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Abstract

Modeling fracture and failure of material is a complex phenomenon that needs

atomic-scale understanding of the kinetics and energetics of different deformation

mechanisms. Several efforts has been made over the years to model the fracture at

continuum scale e.g, cohesive zone model, phase-field model. The success of these

continuum scale fracture models rely on the appropriate incorporation of the interac-

tion between the crack and the different deformation mechanisms within the material

such as interatomic decohesion, dislocation nucleation, mobility of the dislocations,

dislocation reaction, twining etc. Hence, there is a need to develop a systematic

framework to quantify these interactions and develop physics-based constitutive laws

that can be used in continuum scale fracture models.

This dissertation develops a concurrent coupled atomistic-continuum model to

capture the interaction between different deformation mechanisms on the propaga-

tion of crack. The atomistic region is modeled using time-accelerated Molecular

Dynamics(MD) and for the continuum region, the density-based Crystal Plasticity

Finite Element(CPFE) model is used. Hyperdynamics is used for the time accelera-

ii



tion of the MD. The atomistic-continuum coupling is achieved by enforcing geometric

compatibility and force equilibrium in the interface region. A sequence of steps is

performed to characterize and quantify the dislocations at the interface and then

transfer those dislocations from the atomistic to the continuum region in the density

form. The propagation of the dislocations in the density form is modeled by solving

the transport equation of a conserved quantity, also known as the advection equa-

tion. The mesh-less Reduced Kernel Particle Method(RKPM) is used to solve the

advection equation over the continuum domain.

The developed concurrent coupled atomistic-continuum model is used to study the

brittle and ductile propagation of a crack in a nickel single crystal. A parametrized

form of crack propagation law and the evolution of dislocation density is extracted

from the model. The concurrent model has also been used to construct the free

energy functional of the phase-field model where the evolution of different energy

contributions during the fracture process is obtained. These evolution laws can be

employed in full continuum scale models to study the fracture process at a larger

spatial scale.
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Chapter 1

Introduction

Metallic materials are one of the most widely used structural materials in modern

civilization. The usage of metallic materials span across many engineering sectors

such as automotive, aerospace, mining, defense etc. Like any other materials, the

metals and alloys are also susceptible to failure during its life span. A study con-

ducted in 1983 [8] estimated that the structural failure due to fracture costs the U.S.

economy about 119 billion per year. Very recently a series of accidents such as ’Train

Derailment at Hatfield in 2000’[9], ’crash of China Airlines Flight 611 in 2002’[10],

’Viareggio train derailment in 2009’[11] etc is a vivid reminder of the loss of life and

property that metal fatigue and fracture can incur. These accidents can provide a

glimpse of the importance and urgency for the development of better fracture-resistant

material. The first step towards this direction is to understand the fracture process

at the lowest scale possible and then extract the required information to develop a
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robust fracture model to predict the failure.

Modeling the crack growth and plasticity during the ductile failure of metallic ma-

terial is a crucial requirement to design and develop new structural materials. This is

due to the fact that, during ductile failure, the propagation of a crack involves com-

plex interactions between the crack and the other deformation mechanisms. Hence,

for any successful model, it is of utmost importance to capture this interaction as ac-

curately as possible. The plastic deformation mechanisms are governed by phenomena

like interatomic decohesion, dislocation nucleation, mobility of the dislocations, dis-

location reaction, etc. These phenomena can be modeled accurately at the atomic

length scale using molecular statics(MS) or molecular dynamics(MD). Due to this, to

computationally model the fracture in metallic materials, the atomic length scale can

be considered as a good starting point to accurately capture the interaction between

the crack and the other plastic deformation mechanisms.

Figure 1.1 shows a schematic representation of a typical interplay between a crack

and dislocations. Most of the structural metallic materials are polycrystalline in

nature. These polycrystalline materials consist of preexisting dislocations within in-

dividual grains (figure1.1(a)). Under mechanical loading(monotonic or cyclic), the

deformation of the material mainly involves elastic bond stretch and plastic slip due

to the preexisting dislocations. At this stage, dislocation density evolves mainly due

2



to the expansion of the dislocation loop and subsequent reaction with other dislo-

cations. As dislocations start to form a cluster around a localized region within a

grain, the region becomes a potential location for the development of a micro-crack

(figure 1.1(b)). Due to the high stress gradient around the crack tip, a localized re-

gion is created which is free form preexisting dislocations. Preexisting dislocations

near the crack is either driven further due to the high shear stress near the crack

tip or dislocations annihilates at the free surface of the crack. Upon further load-

ing, the crack-tip itself becomes a potential source of new dislocations (figure 1.1(c)).

These nucleated dislocations play a major role in the material behavior and ultimate

failure of the material. Hence for any successful continuum-based fracture model,

accurate incorporation of the plastic contribution from these nucleated dislocations

is necessary.

Molecular dynamics (MD) is one of the most effective simulation tools currently

in use to investigate the behavior of many materials at the atomistic scale. With

increasing computational power, large scale atomistic simulations are routinely being

conducted with several million or even billion atomic systems, e.g. in [12, 13] to

study deformation and fracture in metallic systems. MD simulations have been used

to study deformation mechanisms due to crack tip plasticity at finite temperatures in

[14, 15, 16]. One of the major limitations of the MD based study is the spatial length

scale that can be modeled using MD is limited to the micron scale. A way-out from

this bottleneck of MD based model is to couple the MD with continuum-based noel
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Figure 1.1: Schematic representation of the interaction between a crack and disloca-
tions inside a grain: (a) polycrystalline domain containing large amount of preexisting
dislocation, (b) a micro-crack is nucleated inside a grain causing the creation of a lo-
calized dislocation-free zone near the crack, (c) the crack becomes a potential source
for new dislocation nucleation.

within a concurrent framework.

Concurrent multiscale models combine lower scale atomistic models with contin-

uum descriptions at higher scales into a single, coupled description for a simultaneous

depiction of the material behavior at multiple scales [17, 18, 19, 20]. Regions of the

computational domain that exhibit critical or extreme events like cracks or twins

are modeled at the atomistic resolution, while the rest corresponding to macroscopic

loading is treated with continuum laws. The subdomains of atomistic resolution are

typically modeled using discrete methods like molecular statics (MS) or molecular

dynamics (MD). On the other hand, the lower resolution computational domain is

typically represented by continuum models, e.g. elasticity models in [18, 21, 19, 1, 2].

Concurrent models are able to simulate larger spatial domains than what is typically
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accommodated in pure atomistic simulations. These models allow both the atomistic

and continuum simulations to evolve simultaneously, often with traction reciprocity

and displacement compatibility enforced in the interface region between the two sub-

domains. This interface region works as a platform for information transfer between

the discrete and continuum models. In these regions, the atomistic model simula-

tions provide displacement boundary conditions for nodal points of the continuum

simulation model, e.g. finite element model, that are located in the interface. The

continuum nodes, on the other hand, provide traction boundary conditions for atoms

in the interface region of the atomistic domain. Several methods have been developed

to couple the atomistic and the continuum scale. These methods differ mainly on the

type of model that is being used for the continuum scale and the information that

is being passed from the atomistic to the continuum region. A detailed overview of

these different methods can be found in [22]. In it’s simplest form, the continuum

region is modeled using linear elasticity [17, 23, 21, 20, 24, 19, 15] or nonlinear elas-

ticity [2, 1, 25]. Plasticity is either completely ignored in both the atomistic and the

continuum region or is limited only within the atomistic region.

Very recently efforts have been made to incorporate dislocation based plasticity

in both the atomistic as well as in the continuum region [26, 27, 28]. In [26], a

coarse-graining technique using the rhombohedral 3D element is used so that the

element boundary will coincide with the slip planes of the fcc crystal. The use of this

special type of rhombohedral 3D element facilitates the passage of dislocations from
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the atomistic to the continuum region and also maintain the plane of propagation

for the individual dislocations. In [27], the nonlocal quasicontinuum [29] method is

extended to incorporate the adaptive refinement of a localized continuum region up to

the atomic resolution. Due to this adaptivity, any local region can be represented at

an atomic resolution as defects migrate from one region to another. In (CADD−3D)

[28, 30, 31], 3D Discrete-Dislocation Dynamics is used to model the plasticity in the

continuum region. In this method, an atomistic template of the dislocation core

structure is used to transfer the dislocations from the atomistic to the continuum

region at the interface. One common feature in the above-mentioned methods is that

each dislocation needed to be represented and traced individually. This may increase

the computational cost significantly as the simulation progresses. The problem would

become intractable, as the simulation progresses, due to the continuous incoming of

dislocation flux from the atomistic to the continuum region. Contrary to this, the

dislocations in the continuum region can be represented in the density form and

density-based crystal plasticity [32, 33] model can be used to model the continuum

region of the concurrent model.

In this work, a novel method is developed to incorporate the crystal plasticity

within the framework of coupled concurrent atomistic-continuum model[2, 1, 25]. In

this method, the continuum region is modeled using a density-based crystal plasticity

model [32, 33, 34, 3, 35]. A sequence of steps is performed to characterize [16], quantify

and transfer the dislocations at the interface from their discrete representation to the
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density form. Once in the continuum region, the propagation of the dislocation in the

density form is modeled by solving the transport equation of a conserved quantity,

also known as advection equation. The concept of representing a dislocation in the

density form inherently incurs a large spatial density gradient to represent the core of

the dislocation. A finite element based approach to solving the advection equation for

dislocation propagation would necessitate a very fine mesh that is computationally

prohibitive. For this reason, a mesh-less method is adopted here. The Reduced

Kernel Particle Method(RKPM) along with point collocation and nodal integration

technique is used to solve the advection equation for the dislocation propagation.

Another major limitation for dynamics simulations with these concurrent models

is the inherent time-scale mismatch between the atomistic and continuum domains.

Time integration schemes used in MD simulations, e.g. the Verlet algorithm, use

extremely small time-steps that are governed by the time-scale (≈ 1-10 pico-seconds

(ps)) of atomic vibrations. It limits the largest time step that can be used to numeri-

cally integrate the equations of atomic motion to approximately 1−10 femto-seconds

(fs). This is orders of magnitude smaller than time steps typically used for contin-

uum simulations of materials subjected to high strain-rate loading. This discrepancy

requires the two sub-domains to experience strain-rates that differ by several orders

of magnitude. The underlying deformation mechanisms at different strain-rates are

generally different [36] and hence, extrapolating predictions from simulations at dis-

crepant strain-rates can lead to erroneous inferences. Various efforts have been made
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to bridge the time-scale mismatch between atomistic and continuum models, one of

them being the time acceleration of atomistic domain evolution. In the present study,

a variant of Hyperdynamics named ’Strain Boost Hyperdynamics’ [37] is incorporated

to accelerate the time evolution of the atomistic domain. A time matching algorithm

is developed to make sure that the time evolution after each load increment in both

the atomistic and the continuum region is the same.

The concurrent model is used to study the evolution of a crack embedded within

a Nickle single crystal and the nucleation of dislocations from the crack tip. A three-

parameter evolution equation for dislocation density is adopted to quantify the evo-

lution of the dislocation density. The strain rate and temperature dependence of the

parameters are also investigated. The work also outlines an approach to use this

concurrent atomistic-continuum model to augment the free energy density functional

of the phase-field model. The equivalence of dynamics and energetics of the crack be-

tween the concurrent model and the phase-field model is used to derive some critical

phase field parameters.
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Chapter 2

The Concurrent Framework to

Couple Molecular Dynamics(MD)

with Crystal Plasticity(CP)

The computational domain in the concurrent model is divided into three sub-

domains, As depicted in figure 2.1. They are the continuum domain of finite element

(FE) simulations (ΩC), the atomistic domain of MD simulations (ΩA) and a interface

handshake domain (ΩI = ΩA

⋂

ΩC). ΩI is needed to impose constraints of kinetic

reciprocity and kinematic compatibility between the MD and FE simulation domains.

MD simulations are carried out by the parallel Large-scale Atomic/Molecular Mas-

sively Parallel Simulator LAMMPS [38]. The FE model in ΩC uses a dislocation

density-based crystal plasticity constitutive model. Inertia effects are neglected in
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the FE analysis of the continuum domain under quasi-static conditions. ΩI is com-

prised of a layer of finite elements with nodes characterized as interface nodes and a

band of underlying interface atoms. Each FE node in the interface region is associ-

ated with a group of atoms that are located inside of a Voronoi cell, generated by 3D

Voronoi tessellation involving neighboring nodes [39]. Compatibility conditions are

enforced between each interface FE node and the associated group of interface atoms.

Spatially-averaged displacements of interface atoms are equated to the displacement

fields of the interface FE node for atom-node compatibility.

Figure 2.1: Schematic representation of the computational domain for concurrent
atomistic-continuum simulation, showing models for the atomistic, continuum and
interface regions.
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2.1 Equilibrium equation of the coupled

system

The equilibrium condition under quasi static condition is obtained by minimizing

the total potential energy of the system. An incremental formulation is adopted here.

The incremental energy of the whole system has contribution from the continuum ΩC

, the atomistic ΩA and the interface region ΩI as:

∆Πtot = ∆ΠC +∆ΠA +∆ΠI (2.1)

where ∆ΠC , ∆ΠA, ∆ΠI are the potential energy functionals in ΩC , ΩA and ΩI re-

spectively. The contribution from the continuum domain ΩC is expressed as,

∆ΠC =

∫

ΩC

S : ∆EdΩ−
∫

∂ΩC

T ·∆uCd∂Ω = {fC-int − fC-ext} · {∆uC} (2.2)

where, S is the second Piola-Kirchoff stress and E is the Green-Lagrange strain

tensor. S is the energy conjugate of E. T is the externally applied traction loading

on the surface ΩC . fC-ext and fC-int are the external and internal force vector at FE

nodes in ωC . ∆uC is the incremental nodal displacement vector in ωC . There are

other energy conjugate measure of stress and corresponding measure of deformation,

they are related as:
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∫

Ω0

S : ∆EdΩ =

∫

Ω0

P : ∆F dΩ =

∫

Ω

σ : ∆DdΩ (2.3)

where, P , F , σ and D are the first Pikola-Kirchoff stress, deformation gradient

tensor, Cauchy’s stress and rate of deformation tensor respectively. It should be noted

that third term has it’s integration over the deformed configuration Ω while other

two has their integration over the reference configuration Ω0. A detailed discussion

on the construction of S and E will be provided during the discussion on the crystal

plasticity based material model for the continuum region in section 2.3.

The second term in equation 2.1, i.e, the incremental energy contribution coming

from the atomistic region is gives as,

∆ΠA =
∑

p∈ΩA

∆Φp(r̄)−
∑

p∈ΩA

f
p
A-ext ·∆r̄p (2.4)

Here, ∆Φp(r̄) is the increment in the potential energy of the atomistic system due

to the inter-atomic interaction between an atom p with position vector r and it’s

neighbors. f
p
A-ext is the increase in the potential due to the externally applied force

other than the inter-atomic interaction. A detailed discussion of different kinds of

external forces that the atomic domain experience is discussed in section 2.4. The

third term in equation 2.1 i.e, ∆ΠA is the contribution from the interface region ΩI

due to the constrain of maintaining geometric continuity at the interface. Lagrange

multiplier method is used to impose this constrain as,
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∆ΠI =
∑

β∈ΩI

λβ ·Cβ (2.5)

where, λβ is the set of set of Lagrange multiplier associated to the constraint Cβ.

The constrain function Cβ can be described as the displacement of any interface node

β is equal to the average displacement of all the atoms belonging to the associated

Voronoi cell Gβ, as shown in figure 2.1. The compatibility constraint can be written

as:

Cβ(∆uC ,∆uA) = ∆uC
β −

∑

p∈Gβ

wp ·∆uA
p = 0 ∀β ∈ ΩI (2.6)

where uA
p = rp−r0

p
and uC

β are the displacement of an atom p and the interface node

β respectively. wp is a weighting function corresponding to the contribution of an

atom p in the Voronoi cell Gβ to the weighted average displacement. It is expressed

as wp =
1
Nβ

, where Nβ is the total number of atoms in Gβ.

The equilibrium configuration of the coupled system is obtained by invoking the

variational principle, i.e, the first variation of the total potential in equation 2.1 is

equal to zero. Substituting equations 2.2, 2.4 and 2.5 into equation 2.1 and taking
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the first variation, the equilibrium equation becomes,

∂∆Πtot

∂∆uiα
= f i

α =



















(f i
α)int − (f i

α)ext + λiα for node α ∈ ΩI

(f i
α)int − (f i

α)ext for node α ∈ ΩC\ΩI

= 0 (2.7a)

∂∆Πtot

∂∆r̄ip
= f i

p =



















∂∆Φ(r)
∂∆ūi

p
− (f i

p)ext − wpλ
i
α for atom p ∈ Gα in ΩI

∂∆Φ(r)
∂∆ūi

p
− (f i

p)ext for atom p ∈ ΩA\ΩI

= 0 (2.7b)

where i = 1, 2, 3 represent directions in a fixed reference coordinate system. In equa-

tion (2.7a) the total conjugate force f i
α at a node α is from contributions (f i

α)int due

to strain energy, external forces (f i
α)ext and Lagrange multipliers λiα. The latter repre-

sents reaction force due to compatibility constraint on node α from the atoms in ΩA.

f i
p represents the total force on an atom p in ΩA due to contributions from interatomic

interaction (∂∆Φ(r)
∂∆ūi

p
), external applied force ((f i

p)ext) and the compatibility constraint

force to an atom p (wpλ
i
α), where wp is a weighting function. The constraint relation

is given as:

(λiα)
C + (

∑

p∈Gβ

wpλ
i
α)

A = 0 (2.8)
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2.2 Incremental solution of the Coupled

Model

A staggered solution approach is implemented for the coupled concurrent model.

It seeks equilibrium conditions of the continuum and atomistic domains sequentially

with force and displacement compatibility enforced at the interface. Equilibrium of

the continuum domain is first achieved with subsequent equilibrating of the atomistic

domain by letting the system evolve dynamically for a predetermined period of time.

The equation (2.7a) is solved incrementally by the FE method with interface traction

reciprocity and displacement compatibility constraints by using successive iteration.

For a time increment t → t + ∆t let ∆UC(t) = UC(t + ∆t) − UC(t) be the FE

nodal solution to the incremental displacement field in ΩC . ∆UC(t) can be further

decomposed into two groups belonging to complementary sub-domains as:

∆UC(t) =















∆UCI (t)

∆UCO(t)















(2.9)

where ∆UCI (t) is the nodal displacement in ΩI prescribed from the solution of the

atomistic domain following equation (2.6), and ∆UCO(t) is the displacement incre-

ments of all other FE nodes. The discretized equilibrium equation (2.7a) is then given
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as:














fCI

int(t+∆t)

fCO

int (t+∆t)















−















fCI
ext(t+∆t)

fCO
ext(t+∆t)















+















λ(t+∆t)

0















= 0 (2.10)

fCI

int and fCO

int are internal nodal force vectors in ΩCI
and ΩCO

respectively, while fCI
ext

and fCO
ext correspond to applied loads on ∂ΩCI

and ∂ΩCO
respectively. λ corresponds

to the Lagrange multipliers due to displacement constraints in ΩI . In a linearized

incremental formulation, these vectors are additively decomposed as:

{fC
int(t+∆t)} = {fC

int(t)}+ {∆fC
int}

{fC
ext(t+∆t)} = {fC

ext(t)}+ {∆fC
ext}

{λ(t+∆t)} = {λ(t)}+ {∆λ}

(2.11)

Higher order terms are neglected in the linearized iterative solution. For the k −

th iteration, the internal nodal force vector {∆fC
int} are expressed in terms of the

infinitesimal nodal displacement vector {∆UC} as:

{∆fC
int}k = {∂∆fC

int

∂∆UC
}k · {∆UC}k = [KC ]k{∆UC}k (2.12)
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where [KC ]k is the tangent stiffness matrix. Since the system is equilibrated at time

t, the incremental form of equation (2.10) in the k − th iteration is written as:









KC−II KC−IU

KC−UI KC−UU









k













∆UCI

∆UCU















k

−















0

∆fCU
ext















k

+















∆λ

0















k

= 0 (2.13)

Here it is assumed that the interface boundary ∂ΩCI
is free from any external load.

The Newton-Raphson method is applied to iteratively solve equation (2.13). Con-

straint forces at the interface FE nodes (λiα)
C are evaluated upon attaining equilib-

rium in ΩC . Subsequently, the atomistic domain configuration ΩA is updated for the

incremented atomic forces (
∑

p∈Gβ
wpλ

i
α)

A in the interface ΩI .

2.3 Crystal Plasticity based Material model

for the Continuum Region

The continuum region of the computation domain is modeled based on a density-

based crystal plasticity material model. The material consists of a pure nickel single

crystal with an fcc lattice structure. The plasticity in the fcc is mainly originated due

to the dislocation activity within the material. For fcc type of crystal, there are four

slip planes, each slip plane has three slip directions for full dislocations. A statistical

dislocation density-based crystal plasticity material model proposed in [32, 33] and

17



further developed in [34, 3, 35] for Nickel is adopted in this study.

For large deformation, the kinematics of the deformation involves elastic stretch-

ing, rotation of the crystal and plastic slip. The deformation gradient F is multiplica-

tively decomposed in two components. One is due to the elastic deformation Fe and

the other one is due to the plastic slip Fp which is incompressible. i.e,

F = FeFp , det(Fp) = 1 ; (2.14)

The elastic part contains both the lattice rotation R and elastic stretch Ue, i.e,

Fe = ReUe. Then the rate of elastic and plastic deformation gradient becomes,

Ḟe = LFe − FeLp and Ḟp = LpFp (2.15)

where L = ḞF−1 and Lp = ḞpF
−1
p . For dislocation mediated plasticity, Lp can

be expressed in terms of plastic shear rate γ̇α on α slip system as:

Lp = ḞpF
−1
p =

N
∑

α=1

γ̇αmα
0 ⊗ nα

0 =
N
∑

α=1

γ̇αsα0 (2.16)

where, sα0 ≡ mα
0 ⊗ nα

0 is called Schmid tensor. mα
0 and nα

0 are the slip direction

and slip plane normal in reference configuration. FCC crystal structure has three slip

planes represented by slip plane normal mα
0 . Each slip planes have three slip direc-

tions represented by nα
0 . Table 2.1 shows the slip system details for the fcc crystal.
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Slip system no. Slip direction mα
0 Slip plane normal nα

0 Tangent vector tα0
1 1√

2

[

1 1 1
]

1√
3
[1 1 1] 1√

6

[

2 1 1
]

2 1√
2

[

1 1 0
]

1√
3
[1 1 1] 1√

6

[

1 1 2
]

3 1√
2

[

1 0 1
]

1√
3
[1 1 1] 1√

6

[

1 2 1
]

4 1√
2
[1 0 1] 1√

3

[

1 1 1
]

1√
6

[

1 2 1
]

5 1√
2

[

0 1 1
]

1√
3

[

1 1 1
]

1√
6
[2 1 1]

6 1√
2

[

1 1 0
]

1√
3

[

1 1 1
]

1√
6

[

1 1 2
]

7 1√
2

[

1 0‘1
]

1√
3

[

1 1 1
]

1√
6

[

1 2 1
]

8 1√
2
[0 1 1] 1√

3

[

1 1 1
]

1√
6

[

2 1 1
]

9 1√
2

[

1 1 0
]

1√
3

[

1 1 1
]

1√
6
[1 1 2]

10 1√
2

[

1 0 1
]

1√
3

[

1 1 1
]

1√
6
[1 2 1]

11 1√
2

[

0 1 1
]

1√
3

[

1 1 1
]

1√
6

[

2 1 1
]

12 1√
2
[1 1 0] 1√

3

[

1 1 1
]

1√
6

[

1 1 2
]

Table 2.1: Slip systems.

The elastic stress-strain response is derived by invoking the second Piola-Kirchoff

stress tensor S and it’s work conjugate Green-Lagrange strain tensor Ee. A nonlinear

elastic stress-strain relation, that has been developed in [1, 2] is used. The constitutive

law is given as,

S = C (Ee) : Ee (2.17)

where, C (Ee) is the fourth order nonlinear elasticity tensor. The second Piola-

Kirchoff stress S and the Green-Lagrange strain tensor Ee are defined as,

S ≡ det(Fe)F
−1
e σF−T

e and Ee ≡
1

2

(

FT
e Fe − I

)

(2.18)
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I is the identity tensor and σ is the Cauchy stress tensor.

The plastic shearing rate γ̇α is calculated by using Orowan equation [40]. γ̇α has a

contribution from two different types of dislocations. One is due to the evolution of the

pre-existing dislocations and the other one is due to the free glide of the dislocations

nucleating from the crack tip. The region near the crack tip experience a high gradient

of stress field and the continuum region is located at a significant distance from the

crack tip. Hence the preexisting dislocations can be considered as Statistically Stored

Dislocation(SSD) and the dislocations nucleating from the crack tip can be considered

as Geometrically Necessary Dislocation(GND). Then the plastic shearing rate γ̇α can

be decomposed into two parts. One due to the preexisting dislocations and their

evolution and the second part is due to the dislocations nucleated from the crack tip.

i.e,

γ̇α = γ̇α|SSD + γ̇α|nucl (2.19)

The shearing rate in α slip system due to the preexisting dislocations which are

SSD in nature can be expressed as,

γ̇α|SSD = ραmSSD
bvα (2.20)

where ραmSSD
is the mobile part of the density of the dislocations within SSD, b is
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the magnitude of Burger vector and vα is the dislocation velocity on α slip system.

The dislocation velocity vα on α slip system is given in equation 2.22.

The shearing rate in α slip system due to the free glide of the nucleated dislocations

is expressed as,

γ̇α|nucl = ραmnucl
bvα (2.21)

where ραmnucl
is the mobile part of the nucleated dislocations, b is the burger vector

and vα is the velocity of the dislocations. The resolved shear stress for nucleation

of dislocation is generally much higher than the critical resolved shear stress(CRSS)

required for a preexisting dislocation to glide. Hence, the nucleated dislocations,

immediately after nucleation, experience a large resolved shear stress. Due to this

large resolved shear stress, the initial velocity of dislocation is close to the shear-wave

speed of the material. As the dislocation moves away from the high stress gradient

region the propagation velocity also reduces significantly. Consequently, the velocity

of dislocations can be expressed in an exponential form with a strong dependence on

the resolved shear stress, as

vα = λ1v∞





exp
(

−Qact

kBθ

)

1 + λ2 exp
(

− 〈τα−τpass〉
τcut

)



 sgn(τα) (2.22)

Here, v∞ is the upper bound of the dislocation velocity which is the shear-wave

speed of the material and is expressed as v∞ =
√

G/ρ. λ1 and λ2 are material
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constants. G and ρ are shear modulus and mass density of the material respectively.

τα is the resolved shear stress on α slip system. 〈•〉 is the Maculay bracket and

sgn(•) is the sign-function. Qact is the activation energy required for a dislocation

to overcome the local barrier without the aid of any applied shear stress, kB is the

Stephen-Boltzmann constant, θ is the absolute temperature in Kelvin. τpass and τcut

are passing stress and cutting stress respectively. The passing stress ταpass represents

resistance for a mobile dislocation to slip due to the presence of other dislocations

in the same slip plane and the cutting stress ταcut represents the resistance for mobile

dislocation to slip due to the presence of other dislocations perpendicular to the slip

plane. They are expressed as,

ταpass = c1Gb
√

ραP + ραmSSD
+ ραmnucl

ταcut =
Q
√
ραF

c2b2

(2.23)

where c1 and c2 are material constants. G is the shear modulus and Q is the activa-

tion energy.

In the continuum region the plastic activity is considered to be dominated by the

Statistically Stored Dislocations(SSDs) with a localized contribution of Geometrically

Necessary Dislocations(GNDs) near the crack tip. The rate of evolution of SSD den-

sity has four major components in it. The SSDs due to lock formation(ρ̇α+SSDlf
), dipole
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formation ρ̇α+SSDdf
, athermal annihilation ρ̇α−SSDaa

and thermal annihilation ρ̇α−SSDta
. i.e,

ρ̇αSSD = ρ̇α+SSDlf
+ ρ̇α+SSDdf

+ ρ̇α−SSDaa
+ ρ̇α−SSDta

(2.24)

Superscripts +/− represents whether the contributing term is multiplication or

annihilation in nature respectively. Th expression for the time rate of these four

dislocation densities are given as [32, 34, 35],

ρ̇α+SSDlf
=
c3
b

√

ραF γ̇
α
SSD

ρ̇α+SSDdf
=
c4
b

√
3Gb

16π(1− ν)

(

|τα| − ταpass
)−1

ραmSSD
γ̇αSSD

ρ̇α−SSDaa
= −c5ραSSDγ̇αSSD

ρ̇α−SSDta
= −c6

D0b
3

kBθ
exp

(−Qbulk

kBθ

)

(ραSSD)
2|τα|

(

γ̇αSSD
γ̇ref

)c7

(2.25)

Now, it is needed to compute the density of the mobile dislocation. Because it’s

the mobile dislocations ραm that contribute to the plastic strain (see eqn. 2.20). To

compute the mobile dislocation density, the density of SSDs are projected as forest

and parallel dislocation with interaction strength coefficients χαβ between different

slip systems [41, 32],
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ραF =
N
∑

β=1

χαβ
[

ρβSSD| cos
(

nα, tβ
)

|
]

ραP =
N
∑

β=1

χαβ
[

ρβSSD| sin
(

nα, tβ
)

|
]

(2.26)

The projected density of forest dislocation (ραF ) and parallel dislocation (ραP ) is

used to compute the mobile dislocation density. The expression can be given as,

ραmSSD
=

2kBθ
√
ραFρ

α
P

c1c2Gb3
(2.27)

Another major contribution to the mobile dislocation density is Geometrically

Necessary Dislocation or GNDs. GNDs are necessary wherever there is a stress gradi-

ent. They preserve the lattice continuity. The conventional way to quantify the GND

density is the relation proposed in [42, 43]. In the present work, the region of high

stress gradient is the region near the crack tip. Since the crack and substantial region

around it is modeled using Molecular Dynamics with an atomistic resolution, hence

the GNDs necessary to maintain the lattice continuity in that region automatically

gets nucleated from the crack tip. Hence all the dislocations that nucleate from the

crack tip can be considered as GND in nature. This assumption is further justified

due to the fact that the region near the crack tip is a dislocation free zone with occa-

sional periodic nucleation from the crack tip [44]. Hence, the rate of GND density can

be considered same as the rate at which the dislocations get nucleated from the crack
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tip in the atomistic region (ΩA) and enters the continuum region (ΩC) through the

interface (ΩI) and subsequently propagates through the material. The propagation

of these dislocations in the continuum is modeled using the advection equation as,

ρ̇αnucl = −∇.(ραnuclvα) + ρs (2.28)

Here, ∇ is the gradient operator, vα is the velocity vector in α slip system (equa-

tion 2.22). The last term in the above equation i.e, ρs, is due to the generation of

new dislocation density due to the influx of dislocations from the atomistic region ΩA

to the continuum ΩC through the interface ΩI . A detailed procedure on the charac-

terization, quantification and subsequent conversion of the dislocations from discrete

to the density form in the interface region is discussed in chapter 3.

It should also be noted that the GND density is not decomposed into the forest

and parallel densities unlike in [32, 35], rather it contributes directly to the plastic

shear rate (eqn. 2.21). The reason behind this is, the source of GND density in the

present model is the nucleation of new dislocations at the crack tip. This nucleated

dislocations subsequently propagate through a dislocation free zone before interacting

with other dislocations. Hence it’s more appropriate to consider these GNDs as mobile

in nature. i.e,

ραmnucl
= ραnucl (2.29)
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2.3.0.1 An Unified Expression for the Dislocation Velocity

As already mentioned, the concurrent model contains two types of dislocations

based on the neighboring dislocation structure it is located in. The preexisting dislo-

cations have mainly formed during the forming process and subsequent strengthening

process. These dislocations are mainly part of dislocation cell structures. The veloc-

ity of these dislocations is mainly determined by the density of the forest and parallel

dislocations[33] and the stress required to get pass those barriers. Hence the critical

resolved shear stress(CRSS) is high O(102MPa) and the resulting velocity beyond

the CRSS is low. Contrary to this, the dislocations nucleating from the crack-tip

experience a very high resolved shear stress in the part of the crystal which is free

from the preexisting dislocations. Due to this reason the nucleated dislocations ex-

perience very little resistance during propagation. The only resistance the nucleated

dislocations experience is due to the lattice friction O(10MPa). Hence, the speed

of dislocations after nucleation can reach the shear-wave speed of the material. The

equation 2.22 unifies these two velocity profiles with two material parameters viz.

λ1 and λ2. λ1 controls the maximum velocity of a dislocation. Though the theo-

retical sound wave speed in nickel is calculated to be
√

(G/ρ) = 3746m/sec where

G = 125GPa and ρ = 8908Kg/m3, the maximum velocity of dislocation has been

observed to be O(2000m/s)[45]. To calibrate the value of λ1 and λ2, MD simula-

tion is performed to obtain the velocity of a single dislocation under different driving

shear stress. The atomistic domain has a physical dimension of 50nm× 5nm× 5nm
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which contains around 100thousand nickel atom with FCC lattice structure and lat-

tice constant 3.52Å. The orientation of the crystal with respect to the global axis

is x → [112̄], y → [111] and z → [11̄0]. NPT ensemble is used for MD simulation.

Initial dislocation is created by applying a deformation gradient corresponding to the

simple shear. Once both the partial dislocations are nucleated, the system is dy-

namically equilibrated. After equilibration, the dislocation is driven by applying a

constant amount of shear stress τapp on the y-plane. The time-averaged velocity of

the dislocation is noted under different applied shear stress.

Figure 2.2(a) shows the velocity of the dislocation for different applied shear stress.

The critical resolved shear stress(CRSS) for the dislocation glide inside a perfect

single crystal is found to be around 10MPa. The dislocation velocity reaches a stable

magnitude of 1900m/s within an applied shear stress of 200MPa. A similar finding has

previously been reported in [46]. The velocity data obtained from the MD simulation

is used to obtain the parameters λ1 and λ2 of equation 2.22. The value of λ1 and λ2

is found to be 1.3 and 51.2 respectively. While exploring the parameter values it has

been assumed that τpass = τcut = CRSS and Qact ≃ 1kBθ. Figure 2.2(b) shows the

velocity profile of the dislocation under different values of CRSS. A low CRSS value

O(10MPa) maybe considered as the glide through a perfect crystal and larger the

CRSS values O(100MPa) may be related to the more dense dislocation cell structure.
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Figure 2.2: Dislocation velocity as function of resolved shear stress: (a) velocity data
for a free gliding dislocation inside a nickel perfect crystal is fitted with the functional
form of eq. 2.22, (b) velocity profile of a dislocation gliding through preexisting
dislocations represented by higher CRSS value.

2.4 Material Model for the Atomistic Re-

gion: Time accelerated Molecular Dy-

namics

The atomistic region ΩA is modeled using time accelerated Molecular Dynam-

ics(MD). The Strain Boost Hyperdynamics[37, 47] is used for time acceleration. The

Strain Boost Hyperdynamics has been implemented in LAMMPS [47] and also been

incorporated into the concurrent framework to study the brittle fracture in Ni sin-

gle crystal at lower strain rate [25]. In Molecular Dynamics the atomic motion is

governed by the Newton’s equation of motion,
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mpüp = fp (2.30)

where mp and üp are the mass and acceleration of atom p subjected to the force fp.

The atomistic domian ΩA is divided in four sub-domain based on the types of forces

that the atoms in that region experience. These are,

1. In the subdomain ΩIn
A , the motion of atoms is governed by interactions with

neighboring atoms only. This inter-atomic interaction is approximated through

an Embedded Atom Model(EAM) based potential[5]. The EAM potentials are

many body potentials and particularly appropriate to model metallic materials

where electrons are spread more like a cloud contrary to the covalently bonded

structure. The force experienced by atoms due to the inter-atomic potential

(Φ), is written as:

f In
p = −∇Φ (2.31)

2. The atoms in subdomain ΩI
A belongs to the interface region. In addition to inter-

atomic interactions, these atoms also experience forces due to their interaction

with the corresponding coupled Finite Element node. Damping is also applied

to this region for maintaining temperature and elastic waves are suppressed

by using a Langevin thermostat [48]. The force experienced by these atoms is
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computed as:

f I
p = −∇Φ + wpλβ + f

p
A-ext − γmpṙp +

√

2γKBθmpR(t) (2.32)

where γ is the damping coefficient, kB is the Stefan-Boltzmann constant, θ is the

target temperature and R(t) is a delta-correlated stationary Gaussian process

with zero-mean value.

3. Subdomain ΩS
A of atoms belonging to the surface region. Ghost force corrections

are made over atoms of this region to mitigate the free surface effect [2, 1, 25].

The corresponding forces are:

fS
p = −∇Φ− fG

p − γmpṙp +
√

2γKBθmpR(t) (2.33)

where fG
p is the mitigating force for the free surface effect.

4. The atoms in the subdomain ΩB
A are the most critical one. These atoms forms

the crack tip and hence contribute in the nucleation of dislocations. To acceler-

ate the nucleation process in this region the atoms are modeled with hyperdy-

namics accelerated MD by applying a suitable boost potential [49, 37]. These

atoms experience an additional force due to the applied boost potential given

as,

fB
p = −∇Φ−∇

{

∆V (r)
}

(2.34)
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where ∆V (r) is the boost potential. Figure 2.3 shows the details of all the

different subdomains of the atomistic region ΩA.

Figure 2.3: Details division of the atomistic domain into multiple sub-regions. Show-
ing only the atomistic region.

Construction of appropriate boost potential ∆V (r) is very crucial requirement

to achieve optimal time acceleration without introducing any spurious deformation

mechanism. A detailed construction procedure of appropriate boost potential is dis-

cussed in chapter 4.
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Chapter 3

Framework to Transfer and

Propagate the Dislocations from

the Atomistic to the Continuum

In the concurrent model, at the onset of plasticity, dislocations are nucleated

from the crack tip. Due to the large negative stress gradient near the crack tip, the

nucleated dislocations propagate through the atomistic region and approach towards

the interface. These dislocations are needed to be transferred from the atomistic

to the continuum domain in a representative way. By ’representative’ means, the

total dislocation length and the sharp spatial gradient of dislocation density of the

dislocation core need to be maintained. Also, an appropriate method should be

incorporated such that it is valid for any kind of dislocations viz, straight dislocation
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or a curved one. Once transferred, the dislocations need to keep propagating based

on the local resolved shear stress corresponding to that slip system at a velocity

given in equation 2.22. The dislocation keeps propagating until it reaches a region

where the propagation velocity is reduced drastically due to the interaction with pre-

existing dislocations. This chapter discusses the framework that is used to transfer

the dislocations from the atomistic to the continuum at the interface and also the

modeling of the propagation of dislocations in the continuum in the density form.

3.1 The Framework to Transfer the Dislo-

cations from Atomistic to Continuum

at the Interface

For an appropriate transfer of dislocations, at the interface, the dislocations are

characterized and quantified using Dislocation Extraction Algorithm(DXA) [50]. For

a given atomic configuration, DXA first separates all the atoms that are not in the

perfect lattice from those which are in perfect lattice position. For this purpose, the

atomic structure identification algorithm such as common neighbor analysis (CNA)

[7] is used. Once the atoms that contain the defect structure (e.g, dislocation core)

are identified, the ’Burger circuit method’ is used to trace down the dislocation and

represent it as a collection of points also called dislocation bids. Figure 3.1 shows the
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steps involved in extracting the dislocations from a given atomic configuration using

DXA. Distance between each consecutive pair of bids is considered as a dislocation

line segment dl. Figure 3.1(d) shows an example of such representation of dislocation

with dislocation bids and line segments.

The length of each line segment is the Euclidean distance between the bids it

consists of. To represent the dislocations from it’s discrete representation to the field

form, it’s needed to convert the dislocation line lengths (|dl|) into a line density form.

Following Gaussian distribution function is used for this purpose,

w(x,X) =
1

(σ
√
2π)3

e−
(||x−X||3)

2

2σ2 (3.1)

where X is the position vector of the dislocation segment in the discrete form and

|| • ||3 is the Euclidean distance in 3-dimension. The position vector X of the dislo-

cation segment dli is approximated as the midpoint of the pair of bids that construct

the length segment. Here, σ (without any subscript) is the standard deviation of

the distribution which corresponds to the spread of the dislocation density. σ can be

estimated by analyzing the stress field around a dislocation created by the dislocation

itself. The stress field due to the presence of a dislocation can be obtained by using

Volterra construction within Linear Elastic Solid Mechanics [51]. Two types of dislo-

cations are considered here, straight edge dislocation and straight screw dislocation.

Any other dislocation of mixed character can always be decomposed into an edge

component and screw component and the stress field can be obtained by superpos-
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Figure 3.1: Steps for extraction of the dislocations from a given atomic configuration.
(a) The concurrent model with dislocations in the atomistic region. (b) The disloca-
tions and the stacking fault are identified by using Common Neighbor Analysis(CNA).
The red atoms represent the core of the leading and trailing partial dislocations. The
blue atoms represent the stacking fault between the two partials. (c) Dislocations
are converted from atomic representation to the discrete form. (d) The extracted
dislocations are smoothed out to mitigate the noise due to thermal vibration.

ing the stress field for the individual component. Figure 3.2 shows the contour plot

of the stress field around a straight dislocation. To obtain a material independent

estimation of the stress field, the magnitude of the normal stresses are normalized
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to the Young’s modulus and shear stress are normalized to the shear modulus of the

material. Spatial dimensions are also normalized to the magnitude of burger vector

|~b|. Figure 3.2(a), 3.2(b) and 3.2(c) shows the contour plot of σxx, σyy and σxy of

a straight edge dislocation respectively. It can be seen that the normalized stress

reduces to less than 5% beyond the spacial distance of 5|~b| from the dislocation core.

Similarly figure 3.2(d) and 3.2(e) shows the stress field of σxz and σyz around a screw

dislocation respectively. It can be seen that for screw dislocation the normalized shear

stresses reduce to below 5% beyond a spatial distance of 3|~b| from the dislocation core.

For the Gaussian distribution, 95% of the density lies within the 2σ distance from the

mean. Hence, the criterion for σ is taken to be the spatial distance beyond which the

normalized stress reduces to 5% or less. Hence the value of σ is taken to be 2σ = 5|~b|,

where |~b| is the magnitude of the Burger vector of the material. For nickel with

|~b| ≈ 2.49Å, the numerical value of σ becomes ≈ 6.25Å. As already mentioned, for

mixed dislocation, the burger vector can always be projected into an edge component

and a screw component. Since the non-zero stress components developed by an edge

dislocation i.e, σxx, σyy and σxy and a screw dislocation i.e, σxz and σyz are mutually

exclusive, hence for mixed dislocation also the normalized stress will reduce below 5%

beyond a spatial distance of 5|~b| from the dislocation core.

With the distribution function given in equation 3.1, the dislocation density at

any location with position vector (x) becomes,
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Figure 3.2: Contour plot of the stress due to the presence of a dislocation. Stress due
to an edge dislocation (a)σxx, (b)σyy and (c)σxy. The stress due to screw dislocation
(d)σxz and (e)σyz. (f)The Gaussian distribution used to represent the stretch of the
dislocation core.

ρnucl(x) = w(x,X)|dl| (3.2)

where, |dl| is the length of the dislocation segment and ρnucl(x) is the dislocation

density at x. Note that, since
∫

Ω
w(x,X) = 1 hence

∫

Ω
ρnucl(x) = |dl|. This implies

that the total dislocation length is preserved while converting the representation of

dislocation from discrete to density form. In the coupled concurrent model the dis-

locations are identified at the Dislocation Detection zone(ΩDD). Figure 3.3 shows

one of such dislocation transfer at the interface from discrete representation at the

atomistic domain to the density representation in the continuum.
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(a) (b)

Figure 3.3: A dislocation is transformed from it (a)discrete representation to the
(b)density form.

3.2 Modeling the Propagation of Disloca-

tion in the Density form in the Con-

tinuum

At the continuum region, propagation of the dislocations in the density form can

be modeled using the transport equation of a conserved quantity. The transport

equation without any dispersion is also know as advection equation. For a conserved

and scalar quantity ψ , the advection equation is written as,

∂ψ

∂t
+∇.(ψv) = ψs (3.3)

where, ∇ is the gradient operator, u is the velocity field of the advected scalar

quantity ψ and ψs is the source term. The advected scalar quantity ψ in the present
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scenario is the dislocation density. ψs represents the dislocation density generation

from both due to the incoming dislocations from the atomistic region and also due

to the expansion of the dislocation loop. In the present study, due to the the specific

orientation of the crystal, the dislocations are straight-dislocation, hence the source

term ψs will mainly represent the density generation due to the incoming dislocation

from the atomistic region. The equation 3.3 can further be expanded as,

∂ψ

∂t
+ v.∇ψ + ψ∇.v = ψs (3.4)

In equation 3.4 the second term contains the spatial gradient of dislocation density

ψ and the third term contains the divergence of the dislocation velocity v. The spatial

length scale over which dislocation density (ψ) varies is ∼ |~b| ∼ 1.0e−10m, where |~b|

is the magnitude of the burger vector of that material. On the other hand the spatial

dimension over which dislocation velocity (v) varies is ∼ 100e−9m. Hence, the spatial

gradient of ψ is at-least three order of magnitude larger than the spatial gradient of

v. For this reason the third term in the left hand side of equation 3.4 can be ignored.

Then the simplified form of the above equation becomes,

∂ψ

∂t
+ v.∇ψ = ψs (3.5)

Equation 3.5 is needed to be numerically solved over the continuum domain for the

propagation of the dislocation in density form. It has already been seen from section
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3.1 that for an individual dislocation the core is spread over a spatial dimension

of not more than 10|~b| which is ≈ 25Å for nickel. For this reason, to maintain

the characteristic sharp gradient of dislocation density in a very localized zone, the

discretization size needed to be O(5Å). An element-based discretization would be

computationally prohibitive. Hence, a mesh-free particle-based method is the most

suitable choice for the numerical solution of equation 3.5 over the continuum domain.

In the present study, Smooth Particle Hydrodynamics(SPH) is used as a discretization

scheme along with point collocation to solve the equation 3.5 over the continuum

domain. The Smooth Particle Hydrodynamics(SPH) is discussed next.

3.3 Smooth Particle Hydrodynamics(SPH)

Smooth Particle Hydrodynmaics(SPH) was first proposed by [52]. In this method,

the computational domain is discretized by the distribution of a set of points through-

out the domain, called particles.

3.3.1 Kernel Approximation and the Integral Rep-

resentation of the Interpolation Function

According to kernel approximation the value of a function f(x) at any point s can

be approximated in an integral form as,
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f(x) ≃
∫

Ω

f(s)δ(x− s)ds (3.6)

where, δ(x− s) is the Dirac delta function, which is defined as,

δ(x− s) =



















∞ for s = x

0 otherwise

(3.7)

∫ ∞

−∞
δ(s)ds = 1 (3.8)

Since δ(x− s) is not a smooth function, the Dirac delta function in equation 3.7

is replaced by a smoothing function W (x− s, h). Then equation 3.6 becomes,

f(x) ≃
∫

Ω

f(s)W (x− s, h)ds (3.9)

where h is the smoothing length and W (x − s, h) is called ’smoothing kernel

function’ or just ’kernel function’. The ’kernel function’ W (x − s, h) is chosen to be

an even function and also need to satisfy following requirements.

First, the normalization condition. i.e,

∫ ∞

−∞
W (x− s, h)ds = 1 (3.10)

This condition is similar to equation 3.8 of Dirac delta function.
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Second, is the ’Delta function property’,

lim
h→0

W (x− s, h) = δ(x− s) (3.11)

i.e as the smoothing length(h) approaches to zero, the kernel function reproduces

the Dirac delta function.

Third is the requirement of compact support. The kernel function are required to be

non-zero positive in a small domain while zero everywhere else. i.e,

W (x− s, h) = 0 when |x− s| > κh (3.12)

where κ is a measure of the extent of the support domain within which the kernel

function W (x−s) is non-zero positive. The importance of this third requirement will

be clear when the gradient of a function f(x) using kernel approximation is derived

next.

To derive the gradient of a generic function f(x) , kernel approximation of equation

3.9 can be used. Then the gradient of f(x) becomes,

∆f(x) =

∫

Ω

∆f(x)W (x− s, h)ds (3.13)

By applying the integration by parts equation 3.13 becomes,
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∆f(x) =

∫

Ω

∆[f(s)W (x− s, h)]ds−
∫

Ω

f(s)∆W (x− s, h)ds (3.14)

Now, applying divergence theorem on the first term, the equation 3.14 becomes,

∆f(x) =

∫

∂Ω

f(s)W (x− s, h)nd∂s−
∫

Ω

f(s)∆W (x− s, h)ds (3.15)

where the integral in the first term is over the boundary(∂Ω) of the compact

support region of the kernel function and n is the unit normal to the boundary surface

∂Ω. Since the kernel functionW (x−s, h) is defined to have a compact support hence,

W (x − s, h) is zero everywhere on the boundary ∂Ω. This renders the first integral

of equation 3.15 to be zero. Then the equation 3.15 becomes,

∆f(x) = −
∫

Ω

f(s)∆W (x− s, h)ds (3.16)

3.3.2 Particle Approximation

In the SPH method the entire domain is represented by the distribution of finite

number of particles. With this particle approximation of the domain, the continuous

integrals involved in equation 3.9 and 3.16 can be converted into the discretized

summation over all the particles in the domain.Then equation 3.16 can be written as,
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f(x) ≃
NI
∑

i=1

f(xi)W (x− xi, h)∆Ωi (3.17)

Similarly the gradient of the function f(x) (equ. 3.15) becomes,

∆f(x) ≃ −
NI
∑

i=1

f(xi)∆W (x− xi, h)∆Ωi (3.18)

where NI is the number of particles belong within the support domain of the

kernel function and ∆Ωi is the weight associated to the ith particle. The termW (xi−

x, h)∆Ωi is also called SPH shape function corresponding to particle I.

Figure 3.4(a) and 3.4(b) show the kernel function in 1D for two particles, one well

within the domain and the other particle close to the domain boundary respectively.

It can be seen in figure 3.4(b) that the kernel function is incomplete and it does not

have the compact support. Due to this lack of compact support for particles close to

the boundary, the normalization requirement of the kernel function (equation 3.10)

breaks down.

Figure 3.5(a) and 3.5(b) show the reproducing capability of the SPH shape func-

tion for a linear function and it’s derivative using equation 3.17 and 3.18 respectively.

It can be seen that the SPH shape function is good enough to reproduce the function

and it’s gradient for the particles away from the boundary, but it fails to reproduce

the function and it’s gradient for particles close to the boundary. This is mainly due

to the loss of compact support for those particles close to the boundary. A similar
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Figure 3.4: KernelFunction associated with a particle located at (a)far from the
boundary and (b)close to the boundary.

trend is observed for a nonlinear sine-function and it’s gradient as well in figure 3.5(c)

and 3.5(d) respectively.

3.3.3 Correction of SPH for finite domain using

RKPM method

As described in the previous section, SPH shape function fails to reproduce the

function and and it gradients for particles close to the domain boundary. This is due to

the lack of compact support of kernel function near the domain boundary. To alleviate

this discrepancy Reproducing Kernel Particle Method(RKPM) has been developed

[53, 54, 55, 56]. The rational behind the Reproducing Kernel Particle Method(RKPM)

is to augment the kernel approximation by pre-multiplying the kernel function with

a suitable choice of correction function. Based on the RKPM, the modified form of
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Figure 3.5: Reproducing capability of SPH shape function for (a) a linear function,
(s) slope of the linear function, (c) sine function and (d) slope of the sine function.

interpolation of a function f(x) (equation 3.9) becomes,

f(x) ≃
∫

Ω

f(x)W (x− s, h)dΩ (3.19)

where, W (x− s, h) is the modified kernel function and is given as,

W (x− s, h) = C(x, s)W (x− s, h) (3.20)
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where, C(x, s) is the correction function. A polynomial function of suitable order

is used as the correction function [55, 56]. The order of the polynomial is determined

based on the highest order of derivative present in the Governing Differential Equa-

tion(GDE) that need to be reproduced. In this work, SPH is used to propagate the

dislocation density in the continuum domain. The highest derivative corresponding

to that GDE (3.4) is one. Hence, a linear polynomial is used as a correction function.

i,e

C(x, s) = c0(x) + c1(x)(x− s) + . . . (3.21)

The corrected form of SPH kernel function (3.9) or RKPM kernel function be-

comes,

W (x− s, h) = (c0(x) + c1(x)(x− s))W (x− s, h) (3.22)

And modified form of equation 3.9 after RKPM becomes,

fa(x) =≃
∫

Ω

f(s)W (x− s, h)dΩ (3.23)

The coefficients, c0(x) and c1(x) in the correction function are unknown and de-

pendent on the spatial co-ordinate. These coefficients are determined by satisfying

the reproducing condition of the function. The spatial derivatives of these coefficients

are also determined if the gradients of the function are also needed to be reproduced.
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The process of determining these coefficients and their derivative is discussed next.

For the sake of simplicity, the present derivation is kept limited to one dimension

only.

f(s) = f(x) + (s− x)f ′(x) +
(s− x)2

2!
f ′′(x) + .... (3.24)

where, prime denotes the differentiation with respect to x. Substituting equation

3.24 into equation 3.22 gives,

fa(x) = f(x)

∫

Ω

W (x− s, h)ds+ f ′(x)

∫

Ω

(s− x)

1!
W (x− s, h)ds

+f ′′(x)

∫

Ω

(s− x)2

2!
W (x− s, h)ds+ ...

(3.25)

By denoting the moments of the modified kernel function as,

mk(x) =

∫

Ω

(x− s)kW (x− s, h)ds k = 0, 1, 2, ... (3.26)

equation 3.25 can be rewritten as,

fa(x) = f(x)m0(x)−
f ′(x)

1!
m1(x) +

f ′′(x)

2!
m2(x) + ... (3.27)

With the objective to reproduce the function, the condition that needed to be en-
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forced is fa(x) = f(x). Then, from equation 3.27 the reproducing condition becomes,
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(3.28)

Equation 3.26 can be further expanded as,

mk(x) =

∫

Ω

(x− s)kW (x− s, h)ds k = 0, 1, 2, ...

=

∫

Ω

(x− s)k [c0(x) + (x− s)c1(x) + . . . ]W (x− s, h)ds k = 0, 1, 2, ...

= c0(x)mk(x) + c0(x)mk+1(x) + c0(x)mk+2(x) + . . .

(3.29)

where, mk(x) is the k’th moment of the SPH kernel function and is defined as,

mk(x) =

∫

Ω

(x− s)kW (x− s)ds (3.30)

After substituting equation 3.29 in equation 3.28, the reproducing condition becomes,
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(3.31)

In a symbolic form equation 3.31 can be rewritten as,

MC = b (3.32)

Then the vector of unknown correction coefficientsC(x) = {c0(x) c1(x) c2(x) · · · }′

becomes,

C = M−1b (3.33)

These unknown correction coefficients vector is solved for each particle.

3.3.3.1 Reproducing condition for first derivative

The modified form of the kernel approximated gradient of the function f(x) i.e,

equation 3.16 also need to be derived. Using the RKPM kernel approximation (equ.

3.22) into equation 3.16, the gradient becomes,
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∇f(x) = −
∫

Ω

f(s)∇W (x− s, h)ds (3.34)

= −
∫

Ω

f(s)∇[C(x, s)W (x− s, h)] ds (3.35)

= −
∫

Ω

f(s) [∇C(x, s)W (x− s, h)ds+ C(x, s)∇W (x− s, h)] ds(3.36)

(3.37)

Computation of the term∇C(x, s) in equation 3.37 necessitates the determination

of the spatial gradient of the correction coefficients, i.e, c′0(x), c
′
1(x), c

′
2(x), ... etc. The

procedure to determine the spatial gradient of these coefficients is discussed next. For

simplicity the derivation is kept limited withing one spatial dimension only.

We will start from equation 3.37 and use Taylor’s expansion (eq. 3.24) to approx-

imate the function f(x). Then equation 3.37 becomes,

[fa(x)]′ = −
∫

Ω

[

f(x) + (s− x)f ′(x) +
(s− x)2

2!
f ′′(x) + . . .

]

∇W (x− s, h)ds(3.38)

= −f(x)
∫

Ω

∇W (x− s, h)ds+ f ′(x)

∫

Ω

(x− s)

1!
∇W (x− s, h)ds (3.39)

− f ′′(x)

∫

Ω

(x− s)2

2!
∇W (x− s, h)ds+ . . . (3.40)

Now, define the moment of RKPM kernel function as,
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m′
k(x) =

∫

Ω

(x− s)k∇W (x− s, h)ds k = 0, 1, 2, . . . (3.41)

then equation 3.40 becomes,

[fa(x)]′ = −f(x)m′
0 +

f ′(x)

1!
m′

1 −
f ′′(x)

2!
m′

2 + . . . (3.42)

Then the reproducing condition for the gradient becomes,
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(3.43)

Equation 3.41 can further be expanded as,
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m′
k(x) =

∫

Ω

(x− s)k∇W (x− s, h)ds k = 0, 1, 2, . . .

=

∫

Ω

(x− s)k∇ [c0(x)W (x− s, h) + c1(x)(x− s)W (x− s, h)

+ c2(x)(x− s)2W (x− s, h) + . . .
]

ds k = 0, 1, 2, . . .

= [c′0(x)mk(x) + c′1(x)mk+1(x) + c′2(x)mk+2(x) + . . . ]

+
[

c0(x)m
′
k(x) + c1(x)m

′
k+1(x) + c2(x)m

′
k+2(x) + . . .

]

k = 0, 1, 2, . . .

(3.44)

where mk(x) is the k’th moment of the SPH kernel function and already defined

in equation 3.30 and m′
k(x) is defined by,

m′
k(x) =

∫

Ω

[

(x− s)kW (x− s, h)
]′
ds (3.45)

After using equation 3.44 the expanded form of the reproducing condition for the

gradient becomes,

53



























m0(x) m1(x) · · · mN(x)

m1(x) m2(x) · · · mN+1(x)

· · · · · ·

mN(x) mN+1(x) · · · m2N(x)







































































c′0(x)

c′1(x)

·

c′N(x)















































+

























m′
0(x) m′

1(x) · · · m′
N(x)

m′
1(x) m′

2(x) · · · m′
N+1(x)

· · · · · ·

m′
N(x) m′

N+1(x) · · · m′
2N(x)







































































c0(x)

c1(x)

·

cN(x)















































=















































0

1

·

0















































(3.46)

Equation 3.46 can be rewritten in symbolic form as,

MC′ +M′C = b′ (3.47)

Then the solution for the gradient of unknown correction coefficients i.e, C′(x) =

{c′0(x) c′1(x) c′2(x) . . . } becomes,

C′ = M−1 [b′ −M′C] (3.48)

To understand the improvement in the RKPM method in comparison to the SPH

method, two different function is used to judge their reproducing capability. One lin-

ear f1(x) = 10+2∗x and the other one nonlinear sinusoidal function f2(x) = sin
(

πx
5

)

.
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The domain is of length 10unit. The domain is discretized uniformly using 100 parti-

cles i.e, inter-particle distance is 0.1unit. A Gaussian function with smoothing length

of 0.4unit is used as kernel function. The correction function(equ. 3.21) used for this

example problem is a linear polynomial i,e c(x) = c0(x)+c1(x)(x−s). This correction

function has only two coefficients. This correction function can reproduce up-to the

first derivative of the approximating function. Now, it is needed to solve equation 3.33

to get the value of the unknown correction coefficients i.e, c(x) = {c0(x) c1(x)} at

each particle location. Similarly, equation 3.48 is also needed to solve to get the gra-

dient of the correction coefficients i,e c′(x) = {c′0(x) c′1(x)} at each particle location.

Figure 3.6 shows the solution for C(x) and C′(x) along the problem domain,
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Figure 3.6: The spatial variation of the RKPM coefficient (a)C(x) and (b)C′(x) for
a 1-D problem.

It can be seen from figure 3.6 that the coefficients of the correction function and

their gradient possess significant value near the domain boundary. In the interior of

the domain, c0(x) becomes unity and all other coefficients are zero. i.e, those parts
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of the domain which are far from the boundary, the RKPM corrected shape function

is the same as SPH shape function. The two shape functions differ significantly

only near the boundary. With the coefficients of the correction function already

known, the RKPM shape function is used to approximate two simple functions. The

reproducing capability of the RKPM shape function is shown in figure 3.7. It can be

seen that the RKPM shape function is able to reproduce the function and it’s gradient

both at the interior as well as near the boundary of the domain. It’s worthwhile to

compare figure 3.7 with figure 3.5 to comprehend the improvement in the function

and gradient approximation due to the incorporation of correction function into the

kernel approximation.

As already mentioned in section 3.1 that the dynamic evolution of the dislocation

density in the continuum domain is governed by the advection equation. The RKPM

also self correct any error due to the wrong assignment of weight during nodal inte-

gration(see [56]).

3.4 Numerical Implementation of the Dis-

location Propagation Scheme

As already discussed in section 3.2, the time evolution of the nucleated dislocations

coming from the atomistic to the continuum region is modeled using the modified
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Figure 3.7: Reproducing capability of RKPM shape function for (a) a linear function,
(s) slope of the linear function, (c) sine function and (d) slope of the sine function.

form of the advection equation given in equation 3.5. The localized nature of the

dislocation density of individual dislocation necessitates a very fine discretization

of the domain. Element based discretization will not be suitable for such problem

because of the computational cost involved in generating a fine FE mesh. Due to this

reason, element-based discretization will only be used for the solution of equation

2.7b i.e to obtain the solution of the displacement field only. For the solution of the

equation 3.5, a mesh-free particle-based method is most appropriate. The Smooth
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Particle Hydrodynamics(SPH) along with point collocation method is used for this

purpose.

3.4.1 Point Collocation Method

In the point collocation method the discrete set of equations are obtained by

satisfying the governing differential equation at each of the predetermined material

points. The Smooth Particle Hydrodynamics(sec 3.3) is used as discretization method

to solve the advection equation (eq. 3.5) over the domain. The discretized form of

the differential equation at the i′th particle and at time t = n+ 1 becomes,

(

∂ψ

∂t

)n+1

i

+ (v.∇ψ)n+1
i = (ψs)

n+1
i (3.49)

Equation 3.16 can be used to approximate the gradient (∇ψ) using the kernel

approximation. Then the above equation becomes,

(

∂ψ

∂t

)n+1

i

− (v)n+1
i .

∫

Ωi

ψn+1
∇W ids = (ψs)

n+1
i (3.50)

where W i is the RKPM kernel function corresponding to i′th particle and the

integration in the second term is over the support domain(Ωi) of W i. Now imposing

the particle approximation (sec. 3.3.2) on the integral term, the above equation

becomes,
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(

∂ψ

∂t

)n+1

i

− vn+1
i .

Ni
∑

j=1

ψn+1
j ∇W i(xi − xj, h)ωj = (ψs)

n+1
i (3.51)

To obtain the above equation from eq.3.50, the nodal integration is used in the

second term of the left-hand side. The nodal integration technique is discussed in

more detail in section 3.4.3. The time derivative in the first term can be approximated

using the Finite Different Method, as;

(

ψn+1
i − ψn

i

∆t

)

− vn+1
i .

Ni
∑

j=1

ψn+1
j ∇W i(xi − xj, h)ωj = (ψs)

n+1
i (3.52)

where, ∆t is the increment in the time step. After rearrangement the equation 3.52

becomes,

ψn+1
i −

Ni
∑

j=1

vn+1
i .∇W i(xi − xj, h)ωj∆tψ

n+1
j = ∆t (ψs)

n+1
i + ψn

i (3.53)

Equation 3.53 provides a set of linear algebraic equations with known right-hand

side. Next, it’s needed to impose the boundary condition

3.4.2 Imposing the Boundary Condition

Imposing Dirichlet bounday condition in mesh-less method is a key issue [57]. This

is due to the fact that unlike in element based method, the interpolation function for

particle based method does not satisfy the Kronecker delta property. i.e,
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W i(xi − xj, h) 6= δij 6=



















1 if xi = xj

0.0 if xi 6= xj

(3.54)

Due to this reason, an algebraic equation is developed by satisfying the specified

boundary condition for those particles at the boundary [56] and the equation devel-

oped by satisfying the governing differential equation at those particles are ignored.

3.4.3 Nodal Integration Scheme

The computational efficiency of the particle-based methods relies heavily on the

integration technique that is used. Several methods have been developed over the

years [54, 58, 59] to optimize the stability without sacrificing the computational

efficiency of the particle-based method. Several of the proposed methods still re-

quire the background mesh for numerical integration which undermines the benefit

of the particle-based discretization. The particle-based methods are truly mesh-less

only when point collocation approach is used in conjunction with a nodal integration

scheme [56]. In nodal integration scheme, the domain integral is approximated as,

∫

Ω

f(x)dΩ ≅

Ni
∑

i=1

f(xi)∆Ωi (3.55)

where f(x) is any general function whose integration is sought over the domain Ω.

It can be seen from the right-hand side of the above equation that the function is only
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evaluated at nodal points (Also called particles). Ni is the number of particles used

to discretize the domain(Ω). ∆Ωi is the weight associated with the i’th particle also

called the nodal volume. For a non-uniform distribution of particles, the assignment

of nodal volumes can be done using the continuity equation [58]. For uniformly

distributed particles, a much simpler method like Voronoi tessellation can be used to

assign the nodal volume to each particle. In the present study, particles are distributed

uniformly, hence Voronoi tessellation based method is used to compute the weight

associated with each particle. It has also been observed in [56] that the nodal volume

is not needed to be assigned exactly as long as the same nodal volume is used to

compute the moments of the kernel function (equ. 3.30, 3.45) while computing the

coefficients of the correction function. Any error in the assignment of the nodal

volume gets corrected during the computation of the coefficients of the correction

function and reproducing conditions are satisfied exactly for both the function and

it’s derivatives.

3.4.4 Stabilizing the Smooth Particle Hydrodynam-

ics method

The Smoothed Particle Hydrodynamics(SPH) is known to have instabilities [52,

60]. The instability also depends on the type of PDE that is being solved. Based on

the ’von Neumann stability analysis’ it has been proposed that [61], the instability
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can be reduced significantly by appropriate choice of the smoothing length (′h′ in

equ. 3.20) for the kernel function. It has been suggested that for a stable solution

the ratio between the smoothing length of the kernel function and the inter-particle

distance should be in the range of 1.0 to 1.4. If the ratio is more than 1.4, then

a large range of medium wavelengths(in Fourier space) have large dispersion[61]. A

simple 1D example might be appropriate to understand the impact of the ’smoothing

length(h) of the kernel function’ on the stability of the SPH method.

Figure 3.8 shows the propagation of a Gaussian peak using Smooth Particle Hy-

drodynamics(SPH). The propagation is modeled using the 1D advection equation (1D

version of equation 3.49 and without any source term) as,

∂ψ

∂t
+ v

dψ

dx
= 0 (3.56)

The domain size is 20 units which is uniformly discretized using 200 particles

with inter particle distance(∆x) 0.01unit. The velocity of propagation is taken to

be 1unit/sec. The initial density is assigned in the form of a Gaussian distribution

function as,

ψ(x)t=0 =
1√
2πσ

e
(x+5)2

2∗σ2 (3.57)

The distribution has it’s peak value of 0.4unit at x = −5 and standard deviation(σ)

of 2. The solution at each time step is obtained by numerically solving the equation

3.56 according to the procedure described in section 3.4.1. The time evolution of the
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Gaussian density is obtained for two different values of the smoothing length of the

kernel function(′h′ in equ. 3.20). One with h/∆x = 2.3 and another with h/∆x = 1.3.

Figure 3.8(a) and (b) show the time evolution of the Gaussian peak at time t=0

and at time t=10sec respectively with h/∆x = 2.3. It can clearly be seen the onset

of instability at t=10 in figure 3.8(b). On the other hand with h/∆x = 1.3 the time

evolution of the Gaussian peak does not show any instability as seen from figure

3.8(d). Hence in the present study, the ration between the smoothing length and the

inter-particle distance is maintained to be 1.3.

3.4.5 Optimizing the computational cost by seek-

ing for the solution at a localized regions

It has been seen in section 3.1 that the core of the dislocation is concentrated

within a localized region with length scale in the order of O(10|b|), where |b| is the

magnitude of the burger vector for the material. This necessitates a fine discretization

of the domain. On the other-hand at any time-step, most of the domain remain free

from the density of the nucleated dislocations. Figure 3.9(a) depicts a schematic

representation of the above situation where the density of the nucleated dislocations

are concentrated into some localized regions within the continuum domain. Hence

it is computationally more suitable to localize the computational domain over which

the evolution equation for the nucleated dislocations (equ. 3.5) is solved. To identify
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these local sub-domains and achieve better computational efficiency the SPH particles

are divided into several bins (figure 3.9(b)). The maximum dislocation density in each

bin is tracked at each time step. All those bins with ’maximum dislocation density’

more than a threshold density are considered to be containing the dislocation core,

ΩDC . The dislocation core region ΩDC along with the immediate neighboring binsΩDP

constitutes the local solution domain ΩD = ΩDC ∪ ΩDP over which the evolution

equation for the nucleated dislocations (equ. 3.5) is solved.
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Figure 3.8: Instability associated with particle based method while solving the ad-
vection equation for the propagation of localized density. (a)The initial Gaussian
peak of a scalar density gets (b)distorted due to the instability during the propa-
gation. (c)The same Gaussian peak (d)remains preserved during propagation afer
stabilization of the method.
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Figure 3.9: Schematic representation of the local solution domain for the propagation
of the dislocation density in the continuum region.
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Chapter 4

Time Acceleration of Molecular

Dynamics using Strain Boost

Hyperdynamics

MD simulations used to study fatigue and failure are often faced with serious lim-

itations in realizing experimental strain-rates. The typically achieved MD time-scales

are in the nano- (ns) to micro-seconds (µs) range, corresponding to atomic vibrations

with time-period in the order of pico-seconds (ps). Temporal resolutions required in

the solution of the dynamical systems using incremental time-integration algorithms,

limit the time-steps to be of the order of femto-seconds (fs). Even with today’s power-

ful computing platforms, this limits the maximum physical time to the micro-second

(µs) range. Correspondingly, in the study of deformation mechanisms in a deformable
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body, one is compelled to use very high strain-rates of ∼ 107 or even higher to achieve

strains of any physical significance. Thermal activation of stress-driven processes like

nucleation of dislocations and micro-twins make the mechanical behavior of mate-

rials temperature and strain-rate dependent. Very high strain-rates in conventional

MD simulations can result in very different activation regimes compared to those in

laboratory experiments. This leads to the activation of different temperature and

strain-rate dependent deformation mechanisms like surface-mediated dislocation nu-

cleation [62]. High strain rate based MD simulations of fcc single crystal containing

a crack in a certain orientation predicts a twin dominated deformation under mode-I

loading, whereas room temperature experiments under similar loading do not show

any twinning. This anomaly between experimental and simulation results has been

attributed to the strain-rate effects in [36] where it has been shown that there is a

transition from crack-tip twining at short times to full dislocation formation at long

times.

In this chapter, the hyperdynamics-based accelerated MD method is discussed

[47]. A brief description of different time-scale acceleration methods are given in

section 4.1. In section 4.2 different aspects of the hyperdynamics method are dis-

cussed with a special focus on strain-boost hyperdynamics. Particular emphasis is

on the construction of a boost potential with evolving parameters, as well as their

implementation and validation. Finally in section 4.4.2, a comparative study of the

strain-rate effect is presented using high strain-rate conventional MD and low strain-
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rate hyperdynamics-based accelerated MD simulations.

4.1 Methods of Time-scale Accelerated Molec-

ular Dynamics Simulations

Several methods have been developed for accelerating the temporal evolution of

molecular systems, e.g. the parallel replica dynamics [63, 64], temperature accelerated

dynamics [65], hyperdynamics [66], metadynamics [67], thermodynamics integration

[68], umbrella sampling [69, 70], multi-canonical ensemble method [71] etc. Most of

these methods are originally developed for non-driven systems i.e, the atomic system

is not deformed by any externally applied force. Recently, a variant of metadynamics

called Autonomous Basin Climbing [72], is extended to accelerate the time-scale for

a driven system in [73]. This method needs to construct the potential energy surface

(PES) after each load increment. This renders the method computationally expensive

and makes the system size to be limited to a few thousands of atoms. Contrary to

this, hyperdynamics is very effective for accelerating atomic-scale temporal evolution

in crystalline systems. This method has been used in [24] to accelerate time-scales

in the quasi-continuum method developed in [17]. Thermally activated substrate

adaton diffusion [66], as well as stress-driven and thermally activated dislocation

nucleation at sharp corners in metallic nano-pillars [37] have been studied using this
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method. The bond-boost hyperdynamics is a variant of this method that has been

implemented in [74] for concurrent multiscale coupling of atomistic with discrete

dislocation dynamics models near a crack tip in aluminum. Alternatively, a powerful

strain-boost hyperdynamics method has been developed in [37] to construct the boost

potential. A few of the important methods suitable for the time acceleration of driven

solid-state systems are briefly discussed in this section.

4.1.1 The Parallel Replica Dynamics (PRD)

The parallel replica dynamics or PRD method [63] is a simple yet accurate method

that is based on the fact that most atomic processes are statistical in nature. It is

based on the assumption that ensemble averaging over more micro-states is equivalent

to exploring the system for longer time durations. This is achieved by temporal paral-

lelization of the simulations over multiple processors, where individual processors run

a replica of the sample independent of each other. This is in contrast with conven-

tional parallelization, where the computational model is spatially distributed among

multiple processors. The total number of micro-states explored in the PRD simula-

tion process is the sum from all the processors. Hence the accumulated simulation

time (tphy) is related to MD time of the individual i− th replica (tiMD) as:

tphy =
i=S
∑

i=1

tiMD ≈ StMD (4.1)
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where S is the total number of replicas and tMD is the average time. It is obvious

that the level of acceleration that can be achieved is approximately proportional to

the number of processors (or replicas) used.

4.1.2 The Temperature Accelerated Dynamics (TAD)

The temperature accelerated dynamics (TAD) [65] is a method of accelerating the

time evolution of an atomic system, based on the observation that at finite tempera-

tures an atomic system spends a substantial amount of time in the local potential well.

Individual atoms vibrate with respect to their equilibrium position until an atom or

a cluster of atoms acquire sufficient energy to overcome the local energy barrier and

move to an adjacent potential well. The process continues until the system finds the

global potential well. Material behavior is controlled by processes that are mainly

stress-driven and/or thermally activated. Thermally activated processes, which cor-

respond to the transition of a system from one local potential well to another, are

inherently temperature-dependent. Thus, the rate of this transition increases with

temperature as the thermal energy available to overcome the energy barrier increases.

To accelerate these transitions, simulations are performed at elevated temperatures

but also by eliminating any spurious transition that does not occur at the original

temperature. The speed-up or boost SUTAD that is achieved by this method is ex-
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pressed as:

SUTAD = exp

[

Emin

(

1

KbTlow
− 1

KbThigh

)]

(4.2)

where Emin is the minimum energy barrier for state to state transition, Tlow is the

temperature at which the original MD simulation is intended, Thigh is the elevated

temperature at which the MD simulation is actually performed, and Kb is Boltzmann

constant. A major challenge with this method is to come up with an appropriate

criterion for filtering out the spurious transition, and extrapolating the state to state

transition rate from an elevated temperature Thigh to a lower one Tlow.

4.1.3 Hyperdynamics (HD)

A very efficient way of accelerating the transition from one potential well to an-

other for an atomic system had been proposed with the hyperdynamics or (HD)

method in [49]. This method is based on lifting the basin of the potential-well or

biasing the local potential landscape as shown in fig. 4.1). A boost potential is added

to the original system potential shown with the solid line to lift the potential well.

The biased potential shown with the dashed line makes state to state transition more

frequent i.e, at an accelerated pace. Time evolution of the biased system and the

unbiased system can be related using the Transition State Theory (TST) [75, 76, 77].

From the TST and equilibrium statistical mechanics based ensemble-averaging, it can

be shown that time evolution of the atomic system under biased potential is related
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to the MD time step as:

∆tphy = ∆tMDexp
∆Vb
KbT

(4.3)

where ∆tphy is the actual time evolved for an incremental MD time of ∆tMD, ∆Vb is

the boost potential applied to bias the system, T is simulation temperature and Kb

is Boltzmann constant. A comprehensive mathematical construction of this method

may be found in [49, 78].

Figure 4.1: Schematic illustration of the hyperdynamics method. The solid line
corresponds to the original system potential, while the biased potential is shown with
the dashed line.

The most challenging task in this method is to construct the boost potential that

will provide sufficient time acceleration, consistent with the TST. A general form of

the boost potential is given as:

∆V (r) =
F

Nb

∑

δVi (4.4)
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where δVi is the boost potential applied to the i− th atom and Nb is the total number

of atoms to be boosted. F is a stopping function that will drive the boost potential

to zero as the system approaches the dividing surface, such that the assumption of

hyperdynamics will not be violated. A number of methods have been proposed to

construct appropriate boost potentials that will provide sufficient boost with minimal

computational cost, e.g. in [79, 37, 80]. A strain-boost hyperdynamics formulation,

proposed in [37], is adopted in the present study. In this model, the second invariant

of the deviatoric local atomic strain (addressed as the Von-Mises shear strain invari-

ant) is used to construct the boost potential. A major advantage of this approach is

that the local atomic strain is a bond angle sensitive local geometric variable, which

better reflects the condition of the nearest-neighbor atomic shell than the bond length

alone [37]. This method is discussed in sec. 4.2.

Other sophisticated methods have also been developed for more complicated sys-

tems. Among these, the most widely used are metadynamics [67], thermodynamics

integration [68], umbrella sampling [69, 70], multicanonical ensemble [71]etc. These

methods are most suitable to study more complicated systems, e.g, reaction mech-

anism of different molecular systems in the liquid phase, conformational changes of

long molecular chains in solution, protein folding, protein-protein interaction, phase

transition, etc. In metadynamics, the system is adaptively biased by iterative injec-

tion of a small Gaussian potential, which is a function of carefully chosen collective
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state variables. A major advantage of this method is that history-dependent bias

prevents the system from visiting those parts of the phase-space, which it has already

explored. By injecting a smaller Gaussian potential successively, the free energy of

the system can be estimated with high accuracy. In thermodynamics integration [68]

the transition is accelerated by constraining the reaction coordinates at different val-

ues in multiple windows and forcing the system to sample along a line perpendicular

to the reaction coordinate. Special care has to be taken to constrain the reaction

coordinate in an energy-conserving manner. Contrary to thermodynamics integra-

tion, in umbrella sampling [69] the reaction coordinate is not constrained in multiple

windows, but rather pulled to a target value by using appropriate bias potential [70].

These methods will be most suitable if the free energy of the system is not known

a priori. Such cases arise when the system of interest is complicated and transition

of interest is preceded by many non-interesting events manifested by local poten-

tial wells. In contrast, the problem investigated here includes plastic deformation

of crystalline material, where the event of interest is very precise i.e, nucleation of

dislocations. The energy barrier corresponding to that transition can be estimated

by some trial MD simulation with a much smaller system size. This is discussed in

section 4.2.2.
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4.2 Strain Boost Hyperdynamics

The boost potential used in the present study is a function of the second invariant

of the least-square atomic strain, as given in [81]. With this augmentation, equation

(4.4) takes the form:

∆V (r) =
F (ηMises

max )

Nb

∑

δVi(η
Mises
i ) where (4.5a)

δVi(η
Mises
i ) = Vmax

[

1−
(

ηMises
i

qmax
c

)2]

(4.5b)

Here ηMises
i is second invariant of the local atomic strain ηi of the i− th atom and

ηMises
max =max { ηMises

i , i = 1, 2, ...., Nb}, where Nb is the number of boost atoms. δVi is

boost potential, which is a function of ηMises
i (r). F (ηMises

max ) is the stopping function

that enforces the hyperdynamics assumptions on the boost potential at transition.

The following form of stopping function is used in this study.

F (ηMises
max ) =























1−
(

ηMises
max

qmax
c

)2

, ∀ ηMises
max < qmax

c

0 ∀ ηMises
max ≥ qmax

c

(4.6)

The cardinal ingredient in constructing both the boost potential and stopping

function is the atomic strain. The procedure to compute local atomic strains from
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given atomic configurations is discussed next. Consider two configuration of an atomic

system, one at time t = 0 denoted as the reference configuration x0
i and other at time

t designated as the current configuration xi. The separation vector of an atom i with

it’s neighbor j in the reference configuration and current configuration are respectively

written as:

d0
ji = (x0

j − x0
i ) and dji = (xj − xi) (4.7)

For this discrete system, the objective is to realize a function Ji that maps the vector

from the reference to current configuration, i.e.

d0
ji

Ji−→ dji ∀ j ∈ Ni (4.8)

where Ni is the set of all neighbors of i−th atom. In [81] the function Ji is determined

in a least-square sense by minimizing the total mapping error (
∑Ni

j=1(d
0
jiJi − dji)

2).

This minimization leads to a functional form of tbe deformation gradient for a discrete

system as:

Ji = V−1
i Wi (4.9)

where

Vi =

Ni
∑

j=1

d0T
ji d

0
ji and Wi =

Ni
∑

j=1

d0T
ji dji (4.10)

Upon evaluation of the deformation gradient Ji matrix, the Lagrangian strain ηi for
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a discrete system may be constructed as:

ηi ≡ (JiJ
T
i − I) (4.11)

where I is the identity matrix. For a frame-invariant boost potential that is indepen-

dent of reference frame, its construction uses the second invariant of the deviatoric

part of ηi, given as:

ηMises
i ≡

√

1

2
Tr(ηi − ηhydroi I)2 (4.12)

where Tr is the trace and ηhydroi is the hydrostatic part of the ηi. The atomic strain-

based boost potential construction requires two parameters Vmax and qmax
c in equa-

tions (4.5) and (4.6). Details on how to calculate these parameters for a specific

material are discussed in sections 4.2.2 and 4.2.3.

An important prerequisite of hyperdynamics is to make the boost potential δVi

go to zero on all dividing surfaces, as the system approaches a saddle point for the

transition from one local potential well to another as shown in figure 4.1. A method

of finding these saddle points of the potential surface is by calculating the gradient

vector gi(= ∂V/∂xi) and the Hessian matrix Hij(= ∂2V/δxi∂xj). Here x is 3N di-

mensional vector where N is the number of atoms in the system [49]. Solving for

gi=0 will give all the extremums of the energy surface. Of these points, the one for

which the Hessian matrix has one negative eigenvalue belongs to the saddle point.

78



However, a problem with this approach is that the energy surface is not known a-

priori. Additionally, finding all solutions of gi = 0 for a 3N dimensional potential

energy function, and the eigenvalues of the corresponding Hessian matrix Hij is a

computationally expensive process and almost intractable for large systems.

A consideration used to overcome this problem is that, whenever a system passes

through the saddle point for a transition from one local potential well to another, it

undergoes some major configurational change in the atomic system involving at least

one atom and it’s nearest neighbors. Consequently, any state variable that reflects

this configurational change can be used as an indicator of the transition. The critical

value of this indicator can be used as a threshold beyond which the boost potential

will be forced to zero. In the present study, the stopping function F (ηMises
max ) in equa-

tion (4.6) serves this purpose, where qmax
c is the critical value of ηMises

max . Figure 4.2

shows the evolution of potential energy and ηMises at T=2K for a typical atom in the

ensemble during the nucleation of a leading partial dislocation at approximately 252

ps into the simulation.

Substantial changes in the magnitude of ηMises at the onset of nucleation makes it

a perfect indicator of the transition. An alternate indicator, proposed for bond-boost

hyperdynamics in [79], is the critical bond length. Whenever a tagged bond crosses

some critical length, the system is considered to be on the verge of a transition from
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Figure 4.2: Time evolution of potential energy and ηMises of a typical atom in the
ensemble at T = 2K.

the current potential well to an adjacent one. In the present analysis, the aim is to

investigate dislocation dominated crack tip plasticity. For this problem, the strain-

boost model is chosen over the bond-boost method since dislocation nucleation is a

collective behavior of an atomic cluster. The local atomic strain is a better collective

variable, which involves at least one atom and it’s nearest neighbors in comparison

with the maximum bond length between an atom and it’s neighbor. Noteworthy

in this discussion is the fact that twin nucleation and twin-boundary propagation

involves sequential nucleation of leading partials on parallel slip planes.

4.2.1 Hyperdynamics for driven systems

The original development of hyperdynamics in [66] was for non-driven systems,

where the potential energy of the system and energy barrier between states remain
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unchanged. This renders the TST rate to remain constant throughout the simulation

for both the biased and the original systems. The ratio of these two rate constants is

interpreted as the acceleration in time-scale due to the applied bias and is quantified

in the form of a boost factor. For a driven system examined in present study, the TST

rate at two different strain states are different. However for a carefully chosen boost

potential, the ratio of the TST rate for the biased system and the original system can

remain unchanged throughout the simulation. This means that the applied macro-

scopic strain influences the TST rate of both the biased and original systems in same

manner. This implies that for two consecutive time steps t1 and t2 with macroscopic

strains ǫ1 and ǫ2, even though

KTST
A→B

∣

∣

∣

ǫ1
6= KTST

A→B

∣

∣

∣

ǫ2
and KTST

Ab→B

∣

∣

∣

ǫ1
6= KTST

Ab→B

∣

∣

∣

ǫ2
(4.13)

the following relation still holds:

KTST
Ab→B

KTST
A→B

∣

∣

∣

∣

∣

ǫ1

≈
KTST

Ab→B

KTST
A→B

∣

∣

∣

∣

∣

ǫ2

(4.14)

The notations used have the same meaning as in [66]. Consequently, the criterion to

be satisfied is,

KTST
Ab→B

KTST
A→B

∣

∣

∣

∣

∣

ǫ1

=
KTST

Ab→B

KTST
A→B

∣

∣

∣

∣

∣

ǫ2

(4.15)
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From the relations in [66],

KTST
A→B =

〈

|vA|δA(r)
〉

Ab
〈

eβ∆Vb(r)
〉

Ab

(4.16)

The numerator in the right hand side is the TST rate constant under a biased poten-

tial. This renders equation (4.16) to be

KTST
A→B =

KTST
Ab→B

〈

eβ∆Vb(r)
〉

Ab

, =⇒
KTST

Ab→B

KTST
A→B

=
〈

eβ∆Vb(r)
〉

Ab

(4.17)

Substituting equation (4.17) in equation (4.15) yields:

〈

eβ∆Vb(r)
〉

Ab

∣

∣

∣

∣

∣

ǫ1

=
〈

eβ∆Vb(r)
〉

Ab

∣

∣

∣

∣

∣

ǫ2

(4.18)

For constant temperature, the parameter β(= 1
KBT

) remains unchanged throughout

the simulation. So, for equation (4.18) and consequently equation (4.15) to hold, the

applied boost potential has to be independent of macroscopic strain ǫ, i.e.

∆Vb(r)|ǫ1 = ∆Vb(r)|ǫ2 (4.19)

In the present study, it is observed that the effect of the macroscopic strain is

more prominent on ηMises
max than on ηMises

i . For the strain boost hyperdynamics, the

effect of ηMises
max on the boost potential comes through the construction of a stopping

82



function given in equations (4.5) and (4.6). To mitigate this effect of macroscopic

strain, the parameter Vmax is monitored using the value of stopping function to keep

the strength of the bias close to the activation free energy of nucleation. This proce-

dure is discussed in details in section 4.2.2.

It is also noteworthy that classical statistical mechanics-based ensemble averaging,

which is used to relate the MD-time (∆tMD) with physical time (∆tphy), (see equa-

tion (4.3)), can only be applied for thermally equilibrated systems. However, many

problems of interest in the mechanics of materials are not only thermally activated

but stress-driven as well. One prime example is the nucleation of dislocations or

gliding of existing dislocations when a critical resolved shear stress is exceeded. One

approach to keep the system near thermal equilibrium is to use a stepped loading in

lieu of a continuous ramped loading [82] and apply hyperdynamics using the instan-

taneous near-equilibrium system potential corresponding to the non-driven segment

of the loading. In the present study, the system is far from equilibrium only when

dislocation nucleates and continues until it reaches a stable configuration, or when

dislocations in a stable configuration start gliding again due to the buildup of resolved

shear stress to a critical value. During these far from equilibrium system-states, hy-

perdynamics is not activated, to comply with the methods basic assumptions. Other

than these two non-equilibrium scenarios, the system mostly deforms elastically under

quasi-equilibrium conditions. Furthermore, the system is forced to near-equilibrium
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states by imposing the macroscopic strain using affine transformation.

4.2.2 Determination of Vmax

The parameter Vmax in equation (4.5b) is an important determinant of the max-

imum achievable boost and in turn temporal acceleration of the MD simulations. It

should be high enough to give sufficient boost, while not creating any extra local

potential well of significant depth. Rearranging equations (4.5a), (4.5b) and (4.6)

yields,

∆V (r) =
S

Nb

∑

[

1−
(

ηMises
i

qmax
c

)2]

∀ ηMises
max < qmax

c

= 0 ∀ ηMises
max ≥ qmax

c

(4.20)

where,

S = Vmax

[

1−
(

ηMises
max

qmax
c

)2]

(4.21)

S is termed as strength of the bias. In general, at the onset of transition, S should be

of the order of the potential barrier height that an atom has to overcome to initiate

any nucleation. This will also guarantee that there will be no extra potential well

created inside the original one near the dividing surface. A qualitative assessment of

this barrier height (0.2ev for the present study at 300K) can be obtained by moni-

toring the time evolution of potential energy of a typical atom as it participates in
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the nucleation process, as shown in figure 4.3. It can be seen that after repeated

failed attempts for which ηMises touches the ηMises
max = 0.9qmax

c line, the atom acquires

sufficient thermal energy at ≈ 324ps to overcome the potential barrier and nucleate a

leading partial dislocation. Every material has its own characteristic potential barrier

height corresponding to the event of interest. Once the barrier height is obtained,

Vmax can be calculated using equation (4.21) as:

Vmax =
S

[1− (η
Mises
max

qmax
c

)
2
]

(4.22)

with known ηMises
max . In the present implementation, Vmax is adjusted during the sim-

ulation based on the average value of ηMises
max . The running time average of ηMises

max is

calculated based on the last 5000 MD-steps. For example, if the average ηMises
max is

0.5qmax
c , for the strength of bias (S) to be same as the potential barrier height i.e,

0.2 ev, Vmax is set to be 0.2667. This process of continuous monitoring of Vmax guar-

antees that the instantaneous boost potential will never exceed the activation free

energy of nucleation. It is noteworthy that ηMises
max is the maximum value of ηMises

among all atoms that are boosted. Of these atoms, the identity of the most critical

atom keeps changing with the progress of the simulation. Figure 4.3 shows the time

evolution of potential energy and ηMises of one such atom. For the system studied,

it is observed that at the onset of transition, the critical atoms frequently visit the

state corresponding to ηMises ∼ 0.9qmax
c . The instantaneous boost potential for that
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particular atom, corresponding to this state, is 0.0380ev (from equation (4.20) with

S=0.2ev).
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Figure 4.3: Time evolution of potential energy and ηMises of a typical atom in the
ensemble at T = 300K.

Determination of the optimal Vmax is crucial. Higher Vmax will lead to a wrong

conversion of the MD time (∆tMD) to the physical time (∆tphy). In general, the

strength of bias S should be similar to the activation free energy of nucleation. The

present implementation enforces this condition by adjusting Vmax during the simula-

tion. Another way to make this adaptive adjustment is by monitoring the frequency

at which the identity of the most critical atom changes. This makes the requirement

of prior knowledge of the energy barrier redundant. A more detailed description of

the procedure with an application on bond-boost hyperdynamics (also called Self-

learning Bond Boost method) can be found in [83, 84].
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Determination of S and hence Vmax, sometimes can be challenging if the free

energy corresponding to the event of interest is not known a priori. This situation

arises when hyperdynamics itself is needed for the occurrence of those infrequent

events in atomistic simulations such as in atomic diffusion in solids. A better approach

for such situations is to use metadynamics [67] or a more sophisticated adaptive-

boost MD [85] to get an approximate idea of the potential barrier height with a little

additional computational cost.

4.2.3 Determination of qc

To find the optimal value of the threshold parameter qmax
c , MD simulations are per-

formed for a small atomistic ensemble with an embedded crack (created by removing

few layers of atoms) to facilitate inhomogeneous nucleation of crack-tip dislocations.

The parameter qmax
c indicates that the system is approaching a transition point, even

without any additional thermal vibration. Hyperdynamics must stop beyond that

point, i.e. the boost potential should go to zero to comply with it’s assumption.

qmax
c is inherently dependent on temperature due to the contribution from thermal

vibration of the atomic system. An iterative technique is used in this study to find

the optimal value of qmax
c at a particular temperature.

The potential energy of the system is first obtained for two different temperatures,
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one being very low (2K for the present study) and the other corresponding to the

temperature at which qmax
c is expected. The boost potential is then applied and

the simulations culminating in system quenching are run corresponding to different

assumed trial parameter values qtrialc . If qtrialc is equal to the critical threshold value

qc then the system will make a transition without any additional thermal fluctuation.

The equilibrated potential energy determines whether the quenched system has made

this transition, as elucidated in figure 4.4. For qtrialc = 0.1 the system does not

make the transition and falls back to the potential energy corresponding to the lower

temperature pathway 2K. However transition takes place for qtrialc = 0.12 and qtrialc =

0.13. To obtain the minimum value of qtrialc for which transition takes place, the

quench-simulation process is repeated with different initial atomic configurations by

dephasing. The critical qc is assessed from this exercise. In this study, the parameter

qtrialc is gradually incremented from 0.8 to 0.15 with a step size of 0.001, and the critical

value is found to be qc = 0.12 at 300K. Any value of qmax
c less than this critical qc is

safe. A conservative value of qmax
c =0.11 is used for all subsequent studies. A value

of qc = 0.095 at 200K has been used in [37] for the study of dislocation nucleation in

copper nanopillars under compressive loading.

4.2.4 Determination of Nb

The number of atoms Nb that needs to be boosted in equation (4.5a) is another

important parameter to be determined. The calculation of boost potential and cor-
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Figure 4.4: Plot of the potential energy as a function of applied strain corresponding
to different temperatures in the quenching bath for determining qc.

responding forces involve some computational costs per atom. Hence, computational

efficiency requires an optimally low number of atoms to be boosted while making sure

to include the cluster of atoms that is most critical for the nucleation process. Since

this work focuses on the investigation of plastic deformation of a nickel single crystal

in the presence of an atomistic crack, the crack tip region is the most critical part for

nucleation. Consequently, at the start of simulations, only a small through-thickness

cylindrical domain with its center at the crack tip is boosted. This is demonstrated

in figure 4.5. Based on potential energy, additional atoms are tagged as to-be-boosted,

as the material deforms plastically. It should be noted that since the least-squares

based deformation gradient is not a good measure of the local atomic strain for atoms

with a low near-neighbor count, atoms with less than 12 first nearest neighbors for

fcc crystals are not boosted in this work.
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Figure 4.5: (a) A 3D atomic domain of single crystal nickel with an embedded crack for
MD simulations, and (b) zoomed in view of the boost region for HD based accelerated
MD simulations. The color of atoms is based on the second invariant of atomic strain
(ηMises

i ) corresponding to 1% macroscopic strain.

4.3 Implementation of the Strain-Boost Hy-

perdynamics in LAMMPS and Accel-

erated MD Simulations

The strain boost- based hyperdynamics method is implemented in a parallel ver-

sion of the popular MD simulation code Large-scale Atomic/Molecular Massively Par-

allel Simulator or LAMMPS [38]. To keep the main structure of the LAMMPS un-

changed, an additional ”compute” module is incorporated. For a given reference and

current configuration, this module calculates (i) the local least-squares based atomic-

strain per atom, (ii) the boost potential per atom, and (iii) the additional force due to

the boost potential per atom. For preliminary verification of this implementation, an
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MD model specimen is created in LAMMPS and subsequently deformed by using the

”fix-deform” option without performing any time integration, thus eliminating any

noise due to thermal vibration. The least-squares based deformation gradient is com-

puted using equation (4.9) for three different load cases viz. pure translation, pure

rotation and pure stretch. The computed values are in agreement with the known

deformation gradients for these deformation modes.

Figure 4.6: A flowchart showing the strain-boost hyperdynamics implementation in
LAMMPS. Tasks inside the dashed box are added for the hyperdynamics acceleration
in conjunction with the conventional MD operations.

The process of strain-boost hyperdynamics implementation in LAMMPS is briefly
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discussed in this section with a schematic depiction in figure 4.6. The atomistic sim-

ulation specimen is created by filling the sample geometry with atoms conforming

to the crystallographic lattice structure of the material in consideration. For inves-

tigating crack tip plasticity, an atomic crack is placed symmetrically at the center

of the specimen by removing a few layers of atoms as shown in figure 4.5. This

is followed by static minimization of the total potential energy for the equilibrium

configuration of the system. Next, the initial velocity of atoms is specified, based

on the Maxwell-Boltzmann distribution for the simulation temperature taken to be

300K in this study. Dynamic equilibration using the Nose-Hoover thermostat [86, 87]

is carried out to achieve traction free outer surfaces while maintaining the system

temperature. The equilibrated atomic positions are stored as the reference configu-

ration. This is needed for computing the deformation gradients and atomic strains in

subsequent simulations. This reference configuration will be updated once nucleated

dislocations glide to their stable configuration.

Following equilibration, the system is deformed by displacing individual atoms

conforming to the affine transformation, thereby achieving an incremental ensemble

strain of ∆ǫ, given as:

∆ǫ = ∆tphy ǫ̇ (4.23)

∆tphy is the physical time at which the atomic system evolves under the boost po-

tential ∆V . Following equation (4.3), it is related to the MD time step ∆tMD as
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∆tphy = ∆tMDexp(∆V/KbT ) . The displacement step is followed by the calculation

of conventional forces due to the inter-atomic interaction and additional forces due

to boost potential. The system is accordingly moved forward in time by integrating

the equations of motion using a velocity-Verlet time integration scheme [88]. Once

the positions and velocities are updated, the new atomic strain, total per atom force

(inter-atomic interaction force + boost force) and boost factor (exp(∆V/KbT )) per

atom are respectively calculated. Subsequently, the system is deformed by an incre-

mental strain of ∆ǫ according to equation (4.23) and the process continues.

4.3.1 Validation of the Strain-Boost Hyperdynam-

ics Model with Conventional MD Results

Prior to the use of strain-boost hyperdynamics based MD simulation for low strain-

rate deformation analysis, it is important to validate the model with results from

conventional MD simulations. To accomplish this, hyperdynamics-based accelerated

MD and conventional MD simulations are conducted for an atomistic model of single-

crystal nickel specimen. The atomic simulation specimen has physical dimensions of

100nm × 50nm × 25nm, which consists of ∼ 10 million atoms. The orientation of

the crystal is x → [1̄10], y → [111], z → [112̄]. A through-thickness uniform crack

of width 10nm is embedded in the specimen. Two different strain-rates, viz. 107 s−1

and 108 s−1, are applied to the simulations for comparison. The resulting macro-
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scopic stress-strain response and evolution of dislocation density are shown in figure

4.7. The critical nucleation stress and the evolution of different dislocation densities

e.g. mobile and immobile dislocations by the two methods are in good agreement.

It is noteworthy that hyperdynamics is most effective when the events of interest are

very infrequent, which makes the achievable boost to be dependent on temperature.

At higher temperatures, the occurrence of infrequent events is aided by the higher

kinetic energy of individual atoms that in turn reduces the achievable boost.
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Figure 4.7: Validation of the strain-boost hyperdynamics-based MD model with con-
ventional MD results: Comparisons of (a) volume averaged stress and (b,c)dislocation
densities, as a function of the macroscopic strain.

To investigate the temperature and strain-rate dependence on the achievable

boost, similar computational experiments are performed for different strain-rates viz.
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109, 108 and 107 and temperatures viz. 100K and 300K. The achieved average strain-

boost is calculated by monitoring the CPU time taken by the two methods. To extend

the achievable boost prediction for lower strain-rates of ∼ 104, hyperdynamics-based

MD simulations are performed to get the first nucleation event. These rates are

beyond the reach of conventional MD with most current computational platforms.

With knowledge of the critical strain for nucleation for a particular strain-rate and

temperature, the total number of MD steps that would have been needed for conven-

tional MD can be approximately calculated. The ratio of time steps with conventional

MD to that with hyperdynamics, multiplied by an adjustment factor to take care of

the additional computation in hyperdynamics gives an idea of the achievable boost.

Figure 4.8 shows an exponential increase of this achievable boost with decreasing

strain-rates. This is the desired benefit of accelerated MD simulations.
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Figure 4.8: Efficiency of the hyperdynamics-based MD model for different strain-rates
and temperatures.
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4.4 Numerical Simulation of a Crystalline

Material with an Embedded Crack

The examples in this section revisit the characterization and quantification of

atomic-level deformation mechanisms obtained by conventional MD simulations of a

crystalline material with an embedded crack in [16]. The strain-boost hyperdynamics

based accelerated MD simulations are used to compare the deformation mechanisms

at the high strain-rates similar to those in [16]. On the other hand, simulations

at lower strain-rates are examined for the effectiveness of predictions based on high

strain rate MD simulations.

4.4.1 MD model of a Single Crystal Nickel with

an Embedded Crack

The geometric features and loading characteristics of a single crystal nickel speci-

men with an embedded crack are shown in figure 4.9. A similar model has been used

in [16], where it was established that a simulation box size of 80nm× 44nm× 25nm

is sufficient for the boundary effects to be insignificant on crack-tip dislocation nu-

cleation. In the present simulations, a box of size 100nm× 50nm× 25nm is used. It

consists of about 10 million atoms, the lattice constant of nickel being 3.52 Ao.
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Figure 4.9: Geometric details of the MDmodel with boundary conditions: (a) physical
representation of the specimen with an embedded crack; crystal orientations with
respect to specimen coordinate axes for: (b) orientation-1, and (c) orientation-2.

The interaction between nickel atoms in the MD simulations is computed by a

many-body potential function, described by the embedded-atom method or EAM

developed in [89]. This potential is appropriate for most transition metal systems.

The functional form of the EAM potential energy of the i− th atom is given as:

Ei = Fα

(

∑

i 6=j

ρβ(rij)

)

+
1

2

N
∑

j=1,j 6=i

φij(rij) (4.24)

The first term is an embedding function that represents the energy required to place

an atom i of type α into the electron cloud. The electron cloud density is a summa-
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tion over many atoms, usually limited by a cutoff radius. In the embedding energy

function Fα, ρβ is the contribution to the electron charge density from atom j of type

β at the location of atom i. It is a function of the distance rij between atoms i and

j within a cutoff distance. The second term is a short-range electrostatic pair-wise

potential as a function of the distance rij between atoms i and j. For a single ele-

ment system, three scalar functions must be specified, viz. the embedding function,

a pair-wise interaction function, and the electron cloud contribution function.

Periodic boundary conditions are applied to eliminate free surface effects. Trans-

lational symmetry extends the crack infinitely in the z− direction. The simulation

box is subjected to an applied y−direction displacement that governs a controlled

incremental strain of ∆ǫ in equation (4.23). The incremental strain is realized by

displacing atoms via affine transformation prior to time integration of the governing

equations.

Simulations with the accelerated MD model are used to understand deformation

mechanisms at the crack tip and to quantify state variables that govern the plastic

deformation, viz. evolution of mobile and immobile dislocation densities, twin volume

fraction etc., at strain-rates that are much lower compared to what are achievable in

conventional MD. Various methods have been suggested in [16] to extract deformation

mechanisms from simulated atomic configurations. The DXA method of extracting
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the topological structure of dislocations [50] and the atomic-scale deformation gradi-

ent measurement [81] for identifying twinned regions are utilized in this work.

4.4.2 Results of Hyperdynamics MD Simulations

MD simulations are conducted for two different lattice orientations, corresponding

to the following directions for the x− y − z axes in figure 4.9(a). They are:

1. Lattice Orientation 1: x→ [1̄10], y → [111], z → [112̄]

2. Lattice Orientation 2: x→ [112̄], y → [111], z → [11̄0]

The significance of these two orientations is that the three slip planes (111), (111) and

(111) have the same in-plane stresses when the sample is loaded in the y−direction,

which is the crystallographic [111] direction. In contrast, the (111) plane, being per-

pendicular to the y−-axis, has zero in-plane stresses. Different orientations of the

embedded crack with respect to the crystallographic axis leads to the activation of

slip in different directions. This in turn leads to the generation of different kinds of

dislocations governing plastic behavior.

The two orientations have also been used in [16] with conventional MD, at an

applied strain-rate of 2 ∗ 107/sec, to investigate orientation dependence of crack tip

plasticity. However, at this high strain-rate, the atomic system does not have enough

time for activation of thermal activation-dependent mechanisms. Therefore, the sim-
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ulation temperature in [16] was kept to 2K and only stress-driven phenomenon was

studied. With the hyperdynamics based accelerated MD in the present study, a

strain-rate of 104/sec is achieved. Hence, both the stress-driven and thermally acti-

vated processes can be accurately represented, for which the system temperature is

kept at 300K.

4.4.2.1 Results for lattice orientation-1

As mentioned earlier, for lattice orientation-1, three slip planes have the same

in-plane stress and the crack tip extends in crystallographic [112] direction. Figure

4.10(a) shows the evolution of macroscopic volume-averaged stress σyy as a function

of the y− direction engineering strain ǫyy. In the tensile stress-strain curve, the

peak stress corresponds to the critical resolved shear stress required for nucleating

the dislocation. The stress subsequently decreases due to the motion of dislocation,

which releases the elastic strain in the system. The results are for two strain-rates,

viz. 2 ∗ 107/sec with conventional MD and 104/sec with hyperdynamics. The critical

stress, which corresponds to nucleation of first leading partial from the crack tip, are

respectively ∼ 4.65GPa and ∼ 4.38GPa for the strain-rates 2 ∗ 107/sec and 104/sec.

The drop in critical stress is due to the fact that at finite temperatures and lower

strain-rate, thermal activation plays a major role in the nucleation process. The

evolution of dislocations is also investigated to understand the effect of strain-rate in

more detail. Figure 4.10(b) shows the evolution of total, mobile (Shockley partial)
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and immobile (stair-rod) dislocation density as the specimen deforms plastically. The

dislocation density is approximated as the total dislocation length per unit volume.

At a strain-rate of 104/sec, the stabilized mobile dislocation density is almost 50

% higher than that at 2 ∗ 107/sec. Higher mobile dislocation density implies more

ductility in the plastic regime. This difference in dislocation density for different

strain-rates is due to the fact that at lower strain-rates, the system nucleates a lesser

number of dislocations as shown in figure 4.10. This enhances the free path for

dislocations to glide before interacting with other dislocations from intersecting slip

planes. Contrary to mobile dislocation density, which is much higher at low strain-

rate compared to higher rates, the immobile dislocation density is less at lower strain-

rates. The difference in immobile dislocation density for the two strain-rates is not

so significant. The presence of immobile dislocations hardens the material by making

it difficult for mobile dislocations to glide freely. At lower strain-rates, the combined

effect of higher mobile dislocation density and lower immobile dislocation density

makes the material hardens slowly. This is evident from the reduced flow stress of

the material.

4.4.2.2 Results for lattice orientation-2

For the crystal lattice orientation-2, the crack tip extends in crystallographic [110]

direction, which makes the (111) plane parallel to the crack tip. In this particular

orientation, the [112] direction corresponds to the maximum in-plane stress, which
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Evolution of variables for the crystal lattice orientation-1 by conventional MD and accelerated M
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Figure 4.10: Initial crack-tip dislocation segments for orientation-1 at strain-rates of
(a) 2 ∗ 107/sec by conventional MD, and (b) 104/sec by accelerated MD.
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favors nucleation of leading partial dislocations. A leading partial with Burgers vec-

tor b = 1
6
[112] is emitted irrespective of the strain-rate as shown in figure 4.12(a).

This dislocation is purely edge in character. At the high strain-rate of 2 ∗ 107/sec,

this leading partial is followed by another leading partial in an adjacent parallel slip

plane as shown in figure 4.12(b). This combination forms a micro-twin band. The

twinned region increases by the migration of twin boundaries due to subsequent nu-

cleation of leading partials in parallel slip planes. However for the lower strain-rate of

104/sec, the leading partial is followed by a trailing partial. Together they form a full

dislocation as seen in figure 4.12(c). This significant difference in deformation mech-

anisms is clearly a strain rate-effect. It also has a profound effect on the macroscopic

stress-strain response of the material as depicted in figure 4.11. A full dislocation

i.e a leading partial followed by a trailing partial in the same slip plane, does not

leave behind any stacking fault and once a full dislocation nucleates it carries plastic

strain by gliding along the slip plane. On the other hand, for twin, plastic strain

is carried by the migration of twin boundary which is accomplished by nucleation

of successive leading partial in parallel slip planes. Since the gliding stress is much

smaller than the nucleation stress, it makes full dislocation a more superior carrier

of the plastic strain away from the crack tip in comparison to the twin, which is also

evident from macroscopic stress-strain plot. The present finding is in agreement with

[36] where a transition from twin (under short time and high load) to full dislocation

(under a long time and smaller load) has also been observed under a fixed applied
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stress intensity (KI). At this point, it is worthy to mention that for present crack

orientation and with mode-I loading, nucleation of twin or full dislocation could also

depend on the atomic configuration of the crack tip. For some particular crack-tip

atomic configuration plastic deformation is dislocation dominated at both low and

high applied strain rate. This suggests that to develop an accurate analytic model

predicting the critical strain rate corresponding to twin to dislocation transition may

need to take local crack tip atomic configuration into consideration.

0 0.005 0.01 0.015 0.02
0

1

2

3

4

Strain

S
tr

e
s
s
(G

P
a
)

 

 

MD (dε/dt=2*10
7
)

AMD (dε/dt=10
4
)

Figure 4.11: Evolution of macroscopic stress as a function of engineering strain for
orientation-2 by conventional MD and accelerated MD (AMD).

4.5 Concluding Remarks

In this chapter a strain-boost hyperdynamics based accelerated molecular dynam-

ics framework has been developed for modeling deformation in crystalline materials

with an embedded crack. MD simulations are capable of depicting evolving defor-

mation mechanisms in materials at the atomic scale. The method has been used for
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Figure 4.12: Snapshots of plastically deformed atomic configuration in orientation-
2, ploted using AtomEye [6] with color based on common neighbor analysis (CNA
[7]), showing deformation mechanisms at different strain-rates: (a) leading partial
nucleation at the onset of plasticity irrespective of strain rate; (b) leading partial
followed by another leading partial in the parallel slip plane (twining partial) at high
strain-rates, and (c) leading partial is followed by a trailing partial at lower strain-
rates.

continuum-scale material property assessment by hierarchical and concurrent cou-

pling with continuum models. A major limitation of such coupling with conventional

MD simulations is that very small MD time-scales restrict the achievable strain-rates

to be much higher than experimentally observed rates, needed for continuum scale

modeling, e.g. using crystal plasticity finite element methods. An approach that has

been used to extract low strain-rates by simple extrapolation of the higher strain-

rate results. While this approach may be reasonable when the deformation mecha-
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nisms remain unchanged over long temporal domains, their predictive capabilities are

severely compromised in the presence of multiple competing mechanisms, whose acti-

vation depends on the deformation rate itself. Furthermore, in a concurrent coupling

of MD with continuum models, stability requirements of the integration algorithm

can adversely affect time increments in the continuum model. The hyperdynamics

accelerated MD tool that is adopted and developed here is demonstrated to overcome

these limitations and achieve experimentally observed strain rates. This method is

incorporated in the LAMMPS code and validated for an atomistic model of a single

crystal nickel specimen. Excellent agreement is achieved with high strain-boost over

conventional MD. High effectiveness is achieved for the low frequency of events of

interest that makes the achievable boost to be dependent on the temperature. Strain

rates of the order of 104 are simulated with this method with an exponential increase

in the achievable boost with decreasing strain-rates.

Numerical studies are subsequently conducted for a single crystal nickel material

with an embedded crack. In contrast to observations at high strain-rates of the order

of ∼ 107 in [16], this study is intended to characterize evolving mechanisms at lower

strain rates, e.g. ∼ 104. MD simulations are conducted for two different lattice orien-

tations or Schmid factors. Different orientations of the embedded crack with respect

to the crystallographic axis lead to slip activation in different directions causing nucle-

ation of different kinds of dislocations. For the first orientation, the mobile dislocation
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density remains nearly constant with a periodic burst of dislocations. This is a typical

feature of plastic deformation in single crystals, as has been observed for aluminum

single crystals in [90]. For the second orientation, the plastic deformation mechanism

is dislocation dominated for the lower strain-rate, as opposed to twin dominated pre-

diction at high strain-rate with conventional MD. This observation is also consistent

with the experimental observation that Nickel shows deformation twinning only un-

der shock loading at low temperatures [91, 92]. In summary, the present study shows

that the strain-boost hyperdynamics is an effective method to overcome the time scale

limitation of conventional MD for continuum modeling of elastic-plastic phenomena.

Such methods are important for lower strain-rate, coupled continuum-atomistic sim-

ulation methods that exhibit multiple time-scales in the disparate domains. In the

next chapter 5 the strain-boost hyperdynamics is used to develop a time matching

framework to match the time scale in the Atomistic-Continuum concurrent coupled

model.
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Chapter 5

Bridging the Time Scale Between

the Atomistic and the Continuum

Model

For atomistic-continuum coupled models, the time scale mismatch between the

atomistic and the continuum domain renders the two domains to experience a different

rate of deformation. This is due to the requirement of a small incremental time step in

the molecular dynamics (∆tMD = 1femto−sec)for the stability of the velocity-verlet

time integration scheme. For this reason the rate of applied loading has to significantly

high (ǫ̇ = 1.0e8) [93, 15, 14]. To circumvent this time-scale mismatch, strain-boost

hyperdynamics [37, 47] based time acceleration is incorporated within the concurrent

framework of the atomistic-continuum coupled model [25]. In this chapter, a novel
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time marching algorithm is discussed. The same time marching scheme will be used

to match the time scale between the atomistic and the continuum domain. The

5.1 Coupled Accelerated Time Marching

Algorithm

Ω❆ ΩCΩI

Atomistic region

with fine time step

Continuum region

with coarse time step

tA

tC

t t

t+ t t+ t

At the end of each load increment

both atomistic and continuum regions

are in same time scale and equlibriated

Figure 5.1: Time marching scheme for the concurrent coupled model, where the time
of atomistic simulation is determined by the strain-boost hyperdynamics. A slower
time evolution indicates that the system is very close to an infrequent event to occur.

The strain-boost hyperdynamics-based time marching scheme is applied to the

coupled concurrent model to make both the continuum and atomistic domains evolve

at similar time-scales with comparable strain-rates. The method has been successfully

implemented in the LAMMPS code [38] as described in [47] to accelerate the occur-
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rence of infrequent events in the atomistic domain and achieve a time-scale match

between the discrepant domains of the concurrent model. A schematic representa-

tion of the proposed time marching scheme is shown in figure 5.1. Let ∆tiC be the

time increment in the continuum domain ΩC corresponding to an incremental load

{∆fC
ext} of equation (2.11) in the i−th load step. For each load increment, the equi-

librated continuum and atomistic configurations are obtained by solving equations

(2.13) and (2.30) respectively using a staggered iterative approach. In each iteration,

the equilibrium equations (2.13) is solved for ΩC first. This is followed by dynamic

relaxation of the atomistic domain using equation (2.30) for a predetermined number

of MD steps. At the end of each coupled iteration loop, the solution is checked for

convergence using equation (5.8). The time-scale match between the continuum and

atomistic domains is also verified against the criterion, expressed as:

∑

NMD

∆tjA = ∆tiC (5.1)

where NMD is the total number of MD steps for each coupled iteration step. ∆tjA is

the physical time elapsed for the atomic system in the jth MD step. This is given by

equation (4.3) as:

∆tjA = ∆tMDexp

[

∆Vb
]

j

KbT
(5.2)

where ∆tMD is the incremental time-step in MD used for atomic position update by

integrating equation (2.30) using the velocity-Verlet algorithm [88]. A time step of
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∆tMD = 0.002ps is used for the present study. The boost factor obtained for the

j−th MD step due to the applied boost potential of ∆Vb is exp

(

[

∆Vb

]

j

KbT

)

. Successive

iteration continues until convergence in the displacement solution of interface nodes

and the time matching criterion are satisfied. It is noteworthy that equation (5.1)

guarantees that at the end of each successful load increment, the total time evolution

in both the continuum and atomistic domains are the same. This in turn makes both

domains evolve at the same strain-rate.

5.2 Solution Steps in the Coupled Con-

current Problem

A staggered-iterative approach is used to solve the governing equations of the

coupled atomistic-continuum system. Problems in ΩC and ΩA are solved in each

iteration, subject to displacement and force constraints in the interface handshake

domain ΩI . Ghost forces at the free surface of the atomistic domain are mitigated

by using a dead load correction method proposed in [23]. The strain-boost hyperdy-

namics method has been implemented in LAMMPS code [38] for MD simulations as

an additional module as detailed in [47]. Finite element analysis of the continuum

domain is conducted with a finite deformation crystal elasticity code. Nonlinear-

ity in the constitutive relation is expected due to the non-harmonic nature of the

interatomic interaction.
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For the present study, the most critical region is in the vicinity of the crack-tip is

boosted. As shown in figure 5.2, only a cylindrical region of radius 15Ao surrounding

the crack tip is boosted at the start of the analysis. Additional atoms are adaptively

added to this group as the crack evolves, depending on the current crack-tip location.

Common Neighbor Analysis(CNA) is used to identify the new location of the crack

tip and the atoms around it. CNA is a good indicator to assess the local crystal

structure of an atomic system. In LAMMPS, it is possible to identify five kinds of

CNA patterns viz. fcc=1, hcp=2, bcc=3, icosahedral=4, unknown=5. The atoms

forming the crack surface and crack tip are characterized by CNA=5. Hence CNA

value of all atoms is evaluated periodically and any new atoms that have a CNA

value of 5 are identified. Those particular atoms along with their first and second

nearest neighbors are tagged as ’to be boosted’. Since a deficient near-neighbor count

invalidates the least-square minimization-based local atomic strain, atoms with less

than 12 first-nearest-neighbors for FCC crystals are not boosted in the present study.

5.2.1 Anisotropic Elastic Constitutive Model for

the Continuum Domain Ωc

A nonlinear anisotropic elasticity model has been developed in [1, 2] for the bulk

crystalline material without any cracks, by homogenizing the atomistic response. The
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Figure 5.2: (a) The 3D computational domain for the concurrent simulation with a
crack embedded in it, and (b) expanded view of the crack-tip boost region. Atom
color represents the value of the second invariant of the atomic strain (ηMises

i ) at 1%
macroscopic strain. AtomEye [6] is used for visualization of the atomistic domain.

stress-strain relation σij =
∂ω(ǫ)
∂eij

is derived from a third-order strain dependent strain

energy density function, expressed as:

ω(ǫ) =
1

2!
cijklǫijǫkl +

1

3!
cijklmnǫijǫklǫmn (5.3)

The first term in equation (5.3) is related to the harmonic part of the EAM potential,

while the second term comes from its non-harmonic part. Accounting for the crystal

symmetry groups for cubic single crystals (pure nickel is studied here), the coefficients

in equation (5.3) are reduced to only 3 independent coefficients for the first-order

terms and 6 independent coefficients for the second order terms. Using contracted

notations i.e. subscripts 11 7→ 1, 22 7→ 2, 33 7→ 3, 23 7→ 4, 31 7→ 5 and 12 7→ 6, the

independent stiffness coefficients are reduced to c11, c12, c44, c111, c112, c123, c144, c166
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and c456. The strain energy density function in equation (5.3) thus reduces to:

ω(ǫ) =
1

2
c11(ǫ

2
1 + ǫ22 + ǫ23) + c12(ǫ1ǫ2 + ǫ2ǫ3 + ǫ3ǫ1)

+
1

2
c44(ǫ

2
4 + ǫ25 + ǫ26) +

1

6
c111(ǫ

3
1 + ǫ32 + ǫ33)

+
1

2
c112
(

ǫ21(ǫ2 + ǫ3) + ǫ22(ǫ3 + ǫ1) + ǫ23(ǫ1 + ǫ2)
)

+ c123ǫ1ǫ2ǫ3 +
1

2
c144(ǫ1ǫ

2
4 + ǫ2ǫ

2
5 + ǫ3ǫ

2
6)

+
1

2
c166
(

ǫ1(ǫ
2
5 + ǫ26) + ǫ2(ǫ

2
6 + ǫ24) + ǫ3(ǫ

2
4 + ǫ25)

)

+ c456ǫ4ǫ5ǫ6

(5.4)

The 9 elastic coefficients are calibrated from MD simulations of an uncracked nickel

specimen under bi-axial tension loading in [1], as given in table 5.1. This elastic

Coefficient c11 c12 c44 c111 c112 c123 c144 c166 c456

Calibrated
Values 244.6 150.8 125.1 -1660 -1220 -250 -130 -510 -65

Table 5.1: Three first order and six second order elastic stiffness coefficients
(unit:GPa) of nickel single crystal calibrated in [1, 2].

model is used for the continuum domain in the concurrent model.

5.2.2 Setting up the Initial Configuration of the

Atomistic Domain (ΩA)

Prior to setting up the concurrent model, the entire simulation domain i.e. ΩT =

ΩC

⋃

ΩA\ΩI is set up as an atomistic domain, with the atomic configurations con-

forming to the crystallographic lattice structure of the material being interrogated.
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Energy minimization is subsequently carried out under conditions of molecular stat-

ics to obtain the initial equilibrated configuration. Next, atoms in the continuum

domain ΩC\ΩI are removed and a finite element model and mesh is created in ΩC .

Removal of atoms from ΩC creates a free surface at the boundary of ΩA that can

result in force imbalance. A ghost force correction process is executed to mitigate

this free surface effect at the interface. The correction forces are computed from those

on surface atoms before and after replacing atoms with the continuum mesh in the

relaxed initial configuration as:

fG
p

= f̃p − fp (5.5)

where fp is the force on atom p with full atomic representation and f̃p is the force

after replacing certain atoms with the continuum mesh. A correction force fG
p

is

imposed on atom p as an additional external force to annul the ghost force.

In the interface region ΩI , where both the MD and FE models overlap, the atom-

node connection is built using 3D Voronoi tessellation discussed in [39]. Finally, a

sharp crack is introduced in the MD domain by identifying atoms on two sides of the

crack-plane and turning off the interaction between them.
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5.2.3 Steps in Each Load Increment

For each load increment, an iterative solution process is conducted to find the

MD-FE solution fields. Evaluation of variables at the (k + 1) − th iteration step

proceeds with known displacement fields ∆UC(t) and ∆UA(t) at the iteration step

k ≥ 1 using the following steps.

I. Displacement increments in ΩC : In this step, FE analysis in ΩC is conducted with

known boundary conditions on the external boundary ∂Ωext
C . The incremental load

or displacement on the external boundary ∂Ωext
C is held fixed for the time increment

∆t, while the concurrent problem is iteratively solved. In each iteration step from

k → k + 1, applied displacements on a FE node β in the handshake domain ΩCI

is updated from the aggregated atomic displacement vector ∆UAI in ΩAI
. From

equation (2.6), the latter is specified in terms of atomic displacements in the previous

iteration k, as:

{∆UCI}k+1 = {∆UAI}k =
∑

p∈Gβ

wp ·∆{UA
p }k (5.6)

Subsequently, the FE problem is solved in ΩC for the updated nodal displacements

{∆UC}k+1.

II. Constraint forces on ΩAI
from ΩCI

: Upon evaluation of the vector of Lagrangian

multipliers {λ}k+1 = {λ}k + {∆λ}k+1 for all interface nodes, the constraint forces
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on atoms in ΩAI
are evaluated using equation (2.8) as:

{f constraint
p }k+1 =



















wp{λβ}k+1 ∀p ∈ Gβ ∈ ΩAI

0 ∀p ∈ ΩA\ΩAI

(5.7)

III. MD simulations in ΩA with constraint forces at the interface: The constraint

forces evaluated in step II are applied to the interface atoms ΩAI
. Hyperdynamics

accelerated MD simulations are conducted over a predetermined time period using

the velocity Verlet time integration algorithm [88].

IV. Transfer of displacements from ΩA to ΩC : With the updated atomic displace-

ments from step III, {∆UAI}k+1 is calculated using the right-hand part of equation

(5.6). These displacements are used as boundary conditions of the interface FE nodes

in the next iteration.

At the end of step IV, the displacement error for all nodes in the handshake region

ΩI is evaluated for convergence. For the k − th iteration, the displacement error is

evaluated against a tolerance ǫu as:

∣

∣∆UCI −∆UAI
∣

∣

max
≤ ǫu ∈ ΩI (5.8)
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where |.|max is the maximum value of the Euclidean norm. The tolerance ǫu is taken

to be 0.1 Å in this work. For each interface node β, the atomic displacement vector

is aggregated as
{

∆UAI

β

}

=
∑Nβ

i=1
1
Nβ
.∆
{

UA
p

}

, where Nβ is the number of atoms in

the Voronoi cell Gβ associated with a FE node β and UA
p is the displacement of an

atom p in Gβ ∈ ΩA. For each load increment on ∂ΩC , these four steps are iteratively

executed till the displacement solution converges in equation (5.8) and a time-match is

achieved between the domains according to equation (5.1). The time-match criterion

is a dominant factor in determining the number of iteration steps.

5.3 Validation of the Hyperdynamics Ac-

celerated Concurrent Model

Prior to its use in the investigation of crack propagation, the strain-boost hyper-

dynamics accelerated coupled atomistic-continuum model is validated with a regular

model where conventional MD simulations are performed without any time accelera-

tion. The concurrent computational domain, its geometry and loading conditions for

the simulation problem are shown in figure 5.3. The material modeled is crystalline

pure nickel with overall specimen dimensions of 200 nm × 200 nm × 4.22 nm. A

through thickness crack in the xz-plane of initial length 2a0 = 20 nm is embedded

in the specimen, as shown in figure 5.3(a). The atomistic domain ΩA is a cylindrical

region of radius RA = 32 nm and the interface region ΩI is an annular ring with
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inner and outer radii of 28 nm and 32 nm respectively. The atomistic domain con-

tains about 1.3 million nickel atoms with FCC lattice structure. The lattice constant

of nickel is 3.52Å. The lattice orientation with respect to global axis is x → [100],

y → [010] and z → [001]. This specific crystal orientation is chosen to facilitate crack

propagation due to bond cleavage. The center crack is manifested by turning off the

interaction between the atoms on both side of the crack plane. The rest of the do-

main is considered as continuum and discretized into a finite element mesh containing

approximately 5, 000 nodes and 20, 000 4-noded constant strain tetrahedral elements

as shown in figure 5.3(b).
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Figure 5.3: Computational specimen modeled by the concurrent atomistic-continuum
model for crack propagation, (a) geometry and dimensions of the specimen with
loading, and (b) discretization of the continuum and atomistic domains.

The simulations begin with initial energy minimization and relaxation of the

atomic configuration. Subsequently, a controlled bi-axial displacement loading is
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applied on the specimen in the x and y directions at a constant strain-rate of ǫ̇ =

1.0 × 107s−1. The z-faces are stress free, i.e. σ33 = 0. The NVE ensemble is used

for MD simulations, where a Langevin thermostat is used to maintain the atomistic

domain temperature at 300K. The kinetics and energetics of crack propagation in

the form of crack propagation rate and strain energy release are compared for the

hyperdynamics-accelerated and conventional models.

The mode-I stress intensity factor (SIF) KI for a square plate with a central crack

is approximated as [94, 95],

KI = σ
√
πa.η (5.9)

where σ is a far field stress on the external boundary of the continuum domain. It is

computed as σyy =
Fy

Axz
, where Fy is the y-component of total reaction of all nodes, on

which displacement controlled loading is applied. The geometric factor η compensates

for the finite specimen dimensions in this study, as opposed to the infinite dimensions

considered in its derivation. A polynomial form of η has been given as [96, 95]:

η = sec

(

πa

2L

)1/2[

1− 0.025

(

a

L

)2

+ 0.06

(

a

L

)4]

(5.10)

where a is the crack length and L is the characteristic dimension of the specimen as

shown in figure 5.3(a). The crack propagation rates (v = da
dt
) by the hyperdynamics-

accelerated and conventional MD simulations in the concurrent model are plotted as
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a function of the applied stress intensity factor KI in figure 5.4(a). The propagation

rates generally agree very well, with very small deviation at the later stages of crack

propagation. For a quantitative correlation, the data is fitted with a crack propagation

rate formula proposed in [2]:

v = ȧ =



















c · (KI −KIC)
1/2, if KI > KIC

0, otherwise

(5.11)

where KIC is the critical stress intensity factor (with the unit MPa · √m) and c is

a coefficient (with the unit Pa−0.5m3/4s−1) that is a measure how fast or slow the

propagation-rate changes with crack propagation. The (KIC)s for the crack to propa-

gate in the hyperdynamics-accelerated and conventional MD-based concurrent models

are calculated to be respectively 0.81 and 0.815.

To compare the energetics of crack propagation, the strain energy release rates

in the hyperdynamics-accelerated and conventional MD-based concurrent models are

plotted as a function of the crack length in figure 5.4(b). Here the strain energy release

rate is computed as dU
da
, where dU is the change in the total strain energy of the system

and da is the increment of the crack length. dU includes the change in elastic strain

energy of the continuum domain and the change in the total system potential of

the atomistic domain. Results by the two models show excellent agreement. The

122



initially high strain energy release rates decay with increasing crack length. This

agreement justifies the use of the strain-boost hyperdynamics-based MD simulations

in the concurrent model for studying material response at lower strain rates.

The computational efficiency of the strain-boost hyperdynamics (HD) accelerated

atomistic-continuum concurrent model is compared with the sub-stepping (SS) en-

abled concurrent model of [1, 2] in table 5.2. Both the FE and LAMMPS codes are

parallelized using the message passing interface (MPI) for multi-processor computing.

The distribution of the processors between the continuum and atomistic domains is

chosen for optimal efficiency. The comparison is made for two different overall strain-

rates, viz. ǫ̇ = 107 s−1 and ǫ̇ = 104 s−1. The computational cost is estimated in

terms of CPU-hours on a Bluecrab cluster at Maryland Advanced Research Comput-

ing Center (MARCC) using 100 CPU’s. The efficiency factor is defined as the ratio of

the CPU-hours for the sub-stepping (SS) enabled simulations to the CPU-hours for

the hyperdynamics (HD) accelerated simulations, i.e. CPU-hrSS

CPU-hrHD

× 100%. Since it is

extremely computing intensive to attain a strain-rate of 104 using the sub-stepping

enabled concurrent model, extrapolation is used to estimate of the computational

cost that would have been needed to reaching this rate. The values in table 5.2 im-

ply significant efficiency gain with the hyperdynamics acceleration, especially as the

strain-rate reduces.
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Figure 5.4: Comparison of results by the concurrent model with and without
hyperdynamics-accelerated MD for an applied strain-rate ǫ̇ = 1007: (a) rate of crack
propagation as a function of SIF, and (b) strain energy release rate as a function of
crack length.

5.4 Conclusions

This chapter has successfully developed a coupled concurrent atomistic-continuum

multiscale model with an effective temporal acceleration method for bridging the
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CPU Hours for Modeling with
Strain Rate Sub-stepping Hyperdynamics Efficiency Factor
ǫ̇ = 107 s−1 500 65 7.69
ǫ̇ = 104 s−1 75000∗ 350 214.2

Table 5.2: A comparative study of the computational cost (expressed in CPU-hours)
by hyperdynamics and sub-stepping accelerated MD models at different strain-rates
(ǫ̇). (∗ computed by extrapolation)

atomistic and the continuum time-scales. The concurrent model incorporates a do-

main of atomistic simulation that is conducted by molecular dynamics (MD) using

the LAMMPS code, a continuum domain of nonlinear anisotropic elasticity for fi-

nite element analysis of crystalline materials, and an interfacial handshake region.

The strain-boost hyperdynamics model is incorporated in a parallel version of the

LAMMPS code to accelerate the time-scale of MD simulation by accelerating the

occurrence of infrequent events in the atomistic domain. In a concurrent setting, this

allows the MD model to attain the lower strain-rates of the continuum model. The

interfacial handshake region of the concurrent model enforces geometric compatibility

and force equilibrium between the atomistic and continuum models. The resulting

multiscale model can perform atomistic-continuum simulations at length scale that

are much larger and time-scales that are much longer than what can be achieved

in pure atomistic simulations alone. On account of the time acceleration, thermally

activated deformation mechanisms can be captured accurately. This is important for

depicting the continuum behavior of the material.
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No spurious effects, such as oscillations are observed in the hyperdynamics accel-

erated concurrent multiscale model. This is validated by comparing the energetics

and kinetics of crack propagation with other time-averaging methods in MD, such as

the sub-stepping induced MD methods, at a strain-rate of 107 s−1. The comparison

at this strain-rate shows satisfactory agreement and accuracy of the hyperdynamics

accelerated concurrent multiscale model. This strain-rate of 107 s−1 is approximately

a lower limit for conventional MD simulation of large atomic systems. However, while

the lowest strain-rate studied with the hyperdynamics accelerated concurrent multi-

scale model is 104 s−1 in this work, the lower limit can be pushed further to lower

strain-rates.
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Chapter 6

Extracting the Crack Propagation

Law Using the Concurrent Model

during Brittle Fracture

The time accelerated concurrent model developed in the previous several chapters

can be used to extract some crucial continuum scale evolution laws. These atomically

informed evolution laws can be used in full continuum scale simulation for better

representation of the material behavior. This chapter discusses one such application

of the concurrent model to extract the crack propagation law during brittle fracture.
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6.1 Crack Propagation Simulations at Lower

Strain-Rates

The hyperdynamics-based concurrent atomistic-continuum model is used to study

crack propagation at strain-rates that are lower than what can be typically achieved

by conventional MD without time-acceleration. Two studies are considered in this

section. The first investigates the effects of strain-rate on parameters in the finite

temperature crack propagation-rate of equation (5.11). The second study is intended

to establish phase-field models of crack propagation from the concurrent model.

The material specification, specimen geometry and the crystal lattice orientation

with respect to specimen geometry (x → [100], y → [010] and z → [001]) are given

in section 5.3. This crack-crystal orientation combination enables preferential crack

propagation over crack-tip dislocation emission for bi-axial loading. This allows the

crack orientation to remain unchanged with respect to the crystal axis. Periodicity

boundary condition is imposed in the z-direction for the atomistic domain. The

NVE ensemble with Langevin thermostat maintains the desired temperature in the

atomistic region.

The FE model for the continuum domain uses a mesh of 20273, 4-noded constant

strain tetrahedral elements containing 5254 nodes. The nonlinear crystal elastic-
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(a) (b)

Figure 6.1: Contour plot of σyy showing crack advance for volume-averaged strains:
(a) ǫ11 = ǫ22 ≈ 1.0%, (b) ǫ11 = ǫ22 ≈ 3.3%. Stress in the atomistic region corresponds
to the per-atom virial stress.

ity constitutive model described in section 5.2 is used for the constitutive response.

While a strain gradient-based non-local constitutive relation has been developed for

a cracked domain in [2], this contribution is found to be insignificant for studies

in this work, as evidenced from the very small calibrated length-scale parameter of

(l2 ≈ 0.25Å).

Figure 6.1 shows snapshots of the crack before and after growth for volume-

averaged strains ǫ11 = ǫ22 ≈ 1.0% and ǫ11 = ǫ22 ≈ 3.3%. The crack starts to

propagate symmetrically with respect to the y-axis along the original crack surface,

once a critical SIF (KIC = 0.81 MPa · √m) is exceeded. The crack orientation and

thin sample geometry favor crack propagation over dislocation nucleation from the

crack tip. Since plasticity is not considered in study, the simulation is terminated
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once dislocations nucleate at later stages of crack evolution.

6.1.1 Effect of Strain-Rate and Temperature on

the Crack Propagation-Rate

In [47] the authors have shown that deformation mechanisms can differ signif-

icantly with strain-rate for certain crack orientations. This results in considerable

difference in the overall kinetic and energetic response of the material. To study

the effect of strain-rate, simulations are conducted for three strain-rates, viz. ǫ̇ =

107 s−1, 106 s−1, and 104 s−1 by the hyperdynamics-accelerated concurrent model.

Figures 6.2(a), 6.2(b) and 6.2(c) depict the crack propagation-rate as a function of

the stress intensity factor (SIF) for the three strain-rates. The parameters KIC and

c in equation (5.11) are calibrated from these responses and compared for the three

strain-rates in table 6.1.

Strain Rate ǫ̇ (s−1) KIC (MPa.
√
m) c (MPa−0.5.m

3
4 .s−1)

107 0.823 0.655
106 0.813 0.634
104 0.805 0.577

Table 6.1: Calibrated values of the crack propagation parameters in equation (5.11)
from simulations with the concurrent model at different strain-rates.

The corresponding functional forms in equation (5.11) with the calibrated parame-

ters are plotted in figures 6.2. Crack propagation is observed for all three strain-rates,

implying that deformation in the atomistic region is driven by bond cleavage. The
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Figure 6.2: Crack propagation rates as a function of the applied stress intensity
factor for different strain-rates: (a) ǫ̇ = 107 (KIC = 0.805 and c = 0.655), (b) ǫ̇ = 106

(KIC = 0.813 and c = 0.634), (c) ǫ̇ = 104 (KIC = 0.823 and c = 0.577).

propagation-rate shows a quadratic dependence on the SIF. The criticalKIC decreases

with decreasing strain-rate. A similar trend is also seen in the strain-rate dependence

of parameter c. The effect of temperature is studied for two different temperatures,

viz. T = 300K and T = 200K. Figures 6.3 show the strain-rate and temperature

dependence of KIC and c. The figures show that the effect of temperature on KIC

and c is more prominent compared to that of the strain-rate.
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Figure 6.3: Strain-rate and temperature dependence of: (a) critical stress intensity
factor (KIC) and (b) value of c in equation (5.11).

6.1.2 Developing a Phase-Field Model from Mul-

tiscale Simulations for Brittle Fracture

Phase-field modeling manifests a regularized discontinuous crack surface in a con-

tinuous medium by introducing an auxiliary scalar field variable to represent the crack

topology [97, 98]. The sharp crack discontinuity is approximated by a smooth tran-

sition between the continuous and discontinuous material phases. Phase-field models

are based on the partitioning of the free energy density into components due to recov-

erable elastic, defect and inelastic dissipation, and fracture. In this work, the elastic

and fracture energy densities in this partitioning are extracted from the concurrent

model and compared with conventionally accepted forms in phase-field models.

An energy partitioning technique, proposed in [16] to study the energy contribu-
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tion of deformation mechanisms for an atomic system is adopted with the concurrent

atomistic-continuum model. In [16], the incremental energy due to the externally

applied load and the contribution from different deformation mechanisms has been

partitioned as:

dW = dQ+ dUel + dUinel + 2γsdA = dQ+ dU (6.1)

where dW is the incremental work potential due to externally applied loads, dQ is

the generated heat from dissipative processes like dislocation glide, twin propagation

etc., dUel is the incremental recoverable elastic strain energy, dUinel is the increment of

energy due to defects like dislocations, twins and voids, and 2γsdA corresponds to the

incremental energy due to the increment of crack surface area dA with surface energy

density γs. In the present concurrent model, dU is the total energy comprising the

strain energy of the continuum domain and the total potential energy of the atomistic

domain. dW and dU are written as:

dW =

∫

∂ΩC

t ·∆uCdA (6.2a)

dU =

∫

ΩC\ΩCI

σ : ∆ǫdV +
∑

p∈ΩA\ΩAI

∆Φp(r̄) +
1

2





∫

ΩCI

σ : ∆ǫdV +
∑

p∈ΩAI

∆Φp(r̄)





(6.2b)

The first term in equation (6.2b) is the elastic strain energy of the continuum domain,

the second term is the total potential energy of the atomistic domain and the third
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is the averaged contribution from both domains in the handshake region. The heat

generated in the system dQ is computed as dQ = dW − dU . The heat generated

dQ and the inelastic energy dUinel during brittle crack propagation are found to

be negligible since plastic deformation mechanisms are essentially absent. Hence,

dU = dW = dUel +2γsdA. dUel is computed by unloading the system and evaluating

the energy recovered during the unloading process. The fracture energy 2γsdA during

crack propagation is then computed as 2γsdA = dU − dUel. Figure 6.4 shows the

evolution of fracture energy and crack length as a function of the applied strain.

The surface energy γs of the material can be calculated from the fracture energy as

γs = dU−dUel

2dA
. The computed values of γs on the (100) plane in the fcc crystal from

the concurrent model simulations are compared with reported values in the literature

in table 6.2.

Parameter Concurrent model ab initio [99] ab initio [5]

γs (mJ/m
2) 2017 2280 1878

Table 6.2: Comparison of computed values of γs on the (100) plane from the concur-
rent model simulations with reported values in the literature.

For comparing with the continuum phase field model and extracting parameters

in the free energy expressions, the elastic model in [97, 98] is adopted. For a purely

elastic deformation, F = Fe, where F is the deformation gradient and Fe is its elastic

part. The free energy density functional can be obtained from the proposed form in

[98] as:

ρ0ψ =
1

2
Ẽ : Ce : Ẽ+

gc
2lc

(s2 + l2c (∇Xs.∇Xs)) (6.3)
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Figure 6.4: Evolution of fracture energy and crack length as a function of the applied
strain

where ρ0 is the density, Ẽ is a modified Green-Lagrange strain tensor accounting for

tension compression-asymmetry in the presence of a crack, and Ce is the fourth order

elasticity tensor. The second term is the phase field fracture energy expressed in terms

of an order parameter s. gc is a material constant related to the fracture toughness

and lc is a length scale parameter that controls the regularized crack thickness. For

elastic deformation, the modified Green-Lagrange strain tensor is defined as:

Ẽ =
1

2
(J

2
3 − 1)(g1(s)− g2(s))I+

1

2
g2(s)(F

TF− I) (6.4)

where F is the elastic deformation gradient, J = detF is its determinant and I is

identity tensor. g1(s) and g2(s) are functions of the phase field order parameter s,

defined as:
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g1(s) =



















1 for J < 1

1− s otherwise

(6.5)

g2(s) = 1− s (6.6)

The value of gc in the continuum phase field equation (6.3) is evaluated from sim-

ulations of the hyperdynamics-accelerated concurrent model. Several simulations are

conducted using the computational specimen described in section 5.3. The specimen

dimensions for the continuum phase field simulations are the same as the concurrent

model i.e. 200 nm × 200 nm × 4.22 nm, with a through thickness crack of length

20 nm placed symmetrically at its center. Biaxial displacement controlled loading is

applied in the x and y directions. The linear elastic constitutive parameters used for

this study are given in table 6.3. The length scale parameter is chosen to be lc = 1 nm

in this study.

Parameter c11 (GPa) c12 (GPa) c44 (GPa) lc (nm)

Value used 244.6 150.8 125.1 1

Table 6.3: Elastic stiffness coefficients for the phase field simulations.

From a number of phase field simulations, the value of gc for which the evolution

of fracture energy and crack length match those of the concurrent model is found to

be gc = 4.6 J/m2. Figure 6.5(a) shows the comparison of fracture energy (second
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term in equation (6.3)) as a function of applied strain for the concurrent model and

the elastic phase-field model with gc = 4.6 J/m2. Though there is a difference at the

beginning of crack propagation, the fracture energies from both the models match

quite well but with increasing crack propagation. A similar trend is also seen for the

crack length evolution in figure 6.5(b), which indicates the potential of developing

phase field models from multiscale simulations.
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Figure 6.5: Comparison of (a) fracture energy and (b) crack length as a function
of applied macroscopic strain, by the concurrent and the phase field models with
gc = 4.6 J/m2.

6.2 Conclusions

In this chapter, the concurrent model is used to study strain-rate and temperature

effects on crack propagation in a nickel single crystal. The crack orientation is cho-

sen to favor propagation over dislocation nucleation. For quantitative understanding,

the crack propagation rate is represented by a parametric continuum model using
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two parameters. Both the parameters show a stronger temperature dependence in

comparison with strain-rate for this problem. Finally, the concurrent model is used

to evaluate the free energy density function for phase-field modeling of crack prop-

agation in a continuum medium. Partitioning of the free energy enables isolating

contributions from different mechanisms and then equating them for the concurrent

and continuum phase-field models. Parameters in the phase field energy functions

can be calibrated from the partitioned energy functions in the concurrent model.

The phase-field parameter gc is calibrated by this process and validation studies show

very good agreement. This elucidates the potential of the concurrent model as a

modeling tool for large scale continuum fracture models. In the next chapter, the

same concurrent model will be used to study the crack propagation and plasticity

evolution process during ductile fracture.
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Chapter 7

Extracting the Evolution laws for

Crack Propagation and Plasticity

Evolution for Ductile Fracture

In this chapter, the concurrent coupled Atomistic-Continuum model is used to

investigate the crack propagation and evolution of plasticity during ductile fracture.

The model is used to extract some crucial evolution laws related to the crack propa-

gation and evolution of dislocation density.
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7.1 Details of the Computational Domain

A nickel single crystal with a crack embedded in it is used for the computational

study. A through thickness crack in the xz-plane of initial length 2ao = 20nm is

embedded in the specimen. The atomistic domain OmegaA is a cylindrical region.

The lattice orientation of the specimen with respect to the global axis is x → [112̄],

y → [111] and z → [11̄0]. This specific crystal orientation is known to nucleate

straight dislocations parallel to the crack tip[47].

7.1.0.1 Determining the Size of the Computational Domain

and the Dislocation Free Zone

As already discussed in section 2.3 that it has experimentally been observed

[44, 100] that the presence of a microcrack creates a localized region of dislocation

free zone in front of the crack tip. That dislocation free zone can be considered as a

perfect crystal devoid of defects of any form. To determine the overall size of the com-

putational domain, it is needed to estimate the approximate size of the dislocation

free zone. The size of the dislocation free zone can be determined by analyzing the

stress field due to the presence of the crack together with an approximate estimation

of the critical resolved shear stress of the material due to the preexisting dislocations.

The density of the preexisting dislocations in nickel can be O(1015)[101]. With this

dislocation density the approximate passing stress ταpass (equation 2.23) can be com-
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puted to be ≈ 90MPa. The computed passing stress ταpass can be considered as the

critical resolved shear stress(CRSS). Due to the presence of the crack, the resolved

shear stress(RSS) in the vicinity of the crack will be much higher than the CRSS.

This high RSS will cause the dislocations to move away from the vicinity of the crack

and form a localized dislocation free zone.

From the previous study in [47], this particular configuration has been observed

to nucleate dislocation at volume averaged macroscopic stress of 3GPa. The size

of the dislocation free zone can be determined by analyzing the stress field due to

the presence of a crack with externally applied bi-axial loading σ0 = 3GPa using

Linear Elastic Fracture Mechanics(LEFM). Presence of a center crack in an infinite

plate under uniform bi-axial loading can be modeled using ’Westergaard Function

Method’[102]. The stress field around the crack due to the externally applied far field

bi-axial stress σ0 can be given as (section 3.4.1 in chapter-3 of [102]),

σxx =
σ0r√
r1r2

[

cos(θ − 1

2
θ1 −

1

2
θ2)−

σ0a
2
0

(r1r2)
r sin θ sin

3

2
(θ1 + θ2)

]

σyy =
σ0r√
r1r2

[

cos(θ − 1

2
θ1 −

1

2
θ2) +

σ0a
2
0

(r1r2)
r sin θ sin

3

2
(θ1 + θ2)

]

σxy =
σ0r√
r1r2

[

a20
(r1r2)

r sin θ cos
3

2
(θ1 + θ2)

]

(7.1)

Where 2a0 is the crack length. The other symbols used in equation 7.1 bears usual

meaning and also depicted in the inset of figure 7.1. The crack size was predetermined

with 2ao = 20nm. In the present study, the orientation of the crystal with respect

to the global axis is x → [112̄], y → [111] and z → [11̄0] and the embedded crack
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has it’s tip located along the z-axis. In this particular orientation, the slip plane with

maximum resolved shear stress(RSS), i.e, the most critical slip plane, is inclined at

an angle of 70o relative to the crack plane. Hence to obtain the field of maximum

RSS, the stress state obtained from equation 7.1 is rotated at angle of 70.5o according

to the rotation of a second order tensor. Figure 7.1 shows the contour plot of the

RSS on the most critical slip plane for externally applied loading of σ0 = 3GPa. It

can be seen that beyond the cylindrical region with radius of 70nm, the RSS value

drops below 0.09GPa or 90MPa. Hence, a cylindrical region(ΩNDD
C in figure 2.3) of

radius 70nm is considered as free from initial dislocations. The dislocation free region

is followed by an annular region where initial dislocation density is graded from 0 to

1015m−2, the rest of continuum region consists an uniform initial dislocation density

of 1015m−2. It should be noted that the initial dislocation free region does receive

dislocations as dislocations starts to nucleate from the crack tip.

7.1.0.2 Determining the Size of the Atomistic Domain

The dimension of the atomistic domain is determined based on the extent of the

stacking fault. In FCC crystal, a full dislocation always gets split into two partials, a

leading partial and a trailing partial. The leading partial nucleates first which is fol-

lowed by the trailing partial. After the nucleation, as the leading partial propagates

through the crystal, it leaves behind a stacking fault which is a localized HCP stack-

ing in otherwise FCC crystal. As the trailing partial gets nucleated and propagates
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Figure 7.1: Resolved shear stress based on LEFM. Spatial distances are in nm and
the stress is in GPa.

through the crystal, it removes the stacking fault restoring the perfect crystal struc-

ture of the FCC. In the present study, the material model used for the continuum

region is the dislocation density-based crystal plasticity model. In this continuum

model, only full dislocations are considered. Due to this reason, while transferring

the nucleated dislocations at the interface ΩI it is necessary that both the leading

and the trailing partial get’s nucleated, so that the algorithm used to extract the

dislocations from atomic configuration (sec. 3.1) i.e, Dislocation Extraction Algo-

rithm [50] can identify the pair of partials as part of a full dislocation. Hence, it is
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necessary to make the radius of the atomistic region ΩA to be more than the max-

imum stretch of the stacking fault. It has experimentally been observed that the

stretch of the stacking fault for nickel can be anywhere between 15Å to 50Å [103].

It should also be noted that for the atomistic-continuum coupled model, owing to a

large number of degrees of freedom (O(106)), the atomistic region is computationally

the most expensive. Hence, an optimal size of the atomistic region is computationally

desirable.

Figure 7.2: Determining the size of the atomistic domain ΩA by studying the stretch
of the stacking fault: (a)the coupled model, (b) zoomed in view of the atomistic
region.

To identify the optimal size of the atomistic region, a coupled simulation is con-

ducted with a large size of the atomistic region, RA = 50nm. The overall size of the

domain kept fixed to 200nm × 200mm × 4.22nm. The stretch of the stacking fault

for the first few dislocations are noted. It has been observed that the stretch of the
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Figure 7.3: The variability of the maximum stretch of stacking fault for different strain
rates of ǫ̇ = 1.0e6 and 1.0e5 and two different temperatures of T = 300K and 200K.

stacking fault reaches maximum length at the onset of the nucleation of the trailing

partial, as shown in figure 7.2. The maximum stretch is observed as high as 27nm.

The stretch of the stacking fault is reduced drastically as the trailing partial nucleates

and the full dislocation moves away from the crack tip.

The above-mentioned investigation of the maximum stretch of stacking fault is

repeated for two different strain rates viz ǫ̇ = 106 and 105 and for two different

temperatures viz. T = 300K and 200K. Figure 7.3 shows the distribution of the

stacking fault width as observed during the nucleation of the first five dislocations

under different strain rates and temperatures. It has been found that the width of

the stacking fault increases with strain rate and decreases with temperature. The

maximum width of 27nm is observed for ǫ̇ = 106 and T = 200K. The width of the

stacking fault, in general, is much larger than the equilibrium stacking fault width

[103]. The large stretch of the stacking fault can be attributed to the high gradient

of the near crack tip stress field and also during the nucleation of dislocations, the
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process is highly non-equilibrium in nature.

With the known approximate estimation of the stacking fault width to be 27nm,

the size of the atomistic region is chosen to be RA = 40nm. A conservative size of the

atomistic region(ΩA) will make sure that both the leading as well as trailing partials

are nucleated before it moves in the interface region(ΩI). The size of the atomistic

region is kept fixed for all subsequent simulations.

7.2 Validation and Assessment of the Con-

current Model in comparison with a

full MD model

Prior to its use in the quantification of the nucleated dislocation density from

a preexisting micro-crack, the ductile atomistic-continuum concurrent model is vali-

dated with a fully atomistic model where Molecular Dynamics is used.

A nickel single crystal with a crack embedded in it is used for the validation

purpose. A full atomistic model of dimension 200nm×200nm×4.22nm would contain

15million atoms, which is computationally prohibitive. Hence, the x-dimension of

the domain is reduced to 100nm than the one prescribed in section 7.1.0.1. The

physical dimension of the domain is taken to be 100nm × 200mm × 4.22nm. The

computational domain size, the orientation and the boundary condition are shown in
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(a) (b)

Figure 7.4: Comparison of the performance of the concurrent model with respect to
the full MD model: (a)specimen details for the simulation, (b)evolution of dislocation
in concurrent and MD model.

figure 7.4(a). A through thickness crack in the xz-plane of initial length 2ao = 20nm

is embedded in the specimen. The atomistic domain ΩA is a cylindrical region of

radius RA = 30nm and the interface region ΩI is an annular region with an inner

radius of 25nm and outer radius of 35nm respectively. The atomistic region contains

about 1.5 million nickel atoms with an FCC lattice structure. The lattice constant

of nickel is ao = 3.52Å. A through-thickness crack is introduced at the center of the

specimen by removing two layers of atoms on both sides of the crack plane. The lattice

orientation of the specimen with respect to the global axis is x→ [112̄], y → [111] and

z → [11̄0]. This specific crystal orientation is known to nucleate straight dislocations
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parallel to the crack tip[47]. The continuum region of the domain is discretized

using finite element mesh containing approximately 4000 nodes and 15000 4-noded

constant strain tetrahedral elements. The stiffness coefficients for pure Nickel used in

the present study are given in table 5.1. These stiffness coefficients have previously

been calibrated to match with the EAM potential of the atomistic model in [2, 1].

The crystal plasticity parameters are given in table 7.1.

Parameter Values Parameter Values Parameter Values

c1 0.1 c2 0.8 c3 1.0× 10−3

c4 1.0× 10−4 c5 10.0 c6 10.0
c7 0.3 τc 110MPa ρc 1.0× 1011

b 2.49Å Q 6.5× 10−19

Table 7.1: CPFE material parameters [3].

The full MD model is discretized with nickel atoms of FCC structure with the

lattice constant of ao = 3.52Å. The full MD model consists of about 7.5 million

atoms. Both the concurrent and the full MD model is free from any initial dislocation

density.

For the concurrent model, the simulation begins by static minimization of the

energy of the atomistic region which is followed by a dynamics equilibration of the

atomistic region. This is followed by the establishment of the atom-node connectivity

between the nodes and atoms in the interface region. Ghost force correction is in-

troduced for the surface atoms Ωs
A to mitigate the free surface effect at the interface.

Subsequently, a bi-axial displacement controlled loading is applied in x and y direc-

tion at a constant strain rate of ǫ̇ = 1.0× 106s−1. NVE ensemble is used for the MD
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simulation. The temperature of the atomic system is maintained at 300K by using

Langevin thermostat [48] and the z-direction pressure is controlled to zero by using

Berendsen barostat [104].

For the full MD model, the simulation starts by static minimization of the whole

system which is followed by the dynamics equilibration to achieve a stress-free state

and temperature of 300K. NPT ensemble is used for the dynamics equilibration.

This is followed by the displacement controlled simulation by applying a bi-axial

displacement controlled loading in x and y direction at a constant strain rate of

ǫ̇ = 1.0× 106s−1. NVE ensemble along with Langevin thermostat [48] and Berendsen

barostat [104] is used to control the temperature of the system at 300K and stress-free

z-faces i.e σzz = 0.00.

7.2.1 Comparison of Critical Stress Intensity Fac-

tor for Dislocation Nucleation

The critical state for the onset of the dislocation nucleation from the crack tip is

measured by the mode-I stress intensity factor(SIF) KI . The SIF for mode-I fracture

can be computed as,

KI = σ
√
πa.η (7.2)

where σ is a far field stress on the external boundary of the continuum domain.
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It is computed as σyy = Fy

Axz
, where Fy is the y-component of total reaction of all

nodes, on which displacement controlled loading is applied. The geometric factor

η compensates for the finite specimen dimensions in this study, as opposed to the

infinite dimensions considered in its derivation. A polynomial form of η has been

given as [95]:

η = sec

(

πa

2Lx

)1/2[

1− 0.025

(

a

Lx

)2

+ 0.06

(

a

Lx

)4]

(7.3)

where a is the crack length and Lx is the x-dimension of the specimen as shown

in figure 7.4(a).

The critical SIF KIC value for the nucleation of the first dislocation from the crack

tip is found to be 0.705MPa.
√
m and 0.71MPa.

√
m for the full MD model and the

concurrent model respectively. The critical SIF values from the concurrent model is

in good agreement with the full MD model.

The critical SIF for the nucleation of dislocation can be compared with the ana-

lytical solution obtained by ’Rice’s continuum formulation’ [105]. According to the

analysis, the critical stress intensity factor for mode-I loading is given as:

KI =

√

2µγus
Y

1− ν
(7.4)

where µ and ν are the shear modulus and the Poisson’s ration of the material

respectively. γus is the unstable stacking fault energy of the material. Y is the
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geometric factor to account for the angle of inclination between the crack plane and

the slip plane and is given as:

Y =
8

(1 + cos θ) sin2 θ
(7.5)

The nucleation criterion given by Rice (equ. 7.4) is known to underestimate the

critical SIF for mode-I loading. This anomaly was attributed to the fact that the

large surface stress on the crack surface should be incorporated [106]. The modified

form of the nucleation criterion is given as:

KI =

√

2µ (γus + feffǫ)
Y

1− ν
(7.6)

where feffǫ is the surface correction term. The higher order effect due to the large

frack tip strain is incorporated by expanding f about ǫ = 0, feff = f0+
1
2
(δf/δǫ)ǫ. µ,

ν, γus, f0, δf/δǫ are all material parameters. The value of these material parameters

for nickel is given in table 7.2. Then the critical SIF for nucleation of dislocation

becomes ≈ 0.661MPa.
√
m. Table 7.3 shows the comparative values of the critical

SIF for dislocation nucleation by three different methods viz, analytical, full MD and

concurrent model.

Parameters µ(GPa) ν γus(Jm
−2) f0(Jm

−2) δf/δǫ(Jm−2)

Values 125 0.285 0.143 0.816 2.223

Table 7.2: Material parameters assosciated with nucleation of crack from a crack tip
of nickel single crystal, obtained from [4, 5].
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Models Analytical MD Concurrent

KIC 0.661 0.705 0.71

Table 7.3: Comparison of critical SIF(in MPa.
√
m).

7.2.2 Comparison of Nucleated Dislocation Den-

sity

It is worthwhile to compare the perforation of the concurrent model with the full

MD model beyond the nucleation of the first dislocation. For this, the evolution of

the density of the nucleated dislocations are compared. The dislocation density for

the full MD model is computed by,

ρMD = lMD/V (7.7)

where lMD is the total dislocation length within the entire computational domain

and V is the volume of the computational domain. To obtain the total length(lMD) of

all the dislocations, DXA[50] is used for extracting the dislocations from the atomic

configuration data. Once the dislocation are identified in the form of dislocation bids

and length segments, the total length of the dislocations are computed as lMD =

∑Nl

i=1 |dli|, where |dli| is the length of the i′th dislocation segment and Nl is the total

number of dislocation segments present inside the domain.

The dislocation density for the concurrent model is computed as:
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ρconcurrent =
1

V





∑

i∈ΩA

⋃
ΩI

|dli|+
∫

ΩC

ρnucldΩ



 (7.8)

In equation 7.8 the first term corresponds to the total length of the dislocation

segments within the atomistic(ΩA) and the interface(ΩI) region. The second term

computes the volume integral of the nucleated dislocations density within the contin-

uum. In the integral in the second term is evaluated over the SPH particles as,

∫

ΩC

ρnucldΩ =
∑

p∈ΩC

[

Np
∑

q=1

ρqnuclW (xp − xq, h)dωq

]

dωp (7.9)

where the first summation is over the SPH particles within the continuum domain

ΩC . Np is the number of SPH particles within the support domain of the kernel

function of p′th particle. W (xp − xq, h) is the RKPM kernel function of the p′th

particle evaluated at the location of the q′th particle. dωp and dωq is the weight

associated to p′th and q′th particle respectively. ρqnucl is the SPH solution for nucleated

dislocation density at q′th particle.

Figure 7.5 shows the evolution of the nucleated dislocation density from the full

MD model and the concurrent model. The evolution of the nucleated dislocation

density in the concurrent model agrees very well with the MD-based model. The

quasi-periodic jump in the dislocation density signifies the nucleation of a new dis-

location at the crack tip. The particular orientation of the crystal with respect to

the crack tip and thin z-dimension makes the nucleated dislocations to be straight in
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Figure 7.5: Evolution of dislocation density in the concurrent model and the MD
model.

nature, extending throughout the thickness.

7.2.3 Comparison of Computational Cost

The computational efficiency of the concurrent model is accessed by comparing

it with the MD model where the whole computational domain is discretized at an

atomistic resolution. Both the code for the FE model(in house code) and the MD

(LAMMPS code) is parallelized using a message passing interface (MPI) to take

advantage of multi-processor computation. For the concurrent model, the distribution

of processors between the atomistic model and the FE model is chosen for optimal

efficiency. Due to the large degrees of freedom of the atomistic domain, almost 95%

of the processors are assigned for the atomistic model and the rest is assigned for the

continuum model(both FE and SPH). The computational efficiency of the concurrent

model is compared with the MD model in table 7.4. The computational cost is
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estimated in terms of CPU-hours on the Bluecrab cluster at Maryland Advanced

Research Computing Center (MARCC) using 4 nodes with 24 processors in each

node. The efficiency factor is defined as the ratio of CPU-hours between the MD

model and the concurrent model.

Model Concurrent MD(with time acceleration) Efficiency Factor

CPU hour 150 2000 13.3

Table 7.4: Comparison of computational cost between full MD simulation and the
concurrent model.

7.3 Developing the Evolution Law for the

Nucleated Dislocations from the Crack-

tip

The concurrent model is used to derive the evolution law of the nucleated disloca-

tions density from a preexisting crack. For the computational study, a single crystal

nickel specimen of physical dimension 200nm × 200nm × 4.22nm is used. Figure

7.6(a) shows the physical dimension, the boundary condition and the crystal orienta-

tion of the specimen. A through-thickness crack of length 2a0 = 20nm is embedded at

the center of the specimen. The atomistic domain ΩA is a cylindrical region of radius

RA = 40nm (as derived in sec 7.1.0.2) and the interface region ΩI is an annular region

with an inner radius of 35nm and outer radius of 45nm respectively. The atomistic
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region contains about 2.5million nickel atoms with an FCC lattice structure. The

lattice constant of nickel is ao = 3.52Å. The lattice orientation of the specimen with

respect to the global axis is x→ [112̄], y → [111] and z → [11̄0]. The atomistic region

also contains voids, that are randomly distributed throughout the atomistic region

ΩA. The voids are created by randomly removing 0.1% of the total atoms from the

perfect crystal. The continuum region of the domain is discretized using finite ele-

ment mesh containing approximately 5000nodes and 20000 4-noded constant strain

tetrahedral elements as shown in figure 7.6(b). A cylindrical region of radius 70nm

from the center of the crack is considered as free form any initial dislocation density.

The rest of the continuum region contains a constant distribution of the initial dislo-

cation density of 1015m−2. The boost potential due to the Hyperdynamics is applied

to a group of atoms located at the crack-tip in a through-thickness cylindrical region

of radius 15Å. The material parameter used for the computation study is given in

table 5.1 and 7.1.

Figure 7.7 shows the snapshots of the Dislocation structure at two applied macro-

scopic strains ǫ11 = ǫ22 = 3.1% and ǫ11 = ǫ22 = 3.3%. The dislocation nucleation

and crack propagation do not start together at the same macroscopic strain. Rather

it has been observed that first dislocation nucleates at a critical applied strain of

ǫ11 = ǫ22 = 2.9% but first crack propagation has been observed at ǫ11 = ǫ22 = 3.1%.

Figure 7.8(a) shows the evolution of the dislocation density at strain rates of

ǫ̇ = 1.0e6. At the onset of nucleation, it has been observed to nucleate several
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Figure 7.6: Computational specimen modeled by the concurrent atomistic-continuum
model for crack propagation,(a) the details of the geometry, the dimensions and load-
ing and (b) discretization of the atomistic and the continuum domain.

dislocations in quick succession. The macroscopic strain at the onset of nucleation of

the first dislocation is found to be ǫ11 = ǫ22 = 2.9%. The critical SIF for dislocation

nucleation at the corresponding macroscopic strain is found to be approximately

1.26MPa
√
m. To compute the SIF, equation 7.2 is used. Figure 7.8(b) shows the

evolution of the crack length as a function of applied macroscopic strain. It can be

seen that the crack starts to propagate at a critical applied strain of ǫ11 = ǫ22 = 3.1%.

The simulation is terminated as crack reaches very close to the interface region ΩI .

It has been observed (see figure 7.7(b) ) that even though the initial crack was along

the xz-plane but at the onset of propagation, the crack deviates from the xz-plane at

an angle of 70.5o. The new plane corresponding to the propagation of the crack is a

slip plane. It has also been observed that crack does not evolve symmetrically from

both the crack-tip.
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(a) (b)

Figure 7.7: Contour plot of the Dislocation Density. At macroscopic strain of (a)ǫ11 =
ǫ22 = 3.1% and (b)ǫ11 = ǫ22 = 3.4%

The evolution data of dislocation density obtained from the simulation is fitted to

a predetermined form assumed as,

ρnucl = a1ρ0(ǫ− ǫc)
a2H(K −KIC) (7.10)

where, KIC , a1 and a2 are material parameters. KIC is the critical SIF for the

first dislocation to nucleate. ρ0 is the reference dislocation density which has a value

of 1.0e14m−2 and H is the Heaviside step function.

Since the atomistic part of the concurrent model has time acceleration incorpo-

rated in it, it is possible to study the nucleation process at a much lower strain rate

than that of the conventional MD without time-acceleration. The lowest strain rate

that is studied here is ǫ̇ = 5.0e4. The values of the parameters are investigated for

three strain rates viz. ǫ̇ = 1.0e6, 1.0e5 and 5.0e4, values are given in table 7.5. ǫc
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Figure 7.8: Evolution of (a) dislocation density and (b) crack length as a function of
applied strain at rate ǫ̇ = 1.0e6.

is the critical strain corresponding to the critical SIF value. The numerical value of

ǫc is obtained during the simulation itself by identifying the value of ǫ the moment

the SIF reaches to KIC . It can be seen from table 7.5 that the KIC is almost the

same at both strain rate but the other two parameters i.e, a1 and a2 has a strong

dependence on the strain rate. It implies that the critical state corresponding to the

nucleation of the first dislocation is almost the same and can efficiently be represented

by critical SIF values, but the subsequent evolution of the dislocation density has a

strong dependence on the strain rate.

Strain Rate ǫ̇ (s−1) KIC (MPa.
√
m) a1 a2

1.0e6 1.260 8.5 0.82
1.0e5 1.245 7.5 0.78
5.0e4 1.230 7.1 0.75

Table 7.5: Calibrated values of the dislocation density parameters in equation (7.10)
obtained from the simulations with the concurrent model at different strain-rates.

Figure 7.9 shows the strain rate and temperature dependence of the three param-
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eters (Kic, a1 and a2). It can be seen that KIC has mild dependence on strain rate

but a strong dependence on temperature. On the other hand, for a1 and a2 the effect

of strain rate is more prominent in comparison with temperature.
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Figure 7.9: Applied strain rate(in logarithmic scale) and temperature dependence of:
(a) critical stress intensity factor (KIC), (b) the value of a1 and (c) the value of a2 in
Eq. 7.10.
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7.4 Deriving the energy functional of the

Phase-field model for ductile failure

using the concurrent model

The phase-field model is a special kind of gradient damage model which became

very popular in recent times for modeling fracture in the material at continuum

scale [97, 98, 107]. In the phase-field model, the strong discontinuity of a crack is

represented by a regularized scale field variable. The success of the phase-field model

relies on an appropriate construction of the free energy of the system. The free energy

density of a system can be partitioned into different components, the recoverable

elastic energy, the fracture energy due to the crack surface and the inelastic defect

energy due to the presence of the defects e.g, dislocations.

The evolution law of the nucleated dislocation density derived from the concur-

rent model is used to augment the free energy functional of continuum phase field

model. A crystal plasticity based phase field model developed in [107] is adopted

here. According to the model, the phase-field free energy density functional can be

constructed as:

ρ0ψ = ρ0ψe(E
e, s) + ρ0ψc(s,∇Xs) + ρ0ψd(η, s) (7.11)

where ρ0 is the density of the material in reference configuration. The first term i.e,
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ψe in the right hand side of equation 7.11 is the stored elastic energy density which

is given as,

ρ0ψe =
1

2
Ẽ : Ce : Ẽ (7.12)

where Ẽ is the modified Green-Lagrange strain tensor and Ce is the fourth order

elasticity tensor. To incorporate the tension compression asymmetry in the presence

of a crack, the elasytic deformation gradient Fe is decomposed into a volumetric

and isochoric part, i.e, F e = F e
isoF

e
vol where the isochoric deformation gradient is

F e
iso

= (detF e)−
1
3F e and the volumetric deformation gradient is F e

vol = (detFe)
1

3I.

Then the modified Green-Lagrange Ẽ is expressed as,

Ẽ = g1(J
e, s)Ee

vol
+ g2(s)E

e

where, g1(J
e, s) = H(1− Je)(1− κs)s and

g2(s) = 1− (1− κs)s

(7.13)

where,Ee
vol

is the volumetric part of the Green-Lagrange strain,Ee
vol

= 1
2
(F eT

vol
F e

vol
−

I) and the Jacobian Je = det(F e). H(x) is the Heaviside step function. s is the phase

field order parameter and κs = 0.001 is a small positive parameter incorporated for

numerical stability.

The second term ψc in equation 7.11 is the crack surface energy density, and is
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given as,

ρ0ψc =
gc
2lc

(s2 + l2c (∇Xs.∇Xs)) (7.14)

where gc is the fracture energy per unit surface and lc is a length-scale associated

with the regularization of the crack density using the phase field variable s.

The third term ψd in the right hand side of equation 7.11 is the stored defect

energy density due to the defect structures within the material such as dislocations.

The degrading stored defect energy is given as [107],

ρ0ψd = g(s)ρ0ψ̂d(η) = g(s)
1

2

Nslip
∑

α,β

hα,β|ηα||ηβ| (7.15)

where ηα and ηβ are the internal variables corresponding to defects on the α and

β slip systems respectively. g(s) = 1 − s is the degradation function and hα,β is

the interaction matrix between α and β slip systems to the defect energy. Using the

principle of maximum plastic dissipation, it has been shown in [107] that ηα = |γα|, γα

is the accumulated plastic slip in the α slip system. Then the defect energy becomes,

ρ0ψd = g(s)
1

2

Nslip
∑

α,β

hα,β|γα||γβ| (7.16)

The accumulated plastic slip γα has contribution from the two sources of disloca-

tions. One is due to the evolution of the preexisting dislocation density and another

one is the contribution from the new dislocations nucleating from the crack tip, i.e,
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γα = γαpreexisting + γαnucl (7.17)

where γαpreexisting is the plastic slip due to the evolution of the preexisting disloca-

tions and γαnucl is the extra contribution to the plastic slip coming from the nucleated

dislocation from the crack tip. Figure 7.11 shows the phase-field simulation of the

crack in a nickel single crystal. The physical dimension of the domain is taken as

200nm× 200nm× 4.2nm which contains a central crack of length 20nm. The initial

crack is represented by setting the phase field variable s to one. The sample is de-

formed along x and y-axis by applying a displacement controlled loading at a strain

rate of ǫ̇ = 5.0e4.

To make the phase-field model more physics-based and atomically informed, the

parameters of the phase-field model has been derived from the concurrent model by

comparing the energetics and the dynamics of the evolution of the crack. The most

important parameters that control the crack evolution in this phase-field model is

gc (see eq. 7.14). On the other hand, the set of parameters hα,β, in equation 7.15,

represents the interaction between the dislocation in α and β slip system on their

contribution in the defect energy (eq. 7.16). These parameters need to be calibrated.

Several phase-field simulations are conducted to calibrate the value of gc and hα,β

by comparing the evolution of the crack length, fracture energy and defect energy.

The specimen dimension of the continuum phase-field model is kept the same as the

specimen dimension of the concurrent model. Figure 7.10(a) shows the evolution of
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Figure 7.10: Comparison of the evolution of the crack length and different energies
between the concurrent model and the phase field model. Evolution of (a) crack
length (b) fracture energy and (c) defect energy as a function of applied macroscopic
strain.

the crack length with respect to the macroscopic applied strain. It can be seen that

for both the concurrent and the phase-field model the evolution of the crack resembles

very well. It is worthwhile to mention that, for the phase-field model, the parameter

gc plays the most critical role in the initiation of the evolution of the crack. Hence it

is crucial to calibrate the value of gc accurately. The calibrated value of gc is found

to be 5.35Jule/m2. For the calibration of the components of the interaction matrix
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hα,α it is assumed that hα,β=1.00 (α 6= β) i.e all off-diagonal terms are assumed to

be unity. The calibrated value of the diagonal term i.e hα,α is found to be 1.56. The

evolution of the fracture energy is shown in figure 7.10(b). A trend similar to crack

length is observed for the evolution of the fracture energy also. Figure 7.10(c) shows

the evolution of the defect energy for concurrent and the phase-field model. It can

be seen that the evolution pattern of the defect energy is very similar for both the

concurrent and the phase-field model but they differ quantitatively. This signifies that

the present assumed form of the defect energy (eq: 7.16) for the phase-field model is

not complete.

For a better understanding of the importance of nucleated dislocations for crack

propagation, the phase-field study is conducted for two samples. One without consid-

ering the plastic slip contribution from the nucleated dislocations, the only contribu-

tion of the plastic slip was from the evolution of the preexisting dislocations. Another

one has a contribution from both the preexisting dislocations as well as from the dis-

locations nucleated at the crack tip. For the evolution of the nucleated dislocation

density, the evolution law obtained from the concurrent model is used (equ. 7.10).

Figure 7.11 shows the evolution of the crack in the form of the phase-field parameter

s. It can be seen from figure 7.11 that at the same applied strain of ǫ11 = ǫ22 ≈ 3.4%

the phase-field model with additional plasticity due to the crack tip dislocations shows

significant evolution of the crack. This implies that the plastic slip contribution from

the nucleated dislocations has a significant impact on the evolution of the crack.
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Figure 7.11: Contour plot of the phase-field parameter (s). (a) Initial configuration of
the crack. Evolution of the crack at macroscopic strain of ǫ11 = ǫ22 ≈ 3.4% (b)without
and (c)with consideration of the additional plasticity contribution from the crack tip.

7.5 Conclusions

In this chapter, the developed concurrent model is used to obtain the evolution

of the density of the dislocations nucleating from the crack tip. A predetermined

nonlinear form with three material parameters is used to approximate the evolution

law. The simulation data from the concurrent model is used to calibrate the material

parameters of the evolution law. The calibrated values of the material parameters
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are given for two different strain rate viz. ǫ̇ = 1.0e6 and 5.0e4.

The obtained evolution law of the nucleated dislocations density is used to investi-

gate the crack propagation within a full continuum phase-field model. A comparative

study with the nucleated dislocation density and without it, is used to assess the in-

fluence of the nucleated dislocations on the propagation of the crack. It is found that

the extra plasticity contributed by the nucleated dislocations has a strong influence

on the propagation of the crack. This signifies the importance of quantifying the

deformation mechanisms at atomistic accuracy using the concurrent model.
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Chapter 8

Conclusion And Future Work

In this dissertation, a concurrent coupled atomistic-continuum multiscale model is

developed to study the fracture process in the metallic materials. The model consists

of an atomistic region that is modeled using time accelerated Molecular Dynam-

ics(MD) using the modified version of LAMMPS code and a continuum region which

is modeled using density-based Crystal Plasticity. Traction reciprocity and displace-

ment compatibility are enforced in the interface region. A selfconsistent incremental

iterative scheme is used to solve the governing differential equations to obtain the

equilibrium configuration of the coupled system. A new framework is developed to

characterize, quantify and transfer the dislocations from the atomistic region to the

continuum. DXA is used for the extraction of dislocations from the atomic configu-

ration. A noble propagation model for dislocation in the density form is developed.

The propagation model incorporates the advection form of density migration for a
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scalar conserved quantity. This model keeps the scalar quantity conserved during the

propagation. A particle-based mesh-less method, Reduced Kernel Particle(RKPM),

is used for the numerical implementation of the propagation model. For better effi-

ciency, the numerical solution of the propagation model is only invoked in localized

regions.

To overcome the high strain rate associated with the conventional MD simulation,

the Hyperdynamics based time acceleration is incorporated to accelerate the evolution

of the time of the atomistic domain. The effect of the strain rate on the deformation

mechanism is demonstrated by using an atomistic model of nickel single crystal with

a crack embedded in it. Two specific crack-crystal orientation is used to demonstrate

this effect. It has been observed that for some particular crack-crystal orientation

there is a change in the deformation mechanism from twin domination at the higher

strain rate to dislocation domination at lower strain rate. This also demonstrates the

capability of Hyperdynamics to achieve a lower strain rate atomistic simulation. This

time acceleration technique is used to match the time-scale between the atomistic

and the continuum region after each load increment. This makes sure that both the

region in the concurrent model is experiencing the same strain rate.

The developed time accelerated concurrent coupled Atomistic-Continuum model

is used to study the crack propagation in metallic materials. A nickel single crystal

is used for this study which contains a crack embedded in it. The kinetics of the

crack and the evolution of the plastic variable in the form of dislocation density
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is extracted from the concurrent model. These evolution laws are extracted in a

predetermined parametric form which can be used in the full continuum simulation

with a much bigger computational domain. The concurrent model is further used

to extract the crucial energetic related to the fracture process such as the ’fracture

energy’ related to the creation of the new free-surface as crack evolves and the ’defect

energy’ which is related to the energy associated with the creation of the plastic

variable e.g, dislocations. This information related to the fracture-energy and defect-

energy are used to augment the construction of the Phase-field free energy functional

to study the fracture process within the full continuum scale.

A future possible extension of the present model would be to develop a framework

to pass the nucleated twins from the crack tip as it reaches the interface. This

is of particular importance for the application of the present concurrent model for

HCP crystals e.g, Magnesium, where the twin is one of the most dominant plastic

deformation mechanisms. The incorporation of dislocation reaction in the density

form is also a feature that will enrich this model.
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