeric(fish[i,3]), 
df=2*as.numeric(fish[i,2])) 
} 

Sidak 

for (i in 1:nrow(sidak)){ 
  x=key[key$gene==sidak[i,1],] 
  y=merge(x, res, by.x="rsid", by.y="SNP") 
  sidak[i,2]=nrow(y) 
  sidak[i,3]=min(y$P) 
  sidak[i,4]=(1-(1-min(y$P))^nrow(y)) 
} 

Simes 

for (i in 1:nrow(simes)){ 
  x=key[key$gene==simes[i,1],] 
  y=merge(x, res, by.x="rsid", by.y="SNP") 
  y=y[order(-y$P),] 
  simes [i,2]=nrow(y) 
  if (nrow(y)>0) { 
    y$rnk=1:nrow(y) 
    y$simes=nrow(y)*y$P/y$rnk 
    simes[i,3]=y[y$simes==min(y$simes),]$simes 
  } 
    print(i) 
} 

 

The False Discovery Rate (FDR) method utilized the p.adjust function from within R. 

(http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html) The utilization of 

this package can be seen below. 

 

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html
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FDR 

for (i in 1:nrow(fish)){ 
  x=key[key$gene==fish[i,1],] 
  y=merge(x, res, by.x="rsid", by.y="SNP") 
  fish[i,2]=nrow(y) 
  fish[i,3]=min(y$P) 
  fish[i,4]=min(p.adjust(y$P, method="fdr")) 
} 

 

 GATES and HYST were conducted within the Graphical User Interface (GUI) 

provided by the authors. (http://bioinfo.hku.hk:13080/kggweb/) Written within a java 

script, the program requires a user-defined reference dataset for LD estimation. While 

HapMap populations are available for download, the WTCCC data was used to build a 

genome for both analyses. Both a weighted GATES and HYST program were available, 

but they yielded the same results as their unweighted counterparts in this simulation.  

VEGAS was run using a command-line interface. While a web-interface is available 

(http://gump.qimr.edu.au/VEGAS/) a command-line interface allows a script to be 

reproducible. A gene-list with correct build coordinates was created from Entrezgenes 

FTP data. Chromosomes were run separately, using HapMap’s CEU data as LD 

references. The default test uses all SNPs within the gene. An additional option was run 

using the top 10% of associated SNPs within the genic region. The method was not used 

with custom LD estimation, due to its computationally intensive nature. 

http://bioinfo.hku.hk:13080/kggweb/
http://gump.qimr.edu.au/VEGAS/
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Chapter 6: Evaluation and Application of Pathway-Level 

Methods for Genome-Wide Association Studies 

6.1: Abstract 

 

Background: In the past ten years, many investigators have used the genome-wide 

associated study (GWAS) design to identify risk loci for various phenotypes. While there 

has been success with this route, there still remains “missing heritability” for most traits. 

Many biologically relevant associations may have strong signals, but fail to meet the 

stringent genome-wide significance threshold (5x10-8). To address this problem, a variety 

of pathway-level methods were developed to identify putative biologically relevant 

associations but they do not test for gene-gene interactions. There is currently no 

consensus as to the best method. A simulation was conducted to systematically assess 

the performance of pathway-level methods.  

Methods: Using genetic data from the Wellcome Trust Case Control Consortium 

(WTCCC), a case-control status was simulated based on an additive polygenic model 

where cases have more risk alleles than controls using a traditional GWAS sample size 

(2,500 cases, 2,500 controls). A total of 20 pathways and 226 genes were selected from 

GO biological processes to create this simulated phenotype. We evaluated 10 different 

methods and examined the influence of pathway size and proportion of simulated 

“causal” genes. The simulation resulted in only 15 pathways having associated genes, 
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consisting of 9-33% of the gene set’s total genes. Because of high computational burden, 

four of these programs were only run on the subset of 20 pathways (PST and GRASS), 

both self-contained tests. All competitive methods (ALIGATOR, gengen, MAGENTA, 

GSEA-SNP, SRT, and GSA-SNP) were run on the full GO biological processes (N=825).  

Results: All methods were highly dependent upon the database used. INRICH is the 

most conservative approach and is unique among the methods for its use of linkage 

disequilibrium blocks instead of genes as the second level of analysis. The least 

conservative approach was using GRASS with an asymptotic distribution, which led to 

false positives especially in small pathways. By incorporating permutations, the false 

positives were decreased but not eliminated. Gengen, MAGENTA, and GSA-SNP (all 

competitive methods) clustered together in their performance, with lower P-values 

being associated with a higher proportion of “causal” genes.  

 
Conclusions: Pathway-level methods should always be interpreted within the context of 

the database that is utilized. Competitive methods require the analysis of a large number 

of gene sets, as well as the entire genome-wide association data set. While the self-

contained tests were less computationally intensive and only required candidate 

pathways, they were less accurate. These results support the underlying hypothesis of a 

polygenic model in elucidating biologically relevant genetic relationships in genome-

wide association studies. 
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6.2: Introduction 

When the genome-wide association study (GWAS) was designed, it relied upon the 

“common disease, common variant” (CDCV) hypothesis. This hypothesizes that 

common diseases, such as Type II Diabetes, are due to common genetic variants. These 

SNPs should be easily detectable in population samples through association. However, 

the results have fallen short of expectation. Many traits still have a large amount of 

missing heritability—the proportion of phenotypic variability due to genetics rather 

than environmental influences. It has been hypothesized that the missing heritability 

may be due to the truth being in between the CDCV model and the infinitesimal model, 

in which the phenotypic variance is explained by an “infinite” number of small effect 

variants.(Gibson 2012) are typically underpowered to detect smaller effect size, 

essentially ignoring suggestive associations with these smaller effect SNPs. To address 

this issue, a number of pathway-level analytical methods were developed for GWAS 

results.  

Pathway-level methods for GWAS aim to examine if genetic associations within a 

GWAS are enriched within a set of genes, or pathway. This goal is different than the 

previously described gene-level method in that the gene-level programs aim to 

aggregate signals into a joint association test statistic. Pathway-level methods differ in 

that multiple association signals due to allelic heterogeneity are often ignored. These 

methods differ in their assessment of “enrichment”, whether it is top ranked genes or an 

aggregate test statistic looking for joint association between the genes. With a wide 
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variety of methods recently published, the field still lacks a consensus as to the best 

method. To address this knowledge gap, we evaluated 10 different programs using a 

simulation of real genotypic data from the Wellcome Trust Case Control Consortium on 

20 pathways from the Gene Ontology Biological Processes. 

6.3: Materials and Methods 

6.3.1: Genotype Data 

 Genotype data was obtained from the Wellcome Trust Case-Control Consortium 

(WTCCC) following their release procedures.  The Wellcome Trust Case-Control 

consortium genotype data included in this study was genome-wide SNP data off a 

custom Illumina 1.2M chip from the 1958 Birth Cohort (N=2,930) and the National Blood 

Service samples (N=2,737). Standard quality control measures were performed 

(previously described in Section 5.3.1.1). Principal components analysis was performed 

to evaluate ancestry and outliers were removed, reducing the sample size to 4,500 

individuals of European ancestry. Additional filters were applied including minor allele 

frequency > 5%, Hardy-Weinberg Equilibrium (p < 10-5) and genotype missing rate < 5% 

resulting in 906,298 genome-wide SNPs.  

6.3.2: Simulation 

 Pathways were downloaded from the Molecular Signatures Database (MSigDB) 

for the Gene Ontology (GO) Biological Processes (BP).(Subramanian et al. 2005) This 

database was chosen for consistency since the majority of methods used this in their 
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programs The GO BP are categorized as a series of events or molecular functions that 

have a beginning and an end. Out of all the GO terms, the biological processes most 

resemble a canonical pathway, such as those found in KEGG or BioCarta.  

 There are 825 total biological processes with a median number of 28 genes in the 

database. From these 20 pathways two groups were selected: 10 with greater than the 

median number of genes (large) and 10 with under the median number of genes (small). 

From each of these 20 pathways, a subset of genes were also selected. Within each size 

group (small/large), four pathways were selected to have only 1 gene, four pathways 

had 20% of their genes selected, and in two pathways 50% of the genes were selected. 

Any genes in numerous pathways were removed so that the pathways were 

“independent” of each other. This resulted in the inclusion of 226 genes (Table 5.1).  

The selection of “causal” SNPs from within each of the genes is described in more 

detail in section 5.3.1.3 under “Phenotype Generation”. In short, a number of “causal” 

independent SNPs were chosen from each gene. Each gene had one, two, or five causal 

SNPs included, and an odds ratio of either 1.2 or 2 assigned to them. An additive 

polygenic model was used to generate an underlying liability score, which was 

standardized to the mean. With some overlap generated by adding a random amount of 

variation to the liability score, individuals were stochastically assigned to case or control 

status according to their transformed liability score generating 2,250 cases and 2,250 

controls. An unadjusted logistic regression was run on all the SNPS in PLINK for a 

traditional GWAS analysis. In addition, a standard case/control association using chi-
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squared statistics was also conducted on the same data in PLINK for methods that 

required a chi-squared statistic rather than the Z-score generated in logistic regression. 

Since the simulation followed a stochastic process, the proportion of genes that were 

simulated to be associated with the outcome did not always result in a GWAS 

association. Additional details on the simulation are included in Chapter 5.  

The results of the simulation for the pathways are detailed in Table 6.1.  The “true 

positive” genes were annotated as such if they had at least one SNP within the genic 

region with P<0.01. Many of the pathways had fewer “true positive” genes with at least 

one SNP having a p-value < 0.01 than intended through the simulation. For example, the 

first pathway listed “Anatomical Structure Morphogenesis” was simulated to have 73 

associated genes, which is approximately 20% of the total 363 genes. However, only 50 

of these genes had at least one SNP with a p-value < 0.01 (14%). This was especially 

pronounced in the smaller pathways, with 5 pathways having no genes at all associated 

(PSNP<0.01). However, if we include genes with a P-value below 0.05, then many 

pathways have more “associated” genes than the simulation intended. Thus, we used a 

cut-off of P<0.01 for a truly “associated” gene.  
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Table 6.1: Pathway Characteristics from Simulation 

GOID Biological Process 
# 

Genes 
% of 

Genes 

# 
Simulated 

Genes 

# 
P<0.01 

% 
P<0.01 

GO:0009653 Anatomical Structure Morphogenesis 363 20 73 50 14 
GO:0008277 G-Protein Coupled Receptor Protein Signaling Pathway 332 20 67 40 12 
GO:0006643 Membrane Lipid Metabolic Process 98 (1) 1 15 15 
GO:1902275 Establishment and/or Maintenance of Chromatin Architecture 71 50 36 9 13 
GO:0006869 Lipid Transport 29 50 15 8 28 
GO:0045321 Leukocyte Activation 65 (1) 1 7 11 
GO:0006968 Cellular Defense Response 55 (1) 1 6 11 
GO:0032488 CDC42 Protein Signal Transduction 12 50 6 4 33 
GO:0007189 G-Protein Signaling Adenylate Cyclase Activating Pathway 25 20 5 4 16 
GO:0042110 T-Cell Activation 41 20 9 4 10 
GO:0051101 Regulation of DNA Binding 44 (1) 1 4 9 
GO:0043241 Protein Complex Disassembly 15 (1) 1 3 20 
GO:0002009 Morphogenesis of an Epithelium 17 20 4 3 18 
GO:0001666 Response to Hypoxia 28 20 6 3 11 
GO:0051607 Defense Response to Virus 11 20 3 2 18 
GO:0051650 Establishment of Vesicle Localization 10 (1) 1 0 0 
GO:0000080 G1 Phase of Mitotic Cell Cycle 12 20 3 0 0 
GO:0000209 Protein Polyubiquitination 10 (1) 1 0 0 
GO:0009259 Ribonucleotide Metabolic Process 17 (1) 1 0 0 
GO:0007051 Spindle Organization and Biogenesis 10 50 5 0 0 



 138 

 

6.3.3: Programs  

 Using the simulated data, we evaluated the following pathway programs: Meta-

Analysis Gene-set Enrichment of variaNT Associations (MAGENTA)(Segrè et al. 2010) 

Interval-based Enrichment Analysis Tool for Genome Wide Association Studies 

(INRICH)(Lee et al. 2012), Plink Set Test(Purcell et al. 2007), Gene Set Analysis for SNPs 

(GSA-SNP)(Nam et al. 2010) Gene Set Enrichment Analysis for SNP data (GSEA-SNP) 

(Holden et al. 2008) , Gene Set Ridge Regression in Association Studies (GRASS) (Chen 

et al. 2010), Association List Go AnnoTatOr (ALIGATOR)(Holmans et al. 2009), GenGen 

(Wang, Li, and Bucan 2007), Hybrid Set-Based Test for Genome-wide Association 

Studies (HYST)(M.-X. Li, Kwan, and Sham 2012) and SNP Ratio Test (SRT)(O'Dushlaine 

et al. 2009) .  

These programs can be divided into two categories: competitive and self-contained. 

Competitive programs compute their test statistics depending on the distribution of all 

gene set test statistics. Therefore, the results are in comparison with the other gene sets 

that were used for this analysis. With these programs, it is important to do a genome-

wide approach, instead of a candidate gene set approach, because of the dependence on 

a distribution of test statistics that is representative of largely the null. On the other 

hand, self-contained tests do not depend on other gene sets, so can be used on both 

genome-wide and candidate studies. These programs often use permutations to form a 

test statistic null distribution. 
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Table 6.2: Programs Evaluated by Category 
Category Program Input Citation 

C
om

pe
tit

iv
e 

ALIGATOR SNP P-values (Holmans et al. 2009) 

GENGEN SNP P-values 
(Wang, Li, and 

Bucan 2007) 

GSA-SNP SNP P-values (Nam et al. 2010) 

GSEA-SNP Raw Genotypes (Holden et al. 2008) 

MAGENTA SNP P-values (Segrè et al. 2010) 

SRT Raw Genotypes 
(O'Dushlaine et al. 

2009) 

Se
lf-

C
on

ta
in

ed
 GRASS Raw Genotypes (Chen et al. 2010) 

HYST SNP P-values 
(M.-X. Li, Kwan, and 

Sham 2012) 

INRICH 
Genomic 

Coordinates 
(Lee et al. 2012) 

PLINK Raw Genotypes (Purcell et al. 2007) 

 

All programs allow the user to define the assignment of SNPs to genes. For 

consistency, SNPs were assigned to a gene if they were within the translated region and 

if they were within 20 kilobases of either end of the gene.  

6.3.3.1: Competitive Methods 

1. ALIGATOR(Holmans et al. 2009) : ALIGATOR is a method that looks for the 

enrichment of significant genes within Gene Ontology gene sets. The input is 

SNP p-values. ALIGATOR then filters by a pre-set P-value threshold (p < 

0.05). Any gene that has at least one SNP below this P-value threshold is 
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annotated as being “significant”. Simulations are then conducted in which 

SNPs are randomly drawn from the GWAS and if they are in a gene that gene 

is added to the simulated gene list. This is repeated until the gene list is the 

same length as the original study’s significant gene list. This process is 

repeated to form 5,000 null gene lists. An empirical p-value is then calculated 

from the distribution of these gene lists in GO pathways. Because of this 

simulation procedure, this method is categorized as competitive. Multiple 

comparisons issues are controlled using a bootstrap procedure. This method 

is dependent upon all genes within a GO set having comparable linkage 

disequilibrium patterns. When a gene set has higher levels of linkage 

disequilibrium, the estimate tends to be overconservative. A total of 1,000 

permutations were used in this analysis. 

2. GenGen(Wang, Li, and Bucan 2007): GenGen is the oldest method available, 

using a modified GSEA which was originally developed for gene expression 

analyses. The most significant SNP is assigned as the gene’s overall P-value. 

Genes are then sorted by their significance from smallest to largest p-value. 

Using these rankings, a Weighted Komogorov-Smirnov-like running sum 

Enrichment Score (ES) is calculated to see the overrepresentation of highly 

ranked genes within the gene set. Phenotype permutation adjusts for gene 

size biases. The original ES is the normalized by the permutations’ 

enrichment scores to form a Normalized Enrichment Score (NES). A False 

Discovery Rate (FDR) or a Family-Wise Error Rate (FWER) can be used to 
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control for multiple comparisons. This method is also competitive. A 

thousand permutations are used to calculate the normalized enrichment 

scores. 

3. GSA-SNP(Nam et al. 2010): GSA-SNP is an updated method adapted from 

gene expression studies. It uses the –log transformed SNP p-values as an 

input and the kth most significant SNP is selected as the gene-level P-value 

(default k=2). This is to minimize the effect of spurious associations for the 

top SNP (??) in the summarization of gene-level statistics. Three different 

methods are then offered within the package: (1) Z-score, (2) Restandardized-

GSA, and (3) GSEA. The Z-score compares the average gene score within the 

gene set to an overall distribution. Both the Restandardized-GSA and GSEA 

use permutations to assess significance with pooled set scores. GSA-SNP is 

available as a graphical user interface (GUI).  

4. GSEA-SNP(Holden et al. 2008) : A direct adaptation of the original GSEA 

algorithm(Subramanian et al. 2005), GSEA-SNP uses the raw genotypes as an 

input. Three inheritance models (recessive, dominant, and additive) are used 

and the most significant test statistic is calculated per SNP. These test 

statistics are then ranked genome-wide. Using a running sum statistic, an 

enrichment score is calculated to determine if a gene set’s SNPs are 

overrepresented at the top of the genome-wide SNP list. This ES is 

tnormalized by the gene size to establish a Normalized Enrichment Score 

(NES). A false discovery rate is calculated to control for false positives. For 
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this project, GSEA-SNP was conducted as part of the SNPath package within 

R (http://linchen.fhcrc.org/grass.html).  

5. MAGENTA(Segrè et al. 2010): MAGENTA requires SNP P-values as input, 

mapping SNPs to genes and using the most significant SNP P-value within 

that gene as the raw gene-level P-value. Gene p-values can be adjusted for 

multiple confounders, such as gene size, using regression and permutations. 

The adjusted gene-level P-values are ranked and “significant” genes are 

selected using a static cut-off, such as the 95th percentile. Gene sets are 

checked against this list of significant genes for over-enrichment, similar to a 

standard GSEA analysis. The rank can also be decreased if a polygenic model 

is hypothesized (i.e.75th percentile and up).  

6. SNP Ratio Test (SRT)(O'Dushlaine et al. 2009): The SNP Ratio Test requires 

SNP P-values as input, as well as the SNP P-values from permutations 

calculated using Plink. Using a p-value threshold determined by the user, the 

ratio of significant SNPs to the number of all SNPs within a pathway is 

calculated. Gene-level classifications are ignored. Using permutations, an 

empirical p-value is calculated for the distribution of this ratio. The P-value 

threshold for SNP significance can be adjusted depending on the hypothesis. 

For example, a lower P-value threshold (0.01) would assume numerous 

smaller effects being important in contrast to a few large effects with a more 

stringent threshold (P=0.001). A total of 1,000 permutations were conducted 

in this simulation evaluation study. 

http://linchen.fhcrc.org/grass.html
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6.3.3.2: Self-Contained Tests 

1. GRASS (Chen et al. 2010): GRASS requires raw genotypes to directly 

estimate the genetic architecture of the genes involved in the evaluated gene 

sets/pathways. Within each gene, a Principal Components Analysis (PCA) is 

conducted to determine the SNPs that represent the unique linkage 

disequilibrium patterns. These “nontrivial” SNPs are then fed into a Group 

Ridge Regression with Lasso penalty to determine the “most representative 

eigenSNPs” in regards to their association with disease risk. A gene set 

association is then conducted by summarizing all of the effects from these 

“most representative eigenSNPs” across an entire gene set. Permutations are 

used to create a null distribution and calculate a P-value. For this analysis 

1,000 permutations were used. 

2. HYST (M.-X. Li, Kwan, and Sham 2012) : HYST is an extension to the gene-

level method of GATES. (M.-X. Li et al. 2011) HYST uses the same graphical 

user interface (GUI) as GATES (KGG2.5). GATES is an extended Simes 

procedure to assess gene-level associations that directly accounts for linkage 

disequilibrium patterns by selecting “independent” SNPs. After performing 

GATES, HYST uses a scaled chi-square test to assess significance on the 

GATES P-values output., similar to the Fisher’s Combination Test used in 

gene-level analyses. Prior weights can be incorporated into the blocks, or 

genes, if appropriate.  
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3. INRICH (Lee et al. 2012): INRICH uses associated genomic intervals as the 

input. These intervals are determined using a SNP p-value threshold (0.001) 

and included the surrounding SNPs in linkage disequilibrium around this 

index SNP. These intervals are estimated in a program such as Plink and then 

INRICH tests for the number of intervals that overlap with the target genes in 

any given gene set. Permutations for intervals of the same length are 

calculated to determine an empirical P-value separately for each gene set. A 

multiple comparisons correction is applied using additional permutations for 

the minimum empirical P-value across all sets analyzed. 

4. Plink Set Test(Purcell et al. 2007) : The Plink Set Test assesses the joint 

significance of a set of SNPs, whether they be within a gene, or within a 

pathway. Using raw genotype data, the linkage disequilibrium patterns are 

estimated using all SNPs in a region. After single SNP-association testing, 

only SNPs below a certain P-value threshold are selected. Then, in decreasing 

order of significance, “independent” SNPs within that set are selected to be 

representative of the overall genetic variation in that region using the original 

LD patterns estimated from the raw genotype data. The average statistic 

within these “independent” SNPs is then used as the original set statistic. 

Permutation of the phenotype is conducted to determine an empirical p-

value for the set.  
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6.3.4: Program Evaluation 

In a subset of these programs, we included only the 20 simulated pathways because 

of the computational burden: Plink Set Test, GRASS, GSEA-SNP, and ALIGATOR. The 

rest of the programs (MAGENTA, INRICH, SRT, HYST, and GSA-SNP) were run on all 

Gene Ontology Biological Processes (N=824). However, GO processes are not 

independent from each other, and some genes may be involved in numerous processes. 

This is due to the hierarchical nature of Gene Ontology, and the pleiotropic effects of 

many genes. Because only a small number of pathways were evaluated in all programs, 

standard measures such as sensitivity and specificity as well as Type 1 and Type II 

errors could not be calculated for these programs. Instead, a qualitative assessment was 

conducted. Correlation between programs was calculated using Spearman’s correlations 

within the R software package. Pathways below a p-value threshold of 0.001 were 

considered significant.  
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6.4: Results 

6.4.1: Pathway-method level results 

 Of the 10 programs, 6 programs had at least one pathway that was below a 

threshold of 0.001 (gengen, PST, GSA-SNP, GRASS, GSEA-SNP, and HYST). The most 

consistently significant small pathway was the “Defense Response to Viruses” with 11 

total genes. Half of the methods categorized this pathway as significant (P<0.001) and 

70% of the methods had P-values below 0.01. Of the larger pathways, “Lipid Transport” 

consistently yielded lower P-values with 30% of the methods categorizing this as 

significant. INRICH had the least significant P-values (13/20 pathways, P-values=1), 

meaning none of the permutations had more extreme values than the original data. The 

method with the most significant P-values was HYST, with five pathways having 

P<0.001. Pathways in which there were no causal genes (all smaller pathways) did not 

have any significant results.  No pathways were found to be significant that had less 

than 12% causal genes. 
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Table 6.3: Results from Pathway Analysis for Larger Pathways 

Biological Process 
# 

Genes 
# 

P<0.01 
% 

P<0.01 

Competitive Programs Self-Contained Programs 

ALI. gengen GSA GSEA MAG SRT GRASS HYST INR. PST 

Lipid Transport 29 8 27.59% 0.244 0.005 4.14E-04 0.186 0.022 0.02 <0.001 5.42E-08 0.133 0.06 

Membrane Lipid 
Metabolic Process 

98 15 15.31% 0.198 0.143 0.056 0.057 0.018 0.127 0.014 0.02 0.169 <0.001 

Anatomical Structure 
Morphogenesis 

363 50 13.77% 0.457 0.055 7.94E-06 0.496 0.161 0.549 <0.001 0.1 0.893 1 

Establishment and/or 
Maintenance of 

Chromatin Architecture 
71 9 12.68% 0.983 0.036 0.113 0.896 0.033 0.002 0.116 7.58E-09 0.015 0.06 

G-Protein Coupled 
Receptor Protein 

Signaling Pathway 
332 40 12.05% 0.515 0.663 0.005 0.267 0.026 0.691 <0.001 0.19 0.51 0.99 

Cellular Defense 
Response 

55 6 10.91% 0.642 0.104 0.009 0.829 0.126 0.026 0.374 0.04 1 0.01 

Leukocyte Activation 65 7 10.77% 0.996 0.761 0.534 0.955 0.944 0.246 0.146 0.74 0.804 0.45 

Response to Hypoxia 28 3 10.71% 0.915 0.116 0.409 0.658 0.312 0.621 0.055 0.12 1 0.15 

T-Cell Activation 41 4 9.76% 0.929 0.475 0.275 0.823 0.903 0.241 0.089 0.24 1 0.25 

Regulation of DNA 
Binding 

44 4 9.09% 0.962 0.838 0.949 0.918 0.93 0.287 0.907 0.18 1 0.87 

*ALI= ALIGATOR, GSA=GSA-SNP, GSEA=GSEA-SNP, MAG=MAGENTA, SRT=SNP Ratio Test, INR=Inrich, PST=Plink Set Test 
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Table 6.4: Results from Pathway Analysis for Smaller Pathways 

Biological Process 
# 

Genes 
# 

P<0.01 
% 

P<0.01 

Competitive Programs Self-Contained Programs 

ALI. gengen GSA GSEA MAG SRT GRASS HYST INR. PST 

CDC42 Protein Signal 
Transduction 

12 4 33.33% 0.996 0.357 0.097 0.942 0.227 0.026 0.583 0.24 1 1 

Protein Complex 
Disassembly 

15 3 20.00% 1 0.122 0.452 0.74 0.111 0.136 0.228 3.30E-03 1 1 

Defense Response to 
Virus 

11 2 18.18% 0.6 <0.001 2.71E-09 0.007 0.08 0.002 <0.001 2.12E-05 1 <0.001 

Morphogenesis of an 
Epithelium 

17 3 17.65% 0.109 0.042 0.032 0.016 0.016 0.221 0.002 0.04 1 0.07 

G-Protein Signaling 
Adenylate Cyclase 

Activating Pathway 
25 4 16.00% 0.47 0.167 0.026 0.724 0.053 0.95 0.345 1.76E-04 0.371 1 

Establishment of Vesicle 
Localization 

10 0 0.00% 0.551 0.89 0.851 0.595 0.689 1 0.137 0.75 1 0.78 

G1 Phase of Mitotic Cell 
Cycle 

12 0 0.00% 1 0.713 0.857 0.868 0.803 1 0.885 0.31 1 1 

Protein 
Polyubiquitination 

10 0 0.00% 1 0.811 0.934 0.716 0.764 1 0.986 0.79 1 1 

Spindle Organization and 
Biogenesis 

10 0 0.00% 0.388 0.702 0.888 0.543 0.471 1 0.008 0.15 1 0.28 

Ribonucleotide Metabolic 
Process 

17 0 0.00% 0.993 0.428 0.674 0.358 0.801 1 0.544 0.57 1 0.41 

*ALI= ALIGATOR, GSA=GSA-SNP, GSEA=GSEA-SNP, MAG=MAGENTA, SRT=SNP Ratio Test, INR=INRICH, PST=Plink Set Test 
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6.4.2: Competitive versus Self-Contained Methods 

Pathway-level methods can be separated into two groups: competitive (ALIGATOR, 

GenGen, GSA-SNP, GSEA-SNP, MAGENTA, SNP Ratio Test) and self-contained 

(GRASS, HYST, INRICH, Plink Set Test). We evaluated these two groups using the 

results from the larger pathways. Self-contained tests had more significant findings than 

the competitive methods with the exception of INRICH. Within the competitive 

methods, only two gene sets were significant and only in GSA-SNP. However, within 

the five pathways with the most causal genes (12-28%), at least one self-contained 

method found them significant. INRICH, a self-contained approach, was an outlier for 

self-contained methods with no pathways being considered significant. This trend is 

exaggerated within the smaller pathways.  Competitive methods only found one gene 

set to be significant (“Defense Response to Virus”) while self-contained methods found 

three gene sets significant, but also many more gene sets with a P-value of 1.  Because 

the smaller pathways had such few causal genes, they were not considered in further 

evaluation. 

6.4.3: Rankings and the Influence of Proportion of “Causal” Genes 

Many of the programs are competitive with their performance and depend on the 

distribution of the other gene set. We examined the rankings. Within each program the 

P-values for the sets were ranked from smallest (1) to largest (10). For each pathway, the 

mean ranking was calculated across the 10 programs. The correlation between the 

proportion of genes associated within the gene set and the mean ranking was -0.75, 
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indicating that the larger the proportion of causal genes, the smaller the P-value. This is 

consistent with methodology and the goals of the program. Correlations between the 

programs’ rankings and the proportion of associated genes ranged from -0.25 (Plink Set 

Test), and -0.65 (gengen). (Table 6.5) Correlations between the programs’ rankings and 

the mean rankings ranged from 0.49 (SNP Ratio Test) to 0.83 (HYST), indicating the 

relative performance of the programs with each other varied. 

Table 6.5: Correlations for Method Rankings 

Group Program 
Correlation Correlation 

(Proportion) 
(Mean 

Ranking) 

Co
m

pe
tit

iv
e 

ALIGATOR -0.58 0.76 
gengen -0.65 0.79 

GSA-SNP -0.59 0.78 
GSEA-SNP -0.59 0.76 
MAGENTA -0.61 0.93 

SRT -0.44 0.49 

Se
lf-

Co
nt

ai
ne

d GRASS -0.49 0.58 
HYST -0.57 0.83 

INRICH -0.59 0.68 
PST -0.25 0.52 
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Figure 6.1: Association Results by Programs and Proportion of Genes Associated 

with a SNP with P<0.01. 
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Figure 6.2: Ranking of Associations by Programs and Proportion of Genes Associated 

with a SNP with P<0.01. 
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Correlations between the results for the methods and the proportion of genes 

associated within the gene set varied from -0.29 (PST) to -0.63 (ALIGATOR). When the 

P-values were negative log transformed, the correlations ranged on a smaller scale, from 

0.27 (PST) to 0.82 (MAGENTA). (Table 6.6)   

Table 6.6: Correlations for Method Results with 
Proportion of Associated Genes 

Group Program 
Correlation Correlation 

(P) (-logP) 

Co
m

pe
tit

iv
e 

ALIGATOR -0.6346 0.6495 
gengen -0.5130 0.8235 

GSA-SNP -0.4767 0.6423 
GSEA-SNP -0.6303 0.5517 
MAGENTA -0.5034 0.6041 

SRT -0.3476 0.3692 

Se
lf-

Co
nt

ai
ne

d GRASS -0.411 0.627 
HYST -0.3664 0.7009 

INRICH -0.6266 0.4306 
PST -0.293 0.2563 

 

6.4.3: Relationships Between Programs 

 The correlation in P-values between the programs varied from -18% (SRT and 

GRASS) to 92% (ALIGATOR and GSEA-SNP).  The SNP Ratio Test (SRT) had the lowest 

correlations with all the programs. It had negative correlation with ALIGATOR, GSEA-

SNP, and GRASS. The only program with which the correlation was greater than 50% 

was with INRICH. 
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In a heatmap of the results from all pathways, organized from the gene sets with no 

genes within the pathway being associated to 33% of the genes being associated on the 

right hand side (Figure 6.4), three programs seem to cluster together: gengen, GSA-SNP, 

and MAGENTA. They exhibit a trend of less significant P-values with the smaller 

proportion-associated pathway, and stronger signals towards the pathways with more 

genes associated with outcome. The Plink Set Test and SNP Ratio Test clustered 

together. This may be because both methods treat the gene set as an aggregation of 

SNPs, instead of first creating a gene-level association. The Plink Set Test calculates the 

average test statistic within the set of SNPs as the gene set statistic, while the SNP ratio 

test calculates the ratio of significant SNPs to non-significant. Both methods test for the 

over-significance of associated SNPs within these regions.  
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Figure 6.3: Correlation in Results Between Programs. Correlation was calculated for the P-

value results within only the larger pathways (# genes > 28).  
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Figure 6.4: Heatmap of Results for Programs by the Proportion of Associated Genes 

within the Gene Sets. The results were the P-values for all pathways using the programs for a 

complete assessment of performance. Pathways with similar performances will cluster together 

along the y-axis, as indicated by the dendrogram. Proportion of associated genes (at least one 

SNP with P<0.01) is indicated along the x-axis from left (0%) to right (33%).  
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6.5: Discussion 

The relative performance of 10 pathway-level programs for GWAS was evaluated 

through a simulation for 20 different gene sets from Gene Ontology (GO) Biological 

Processes. The underlying hypothesis for these methods states that there will be 

numerous genes that will be associated with the phenotype, a true polygenic model. 

Further, these genes will be clustered in certain sets of genes that will be related to the 

outcome of interest. Therefore, methods should find gene sets with a higher percentage 

of associated genes as more significant than gene sets with a lower percentage of 

associate genes. All of the methods evaluated here showed negative correlation between 

the proportion of associated, or causal, genes and the P-values, consistent with the 

underlying hypothesis.   

The two methods with the lowest correlations supporting this hypothesis are the 

SNP Ratio Test and the Plink Set Test. These methods ignore gene architecture 

altogether, collapsing all SNPS within the genes into a massive gene set unit. Therefore, 

they are not looking for the enrichment of associated genes within a gene set, but rather 

an enrichment of SNP associations within genes that comprise the gene set. These 

methods may be susceptible to the gene size bias, in which a few large genes that 

contain a large number of associated SNPs exert influence through overrepresentation 

within the total number of SNPs.  On the other hand, these are the only methods suited 

to handle allelic heterogeneity. Many of the methods assign the gene-level P-value from 
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the minimum SNP P-value found in the genic region. This ignores the relevance of 

additional independent signals within this region.  

The goal of this study was to determine the best-performing pathway-level method 

for GWAS through a simulation. If we consider the results (P-values) for all 20 pathways 

and cluster on their similarities between different programs, three methods cluster 

together: GSA-SNP, gengen, and MAGENTA. These methods show a decreased p-value 

with an increased proportion of associated genes.  The correlation between the 

proportion of causal genes and the ranking within the program were the highest in these 

three methods. GSA-SNP showed a correlation of -0.56, MAGENTA had a correlation of 

-0.61, and GenGen had a correlation of -0.65. As these are all competitive methods, the 

rankings may be more important than the absolute P-value. This is because the results 

from a competitive method depend not upon a null model, but rather the enrichment of 

all gene sets evaluated. It is important to note that when interpreting results, users 

should not disregard results strictly based on a significance threshold.  

Pathway-level methods for GWAS do not evaluate gene-gene interactions or 

pinpoint the downstream effects of polymorphisms in a gene. Instead, these methods 

offer a visualization of the data that did not reach genome-wide significance but may be 

suggestive and biologically relevant to the phenotype of interest. By determining which 

pathways are enriched for signal within a GWAS, candidate genes and regions may be 

generated and it may identify relationships between seemingly disparate phenotypes 

that may have a similar pathogenesis. The best performance was seen in three separate 
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methods: GSA-SNP, MAGENTA, and GenGen. Pathway-level methods for GWAS 

remain useful tools for conceptualizing GWAS results beyond the traditional SNP-level 

results that require a strict significance threshold. By examining the relative importance 

of different gene sets with the results, researchers are allowed a more complete 

understanding of their genome-wide association study. 
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6.6: Supplementary Materials 

6.6.1: GSA-SNP Options and Performance 

A variety of different options were run within the GSA-SNP Software. The different 

options include using a Z-score estimation, both assuming an asymptotic distribution 

and using permutations, a GSEA approach using the MAXMEAN, and a traditional 

GSEA Enrichment Score. Performance between the Z-scores using the asymptotic 

distribution versus the permutations was nearly identical. The GSEA MAXMEAN 

method had test statistic inflation, with much smaller P-values across the board. The 

enrichment score was conservative with only 2 of the pathways reaching the significance 

threshold.  
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Supplemental Table 6.1: GSA-SNP Results from Simulation with Different Options 

Si
ze

 
Biological Process #  

% 
P<0.01 

Z  
(asym) 

Z  
(perm) 

GSEA  
maxmean 

GSEA 
ES 

La
rg

e 
Anatomical Structure 

Morphogenesis 
363 13.77% 7.53E-06 7.94E-06 3.11E-03 0.01 

Cellular Defense Response 55 10.91% 0.01 0.01 6.73E-05 0.01 
Establishment and/or 

Maintenance of Chromatin 
Architecture 

71 12.68% 0.12 0.11 1.78E-05 0.00 

G-Protein Coupled Receptor 
Protein Signaling Pathway 

332 12.05% 0.01 0.01 1.87E-03 0.06 

Leukocyte Activation 65 10.77% 0.54 0.53 0.23 0.62 
Lipid Transport 29 27.59% 3.90E-04 4.14E-04 2.52E-06 3.92E-04 

Membrane Lipid Metabolic 
Process 

98 15.31% 0.06 0.06 3.29E-03 0.02 

Regulation of DNA Binding 44 9.09% 0.95 0.95 0.88 0.85 
Response to Hypoxia 28 10.71% 0.40 0.41 0.15 0.14 

T-Cell Activation 41 9.76% 0.28 0.27 1.41E-04 0.22 

Sm
al

l 

CDC42 Protein Signal 
Transduction 

12 33.33% 0.09 0.10 0.09 0.10 

Defense Response to Virus 11 18.18% 8.08E-09 2.71E-09 9.17E-14 4.26E-03 
Establishment of Vesicle 

Localization 
10 0.00% 0.86 0.85 0.65 0.40 

G-Protein Signaling 
Adenylate Cyclase 

Activating Pathway 
25 16.00% 0.03 0.03 0.00 0.01 

G1 Phase of Mitotic Cell 
Cycle 

12 0.00% 0.86 0.86 0.59 0.45 

Morphogenesis of an 
Epithelium 

17 17.65% 0.03 0.03 0.01 0.04 

Protein Complex 
Disassembly 

15 20.00% 0.45 0.45 0.04 0.06 

Protein Polyubiquitination 10 0.00% 0.94 0.93 0.78 0.82 
Spindle Organization and 

Biogenesis 
10 0.00% 0.88 0.89 0.30 0.17 

Ribonucleotide Metabolic 
Process 

17 0.00% 0.67 0.67 0.44 0.39 
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6.6.2: MAGENTA Options and Performance 

The performance of the two cut-offs were evaluated. A cut-off of 95% is best for an 

oligogenic model, in which only a few genes are associated with outcome and therefore 

only the top 5% of genes will be relevant. On the other hand, if the underlying model is 

thought to be polygenic, in which many genes will play a role in the phenotypic 

variance then a cut-off of 75% should be used. Because the simulation was conducted 

under a polygenic model, results were only reported in the main chapter for the 75% 

cut-off threshold. The 95% cut-off was less conservative, with more significant P-values. 

Supplemental Table 6.2: MAGENTA Results from Simulation with Different Cut-offs 

Si
ze

 

Biological Process # Genes 
% 

P<0.01 
0.95 

Cut-off 
0.75  

Cut-off 

La
rg

e 

Anatomical Structure Morphogenesis 363 13.77% 0.08 0.16 
Cellular Defense Response 55 10.91% 0.01 0.13 

Establishment and/or Maintenance of 
Chromatin Architecture 

71 12.68% 9.00E-04 0.03 

G-Protein Coupled Receptor Protein 
Signaling Pathway 

332 12.05% 0.12 0.05 

Leukocyte Activation 65 10.77% 0.62 0.94 
Lipid Transport 29 27.59% 1.60E-03 0.02 

Membrane Lipid Metabolic Process 98 15.31% 0.32 0.02 
Regulation of DNA Binding 44 9.09% 1.00 0.93 

Response to Hypoxia 28 10.71% 0.74 0.31 
T-Cell Activation 41 9.76% 0.32 0.90 

Sm
al

l 

CDC42 Protein Signal Transduction 12 33.33% 0.40 0.23 
Defense Response to Virus 11 18.18% 0.09 0.08 

Establishment of Vesicle Localization 10 0.00% 1.00 0.69 
G-Protein Signaling Adenylate Cyclase 

Activating Pathway 
25 16.00% 0.12 0.05 

G1 Phase of Mitotic Cell Cycle 12 0.00% 0.03 0.03 
Morphogenesis of an Epithelium 17 17.65% 0.54 0.02 

Protein Complex Disassembly 15 20.00% 0.16 0.11 
Protein Polyubiquitination 10 0.00% 1.00 0.76 

Spindle Organization and Biogenesis 10 0.00% 0.40 0.47 
Ribonucleotide Metabolic Process 17 0.00% 1.00 0.80 
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Chapter 7: Application of Gene- and Pathway-Level 

Methods to a Genome-wide Association Study of OPV 

Response in Bangladeshi Children 

 

7.1: Abstract 

 

Background: The human infection of poliovirus has been eradicated in many parts of 

the world due to the successful use of the oral poliovirus vaccine (OPV). However, after 

numerous doses with viable vaccine, some individuals fail to mount an immunological 

response. It has previously been hypothesized that this may be due to underlying host 

genetics. To address this question, we conducted a genome-wide association study 

(GWAS) on Bangladeshi infants after four doses of OPV and one year of follow-up. To 

complement this GWAS, previously evaluated gene- and pathway-level methods of 

analysis were utilized. These methods collapse genetic variation into units on a gene-

level, or a set of genes such as a canonical pathway. They aim to elucidate associations 

that are suggestive, but fail to meet the stringent GWAS significance threshold.  

Methods: A genome-wide association study (GWAS) was conducted on 6.6 million 

imputed SNPs comparing extremes of the OPV immune response. High seropositive 

children had log serum neutralizing antibody titers above 7 and seronegative children 
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had titers below 3 at one year of age. The GWAS results were analyzed for gene-level 

associations using VEGAS and the HapMap CEPH population as a reference. Pathway-

level associations were also evaluated using the Gene Ontology Biological Processes and 

two programs: MAGENTA, and GSA-SNP.  

Results: Gene-level results yielded suggestive signals in numerous histone variants 

within histone cluster 1 on chromosome 6 as well as representing the top associations of 

the GWAS. The pathway-level methods highlighted the role of cyclic AMP as a 

secondary messenger, especially when coupled with G-proteins. Numerous gene sets 

involved in the nervous system were also found to be suggestive. 

Conclusions: The gene-level results suggest that variants in the host genome may 

affect histone modifications that will alter the immune response to OPV. Epigenetic 

studies are warranted to evaluate the role of histone modification in the immune 

response to OPV and other oral vaccines. The pathway-level results lack resolution, but 

suggest a role for cAMP that should be further investigated through functional studies. 

Both methods allow the dissection of genome-wide association studies beyond the 

traditional SNP-based testing and the stringent P-value threshold required for 

significance. 
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7.2: Introduction 

Oral Poliovirus Vaccine (OPV) has had remarkable success over the past 50 years in 

the eradication of poliovirus and prevention of poliomyelitis. Since 1988, the number of 

cases has decreased over 99%. Wild circulating virus was only found in four countries in 

2012: Afghanistan, Pakistan, Nigeria, and Chad.(WHO 2013) OPV has been shown to be 

effective at inducing both mucosal and systemic immunity in diverse populations, yet 

some individuals fail to mount an adequate response. One hypothesis has been that this 

is due to host genetics, as differential response is still seen in studies that use identical 

viable vaccines on a standardized schedule.(Paul 2007) The heritability of response to 

OPV has been estimated to be 60%, meaning that 60% of the variance in OPV 

neutralizing antibody titers is attributable to genetic variables.(Newport et al. 2004) 

Despite this high heritability estimate, there have been no genetic loci implicated so far.  

To address this question, a genome-wide association study was conducted 

comparing extreme responders. The GWAS was underpowered and did not yield 

genome-wide significant association signals (P<5x10-8). However, suggestive 

associations were found in SHH (sonic hedgehog) and SOCS4 (suppressor of cytokine 

signaling 4) (unpublished, Chapter 3). A reason for the lack of genome-wide significant 

results may be the small sample size (N=357) and susceptibility loci with small effects. 

Due to these factors, there is limited power to detect associations. In recent years, a 

variety of gene- and pathway-level methods have been developed to increase power to 

detect genetic associations and find connections between suggestive findings that may 
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inform the phenotype’s pathogenesis. Gene-level methods aggregate single nucleotide 

polymorphisms (SNPs) to assess the joint associations. The underlying hypothesis with 

these methods is that in the presence of allelic heterogeneity, where different alleles 

within the same locus or gene are associated with outcome, no individual variant will be 

detected in a traditional GWAS because of limited power. However, the aggregate of 

their signals will have increased association.  Results from this method would detect 

genes with elevated levels of association that would have typically been ignored using 

the stringent p-value threshold. Pathway-level methods are different in their underlying 

hypotheses and goals. Instead of looking to detect instances of allelic heterogeneity, they 

seek to determine if highly ranked genes are commonly linked by being 

disproportionately found in certain sets of genes, or a pathway. These gene sets may 

then be involved in the phenotype and inform further investigation. We evaluate both 

gene- and pathway-level methods using a GWAS of OPV titers.  

7.3: Materials and Methods 

7.3.1: Study Population 

This study was conducted in 448 children from a Birth Cohort (DBC) established to 

evaluate enteric infections. Children were recruited from an urban slum in Mirpur, one 

of the 14 districts in Dhaka City, Bangladesh. Mirpur has a population density of one 

million people per 59 square kilometers. This cohort is followed from birth until at least 

2 years of age. Children were visited multiple times per week, with data collected on 

numerous infectious diseases including enteric pathogens E. histolytica, Cryptosporidium, 
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and rotavirus. Anthropometric measurements such as height-for-age Z-score (HAZ) and 

body mass index (BMI) are also available at multiple time points. 

For children that had completed at least one year of follow-up, serum-neutralizing 

antibody responses to the full 4-dose regimen were available for all three poliovirus 

serotypes. A total of 448 children were assessed for OPV failure, of which only 425 were 

genotyped. Vaccine failure was defined using the CDC standard cutoff of a log2 serum 

neutralizing antibody levels of 3, or a 1:8 dilution factor. (World Health Organization 

Collaborative Study Group on Oral Poliovirus Vaccine 1995) Serotype 3 had a 

seroconversion rate of 88.71%. Because of the right- and left-censored data (left at 2.5, 

right at 10.5), the titers could not be assessed as a quantitative trait. Extremes were 

examined, with seronegative individuals classified as a titer below or equal to 3, and a 

strong seropositive individual having a titer equal to or greater than 7. This resulted in 

48 seronegative and 309 seropositive children (previously described in Section 3.3.1).  

7.3.2: Genotype Data and Quality Control 

Whole blood was taken from the children at 6 months of age and DNA was extracted 

at the International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B). The 

DNA samples were then shipped to the University of Virginia for genotyping. Two 

chips were used for the original round of genotyping: 1M Illumina Duo and the 1M 

Illumina Quad. Despite having over 1 million SNPs genotyped on each chip, there was 

only an overlap of 613,778 SNPs. For these two chips, the average call rate was 99.79% 

and no samples had a call rate of less than 96%. An additional round of samples was 
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genotyped using Illumina’s 2.5M Quad chip. To synchronize these different rounds, 

imputation was done using IMPUTE2 with a 1000 Genomes reference data set.(Howie et 

al. 2012) Standard quality control measures were applied to this data, as further detailed 

in section 3.3.2. After quality control, assessments there were 457 individuals with 6.5 

million imputed SNPs. 

7.3.3: Analysis Methods 

Association analysis was run within SNPTEST(Marchini et al. 2007), using an 

additive frequentist EM model. The associations were adjusted for stunting, or a height-

for-age Z-score (HAZ) below -2. SNPs were filtered by an information content of the test 

of more than 80%, as well as a minor allele frequency greater than 5%. No SNPs reached 

genome-wide significance, using a standard threshold of 5x10-7. 

The gene-level method used was VEGAS(Liu et al. 2010). Two options were utilized: 

(1) using all SNPs and (2) using only the top 10% of associated SNPs within each gene. 

SNPs were assigned to genes according to hg19 coordinates, including 20 kilobase 

flanking regions on both sides. The adjusted GWAS P-values were used as input and the 

HapMap CEPH (CEU) population was used as a reference panel for the linkage 

disequilibrium estimates. Two different methods were used for the pathway-level 

analysis: MAGENTA(Segrè et al. 2010) and GSA-SNP(Nam et al. 2010). They both used 

the GWAS P-values as input and used the same Gene Ontology Biological Processes 

(N=825) downloaded from MSigDB.(Subramanian et al. 2005)  
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7.4: Results 

7.4.1: Gene-Level Results 

VEGAS was applied to 19,120 genes across the human genome.  Genes with a P-

value below 0.001 are detailed in Table 7.1. These top twenty genes consisted of two 

regions on chromosomes 6 and 12. The most significant gene was HIST1H4J (P=2.7x10-5), 

a histone cluster 1 variant on chromosome 6 in the extended HLA region. With a total of 

64 SNPs being assigned to the gene, the most significant SNP was rs183225 (P=2.95x10-5). 

This SNP is located within an active promoter and CpG island. Seventeen out of the top 

twenty associations were in this region (Figure 7.1). Another top region is on 

chromosome 12 in the gene TAS2R9 (P=9.2x10-5), a taste receptor (type 2, member 9) that 

is a member of the G-protein coupled receptor superfamily. 

VEGAS was also applied to the same genes using only the top 10% of associated 

SNPs within the genic regions. The results are largely consistent with the prior analysis 

using all of the SNPs with genes in histone cluster 1 remaining within the top ranked 

genes. The difference with this analysis was that results were more reflective of the 

original GWAS with LMBR1 showing an association. Additional top genes within 

regions on chromosomes 7 and 14 reflect the top signals for the GWAS, such as 

MAPK1IP1L and SOCS4 (previously described Chapter 3). 
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Table 7.1: Gene-Level Results using all SNPs 
Chr Gene # SNPs Size P-value Best SNP SNP P-value 

6 HIST1H4J 64 356 2.70E-05 rs183225 2.95E-05 
6 HIST1H4K 61 354 2.90E-05 rs183225 2.95E-05 
6 HIST1H2BN 63 449 5.10E-05 rs183225 2.95E-05 
6 HIST1H2AK 64 460 5.60E-05 rs183225 2.95E-05 

12 TAS2R9 132 1075 9.20E-05 rs11054019 1.03E-02 
12 TAS2R7 136 1096 1.16E-04 rs11054019 1.03E-02 
6 HIST1H2AJ 64 439 1.20E-04 rs183225 2.95E-05 
6 HIST1H2BM 64 446 1.23E-04 rs183225 2.95E-05 

12 TAS2R8 132 930 1.26E-04 rs11054019 1.03E-02 
6 HIST1H4L 65 364 1.27E-04 rs188015 1.69E-04 
6 HIST1H3J 73 478 1.30E-04 rs188015 1.69E-04 
6 HIST1H2BO 73 467 1.41E-04 rs188015 1.69E-04 
6 HIST1H3I 64 477 1.50E-04 rs188015 1.69E-04 
6 HIST1H2AM 74 487 1.51E-04 rs188015 1.69E-04 
6 HIST1H3H 65 473 1.58E-04 rs183225 2.95E-05 
6 HIST1H1B 62 790 1.64E-04 rs200501 1.64E-04 
6 OR2B2 72 1212 1.64E-04 rs188015 1.69E-04 
6 HIST1H2BL 64 453 1.66E-04 rs183225 2.95E-05 
6 HIST1H2AL 62 470 1.67E-04 rs200501 1.64E-04 
6 HIST1H2AI 65 469 1.88E-04 rs183225 2.95E-05 

11 KCNE3 113 12715 1.94E-04 rs686179 1.84E-05 
10 OGDHL 98 27739 3.93E-04 rs1025742 3.29E-04 
19 ZNF709 101 23635 5.77E-04 rs4804194 5.13E-04 
19 ZNF443 86 11407 6.74E-04 rs4804194 5.13E-04 
17 ZSWIM7 70 23132 7.46E-04 rs11869450 1.14E-04 
19 IGFL2 53 13523 7.78E-04 rs11670023 1.84E-04 
19 IGFL3 52 4604 8.14E-04 rs11670023 1.84E-04 
17 TTC19 78 30030 8.32E-04 rs11869450 1.14E-04 

* Chr=Chromosome, Best SNP= SNP with highest P-value in gene
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Table 7.2: Gene Results for using only the Top 10% of SNPs 
Chr Gene # SNPs Size Top 10% P All SNPs P Best SNP SNP P 

7 LMBR1 250 212333 5.50E-05 1.74E-03 rs10242938 2.41E-05 
6 HIST1H2BL 64 453 1.20E-04 1.60E-04 rs183225 2.95E-05 
6 HIST1H4K 61 354 1.37E-04 4.10E-05 rs183225 2.95E-05 
6 HIST1H2AK 64 460 1.51E-04 4.50E-05 rs183225 2.95E-05 
6 HIST1H2AJ 64 439 1.52E-04 1.06E-04 rs183225 2.95E-05 
6 HIST1H4J 64 356 1.62E-04 2.80E-05 rs183225 2.95E-05 
6 HIST1H2BM 64 446 1.63E-04 9.80E-05 rs183225 2.95E-05 
6 HIST1H3H 65 473 1.69E-04 1.61E-04 rs183225 2.95E-05 

10 CCDC3 309 105080 1.70E-04 2.63E-03 rs10906260 3.25E-05 
6 HIST1H2AI 65 469 1.82E-04 1.89E-04 rs183225 2.95E-05 
6 HIST1H2BN 63 449 1.89E-04 4.20E-05 rs183225 2.95E-05 

10 SH2D4B 232 108659 2.50E-04 3.33E-03 rs12360015 8.52E-05 
6 DACT2 92 12819 2.70E-04 2.88E-03 rs9364424 1.23E-04 

11 KCNE3 113 12715 2.77E-04 1.70E-04 rs686179 1.84E-05 
7 RNF32 110 36468 3.00E-04 8.96E-03 rs10242938 2.41E-05 
2 ECEL1 72 7996 3.26E-04 2.32E-03 rs746379 6.73E-05 

19 CCDC61 80 23156 3.90E-04 6.50E-03 rs2302788 5.11E-05 
1 ACTL8 152 71751 3.90E-04 9.49E-03 rs683259 6.12E-05 

14 SOCS4 67 22363 4.30E-04 4.56E-02 rs17128156 2.76E-06 
17 ZSWIM7 70 23132 4.61E-04 6.73E-04 rs11869450 1.14E-04 
14 LGALS3 88 16214 4.70E-04 1.15E-02 rs17128156 2.76E-06 
6 HIST1H2AL 62 470 5.10E-04 1.80E-04 rs200501 1.64E-04 
2 ALPI 68 3910 5.20E-04 1.51E-02 rs746379 6.73E-05 

17 ADORA2B 81 30980 5.30E-04 1.12E-03 rs11869450 1.14E-04 
14 MAPK1IP1L 77 18551 5.50E-04 3.72E-02 rs17128156 2.76E-06 
19 IGFL4 80 1269 5.58E-04 3.13E-03 rs2302788 5.11E-05 
17 TTC19 78 30030 5.84E-04 8.53E-04 rs11869450 1.14E-04 
19 PGLYRP1 79 4145 5.89E-04 3.61E-03 rs2302788 5.11E-05 
6 HIST1H1B 62 790 6.48E-04 1.51E-04 rs200501 1.64E-04 
1 CTSE 17 14646 6.50E-04 8.28E-03 rs28450935 3.87E-04 

13 ENOX1 748 573451 6.53E-04 1.87E-03 rs9525777 2.59E-05 
19 NOVA2 77 33887 6.90E-04 2.80E-02 rs2302788 5.11E-05 
6 HIST1H2BO 73 467 7.50E-04 1.00E-04 rs188015 1.69E-04 

17 NCOR1 141 185467 7.69E-04 2.60E-03 rs11869450 1.14E-04 
6 HIST1H3I 64 477 7.77E-04 1.03E-04 rs188015 1.69E-04 
6 OR2B2 72 1212 7.89E-04 1.57E-04 rs188015 1.69E-04 
4 MUC7 115 52506 7.90E-04 1.26E-03 rs2130651 1.87E-04 
6 HIST1H3J 73 478 8.07E-04 1.09E-04 rs188015 1.69E-04 

10 CHAT 191 56010 8.23E-04 5.43E-03 rs1025742 3.29E-04 
*Results are sorted by the P-value using only the top 10% of SNPs. The ALL SNPs P-value is the gene’s 
corresponding P-value from the previous analysis using all SNPs within the gene.
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Figure 7.1: Chromosome 6 SNP Associations and Histone cluster 1. Association is indicated along the y-axis with the –log10 transformed 

P-values and chromosomal position is shown on the x-axis. Histone markers are labeled according to their hg19 coordinates. 
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7.4.2: Pathway-Level Results 

MAGENTA and GSA-SNP were applied to the whole GWAS of OPV Response 

using the Gene Ontology Biological Processes database. A P-value threshold of 0.01 for 

suggestive pathways was used for all programs. A polygenic model was assumed to use 

a 75th percentile cut-off within MAGENTA. A total of 16 pathways were suggestive 

(Table 7.3). The top pathway was “G-Protein Signaling Coupled to Camp Nucleotide 

Second Messenger” with 28 out of its 63 genes (44%) in the 75th percentile of all genes 

(P=5x10-4, FDR-0.39). This pathway is now known as “Adenylate Cyclase-Modulating G-

Protein Coupled Receptor Signaling Pathway” on Gene Ontology and affects the 

concentration of cyclic AMP (cAMP). Many of the top associated gene sets for 

MAGENTA were related to cAMP and the G-Protein signaling pathway with second 

messengers.  

The top association for GSA-SNP was “Neurological System Process”, a gene set that 

is an overarching organ system process carried out or involving any of the neurological 

system (Pcorrected=2.8x10-4) (Table 7.4). Other neurological gene sets were found to be 

highly associated such as “Neuron Differentiation”, “Synaptic Transmission”, 

“Generation of Neurons”, “Nervous System Development”, “Neurite Development”, 

and “Transmission of Nerve Impulse”.  

MAGENTA and GSA-SNP overlapped greatly with 6 gene sets in common: “G-

Protein Signaling Coupled to cAMP Nucleotide Second Messenger”, “Cyclic Nucleotide 

Mediated Signaling”, “cAMP Mediated Signaling”, “G-Protein Signaling Coupled to 
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Cyclic Nucleotide Second Messenger”, “Neurological System Process”, and “Regulation 

of Developmental Process”. Four out of the six pathways were involved in cyclic 

nucleotide second messenger, specifically cAMP, signaling. Two gene sets were coupled 

additionally with G-protein signaling. The other two gene sets (“Neurological System 

Process” and “Regulation of Developmental Process”) were very large (N=336 and 440, 

respectively) and not as specific.  
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Table 7.3: MAGENTA Results for 75% Cut-off 

Gene Set 
# 

Genes 
P FDR 

Expected # 
Genes 

Observed # 
Genes 

G-PROTEIN SIGNALING COUPLED TO CAMP NUCLEOTIDE SECOND 
MESSENGER 

63 5.00E-04 0.39 16 28 

CYCLIC NUCLEOTIDE MEDIATED SIGNALING 100 8.00E-04 0.24 25 39 
CAMP MEDIATED SIGNALING 64 9.00E-04 0.26 16 28 

G-PROTEIN SIGNALING COUPLED TO CYCLIC NUCLEOTIDE SECOND 
MESSENGER 

98 1.70E-03 0.23 25 38 

G-PROTEIN SIGNALING ADENYLATE CYCLASE ACTIVATING 
PATHWAY 

24 2.00E-03 0.26 6 13 

NEUROLOGICAL SYSTEM PROCESS 336 2.40E-03 0.20 84 106 
REGULATION OF MAPKKK CASCADE 17 2.70E-03 0.20 4 10 

G PROTEIN SIGNALING ADENYLATE CYCLASE INHIBITING PATHWAY 10 3.40E-03 0.24 3 7 
AMINO ACID TRANSPORT 25 3.70E-03 0.19 6 13 

ORGANIC ACID TRANSPORT 40 4.40E-03 0.20 10 18 
AMINE TRANSPORT 37 4.60E-03 0.20 9 17 

CARBOHYDRATE TRANSPORT 18 5.00E-03 0.22 5 10 
SENSORY PERCEPTION 167 6.70E-03 0.32 42 56 

REGULATION OF JNK CASCADE 11 7.50E-03 0.21 3 7 
CARBOXYLIC ACID TRANSPORT 39 7.70E-03 0.30 10 17 

REGULATION OF DEVELOPMENTAL PROCESS 400 9.70E-03 0.43 100 119 
*Gene sets in common between MAGENTA and GSA-SNP are in italics.
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Table 7.4: Results from GSA-SNP 
Gene Set # Genes P Corrected P 

NEUROLOGICAL SYSTEM PROCESS 379 3.57E-07 2.84E-04 
CYCLIC NUCLEOTIDE MEDIATED SIGNALING 102 1.45E-06 5.76E-04 

G PROTEIN SIGNALING COUPLED TO CYCLIC NUCLEOTIDE SECOND MESSENGER 100 1.85E-06 5.76E-04 
NEURON DIFFERENTIATION 76 2.17E-06 5.76E-04 

G PROTEIN SIGNALING COUPLED TO cAMP NUCLEOTIDE SECOND MESSENGER 64 8.72E-06 1.38E-03 
SECOND MESSENGER MEDIATED SIGNALING 153 1.05E-05 1.39E-03 
ANATOMICAL STRUCTURE MORPHOGENESIS 376 1.07E-05 1.39E-03 

SYNAPTIC TRANSMISSION 174 1.58E-05 1.57E-03 
cAMP MEDIATED SIGNALING 65 1.70E-05 1.57E-03 
GENERATION OF NEURONS 83 3.97E-05 3.15E-03 

ION TRANSPORT 185 4.11E-05 3.15E-03 
G PROTEIN COUPLED RECEPTOR PROTEIN SIGNALING PATHWAY 342 4.22E-05 3.15E-03 

NERVOUS SYSTEM DEVELOPMENT 385 5.85E-05 3.57E-03 
REGULATION OF DEVELOPMENTAL PROCESS 440 6.14E-05 3.57E-03 

NEURITE DEVELOPMENT 53 1.09E-04 5.80E-03 
TRANSMISSION OF NERVE IMPULSE 189 1.10E-04 5.80E-03 

*Gene sets in common between MAGENTA and GSA-SNP are in italics.
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7.5: Discussion 

The most significant gene-level result was found in Histone cluster 1 variation on 

chromosome 6 within the extended HLA region. These genes include many parts of the 

histone complex, including histones 1-4. Histones are responsible for the storage of 

DNA, both in coiling DNA around the octomer (H2-5), as well as forming the supercoils 

for the 30 nm nanofiber (H1).(Parseghian and Luhrs 2006) They are an essential part of 

epigenetics and genetic expression. It has previously been observed that bacterial toxins 

can alter the histone structure (histone modifications) through epigenetic 

imprinting.(Hamon et al. 2007) Specifically, in the early stages of Listeria monocytogenes  

infection, toxins were associated with the dephosphorylation of histone 3 and the 

deacetylation of histone 4— both core histones. A similar phenomenon was observed 

with Clostridium perfringens and Streptococcus pneumonia toxins.  Epigenetic imprinting 

has also been observed in commensal probiotics, in which the expression of genes can be 

altered due to histone modifications induced by infection.  A study of the linker histone 

(H1) in intestinal epithelial cells revealed a role in preventing microbial penetration into 

villous epithelial cells.(Rose et al. 1998) These studies highlight the potential role of 

histone marks with immunity to enteric infections. 

An additional actor that may play a role in the response to OPV is environmental 

enteropathy, a sub-clinical syndrome in which a cycle of malnutrition and enteric 

infection leads to decreased gut integrity and response to oral vaccines. Because a 

newborn’s intestinal tract is originally free of a microbiome but is quickly populated, it 



 180 

can be hypothesized that epigenetic imprinting by this microbial population early in life 

may affect a child’s mucosal immunity long-term.(Korpe and Petri 2012) Through this 

mechanism, host genetic differences may influence the way that gene expression is 

altered under these pressures, leading to differential systemic immunity to OPV. Future 

research should focus on epigenetic signatures in gut mucosa, as well as circulated 

serum, with response to vaccines. Gene expression studies may also pinpoint how these 

histone modifications alter the immune system’s response to vaccination, or natural 

infection.  

The pathway-level results highlight the role of cyclic AMP, as well as the nervous 

system. Cyclic AMP is a second messenger that is a negative regulator of T cell immune 

function.(Mosenden and Taskén 2011) Specifically, cAMP levels have been shown to 

correlate with suppressive capabilities of T regulatory cells. These cells suppress the 

immune system’s response to foreign antigens. A disruption of this pathway could 

decrease vaccine efficiency. Some of the cAMP pathways were also coupled with G-

protein signaling pathways. Numerous nervous system development and regulation 

pathways were also associated by both methods. This is not surprising, as poliomyelitis, 

the clinical presentation of poliovirus infection, results from poliovirus infecting the 

central nervous system (CNS). Polymorphisms in genes related to this system would 

then affect the ability of the virus to effectively invade and replicate within the CNS. 

Pathway- and gene-level analyses are hypothesis-generating methods that do not 

offer a high level of resolution in their findings. They are methods that examine results 
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from genome-wide association in aggregate. Gene-level methods will identify multiple 

signals within a gene that would otherwise have been undetected in a GWAS because 

they failed to reach the genome-wide significance threshold (5x10-7). Results can inform 

further follow-up studies, such as sequencing, to identify risk loci. Pathway-level 

methods serve as a visualization tool for the genes that are enriched in your study. 

While many of these gene sets are broad and include many genes, they provide lists of 

candidate genes for follow-up. For this study, the gene-level method identified a 

potential role for genetic variations in histone cluster 1 that is densely packed with 

regulatory elements. It suggests a role for epigenetic research regarding immune 

responses to oral vaccines. The pathway results propose a role for cyclic AMP and G-

protein coupled signaling in the response to OPV, as well as the involvement of the 

nervous system. Taken together they can inform future research not only in the response 

to OPV, but also in the response to other oral vaccines. 
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Chapter 8: Conclusions  

8.1: Research Questions and Goals 
 

This dissertation had two major questions:  

1. What are the human genetics responsible for systemic immune 

response to oral poliovirus vaccine in children?  (Chapters 2, 3, and 7) 

2. What are the best gene- and pathway-level methods for genome-wide 

association studies? (Chapters 4, 5, and 6) 

Oral poliovirus vaccine (OPV) is known to be a model oral vaccine, largely responsible 

for decreasing global cases by over 99% in the last 25 years.(WHO 2013) It is the most 

well characterized oral vaccine and is efficient in diverse populations worldwide. 

Despite its success, there still remain some individuals who fail to respond adequately to 

the vaccine, leaving them susceptible to infection and the associated sequelae such as 

paralytic poliomyelitis. One hypothesis for this failure is host genetics.(Paul 2007) The 

heritability, or proportion of the phenotypic variation due to genetics, has been 

estimated to be high (60%) and ethnic differences in the efficacy of OPV have been 

observed.(Newport et al. 2004)  

To address this question, we conducted a genome-wide association study (GWAS) in 

357 Bangladeshi children to investigate the systemic immune response to OPV as 
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determined by their log serum neutralizing antibody titers (LTs) comparing 

seronegative (LT<3) to high seropositive (LT>7) individuals. However, with a small 

sample size of 357 and a large number of comparisons (6.6 million), there was concern 

about limited power using this study design. Three secondary analyses were conducted 

on the GWAS results in addition to the original GWAS analysis to increase the overall 

power.  The 1st approach was to correlate signatures of positive selection within the 

human genome with the GWAS results. This would highlight regions that contain a 

beneficial mutation that may be related to the response to OPV and therefore preserved 

throughout subsequent generations. We also applied gene- and pathway-level analytical 

methods for the GWAS results. There have been numerous methods developed in recent 

years to elucidate gene- and pathway-level associations. However, there has not been a 

consensus as to the most appropriate and accurate method. Therefore, we conducted a 

simulation experiment with an additive polygenic model simulated upon real genotypic 

data in which numerous genes and pathways were “causal”. We then evaluated 22 

programs (12 gene-level, 10 pathway-level) for their relative performance to determine 

the best methods. These best methods were applied to the GWAS; below we will 

describe the major findings for each of their components, organized according to these 

larger questions outlined above. 
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8.2: Major Findings 

8.2.1: Genomics of the Response to Oral Poliovirus Vaccine 

The genomics of the response to Oral Poliovirus Vaccine (OPV) were investigated 

using four different methods: 

1. A genome-wide association study (GWAS) comparing seronegative versus high 

seropositive responders to OPV in Bangladesh (Chapter 3) 

2. A correlation of the GWAS with signatures of positive selection estimated within a 

larger sample of the same population (Chapter 3) 

3. An application of gene-level methods to examine the joint association of single 

nucleotide polymorphisms (SNPs) from the GWAS (Chapter 7) 

4. An application of pathway-level methods to examine the overrepresentation of highly 

ranked genes from the GWAS in biologically relevant gene sets (Chapter 7) 

Through these four methods we have highlighted different genes and pathways that 

may play a role in the pathogenesis of poliovirus and specifically the response to OPV. 

The first approach was a traditional genome-wide association study design to 

identify risk loci involved in the systemic immune response to OPV as assessed by their 

log serum neutralizing antibody titers (LTs). Children were grouped into seronegative 

individuals (LT<3) and high seropositive individuals (LT>7). Association was assessed 

for 6.6 million single nucleotide polymorphisms (SNPs) across the human genome 

through logistic regression and adjusted for stunting (height-for-age Z score (HAZ) < -2), 
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a previously established confounder for this relationship. While no markers reached 

genome-wide significance, several suggestive signals were found. The most significant 

finding was found on chromosome 14 at rs113427985 (OR=0.22, P=2.9x10-6) close to 

MAPK1IP1L. An additional association was found 50 kilobases away in SOCS4 at 

rs112185488 (OR=0.22, P=5.8x10-6). Although these two variants are far apart, they are in 

high linkage disequilibrium, indicating that the two signals could represent the same 

association. SOCS4, a suppressor of cytokine signaling, was previously implicated in 

enteric infections and the integrity of the gastric mucosa. An additional signal was found 

upstream of SHH at rs55906254 (OR=0.31, P=3.6x10-6) on chromosome 7. A neighboring 

gene, LMBR1, also had numerous associations across the entire genic region. These two 

genes were previously shown to interact, with LMBR1 containing a known cis-

regulatory region for SHH.(Lettice et al. 2002) Sonic hedgehog is a gastric morphogen 

and has been shown to be associated with gut reconstruction following infection with 

enteric pathogens.(Xiao et al. 2012)  

The second approach sought to correlate signatures of positive selection within the 

human genome with the GWAS results from the first approach. The cross-population 

extended haplotype homozygosity (XP-EHH) is a measure of positive selection. 

Through subsequent generations, a beneficial mutation will be conserved along with the 

surrounding variants due to linkage disequilibrium. XP-EHH detects these regions of 

the genome by looking at extended haplotypes and comparing them to a reference 

population. We used an African population as the reference population for the 
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Bangladeshi study subjects. We filtered genetic locations by a GWAS P-value < 0.001 and 

an XP-EHH P-value < 0.01. This resulted in 32 SNPs, half of which were found between 

FAM86A and RBFOX1 on chromosome 16.  Directionality for all these SNPs were 

consistent, showing positive selection (XP-EHH > 0) with longer haplotypes than the 

reference African population, and a protective effect with the derived (non-ancestral) 

allele (OR>1). This indicates that beneficial mutations in this region arose and were 

subsequently preserved in this population due to positive natural selection. We cannot 

determine if this was the result of poliovirus, but suspect that it may have an ancestral 

virus exerting selective pressure. This demonstrates the benefit in coupling the GWAS 

results with signatures of positive selection, especially when looking at infectious 

pathogens that have historically had a large effect on human populations. 

The third approach was to aggregate the SNP-level associations using gene-level 

methods to test for joint associations within a gene that is likely due to allelic 

heterogeneity. Using only the top 10% of associated SNPs within the gene, including 20 

kilobase flanking regions on either side of the gene, associations were reinforced for the 

top GWAS association signals in genes such as LMBR1 (P=5.5x10-5), SOCS4 (P=4.3x10-4), 

and MAPK1IP1L (P=5.5x10-4). Additional associations were found for numerous histone 

marks in histone cluster 1 on chromosome 6. The highest association of these was 

HIST1H2BL (P=1.2x10-4). These results suggest a role for epigenetic influences through 

histone modifications. It has previously been hypothesized that epigenetic imprinting 

may play a role in the response to OPV. Infections with both commensal probiotics as 
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well as different enteric infections have previously been shown to cause epigenetic 

imprinting. (Ghadimi et al. 2012; Hamon et al. 2007) It is possible that epigenetic 

modifications may influence the gut integrity and mucosal immunity, influencing the 

immunological response to OPV.  

The last approach sought to detect pathway-level associations within the GWAS. 

Two different programs were used for this analysis: MAGENTA and GSA-SNP. Their 

results were largely consistent, with 6 pathways in common with P<0.001. Four of these 

pathways were involved with cyclic AMP (cAMP) as a secondary messenger and G-

protein signaling. Cyclic AMP is a known negative regulator of T cell immune function, 

influencing the suppressive abilities of T regulatory cells.(Mosenden and Taskén 2011) 

This includes the immune system’s ability to respond to foreign antigens. A disruption 

in these signaling pathways could damage the ability to respond to the live attenuated 

poliovirus found in OPV, resulting in an inadequate systemic response. The other two 

pathways that were in common included neurological system processes and the 

regulation of the developmental process. Both pathways were very large and non-

specific, however neurological system processes may play a role as the most serious 

sequelae of poliovirus infection is paralytic poliomyelitis which can occur when the 

virus cross the blood-brain barrier into the central nervous system. 
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8.2.2: Gene- and Pathway-Level Methods for Genome-wide Association 

Studies 

We sought to conduct a systematic evaluation of the relative performance for gene- 

and pathway-level methods for genome-wide association studies. A simulation was 

conducted using real genotypic data from the Wellcome Trust Case-Control Consortium 

(WTCCC) and assuming an additive polygenic model. A total of 22 methods were 

evaluated: 12 gene-level and 10 pathway-level programs. Gene-level programs included: 

Fisher’s Combination Test, Sidak’s Combination Test, Simes’ Test, False Discovery Rate 

Correction, Score Test, aSUM (Adaptive sum test), GATES, Weighted GATES, HYST, 

Weighted HYST, VEGAS, and VEGAS using only the top 10% of associated SNPs. 

Programs were evaluated based on their sensitivity and specificity, as well as type I and 

type II error. The highest sensitivity was found using Fisher’s Combination Test (59.2%), 

which also had the lowest specificity (88.6%). Fisher’s Combination Test also had the 

highest type I error rate (5.9%). The lowest sensitivity was found using Sidak’s 

Combination Test (18.37%), with a specificity of 88.6% and type I error of 0.11%. 

Sensitivity was decreased for all methods when the analysis was limited to only genes 

with small effect size under the simulation (OR=1.2 vs. OR=2). When stratified by the 

number of causal SNPs within the gene, the highest sensitivities were found in genes 

having 5 causal SNPs versus 1 or 2 causal SNPs. This is consistent with the underlying 

hypothesis of gene-level methods, which aim to identify genes with multiple 

independent association signals. Out of the 12 methods, only VEGAS did not identify 

any genes with only one causal SNP. This is important as it means VEGAS is able to 
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discern between genes with multiple causal SNPs and genes with only one association 

that may be due to high levels of linkage disequilibrium. The best balance of sensitivity, 

specificity, and type I error was present in VEGAS using only the top 10% of the 

associated SNPs. This method has a sensitivity of 28.6%, a specificity of 98%, and type I 

error rate of 0.4%.  

A total of 10 programs were evaluated for pathway-level methods: ALIGATOR, 

gengen, GSA-SNP, GSEA-SNP, GRASS, HYST, INRICH, MAGENTA, Plink Set Test, and 

the SNP Ratio Test. These methods were divided into self-contained and competitive 

tests. Self-contained tests do not depend on the distribution of the other gene sets being 

tested while the significance of competitive tests does depend on the distribution of 

other genes. Because only 20 gene sets from the Gene Ontology Biological Processes 

were part of the simulation, a quantitative analysis of the programs was not possible. 

Instead a qualitative comparison of their results was evaluated. All programs had 

negative correlations between the proportion of associated genes within the gene set and 

the P-value. This supports the underlying hypothesis of pathway-level methods that a 

phenotype follows a polygenic model in which the higher proportion of genes that are 

associated within a gene set, the more important the gene set. This relationship was the 

clearest for GSA-SNP, gengen, and MAGENTA, all competitive methods. These 

methods had the advantage of having more stable estimates as well as strong correlation 

with the proportion of associated genes. The disadvantage of these methods is that they 

are dependent upon the gene sets being calculated and therefore results may not be 
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reproducible across different pathway databases or releases of the same databases. 

Pathway-level methods do not evaluate gene-gene interactions or implicate a certain 

aspect of the gene set. Additional methods are required to ask these questions. Instead, 

pathways-level methods for GWAS provide an opportunity for researchers to 

conceptualize their GWAS results beyond the top associations.  

8.3: Strengths and Limitations 

The first component of this dissertation seeks to elucidate the genetic loci underlying 

the immune response to OPV. Traditional GWAS typically require large sample sizes 

and our study is no exception. With only 357 study participants, we have limited power 

to detect associations unless they have a very large effect size. This is reflected with the 

lack of genome-wide significant results. However, three different approaches were 

applied to this GWAS dataset to improve associations that may have been 

underpowered in the original analysis. By correlating signatures of positive selection 

with the phenotype of interest, results are put into their evolutionary context. Gene-level 

methods aim to increase power to detect association and pathway-level methods help 

researchers link suggestive signals and further explore these relationships. Another 

limitation of the study of OPV was that the associations were only adjusted for stunting. 

Prior publications suggest that exclusive breastfeeding and specifically breast-feeding at 

the time of vaccination may play a role in the decreased efficacy of OPV. Further studies 

should examine the potentially confounding role of breast-feeding with these 

associations. Additional confounders are the presence of symptomatic enteric infections 
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leading to diarrhea and the presence of sub-clinical tropical enteropathy. Unfortunately, 

there is no consensus as to the best measurement of tropical enteropathy so adjustment 

is not possible. However, the presence of diarrhea or burden of enteric infections may be 

incorporated in subsequent analyses.  

The simulation experiment offered a standardized evaluation of gene- and pathway-

level methods. The systematic generation of phenotype with a large number of true 

negative and true positives allows for reliable and realistic estimates of sensitivity and 

specificity, as well as type I and type II error. For the gene-level methods, a limitation 

was the underrepresentation of smaller effect variants in the GWAS results. This 

prevented stable estimates of sensitivity within the smaller effect group due to a low 

number of smaller effect true positive genes.  However, this is consistent with the 

infinitesimal model in which the majority of variance is found in small amounts at many 

small effect variants.(Gibson 2012) The majority of hidden heritability is expected to 

reside in these underpowered variants. Despite this limitation, the methods were still 

able to identify some smaller effect genes that would have otherwise been ignored by a 

traditional GWAS. A limitation for the pathway-level method comparison was the small 

number of pathways upon which the phenotype was simulated. This prevented a 

quantitative analysis for measures of accuracy. Despite this limitation, the simulation 

represents a realistic GWAS in that it is unlikely that there will be a large number (>20) 

of truly associated pathways. To answer this question it would be more ideal to simulate 

numerous phenotypes and assess their ability to identify the associated pathways across 
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the different GWAS, instead of numerous pathways within one GWAS. However, the 

qualitative assessment of these programs does offer insight into their methodology, 

strengths, and limitations. 

8.4: Future Directions 

The four-pronged approach to identify the host genetics underlying the response to 

OPV has yielded numerous candidate genes that warrant follow-up. The first step 

would be to validate the GWAS findings in the SHH/LMBR1 and MAPK1IP1L/SOCS4 

regions in a separate population. Recruitment is ongoing for the Exploration of the 

Biological Basis for Underperformance of Oral Polio and Rotavirus Vaccines in India 

(PROVIDE), a clinical trial for the efficacy of rotavirus vaccine and OPV ongoing in 

Bangladesh and India. These children will be genotyped for these candidate regions as 

they are similar to the cohort examined in this dissertation, allowing an opportunity to 

confirm and replicate our findings. Additionally, the GWAS and gene-level results could 

be followed-up with targeted resequencing to identify variants on a finer scale. The 

gene-level method identified an association within histone cluster 1 on chromosome 6, 

implicating a role for epigenetics in the immune response to OPV. Histone modifications 

could be examined in a longitudinal sample from birth to one year of age to see how 

different factors may influence the histones, as well as how the histone modifications 

influence different phenotypes such as gut integrity and response to OPV. Because of the 

tissue-specific nature of epigenetics, it will be important to choose the correct timing and 

sample to measure these modifications. Overall, the inquiries into the genetics of OPV 
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response have generated a few candidates that are biologically plausible. Through 

targeted sequencing and alternative measures, such as histone modifications, the 

genomics of the immune response to OPV deserves a closer look.  

8.5: Public Health Significance 

The evaluation of these gene- and pathway-level methods will assist investigators as 

they evaluate their own associations. Traditional GWAS methodology requires stringent 

significance thresholds to handle multiple comparisons, essentially “tabling” all signals 

that fall below 5x10-8. Gene- and pathway-level methods for GWAS seek to formalize a 

test for multiple associations within a biologically relevant unit. Our results will inform 

future researchers as to the best method for their project so that all of the associated 

variation in GWAS may be elucidated. 

The efficacy of OPV has been validated in diverse populations around the world. It 

has been highly successful through mass immunizations, which is largely due to the 

easy administration of the oral vaccine.(Pasetti et al. 2011) Other vaccines have been 

modeled after OPV to elicit mucosal immunity. The most notable is against rotavirus 

with two licensed vaccines: Rotareq and Rotarix. The latter was created through serial 

passage in tissue culture, similar to Sabin’s OPV strain.(Pasetti et al. 2011) Both rotavirus 

vaccines and OPV show decreased effectiveness in developing versus developed 

countries. This may be due to biological factors within children in developing countries, 

such as the presence of tropical enteropathy leading to poor gut integrity and an 

inability to mount an adequate response to enteric pathogens.(Korpe and Petri 2012) 
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However, a study of Brazilian children estimated that the heritability of early childhood 

diarrhea was 54%, suggesting that the extent of tropical enteropathy may be partly 

genetic.(Pinkerton et al. 2011) By understanding the genetic risk factors for the response 

to OPV, it informs the general mechanisms of oral vaccines that aim to target the 

mucosal immunity.   

The response to OPV has high levels of variability both within and between 

populations. Even with the same vaccine, children response differently. Human genetics 

may play a role in this variability, with individuals carrying mutations that confer 

stronger immunological responses. Genetic epidemiology seeks to detect these 

mutations on a population-level scale, which can then be related to the individual 

response. By examining the underlying human genomics of these diverse responses, not 

only do we better understand the mechanisms of the immune response to OPV but may 

lead to potential adjuvants and improved vaccines. This is a public health issue that can 

be addressed as we move genetic knowledge forward. 
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