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Abstract

Load-bearing soft tissues are abundant throughout the human body, including

diverse examples such as skin, cornea, tendons, and blood vessels. The mechanical

characterization of these tissues is important for applications such as tissue engineer-

ing, tissue pathology, and medical device/patient interface modeling. The mechanical

properties of soft tissues arise from the underlying collagen microstructure, which

varies across the body depending on tissue function. Such specialized microstruc-

tures are thought to arise in part from the ability of soft tissues to self-adapt to the

mechanical environment by a process known as growth and remodeling. Growth and

remodeling is a normal part of development and tissue maintenance, however, it is

suspected that an imbalance in the process may contribute to disease states such as

osteoarthritis and glaucoma. Though growth and remodeling is well documented, the

mechanisms driving the process are not well understood.

This work develops a hierarchical, structure-based modeling approach for planar

collagenous tissues based on the underlying collagen microstructure. The approach

was applied both to characterize human skin mechanics for prosthetic/residual limb
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interface modeling, and to simulate potential fiber-level mechanisms of the growth and

remodeling process. The nonlinear, anisotropic properties of human skin tissues were

measured with full-field inflation testing, and two different structure-based constitu-

tive models were fit to the data using a novel analytical method to account for bending

stresses. Finite element analysis was used to show that only the fully integrated dis-

tributed fiber model was could reproduce the experimentally measured anisotropy

of skin tissue. To investigate potential mechanisms of growth and remodeling, the

fully integrated model was extended to incorporate a micro-mechanical description

of the collagen fibers. This enabled the prescription of fiber-level evolution equations

for strain-protected enzymatic degradation and constant collagen deposition as po-

tential mechanisms of the growth and remodeling process. The degradation model

was calibrated to fibril-level experiments and used to predict tissue-level experiments

for model validation. Strain homeostasis was achieved when the degradation model

was paired with constant collagen deposition, supporting these two mechanisms as

potential mechanisms of the growth and remodeling process.
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Chapter 1

Introduction

The human body is a versatile mechanical system, optimized over thousands of

years of evolution for the often competing goals of strength and dexterity. For exam-

ple, the design of the limbs allows for fine motor control and a wide range of motion,

but leaves the joints at a mechanical disadvantage: a load carried in the hand will

lead to nearly ten-fold higher reaction forces in the elbow muscles and joints.1 To

compensate, the tissues of the arm, such as bone, muscle, and tendons, have been op-

timized for both strength and structural efficiency. Though bone is often considered

the key load bearing tissue of the body, soft tissues also have an important mechanical

role. Soft connective tissues include such diverse examples as tendons and ligaments,

which transmit high tensile loads between bone and muscle, as well as skin, which

allows a wide range of motion while simultaneously providing a protective barrier for

internal organs. Ocular tissues such as the sclera and the cornea protect the delicate
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CHAPTER 1. INTRODUCTION

internal components of the eye from external loading, and arteries resist shear forces

and pressure arising from blood flow. The mechanical properties of these materials

are derived from complex collagen microstructures, which can exhibit large variation

between tissues. Because the mechanical properties of human tissues are critical for

proper function, quantifying these properties with respect to the microstructure can

lead to a better understanding of both healthy and diseased tissue function.

Living tissues are also capable of changing both mass and microstructure in re-

sponse to the mechanical environment. This process, referred to as growth and re-

modeling, occurs on the order of weeks or months and serves to re-enforce loaded

tissues and prune under-utilized tissues. Growth and remodeling is part of the nor-

mal maintenance of healthy tissue and likely plays a major role in the development

of the unique tissue microstructures found throughout the body.2 It has also been

hypothesized that an imbalance in the growth and remodeling process may give rise

to disease states such as osteoarthritis, cardiac hypertrophy, and glaucoma.2–4 The

societal cost of these diseases is difficult to overstate: 20 million Americans suffer

form osteoarthritis at an estimated productivity loss of $60 billion per year,5 and

glaucoma is the second leading cause of blindness globally.6 Although growth and

remodeling is well documented, the underlying mechanisms driving the process are

not well understood.7

This work focuses on soft tissues, specifically hydrated, collagen-based tissues that

undergo large deformations (>1% strain) with load. Soft tissues exhibit a nonlinear

2
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and anisotropic elastic response that is not well described by models for traditional

engineering materials, necessitating the development of new constitutive theories.

Soft tissues can also exhibit large variation in the elastic response between speci-

mens. Constitutive models for soft tissues are important for a wide range of appli-

cations, including medical device-patient interface modeling, surgical planning, and

tissue engineering. Further, models that link the mechanical response to the tissue

microstructure allow for more generalized frameworks which can then be specified to

the tissue of interest. A structure-based modeling framework to describe the mechani-

cal properties of soft tissue could be utilized to describe both passive tissue mechanics

as well as the active change in properties brought about by growth and remodeling.

Structure-based models are also better suited for understanding human development,

predicting disease state progression, and other applications associated with a change

in the tissue microstructure.

This thesis develops a hierarchal model for planar collagenous tissues based on

the underlying collagen microstructure. Planar tissues are characterized by a col-

lagen fiber network oriented parallel to the tissue surface, and are modeled in a

continuum, hyperelastic framework as composites of collagen fibers in a soft isotropic

ground matrix. First, a fiber-composite style model which describes the arrangement

of individual fibers is applied to characterize human skin tissues for prosthetic/patient

interface model applications (Chapters 2-3). The model is then extended to include

collagen fiber micro-mechanics in order to simulate potential micro-mechanisms for
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the growth and remodeling process (Chapters 4 -5). In both cases, the model assump-

tions and resulting parameters are validated by predicting experimental data gathered

in this work or available in the literature. Such an approach can give insight into the

physical processes underlying tissue development and disease state progression, with

the potential to identify new therapeutic targets and interventions for pathologies

such as glaucoma.

1.1 Soft Tissue Material Properties

This section reviews the microstructure, mechanical properties, and common me-

chanical testing methods for soft planar tissues. Skin, the cornea (the translucent

protective layer covering the lens of the eye), and the sclera (the white outer shell of

the eye) are used as illustrative examples. All three can be considered planar tissues,

with collagen fibers primarily oriented parallel to the tissue surface.

1.1.1 Microstructure of Soft Tissues

Soft tissues are composed of a network of crimped collagen fibers embedded in a

compliant ground matrix of elastin and proteoglycans. Collagen is the primary load-

bearing component of soft tissue, and has a complex hierarchal structure, illustrated

in Fig. 1.1. Amino acids form the tropocollagen triple helix. The tropocollagen

molecules then assemble into fibrils, which in turn pack into fibers. Collagen fibers,
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Figure 1.1: Hierarchal structure of collagen fibers. Reprinted from Buehler 2006
with permission (Copyright (2006) National Academy of Sciences, U.S.A.).8

the functional unit of interest in this work, are stiff in axial tension (E = 1 GPa),

complaint under bending, and buckle under compressive forces.9 Collagen fibers dom-

inate the nonlinear, anisotropic large-strain response of soft tissues. The small-strain

response is determined by the ground matrix, which is primarily composed of elastin

and proteoglycans. Elastin is a linear elastic, fibrous protein that is stiffer than col-

lagen at low strains, but significantly more compliant at high strains (E = 3 KPa).

Elastin provides the recoil observed after tissue extension, and elastin fibers are often

preferentially arranged in tissues. For example, elastin fibers in both the sclera and

the arteries are arranged circumferentially in the plane of the tissue. Proteoglycans

are large, highly charged proteins which retain water in the tissue, providing com-

pressive strength and nearly incompressible elastic deformations.9 Together, elastin
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1.1.2 Mechanical Properties and Test Methods

The nonlinear stress-strain behavior of soft tissues is closely associated with the

orientation and morphology of the collagen fibers. Figure 1.4 is a schematic of a

typical uniaxial stress-strain curve compared to the collagen deformation for a generic

planar collagenous tissue. The initial compliant region, referred to as the toe region,

is dominated by the deformation of the ground matrix as the crimped collagen fibers

do not contribute significantly to the stress response. As the strain increases, the

tissue stiffens as the collagen fibers begin to straighten and carry load, referred to as

the heel region. Finally, the stress-strain curve becomes linear as the entire load is

carried by the fully straightened collagen fibers.17 Tissues with preferentially aligned

fibers will exhibit a nonlinear anisotropic stress-strain response that is stiffer in the

dominant fiber direction than an in-plane perpendicular direction. Because fibers are

not perfectly aligned, the perpendicular direction will also exhibit nonlinearity caused

by the straightening of the collagen fibers, though with lower stiffness.

The most common mechanical test for soft tissues is the uniaxial tension test.

Uniaxial tension tests are attractive because the experimental set-up and stress anal-

ysis are simple. However, uniaxial loading is not representative of the in vivo loading

state for many tissues, and anisotropy cannot be measured from a single test. Instead,

biaxial testing has become a widely used method to measure the anisotropic response

of soft tissues. Like uniaxial loading, biaxial tension allows for simple stress analysis,

but two orthogonal loading directions can be applied simultaneously. Loading, illus-
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previous studies in our group have suggested that tissues tested by inflation do not

exhibit a phenomenon known as preconditioning.26

Preconditioning for soft tissues is defined as a shift in the stress-strain curve with

repeated loading which eventually converges to a steady state. Preconditioning is

commonly observed for uniaxial and biaxial tension tests and has been incorporated

into many experimental protocols to ensure a repeatable reference state. Although

the origin of this phenomenon is unknown, preconditioning is suspected to arise from

an alteration in the fiber structure due to repeated loading,27 and it is desired to avoid

such changes from the in vivo fiber structure. It is hypothesized that the inflation

test better constrains the boundary of the tissue, which may prevent micro structural

rearrangements, providing a more accurate measure of tissue properties. For these

reasons, the inflation test method is selected to measure the anisotropic properties of

human skin tissues. A more detailed review of inflation testing and preconditioning

can be found in Chapters 2 and 6.

1.2 Constitutive Modeling

A variety of constitutive relations have been developed to capture the nonlinear,

anisotropic mechanical behavior of planar collagenous tissues. In this work, only the

elastic properties of soft tissues will be considered while neglecting viscoelastic ef-

fects. Two types of constitutive models are considered: tissue models, which describe

11





CHAPTER 1. INTRODUCTION

use in organ or full body modeling.

1.2.1 Tissue Models

Soft tissues are most commonly modeled using the theory of hyperelasticity. Given

an expression for the strain energy density, Ψ, the stress for any deformation state

can be computed from the deformation gradient, F, the jacobian of the deformation

gradient, J = det F, and the derivative of the strain energy density function with re-

spect to the right Cauchy-Green strain tensor, C = FTF. For a transversely isotropic

material with one fiber family, the strain energy density can be written in terms of

both the right Cauchy-Green strain tensor, C, and a structure tensor, A = a0 ⊗ a0,

where a0 is a vector defining the fiber family orientation.30 To ensure objectivity,

the strain energy density is expressed in terms of the invariants of C and A (i.e.,

I1 = C : I, I2 = 1
2

[(C : I)2 −C2 : I], I3 = det C, I4 = C : A, and I5 = C2 : A for

transversely isotropic materials), with the resulting Cauchy stress is computed by:

σ =
2

J
F
∂Ψ(C,A)

∂C
FT . (1.1)

The key differentiation between tissue constitutive models is the choice of strain

energy density function. Soft tissues were first described using strain energy density

functions developed for rubbers, such as the Neo-Hookean or Mooney-Rivlin poten-

tials. In the 1970’s, Y. C. Fung pioneered a new strain energy function that could
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capture both the high degree of nonlinearity and anisotropy characteristic of soft

tissuse.31–33 Specifically, it was shown that the derivative of the tissue stress with re-

spect to strain increased linearly with applied strain, supporting an exponential form

of the strain energy density. The exponential dependence of the strain energy on

strain proposed by Fung required 5 parameters for a transversely isotropic material,

and 9 parameters for an orthotropic material. The model is purely phenomenological,

and the parameters do not have a physical interpretation. However, the Fung model

has had broad utility describing the mechanical behavior of a variety of soft tissues

ranging from the arterial wall34,35 to skin tissue.32 The applicability to a wide range

of tissues has made the Fung model a popular choice for describing soft tissues, and

various formulations of the exponential dependence have since been proposed.33 How-

ever, the large number of parameters without physical interpretation has led other

researchers to propose structural models of the tissue strain energy density.

Lanir36,37 was the first to model the mechanical response as a function of the

tissue microstructure. In this approach, the collagen fiber contribution is modeled

as a statistical distribution of fibers, ρ(φ), about a preferred fiber orientation in an

isotropic ground matrix. By assuming an affine deformation, i.e. all components

of the tissue are subject to the same deformation gradient, the tissue strain energy

density can be written as a sum of an isotropic ground matrix contribution and the

integral of individual fiber contributions oriented at an angle φ from the preferred
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fiber orientation:

Ψ = Ψmatrix +

∫ π

−π
Ψfib(φ) ρ(φ)dφ. (1.2)

The strain energy of the ground matrix, Ψmatrix is commonly described by a Neo-

Hookean potential, while the strain energy of individual collagen fibers, Ψfib, is de-

scribed by a phenomenological exponential function of the stretch along the fiber

direction, φ. This continuum approach builds upon the work of Fung by linking

mechanical properties to the collagen fiber structure through the use of a structure

tensor, reducing the number of parameters. However, the presence of the integral in

eq. (1.2) increases the computational time for the model.

In 2006, Gasser and coworkers proposed a model based on a generalized structure

tensor to greatly reducing computational time while still modeling the collagen fiber

distribution.28 In this model, the fiber distribution of eq. (1.2) is integrated one time

in the reference configuration. The result is decomposed into a linear combination

of the isotropic and anisotropic contribution and stored in a generalized structure

tensor used for all stress calculations, eliminating the need to evaluate the integral at

every time-step. The generalized structure tensor model was developed for arteries,

which are typically described by two minimally dispersed fiber families. However, the

model has since been widely applied to many other tissues with very different fiber

structures such as skin38 and cornea.39 Several authors have compared the generalized

structure tensor model to the fully integrated formulation of eq. 1.2 and found that

the two are only equivalent in certain cases40,41 and therefore the model may not be
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appropriate for all planar tissues. In this work, both the distributed fiber model and

the generalized structure tensor model will be applied to model skin tissue and finite

element analysis will be used to investigate which model is better able to capture the

anisotropic properties of the tissue. A more detailed review of soft tissue modeling

approaches and application to skin tissue is provided in Chapter 3.

1.2.2 Fiber Models

All of the tissue-level models described in the previous section rely on phenomeno-

logical exponential functions for the fiber strain energy contribution. Alternatively,

the structure and deformation mechanics of collagen fibers can be modeled, with phys-

ically meaningful parameters. Such micromechanical models capture collagen crimp

by describing fibers as helical springs29,42,43 or planar sinusoidal elastica beams.43–45

The fiber material is assumed to be linear elastic, with the characteristic nonlinear-

ity arising instead from the fiber crimp. Model parameters include the fiber radius,

crimp, and elastic stiffness. However, the equilibrium equations for these geometries

requires the solution of a 4th order partial differential equation.46 A variety of tech-

niques have been applied to simplify the problem, such as using free parameters to

define the transition between simple bending and axial stretching,29,42,43 or assuming

that the deformed configuration occurs at the minimal strain energy configuration.44

Alternatively, Comninou and Yannas45 showed that the equilibrium equations for a

planar sinusoidal elastica can be simplified for the case of a thin beam with small
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initial curvature to model individual collagen fibers.

Though micro-mechanical fiber models provide a more detailed description of

collagen fiber mechanics, these models also require more parameters and often require

computationally expensive numerical solutions for fiber deformation. Incorporating

fiber models into the tissue models described in the previous section can be prohibitive

for many applications. As such, there has been limited work implementing fiber-level

models into tissue-level simulations. Exceptions include the incorporation of a micro-

mechanical model into simulations of the lamina cribrosa47 and scleral shell48 using

the generalized structure tensor model of Gasser et al,28 but the majority of the fiber

models described above have not been incorporated into tissue level simulations. To

address this gap, this work will incorporate the planar elastica model of Comninou

and Yannas45 into a tissue-level framework to study potential micro-mechanisms of

the growth and remodeling process.

1.3 Growth and Remodeling

This review thus far has focused on the passive or static properties of soft tissues.

Section 1.1.1 illustrated that a specific tissue’s microstructure can often be directly re-

lated to the tissue’s mechanical function in the body. Such specialized fiber structures

are developed and maintained by the growth and remodeling process by which the tis-

sue self-adapts to the mechanical environment. Growth and remodeling, illustrated in
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example, osteoarthritis is thought to begin with a disruption in the collagen structure

of cartilage. The disruption leads to a loss of hydrated proteoglycans, which reduces

the stress on the collagen fibers, leading to further degradation of the unstressed

fibers. As a result the weakened tissue can no longer provide lubrication during

normal activities.52 A similar cyclic loss of collagen and proteoglycans is thought to

occur in intervertebral disk disease, resulting in degeneration of the disc and severe

back pain often requiring surgical intervention.53 Finally, it is thought that glaucoma

occurs due to axon loss and simultaneous remodeling of the connective tissue of the

sclera after an increase in intraocular pressure. These changes in turn lead to increased

deformation of the optic nerve head, causing a progressive loss of vision.47,54 A better

understanding of the growth and remodeling process may be key to understanding

and treating these disease states. In particular, computational modeling can be used

to predict disease state progression and potentially identify new therapeutic targets.

1.3.1 Tissue Homeostasis Models

The majority of computational models for growth and remodeling are based on the

concept of homeostatic control of the tissue stress or strain. Stress homeostasis models

are based on the assumption that the tissue seeks to maintain a physiological stress

level. When a mechanical perturbation alters the tissue stress, the tissue will grow

and remodel until the homeostatic stress level is recovered. An analogous approach

is based on the tissue strain rather than stress. These phenomenological descriptions
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of growth and remodeling are often incorporated into whole-organ or organ-system

simulations to predict tissue development and disease state progression.

The majority of growth models for soft tissues are based on the concept of kine-

matic growth, first introduced by Skalak et al.,55,56 and later refined in an influential

work by Rodriguez and coauthors.57 The total deformation gradient, F, is split into

an elastic part, Fe, and a growth part, Fg,

F = FeFg. (1.3)

The elastic deformation is due to external loads, while growth proceeds in a stress-free

intermediate configuration. The form of the growth deformation gradient is prescribed

by a constitutive law, commonly based on the homeostatic control of stress or strain

as defined above. Stress-driven homeostasis models have been used to successfully

to predict the the growth of the ventricles due to pressure and volume overload58 or

athletic exertion,59 the increase in arterial wall thickness due to high blood pressure,51

intracranial aneurysm growth,60,61 and human development and morphogenesis.62–64

Similarly, strain-driven homeostasis models have been used to predict cardiac growth

due to pressure and volume overload65 and the development of the heart.66 In general,

stress-driven growth laws are more commonly applied than strain-driven growth laws.

Tissues also adapt to loading by remodeling, i.e. changing the tissue microstruc-

ture and associated mechanical properties. This re-organization of the collagen net-
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work has been modeled by homeostatic control of the collagen fiber orientation. In

this approach, fibers are driven to a pre-set orientation defined relative to the prin-

cipal stress or strain in the tissue. For example, fibers have been assumed to align

along67 or between48,68 the principal stress directions, with evolution equations driven

by the difference between the current fiber distribution and the pre-set or preferred

distribution. These homeostatic fiber orientation laws can also be written with re-

spect to the principal strain directions.67,69 Homeostatic control of fiber orientation

has been used to predict the in vivo fiber structure of arteries,70,71 as well as the

remodeling of arteries,71 aortic valves,72 and mitrial valves73 in response to changes

in blood pressure and flow.

In the methods reviewed above, growth and remodeling are modeled in open mass

systems. Mixture theory accounts for mass conservation by tracking the change in

mass of individual constituents, as well as the flux and reaction of reactants and

products necessary to evolve protein and cellular mass.7 Constrained mixture theory

approximates mass change by assuming that individual mass densities and natural

configurations of tissue constituent such as collagen, elastin, and smooth muscle cells

can evolve independently.51 The total mass and stress-free configuration of these

constituents are allowed change independently and at different rates in response to a

mechanical stimulus. The combined effect leads to both a change in the bulk tissue

volume, as well as tissue mechanical properties brought about by altered relative

amounts of constituents.74–76 Again, the evolution of the individual constituents is
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based on an assumption of stress or strain homeostasis of the tissue, similar to the

growth and remodeling models described previously.

1.3.2 Micromechanistic Models

The tissue homeostasis models described in the previous section rely on phe-

nomenological descriptions of growth and remodeling. Instead, micromechanical mod-

els can be used to describe growth and remodeling at the cellular and fiber level in

an attempt to predict, rather than prescribe, tissue-level stress or strain homeosta-

sis. Because these models are computationally expensive, such approaches are more

commonly employed in smaller scale simulations of simple loading states to test the

feasibility of potential micro-mechanisms of growth and remodeling of soft tissues.

Recent experiments have begun to identify such mechanisms. It has been shown

in embryonic chick eyes that fibroblast cells can apply contractive forces to collagen

fibers, modulating the crimp angle,77 and the rate of collagen deposition in engineered

tissue constructs has been found to depend on applied strain.78 In addition, it has

been shown at the molecular,79 fibril,4,80 and tissue level81–83 thats strain inhibits

the enzymatic degradation of collagen. These mechanisms and others may work in

concert to give rise to the experimentally observed growth and remodeling response

of soft tissues.

Recent models have incorporated cell-mediated collagen crimp remodeling70 and

strain-sensitive collagen degradation and deposition.47,84,85 This growing field of re-
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search has made use of experimentally-informed mechanisms to predict normal tissue

development and disease state progression. However, current models have not yet

predicted stress or strain homeostasis without direct prescription. This work seeks to

address this gap by developing a micro-mechanical model for fiber degradation based

on the recent experiments of Flynn et al.80 The model combines enzymatic degra-

dation and collagen deposition to test the hypothesis that these mechanisms alone

can lead to a tissue level homeostasis. A more detailed review of micro-mechanical

models of growth and remodeling is provided in Chapter 4.

1.4 Objectives of this Work

The aim of this work is to develop a structure-based hierarchical modeling ap-

proach for planar collagenous tissues that spans the scale from the fiber the tissue

level, and is sufficiently general to be applied to both the passive and adaptive proper-

ties of soft tissues. Human skin is used as a model system to establish the appropriate

modeling approach to link tissue anisotropy to the fiber distribution. The charac-

terization of the mechanical properties of skin is important for many applications,

including scar formation and wound healing, tissue engineering, and prosthetic/resid-

ual limb interface modeling. However, the nonlinear, anisotropic properties of human

skin tissue have not been well characterized. The fiber structure for human skin is

well documented, and is expected to be uniform for an appropriate sample size (10x10
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cm2). This provides a homogenous sample for the inflation test and analysis, as well

as a known fiber structure for validation of the results.

The anisotropic tissue model determined for the skin is then extended to to in-

corporate a micro-mechanical model to describe the individual collagen fibers. The

inclusion of fiber-level mechanics enables the development of a theoretical model for

strain-protected enzymatic degradation of collagen, a potential mechanism for the

growth and remodeling process. The model is applied to the cornea and sclera, which

are of particular interest to the growth and remodeling problem, as glaucoma, my-

opia, and keratoconus are suspected to be linked with pathological changes in tissue

micro-structure.54,86 The degradation model is combined with collagen deposition to

test the hypothesis that stress or strain homeostasis can be achieved from these two

mechanisms alone in the absence of cells.

There are four specific aims of this work: (1) To develop inflation test method to

measure the anisotropic properties of human skin tissues, (2) to determine the more

appropriate structure model to describe the skin inflation test data with respect to

the fiber structure, (3) to incorporate a micro-mechanical description of the colla-

gen fiber into the selected anisotropic tissue model, and (4) to develop a fiber-level

mode for the strain-protected degradation of collagen within this framework as a po-

tential mechanism for growth and remodeling. The following outlines the chapter

organization of the thesis. Individual chapters contain relevant literature review and

discussion.
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Chapter 2 details the inflation (bulge) test method developed to measure the

anisotropic properties of cadaveric skin tissues. The inflation test was applied to 6

human skin specimens. Tissues were inflated with phosphate-buffered saline (PBS) up

to 30% strain and three-dimensional (stereo) full-field Digital Image Correlation was

used to calculate strains and stress resultants along the stiffest and most compliant

direction of the tissue, and to measure the influence of preconditioning and ambient

humidity on the mechanical response. Significant age- and location-associated varia-

tion was observed between specimens. Several of the skin specimens were tested by

Lorre Atlan, an undergraduate in our lab, under my direction. An early version of the

experimental method was originally published in my master’s thesis, ”An inflation

test method for the evaluation of the anisotropic properties of human skin tissues”.87

This chapter has been published in Acta Biomaterialia88 with Lorre S. Atlan, Liming

M. Voo, and Thao D. Nguyen as co-authors.

Chapter 3 analyzes the results of the skin inflation test experiments. The aim

of this chapter is to determine the most appropriate constitutive model capable of

describing the large anisotropy observed for skin tissue. A new analytical method was

developed to fit the material parameters of the constitutive models to the inflation

test while accounting for bending. Both the fully integrated distributed fiber model

and a generalized structure tensor model developed by Gasser and coworkers28 were

considered. Finite Element Analysis was used to validate the analysis method. It

was shown that only the fully integrated distributed fiber model could describe the
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experimentally observed anisotropy observed for skin tissue. This chapter has been

published in Acta Biomaterialia89 with Liming M. Voo and Thao D. Nguyen as co-

authors.

In Chapter 4, the distributed fiber model is expanded to include a micro-mechanical

model of collagen and strain-protected enzymatic degradation as a potential mecha-

nism of growth and remodeling. Collagen fibers are modeled as thin sinusoidal elastica

beams, using the simplified solution of Comninou and Yannas.45 A rate law for the

degradation of the fiber radius was developed to capture the experimentally measured

strain dependence of the enzymatic degradation of collagen. The kinetic parameters

of the rate law were calibrated to bovine sclera fibril experiments,80 and used to

predict the degradation of bovine cornea strips.83 It was shown that together with

constant collagen deposition, strain-protected degradation can give rise to a strain

homeostasis of the tissue. Chapter 4 will be submitted for publication with Jeffrey

W. Ruberti and Thao D. Nguyen as co-authors.

The single-fibril degradation experiments published by Flynn et al.80 did not

exhibit strain protection after degradation was initiated. The fibrils were held under

constant force as the radius was reduced by enzymatic degradation. As the fibrils

degraded, cross sectional area decreased, increasing the strain as fibrils were held

under constant force. However, even when strains exceeded the level required for

strain protection, degradation did not halt. Chapter 5 incorporates a stress-driven

damage model into the degradation model presented in Chapter 4 to illustrate that
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mechanical damage could be responsible for the measured radius decrease.

It was shown in Chapter 2 and in previous published work from our group26 that

human skin and bovine cornea tested by inflation do not exhibit preconditioning ef-

fects, i.e. a shift in the loading curve with repeated loading. Chapter 6 details a more

rigorous study including human skin, bovine cornea, bovine sclera, and porcine sclera

to further illustrate that these tissues do not exhibit preconditioning effects, even

when adequate viscoelastic recovery time is allowed. This chapter contains significant

contributions from Barbara Murienne (porcine sclera), Baptiste Coudrillier (bovine

sclera), and Stephen Alexander (bovine cornea), and William Rothkopf (human skin,

under my direction) and has been published in The Journal of Biomechanical Engi-

neering90 with these researchers and Thao D. Nguyen as co-authors.

To conclude, Chapter 7 summarizes the key results, implications and limitations

of this work, and suggests potential future applications of the model. The key con-

tributions of this work are: (1) the development of an inflation test and analysis

method to measure anisotropic material properties of planar collagenous tissues, (2)

the identification of a fully-integrated fiber composite model as the most appropri-

ate model for capturing the anisotropic properties of human skin tissue, and (3) the

development of a validated theoretical model for the strain-protected degradation of

collagen capable of predicting tissue strain homeostasis. Future work includes both

improvements to the hierarchal model and application of the model to new problems,

including other tissue systems.
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The Appendix contain further details on both the experimental and data analysis

methods, and individual chapters may also have an appendix section. Appendix A

contains detailed protocols, test set-up drawings and part numbers as well as details

on the PID control of pressure for the inflation test. Portions of this chapter previ-

ously appeared in my master’s thesis.87 Appendix B details the nonlinear solution

procedures and Jacobians required to solve for the fiber and tissue level degradation

problem of Chapter 4. Appendix C contains the matlab codes used for data analysis

and parameter fitting for the inflation test of skin tissues in Chapters 2-3. Appendix

D contains the Matlab files necessary for the fiber and tissue level enzymatic degra-

dation simulations described in Chapter 4.
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Chapter 2

A full-field bulge test method for

the experimental characterization

of human skin tissues

This chapter outlines the inflation (bulge) test developed for human skin tissues.

Cadaveric skin specimens obtained from the lower back were inflated with saline while

displacements were measured with 3D Digital Image Correlation. The dominant fiber

direction of the tissue was determined from the deformed geometry of the specimen

and local strains and stress resultants were calculated along both the dominant fiber

direction and the perpendicular direction. Curvatures were used to calculate stress

resultants rather than membrane stresses to take into account bending effects of the

thick tissue. The method was applied to six cadaveric specimens, and considerable
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variation in anisotropy and stiffness was observed between specimens. This chapter is

reprinted from Acta Biomaterialia, Vol. 9, Theresa K. Tonge, Lorre S. Atlan, Liming

M. Voo, Thao D. Nguyen, ”Full-field bulge test for planar anisotropic tissues: Part

I Experimental methods applied to human skin tissue”, Pages 5913-5925, Copyright

(2013), with permission from Elsevier.88 An early version of this chapter also appeared

in my master’s thesis, ”An inflation test method for the evaluation of the anisotropic

properties of human skin tissues”.87 A method to fit material parameters to the stress

resultant - stretch data will be detailed in Chapter 3.

2.1 Introduction

The characterization of human skin biomechanics is essential for a wide variety

of applications, from modeling the tissue-device interface of medical devices to tissue

engineering. The anisotropic properties of skin arise from the collagen-elastin fiber

microstructure and can have important implications for applications such as creating

accurate models of an amputee’s residual limb, quantifying changes in microstructure

during scarring, designing artificial skin, and imaging for cancer detection. The out-

ermost layer of the skin, the epidermis, is 70-120 µm thick and composed primarily

of cells. The 1-4 mm thick dermis is the thickest component of skin and is com-

prised of a collagen-elastin fiber network embedded in a ground matrix of hydrated

proteoglycans.91 The network consists predominantly of collagen, which contributes
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70-80% of the dry weight of skin while elastin contributes to 2-4%. Scanning electron

microscopy has shown that collagen fibers are arranged in the plane of the dermis.92

The dermis, and specifically the collagen-elastin network, is thought to dominate the

finite deformation mechanical properties of skin.93

Mechanical experiments have repeatedly demonstrated that skin exhibits a nonlin-

ear and anisotropic stress response.38,94 Much of the current literature concerning the

large deformation response of skin tissue has been determined from in vitro uniaxial

tension tests92,95–98. These tests have the advantage of standard implementation and

straight-forward analysis. Consequently, they are often used to compare the effect

of therapeutic treatments on the tissues, such as the subcutaneous expansion of skin

for grafting95–97 and wound healing.98 Uniaxial tests have also been applied to in-

vestigate the structural origins of the large deformation mechanical behavior of skin

tissues. Experiments paired with SEM imaging of the initial and deformed states

have shown that the nonlinear J-shaped stress response is caused by the recruitment

of crimped collagen fibers of the dermis. Stress is carried by the elastin and ground

matrix in the toe region,99 the initial compliant portion of the stress response, and

by the straightened collagen fibers in the stiffened region.92 Enzymatic subtraction

studies further support that the deformation of collagen is responsible for the large

stress response. Rat skin treated with elastase, which removes the elastin component

of the tissue, exhibits an extended toe region and incomplete elastic recovery but the

same large strain linear region.100
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Most in vitro studies of skin tissue have used animal models, which can have sig-

nificant differences in stiffness relative to human skin.101 For example, Dunn et al.102

carried out uniaxial tests of human skin tissue from the chest. Evans101 compared this

data to that obtained on pig skin by Shergold et al.103 and found large differences in

the stress response, with the pig skin being approximately 30 times stiffer than human.

Similar uniaxial tests have been carried out using human thigh skin,104 rat skin,105

and bovine dermis93 also showed wide variation in stress response, with the pig skin

exhibiting the stiffest and rat skin the most compliant response. Uniaxial tests have

also been used to investigate anisotropy in the stress-strain response of skin tissue

from both animal models and human specimens. The anisotropic behavior of skin has

been attributed to the preferential alignment of collagen fibers in the dermis.92 The

preferred orientations vary throughout the body and have been historically described

by Langer’s lines.16 For example, Dombi et al.106 tested rat skin samples from the

back oriented either parallel or transverse to the spine. Samples were tested to failure

and the collagen content of the tissues was measured. It was seen that specimens

loaded in the direction transverse to the spine exhibited higher tensile strength than

specimens loaded parallel to the spine, and specimens with higher collagen content

correlated with higher tensile strength. Similarly, Annaidh et al.38,94 measured the

stress response of human specimens from various orientations on the back and showed

a large difference between different orientations.

Biaxial testing applies a stress state that is closer to in vivo loading and allows
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for the simultaneous comparison of two material directions of the same sample. Lanir

and Fung20,36 first proposed a biaxial test system consisting of sutures on each edge

of a square specimen of rabbit skin. The skin was stretched via sutures applied to all

edges of a square patch of tissue. Force was applied in the longitudinal and orthogonal

direction of the sample. Force-stretch curves were reported for samples where one

direction was held at the reference width and the other direction was stretched. A

similar biaxial experiment was carried out by Schneider et al.107 on human abdominal

skin. Compared to Lanir’s data from rat skin, human skin stiffened earlier and the

effect of anisotropy was not as pronounced.

To restore excised skin to its in vivo configuration, Reihsner et al.108,109 developed

an experimental setup to apply simultaneous radial loading at 12 points around a

circular sample of human tissue. Like biaxial tension tests, this test produces a

biaxial stress state at the center of the sample, but the multiple grips allow the stiffest

material direction to be identified. Samples removed from the body were extended

from the relaxed state back to the in-vivo configuration while force was monitored.

The stiffest direction measured was interpreted as the average fiber direction over the

sample and incremental elastic constants were reported. Comparing data from these

tests to the uniaxial tests described previously is difficult because of the different stress

state, and even within human uniaxial tests, a wide range of stress-strain behavior is

observed, likely due to the different body locations tested. A similar radial test has

been applied in vivo,110 as well as indentation111 and suction112 tests. These tests
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recruit subcutaneous tissues in addition to skin and require finite element analysis to

extract material properties.

Bulge testing also applies a biaxial stress state when the radial stress compo-

nents are small compared to those in-plane. Radial stresses are negligible for thin

membranes and zero at the outer surface of the tissue. The fiber direction can be

experimentally determined from the bulge test, but unlike the twelve-point test de-

veloped by Reihsner and coworkers, bulge testing allows for complete fixation of the

edges of the tissue. This may prevent microstructural rearrangements with loading,

and mitigate the effects of preconditioning. Preconditioning, or repeated loading prior

to testing, is typically used to obtain repeatable test results from uniaxial and biaxial

tests. Previous inflation tests on ocular tissue have shown repeatable measurements

of the stress response with negligible effects from preconditioning.25,26 Bulge tests

are not commonly used to characterize the mechanical behavior of skin tissues. At

least two studies have applied bulge testing to skin but have not determined the

stress-strain response nor investigated the mechanical anisotropy.113,114

Bulge testing is typically used to to characterize the isotropic, elastic properties of

metallic115–117 and polymer thin films118–120 that can be modeled as thin membranes.

To calculate the membrane stresses, it is assumed that the membrane deforms into

a spherical cap. This allows the principal stretches to be calculated from the differ-

ence in the arc length of the deformed cap and the initial specimen diameter117 or

the gradient of displacements measured from grid markers on the material surface.19
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Stresses can be calculated from the applied pressure by assuming a deformed spher-

ical shape and neglecting the effects of bending.121 However, bending effects may

dominate for an inflated film, depending on the thickness and bending stiffness of the

material.122 In cases where the material is too thick to assume membrane behavior

and large deformations are present, inverse finite element methods have been applied

to incorporate the effects of bending in calculating the material properties from the

pressure-displacement response.123 Bulge testing has been applied to many biological

tissues such as canine pericardium,124 canine jugular vein,125 and murine pulmonary

arteries.24 These studies assumed the tissue could be treated as isotropic and utilized

the spherical cap membrane stress approximation to determine stress-strain behavior.

Recent bulge testing methods have advanced to characterize the anisotropic prop-

erties of fibrous tissues. The orientation of the stiffest material direction in the plane

of the tissue is determined from the deformed shape using 2D images of the deformed

profile in 2-6 planes24,126 or Moire interferometry.23 For example, Zioupos et al.23

used Moire interferometry to determine the stiffest material orientation of bovine

pericardium. The authors demonstrated that the minor axis of the ellipsoid formed

by inflation of a circular sample corresponded to the preferred fiber orientation using

polarized light microscopy. Similarly, Drexler et al.24 determined the stiffest direc-

tion of rat extrapulmonary arteries by imaging the profile of the inflated tissue at

30°increments. The minor axis of the ellipsoid was determined from the angle for

which the profile of the tissue was minimized. Rather than determine the stiffest di-
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rection of the tissue, Marra et. al.126 imaged the profile of porcine aortic tissue in the

axial and circumferential directions to compare these anatomical orientations directly.

For all three studies, the normal strain components along the stiffest and least stiff

directions23,24 or axial and circumferential directions126 were calculated globally from

the arc length of the deformed tissue compared to the diameter of the undeformed

tissue. The normal components of the membrane stress along these same directions

were calculated from the pressure and deformed radii of curvature. However, using

the membrane approximation ignores the effect of bending on the stress response of

thick samples. Later work by Bischoff et al.127 accounted for bending in the same

experiment developed by Drexler et al. by utilizing inverse FEA analysis to determine

material parameters from bulge test data. The inverse FEA method is more accurate

than the membrane stress approximation but less efficient.

This work presents a bulge test method capable of repeatable measurements of

the anisotropic nonlinear properties of human skin. The method utilizes stereoscopic

Digital Image Correlation (DIC) to obtain full-field displacement measurements for

the surface of the inflating tissue. The full-field measurements allow for the determi-

nation of the in-plane material directions of the tissue as well as the calculation of

local strains and curvatures in the material directions. This generalizes an approach

previously applied to isotropic hyperelastic elastomers128 to the anisotropic case com-

monly seen in biological tissues. The method also improves upon works where strains

were measured globally.23,24,126 The curvatures can then be used to calculate stress
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resultants in both directions. Unlike the membrane stress, stress resultants account

for the stress gradient caused by bending moments and can be determined entirely

from the curvature and inflation pressure if the effect of transverse shear stresses are

small. In this Chaper, we present experimental stress resultant-stretch data for hu-

man skin specimens. In Chapter 3, we will detail a method to determine anisotropic

material properties by fitting the resultant stress-stretch response to a stress-strain

constitutive law.

2.2 Methods

2.2.1 Donor Tissues and Sample Preparation

Six full thickness specimens of human skin tissue were sourced through the Na-

tional Disease Research Interchange (NDRI) from Caucasian donors between 43 and

83 years of age. Square specimens, 10x10 cm, were procured within 24 hours post-

mortem from the back torso, and the direction of the vertical body axis (Fig. 2.1)

was marked on the specimen. For 3 specimens, the location of the specimen on the

back was also indicated. Tissues were immediately flash frozen and shipped on dry

ice. Upon delivery, tissues were stored at -20°C until use. Previous studies on storage

conditions and mechanical properties of skin tissues have found that mechanical prop-

erties were minimally affected if the tissue was frozen quickly after procurement.129

Table 2.1 lists the age, race, and sex of the donor for the six specimens.
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Vertical Body Axis (Y)

Horizontal Body Axis (X)

Fiber 

(X’)

Perpendicular 

(Y’)

ф

Figure 2.1: Definition of the material coordinate system with respect to the body
axes on the back torso: the fiber direction (X ′) and perpendicular direction (Y ′) are
defined with respect to the horizontal body axis by the dominant fiber direction angle
φ.

Table 2.1: Donor and specimen information.

Age Gender Race Thickness [mm] Location

43 M C 4.86 ± 0.32 Lower Back
44 M C 4.38 ±0.27 Lower Back
59 F C 5.18 ± 0.56 unknown
61 M C 2.01 ± 0.15 Left Upper Back
62 F C 2.95 ±0.42 unknown
83 M C 2.43 ± 0.50 unknown

Tissue specimens were thawed in phosphate buffered saline (PBS) overnight at

4°C prior to testing. The adipose tissue was removed using fine dissectors. Tissue

thickness was evaluated by averaging four measurements taken at the center of each

edge of the tissue with a dial caliper (Mitutoyo 505-671, 0.03 mm accuracy). Caliper

measurements were recorded when the caliper was visibly determined to make contact

with the specimen. The calipers measurements were made three times at each location

and the average of all the measurements was reported as the thickness. It has been
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horizontal

vertical

(a) (b)

Figure 2.2: (a) Acrylic fixture with 7.5 cm aperture, and (b) trimmed skin specimen
speckled with graphite powder and glued to fixture, with horizontal and vertical body
axes marked.

shown that with correct technique, a non-rotating Mitutoyo gauge performed as well

as more complicated measurement techniques such as a custom gauge with high-

resolution contact-force measurement.130 Table 2.1 lists the averaged thickness for the

6 specimens. The standard deviations between all four locations were comparable with

the measurement error (the standard deviation of the three repeated measurements);

thus the specimens were assumed to be uniform in thickness. Specimens were

glued to a Plexiglass ring of 7.5 cm inner diameter, 9.5 cm outer diameter and 5

mm thickness (Fig. 2.2). The DIC coordinate system was set such that the Y axis

corresponded with the vertical body axis (Fig. 2.1). This enabled the determination

of displacements and strains with respect to the body axes. In addition to a layer of

glue between the tissue surface and the fixture, the tissue was scored with a scalpel

at approximately 5 mm intervals along the circumferential edge of the fixture. These
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Figure 2.3: Custom pressure-controlled inflation system, including pressure cham-
ber, pressure transducer, humidity chamber, and two stereo cameras for Digital Image
Correlation.

scores were impregnated with glue to produce a rigid boundary condition through

the thickness of the tissue. Visual inspection of the tissue showed that the glue did

not diffuse into the specimen. The excess tissue was trimmed and a final layer of glue

applied at the edges of tissue (Fig. 2.2). The specimen and holder were mounted

onto a customized pressurization chamber (Fig. 2.3).

The specimens were inflated by an MTS Insight 5 driven syringe (MTS, Eden

Prairie, MN, USA) injection of PBS into the pressurization chamber. Pressure was

monitored at the chamber by a TJE pressure transducer (Honeywell, Morristown, NJ,

USA) with 2 psig range and ± 0.002 psig accuracy. The loading regimen was pre-

scribed by TestWorks4 using manually tuned Proportional-Integral-Derivative (PID)

control parameters optimized to the protocol. Pressure and pressure-rate were con-

40



CHAPTER 2. A FULL-FIELD BULGE TEST METHOD FOR THE
EXPERIMENTAL CHARACTERIZATION OF HUMAN SKIN TISSUES

Table 2.2: Temperature and humidity conditions during testing.

Sample Temp (°F) Humidity

43/M 76 42%
44/M 78 50%
59/F 74 34-26%
61/M 75 36%
62/F 79 45-52%
83/M 76 15%

Average 76.3 37%
Std. Dev. 1.9 13 %

trolled by the displacement of the MTS crosshead based on feedback from the pressure

transducer.

Samples were tested inside a Plexiglass chamber for humidity monitoring and

control (Fig. 2.3). Water-logged insulation material was placed in the chamber to

provide elevated humidity conditions. The humidity level was controlled by varying

the volume and temperature of water held within the insulation material. A tempera-

ture and humidity gauge (McMaster-Carr, Elmhurst, IL, USA) with 2°F temperature

accuracy and 8% humidity accuracy was mounted at the top of the chamber. The in-

terior surface of the humidity chamber was treated with anti-fog spray (Speedo, New

York, NY, USA) prior to testing to prevent condensation. No fogging was observed

on the plexiglass chamber during testing. Preliminary tests comparing the effects of

the plexiglass chamber on the DIC measurements showed that imaging through the

plexiglass imparted a small consistent shift to the displacements measurements but

did not alter the strain measurements. Samples were tested at a targeted relative
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Figure 2.4: Schematic of pressure loading regimen. Samples were loaded from a
baseline pressure of 0.276 kPa to a maximum pressure of 5.516 kPa at a rate of 0.069
kPa/s. Samples were held for 15 minutes at the baseline pressure before, between,
and after each load-unload cycle.

humidity of 40% to ensure tissue hydration. However, due to difficulty in controlling

the humidity level, the humidity in the chamber ranged from 15% to 52%. Exact

temperature and humidity conditions for each test can be found in Table 2.2. To as-

sess the effect of humidity, three specimens were retested at multiple humidity levels

ranging from 15%-100%. It was observed that the variation with humidity level did

not impact the mechanical behavior of the tissue (see Section 2.3.2) .

The tissue specimen was brought to a baseline pressure of 0.276 kPa and held

for 15 minutes prior to testing to ensure the specimen was at equilibrium.131 It was

desired to begin the test from a planar reference state. The baseline pressure was

applied to prevent the specimen from buckling under its own weight. The specimens

were subjected to three load-unload cycles at a rate of 0.069 kPa/s from the baseline

pressure to a maximum pressure of 5.516 kPa. Each specimen was held at the baseline

pressure of 0.276 kPa for 15 minutes between each cycle to allow for specimen recovery

(see schematic in Fig. 2.4). The three loading cycles were used to assess the effects

of preconditioning on the measured response.
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The deforming specimen surface was imaged by two stereoscopically arranged

cameras with 1/1.8” image sensors (Point Grey, Richmond, BC, Canada) and 16 mm

focal length lenses (Edmund Optics, Barrington, NJ, USA) at an aperture of f/8.

The optical axes of the cameras were positioned 38 cm above the chamber and 7.5 cm

apart, such that the total angle between the two cameras was 12°. This configuration

had a depth of field of 5.8 cm, sufficient to capture the deformations of the compliant

tissue. Images were collected during testing at a rate of 0.5 Hz by VicSnap 2009 and

correlated by Vic3D 2009 (Correlated Solutions Inc., Columbia, SC, USA).

The error in the DIC displacement measurements was evaluated by comparing the

displacements between two pictures taken within 2 seconds with no pressure change

(no deformation). The measurement error was defined at the apex as,26

Measurement Error = ±
√

(U2 − U1)2 + (V2 − V1)2 + (W2 −W1)2 (2.1)

where U1, V1 and W1 are the displacement components in laboratory coordinates for

the first image taken, and U2, V2 and W2 are the displacement components for the

second image taken. The average error at the apex for all tests was found to be ±

3.75 µm.
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2.2.2 Data Analysis

The bulge test measured the components of the displacements in body axes co-

ordinates (Fig. 2.1), providing the U , V , and W components of the displacement

field in X, Y , and Z directions. The inflation of the circular planar specimens to an

elliptical dome indicated the presence of material anisotropy. The material axes were

defined by the major and minor axes of the ellipsoidal shape, which correspond to the

most compliant and stiffest directions of the tissue, respectively. The material axes

were determined by fitting an analytical general ellipsoid to the deformed positions

of the specimen surface at the maximum pressure (5.516 kPa) using the function

ellipsoid fit.m 1, which returned the magnitude and direction of the principal radii.

The dominant fiber direction was identified for the specimen from the direction of

the minor axis in the specimen plane, and the dominant fiber orientation angle φ was

defined with respect the horizontal axis, X (Fig. 2.1).

The in-plane components of the Green-Lagrange strain tensor were calculated for

the specimen surface from the DIC displacement field. For each test, the U , V , and W

DIC measured displacement components were obtained for a grid of material points

evenly spaced at 0.570 mm intervals at each pressure step. The displacements were

smoothed over a grid with 0.25 mm spacing. To obtain the displacement components

in the material coordinate system (Fig. 2.1), the displacement field was rotated by the

angle φ to obtain displacement component U ′ in the fiber direction X ′ and displace-

1Yury Petrov, http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit
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ment component V ′ in the perpendicular direction Y ′. The out-of-plane displacement

component W in the Z direction was not affected by the coordinate transformation.

The normal and shear strain components of the specimen surface were calculated

from the rotated displacement field as:

Ef = EX′X′ = ∂U ′
∂X′ + 1

2

[(
∂U ′
∂X′
)2

+
(
∂V ′
∂X′
)2

+
(
∂W
∂X′
)2
]
,

Ep = EY ′Y ′ = ∂V ′
∂Y ′ + 1

2

[(
∂U ′
∂Y ′
)2

+
(
∂V ′
∂Y ′
)2

+
(
∂W
∂Y ′
)2
]
,

Efp = EX′Y ′ = 1
2

[
∂U ′
∂Y ′ + ∂V ′

∂X′ + ∂U ′
∂X′

∂U ′
∂Y ′ + ∂V ′

∂X′
∂V ′
∂Y ′ + ∂W

∂X′
∂W
∂Y ′
]
.

(2.2)

The stretch along the fiber and perpendicular directions were calculated from the

strain components in eq. (2.2) as,

λf =
√

2Ef + 1,

λp =
√

2Ep + 1.

(2.3)

The displacement gradients in eq. (2.2) were evaluated by fitting the displacements

across the X ′ or Y ′ axis to a 9th order polynomial, and differentiating analytically.

To validate this method, the displacement gradients were also calculated using the

central difference approximation,

∂U ′i
∂X ′j

=
U ′i(k + 1)− U ′i(k − 1)

X ′j(k + 1)−X ′j(k − 1)
. (2.4)
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Figure 2.5: Strain calculated across the fiber direction and perpendicular direction
of a representative specimen (44/M). The displacement derivatives were computed by
fitting the displacements to polynomials and taking the derivatives analytically. The
calculation was compared to derivatives computed by the central difference method
for method validation.

The two strain measures are shown for a typical specimen in Fig. 2.5. Results

Table 2.3: Range of strain measurement within ± 1 mm of the apex.

Sample Ef range Ep range

56/F 0.46% 0.06%
44/M 0.30% 0.88%
61/M 0.02% 0.10%
83/M 0.29% 0.34%
62/F 0.29 % 1.60%
43/M 0.40% 0.17%

Average 0.29% 0.53%
Std. Dev. 0.15% 0.61 %

from the two methods of strain calculation differed by less than 10%. The central

difference method was more susceptible to experimental noise. Therefore, the strain

components were calculated from the gradients of the smoothed displacement field

at the apex. These values were calculated at all pressure steps. The variation of
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the strain measurements calculated over a range of ± 1 mm of the apex (Table 2.3)

ranged from 0.06% variation to 1.6% variation among all of the specimens.

The stress state developed during bulge testing is typically determined by mod-

eling the deformed specimen as a thin membrane. This is advantageous because

the membrane stresses can be determined from the applied pressure, curvature, and

thickness of the deformed geometry. However, this approach neglects the presence of

stress gradients caused by bending. Bending moments generate a stress gradient that

would cause the membrane stresses to underestimate the stresses at the outer surface

of the tissue where strains are measured. The stress gradients can be large even for

a thin material due to the nonlinear stress response. To account for the presence of

non-negligible stress gradients, we chose to determine the stress resultants in the fiber

and perpendicular directions rather than the membrane stress. These stress resul-

tants are related to the stress components in the fiber and perpendicular directions,

σf and σp, by,

Nf =

∫ h/2

−h/2
σf (z) dz,

Np =

∫ h/2

−h/2
σp (z) dz.

(2.5)

where h is the thickness of the tissue.

To determine the stress resultants, the inflated tissue specimen was modeled as a

thin shell. At the apex, far away from the clamped boundaries, the transverse shear
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stresses for the pressurized shell are negligible. The stress resultants are statically

determined from the inflation pressure P and the curvature, Kf and Kp, at the apex

in the fiber and perpendicular direction by the equations,

N exp
f =

P

2Kp

,

N exp
p =

P

Kp

(
2Kp −Kf

2Kp

)
.

(2.6)

These solutions were initially derived for axisymmetric thin shell problems,132–134

where the curvatures Kf and Kp are the principal radii of curvature for a surface of

revolution. However, the equations have been generalized to convex shells of arbi-

trary smooth shape if Kf and Kp are local principal radii of curvatures at the point

of interest.135 These relations have been used by a number of researchers to calcu-

late the stress resultants for non-axisymmetric geometries, including the deformed

shapes of aneurisms136 and aortic tissues subjected to inflation testing.126 Lu and

co-authors135–138 applied finite element analysis to show that the stress resultants cal-

culated by eq. (2.6) for generalized surfaces with positive curvatures were statically

determined and did not depend on the specified material model or material parame-

ters. In Chapter 3, we will present a finite element study to further validate the use

of eqs. (2.6) to determine the local stress resultants evaluated for the bulged skin

specimen.

The local curvatures were calculated at the apex for the deformed specimen by

fitting different 2D ellipses to the meridians in the fiber and perpendicular directions
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using the MatLab function fit ellipse.m 2. For each meridian, the ellipse fit returned

the radii, a and b, and the angle of tilt θ of the ellipse. The principal curvatures were

calculated from the geometrical parameters as,134

Kf =

(
a2
f sin2(θf ) + b2

f cos2(θf )
)3/2

a2
fb

2
f

,

Kp =

(
a2
p sin2(θp) + b2

p cos2(θp)
)1/2

a2
p

.

(2.7)

These equations are equivalent when the angles of tilt θf and θp are zero. To calculate

stress resultants, the measured pressure was tared by the baseline pressure, resulting

in zero stress and zero strain at the reference state. From the full-field displacements,

the middle 75% of the specimen surface was used to fit the ellipses to avoid edge

effects. We also found that using less than 50% of the specimen surface gave poor

fits. Alternatively, the stress resultants can be determined from the solution for a

general ellipsoidal shell.134 The generalized ellipsoidal model was used by Drexler el.

al.24 to determine the stress response of inflated arteries. This requires the deformed

geometry to be fit to a general 3D ellipsoid. For most specimens in this study, the

general ellipsoid provided a poor fit to the deformed geometry (Fig. 2.6), which can

generate large errors in the stress resultant calculations. The accuracy of applying eq.

(2.6) to approximate the stress resultants and comparison to a generalized ellipsoid

stress resultant calculation will be addressed in Chapter 3.

2 Ohad Gal, http://www.mathworks.com/matlabcentral/fileexchange/3215-fitellipse
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Figure 2.6: Comparing the 3D ellipsoidal fit to the deformed surface and 2D ellipse
fits to the deformed meridians of a representative skin specimen. The ellipsoidal fit
provided an accurate representation of the deformed meridian in the (a) fiber direction
but not the (b) perpendicular direction, whereas the 2D ellipse fits accurately repro-
duced the deformed meridian in both the (c) fiber direction and (d) perpendicular
direction.

2.3 Results

A total of six specimens from six Caucasian donors were tested, identified by

(Age/Sex). Preconditioning and humidity were found to have a negligible effect on

the mechanical response. The fiber orientation and anisotropic stress resultant-stretch

relationship was characterized and the degree of anisotropy appeared to vary substan-
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tially between specimens.

2.3.1 Preconditioning
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Figure 2.7: Results of repeated loading for representative specimen (59/F) at a
loading rate of 0.069 kPa/s. The inflation response is negligibly altered by precondi-
tioning.

Figure 2.7 plots the apex displacement, defined as the out-of-plane displacement

component (W) of the apex, for the first three preconditioning loading cycles for the

(59/F) specimen. The maximum apex displacement measured over the three load

cycles was 15.73 ± 0.0968 mm, or a 0.615 % variation compared to the mean. These

results indicate that preconditioning minimally affected the mechanical response of

the tissue at the maximum displacement. Consequently, the first loading curve was

used to calculate the stress resultant and strain response.
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Figure 2.8: Result of varying humidity after re-testing thawed frozen specimens for
(a) 43/M (b) 61/M (c) 83/M. The humidity levels were applied in a random order
indicated by the order listed in the legend and the mechanical response is not seen to
vary with humidity level.

2.3.2 Humidity Effects

Figure 2.8 shows the apex displacement with pressure for three specimens tested at

varying humidity levels. The variation between tests was small compared to the max-

imum apex displacement. The variation also appeared random and did not correlate

with humidity level, indicating that humidity effects were smaller than experimental

error. We suspect that the displacement response was insensitive to the humidity level
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because the mechanical behavior of skin tissue under large deformation is dominated

by the dermis, which remained hydrated by PBS in the inflation chamber throughout

the test (Fig. 2.3). A two-tailed paired student t-test comparing the maximum apex

displacement of specimens tested at the lowest humidity (30-40%) and the highest

humidity (90-100%) levels did not reject the null hypothesis that the two groups are

equivilent (p = 0.38). However due to the limited sample size of three, the statistical

power of the result was low, 0.03. A total of 200 samples would have to be tested to

achieve a power of 0.80.

2.3.3 Full-field Displacement Contours and Fiber

Angle

Figures 2.9-2.10 plot the 3 displacement components in body axes coordinates.

Most of the specimens deformed from a circular sheet to an ellipsoidal dome indicating

the presence of material anisotropy. This is seen in the contours of the out-of-plane

displacement component (W ), which form concentric ellipses rather than concentric

circles that would be observed if the deformed shape was a spherical cap. The material

axes of the elliptical contours were rotated from the body axes. The contours for the

in-plane vertical displacement component (V ) and horizontal displacement component

(U) were symmetric with respect to the major and minor axis. This indicates that

the major and minor axes were the most compliant and stiffest material directions,
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43/M, Fibers 0°from horizontal body axis:

] ] ]

44/M, Fibers 0°from horizontal body axis:

] ] ]

59/F, Fibers -70°from horizontal body axis:

] ] ]

Figure 2.9: Contours of displacement components in the body axis coordinates (U,
V, W) at the maximum pressure. The anisotropy of the tissue is evident from the
rotated U and V contours and the elliptical W contours [continued in Fig. 2.10].
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61/M, Fibers 64°from horizontal body axis:

] ] ]

62/F, Fibers -12°from horizontal body axis:

] ] ]

83/F, Fibers -24.6°from horizontal body axis:

] ] ]

Figure 2.10: Contours of displacement components in the body axis coordinates
(U, V, W) at the maximum pressure. The anisotropy of the tissue is evident from the
rotated U and V contours and the elliptical W contours [continued from Fig. 2.9].
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Table 2.4: The dominant fiber angle determined from the deformed tissue geometry
for each specimen, compared to body location if known.

Sample Fiber Angle (from horizontal body axis) Location from Back
43/M 0°% Lower Back
44/M 0°% Lower Back
59/F 70°% unknown
61/M 64°% Left Upper Back
62/F -12°% unknown
83/M -25°% unknown

respectively. The orientation of the minor axis was interpreted to be the dominant

fiber direction of the specimen. The orientation of the dominant fiber direction was

measured with respect to the horizontal body axis and results are reported in Table

2.4. Location information was only available for three specimens. It was observed

that for these three donors, lower back specimens exhibited a horizontal fiber direction

while the upper back specimen exhibited diagonal fiber direction. This correlates

with what is known from Langer’s Lines.16 For specimens without back location

information, the orientations can be inferred from the fiber angle by comparison with

Langer’s lines orientations. Specifically, we inferred that 59/F is from the left upper

back, while 62/F and 83/M may be from the right upper back.

2.3.4 Stress Resultant - Stretch Relationship

The experimentally calculated in-plane stress resultants are plotted against the

experimentally measured in-plane stretches at the apex for the first loading curve

of each specimen in Fig. 2.11 for all six specimens tested. The stress resultants
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Figure 2.11: Experimentally calculated in-plane stress resultants vs experimentally
measured stretches in both the fiber and perpendicular directions for (a)43/M (b)
44/M (c) 59/F (d) 61/M (e) 62/F (e) 83/M. Variation in stiffness and anisotropy is
evident between specimens.
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Table 2.5: Comparing the stiffness and nonlinearity of the stretch-stress resultant
plots: slope of stiffening curve in fiber direction, slope of stiffening portion of curve
in perpendicular direction, and transition stretch marking the end of the toe region
and onset of stiffening.

Sample Fiber Direction Perpendicular Direction
Stiffness [kPa-mm] Stiffness [kPa-mm]

Toe Linear Transition Toe Linear Transition
Region Region Stretch Region Region Stretch

43/M 178.6 8504.3 1.07 104.2 1399.5 1.11
44/M 77.6 19223.0 1.16 86.5 1480.7 1.31
59/F 103.2 11471.0 1.10 73.4 4145.0 1.21
61/M 73.7 12686.0 1.09 42.6 8663.6 1.14
62/F 48.4 6045.2 1.21 53.7 2233.0 1.27
83/M 272.2 13132.0 1.03 187.7 24481.0 1.05

Average 125.6 11843.6 1.11 91.4 7067.1 1.18
Std. Dev. 84.6 4510.8 0.07 52.1 8955.8 0.10

and stretches are shown along the fiber direction and in the perpendicular direction.

The stress response varied greatly between specimens in the degree of anisotropy,

nonlinearity, and stiffness. To evaluate the differences between specimens, the stiffness

of the stress resultant response was defined as the secant slope of the stress resultant

curves. The stiffness of both the initial toe and linear region were calculated for the

fiber and perpendicular directions. The transition stretch between the toe and linear

regions was defined as the stretch at which the stress resultant exceeded the linear

fit for the toe region by 3 kPa-mm. The stiffness for the toe region was calculated

by fitting a straight line to the stretch-stress resultant curve prior to the transition

stretch. For the linear region, the stiffness was calculated from the final 0.01 stretch

range of the stress resultant curve, e.g. from λf = 1.34-1.35 for 44/M in the fiber

direction. The results for these 6 measures are listed for all specimens in Table 2.5.
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Figure 2.12: Parameters from Table 2.5 plotted against age with linear regression
for (a) stiffness of the toe region, fiber direction, (b) stiffness of the toe region, per-
pendicular direction, (c) stiffness of the linear region, fiber direction, (d) stiffness of
the linear region, perpendicular direction, (e) transition stretch from toe to stiffened
region, fiber direction, and (f) transition stretch from toe to stiffened region, per-
pendicular direction. In general the stiffness increase with age, while the transition
stretch decreases with age.
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Table 2.6: Comparing the anisotropy of the stretch-stress resultant plots: ratio of
the stiffness in the toe and linear regions.

Sample Stiffness Ratio (Fiber/Perpendicular)
Toe Region Linear Region

43/M 1.72 6.08
44/M 0.90 12.98
59/F 1.41 2.77
61/M 1.73 1.46
62/F 0.90 2.71
83/M 1.45 0.54

Average 1.35 4.42
Std. Dev. 0.37 4.59

The limited number of specimens precludes conclusions regarding the effect of

age, gender, and location on the mechanical behavior of skin tissues; however several

observations can be made. Fig. 2.12 plots all 6 measures against specimen age. These

plots indicate that older specimens appear to stiffen sooner, as evidenced by a decrease

in the transition stretch with age for both directions. The specimens also appeared to

have higher stiffness with age, as three of the four stiffness measures increased with

age. Additionally, older specimens appear to be less anisotropic than other specimens

tested. Table 2.6 lists the ratio of the fiber to perpendicular stiffnesses of the stretch-

stress resultant curves for the toe and linear regions to provide a comparison measure

for the anisotropic stress response and its variation with age. Figure 2.13 plots these

stiffness ratios with age. The toe region is on average more isotropic than the linear

region, and the anisotropy ratio for the toe region does not change significantly with

age. In contrast, the anisotropy ratio in the linear region exhibits a noticeable decrease

with age. Specimens from younger donors exhibited a considerably more compliant
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Figure 2.13: Ratio of fiber stiffness over perpendicular stiffness from Table 2.6,
plotted against age with linear regression for (a) toe region and (b) linear region.
There is little change in the stiffness ratio with age in the toe region, and a decrease
in stiffness ratio with age in the linear region.

stress response in the perpendicular than fiber direction.

It also appears that anisotropy may be correlated with body location. Referring

to Tables 2.4 and 2.6, specimens from the lower back were the most anisotropic.

For a specimen from the lower back (44/M), the stiffness ratio for the linear region

was 12.98. The stiffness ratio for a specimen from the left upper back (61/M) was

a considerably smaller 1.46. These trends will be analyzed further in Chapter 3

by fitting the stress resultant - stretch relationships to a hyperelastic anisotropic

constitutive model.

2.4 Discussion

The experimental method presented here improves upon previous bulge tests of

planar tissues. DIC was used to obtain full-field displacement data, from which
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local curvatures and surface strains were calculated. The dominant fiber direction

was determined from the test and data was analyzed in the material coordinates.

This improved upon works where strains were measured globally23 or where cameras

at fixed locations were used to measure strains and curvatures.126 Here we limited

our analysis to the apex, but this analysis could be used to evaluate strain and

stress resultants at other points on the surface of the tissue sufficiently far from

the fixed edges. The mechanical response of the tissue was minimally affected by

preconditioning. We suspect that the fixed boundary condition provided by bulge

testing limits rearrangements of the collagen fibers, that might contribute to the

typical preconditioning response. This is supported by Tower et al.27 who showed

a rearrangement of fibers under cyclic uniaxial loading. It follows that by limiting

such microstructure rearrangement, the fiber structure tested by bulge testing may

be more representative of the in vivo fiber structure.

The small number of specimens tested precluded statistical comparison for age,

race, and sex; however older specimens generally exhibited a stiffer response in both

the fiber and perpendicular directions. This observation is consistent with recent

mechanical characterizations of the sclera54 arteries139 and aorta140 and has been pre-

viously observed for skin in vivo.141 Age-related stiffening is likely due to the increase

in collagen cross-linking with age.142 It was also observed that skin becomes more

isotropic with age. This could also be explained by increased cross-linking between

adjacent fibers. However, the degree of anisotropy is known to depend strongly on
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tissue location, which may have been a confounding factor in this study. It does not

appear that the mechanical response differed among male and female donors. Al-

though other soft tissues such as brain tissue,143 arteries,144 and ligaments145 have

been observed to have gender-specific properties, in vivo studies on skin tissue146

have also shown no gender dependence. In Chapter 3, we will introduce an analytical

method to quantify these properties by determining material parameters from the

bulge test.

There are limitations of bulge testing compared to uniaxial or biaxial testing. The

bulge test cannot prescribe a specific biaxial stress state nor multiple biaxial stress

states. The need for some pre-inflation to prevent a buckled reference state is another

disadvantage of the bulge test. It has been previously reported for thin films that

the error introduced by pre-inflation can be significant.147 Stress can not be obtained

directly in a bulge test because of bending and finite thickness effects. Bending

stiffness can be significant for thick tissue specimens inflated from a planar state and

exhibiting a nonlinear stress response. Here, we applied an ellipsoidal shell model to

calculate the stress resultants from the applied pressures and measured curvatures.

The stress resultant calculation depends directly on the accuracy of the curvature

measurements. In Chapter 3 we will present an analytical method to obtain material

parameters for a hyperelastic model from the stress resultants while accounting for

bending, and investigate two different distributed fiber model approaches to describe

the nonlinear anisotropic properties of human skin tissues.
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2.5 Conclusions

We have developed a bulge test method with 3D DIC measurements to obtain the

stress resultant and strain response of human skin tissues. The methods presented

in this Chapter are sufficiently general to be applied to other planar tissues such as

pericardium or gastrointestinal tissues. We have shown that the mechanical properties

of human skin tissues obtained by bulge testing are not significantly impacted by

ambient humidity or mechanical preconditioning. We applied the method to measure

the stress resultant and stretch response of the tissue along the fiber and perpendicular

directions and observe trends in stiffness with age. A key limitation of the bulge test

method is the difficulty of calculating stress and material parameters due to the

presence of bending effects. In Chapter 3, we will present an analytical method based

on a thin shell model for determining the nonlinear anisotropic material parameters

from the stress resultant and strain.
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Chapter 3

Comparison of two structural

constitutive modeling approaches

for human skin tissues

This chapter develops an analytical method to fit the parameters of a constitutive

model to the bulge test data presented in Chapter 2 while accounting for bending.

Both a Fully Integrated distributed fiber model (FI model) and a generalized structure

tensor model developed by Gasser, Odgen and Holzafel (GOH model) were fit to bulge

test measurements of human skin tissue. Finite element analysis was used to validate

the analysis method and to show that only the fully integrated distributed fiber model

was capable of describing the experimentally measured anisotropy of human skin

tissue. The chapter is reprinted from Acta Biomaterialia, Vol. 9, Theresa K. Tonge,
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Liming M. Voo, Thao D. Nguyen, ”Full-field bulge test for planar anisotropic tissues:

Part II A thin shell method for determining material parameters and comparison of

two distributed fiber modeling approaches”, Pages 5913-5925, Copyright (2013), with

permission from Elsevier.89

3.1 Introduction

Chapter 2, presented a bulge test method for planar tissues and applied the

method to characterize the stress resultant- stretch response of human skin tissues.

In this Chapter, we present an analytical method to determine the parameters of a

hyperelastic constitutive model for the anisotropic, nonlinear stress response of the

tissue from the bulge test measurements. The method was applied to two distributed

fiber models commonly used for collagenous tissues, the fully integrated distributed

fiber model22,148–150 and the pre-integrated Gasser-Ogden-Holzapfel model,28 which

is based on a generalized structure tensor approach.

The majority of bulge test methods have been developed to measure the isotropic

elastic properties of thin metallic films115–117 which undergo small deformations. The

method typically measures the displacement response at the apex to an applied pres-

sure. For sufficiently thin specimens, the effects of bending can be neglected and a

spherical cap geometry can be assumed for the deformed shape. This allows the hoop

strains to be calculated from the difference in the arc length of the spherical cap and
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the diameter of the undeformed specimen. Likewise, the membrane hoop stresses are

statically determined from the pressure, radius of curvature, and thickness.151 For

thicker specimens, where bending stresses are not negligible, the specimen can be

modeled as a plate subjected to a uniformly distributed lateral force. Analytical so-

lutions have been developed by assuming small lateral displacements that relate the

applied pressure to apex displacement in terms of the Young’s modulus and Poisson’s

ratio.152

Bulge testing of polymers and tissues induces large deformations and a nonlinear

stress response. For thin specimens, the effects of bending can be neglected, and

the membrane strains and stresses can be determined analytically by assuming a

spherical cap geometry for isotropic materials23,121 or an ellipsoidal cap geometry for

anisotropic materials.24 The specimen can be modeled as a two-dimensional (2D)

continuum, and the parameters of a 2D hyperelastic model can be determined by

modeling the deformed geometry as a shell and calculating the membrane stress

resultants from the applied pressure and principal radii of curvature.153 Alternatively,

the material parameters of a three-dimensional (3D) hyperelastic constitutive model

can be determined by calculating the membrane stresses from the stress resultants

divided by the deformed thickness. The latter can be evaluated from the undeformed

thickness assuming incompressibility.126 This approach assumes negligible through-

thickness variation in the in-plane stress response.

For soft tissues, the effects of bending on the stress and strain response are exag-
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gerated by nonlinear material behavior. A nonlinear material response can transform

a small linear strain gradient through the thickness into a large nonlinear stress gra-

dient. This has been observed in finite element studies of the inflation response of

isotropic154 and orthotropic hyperelastic128 materials, particularly at low pressures

where bending is the dominant deformation mode for initially planar structures. The

stress state of a shell is not statically determined in the presence of significant bending

moments and transverse shear resultants. Under these more general loading condi-

tions, inverse finite element analysis has proven to be a powerful approach for de-

termining material properties from bulge and inflation tests. The method optimizes

the parameters of a generalized constitutive model to minimize the difference be-

tween the computed and measured surface displacement response.123,127,155 For a 2D

modeling framework, the effects of bending have also been incorporated by assum-

ing that the 2D strain energy density can be decomposed additively into membrane,

bending, and transverse shear contributions.156 Zhou et. al.137 developed a finite

element method for inverse shell analysis to determine the material parameters of

a hyperelastic model that included a Fung potential for the membrane contribution

and quadratic potentials for the bending and transverse shear contributions. Inverse

finite element analysis additionally can consider specimen-specific models with spatial

variation in the specimen geometry, material properties, and microstructural features

such as fiber orientation.157 The major disadvantage of inverse finite element meth-

ods is that they are computationally expensive and time consuming, because both
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the forward elastostatic problem and optimization problem can be highly nonlinear.

The nonlinear behavior of skin tissue is caused in part by its microstructure.92

The extracellular matrix (ECM) of skin tissues is described by a network of long

collagen and elastic fibers in a hydrated proteoglycan matrix. The collagen fibers

are initially crimped at low strains, but as strain levels increase the collagen fibers

become engaged, causing dramatic stiffening of the stress-strain response.92 The fiber

network exhibits a dominant fiber orientation that leads to anisotropic material be-

havior. Previous modeling efforts have described the anisotropic mechanical behavior

of skin using the distributed fiber model for rabbit37 and porcine158 skin, a general-

ized structure tensor model for human skin,38 the Fung orthotropic model for rabbit

skin,32 the Arruda-Boyce 8-chain model for rabbit skin 69,159–161, a structure tensor

model with non-dispersed fibers for rat skin,162 and a model that includes the fiber-

fiber interactions for rabbit skin163. Scanning electron microscope (SEM) studies of

human skin tissue suggest that the distributed fiber model is more representative of

the collagen structure of the dermis, which dominates finite-strain behavior.92,99 In

this work, we examined the ability of three distributed fiber models to describe the

anisotropic nonlinear elastic behavior of human skin tissues.

Distributed fiber models describe the microstructural origin of mechanical anisotropy

by assuming a strain energy density at the fiber-level rather than at the tissue level.

The strain energy density of the fibers is averaged over a continuous probability den-

sity distribution (PDD) of the fiber orientations to obtain the anisotropic component
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of the strain energy density of the tissue. The PDD describes the dominant fiber

orientation and the degree of anisotropy caused by dispersion in the fiber orienta-

tion. When there is no dispersion in the fiber orientation, the distributed fiber model

reduces to a structure tensor model,30 which expresses the strain energy density as

an isotropic function of the deformation tensor and structure tensors denoting the

orientation of discrete fiber families. Lanir37,164 first modeled connective tissue as

a statistical distribution of collagen fibers undergoing affine deformation with the

ground matrix. Since then, distributed fiber models based on a planar orientation

PDD have been applied to the cornea,148 pericardium,149 aortic valves,22 and scleral

tissue.150

The constitutive relations for distributed fiber models involve evaluating an in-

tegral expression over the a unit circle for a planar fiber structure or a unit sphere

for generalized fiber structure. The integral formulation in general does not admit

an analytical solution, except for specific forms of the PDD and fiber strain energy

density,165 and numerical evaluation of the distributed fiber model is computationally

expensive compared to those based on structure tensors. To address this, Gasser et.

al.28 introduced a generalized structure tensor model for a distributed fiber structure,

referred to in this paper as the Gasser-Odgen-Holzapfel (GOH) model. In this model,

a 3D PDD for the fiber orientation is pre-integrated in the reference configuration

over a unit sphere to determine an equivalent generalized structure tensor. For a

fiber structure described by one dominant fiber orientation, the resulting generalized
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structure tensor is a linear mixture of an isotropic tensor representing the fraction

of fibers equally distributed in all orientations and a transversely isotropic structure

tensor for the dominant fiber orientation. The strain energy density of the GOH

model is expressed as an isotropic function of the deformation tensor and generalized

structure tensor. The GOH model has been predominantly applied to arteries,68 but

has also been applied to other tissues such as the cornea,39 and recently to human

skin tested in uniaxial tension38. The GOH model and the analogous fully integrated

(FI) distributed fiber model are equivalent only for planar distributions under equib-

iaxial stretch. Moreover, the two demonstrate good agreement only for cases where

all fibers are loaded in tension and the fiber dispersion is small.40,166

In this paper, we will present an analytical method to determine material pa-

rameters of an anisotropic hyperelastic model from bulge test measurements. The

bulge test measures the surface displacement field under controlled pressurization.

The method fits the parameters of a constitutive relation for the biaxial stress-strain

response to the surface stretch calculated from the displacement gradients and the

in-plane stress resultants calculated from the applied pressure and principal radii of

curvature of the deformed surface. The method accounts for a linear strain gradient

through the thickness caused by the presence bending moments. We will apply the

method to determine parameters of an FI and analogous GOH distributed fiber mod-

els with a planar distribution and a 3D transversely isotropic distribution. The results

will be employed in finite element models of the bulge test to validate the assumptions
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of the analysis method and to compare the ability of the GOH and FI distributed

fiber models to reproduce the experimentally measured bulge test response.

3.2 Methods

3.2.1 Constitutive Models

We compared the ability of three distributed fiber models to describe the nonlinear

anisotropic behavior of skin tissues: an FI model with a planar distribution, a 3D

GOH model with a transversely isotropic distribution, and a 2D GOH model with

a planar distribution. A central assumption of the distributed fiber models is that

the tissue microstructure can be described as a distribution of collagen fibers in an

isotropic incompressible matrix of proteoglycans, elastin, and other ECM proteins.

The collagen fibers are arranged in all orientations in the tissue but exhibit a dominant

fiber direction in the plane of the tissue. The fibers and matrix are assumed to share

the same macroscopic deformation gradient F of the tissue. Furthermore, the strain

energy density of the tissue can be expressed as the sum of a contribution from an

incompressible isotropic matrix phase, represented by a Neo-Hookean potential, and

a model-specific anisotropic potential for the fiber phase,

Ψ =
µ

2
(I1 − 3)− p

2
(I3 − 1) + Ψaniso, (3.1)
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where C = FTF is the right Cauchy-Green deformation tensor. The variables I1 =

C : I and I3 = det [C] are the first and third invariants of the deformation tensor. The

shear modulus µ describes the contribution of the isotropic matrix and the parameter

p is the Lagrange multiplier for the incompressibility constraint.

We assume that the dominant fiber direction and perpendicular direction align

with the principal strain directions. This was verified experimentally for select spec-

imens in Chapter 2 by calculating the shear strain component Efp from the dis-

placement field measured by digital image correlation (DIC). The shear strains were

smaller by an order of magnitude compared to the normal strain components in the

fiber and perpendicular directions. Consequently, a triaxial deformation gradient is

assumed for the following stress analysis in the fiber coordinate system,

F = λfef ⊗ ef + λpep ⊗ ep + λzez ⊗ ez, (3.2)

where λf , λp, and λz are the stretch along the dominant fiber direction ef , perpendic-

ular direction ep, and normal direction ez. The invariants can be expressed in terms

of the stretch components as I1 = λ2
f + λ2

p + λ2
z and I3 = λ2

fλ
2
pλ

2
z.

Away from the clamped boundaries, the deformed specimen is assumed to be in a

state of biaxial plane stress. In the following, the stress-stretch response in the fiber

and perpendicular directions are determined for the FI and GOH models. Following

the theory of hyperelasticity, the Cauchy stress tensor can be determined from the
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strain energy density by,

σ =
2

J
F
∂Ψ

∂C
FT, (3.3)

where J =
√
I3. The stress response in the fiber and perpendicular directions are

obtained by applying the triaxial deformation in eq. (3.2) and the plane stress con-

dition, σz = 0, to determine the incompressibility constraint, p. We also apply the

incompressibility condition, J = 1, to obtain λz = (λfλp)
−1. Therefore the normal

stress components in the fiber and perpendicular directions can be expressed in terms

of the principal stretches λf and λp for each model.

3.2.1.1 Fully-integrated distributed fiber model

The FI distributed fiber model describes a 2D arrangement of collagen fibers in

the plane of the tissue. It is assumed that the distributed fiber structure can be

represented by the semi-circular von Mises distribution function,

ρ(θ) =
exp(b cos(2θ))

2πI0(b)
, (3.4)

where θ indicates the fiber angle in the plane of the tissue defined relative to the

dominant fiber direction ef and b is the concentration parameter for the degree of

fiber alignment along the dominant orientation. The term I0(b) is the modified Bessel

function of the first kind of order zero, Io(b) = 1
π

∫ π
0

exp (b cos(θ)) dθ. The von Mises

distribution function descibes one fiber family and is capable of capturing a range
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of anisotropic behavior, though the true fiber structure is only approximated. The

orientation of each fiber is represented by a unit vector a0(θ) = cos(θ)ef + sin(θ)ep.

The stretch for a fiber oriented θ from the dominant fiber orientation is defined as,

λ2(θ) = C : (a0(θ)⊗ a0(θ)). The fiber stretch can be expressed in terms of the stretch

in the dominant fiber and perpendicular directions as,

λ2(θ) = λ2
f cos2(θ) + λ2

p sin2(θ). (3.5)

A strain energy density is assumed at the level of the fibers. Specifically, we apply

an empirical exponential potential167 to describe the stiffening response of the fibers,

Ψfiber(λ) =
k1

2k2

(
exp

[
k2

(
λ2 (θ)− 1

)2
]
− 1
)
. (3.6)

The fiber parameter k1 has units of stiffness and describes the tensile properties of the

fiber family. The fiber parameter k2 is dimensionless and describes the nonlinearity

of the fiber family, with higher values of k2 indicating that the fibers stiffen at lower

strain values.

The anisotropic contribution of the fiber phase to the strain energy density is de-

fined for the FI model as the integration of the strain energy density of the individual

fibers weighted by the continuous PDD of fiber orientations,

Ψaniso =

∫ π

−π
Ψfiber(λ(θ))ρ(θ)dθ. (3.7)
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Applying eq. (3.3), the Cauchy stress tensor can be evaluated from the strain energy

density as,

σ =
1

J

[
µb− pI +

∫ π

−π

1

λ

∂Ψfiber

∂λ
F (a0(θ)⊗ a0(θ)) FTρ(θ)dθ

]
, (3.8)

where b = FFT is the left Cauchy-Green deformation tensor and J = det [F] = 1 for

the incompressible case. Substituting eqs. (3.7) and (3.2) into eq. (3.8) and applying

the plane stress condition gives the following expression for the stress components in

the fiber and perpendicular directions:

σf (λf , λp)=µ

(
λ2
f−

1

(λfλp)2

)
+2k1λ

2
f

∫ π

−π

(
λ2(θ)−1

)
exp
(
k2(λ2(θ)−1)2

)
cos2(θ)ρ(θ)dθ,

σp(λf , λp)=µ

(
λ2
p−

1

(λfλp)2

)
+2k1λ

2
p

∫ π

−π

(
λ2(θ)−1

)
exp
(
k2(λ2(θ)−1)2

)
sin2(θ)ρ(θ)dθ.

(3.9)

The stress response is composed of an incompressible Neo-Hookean contribution from

the matrix and anisotropic contribution from the distributed fiber structure. Numer-

ical integration is needed to evaluate the anisotropic contribution.

3.2.1.2 3D Gasser-Ogden-Holzapfel Model

The 3D GOH model applies a transversely isotropic PDD, D(θ), to describe the

distribution of collagen fibers, where θ is measured from the fiber direction. The

transversely isotropic PDD is developed by normalizing the semi-circular von Mises
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PDD in eq. (3.4) over the surface of a unit sphere:28

D(θ) =
2ρ(θ)∫ π

0
ρ(θ) sin(θ)dθ

= 4

√
b

2π

exp[b(cos(2θ + 1))]

erfi(
√

2b)
. (3.10)

While the FI model attributes the anisotropic stress response directly to the distri-

bution in fiber orientation, the GOH model describes the anisotropic stress response

using a generalized structure tensor derived from the fiber distribution. This allows

the GOH model to define a closed-form expression for strain energy density at the

tissue level.

To describe the anisotropic structure of the undeformed tissue, the GOH model

applies D(θ) to define a generalized structure tensor A as follows,

A =
1

4π

∫ π

−π

∫ π

0

D(θ)M(θ, φ)⊗M(θ, φ) sin(θ)dθdφ, (3.11)

where M = sin(θ) cos(φ)ef +sin(θ) sin(φ)ep +cos(θ)ez represents the orientation vec-

tor of the fibers distributed over a sphere. The integral over the transverse orientation

φ can be evaluated analytically to simplify the expression in eq. (3.11) to,

A = κI + (1− 3κ)ef ⊗ ef , (3.12)

where ef is the dominant fiber direction. The dispersion parameter κ is defined by
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the fiber distribution,

κ =
1

4

∫ π

0

D(θ) sin3(θ)dθ. (3.13)

The generalized structure tensor A conveys the preferred fiber orientation and the

degree of anisotropy of the undeformed tissue. The latter is evident in the formula-

tion of A as a mixture of an isotropic tensor, representing the fraction of randomly

oriented fibers, and a structure tensor, ef ⊗ ef , for the preferred fiber orientation.

The dispersion parameter κ measures the relative contributions of the isotropic and

anisotropic fractions of the fiber distribution and has a one-to-one correspondence

with the concentration parameter b of the von Mises distribution (Fig. 3.1).

Defining the generalized structure tensor allows the anisotropic contribution of

the strain energy density, Ψaniso, to be defined at the tissue level, rather than fiber

level for the FI model. Specifically, Ψaniso is expressed as a function of the psuedo-

invariant, Iα = C : A, of the right Cauchy-Green deformation tensor and generalized

structure tensor, which evaluates to,

Iα = κI1 + (1− 3κ)λ2
f . (3.14)

The same exponential potential used for the strain energy density of the collagen

fibers in the FI model167 is used here for the tissue to capture the strain stiffening
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behavior associated with fiber recruitment,

Ψaniso(Iα) =
k1

2k2

(
exp

[
k2 (Iα − 1)2]− 1

)
. (3.15)

The biaxial stress-strain relation for the 3D GOH model is obtained from the strain

energy density via eq. (3.3),

σf (λf , λp) =
(
µ+ 2k1κ(Iα − 1) exp

[
k2(Iα − 1)2

])(
λ2
f −

1

(λfλp)2

)

+ 2k1(1− 3κ)(Iα − 1) exp
[
k2(Iα − 1)2

]
λ2
f ,

σp(λf , λp) =
(
µ+ 2k1κ(Iα − 1) exp

[
k2(Iα − 1)2

])(
λ2
p −

1

(λfλp)2

)
.

(3.16)

The stress response of the fiber phase contains an isotropic component that describes

the contribution of the fibers randomly distributed in all orientations. It also contains

an anisotropic contribution from the preferentially aligned fibers. The anisotropic

contribution appears in the fiber stress component σf but not the perpendicular

stress component σp. The use of the generalized structure tensor eliminates the need

for numerical integration to calculate the fiber contribution to the stress.

3.2.1.3 2D Gasser-Ogden-Holzapfel Model

For the 2D GOH model, the fibers are assumed to distribute only in the plane

of the tissue. The von Mises PDD is used to describe the planar arrangement. The

generalized structure tensor is obtained for the 2D GOH model by integrating the
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fiber distribution over all possible orientations in the plane:

A =
1

2π

∫ π

−π
ρ(θ)M(θ)⊗M(θ)dθ. (3.17)

where M = cos(θ)ef+sin(θ)ep is an arbitrary two-dimensional unit orientation vector.

The generalized structure tensor can be expressed in the following compact form,

A = κ2D (ef ⊗ ef + ep ⊗ ep) + (1− 2κ2D)ef ⊗ ef , (3.18)

where κ2D is the 2D dispersion parameter defined as follows,

κ2D =
1

2π

∫ π

−π
ρ(θ) sin2(θ)dθ. (3.19)

Here the generalized structure tensor A is a linear mixture of a 2D isotropic tensor

and a structure tensor for the preferred orientation in the plane. The dispersion

parameter, κ2D, denotes the relative contribution of the isotropic and anisotropic

fractions of the planar fiber distribution and again has a one-to-one correspondence

with the concentration parameter b of the von Mises distribution (Fig. 3.1). For the

2D GOH model, the pseudo-invariant, Iα = C : A, evaluates to,

Iα = κ2Dλ
2
p + (1− κ2D)λ2

f . (3.20)
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An exponential potential is assumed for the anisotropic component of the strain

energy density of the tissue,

Ψaniso(Iα) =
k1

2k2

(
exp

[
k2 (Iα − 1)2]− 1

)
. (3.21)

After applying eq. (3.3), the resulting biaxial stress-strain relation for 2D GOH model

is:

σf (λf , λp) = µ

(
λ2
f −

1

(λfλp)2

)
+ 2k1(1− κ2D) (Iα − 1) exp

[
k2(Iα − 1)2

]
λ2
f ,

σp(λf , λp) = µ

(
λ2
p −

1

(λfλp)2

)
+ 2k1κ2D (Iα − 1) exp

[
k2(Iα − 1)2

]
λ2
p.

(3.22)

Unlike the 3D GOH model, there is no isotropic contribution to Ψaniso from the fiber

structure.

3.2.1.4 Material Parameters

The distributed fiber models share three common parameters: the shear modulus

µ, the fiber family stiffness parameter k1, and the fiber family nonlinearity parameter

k2. The significance of the parameters are directly comparable between the models.

However, the anisotropy parameter differs between models (b, κ, κ2D). For the FI

distributed fiber model, the concentration parameter b ranges from 0 to infinity, with

0 describing a randomly oriented fibers and infinity describing perfectly aligned fibers.

The fiber distribution parameter κ ranges from 0−1/3 for the 3D GOH model, while
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Figure 3.1: Relation between 2D and 3D version of structure tensor dispersion
parameter κ and von Mises concentration parameter b. A value of b = 0 indicates
isotropy and b =∞ indicates perfect alignment of fibers.

κ2D ranges from 0 − 1/2 for the 2D GOH model. For both GOH models κ = 1/3

and κ2D = 1/2 denotes a random fiber orientation and κ = κ2D = 0 describes a

perfect alignment of fibers. The three anisotropy parameters are related and can be

translated between the models for direct comparison by eqs. (3.13) and (3.19). The

relation between the three anisotropy parameters is plotted in Figure 3.1.

It is apparent from Figure 3.1 that although κ2D ranges from 0.5 and 0 and κ

ranges from .333 and 0, the two are nearly identical for strongly anisotropic cases

where the concentration parameter b is large.
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3.2.2 Calculating the Stress Resultants

For a curved shell, the in-plane stress resultants can be defined for the dominant

fiber and perpendicular directions as,

Nf =

∫ t/2

−t/2
σf
(
λf (z), λp(z)

)
(1 +Kpz) dz,

Np =

∫ t/2

−t/2
σp
(
λf (z), λp(z)

)
(1 +Kfz) dz,

(3.23)

where t is the deformed thickness of the tissue, z is the direction normal to the

surface, and Kf and Kp are the curvatures of the fiber and perpendicular meridians,

respectively.

We assume that Kt << 1, i.e. the curvatures and thickness are small. The

expressions for the stress resultants can be simplified to the familiar expressions for

a plate,132

Nm
f =

∫ t/2

−t/2
σf
(
λf (z), λp(z)

)
dz,

Nm
p =

∫ t/2

−t/2
σp
(
λf (z), λp(z)

)
dz.

(3.24)

The thickness t of the deformed specimen can be determined from the initial thickness

by using the incompressibility condition as follows,

t =
t0
λfλp

. (3.25)
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To evaluate eq. (3.24) for the constitutive relations in Section 3.2.1, we assume

that the in-plane stretches exhibit linear variation through the thickness caused by

the presence of bending moments about the fiber and perpendicular directions. We

also assume that the variation in the curvature through the thickness is negligible.

Consequently, the in-plane stretches at any point through the thickness of the tissue

can be calculated from the stretches, λsf , λ
s
p, and curvatures, Kf , Kp, measured at

the surface of the tissue,

λf (z) =λsf +Kf

(
z − t

2

)
,

λp(z) =λsp +Kp

(
z − t

2

)
.

(3.26)

The DIC measurements for the displacement field showed that the initially flat,

circular tissue specimen bulged into a ellipsoidal cap. The surface of the ellipsoidal

cap at any given point can be characterized by two principal curvatures. At the apex,

the principal curvatures correspond to the curvature of the deformed meridians along

the dominant fiber and perpendicular directions. Thus, to determine the curvature

of the fiber meridian, we fit a 2D general ellipse to the deformed meridian to obtain

the major and minor radii, af and bf , and angle of tilt, θf , as described in detail

in Chapter 2. The procedure was repeated for the perpendicular meridian to obtain

the major and minor radii, ap and bp, and angle of tilt, θp. The curvature of the
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perpendicular and fiber meridians were determined locally at the apex168 as follows,

Kf =

(
a2
f sin2(θf ) + b2

f cos2(θf )
)3/2

a2
fb

2
f

,

Kp =

(
a2
p sin2(θp) + b2

p cos2(θp)
)1/2

a2
p

.

(3.27)

To evaluate the stress resultants Nf and Np from the experimental measurements

of pressure and deformed curvatures, we modeled the bulged specimen as an axisym-

metrically loaded thin shell. At the apex and far from the clamped boundaries, we

assumed that the transverse shear resultants are negligible compared to Nf and Np.

Under these conditions, the in-plane stress resultants at the apex are statically de-

termined from the applied pressure and curvature of the deformed surface136. Specif-

ically, for a thin shell subjected to internal pressure loading P , the in-plane principal

stress resultants are given by126,135,

N exp
f =

P

2Kp

,

N exp
p =

P

Kp

(
2Kp −Kf

2Kp

)
,

(3.28)

where P is the inflation pressure and Kf and Kp are the local principal curvatures.

For the bulged skin specimens, the principal directions correspond to the fiber and

perpendicular directions at the apex, where there are negligible shear strains.88 The

relations in eq. (3.28) are solutions to the equilibrium equations for the stress re-

sultants in the meridional and circumferential directions of an axisymmetric shell.134
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However, the relations have been applied in the literature more generally to calculate

the principal stress resultants for thin shells with smooth convex curvatures.126,135,136

The bulged surface can alternatively be modeled as a general ellipsoid, with a

major radius, a and two different minor radii b and c. A solution for the normal

stress resultants was developed by Flugge.134 At the apex, the resultants in the fiber

and perpendicular directions can be expressed in term of the major and minor radii

of the ellipsoidal dome as,

N exp
f =

Pc

2

(
ab

c2
− a

b
+
b

a

)
a

b
,

N exp
p =

Pc

2

(
ab

c2
− b

a
+
a

b

)
b

a
.

(3.29)

In Chapter 2 we showed that fitting a general 3D ellipsoid to the bulged surface to

determine the major and minor radii produced a less accurate representation of the

perpendicular meridian compared to the method of fitting 2D ellipses directly to the

fiber and perpendicular meridians. In Section 3.3, we will show that the use of the

general ellipsoid fit for curvature calculations causes significant errors in the stress

resultant calculations. These errors most likely arise from the difficulty in obtaining

accurate curvatures for the general ellipsoid model.

3.2.2.1 Parameter Determination

Six cadaveric human skin specimens from the back torso were subjected to bulge

testing. The experimental stress resultants in both the fiber and perpendicular direc-
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tions were computed from DIC data using eq. (3.28). We developed a procedure to

determine the parameters of the constitutive relations for the three distributed fiber

models in Section 3.2.1 to minimize the difference between the experimental stress

resultants calculated using eq. (3.28) and the stress resultants computed from the

constitutive relations using eq. (3.24). Parameters were determined iteratively by

numerical integration of eq. (3.24).

The shear modulus µ of the ground matrix was determined first by assuming that

the stress response of the initial compliant toe region is dominated by the matrix.

This was defined as the region prior to the onset of stiffening, where stretches in the

fiber and perpendicular directions were typically less than 1.10 and 1.15, respectively.

The stress resultant was computed using eq. (3.24) and fit to this region only for the

contribution of the matrix to the stress response,

σf = µ

(
λ2
f −

1

(λfλp)2

)
,

σp = µ

(
λ2
p −

1

(λfλp)2

)
.

(3.30)

To fit the remaining parameters associated with the fiber phase, an unconstrained

global search optimization algorithm (fminsearch.m in Matlab) was used to search

for the minimum of the cost function,

C =
1

n

n∑

i=1

√(
Nm
fi

(σf (β, λf , λp))−N exp
fi

(P )
)2

+
(
Nm
pi

(σp(β, λf , λp))−N exp
pi (P )

)2
, (3.31)
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Model Fitting Method b0 or κ0 k1,0 k2,0

2D FI resultant fit 0.01 10 1
2D GOH resultant fit 0.18 1 100
3D GOH resultant fit 0.18 1 100

2D FI membrane fit 1 1 10

Table 3.1: Initial guesses for parameter determination.

where n is the number of pressure steps and β is a vector of the parameters for the

selected constitutive model. The parameters are β = [k1, k2, b] for the FI model and

β = [k1, k2, κ] for the GOH models.

To evaluate of the effect of bending stress gradients, the parameters of the FI

distributed fiber model were also determined by modeling the bulged specimens as a

membrane. The membrane stresses are constant through the thickness and can be

calculated from the experimentally determined stress resultants as,

σmemf =
N exp
f

t
,

σmemp =
N exp
p

t
,

(3.32)

where t is the deformed thickness calculated using eq. (3.25). The same unconstrained

global search optimization algorithm (fminsearch.m in Matlab) was used to minimize

the cost function,

C =
1

n

n∑

i=1

√(
σfi(β, λf , λp)− σmemfi

(P )
)2

+
(
σpi(β, λf , λp)− σmempi

(P )
)2
, (3.33)

where σfi and σpi are computed by eq. (3.9). The same optimization algorithm was
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used as for the resultant fitting method.

The initial guesses for all models for both the stress resultant and membrane stress

fits are listed in Table 3.1. The converged parameters were then used as the initial

guess for a second minimization to ensure convergence. The converged parameters

were not found to be sensitive to small changes in the initial guess.

3.2.3 Finite Element Model

Finite element studies of the bulge tests were performed to validate the assump-

tions of the analysis method and the material parameters determined for the three

distributed fiber models. The simulations were performed using Tahoe©, an open

source finite element code originally developed by Sandia National Labs, Livermore,

CA 1. Specimen-specific geometries were created using the diameter of the aperture of

the inflated specimens (7.5 cm) and the thickness measured for each specimen. The

geometry was discretized using 8-node brick elements. A mixed element formulation

that provided for a trilinear displacement interpolation and a piecewise constant di-

latational strain projection was used to account for the effects of incompressibility.

The mesh had 10 elements through the thickness and a total of 5400 elements. This

mesh design provided high resolution through the thickness to capture bending gra-

dients. A coarser mesh discretization was used in the plane because experimental

measurements showed that the in-plane strain components exhibited little variation

1http://sourceforge.net/projects/tahoe/
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Figure 3.2: Finite element mesh (a) top view and (b) cross section through thickness.
The element size through the thickness was graded to resolve the nonlinear bending
gradients and to mitigate the effects of volumetric locking.

in a large region surrounding the apex. The element size through the thickness was

graded, with the thinnest elements near the surface where the stress gradients were

highest, to further resolve the nonlinear stress gradient through the thickness (Fig.

3.2) and mitigate the effects of volumetric locking. The displacement components

were fixed at the edge and a Cauchy traction, corresponding to the pressure applied

in experiments, was applied normal to the bottom surface. Pressure was modeled

using the pressure history recorded for each experiment. The experimental pressure

increase with time was not strictly linear, particularly in the toe region where the

applied pressure lagged the target pressure. This resulted in slower loading rates for

the toe region.

The material behavior was described using a quasi-incompressible implementa-

tion of the distributed fiber models described in Sec. 3.2.1.1-Sec 3.2.1.2. A quasi-

incompressible rather than an incompressible model was used because the latter was

not implemented in the FEA program Tahoe. The strain energy for the compressible
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model was additively decomposed into a compressible isotropic contribution for the

matrix and and an anisotropic contribution for the fiber,

Ψ = Ψmatrix + Ψfiber. (3.34)

A compressible Neo-Hookean potential was used to describe the matrix contributions:

Ψmatrix(Ī1, I3) =
K

4
(I3 − 1− ln I3) +

µ

2
(I1 − 3), (3.35)

where K is the bulk modulus, and Ī1 = I
−1/3
3 I1 is the first invariant of the deviatoric

component of the right Cauchy-Green deformation tensor C̄ = I
−1/3
3 C. The matrix

contribution to the Cauchy stress response was evaluated according to hyperelasticity

as,

σmatrix(J, Ī1, b̄) =
K

2
(J − 1

J
)I +

µ

J
(b− 1

3
I1I). (3.36)

where b̄ = I
−1/3
3 b is the deviatoric component of the left Cauchy-Green deformation

tensor. The same strain energy Ψaniso in eq. (3.9),(3.16), and(3.22) was used for each

distributed fiber model. For all simulations, the bulk modulus K was set as 80 kPa.

This value was selected such that the Jacobian J obtained at the maximum pressure

for all simulations was less than 1.003, indicating that less than 0.3% volume change

was observed.

The thin shell analysis was applied to determine the parameters for the three
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Figure 3.3: Comparisons of the ellipse fit [eq. (3.27)] and polynomial fit [eq. (3.37)]
method to calculate (a) curvatures from the experimentally measured displacement
field for a representative 44/M specimen. The stress resultants calculated from the
curvatures are compared in (b).

distributed fiber models: the 2D FI , 3D GOH, and 2D GOH models, presented

in Sec. 3.2.1.1-3.2.1.3. The 2D FI model was applied for finite element simulation

of the bulge test to validate key assumptions of the analysis method. Specifically,

we examined the variation of the strain through the thickness of the specimen, the

presence of transverse and in-plane shear strains near the apex, and the ability of

eq. (3.28) used with eq. (3.27) for local curvature calculations and eq. (3.29) for the

general ellipsoid model to accurately calculate the in-plane stress resultants.

Unlike for the experimental data, there were not enough points (nodes) to accu-

rately fit an ellipse to the meridian. The use of quadratic elements instead of linear

elements would provide more nodes for curvature fitting, but at the expense of com-

putational time. Instead, the curvatures for the simulation were calculated by fitting

a 6th order polynomial f(x) to each meridian and calculating the curvature at the
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apex by,

K =
|∂f(x)
∂x
|

[
1 +

(
∂f(x)
∂x

)2
]−3/2

. (3.37)

Figure 3.3 shows for a representative specimen (44/M) that this polynomial curvature

calculation provided equivalent results as the ellipsoidal calculation in eq. (3.27) used

for the experiments.

Finally, the parameters for all three models were implemented to evaluate numer-

ically the anisotropic pressure-stretch and pressure-stress resultant response for all

tested specimens. These were compared to the experimentally measured relations to

validate the thin shell analysis and parameter determination method.

3.3 Results

3.3.1 Model Parameter Determination

Table 3.2 lists parameters governing the stress response of the 2D FI distributed

fiber model in eq. (3.9), while Tables 3.3 and 3.4 list the parameters for the 2D GOH

model presented in eq. (3.16) and 3D GOH model in eq. (3.22). Notable variation

in the parameters between specimens was observed. The matrix shear modulus was

identical for all models because a Neo-Hookean model was used to describe the matrix

contribution for all three distributed fiber models and µ was determined from the toe-

region of the stress resultant response independent of the fiber parameters. The fiber
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specific parameters k1 and k2 were similar between the 2D FI and 2D GOH model,

but were higher for the 3D GOH model. To compare the anisotropy parameters, the

dispersion parameter κ for the 3D GOH model and κ2D for the 2D GOH model were

converted to the von Mises concentration parameter b used in by the 2D FI model.

The results are presented in Table 3.5. A paired t-test was used to determine if there

was a significant difference (p > 0.05) in the anisotropy parameters between models.

It was found that the 2D FI model concentration parameter was significantly larger

than both the 3D GOH model (p = 0.0275) and 2D GOH model (p = 0.0265). Among

the GOH models, although the average concentration parameter was slightly higher

for the 2D than 3D model, the difference was not significant (p = 0.183). However,

the paired t-test has very low power due to the small number of samples and wide

standard deviations compared.

Figure 3.4 plots the fit for the stress resultant for a representative specimen (44/M)

for all three models. The fit was near exact for both GOH models but underestimated

the stiffening region stress resultant for the FI distributed fiber model.
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Table 3.2: Specimen Parameters: 2D Fully Integrated Distributed Fiber Model.

Sample µ [kPa] b k1 [kPa] k2

43/M 6.804 8.869 5.209 32.721
44/M 5.648 16.467 0.025 58.737
59/F 4.773 8.880 1.039 54.497
61/M 8.262 4.199 0.782 123.241
62/F 6.286 2.649 0.073 15.876
83/M 22.637 1.693 8.200 202.926

Average 9.068 7.126 2.555 81.333
Std. Dev. 6.749 5.505 3.374 69.885

Table 3.3: Specimen Parameters: 3D Gasser-Ogden-Holzapfel Model.

Sample µ [kPa] κ k1 [kPa] k2

43/M 6.804 0.120 9.850 52.529
44/M 5.648 0.183 0.380 89.842
59/F 4.773 0.236 4.770 161.862
61/M 8.262 0.293 14.137 1103.900
62/F 6.286 0.318 0.999 78.841
83/M 22.634 0.336 2427.700 5984.200

Average 9.068 0.248 409.639 1245.196
Std. Dev. 6.748 0.084 988.658 2356.668

Table 3.4: Specimen Parameters: 2D Gasser-Ogden-Holzapfel Model.

Sample µ [kPa] κ2D k1 [kPa] k2

43/M 6.804 0.107 3.766 30.739
44/M 5.648 0.195 0.040 39.131
59/F 4.773 0.271 0.281 45.959
61/M 8.262 0.369 0.221 120.852
62/F 6.286 0.467 0.006 18.845
83/M 22.634 0.540 4.636 200.967

Average 9.068 0.325 1.446 76.082
Std. Dev. 6.748 0.165 2.040 71.001
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Table 3.5: Translated Anisotropy Parameters (b - von Mises concentration parame-
ter)

Sample 2D FI Distributed Fiber Model 3D GOH model 2D GOH Model

43/M 8.869 2.459 2.710
44/M 16.467 1.545 1.557
59/F 8.880 0.984 1.033
61/M 4.199 0.424 0.543
62/F 2.649 0.167 0.132
83/M 1.693 0.000 0.000

Average 6.070 0.996 0.930
Std. Dev. 3.850 1.020 0.940
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Figure 3.4: Stress resultant fit to experimental data for a representative specimen
(44/M) for (a) the 2D FI distributed fiber model, (b) the 3D GOH model and (c) the
2D GOH model.
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3.3.2 Finite Element Validation of Thin Shell Method

Assumptions

The parameters of the 2D FI distributed fiber model were applied to simulate

the bulge test for a representative specimen (44/M) to validate key assumptions

of the thin-shell analysis method: the accuracy of using eq. (3.28) along with eq.

(3.27) for the local curvature calculations to determine the stress resultants in the

fiber and perpendicular directions, the assumptions of linear strain gradient through

the specimen thickness, and the assumption of no transverse shear. Figure 3.5 (a)

plots the through-thickness variation for the stretch in the fiber and perpendicular

directions at the apex and at the maximum inflation pressure. The strain gradient

is small and approximately linear through the thickness, as evidenced by the linear

regression fits displayed on the plots. The linear regression R2 values for all six 2D FI

model simulations are reported in Table 3.6. Additionally, Fig. 3.5 (b) plots the in-

plane (σfp) and transverse (σfz, σpz) shear stress for the same simulation at the apex

for the maximum simulation pressure. The transverse shear stresses are effectively

zero (σfz and σpz < 10−11 kPa) and the in-plane shear is less than 0.02% of the normal

in-plane stress, σf .

For the experiments, the stress resultants were determined using eq. (3.28) from

the inflation pressure and local principal curvatures. To assess the accuracy of this

assumption, the stress resultants of the finite element simulations were evaluated by
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Figure 3.5: Validation of thin shell method assumptions, based on 44/M parameters
with the 2D FI distributed fiber model: (a) strains through the thickness of FE sim-
ulation with linear regression fits, (b) in-plane and transverse shear stresses through
the thickness at the apex of the simulation at the maximum inflation pressure, (c)
FE simulation results for the stress resultant compared to theoretical model in eq.
(3.28) using curvatures determined from eq. (3.27), and (d) FE simulation results for
the stress resultant compared to the theoretical ellipsoidal shell model in eq. (3.29).
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Table 3.6: R2 value for linear regression of stretches through the thickness at the
apex of the simulation of the 2D FI model.

Sample Fiber Perpendicular
43/M 0.824 0.995
44/M 0.157 0.996
59/F 0.103 0.996
61/M 0.925 0.993
62/F 0.998 0.992
83/M 0.993 0.993

Average 0.667 0.994
Std Dev 0.421 0.002

integrating the nodal stresses at the apex through the thickness using the definitions

in eq. (3.24). In addition, the stress resultants were calculated by treating the finite

element simulations as an experiment. The finite element displacement fields were

used to calculate the curvature of the fiber and perpendicular meridians at the apex

using eq. (3.37). These curvatures were then used to calculate the stress resultant

using eq. (3.28). Figure 3.5 (c) compares the stress resultant calculated for the FEA

simulations using the fundamental definitions in eq. (3.24) and theoretical model in

eq. (3.28). Good agreement is seen for both the fiber and perpendicular directions

for this representative specimen. Plots for all specimens tested can be found Fig.

3.6. Again, good agreement is seen for all specimens, with nearly exact agreement

for more isotropic specimens.

Alternatively, the inflated specimen could be modeled as a general ellipsoid, where

the stress resultants at the apex would be calculated from the pressure and major and

minor radii of the deformed ellipsoidal cap using eq. (3.29). Figure 3.5 (d) compares
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the general ellipsoidal shell model for the stress resultant to those calculated by inte-

grating the nodal stresses through the thickness. Plots for all specimens tested can be

found in Fig. 3.7. The general ellipsoid calculation severely overestimated the stress

resultant in the perpendicular direction. Moreover, it could not reproduce the large

difference in the stress resultant response of the perpendicular and fiber directions.

The material parameters used in the simulation were determined using the local cur-

vature fitting method, but it has been shown that the stress resultant calculation

is statically determined from the inflation pressure and radii and is not influenced

by choice of material model or material parameters.135 The same inaccuracies in

the general ellipsoid stress resultant calculation were observed for simulations with

parameters determined using the general ellipsoid model. It was observed that the

general ellipsoid provided a poor fit for the curvature in the perpendicular and fiber

meridian. This is likely responsible for the inaccurate approximation of the stress

resultants. The same problem was encountered when fitting a general 3D ellipsoid to

the DIC data to determine the principal curvatures for the bulged surface in Chapter

2.
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Figure 3.6: FE simulation results for the stress resultant compared to theoretical
model in Eq. (28) using curvatures determined by Eq. (27) for (a) 43/M, (b) 44/M,
(c) 59/F, (d) 61/M, (e) 62/F, and (f) 83/M specimens. As discussed in Section 3.2,
good agreement is observed for all specimens in both the fiber and perpendicular
directions.
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Figure 3.7: FE simulation results for the stress resultant compared to the theoretical
ellipsoidal shell model in Eq. (29) for (a) 43/M, (b) 44/M, (c) 59/F, (d) 61/M, (e)
62/F, and (f) 83/M specimens. As discussed in Section 3.2, poor agreement is seen
between the simulation and theoretical calculation for all specimens. This is likely due
to difficulties in obtaining accurate curvatures for the ellipsoid previously discussed
in Chapter 2.
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Figure 3.8: Comparison of the experimentally measured stretch-pressure response
for a representative specimen (44/M) and results of specimen-specific FE simulations
using the analytically determined model parameters of the (a) the 2D FI distributed
fiber model, (b) the 3D GOH model and (c) the 2D GOH model. Comparisons for
all other specimens are shown in Fig. 3.9 - 3.11.

3.3.3 Finite Element Validation of Model Param-

eters

The material parameters determined for the three distributed fiber models were

applied in specimen-specific finite element simulations of the bulge test for all of the

specimens. The pressure-stretch response from simulations and experiments were

compared to validate the thin-shell analysis and parameter determination methods,

and to compare the ability of the thin shell method to accurately determine material

parameters from the bulge test. Results for a representative specimen (44/M) are

shown in Fig. 3.8, while those for the remaining specimens are shown in Fig. 3.9 -

3.11. This specimen was the most anisotropic specimen tested, with the highest value

of the concentration anisotropy parameter b in Table 3.2. The results for the 2D FI

model show that the simulation slightly underestimated the experimental stretch in
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the perpendicular direction; however the model reproduced the stretch in the fiber

direction and captured the large difference in fiber and perpendicular stretches (Fig.

3.8 (a)). Fig. 3.9 shows that the experimental results were nearly exactly reproduced

for more isotropic specimens. In contrast, the parameters obtained for the two GOH

model greatly underestimated this difference in perpendicular and fiber stretch re-

sponse, as seen in Fig. 3.8 (b) and (c) for the same specimen. The differences in

the ability of the FI and GOH models to reproduce the experimental data reflect the

differences in the concentration parameters obtained for each model reported in Table

3.5, where the 2D FI model had a significantly larger concentration parameter than

either version of the GOH model.
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Figure 3.9: 2D FI distributed model: Comparison of experimental data for the
in-plane pressure-stretch response and specimen-specific FEA simulation for different
specimens: (a)43/M (b) 44/M (c) 59/F (d) 61/M (e) 62/F (f) 83/M.
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Figure 3.10: 3D GOH model: Comparison of experimental data for the in-plane
pressure-stretch response and specimen-specific FEA simulation predictions for dif-
ferent specimens: (a)43/M (b) 44/M (c) 59/F (d) 61/M (e) 62/F (f) 83/M.
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Figure 3.11: 2D GOH model: Comparison of experimental data for the in-plane
pressure-stretch response and specimen-specific FEA simulation predictions for dif-
ferent specimens: (a)43/M (b) 44/M (c) 59/F (d) 61/M (e) 62/F (f) 83/M.
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Table 3.7: RMS error between simulations and experimentally measured stretch-
pressure relationship.

Sample 2D FI 3D GOH 2DGOH
43/M 0.060 0.082 0.080
44/M 0.026 0.070 0.066
59/F 0.026 0.064 0.059
61/M 0.010 0.025 0.029
62/F 0.015 0.016 0.018
83/M 0.007 0.013 0.011

Average 0.024 0.045 0.044
Std. Dev. 0.019 0.030 0.028

To quantify these observations, the root mean square (RMS) error, was calculated

for the difference between the experimentally measured pressure-stretch relationship

and that predicted by the finite element simulation. The RMS error was calculated

as,

RMS =

√∑
(λsim − λexp)2

n
, (3.38)

where λsim is the stretch predicted by the simulation, λexp is the experimentally

measured stretch, and n is the total number of pressure points. The resulting RMS

error for all specimens are reported in Table 3.7. The RMS error for the 2D FI

model was significantly lower than both the 2D GOH (p=0.023) and 3D GOH model

(p=0.0305). The error of the 2D GOH model was slightly lower than 3D GOH, but

this difference was not significant (p=0.450).

To investigate the source of discrepancy in the calculations, we examined the

ability of the simulations to reproduce the curvatures measured in the experiments.

The resulting finite-element analysis curvatures for a representative specimen (44/M)
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Figure 3.12: Comparison of the experimentally determined curvatures for a repre-
sentative specimen (44/M) and results of specimen-specific FE simulations for the (a)
2D FI Distributed Fiber model (b) 3D GOH model, and (c) 2D GOH model.

were compared to the curvature calculated from the experimental DIC data for the

same specimen. Figure 3.12 shows that for the FI model, the simulation curvature

was higher in the fiber direction and lower in the perpendicular direction compared

to experiments. For both GOH models, the simulation curvature was closer to the

experimental curvature in the perpendicular direction, but the simulation curvature

in the fiber direction overestimated the experimental curvature. These differences

could lead to the difference in perpendicular stretch seen in Figure 3.8.
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Table 3.8: 2D FI Distributed Fiber Model - Membrane Stress Fit Parameters

Sample µ [kPa] b k1 [kPa] k2

43/M 5.395 8.322 2.302 28.930
44/M 4.437 6.554 1.992 18.742
59/F 4.095 3.878 7.504 17.518
61/M 7.409 3.392 1.065 91.924
62/F 5.422 1.494 1.393 7.588
83/M 17.415 1.655 4.447 171.483

Average 7.362 4.216 3.117 56.031
Std. Dev. 5.058 2.724 2.455 64.144

3.3.4 Impact of Bending Effects on Model Param-

eters

To evaluate the importance of bending effects on the stress response, the mem-

brane stress model in eq. (3.32) was used to fit the parameters of the 2D FI model

to the bulge test measurements while ignoring bending effects. The results are listed

in Table 3.8. Compared to parameters determined by the thin shell analysis in Ta-

ble 3.2, the membrane model produced a similar matrix shear modulus µ, a smaller

anisotropy parameter b, a higher k1, and lower k2 for the collagen fibers. To assess

the net effect of these differences, the stress response in the fiber and perpendicular

directions were calculated for each specimen using stretches λf and λp measured at

the surface, and the parameters determined from both the thin shell analysis in Table

3.2 and membrane analysis in Table 3.8. Figure 3.13 compares the results for two

representative specimens: one showing the closest agreement between the two sets

of parameters (43/M) and one showing the largest difference (44/M). Results for all
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Figure 3.13: Comparison of parameters determined accounting for bending (stress
resultant method) and ignoring bending (membrane stress approximation) for (a)
specimen with closest observed agreement (43/M), and (b) specimen with worst ob-
served agreement (44/M). Results for all specimens can be found in Figure 3.14.

specimens can be found in Figure 3.14. The membrane analysis significantly underes-

timated the material stiffness and stress state at the specimen surface, where strains

were measured in the bulge tests. This is expected as the membrane stresses are lower

than the bending stresses at the surface of the tissue. This difference is exacerbated

by the nonlinear material behavior. A paired t-test confirmed that the difference

in maximum stress was significant in both the fiber (p = 0.003) and perpendicular

(p = 0.017). The results also showed that accounting for bending was more important

for stiffer and thicker specimens.
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Figure 3.14: Comparison of stress response for parameters determined for the 2D
FI model by both the resultant fitting method and the membrane fitting method for
(a)43/M (b) 44/M (c) 59/F (d) 61/M (e) 62/F (f) 83/M.
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3.4 Discussion

We have developed a new method to analytically determine the anisotropic ma-

terial properties of planar tissues from bulge testing while accounting for bending.

Previous bulge tests applied to polymers and tissues have been limited to conditions

where the effects of bending are negligible. However, the effects of bending can be-

come significant for thicker specimens, e.g., for human skin specimens, and for a

nonlinear stress response that transforms small gradients in strains to large gradients

in stress. Bending can be accounted for using inverse finite element analysis but ana-

lytical methods can provide significant time-savings and efficiency. The results of this

study demonstrate that the commonly used membrane stress approximation leads to

significant underestimation of tissue stress and stiffness for skin tissue. Instead, we

propose a new thin-shell analysis method which takes into account bending effects

and has been validated by finite element analysis. This thin shell method has not

been previously applied to bulge and inflation testing.

We have observed differences between a fully integrated distributed fiber model

and a pre-integrated distributed fiber model. Of the three models evaluated here,

only the parameters determined for the FI model were capable of reproducing the

experimentally measured anisotropy of skin tissue in finite element simulations. In

contrast, parameters determined for both the 2D and 3D GOH models significantly

under-represented the anisotropy of the tissue. This is in spite of the fact that the

curvatures in the perpendicular direction were more accurately reproduced for the
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GOH models than for the FI model. Both the 2D FI and 2D GOH models applied a

planar distribution to describe the fiber structure, which is more representative of the

ECM structure of human skin tissues than the 3D transversely isotropic structure of

the 3D GOH model.92,99 However, adapting the GOH model to a 2D fiber structure

tensor did not significantly improve the fit. Instead, the difference in the resulting

material parameters between models is attributed to the pre-integration of the fiber

distribution of both GOH models. We hypothesize that the discrepancy arises from

the large fiber rotations induced by the inflation test, and the high degree of fiber

dispersion of skin collagen fibers. This is expected as the GOH model was developed

for arteries, which have a small degree of fiber dispersion and experience relatively

uniform loading in the body. Similar differences between the FI distributed fiber

model and pre-integrated GOH models have been reported previously by Cortes et

al.40 and Pandolfi and Vasta.41

A wide range of values were obtained for the anisotropic parameters of each model.

For example, for the 2D FI model the fiber stiffness parameter k1 ranged from 0.025 -

8.200 kPa and the fiber nonlinearity parameter k2 ranged from 15.876 - 202.926. This

indicates a large specimen-to-specimen variation in anisotropic material properties

that was likely caused by the large age range, which spanned 40 years. In contrast,

the matrix shear modulus µ was similar among all specimens, with an average value

of 9.068 ± 6.749 kPa. The shear modulus signified the isotropic response of the

ground matrix of proteoglycans and elastin. These results suggests that the variation
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in human skin tissue specimens may arise from collagen-fiber specific characteristics

rather than from the ground matrix or elastin contribution. However, this result could

also occur because the matrix shear modulus was fit to the toe region alone, while

the fiber parameters were fit to the full stress-strain curve using a multi-parameter

fit.

The material parameters provide a quantitative comparison of the trends observed

in the experimental results of Chapter 2. Samples from the lower back region exhibited

the most anisotropic stress response. The concentration parameter b for the 2D FI

model ranged from a strongly anisotropic value, 16.467, for the specimens of the

lower back to a nearly isotropic 1.693 for a specimen likely from the upper back. The

degree of anisotropy decreased with age, though the sample size was too small to

perform a statistical comparison. The oldest specimen had the highest fiber tensile

parameter k1, indicating stiffer fibers, and the highest fiber nonlinearity parameter k2,

indicating that the onset of stiffening occurred at lower strains. This is in agreement

with previous work showing that increased collagen cross-linking causes skin to stiffen

with age.169,170

Recent work by Ni Annaidh et. al.38,94 on human skin tissue from the back torso

measured the 3D GOH concentration parameter b from histology and the remaining

material parameters of the 3D GOH model from uniaxial stress-strain data. The

specimens were tested to failure and the stresses measured were on the order of MPa,

considerably higher than in this work. This difference is likely because the donors were
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considerably older (81 - 97 years old) than most donors in our study (43-83 years old)

and testing to failure brought the specimens to much higher strains than in this work.

Looking at the stress-strain curves for the 83/M specimen in Fig. 3.14, it is clear that

if the specimen was tested to higher strains it would have quickly approached the

stress levels measured by Ni Annaidh and coworkers. The concentration parameters

b determined from histology ( 0.793± 0.229) by Ni Annaidh et al.38,94 were similar

to those measured mechanically in our study (0.996 ± 1.020). Differences can be

attributed to the assumption of Ni Annaidh et. al. that human skin is described by

two equal fiber families symmetric about the loading axis while this work assumed

only one family of fibers aligned with the principal stretch direction. Additional

differences among the material parameters measured by Ni Annaidh et al.38,94 and

presented in this work may be caused by differences in test methods, stress levels

tested, and fitting methods.

Our study has several limitations. Too few specimens were tested for statisti-

cal comparison of material parameters and specimens were limited to the back from

Caucasian donors to limit heterogeneity and variability. The analysis examines only

one material point (the apex) and therefore is limited to homogeneous tissues. In

this study heterogeneity was limited by only choosing skin specimens from the back

where the fiber direction is known to be uniform. We were unable to obtain detailed

location information for the tested specimens. All models investigated in this work

neglect fiber-fiber and fiber-matrix interactions. Such interactions become important
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for the time-dependent response. Finally, the 2D FI model did show a slight un-

derestimation of in-plane stretches in the initial toe region. This was also observed

for simulations using parameters determined by the membrane analysis, suggesting

that the discrepancy arose from the 2D FI model rather than the thin-shell analysis

method.

3.5 Conclusions

We have developed a novel method for analytically obtaining material parameters

from the bulge test while taking into account bending effects. We have validated the

assumptions of the method and the resulting material parameters with finite element

analysis. The thin shell method was used to compare three different distributed fiber

models to describe the anisotropic properties of human skin tissues. We found that

both the 3D Gasser-Odgen-Holzapfel model28 as well as a version with a 2D fiber

distribution were unable to capture the significant anisotropy measured by the bulge

test. In contrast, parameters determined for a Fully Integrated distributed fiber model

based on a 2D fiber distribution were able to reproduce the structural response of

skin to the bulge test. We conclude that the Fully Integrated distributed fiber model

is the most appropriate model for bulge testing of skin tissues. The thin shell analysis

method presented in this work has been applied to skin tissue but can be generalized to

analyze the inflation response of other planar anisotropic tissues such as pericardium,
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mitral valves, gastrointestinal tissues, aortic valves, or fetal membranes.
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Chapter 4

Modeling the strain-protected

enzymatic degradation of collagen

with applications to growth and

remodeling

This chapter presents a hierarchical model for a planar collagenous tissue that is

applied to study potential mechanisms of growth and remodeling. The Fully Inte-

grated distributed fiber model described in Chapter 3 is extended to include fiber-

level descriptions of collagen fibers. Fibers are described as planar sinusoidal elastica

beams and strain-protected enzymatic degradation is modeled by a reducing in fiber

radius based on a local fiber micro-stretch. The degradation rate law is developed
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and calibrated based on the fibril-level experiments reported by Flynn et al.80 The

same kinetic parameters are then used to predict the results of tissue-level bovine

cornea degradation experiments reported by Zareian et al.83 Degradation is paired

with deposition to demonstrate that tissue strain homeostasis can be predicted from

these two fiber-level mechanisms alone. This chapter will be submitted for publication

under the title, ”Modeling the Strain-Protected Enzymatic Degradation Mechanism

of Growth and Remodeling of Soft Tissues ”, with Jeffrey W. Ruberti and Thao D.

Nguyen as co-authors.

4.1 Introduction

Collagen is the most abundant protein in the human body and is a key structural

component in connective tissues, such as skin, cornea, tendon, and blood vessels.

These tissues exhibit a highly organized structure, where stiff collagen fibrils are ar-

ranged in a soft matrix of proteoglycans, water, cells, and other non-fibril forming

proteins. The collagen fibrils are organized further into crimped fibers, sheets, and

other organ-specific larger scale structures. The production and organization of the

collagen structures can change in response to mechanical stimuli. The resulting net

production of tissue mass is defined as growth, while alterations in the collagen struc-

ture and resulting properties is defined as remodeling. Though described as distinct

phenomena, remodeling is usually accompanied by growth.7 Growth and remodeling
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under physiological mechanical conditions occurs as a normal part of development and

aging. However, disordered or uncontrolled remodeling can also occur under patho-

logical conditions and has been implicated in a wide range of disease states, such as

cardiac fibrosis,171 osteoarthritis,52 and glaucoma.172 Despite the clinical importance

of collagen remodeling, the underlying mechanisms of collagen remodeling and their

relations to disease processes are not well understood.

Computational modeling of the growth and remodeling process is an active area

of research. Of particular interest is the development of constitutive laws for both

the growth deformation gradient as well as internal variables for the change in tis-

sue microstructure. A common modeling approach is to prescribe phenomenological

growth laws driven by a tissue-level homeostatic stress51,59,62 or strain.65,173,174 Such

methodologies have been successful in describing the development of the heart and

arteries,63,64,175 the growth of arteries caused by changes in blood flow,74,174,176 the

growth of intracranial aneurysms,60,61 and the thickening of ventricles caused by vol-

ume or pressure overload.58,59,177 A slightly different approach modifies collagen fiber

orientations based on the orientations of the principal stretch69,71 or stress67,68 of the

tissue. These methodologies have proven capable of predicting the collagen structure

of the artery wall,73,84 aortic heart valves,67 tendons,69 and the cornea and sclera

under physiological loading.48

Computational modeling efforts have begun to incorporate potential micro-mechanisms

of growth and remodeling. For example, recent experiments have shown evidence
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of cell-mediated collagen crimp remodeling77 and strain-dependent collagen produc-

tion.78 Micro-mechanical models can be used to test the feasibility of these particular

processes as mechanisms of growth and remodeling. Baaijens et al.84 developed a

fiber-level growth model for the accumulation of collagen based on experimental ev-

idence for stretch-mediated collagen production. The model was able to predict the

observed collagen structure of arteries and aortic heart valves. Watton et. al.70 mod-

eled collagen crimp remodeling by the deposition of collagen fibers in a pre-stretched

state. This mechanism was shown to lead to a homeostatic fiber stretch and predicted

the course of aneurysm development. Grytz et al.47 modeled the same mechanism us-

ing homeostatic control of the collagen fibril stretch to predict the collagen structure

of the lamina cribosa under in vivo loading.

The selective enzymatic degradation of collagen has recently been identified as

another potential mechanism for growth and remodeling. It has been shown at the

molecular,79 fibril4,80,178 and tissue level3,81–83,179 that mechanical strain protects col-

lagen from enzymatic degradation by decreasing the degradation rate. This effect has

been referred to as a mechanical switch by Flynn et al.80 because the degradation rate

can decrease dramatically for a small increase in applied stretch. This rapid decrease

occurs when the initially crimped collagen fiber is nearly straightened, corresponding

to the heel region of the stress-strain curve for collagenous tissues.80,81 It has been

suggested that straining the collagen fibril protects molecules from enzymatic cleav-

age by fully incorporating naturally unfolded chains into the triple helix structure.180
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Previous efforts modeling strain-protected collagen degradation have relied on phe-

nomenological descriptions of the effect of strain on the degradation rate. These

include an exponential dependence on fiber strain,85,181 a logistic dependence on fiber

strain,182 a bounded evolution equation based on a homeostatic fiber stretch,47 or

combined with collagen deposition for a total collagen mass dependent on the square

of the fiber stretch.84

The aim of this work is to investigate the role of strain-protected enzymatic degra-

dation in the growth and remodeling of collagen structures by developing a mechanis-

tic model of the dramatic onset of strain protection80–82 based on recently published

experimental data by Flynn and coworkers.80 We hypothesize that strain-protected

enzymatic degradation may work in concert with collagen deposition to give rise to

the stress or strain homeostasis that is characteristic of growth and remodeling. To

test this hypothesis, collagen fibers are described as planar elastica beams based on

the work of of Cominou and Yannis.45 Enzymatic degradation is described as a zero-

order reduction in the fiber radius inhibited by the axial strain energy of an extended

fiber, with parameters calibrated to the single-fibril degradation data of Flynn et

al.80 This fiber-level model is scaled up to the tissue level by describing the tissue as

a distribution of degrading fibers in an isotropic ground matrix and used to predict

the results of tissue-level enzymatic degradation experiments reported by Zareian at

al.83 and Ellsmere et al.183 Degradation is then paired with constant collagen de-

position to investigate the response of the tissue to changes in loading conditions.
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The results of this experimentally informed theoretical study support the inclusion of

strain-protected enzymatic degradation as a potential mechanism for the growth and

remodeling process.

4.2 Methods

This section presents a constitutive model for the effect of the enzymatic degra-

dation of collagen fibers on the growth and remodeling of collagenous tissues. We

begin by briefly describing the elastica model of Comninou and Yannas45 used to de-

scribe the strain-stiffening stress response of the collagen fibers. Next, we present an

evolution equation for the degradation of the fiber radius that depends on the axial

strain energy density of the collagen fibers. The fiber-level models are incorporated

into a hyperelastic, distributed fiber model for the stress response of the tissue. We

assume that degradation of the collagen fibers also produces a change in the tissue

volume, defined as negative growth, and present a constitutive relation for the vol-

umetric growth deformation. Finally, we describe a method developed to calibrate

the parameters of the evolution equation from single-fibril enzymatic degradation ex-

periments carried out by Flynn et al,80 and the parameters of the elastica from the

equilibrium stress-strain data for bovine cornea strips measured by Zareian.83
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4.2.1 Elastica model

The elastica model of Comninou and Yannas45 was applied to describe the non-

linear, strain-stiffening stress response of a wavy collagen fiber. The undeformed

configuration of the wavy beam is described by a planar sine wave, X2 = a sin(bX1),

where (X1, X2) are the coordinates along the horizontal and vertical directions, e1

and e2, as illustrated in Fig. 4.1. For small crimp angles, the rotation angle of the

midline, defined as tan Θ = dX2/dX1, can be approximated as Θ(X1) = ab cos(bX1).

For simplicity, we assume a circular cross-section for the elastica with an original

radius R, cross-sectional area A0 = πR2, and second moment of area I0 = π
4
R4. We

assume that enzymatic degradation causes the fiber radius to decrease, as has been

observed experimentally.184 The material is linear elastic, described by a Young’s

Modulus, E, and EA and EI denote the current axial and bending stiffness. Fibers

are allowed to compress, although the compressive stiffness is much lower than the

bending or axial stiffness.

Assuming that the beam has a thin cross-section compared to the length, a small

initial crimp angle, small fiber micro-strain, and negligible transverse shear defor-

mation (Euler bending), we can derive analytical solutions for the deformed rotation

angle ϑ(X1), fiber micro-stretch, λf (X1) = 1+F cosϑ/(EA), and fiber macro-stretch,

λ = (x1(L)−x1(0))/L, for an applied end-tip force, F . The length of the undeformed

fiber is L = 2π/b. We refer to Comninou and Yannas45 for the solution of the de-

formed rotation angle ϑ(X1) and the deformed tip position x1(X1). The following
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non-dimensional parameters are introduced,

α =
F

EA
, β = b2R2, (4.1)

where α is the applied force normalized by the axial stiffness, and β is proportional

to the radius of gyration. These two parameters and the initial crimp angle, Θ0 = ab,

fully define the properties of the elastica. Then, the deformed rotation angle, fiber

micro-stretch, and fiber macro-stretch can be written as,

ϑ(X1) =
β

4α (1 + α) + β
Θ(X1), (4.2)

λf (X1) = 1 + α cos(ϑ(X1)), (4.3)

λ =
1

L

∫ L

0

λf
cos(ϑ)

cos(Θ)
dX1. (4.4)

The solutions given in eqs. (4.2)-(4.4) are for the deformed configuration given an

applied end-tip force. Alternatively, the force for an applied macro-stretch λ can be

solved iteratively as described in Sec. 4.2.5.

The total strain energy of the collagen fiber can be written as the sum of a bending

and axial energy as,

Ufib =

∫ L

0

EI

2

(
dϑ

dX1

− dΘ

dX1

)2

dX1 +

∫ L

0

EA

2
(λf − 1)2dX1 (4.5)
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where I and A are the current second moment of area and cross-sectional area of

the fiber. For the case of small fiber strains, the effect of Poisson’s contraction on

the fiber radius is neglected for simplicity. As a result, I and A are constants for

fibers not subjected to enzymatic degradation. For a degrading fiber we can define

a strain energy density per degraded volume as, Ψ0
fib = Ufib/(AL), where A = πr2

is the degraded cross-sectional area and r is the degraded fiber radius. Expressions

for Ψ0
bend and Ψ0

axial in terms of the non-dimensional fiber parameters are obtained by

applying the definitions of A and I for a circular cross-section and rearranging terms,

shown in eq. (4.6):
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Ψbend =
Ubend
AL

=

∫ L

0

EI

2AL

(
dϑ

dX1

− dΘ

dX1

)2

dX1

dϑ

dX1

=
β

4α(1 + α) + β

dΘ

dX1

dΘ

dX1

= −ab2 sin(bX1)

Ψbend =
1

L

∫ L

0

EIb2

2A

(
β

4α(1 + α) + β
− 1

)2

(ab sin(bX1))2 dX1

∫ L

0

(ab sin(bX1))2 dX1 =

∫ L

0

(ab cos(bX1))2 dX1 =

∫ L

0

Θ2dX1

Ψbend =
1

L

∫ L

0

EIb2

2A

(
βΘ

4α(1 + α) + β
−Θ

)2

dX1

ϑ(X1) =
βΘ

4α(1 + α) + β

Ψbend =
1

L

∫ L

0

EIb2

2A
(ϑ(X1)−Θ(X1))2 dX1

Ib2

A
=
πR4b2

4πR2
=
β

4

Ψbend =
1

L

∫ L

0

Eβ

8
(ϑ(X1)−Θ(X1))2 dX1,

Ψaxial =
Uaxial
AL

=
1

L

∫ L

0

E

2
(λf − 1)2dX1.

(4.6)

The strain energy density per undegraded fiber volume for the entire fiber follows as

the sum of the axial and bending contributions:

Ψ0
fib =

1

L

∫ L

0

[
Eβ

8
(ϑ(X1)−Θ(X1))2

]

︸ ︷︷ ︸
Ψ0

bending

dX1 +
1

L

∫ L

0

[
E

2
(λf (X1)− 1)2

]

︸ ︷︷ ︸
Ψ0

axial

dX1. (4.7)
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Additionally, we can define a strain energy density per initial undegraded volume as,

Ψfib = Ufib/(A0L), where A0 = πR2 is the initial undegraded cross-sectional area and

R is the initial fiber radius. Applying the definition for the degraded A and I and

the undegraded A0 gives,

Ψfib = D2Ψ0
fib, (4.8)

where D = r/R is the ratio of the degraded and original fiber radius. It follows that

the factor D2 in eq. (4.8) reflects the change in cross-sectional area of a fiber with

degradation. The term is analogous to a mass concentration ratio and is used to

describe the effect of degradation on altering the stiffness and mass distribution of

fibers (see for example, Demirkoparan et al.181 and Kroon et al.185).

4.2.2 Collagen degradation and deposition law

Experimental studies of unstrained collagen fibrils subjected to bacterial collage-

nase have shown that degradation proceeds by progressive reduction in the radius of

the fiber184 and previous works have described the phenomena by prescribing a con-

stitutive relation for the fiber radius.85,181 We take the same approach and prescribe

a zero order degradation law for the fiber radius. The choice of a zero order kinetic

relation is motivated by enzymatic degradation experiments of both strained and

unstrained collagen fibers in collagenase showing a constant degradation rate,80,186

and is consistent with zero-order Michaelis-Menten kinetics for an enzyme-mediated
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reaction in the presence of excess enzyme.

Experiments have also shown that the degradation rate depends on applied strain.

Collagen fibers exhibit an abrupt decrease in the degradation rate with applied strain,

an effect commonly referred to as strain protection.3,4, 80,178 The onset of strain pro-

tection has been observed to coincide with the straightening of the collagen fiber,80–82

suggesting that distortion of the collagen backbone may inhibit enzyme binding or

cleavage.180 This feature has previously been modeled as a homeostatic fiber micro-

stretch or macro-stretch.47,70 We model the strain dependence by adding a mechanical

activation energy term associated with the axial strain energy density to the degra-

dation rate:

dr

dt
= −C1 exp

[
−Ea + C2Ψ0

axial

kbT

]
. (4.9)

The constant C1 is the intrinsic reaction rate, C2 is a mechanical activation volume,

Ea is the thermal activation energy, kb is the Boltzman constant, and T is the tem-

perature. The rate law depends on the axial strain energy density Ψ0
axial of the fiber

per degraded volume, rather than Ψaxial of the undegraded volume, because it de-

scribes the intrinsic material properties of the fiber. We substitute eq. (4.7) into

eq. (4.9) and define the non-dimensional constants G1 = −C1/R exp [−Ea/kbT ] and
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G2 = kbT/EC2 to obtain the final non-dimensional form of the degradation law:

dD

dt
=−G1 exp

[
−

ε2f
2G2

]
,

ε2f =
1

L

∫ L

0

(λf (X1)− 1)2dX1.

(4.10)

The non-dimensional constants G1 and G2 describe the thermal and mechanical con-

tributions to the activation energy, and the rate law depends directly on the square

of the fiber averaged micro-strain ε2f , i.e. the ”backbone strain” of the fiber. By pe-

nalizing the axial stretching of fibers, the model allows degradation to proceed only

at low stress levels during the straightening of the crimped fibrils.

For the studies in Sec 4.3.4, we incorporate the effect of fiber-level collagen depo-

sition to investigate the development of homeostasis. Collagen deposition has been

shown to depend on fiber stretch,78 but for simplicity we consider only a constant

deposition rate. It is assumed that collagen deposition proceeds by increasing the

fiber radius as new collagen monomers are incorporated into the surface. A constant

collagen deposition term, kd, is added to eq. 4.10:

dD

dt
= kd −G1 exp

[
−

ε2f
2G2

]
. (4.11)

This simplified model of collagen deposition does not describe the ability of collagen

deposition to change the collagen crimp. Collagen deposition instead affects only the

fiber radius, resulting in a change in the bending and axial stiffness of the fiber. If
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tively split the continuum deformation gradient into a growth and elastic part,57

F = FeFg, (4.13)

where Fe represents the deformation occurring from externally applied loads and Fg

represents the volume change due to degradation or deposition induced growth, illus-

trated in Fig. 4.3. We assume that the growth associated with fiber-level degradation

occurs only in the direction orthogonal to the fiber plane. Moreover, this change in

the tissue thickness scales with the change in the thickness of the individual fibers,

D(φ) = r(φ)/R, averaged over all possible fiber orientations:

Fg = e1 ⊗ e1 + e2 ⊗ e2 + λge3 ⊗ e3,

λg =

∫ π

−π
D(φ)ρ(φ)dφ.

(4.14)

As the surface of individual fibers are gradually eroded, bonds with the surrounding

elastin and proteoglycans of the ground matrix may also be disrupted, leading to bulk

loss of both fiber and ground matrix material. The form of eq. (4.14) is motivated

by the assumption that this loss of bulk matrix material will be most pronounced for

the thickness (e3) direction of the tissue, as cleaved molecules can easily diffuse away

from the material.

We assume that the elastic component of the deformation is incompressible (Je =

detF e= 1). A change in mass induces a volume change in the stress free intermediate
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configuration (β̃), rather than densification, and the volume of the current configu-

ration β is unchanged from the intermediate configuration. Furthermore, we assume

that the fiber orientation distribution is unchanged by growth, and the fiber orien-

tation a0 is the same in the reference β0 and intermediate β̃ configurations. This is

strictly true for a planar fiber structure and growth only in the out-of-plane (thickness)

direction. We also assume that the fibers deform affinely with the continuum defor-

mation gradient, such that the elastic fiber stretch is given by λ
e
(φ) = a0 : Ce : a0,

λ
e
(φ) =

√
(λe11)2 cos2(φ) + (λe22)2 sin2(φ). (4.15)

For the form of the growth tensor specified in eq. (4.14), λ = λ
e
.

The choice of normalizing volume for the strain energy density is important for a

tissue of changing mass.173,187 We define the strain energy density of the tissue for

the intermediate configuration, β̃, which is equivalent to the tissue density times the

strain energy per unit mass. Both are immutable by growth, and the strain energy

density of the intermediate configuration represents the intrinsic material properties

of the tissue. In contrast, the strain energy density of the reference configuration β0

decreases with decreasing mass. We apply the standard assumption that the strain

energy density of the tissue can be decomposed additively into an isotropic component
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describing the ground matrix and an anisotropic component for the fiber structure,

Ψ(Ce) = Ψmatrix(C
e) +

∫ π

−π
Ψfib(λ

e
(φ)) ρ(φ)dφ. (4.16)

The anisotropic contribution is obtained by integrating the strain energy density of

the fibers weighted by the probability density distribution of fiber orientation. The

elastically incompressible Neo-Hookean model, Ψmatrix(C
e) = µ

2
(Ie1 − 3)− p

2
(Ie3 − 1),

where µ is the shear modulus, is used to describe the matrix. The strain energy

density of the elastica of eq. (4.8) is used for Ψfib to describe the effect of collagen

degradation on the fiber stiffness. The Cauchy stress can be evaluated from the strain

energy density of the intermediate configuration as,

σ =
1

Je
Fe∂(Ψ(Ce))

∂Ce
Fe,T . (4.17)

Substituting eq. (4.16) to eq. (4.17) and applying the chain rule gives,

σ = µbe − pI +

∫ π

−π

∂Ψfib(φ)

∂λ
e
(φ)

1

λ
e
(φ)

FeA(φ)Fe,Tρ(φ)dφ. (4.18)

The derivative of the fiber strain energy in eq. (4.8) with respect to the fiber-level

elastic stretch, λ
e
(φ), is given in Table 4.1 of Sec. 4.2.5.

Alternatively, the strain energy density of the tissue can be written with respect
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to the reference volume:

Ψref = JΨ. (4.19)

The Cauchy stress can be computed from eq. (4.19) as,

σ =
1

J
F
∂(Ψref (Ce))

∂C
FT (4.20)

where J = JeJg and Jg = det Fg is the total volume change ratio from growth.

Substituting eq. (4.19) into eq. (4.20) results in the same eq. (4.18) for the Cauchy

stress.

4.2.4 Application to uniaxial tension

For uniaxial tension caused by an applied force f = F1e1, the Cauchy traction can

be evaluated to give,

σ11 =
F1

a
, σ22 = σ33 = 0, (4.21)

where a is the deformed cross-sectional area of the tissue. For an incompressible

isotropic material with an initially random fiber orientation distribution, the total

deformation gradient is triaxial and can be written as,

F = λe11e1 ⊗ e1 + λe22e2 ⊗ e2 +
λg

λe11λ
e
22

e3 ⊗ e3. (4.22)
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where λg is the growth deformation in the thickness direction in eq. (4.14). Substi-

tuting eq. (4.22) into eq. (4.18) and applying the plane stress condition σ33 = 0 to

solve for p = µ [(λe11λ
e
22)]−2, yields the following biaxial Cauchy stress response,

σ11(λe11, λ
e
22) = µ

[
(λe11)2 − 1

(λe11λ
e
22)2

]
+

∫ π

−π

∂Ψfib(φ)

∂λ
e
(φ)

(λe11)2

λ
e
(φ)

cos2(φ)ρ(φ))dφ

σ22(λe11, λ
e
22) = µ

[
(λe22)2 − 1

(λe11λ
e
22)2

]
+

∫ π

−π

∂Ψfib(φ)

∂λ
e
(φ)

(λe22)2

λ
e
(φ)

sin2(φ)ρ(φ))dφ.

(4.23)

The elastic stretches, λe11 and λe22, are evaluated by setting σ11(λe11, λ
e
22) = F1/a and

σ22(λe22, λ
e
22) = 0. The resulting nonlinear system of equations can be solved using an

iterative Newton solver as shown in the next section.

4.2.5 Numerical Implementation

The simulation for a degrading tissue under constant uniaxial force requires the

solution of two nonlinear systems: an outer loop for the tissue-level stretches (λ11, λ22)

given a prescribed biaxial stress state (σ11 = F/a, σ22 = 0), and an inner loop for the

fiber stress and degradation (α(φ), D(φ)) for a given the fiber elastic macro-stretch

(λ
e
(φ)) at time t. An algorithm for the solution of this nonlinear system for a single

timestep is given in Table 4.1. Derivatives necessary to evaluate the Jacobins can be

found in Appendix B.

To compute the stretch with time for constant uniaxial force, we apply the bound-

ary conditions (σ11 = F1

a
, σ22 = 0) to the biaxial stress-stretch constitutive relation of

139



CHAPTER 4. MODELING STRAIN-PROTECTED DEGRADATION WITH
APPLICATIONS TO GROWTH AND REMODELING

Table 4.1: Algorithm for degradation and deformation for a single timestep.

GLOBAL ITERATION: Solve for λ11, λ22, λ33 for iteration n+1

Initial Guess: λn+1
11 = λn11, λn+1

22 = λn22, λn+1
g = λng

λe,n+1
11 = λn+1

11 , λe,n+1
22 = λn+1

22 , λe,n+1
33 = λn+1

33 /λn+1
g

Local Iteration:
∂Ψfib

∂λ
e

n+1
(φ), Dn+1(φ), for φ = [0 : dφ : 2π]

Tissue Stress: σn+1
11 = µ

[
(λe,n+1

11 )2 − (λe,n+1
11 λe,n+1

22 )−2
]

+
∫ π
−π

∂Ψfib

∂λ
e

n+1 [
λe,n+1

11

]2 [
λ
e,n+1

]−1
cos2(φ)ρ(φ))dφ

σn+1
22 = µ

[
(λe,n+1

22 )2 − (λe,n+1
11 λe,n+1

22 )−2
]

+
∫ π
−π

∂Ψfib

∂λ
e

n+1 [
λe,n+1

22

]2 [
λ
e,n+1

]−1
sin2(φ)ρ(φ))dφ

λn+1
g =

∫ π
−π

(
Dn+1

)2
dφ

do:

[
∆λe,n+1

11

∆λe,n+1
22

]
= −

 ∂f1
∂λe

11

∂f1
∂λe

22
∂f2
∂λe

11

∂f2
∂λe

22

−1 [
fn1
fn2

]
fn+1
1 = σn+1

11 − F1λ
e,n+1
11

λn+1
g A0

fn+1
2 = σn+1

22 − 0

while: |
√

(fn+1
1 )2 + (fn+1

2 )2 | > tol

λn+1
11 = λe,n+1

11 , λn+1
22 = λe,n+1

22 , λn+1
33 = λe,n+1

33 λn+1
g

LOCAL ITERATION Solve for α,D for iteration k+1

Initial Guess: αk+1 = αk, Dk+1 = Dk

λ
e,n+1

=
√

(λe,n+1
11 )2 cos2(φ) + (λe,n+1

22 )2 sin2(φ)

Fiber Deformation: λ
k+1

= 1
L

∫ L
0 λk+1

f cos(ϑk+1)/cos(Θ) dX1

ε2
k+1

= 1
L

∫ L
0

(
λk+1
f − 1

)2
dX1

ϑk+1 = βk+1Θ
(

4αk+1 + 4
(
αk+1

)2
+ βk+1

)−1

λk+1
f = 1 + αk cos(ϑk+1)

βk+1 = (Dk+1)2βt=0

do:

[
∆αk+1

∆Dk+1

]
= −

[
∂f1
∂α

∂f1
∂D

∂f2
∂α

∂f2
∂D

]−1 [
fn1
fn2

]
gn+1
1 = λ

e,n+1 − λk+1

gn+1
2 = Dk+1 −Dt−1 + ∆G1 exp

[
−ε2

k+1
/(2G2)

]
while: |

√
g2
1 + g2

2 | > tol

for tissue stress:
∂Ψfib

∂λ
e

k+1
=

(
(Dk+1)2

L

∫ L
0

[
Eβk+1

4

(
ϑk+1 −Θ

)
dϑ
dα

+ E
(
λk+1
f − 1

)
dλf

dα

]
dX1

)
dα
dλ

e

dα
dλ

e =

[
1
L

∫ L
0

(
dλf

dα
cos(ϑk+1)

cos(Θ)
−
λk+1
f

sin(ϑk+1)

cos(Θ)
dϑ
dα

)
dX1

]−1

dλf

dα
= cos(ϑk+1)− αk+1 sin(ϑk+1) dϑ

dα

dϑ
dα

=
−βk+1(4+8αk+1)Θ

(4αk+1(1+αk+1)+βk+1)2
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eq. (4.23) and solve the nonlinear system of equations iteratively using the Newton-

Raphson method. The system is discretized over time and the solutions for the

previous timestep are used as the initial guess for the next timestep. The tissue is

assumed initially undegraded (Fg(0) = I, D(φ; 0) = 0 for φ = [0 : 2π]) with an initial

cross-sectional area a(0) = A0.

For each global iteration step, the deformation of a fiber is solved iteratively with

a Newton-Raphson scheme for the nonlinear system of the equilibrium fiber macro-

stretch [eq. (4.4)] and the degradation law [eq. (4.10)] discretized over time using

a backward Euler approximation. The solutions of αt−1 and Dt−1 from the previous

timestep are used as the initial guess. Solving the system yields the internal variable

α, a measure of the normalized fiber stress, and the fiber degradation D at the current

time-step. These values are passed to the global loop after local convergence.

4.2.6 Parameter Determination

Table 4.2 lists the parameters of the growth and remodeling model. The param-

eters for the degradation rate law were calibrated to the single-fibril experiments of

Flynn et al,80 which degraded isolated bovine scleral fibrils in bacterial collagenase

under zero, low (2 pN/monomer), and high (24 pN/monomer) loads. The axial stiff-

ness of the fibrils were mechanically probed at loads up to 40 pN/monomer every 300

seconds during the degradation experiment and used to calculate the change in the

fibril radius with time. The loss in structural stiffness was assumed to arise solely
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Table 4.2: Model parameters

Fiber Degradation Parameters G1 Unstrained degradation rate
G2 Strain sensitivity parameter

Elastica Parameters E Fiber Young’s modulus
β Fiber bending stiffness

Θ0 Initial fiber crimp angle

Tissue Parameters µ Ground matrix shear modulus

from loss in fibril radius, and the degraded radius was computed from the initial fibril

radius and a constant Young’s modulus of E = 0.7 GPa. Low and medium load

fibrils exhibited a linear decrease in radius with time, with low load fibrils degrading

faster than medium load. High load fibrils did not exhibit degradation and were not

mechanically probed. Control fibers were also held under high force with no enzyme

exposure.

The elastica fiber model in Sec. 4.2.1 was applied to model the enzymatic degra-

dation of the uncrimped fibrils (Θ0 = 0) under uniaxial tension. Previous measure-

ments of the enzymatic cutting rate normalized by force per monomer show that the

degradation rate constant is similar for collagen monomers, isolated sclera fibrils, and

strips of cornea tissue.79,80,83 The micro-stretch for a straight fiber is uniform and
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the force-stretch relationship can be determined analytically as,

F = EπD2R2

(
1− 1

λf

)
. (4.24)

The degradation law for the straight fiber simplifies to the following,

dD

dt
= −G1 exp

[
−(λf − 1)2

2G2

]
. (4.25)

The initial fibril diameters, R, were extrapolated from the diameter vs. time data

reported by Flynn et al.80 and found to be 415 nm for zero load fibrils, 275 nm for

low load fibrils, and 225 nm for control fibrils. Because the fibrils varied in diameter,

the total force applied to each fibril was computed based on the initial fibril diameter.

We follow Tzafriri et al.186 to convert from pN/monomer to total force for a given

fiber diameter. The number of monomers, N , per fibril of diameter df and monomer

diameter dm is calculated by:

N =
π

4

(
df
dm

)2

. (4.26)

Following Flynn et al.,80 we assume a monomer spacing of dm = 1.6 nm. Applying this

calculation to low-load fibrils of df = 275 nm results in N = 2.32e4 monomers/fibril.

The 2 pN/monomer force can be converted to a total applied force by:

2 pN

monomer
∗ 2.32e4 monomers

fibril
= 46 nN. (4.27)
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This 46 nN load applied over a fibril of radius 275 nm will result in a 0.1% strain for

the assumed Young’s modulus of 0.7 GPa. An analogous calculation for high-load

fibrils based on the control fibril initial diameter of 225 nm yields an applied load of

373 nN to reach 24 pN/monomer. Instead, we applied to 1054 nN high load force

reported in the caption of Fig. 1 of Flynn et al., though both load levels give the

same result of completely protected fibrils. We also simulated mechanical probing for

low and medium load simulations. Because high load samples were not probed, but

were found equivalent to control load fibrils (i.e. no radius change), we compared our

high load simulations to the control load results.

The intrinsic degradation rate G1 was determined from the slope of the fibril

radius plotted as function of time for the zero load case in the first 1000 s of the

degradation experiment. The parameter G2 was fit to fibril radius measurements in

the first 1000 s of the experiments for the low load case while ensuring that the high

load case remained undegraded. The simulations were limited to the first 1000 s of the

experiments to avoid consideration of the effects of mechanical damage inflicted by the

applied load on the severely degraded fibrils. We found that adding a simple fiber-level

damage model to the simulations was able to capture the full 4000 s experiment, but

necessitated two additional material parameters. Details and results for simulations

with fiber-level damage can be found in Chapter 5.

The Cauchy stress relation in eq. (4.23) was applied to simulate the uniaxial ten-

sion experiments of bovine cornea strips reported by Zareian et al.83 to determine the
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mechanical parameters of the elastica model for a collagen fiber. These experiments

were also used to validate model predictions of tissue-level enzymatic degradation,

described in the following section. In the experiments, a force f = F1e1 was applied

to strips of dimensions, 0.75mm thick, 6 mm wide, and 17.5 mm long, and held for

15 minutes to allow for creep without the presence of enzymes. Three different force

levels were examined, F1 = 0.1 N, 0.25 N, and 0.5 N, and the strain measurements

at the end of the 15 minute hold period were used to the determine the elastica pa-

rameters. For the simulations, we set λg = 1 and λei = λi for no degradation, applied

σ11 = F1/a and σ22 = 0, and solved iteratively for the stretches λ1 and λ2 given an

undeformed cross-sectional area of A0 = 4.5 mm2. A more detailed explanation of

the solution method is shown in the Appendix of this chapter.

A value of µ=26 MPa was used for the matrix shear modulus of the tissue. The

value was obtained from inverse finite element analysis of inflation tests of bovine

cornea.157 The remaining three elastica parameters for the fiber modulus E, bending

stiffness parameter β, and crimp angle Θ0 were chosen to fit the stress-strain data

points at the end of the 15 minute creep period for the three load-levels. A unique

optimized fit was not possible for the available number of data points. To further

constrain the problem, we followed the analysis of Zareian et al.,83 which showed that

the strain-stiffening behavior of the collagen fibers occurred between the 0.1 N and

0.25 N, to select Θ0. The axial stiffness parameter E was tuned to match the slope

between the 0.25 N and 0.5 N data point, and the bending stiffness parameter β was
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tuned to match the slope between the 0.1 N and 0.25 N data points.

For a secondary validation, we used the same methods to calibrate the mechanical

parameters to similar constant force experiments reported by Ellsmere et al.183 In

these experiments, strips of bovine pericardium 16 mm long and 4.5 mm wide were

held at F1 = 1 g, 10g, and 60 g constant force while exposed to collagenase. Thickness

was not reported but was inferred from the reported associated stress to be 0.61-

0.65 mm, similar to the Zareian et al. experiments. The parameters of the elastica

model were fit to the initial stress and strain reported for each load level. The tissue

was again assumed isotropic, and the shear modulus was selected to be the same

as for cornea (µ = 46 MPa). Similar to Zareian et al., the authors reported that

the three force levels were selected so that the stiffening transition occurred between

the medium and high force levels. We used this to select Θ0. We then varied the

axial stiffness parameter E and the bending stiffness parameter β in the same manner

described above to match the stress-strain curve.

4.2.7 Modeling tissue degradation

Enzymatic degradation of the bovine corneal strips in the Zareian et al.83 ex-

periments was initiated after the 15 minute creep period by introducing 0.05 mM of

bacterial collagenase while maintaining the constant uniaxial force. The creep strain

caused by degradation of the cross-section was measured for 2 hours. The parameters

calibrated in Sec. 4.2.6 and listed in Table 4.2 were applied to predict the results of
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the degradation-induced uniaxial creep response under constant load, for the three

different load levels, 0.1 N, 0.25 N, and 0.5 N. We simulated only the first 6 minutes

of the experiment, where the reaction speed is expected to dominate over diffusion.

Results for the absolute creep rate at each applied load, as well as the normalized

creep rates between loads were compared between experiments and simulations.

We also applied the same methods to predict the enzymatic degradation of the

bovine pericardium strips reported by Ellsmere et al.183 In these experiments, bovine

pericardium strips were ramped up and held at constant 1 g, 10 g, or 60 g force

while exposed to 20 U/mL collagenase. The creep strain was recorded over a much

longer timeframe, up to 50 hours. Again, the parameters calibrated in Sec. 4.2.6 were

used to predict the uniaxial creep under constant load. Because the tissue thickness

was similar to the Zairean experiments, we only simulated the first 6 minutes of

the experiment, and again the absolute and normalized creep rates were compared

between experiments and simulations.
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Figure 4.4: Model calibration: (a) fit of fiber degradation kinetic parameters to
single-fibril degradation data collected by Flynn et al80 for isolated bovine sclera
fibrils, (b) fit of tissue-level mechanical model to equilibrium data of Zareian et al83

for undegraded bovine cornea tissue.

4.3 Results

4.3.1 Enzymatic degradation of single collagen fib-

rils and tissue strips

Figure 4.4(a) plots the change in fibril diameter with time for data measured ex-

perimentally by Flynn et al.80 for three different load levels, compared to simulations

of a straight collagen fiber under uniaxial tension at the same applied loads using eqs.

(4.24) and (4.25). The parameters G1 and G2 were fit to the 0 nN and 46 nN cases.

Good good agreement between model and experiments were obtained for the fitted

parameters. The model showed complete strain protection at the high 1054 nN load.

Figure 4.4(b) compares the modeling results and experimental measurements of

148



CHAPTER 4. MODELING STRAIN-PROTECTED DEGRADATION WITH
APPLICATIONS TO GROWTH AND REMODELING

0 100 200 300 400
1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

time [s]

λ
1
1

 

 

Exp − 0.1N

Exp − 0.25N

Exp −0.5N

Model − 0.1N

Model − 0.25N

Model − 0.5N

Figure 4.5: Prediction of tissue-level creep data for degrading bovine cornea tissue
measured by Zareian et al.83 using the kinetic degradation parameters calibrated to
bovine scleral fibrils in Fig. 4.4(a).

Zareian et al.83 for the true stress response of bovine cornea under uniaxial tension.

The elastica parameters, β = 0.02, Θ0 = 30°, and E = 50 MPa provided a good

fit to the data. The modeling results fell within the experimental variation for the

middle and high load data, but was above the measurements for low load data. The

initial crimp angle Θ0 = 30°, was chosen to ensure that the transition stretch occurred

between the low and medium load levels, discussed in Zareian et al.83

Figure 4.5 compares the model predictions and experimental measurements of

Zareian et al.83 for the degradation-creep response of bovine corneal strips under

constant load. The simulations used the fibril-level degradation rate parameters de-

termined from Fig. 4.4(a) and the elastica parameters determined from Fig. 4.4(b)
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Table 4.3: Absolute and normalized creep rates for the bovine cornea experimental
data reported by Zareian et al.83 and model prediction using fibril-calibrated kinetic
degradation parameters.

Loading Experimental Creep Model Prediction
Absolute Rate Normalized Rate Absolute Rate Normalized Rate

0.1 N 7.02e-5 s−1 1.57 4.27e-5 s−1 2.52
0.25 N 3.54e-5 s−1 0.79 2.17e-5 s−1 1.28
0.5 N 4.48e-5 s−1 – 1.70e-5 s−1 –

to model the tissue-level degradation experiments. The simulation results fell within

experimental error for the medium and high load levels, but below the experiments

for the low load. This was likely caused by the poorer representation of the uniaxial

stress response at low loads in Fig. 4.4(b).

The absolute and normalized creep rates for all three loads are listed in Table

4.3 for both the experimental and modeling results. The absolute creep rates were

calculated by linear regression to the stretch-time data of Fig. 4.5. The normalized

creep rates were computed by normalizing the absolute creep rate by the slowest creep

rate for the 0.5 N loading case. While the model under-predicted the absolute creep

rate, the normalized creep rates between loads were similar to the experiments. In

particular, both the simulation and experiments report that the the low-load creep

rate was nearly twice the high-load creep rate, while the medium and high creep rates

were similar.

The elastica model was also able to obtain good agreement with the initial bovine

pericardium stress-strain data. The fitted parameters were similar to the bovine

cornea, but with lower bending stiffness (β = 0.003) and larger crimp angle (Θ0 =
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Table 4.4: Absolute and normalized creep rates for bovine pericardium experimental
data reported by Ellsmere et al.183 and model prediction using fibril-calibrated kinetic
degradation parameters.

Loading Experimental Creep Model Prediction
Absolute Rate Normalized Rate Absolute Rate Normalized Rate

1 g 3.25e-6 s−1 2.48 5.67e-5 s−1 3.63
10 g 6.23e-7 s−1 0.48 1.22e-5 s−1 0.78
60 g 1.31e-6 s−1 – 1.56e-5 s−1 –

36°). The tensile stiffness (E = 50 GPa) was found to be the same. Table 4.4 lists

the absolute and normalized creep rates for both the experimental results of Ellsmere

et al.183 and the model prediction based on these parameters and the same kinetic

parameters calibrated in 4.4(a). In this case, the model over-predicted the absolute

creep rate of the tissue, but again the normalized creep rates were similar between

the model and experiments. In fact, the model was able to predict that the low force

(1 g) would exhibit the highest creep rate, while the slowest creep rate was for the

middle force (10 g).

4.3.2 Single Fiber Simulations

This section investigates the fiber-level implications of the degrading elastica

model. First, the fiber-level constitutive relations of eq. (4.2)-(4.4) were applied

to simulate the undegraded fiber deformation for the mechanical parameters deter-

mined for bovine cornea in Sec. 4.2.6. Figure 4.6(a) plots the relationship between

the micro-stretch, λf , computed by eq. (4.3), and the macro-stretch, λ, computed

by eq. (4.4) over the same range for a single non-degraded elastica fiber. The micro-
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Figure 4.6: Fiber-level results a single elastica: (a) Relation between the micro-
stretch and macro-stretch for a single elastica; (b) Dependence of the degradation
rate for a single fiber on the micro-stretch [eq. (4.10)], (c) stress-macrostretch relation
for single elastica, (d) Derivative of degradation rate for a single fiber with respect to
the micro-stretch [eq. (4.10)] for the experimentally calibrated parameters.
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stretch remains small (less than 2.5%) over the range of macro-stretches plotted. The

micro-stretch begins to increase after λ = 1.06, as the dominant fiber deformation

mode transitions from bending to axial stretching. Figure 4.6(b) plots the stress for

a single non-degraded elastica over a range of macro-stretches of 0.90 - 1.10. The

stress-stretch curve exhibits the characteristic stiffening expected for a collagen fiber

as the elastica unbends. The compressive response of the fiber is small, as expected

for collagen fibers: a 10% extension corresponds to a 1258 kPa tensile stress, while a

10% compression corresponds to a -74 KPa compressive stress, or less than 6% of the

tensile stress.

Next, we plot the degradation rate dependence on the fiber micro-stretch, λf ,

prescribed by eq. (4.10) for the kinetic parameters fit in Sec. 4.2.6. As shown in

Fig. 4.6(c), the degradation rate is seen to decrease linearly with the micro-stretch,

then slowing significantly at λf = 1.002 before becoming nearly zero at λf = 1.003.

Figure 4.6(d) plots the derivative of the degradation rate with respect to the micro-

stretch. There is an inflection point at λf = 1.001, indicating that degrading fibers

are the most sensitive to changes in stretch in this stretch. Referring to Figs. 4.6(a)-

(b), λf = 1.001 corresponds to a macro-stretch of approximately λ = 1.03, and occurs

at the ”knee” or transition region between bending and axial stretching.
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Figure 4.7: The fraction of fiber mass remaining with time as degradation proceeds
for differing levels of (a) uniaxial stress and (b) equibiaxial stress.

4.3.3 Degradation of a tissue material under dif-

ferent stress states

The constitutive relations in eq. (4.23) and the mechanical parameters for bovine

cornea were applied to simulate the degradation of an initially isotropic tissue material

under a constant uniaxial or biaxial applied stress state. We first assessed the effect

of different stress levels on the total fiber mass. Figure 4.7 plots the fraction of the

fiber mass remaining, defined as 1
2π

∫ π
−πD(φ)2dφ, over 4000 s for a tissue degrading

under constant uniaixial or equibiaxial stress ranging from 10 kPa to 90 kPa. Uniaxial

simulations exhibited a rapid degradation rate which abruptly decreased after 1500 s,

though the rate of fiber mass loss remained finite for all applied stresses. Higher stress

resulted in a higher fraction of fiber mass remaining, and complete degradation of the

fibers was not achieved for any stress level. In contrast, simulations of equibiaxial
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Figure 4.8: Polar plot of the fiber mass distribution after 750 s, 1500 s, and 4000
s of degradation for 40 kPa constant stress applied (a) uniaxialy, at φ = 0°, and (b)
equibiaxially, at φ = 0 and 90°.

loading exhibited complete degradation for lower applied stresses. Moreover, the

applied stress had a larger effect on the degradation rate. The rate of fiber mass loss

in the first 500 s decreased by 16% between 20 kPa and 40 kPa for uniaxial tension

compared to 38% for biaxial tension.

To understand these results, Fig. 4.8 plots the fiber mass distribution, normalized

by the initial fiber mass, D(φ)2, at 750 s, 1500 s, and 4000 s for the 40 kPa uniaixal and

equibiaxial simulations. For uniaxial loading at φ = 0°, an initially isotropic distri-

bution became strongly anisotropic, as fibers orthogonal to the loading axis are fully

degraded, while a tissue loaded equibiaxially at φ = 0° and 90° remained isotropic

because all fibers degraded at the same rate. The sudden decrease in degradation

rate at 1500 s for uniaxial loading occurred after all unloaded fibers were completely

degraded and only loaded fibers remained. Because unstrained fibers degraded at
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Figure 4.9: Illustration of the calculation of the anisotropy ratio. The anisotropy
ratio is computed as the mass of the anisotropic component over the total fiber mass
(anisotropic + isotropic mass).

the same rate, this transition occurred at approximately the same time for all stress

levels. In contrast, for the biaxial case, all fibers were loaded equally and degraded

uniformly, at a rate determined by the fiber stretch. As fibers degraded, the stretch on

individual fibers increased under constant stress, slowing degradation. For a very low

equibiaxial stress, fibers degraded completely because the matrix carries the majority

of the load, preventing the the large fiber stretches that would halt degradation.

While uniaxial loading can lead to strongly anisotropic fiber structures, many tis-

sues in the body exhibit fiber structures of varying degrees of anisotropy. We next

explore the effect of a non-equibiaxial stress state on the degraded fiber mass distri-

bution. Following Pijanka et al.,14 we quantified the anisotropy ratio by computing

the ratio of the anisotropic component of the fiber mass to the total fiber mass,

as illustrated in Fig. 4.9. The uniaxial stress state described previously resulted
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Figure 4.10: (a) Anisotropy ratio when σ22 is varied while σ11 is held constant at
40 kPa, (b) polar plot of mass fraction remaining of an initially isotropic distribution
for σ22 = 33 kPa and σ11 = 40 kPa , resulting in an anisotropy ratio of 0.36, in the
range reported by Pijanka et al.14 for human posterior sclera.

an a completely anisotropic fiber structure with no isotropic component (anisotropy

ratio = 1), while the equibiaxial stress state maintained a fully isotropic structure

(anisotropy ratio = 0). Figure 4.10(a) plots the anisotropy ratio resulting from vary-

ing the ratio of σ22/σ11 from 0 to 1 for σ11 = 40 kPa. Below σ22/σ11 = 0.5, the tissue

became fully anisotropic as off-axis fibers were not strained sufficiently to halt degra-

dation. However, at σ22/σ11 > 0.5, the anisotropy ratio ranged from fully anisotropic

to fully isotropic, illustrating that small changes in the biaxial stress state can lead

to large changes in the anisotropy of the fiber structure. Fig. 4.10(b) plots the fiber

mass distribution for a tissue held at σ11 = 40 kPa and σ22 = 33 kPa. The anisotropy

ratio for this stress state was 0.36, within the range of anisotropy ratios reported by

Pijanka et al.14 for human posterior sclera. In contrast, a tissue held at σ11 = 40
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kPa and σ22 = 20 kPa will have an anisotropy ratio of 1, similar to fiber anisotropy

measured for human skin tissues.89

4.3.4 Effect of fiber collagen degradation and de-

position on the tissue growth and remodeling

The following numerical study examined the effect of collagen degradation and

deposition on the growth and remodeling of a thin spherical tissue structure. Though

idealized, this geometry is a first order approximation of tissue systems such as the

eye-wall or heart ventricles. The spherical structure is assumed to have an initial

radius of R0 = 12.5 mm, thickness of t0 = 1 mm and uniform pressure loading of

P = 2 kPa. These values approximate the dimensions of the human sclera and the

intraocular pressure. The model parameters listed in Table 4.2 were used to describe

the material properties of the tissue, which included the parameters calibrated from

experiments as described in Sec. 4.2.6 for bovine cornea. In addition, the simulation

included a finite collagen deposition rate of kd = 1e−4. This collagen deposition rate

was chosen to offset the slow degradation of strained collagen fibers seen in Fig. 4.7.

The hoop stresses for the thin pressurized spherical shell are,

σ11 = σ22 =
PR

2t
(4.28)

where R and t are the radius and thickness of the sphere in the current configuration
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Figure 4.12: Results of constant pressure application and subsequent step increase
(a, c, e) or decrease (b, d, f) in pressure at t = 4000s for simulations with enzy-
matic degradation and constant collagen deposition. Tissue responds to the pressure
perturbation by increasing or degreasing thickness (a-b). After perturbation, stress
levels approach the steady-state value but remain offset (c-d), while strain levels are
restored to the steady-state value (e-f).
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Figure 4.13: Results of constant pressure application and subsequent step increase
in pressure at t = 4000s for simulations without collagen deposition. Neither stress
nor strain recovered the steady-state value.

the thickness to increase in the presence of collagen deposition, which caused the

hoop stress and strain to decrease asymptotically from the initial response to the

applied 0.25 kPa perturbation. The strain recovers the steady-state value of the

initial pressure loading, while the equilibrium stress settled at a higher steady-state

level. For a step decrease in the pressure, collagen degradation occurred at a faster

rate, and the tissue thickness decreased. Both cases produced a steady state response,

where deposition and degradation were balanced, i.e. when the fibers were mostly

straightened.

To assess the importance of including collagen deposition as an opposing mech-

anism to degradation, Fig. 4.13 plots the stress and strain with time in response to

the step increase in pressure for a simulation with no collagen deposition (kd = 0).

When degradation was not included, neither the stress nor strain recovered the orig-

inal steady-state. When there is no opposing mechanism to balance degradation, the
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tissue has no way to increase the thickness in response to the increase in pressure,

preventing a recovery of the stress and strain levels.

4.4 Discussion

In this work, we presented a micro-mechanical model for the strain-protected enzy-

matic degradation of collagen. The collagen fibers were modeled as a planar crimped

elastica and the degradation rate of a fiber was inhibited by the axial strain energy

density, which increased the activation energy for the degradation reaction. The use

of a micro-mechanical model for crimped collagen fibers allowed for the calculation of

the axial strain energy directly from the micro-stretch of the collagen fiber. Although

the model did not take into account the stochastic nature of the chemical reactions

between the enzyme and collagen molecules, it reproduced the rapid onset of strain

protection observed experimentally. Moreover, the model associated the onset of the

inhibition in enzymatic degradation with the straightening of the fiber as observed in

experiments.80–82 The micro-mechanical model for a degrading fiber was incorporated

into a distributed fiber hyperelastic model for the stress response and an anisotropic

growth model for a collagen tissue.

The kinetic parameters of the degradation rate law were calibrated to the degrada-

tion experiments of Flynn et al.80 for collagen fibrils isolated from bovine sclera and

subjected to uniaxial loading. The parameters were used to predict the tissue-level
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degradation experiments of Zareian et al.83 for bovine corneal strips and Ellsmere et

al.183 for bovine pericardium strips under uniaxial tension. The tissue experiments

reported both the absolute creep behavior with time, as well as normalized creep

rates between experiments. The absolute creep rates incorporated the effects of de-

formation processes, such as viscoelasticity and damage, which were not considered

in the model. As a results, the model under-predicted the absolute creep rates for the

cornea. The normalized creep rates can be interpreted as a measure of the maximum

cutting rate of the enzyme at a given strain level. The model predictions for the nor-

malized creep rates agreed well with experiments, even though the parameters of the

degradation rate law were calibrated using data for scleral fibrils, which were 10 times

larger than corneal fibrils. Moreover, the tissue model assumed an isotropic distribu-

tion of collagen fibers, which produced a nonuniform orientation distribution of fiber

stretch. The strain-protected degradation model was also capable of predicting the

normalized creep rates of the bovine pericardium data reported by Ellsmere et al.,183

although these results were initially interpreted as evidence for strain-accelerated

degradation. Similarly, molecular-level degradation experiments have also suggested

that mechanical strain increases the degradation of heterotrimeric collagen by matrix

metalloproteinases,188,189 in contrast to the results of similar experiments by Camp

et al.79

We applied the model to explore the implications of stretch-mediated enzymatic

degradation for tissues under different loading states. Under uniaxial loading, off-
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axis fibers were quickly degraded, while load-bearing fibers were preserved, which were

consistent with experimental observations.3 This results in a strongly anisotropic fiber

structure. In contrast, tissues under constant equibiaxial stress degraded uniformly,

maintaining an isotropic fiber distribution, and more slowly than tissues loaded by

the same stress level under uniaxial tension. Applying a non-equibiaxial stress state

with a sufficiently large stress ratios resulted in an anisotropic fiber structure, where

the degree of fiber alignment depended on stress ratio of the biaxial stress state.

For example, applying a stress ratio of 0.825 resulted in an degree of fiber alignment

within the range reported for the human mid-posterior sclera by Pijanka et al.,14 while

a stress ratio of 0.5 resulted in a highly aligned fiber structure consistent with those

measured for skin tissue.89 These results suggest that strain-dependent enzymatic

degradation is an important mechanism for the development of a variety of anisotropic

fiber structures found in tissues throughout the body.

We investigated the interaction of collagen degradation and deposition mecha-

nisms in tissue-level growth and remodeling. In vivo, collagen is constantly deposited

and degraded as part of the normal collagen turnover process. A constant deposition

rate was incorporated into the micro-mechanical model and applied to an idealized

model of a spherical tissue undergoing a pressure perturbation. When both deposi-

tion and degradation were present, the wall stress and strain will return to a steady

state after a positive or negative pressure perturbation. However, only the strain

will recover the initial value before perturbation. Therefore our model predicts that
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degradation and deposition may work together to maintain a strain homeostasis for

this idealized case.

Whether tissues seek a strain or stress homeostasis remains an open question in

soft tissue biomechanics. Models based on a stress homeostasis assumption have been

able to successfully reproduce changes in cardiac tissue with increased pressure and

shear flow,51,58 while models based on strain homeostasis have been used to describe

the growth of the ventricles in response to pressure or volume overload.65 The pre-

diction of strain homeostasis in this work for a pressurized spherical membrane arises

from the fact that the micromechanical degradation model was associated with the

onset of strain inhibition when the collagen fibers were nearly straightened. The bal-

ance of the collagen deposition and strain-protected degradation mechanism caused

the collagen fibers to attain a unique equilibrium stretch given an initial crimp mor-

phology. Adding a strain-dependence to the deposition model would also result in a

tissue strain homeostasis, but at a different equilibrium stretch. Our results support

the hypothesis that there may exist an energetically favorable collagen fiber config-

uration, supported by experimental evidence that both active cellular contraction77

and thermal denaturation190 favor nearly straightened collagen fibrils. We speculate

that active cellular contraction in addition to collagen degradation and deposition is

needed to obtain stress homeostasis.

A limitation of our approach concerns the difference between a collagen fibril and

fiber structures. We fit our degradation parameters to single-fibril experiments, and
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ascribed the same parameters for the degradation of a single fiber. In the cornea,

collagen fibrils are arranged in parallel into lamellae, referred to as fibers, and the

fibers are stacked in different orientations to form the corneal stroma. Incorporating

the structural organization of fibrils into fibers may change the predicted degrada-

tion rate for a tissue. Specifically, while it has been shown that strain can halt the

degradation of collagen fibrils,80 tissues continue to degrade, though at a significantly

reduced rate.83 It has been speculated that fibrils arranged in fibers experience strain

shielding, which causes them to be degraded even at large tissue stretch. Though we

did not consider this effect, the model was able to capture the effect of applied tensile

loads on the creep rate of the tissue degradation experiments.

The elastica parameters were fit to uniaxial tensile experiments of tissue strips

after a 15 minute creep, and were more compliant than measured in previous in vitro

inflation tests of bovine cornea.25,157 The parameters produced an initial crimp angle

of 30◦, which is significantly larger than measured by histology for rabbit cornea.12

The radiation of gyration parameter β = 0.02 was also smaller than computed based

on the histological measurements for the rabbit cornea. Additionally, only three

stress levels were available to fit three mechanical parameters. To limit the potential

parameter space, we followed the force-per-monomer calculations of Zareian et al.,83

indicating that the straightening transition occurred between the medium (0.25 N)

and high (0.5 N) force levels. This fixed the crimp angle and the remaining two

parameters were tuned to the toe and linear region. More data is needed to ensure
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an optimized parameter set. Finally, the fiber structure of the tissue was assumed to

consist of continuous long fibers arranged in the plane of the tissues. Each fiber was

assumed to deform affinely with the continuum deformation gradient. Therefor the

model neglected the presence of fibers that run through the thickness of the tissue.

Experiments have elucidated many potential remodeling mechanisms that were

not included in this work. We assume a constant rate of collagen deposition which

has the effect of only increasing the existing fiber radii. In fact, collagen deposition

has been shown to depend on strain78 and is also associated with the formation of new

collagen fibers, which may be deposited in a state of pre-stretch. This more precise

description of collagen deposition has been modeled by others and shown to cause to

macroscopic growth.70 We also do not take into account the effects of active cellular

contraction, which may be necessary to obtain stress homeostasis. Finally, we apply

simple biaxial loading conditions to our material-point model as an approximation of

the complex stress states found throughout the body.

4.5 Conclusions

This work has presented a micro-mechanical model for the strain-protected enzy-

matic degradation of collagen tissues that is capable of predicting tissue-level results

from fibril-calibrated parameters. The model is built upon upon the assumption that

axial strain energy of collagen fibrils, and by extension local fiber micro-strain, in-
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hibits collagen degradation. It has been suggested that distortion of the collagen

backbone physically alters the configuration of binding sites available to collagenase.4

We hypothesize that the stretching of the collagen backbone leads to such conforma-

tional changes, resulting in the dramatic slowing of collagen degradation with strain.

This assumption requires a micro-mechanical model so that the axial component of

the strain energy can be separated from the bending contribution, linking the de-

formed fiber shape and micro-strain to a specific loading state. Representation of

the initial crimp is crucial to this approach. The model has been used to successfully

describe fibril-level degradation experiment and to predict tissue-level degradation ex-

periments of bovine cornea. Pairing the degradation model with collagen deposition

predicts strain homeostasis for a pressure perturbation. Thus our model implies that

degradation is an important tool in maintaining tissue homeostasis, likely working

in concert with deposition and cellular traction. Future work will incorporate these

mechanisms for a more complete description of the growth and remodeling process.
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Chapter 5

Incorporating fiber-level damage

into the enzymatic degradation

model

This chapter extends the fiber-level degradation model of Chapter 4 by incorporat-

ing a model for stress-driven damage. In this chapter, a simple mechanical damage

model is incorporated to describe the full 4000 s of degradation data. Portions of

this chapter were submitted to Biomaterials with the previous chapter as Online

Supplementary Material.
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5.1 Introduction

In the previous chapter, the first 1000 s of the single fibril degradation experiments

by Flynn et al80 were used to calibrate the degradation law. This is because later in the

experiments, fibril damage, evidenced by an increased reference length and eventual

fibril failure, becomes important. The fiber radii reported in the experiments were

not measured directly, but instead computed from the measured structural stiffness

during mechanical probing by assuming a constant fibril stiffness of E = 0.7 GPa. If

fibers are damaged and the stiffness is reduced, this damage will be interpreted as a

reduction in radius due to degradation.

The single-fibril degradation experiments demonstrated that strain can slow the

degradation of collagen fibrils. However, a seemingly contradictory result from the

experiments was that although applying a low force lowered the degradation rate

and a higher force halted degradation entirely, low force fibrils did not self-protect as

degradation proceeded under constant force. As the strain increased, it was expected

that the degradation would eventually halt, but this was not observed in the ex-

periments. We hypothesize that the fibers sustained damage as the radii decreased,

particularly during mechanical probing. This loss in fiber stiffness would result in

computed fiber diameters that appear to continue to degrade even above the strain

protection threshold. In the previous chapter, we avoided accounting for damage

by only modeling the first 1000 seconds of the experiments, before damage to fibers

was observed. In this chapter, we include damage in our model and attempt to pre-
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dict the entire time-course of the experiments (4000 seconds) and explain the lack of

self-protection for low load fibrils.

5.2 Methods

Damage is modeled as a simple reduction in the stiffness by a damage factor,

0 ≤ ξ ≤ 1. Following the work of Simo and Ju,191 the stress of a damaged fiber is

computed by σ = (1− ξ)E0εf , where E0 is the initial, undamaged fiber stiffness and

εf = λf − 1 is the fiber strain. We assume that the damage rate depends linearly on

the current stress, and occurs after a minimum stress (σmin) is surpassed:

dξ

dt
=





C (σ/σmin − 1) , if σ/σmin > 1

0, otherwise.

(5.1)

Substituting σ = (1− ξ)E0(λf − 1) and non-dimensionalizing the result, the damage

law for an axial fiber is written as:

dξ

dt
=





C
[

(1−ξ)(λf−1)

H
− 1
]
, if

(1−ξ)(λf−1)

H
> 1

0, otherwise,

(5.2)

where H = σmin/E0 a the non-dimensionalized measure of the initiation stress and

C is the rate dependence of damage after initiation.
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Figure 5.1: Stresses at mechanical probing for simulations of single fibrils with
degradation only (no damage). The stress threshold for damage(σmin = 37MPa) was
selected to occur between the stress for the second mechanical probe of low load fibrils
and the stress of the high load fibrils to be consistent with experimental observations.

To simulate the single-fibril degradation experiments, fibrils are modeled as elastic

rods with initial stiffness of E0 = 0.7 GPa. The fiber is allowed to sustain both degra-

dation and damage while loaded. The fiber radius is computed from the simulation

based on the same assumption of constant stiffness made by Flynn et al.:

σ =
F

πr2

= E0(λf − 1),

(5.3)

r =

√
F

E0π(λf − 1).
(5.4)

This value of the radius computed by eq. (5.4) will be lower than the true radius as

the stiffness is lowered by damage.

The damage parameters H and C were fit to the experimental data sequentially.
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First, the damage threshold parameter was determined. The stress in the fibrils both

during degradation and mechanical probing for simulations with degradation only are

plotted in Fig. 5.1. The non-dimensionalized initiation value was selected to be H =

0.053, which corresponds to σmin = 37 MPa for E = 0.7 GPa. The minimum stress

value is higher than the stresses in the high load fibers but is reached by the second

probe of the zero load fibers illustrated in Fig. 5.1, consistent with experimental

observations that zero load fibers begin to fail but high load fibers do not. The damage

rate parameter C = 0.05 was then tuned to match the experimentally calculated

radius vs. time data.

5.3 Results and Conclusions

Figure 5.2 plots the experimentally calculated fiber radius against the model pre-

diction. Very good agreement is seen over the course of the experiment, suggesting

that damage can account for the lack of strain protection for low-load fibrils after 1000

s. Figure 5.3(a) plots the degradation ratio, D = r/R, for the simulations. It is seen

that degradation does slow for low-loaded fibrils. However, as shown in Fig. 5.3(b),

damage is significant for the fibrils, particularly after each mechanical probe. There-

fore the simulations suggests that the degradation of low-load fibril would indeed slow

with time, but this effect is masked by the accumulation of damage.
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Figure 5.2: Prediction of single-fibril degradation experiments of Flynn et al.80

while accounting for damage.
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Figure 5.3: Model prediction for (a) degradation, D = r/R, and (b) damage,
0 ≤ ξ ≤ 1, for simulations plotted in Fig. 5.2. The probe force caused discrete
increases in ξ.
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Chapter 6

Investigating the effects of

preconditioning on inflation tests

of planar tissues

In Chapter 2, it was observed that skin tissue tested by inflation (bulge) testing

did not exhibit the evolving mechanical response to cyclic loading commonly at-

tributed to preconditioning. This chapter extends these results by conducting a more

extensive study on a variety of tissues including human skin, bovine cornea, bovine

sclera, and porcine sclera. All four of tissues exhibited a negligible preconditioning

response for the inflation test regardless of strain history. Tissues obtained complete

recovery to the reference state, and strain contours across the entire specimen were

nearly identical at the maximum pressure of each load cycle. These results suggest
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that the commonly observed effects of preconditioning may be experimental artifacts

rather than an intrinsic property of the tissue and may avoided by experimental

design. This chapter is reprinted from The Journal of Biomechanical Engineering,

Vol. 135, Theresa K. Tonge, Barbara J. Murienne, Baptiste Coudrillier, Stephen

Alexander, William Rothkopf, Thao D. Nguyen, ”Minimal Preconditioning Effects

Observed for Inflation Tests of Planar Tissues”, Pages 114502-1 - 114502-14, Copy-

right (2013), with permission from ASME.90 The chapter was written primarily by

me but includes significant contributions from the co-authors of the paper, particu-

larly Barbara J. Murienne (porcine sclera), Baptiste Coudrillier (bovine sclera), and

Stephen Alexander (bovine cornea).

6.1 Introduction

Preconditioning, or the use of repeated load cycles to obtain a repeatable me-

chanical response, is a common procedure in the testing of soft biological tissues.

Preconditioning effects refer to an evolving mechanical response to repeated loading

and were first described for uniaxial tensile testing of skin.31 Characteristic changes

with repeated loading include rightward shifting of the load-elongation curve accom-

panied by permanent elongation, reduced hysteresis, and a decrease in the peak stress

for the same applied stretch.33 These effects occur even when the tissue is allowed to

viscoelastically recover between load cycles. The changes lessen with successive load
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cycles, eventually achieving a repeatable state, commonly after 3-10 cycles.97,192,193

It is commonly accepted that tissues must be preconditioned to obtain repeatable

measurements. However, preconditioning may induce non-physiological changes to

the tissue. This can be avoided by only using data from the first loading curve131 but

often studies require comparison of subsequent tests (e.g., comparing the effects of

loading rates). Preconditioning is most commonly applied for uniaxial194 and biax-

ial36 tension, but has also been applied for indentation,195,196 aspiration,197 confined

compression, and shear tests.198 The effects of preconditioning for uniaxial tensile

tests199 are more severe than for biaxial tension tests,18 with more dramatic shifting

of the load-elongation curve and often more loading cycles required to reach a re-

peatable reference state. Although the need for preconditioning is well accepted, the

preconditioning protocols for particular tests are not standardized. Moreover, im-

portant details of the protocol are often not reported. For example, the rest periods

between each preconditioning cycle needed for viscoelastic recovery are usually either

not included nor specified.18,20,193,194 The number of loading cycles is also often not

reported, and can vary significantly from study to study, e.g., 3-9 preconditioning

cycles for uniaxial tension testing of skin,97,192 5 cycles for bovine cornea,200 10 cycles

for rabbit201 and porcine202 sclera, and 160 cycles for tendons and ligaments.203

A number of studies have proposed guidelines for preconditioning. In general,

the preconditioning loading protocol should be as similar as possible to the loading

protocol applied in the test. This was first proposed for biaxial testing of skin by
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Lanir and Fung,20 where it was observed that specimens to be tested biaxially must

also be preconditioned biaxially to obtain repeatable results. Similarly, Carew et

al.204 reported that tissues to be tested by stress relaxation must be preconditioned

with repeated stress relaxation tests. It has also been reported that a specimen

must be preconditioned to the same strain level as in the test, and if a specimen

is preconditioned to a certain strain level and a new strain level is to be tested, a

new round of preconditioning is required.33,105,194 Strain history can also impact

preconditioning protocols. Carew et al.205 applied quasilinear viscoelastic theory to

model the preconditioning response and concluded that the preconditioned state was

a function of the strain history seen by the tissue. Significant rest periods, on the

order of 24 hours, were necessary prior to testing in order to erase the strain history.

Precise knowledge of the preconditioning protocol is important because repeated

loading can have a significant effect on the stress response, often leading to a right-

ward shift of the stress-strain curve and stiffer response in the linear region.33,200

Preconditioning causes a lengthening of the reference length of the material.206 How-

ever, the stress-strain responses are often plotted with respect to the initial length

at the beginning of the first cycle. This is why preconditioning is often described

as a softening effect.33 If the displacements for each load cycle were tared such that

the reference length were the length at the beginning of each cycle, the load-unload

curves would show a stiffening effect for many cases. This has been observed for

bovine cornea.200
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Despite widespread use, the mechanisms responsible for preconditioning effects

are still poorly understood. Some of the reported preconditioning effects may be due

to viscoelastic effects, as many preconditioning protocols do not provide a recovery

time between loading cycles.18,20,193,194 This can lead to a conflation of recoverable

viscoelastic behavior with nonrecoverable microstructural changes induced by loading.

However, even among studies where recovery time was allowed,33,200,205 mechanical

changes and lengthening of the tissue have still been observed. Indeed, viscoelastic

theory alone cannot explain the preconditioning response. Graf et al.207 modeled the

viscoelastic relaxation effects of preconditioned tissue and found that preconditioning

effects were lessened when recovery time was allowed between cycles but the effect

still remained even after 30 minutes. The fact that a portion of the mechanical shift

is not recoverable after many hours suggests that some kind of permanent structural

change is induced in the tissue by repeated loading.33 Such structural changes could

arise from a permanent rearrangement of fibers with loading. Imaging studies with

polarized light microscopy have shown that the collagen fibers align with the loading

direction during preconditioning, and that this change in alignment is maintained

after the load is removed.27,208,209 Such non-affine reorganization of the fibers could

account for the non-viscoelastic changes seen with preconditioning as well as the

stiffening reported in bovine cornea200 for the linear part of the curve. Finally, damage

may occur at the fibrillar level for high applied loads. Preconditioning effects caused

by damage have been described as a Mullins effect, where the breaking of collagen
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cross-links may account for the observed softening with repeated loading.210,211 This

could also account for nonrecoverable lengthening of the tissue.

The objective of this work is to investigate the preconditioning effects for inflation

testing of planar tissues. The term planar tissues here refers to soft tissues in which

the extracellular matrix is characterized by a network of long collagen fibers oriented

primarily parallel to the tissue surface. We have designed our test to eliminate the

three possible mechanisms of preconditioning: we allow a rest period at nominally

zero load between cycles to fully recover viscoelastic deformation, we completely fix

the specimen boundaries to avoid rearrangement of the long collagen fibers during

loading, and we limit the applied loading to physiological limits to avoid tissue dam-

age. It has been previously reported by our lab that pressure-displacement results

for bovine sclera,26 human sclera54 and human skin88 do not suffer significant precon-

ditioning effects due to repeated loading. Here we present pressure-strain data from

human skin tissue, porcine sclera, bovine cornea, and bovine sclera showing minimal

preconditioning effects when subjected to inflation testing. This is in contrast to stud-

ies on the same tissues using uniaxial and biaxial loading configurations.20,192,200,201

We achieved complete recovery of the local pressure-strain response between cycles

when comparing both the pressure-strain response for a specific point and the strain

contours over larger regions at the maximum pressure of each cycle. This indicated

that there was no permanent deformation of the material induced by repeated pres-

surization. We also illustrate how neglecting to include recovery periods between
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each loading cycles can lead to the rightward shift in the strain response commonly

attributed to preconditioning. Finally, we show that the deformation response was

repeatable even when the specimen was subjected to extended creep and to pressure

load-unload cycles at different rates.

6.2 Methods

This section describes the inflation test methods applied to human skin, bovine

cornea, porcine sclera, and bovine sclera. These inflation methods have been de-

scribed in detail in previous publications for bovine sclera,26 human sclera54,86, bovine

cornea,25 and human skin,88 as well as in Chapter 2 of this work for skin tissue. In

general, all specimens were cleaned of extraneous tissues and attached to custom

plastic holders using cyanoacrylate glue. The specimen and fixture were mounted

onto an inflation chamber enclosed by a humidity chamber and subjected to repeated

pressurization cycles with rest periods between each load cycle. Samples were imaged

with two stereoscopically arranged cameras and displacements were measured using

Digital Image Correlation (DIC). Strains were calculated directly from the DIC dis-

placements along two in-plane material directions. These strains were plotted against

pressure for the entire test to evaluate the effects of preconditioning. Strain con-

tours are also presented over a larger area of the tissue to evaluate local effects of
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preconditioning.

6.2.1 Specimen Preparation

Skin specimens 10 x 10 cm in dimension were obtained from the back torso of

male human donors ages 43 - 83 through the National Disease Research Interchange

(Philadelphia, PA). Specimens were flash-frozen after procurement and shipped on

dry ice. Prior to testing the specimens were thawed in phosphate-buffered saline

(PBS) and adipose tissue was removed using fine dissectors.

Bovine eyes from animals 30 months or younger and porcine eyes from 6-9 month

old animals were procured from Animal Technologies, Inc. (Tyler, TX). Specimens

were received the day after slaughter and stored at 4◦C until tested. Internal struc-

tures and external fat and muscle were removed from the globe to obtain a clean

scleral surface. The more delicate bovine corneas were tested after within 24 hours of

delivery, while both bovine and porcine sclera were tested within 72 hours of animal

death.

Tissue samples were glued to custom acrylic fixtures (Fig. 6.1). Skin tissue was

glued to a fixture with a 7.5 cm circular aperture. Ocular tissue specimens were glued

to a smaller fixture at the limbus (Bovine cornea and sclera ) or 3 mm posterior to the

equator (porcine sclera). To secure the attachment of the specimens to the fixture, the

entire perimeter was scored through the thickness with a scalpel, and the scores were

impregnated with cyanoacrylate glue. This provided a fully fixed boundary condition
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7.5 cm

(a) (b)

3.7 cm

(c) (d)

Figure 6.1: Tissue, fixture and inflation chamber. (a) Skin specimen glued to the
back of the fixture, scored through the thickness at the gluing site, and the scored
cuts further filled with glue to create a rigid boundary; (b) skin specimen on inflation
chamber; (c) bovine sclera similarly glued to fixture; and (d) bovine sclera on inflation
chamber.
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through the thickness of the tissue and prevented leakage during inflation testing and

excessive shearing at the edge of the deforming specimen.

6.2.2 Loading Protocols

All samples were speckled for digital image correlation with either graphite (skin

tissues) or black India Ink (ocular tissues). Specimens were inflated by pressure-

controlled injection of PBS controlled by an MTS-driven syringe pump (MTS, Eden

Prairie, MN). All tests were performed at room temperature, and all specimens except

for the bovine cornea were tested inside a humidity chamber to prevent dehydration.

The short duration of the test and the fact that the cornea was hydrated from the

bottom by the inflation fluid prevented significant dehydration, confirmed by the

repeatability observed between cycles in Section 6.3.2.

Pressure in the inflation chamber was monitored using a TJE pressure transducer

(Honeywell, Morristown, NJ) with 2 psig range and ± 0.002 psig accuracy. The

deforming tissue was imaged at a rate of 0.5 Hz by two cameras arranged in stereo with

1/1.8” image sensors (Point Grey, Richmond, BC, Canada) controlled by VicSnap

2010 (Correlated Solutions Inc., Columbia, SC). Displacements were determined by

DIC using Vic3D 2010 (Correlated Solutions Inc., Columbia, SC).

Prior to starting the pressure loading protocol, specimens were allowed to relax

at a baseline pressure for 15 minutes to ensure an equilibrium reference state. The

specimens were then subjected to three load-unload cycles from the baseline pressure
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Human Human Bovine Porcine Bovine
Skin (slow) Skin (fast) Cornea Sclera Sclera

Baseline Pressure [kPa] 0.28 0.28 0.21 0.28 0.21
Maximum Pressure [kPa] 5.52 5.52 6.21 6.00 4.0

Loading Rate [kPa/s] 0.07 0.70 0.06 0.13 0.13
Rest Period [min] 15.0 5.0 15.0 15.0 15.0

Table 6.1: Minimum and maximum pressures, loading rates, and rest times for each
type of tissue tested.

to the maximum pressure with 15 minute rest periods at the baseline pressure be-

tween each cycle. Slightly different pressures and loading rates were chosen for each

tissue type and species, enumerated in Table 6.1. The baseline pressure (0.21 - 0.28

kPa) was chosen to prevent tissue buckling in the reference state. The maximum in-

flation pressure for skin (5.52 kPa) was large enough to probe the full toe-linear stress

response of the tissue, while the maximum inflation pressure for the ocular tissues

(4.0 - 6.0 kPa) corresponded to pathologically relevant elevated intraocular pressures.

The slow loading rates (0.06 - 0.13 kPa/s) were chosen to measure the quasi-static

response of the tissue. Skin specimens were also tested at a tenfold higher loading rate

(0.70 kPa/s) to examine if changing the loading rate for the same specimens would

affect the preconditioning response. Finally, the recovery time was selected based on

preliminary experiments indicating that complete strain recovery of the tissue was

obtained within 15 minutes for the slow loading rates (0.6 - 0.13 kPa/s) and within

5 minutes for the faster loading rate applied to skin (0.70 kPa/s).

In a separate set of experiments, the skin specimens were also subjected to five

preconditioning cycles without recovery periods to demonstrate the effects of vis-

185



CHAPTER 6. INVESTIGATING THE EFFECTS OF PRECONDITIONING ON
INFLATION TESTS OF PLANAR TISSUES

Time 

2 kPa

4 kPa

6 kPa

15 

min 30 min

20 min

20 min

20 min

30 min 30 min 30 min

P
re

ss
u

re
 [

k
P

a
]

20 min

15 

min

15 

min

Figure 6.2: Schematic of additional loading regime for bovine sclera. After the three
preconditioning cycles prescribed in Table 6.1, two additional load cycles and three
creep tests were preformed prior to a final load-unload cycle identical to the first.
[Figure created by Baptiste Coudrillier ].

coelasticity on the deformation response. We also present test results for the bovine

sclera26 where the tissue was subjected to 4 hours of additional testing after the initial

preconditioning cycles (Fig. 6.2). Specifically, after preconditioning the tissue was

subjected to two additional load-unload cycles at 0.7 kPa/s and 0.007 kPa/s with 20

and 30 minute recovery periods, respectively, and three 20 minute creep tests at 2.0

kPa, 4.0 kPa, and 6.0 kPa, each followed by 30 minute recovery periods. Finally, the

tissue was subjected to a single load-unload test identical to the first preconditioning

cycle to compare to the three initial cycles.

6.2.3 Strain Calculations

The effects of preconditioning are typically reported for the stress-strain response,
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but the stress calculation for the inflation specimens is non-trivial, particularly for the

thick skin specimens where bending cannot be neglected.89 Similarly, the presence of

the compliant optic nerve head creates a stress concentration in the sclera. Instead,

the pressure-strain response was plotted for all specimens tested. Strains were cal-

culated directly from the displacement components of a smoothed DIC displacement

field along two material directions. Additionally, strain contours over a larger por-

tion of the surface of the tissue were computed to compare preconditioning effects at

different locations.

6.2.3.1 Skin Tissue Strain Calculations

The method of strain calculation for skin specimens has been previously re-

ported.88 Briefly, specimens were positioned so that the X-coordinate was aligned

with the horizontal axis of the body, the Y -coordinate was aligned with the vertical

axis, and the Z-coordinate was the out-of-plane direction. The components of the

displacement field U , V , and W along the X-, Y -, and Z- directions were extracted

at 0.570 mm intervals and then interpolated over a grid of 0.25 mm spacing.

The inflation of a planar anisotropic tissue such as skin results in an ellipsoidal

bulge. The stiffest in-plane direction of the tissue (the fiber direction) and the least

stiff in-plane direction (the perpendicular direction) were identified from the ellip-

soidal shape of the inflated tissue. The displacement field was rotated to obtain the

displacement components U ′ along the fiber direction X ′ and V ′ along the perpen-

dicular direction Y ′. The out-of-plane displacement component W was unchanged.
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Figure 6.3: Schematic of top view of specimens, showing points or regions where
strains were reported. Strains were reported for a single point at the apex for human
skin tissue. Average strains over a region were reported for ocular tissue to minimize
the effects of noise. Strain contours are also reported over the entire surface for skin
tissues and all quadrants for ocular tissues. [Figure created by Barbara J. Murienne].

Lagrange strains along both the fiber direction and the in-plane perpendicular direc-

tion were computed by eq. (6.1):

Ef = EX′X′ = ∂U ′
∂X′ + 1

2

[(
∂U ′
∂X′
)2

+
(
∂V ′
∂X′
)2

+
(
∂W
∂X′
)2
]
,

Ep = EY ′Y ′ = ∂V ′
∂Y ′ + 1

2

[(
∂U ′
∂Y ′
)2

+
(
∂V ′
∂Y ′
)2

+
(
∂W
∂Y ′
)2
]
.

(6.1)

The displacement gradients were calculated by fitting the displacements along the X ′

or Y ′ axis to a 9th order polynomial and differentiating analytically.

Strains in both directions were plotted against pressure at a single point at the

apex of the inflated tissue (Fig. 6.3). Strain contours in both the fiber and perpen-
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dicular directions were also computed over the entire specimen.

6.2.3.2 Ocular Tissue Strain Calculations

The strain calculation methods for the bovine corneal and scleral tissues have been

previously described.54,86 Similar methods were used for the porcine sclera. Briefly,

the DIC measured displacements were interpolated onto a reference grid based on the

initial geometry of the tissue. For the bovine cornea and sclera, we constructed a

2D polar reference grid centered on the specimen apex, and interpolated the vertical

positions and the three components of the displacement to points on the grid. The

vertical positions were used to transform the polar grid into a 3D grid. For the porcine

sclera, which is quite smooth and almost spherical in young pig eyes, we defined a

3D spherical grid based on a spherical fit of the reference configuration. The DIC

measured displacements were interpolated to the points of the spherical grid.

For all ocular tissues, stretches in the circumferential, λθ, and meridional direc-

tions, λϕ, were calculated as:

λθ =
lθ
Lθ
,

λϕ =
lϕ
Lϕ
,

(6.2)

where lθ and Lθ are the deformed and undeformed lengths calculated between two

adjacent grid points in the circumferential direction and lϕ and Lϕ are the deformed

and undeformed lengths calculated between two adjacent grid points in the meridional
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direction. The Lagrangian strains in each direction, Eθθ and Eϕϕ, were calculated

from the stretches as follows:

Eθθ =
1

2
(λ2

θ − 1),

Eϕϕ =
1

2
(λ2

ϕ − 1).

(6.3)

For the sclera, surface features such as blood vessels can lead to significant vari-

ability in local strain measurements. To mitigate the effect of local strain variability,

ocular strains were averaged over small regions (Fig. 6.3). The exact area of the

averaging region varied slightly due to the different shapes and sizes of the tissue

types and species and to avoid anatomical structures such as the optic nerve head

(ONH). For the bovine cornea and sclera, averaging was performed over quadrants

and half-circles, respectively. A larger averaging region was used for the bovine sclera

as features inherent to the tissue, in particular its blue coloration and apparent ves-

sels, contributed to a locally elevated level of noise. The bovine cornea quadrant

was 4 mm wide and located 4 mm from the apex, while the bovine sclera half-circle

was 5 mm wide and located 1 mm from the apex (Fig. 6.3). For the porcine sclera,

strains were averaged over a quadrant 2.34 mm wide and located 2 mm away from

the ONH. These average strains were plotted against pressure to assess the effects

of the preconditioning cycles on the mechanical response. Strain contours were also

plotted for the entire circular region at the maximum pressure of the first and final
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load cycle to assess local changes between cycles over a larger area. Strain contours

were plotted for an annulus of data to avoid the optic nerve head (for scleral tissue)

and because the radial grid used to calculate strains leads to an infinitely dense grid

at the center of the specimen (for cornea).

6.3 Results

The result for three representative skin specimens and three representative ocular

tissues (one bovine cornea, one porcine sclera, one bovine sclera) are presented in this

work. We present pressure-strain data at a single point (skin) or averaged over a small

region (ocular tissues) for two in-plane material directions (fiber and perpendicular

for skin, meridional and circumferential for ocular tissues). We also present strain

contours over a larger region of the tissue for comparison between the first and last

preconditioning cycle.

6.3.1 Human Skin

The three human skin specimens tested are identified by (Sex/Age). Figure 6.4

plots the pressure-strain response in both the fiber and perpendicular directions for

two specimens at the slow 0.070 kPa/s loading rate with 15 minute recovery time.

Figure 6.5 plots pressure-strain response for the same two specimens for the fast 0.70

kPa/s loading rate with 5 minute recovery time. The differences in the maximum
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Figure 6.4: Pressure-strain response for two human skin specimens tested at a slower
rate of 0.07 kPa/s with 15 minute recovery periods: (a) M/43 - fiber direction, (b)
M/43 - perpendicular direction, (c) M/61 - fiber direction, (d) M/61 - perpendicular
direction.
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Figure 6.5: Pressure-strain response for two human skin specimens tested at ten-
fold faster loading rate of 0.70 kPa/s with 5 minute recovery periods: (a) M/43 - fiber
direction, (b) M/43 - perpendicular direction, (c) M/61 - fiber direction, (d) M/61 -
perpendicular direction.

strain between each subsequent cycle were small, less than 2% of the total applied

strain for 14 of the 16 comparisons, and random. Both positive and negative differ-

ences were calculated between successive cycles. The differences between cycles as

a percent of the total strain for all samples and strain rates are listed in Table 6.2.

Some of this small variability in strains could be attributed to the accuracy of the DIC

displacement measurement and of the pressure transducer. We have also previously
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Figure 6.6: Contours of the strain in the fiber and perpendicular directions at the
maximum pressure of the first and final cycle for the (M/61) specimen tested at
the slower 0.07 kPa/s loading rate with 15 minute recovery periods. The mean and
standard deviation of the strains across the entire contour are reported above each
figure.

reported that strains calculated at a single point for human skin tissue can vary by

up to 1.6% strain over a range of ± 1 mm of the apex.88

Complete strain recovery was achieved during each cycle for both the (M/43)

and (M/61) specimens. A slight decrease in hysteresis was noted between the first

and second load cycle for the perpendicular direction for the (M/43) sample only.

Figure 6.6 shows a contour plot of the strains in both the fiber and perpendiculars

directions for the (M/61) specimen comparing the maximum pressure of the first
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Figure 6.7: Pressure-strain response for a skin specimen (M/83) subjected to pres-
sure cycles at 0.07 kPa/s without intervening recovery periods, measured for the fiber
and perpendicular directions.

0.07 kPa/s 0.70 kPa/s
Specimen Compared Cycles Fiber Perpendicular Fiber Perpendicular

M/43 Cycle 1 and Cycle 2 -0.92% 0.17% 0.95% 0.49%
Cycle 2 and Cycle 3 1.11% 2.23% -0.41% 4.80%

M/61 Cycle 1 and Cycle 2 0.53% 1.20% 0.00% 0.46%
Cycle 2 and Cycle 3 -0.27% 0.36% 0.08% -0.57%

Table 6.2: Difference in maximum strain between adjacent cycles as a percentage
of the total strain for all human skin data plotted in Figures 6.4 and 6.5.
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and third cycle at 0.07 kPa/s. The strain contours are nearly identical between the

two cycles. Finally, Fig. 6.7 plots the pressure-strain response for a third specimen

(M/83) subjected to five successive load-unload cycles not separated by a recovery

period. The resulting dramatic rightward shift of the strain response compared to

the results in Fig. 6.4 was caused by viscoelastic effects.

6.3.2 Bovine Cornea

Figure 6.8 (a) plots the pressure-strain response for both the meridional and cir-

cumferential directions for the bovine cornea. Reflections from the shiny wet surface

of the bovine cornea affected the quality of the images and the DIC correlation, con-

tributing to the noise in the pressure-strain curves. However, negligible differences in

the loading and unloading curves were observed between the three cycles. In addi-

tion, full recovery was achieved upon unloading. The differences in the peak strains

between each cycles were small: the percent differences in the meridional and cir-

cumferential strains between the first and second cycle were 0.7 % and 1.0 % of the

strains at the maximum pressure, and the percent differences in the meridional and

circumferential strains between the second and third cycle were 0.3 % and 1.0 % of

the strains at the maximum pressure. These differences are negligible compared to

those obtained by Boyce et al.200 for uniaxial tension tests of the bovine cornea.,

where the difference in the peak strains before and after preconditioning was 47% of

the total applied strain (Fig. 6.11). This large preconditioning effect was obtained
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Figure 6.8: Pressure-strain response computed over an averaged region in the merid-
ional and circumferential directions for three successive cycles for (a) bovine cornea,
(b) porcine sclera, and (c) bovine sclera. The bovine sclera plot in (c) included a
final cycle after four hours of additional testing including two creep tests and a slow
load-unload test. [Data collected by Baptiste Coudrillier, Barbara J. Murienne, and
Stephen Alexander ].
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Figure 6.9: Contour plots of the circumferential strains at the maximum pressure
of the first and final pressure cycles for (a) bovine cornea, (b) porcine sclera, and (c)
bovine sclera. The bovine sclera plot in (c) included a final cycle after four hours
of additional testing including two creep tests and a slow load-unload test. The
mean and standard deviation of the strains across the entire contour are reported
above each figure. [Data collected by Baptiste Coudrillier, Barbara J. Murienne, and
Stephen Alexander ].
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Figure 6.10: Contour plots of the meridional strains at the maximum pressure of
the first and final pressure cycles for (a) bovine cornea, (b) porcine sclera, and (c)
bovine sclera. The bovine sclera plot in (c) included a final cycle after four hours
of additional testing including two creep tests and a slow load-unload test. The
mean and standard deviation of the strains across the entire contour are reported
above each figure. [Data collected by Baptiste Coudrillier, Barbara J. Murienne, and
Stephen Alexander ].
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Figure 6.11: Uniaxial stress-strain curves measured for bovine cornea comparing the
response from the loading portion of the first pressure cycle (–) of the preconditioning
protocol and from the loading portion of a pressure cycle after preconditioning (-).
Results show a large stiffening effect associated with preconditioning. The specimen
was allowed to rest at the baseline pressure for an extended period of time after the
preconditioning. [Adapted from Fig. 7 of Boyce et al.200 by Baptiste Coudrillier.]

even though the specimen was allowed to recover for an extended period of time at

baseline at the end of the preconditioning protocol.

Figure 6.9 (a) shows the contours of the circumferential strain at the maximum

pressure of the first load and the final load for a 4 mm wide annulus located 4 mm from

the apex. While the majority of the plotted area shows good agreement, we observed

a slight stiffening between the first and the third cycles that was likely caused by a

loss of hydration during the time of testing. Previous studies by Boyce et al. [25, Fig.

10] showed that when a proper humidity level was maintained during inflation testing,

the pressure-displacement response was nearly identical between each loading cycle.

The meridional strain contours, plotted in Figure 6.10(a), showed the same trend.
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6.3.3 Porcine Sclera

Figure 6.8 (b) plots the pressure-strain relationship in both the meridional and

circumferential directions for three preconditioning cycles for the porcine sclera. As

reported for the bovine cornea, little difference was observed in the loading or unload-

ing curves between the cycles. Moreover, both strain directions exhibited complete

recovery within experimental error. The differences in peak strains between loading

cycles were random and small: the percent differences in the meridional and circum-

ferential strain between the first and second cycles were 0.80% and -0.38% of the

strains at the maximum pressure, and the percent differences between the second and

third cycle were -0.16% and -0.19% of the strains at the maximum pressure.

Figure 6.9 (b) shows the contours of the circumferential strain at both the maxi-

mum pressure of the first load and the final load for a 2.34 mm wide annulus located

2 mm away from the apex. Strain contours at the maximum pressure were similar

between the first and final cycle of the loading regimen, demonstrating repeatability

of the surface strain field. The meridional strain contours, plotted in Figure 6.10(b)

, supported the same conclusions.

6.3.4 Bovine Sclera

Figure 6.8 (c) plots the pressure-strain relationship in both the meridional and

circumferential directions for the first three preconditioning cycles and the final load-
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unload cycle of the bovine sclera loading protocol after 4 hours of testing (Fig. 6.2).

No significant softening/stiffening effect or change in the hysteresis was observed

and the final load cycle was nearly identical to the first load-unload cycle. The

differences in peak strains between cycles were small: the percent differences in the

meridional and circumferential strains between the first and second cycle were -0.23%

and -1.15% of the strains at the maximum pressure, and the percent differences in the

meridional and circumferential strains between the second and third cycle were -0.69%

and -0.98% of the strains at the maximum pressure. The percent difference in the

meridional and circumferential strains between the first and final cycle after 4 hours

of additional testing were 1.83% and -2.35% of the strains at the maximum pressure.

This demonstrates that the pressure-strain response was repeatable after 4 hours

of testing, during which load-unload cycles at 2 different pressure rates and ramp-

hold tests at 3 different pressures were performed. The specimens exhibit complete

recovery after each load cycle.

Figure 6.9 (c) shows the circumferential strain contours at the maximum pressure

of the first and final loading cycle over a 5 mm wide annulus located 1 mm from the

apex. Strain contours at the maximum pressure were similar between the first cycle

and final cycle of the loading regimen, demonstrating repeatability of the surface

strain field. The meridional strain contours, plotted in Figure 6.10(c), supported the

same conclusions. The difference in the local value of the strain could be large in some

areas, particularly in the lower left quadrant of Fig. 6.9 (b). This is probably due to
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a degradation of the speckling pattern caused by the high humidity level maintained

during the time of testing, or the presence of anatomic features such as veins.

6.4 Discussion

We have shown that the mechanical response of bovine cornea, porcine sclera,

bovine sclera, and human skin tissue measured by inflation tests exhibited minimal

preconditioning effects compared to the mechanical response of the same tissues mea-

sured by uniaxial and biaxial tests.20,192,200,201 Nearly the same peak strain was

achieved for each load cycle, no shifting was seen between load cycles, and the speci-

mens achieved complete strain recovery. The differences observed in the peak strain

between loading cycles for all tissue specimens were small, less than 2% of the total

strain for all but 3 of the 26 loading cycles, and were random. Both positive and neg-

ative differences in the peak strain were calculated between successive cycles and the

differences did not in general evolve systematically with the number of cycles. The

small differences measured in the inflation response were substantially lower than the

47% difference generated by the preconditioning protocol for uniaxial tension testing

of bovine cornea as reported by Boyce et al.200 The small variations observed can be

attributed to experimental and numerical noise, particularly for the skin strain data

which was calculated at a single point and has been reported to vary by up to 1.6

% over a range of ± 1 mm.88 Variability could also have arisen from experimental
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conditions such as loss of hydration, particularly for the bovine cornea which was

not tested inside a humidity chamber and was only hydrated by the inflation fluid.

These results were not found to depend on loading rate or loading history. Moreover,

strain contours calculated at the maximum pressure for the first and last load cycles

showed that repeatability was achieved not just at one point or on average over a

region, but over larger areas of the specimen surface. The repeatable results were

obtained for loading regimens that included a rest period between each loading cycle

to achieve complete viscoelastic strain recovery. We further illustrated that if the

recovery periods were not allowed, the viscoelastic response of the tissue produced

the characteristic rightward shift of the pressure-strain response commonly attributed

to preconditioning. Previous inflation testing of bovine cornea25 and mouse carotid

artery by Ning et al.155 also showed only small differences in the pressure-displacement

response after repeated loading. The latter subjected the mouse carotid artery to four

pressure cycles.

Preconditioning protocols are commonly used to obtain a repeatable mechanical

response in uniaxial and biaxial strip tests but can be time-consuming and restric-

tive. The preconditioning effects are often sensitive to many factors, including strain

rate, strain levels, strain history, and the applied strain state;20,194,205 thus achieving

repeatable results for a particular loading regimen requires custom preconditioning

protocols and multiple rounds of preconditioning to measure the mechanical response

to different strain rates and strain states. The observation that preconditioning effects
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arise from load-induced changes in the tissue fiber structure27,33 indicates that the

mechanical properties measured may not be representative of the native tissue. Some

authors avoid the preconditioning effects by only using data from the first loading

curve,131 but this is not feasible if multiple tests need to be carried out on the same

tissue. Other authors model the structural change of preconditioning as an unrecov-

erable deformation206 in order to back out in vivo properties; however this can be

computationally intensive and inefficient. If the effects of preconditioning could be

avoided all together, testing procedures and analysis could be greatly simplified.

We propose that our inflation test protocol produces negligible load-induced changes

to the deformation response because it avoids three possible mechanisms associated

with preconditioning: viscoelastic effects, fiber re-arrangement with loading, and mi-

costructural damage to the tissue. The inclusion of recovery periods after each load-

unload cycle to allow complete recovery of the specimens eliminates viscoelastic mem-

ory effects. If these recovery periods are not included, the tissue will viscoelastically

lengthen to produce the commonly observed rightward shift of the load-elongation

curves. We demonstrated the effect of viscoelasticity here for cyclic loading of skin

tissue. This is in contrast to previous works on uniaxial tests33,205,207 where even

though recovery periods are allowed, shifting is still observed as the gage length of

the tissue progressively increases with loading cycles.206 These results suggest that

there is a permanent change induced in the tissue by cyclic uniaxial loading that is

not encountered in our inflation testing protocol.
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We speculate that the permanent deformation incurred during preconditioning is

caused either by a reorientation of fibers along the loading direction or damage to

the fibers and matrix constituents of the extracellular matrix of the tissue (e.g., the

breaking of collagen crosslinks). Optical studies by Tower et al.27 and Quinn and

Winkelstein209 of a tissue stimulant under uniaxial loading showed that the fibers

reoriented along the loading direction with repeated cycles, eventually reaching an

equilibrium “preconditioned” state. Moreover, the changes to the fiber structure

persisted after the load was removed. For the inflation tests, the specimen boundary

is fully glued to the holder, and this likely limits the reorientation of the long collagen

fibers during testing. Furthermore, the applied pressure is limited to a physiological

range to prevent damage to the tissue structure. Our results suggest that mechanical

tests of soft tissues can be designed to limit the effects of preconditioning, and it is

likely that other tests could be devised based on the same principles to avoid evolving

mechanical behavior with loading. Further testing is required to confirm if these

results can be general for inflation testing of other planar tissues characterized by

long fibers oriented parallel to the surface of the tissue.

The results presented in this paper were obtained using our previously published

implementations of 3D-DIC.54,86,88 Digital image correlation has become widely used

to measure displacements and strains of soft tissues and a number of authors have cal-

culated the accuracy and resolution of 3D-DIC displacements212–216 and strains215,217,218

using methods similar to those described here. For example, Sutton et al.217 reported
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a standard deviation of 0.03-0.08% strain for a 3D translation of a cylinder. How-

ever, more work is needed to measure and validate the resolution of 3D-DIC strain

measurements in tissues. This is not critical for the conclusions drawn in our present

study because they are dependent on strain comparisons rather than absolute values

of strains. We observed repeatable strain measurements between cycles for both skin

and ocular tissues, despite the fact that strains levels for skin were up to 10 times

higher than for ocular tissues. Moreover, we obtained cycle-to-cycle repeatability for

a wide range of pressure levels and strain rates. Any preconditioning-associated shift

that was too small to be resolved by our system would still be negligible compared to

the shifts observed for uniaxial and biaxial tests. The consistency of the conclusions

between tissue type, species, and strain rate indicates that our results are insensitive

to resolution limitations.

Our conclusions are tempered by several limitations. We have thus far demon-

strated these effects for a limited number of tissues. All tissues tested in this work

have in common a 2D in-plane network of long fibers; fully fixing the boundaries may

not have the same effect for tissues comprised of shorter or out-of-plane fibers such as

cardiac tissue. Poroelastic issues such as cartilage may also have a different response

than tissues dominated by a viscoelastic ECM network. DIC displacement uncer-

tainty and numerical differentiation of the displacements contribute to uncertainty

in the strain calculation. To avoid noisy pressure-strain curves for ocular tissues, we

averaged the strain over a small region instead of plotting point-wise strain as we
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did for skin tissues. However, strains computed at a single point still do not show

preconditioning, only a higher level of noise. We also did not carry out any imag-

ing studies to confirm the lack of fiber rearrangement or damage to the tissue after

repeated loading, leaving this for future studies.

6.5 Conclusions

We have shown that the inflation responses of bovine cornea, porcine sclera, bovine

sclera, and human skin exhibit negligible preconditioning effects compared to those

observed for the same tissues in uniaxial and biaxial tension tests.20,192,200,201 These

results suggest that preconditioning effects can be avoided for certain tissues by ex-

perimental design. The inflation test methods presented minimized the effects of

preconditioning by (I) allowing adequate recovery time between cycles, (II) fully fix-

ing the boundary of the tissue to prevent fiber rearrangements, and (III) limiting

the applied loading to physiological levels to prevent microstructural damage to the

tissue. These results are likely limited to planar tissues with long fibers parallel to

the tissue surface, but may be extended to planar tissues other than those tested here

to allow for more accurate, repeatable measurements of mechanical properties. The

findings of this work may help to guide the design of other experimental systems to

minimize the effect of preconditioning on the mechanical response of soft tissues.
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Chapter 7

Conclusions and Future Work

This work developed a hierarchical modeling approach capable of describing both

the bulk material properties of skin tissue as well as the fiber-level mechanisms of

growth and remodeling. Human skin tissue experiments and finite element analysis

were used to identify the most appropriate constitutive model to link tissue anisotropy

to the fiber structure, while also illustrating that the generalized structure tensor

model could not capture the experimentally measured anisotropy of skin tissues. The

resulting tissue model was extended to incorporate fiber-level deformations, enabling

evolution equations for the strain-protected enzymatic degradation of collagen. The

model was used to illustrate that strain-protected enzymatic degradation and collagen

deposition can lead to strain homeostasis, suggesting that selective degradation and

deposition are potential mechanisms of the growth and remodeling process.
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7.1 Summary of Findings

Chapter 2 developed a inflation (bulge) test for human skin tissues. There is lim-

ited experimental data available for the anisotropic, large-strain response of human

skin tissue, with most skin tissue models calibrated to rat or porcine tissue. Most

human skin testing has been carried out using uniaxial testing, which exhibits an

evolving material response with preconditioning. As illustrated in Chapter 6, skin

and ocular tissues tested by the inflation test did not exhibit a significant precon-

ditioning response, defined as an evolving mechanical response to repeated loading.

Though the inflation test has been applied to thin membranes such as the peri-

cardium, it is not commonly applied to skin tissue, partially because the thick tissue

precludes traditional stress analysis. Three-dimensional digital image correlation was

used to identify the dominant fiber direction of the tissue, which agreed with what is

known in the literature.16 Instead of computing membrane stresses, stress resultants

were computed for both the fiber and perpendicular direction of the tissue specimens,

taking into account bending effects. From the stretch-stress resultant relationships,

it was shown that skin tissues tested by the inflation test were insensitive to pre-

conditioning and ambient humidity. A limited number of samples were tested, and

large specimen-to-specimen variation was observed between donors. However, general

trends observed for the specimens, such as increased stiffness and isotropy with age,

were similar to what has been measured for skin tissue by other authors141,219 and

are consistent with the known effect of increased tissue cross-linking with age.142
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Traditional stress analysis for the inflation test neglects bending, as the test is

more commonly applied to thin materials.116,117 Chapter 3 developed a new analyti-

cal method to fit a stress-stretch constitutive law to the stress resultant-stretch rela-

tionships measured for human skin tissue while accounting for bending stresses. This

is a key contribution of this work and could be applied to extend the utility of the in-

flation test to other thick tissues. The analysis method was used to fit the parameters

of two different structurally-based constitutive models to the nonlinear anisotropic re-

sponse of skin tissue measured by the inflation test. Finite element analysis was used

both to support the analysis method and to illustrate that only the more rigorous,

fully-integrated distributed fiber model was capable of describing the experimentally

measured anisotropy of the skin tissue. The model parameters quantified the obser-

vations of the previous chapter, namely that stiffness and isotropy increased with age,

while also suggesting that the variation between specimens arises from the collagen

fibers rather than the ground matrix. In contrast, the more computationally efficient

generalized structure tensor model greatly underestimated the tissue anisotropy. It

is hypothesized that the generalized structure tensor model under-predicted tissue

anisotropy because the pre-integration of the fiber distribution does not capture the

large fiber rotations caused by the inflation test.

Chapter 4 extends these results to incorporate potential fiber-level mechanisms

of the growth and remodeling process. Though growth and remodeling is well doc-

umented experimentally, the underlying mechanisms are not well understood. The
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fully-integrated distributed fiber model was used to describe the organization of col-

lagen fibers, but instead of describing the fibers phenomenologically, fibers were de-

scribed as planar sinusoidal elastica beams following Comninou and Yannas.45 This

enabled the prescription of evolution equations for the fiber radius that were depen-

dent on the micro-stretch of the fiber. The degradation model captured the rapid

decrease in degradation rate with applied strain and was calibrated to degradation

experiments on isolated bovine scleral fibrils reported by Flynn et al.80 The model

demonstrated predictive power by simulating the normalized creep rates between force

levels for tissue-level bovine cornea and pericardium experiments83,183 based on the

fibril-calibrated parameters, in spite of significant morphological differences between

these tissues. The degradation model was paired with constant collagen deposition

to illustrate that these two mechanisms alone can give rise to strain homeostasis in

response to a pressure perturbation, supporting degradation and damage as potential

mechanisms of the growth and remodeling process.

7.2 Key Contributions

This work included three key contributions to the field of soft tissue biomechanics:

(1) The development of an inflation test and analysis method to measure

anisotropic material properties for human skin tissues while accounting

for bending. The inflation test has the advantages of a relatively simple set-up
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and minimal preconditioning effects, but bending effects have often precluded the use

of the inflation test for thick tissues. Inverse finite element analysis can be used to

fit constitutive model parameters while accounting for bending, but this approach

is time-consuming and computationally expensive. The analytical analysis method

developed in this work may enable the application of the inflation test to other thick

tissue systems, such as arteries or gastrointestinal tissues. Further, the human skin

study should be expanded to include a much larger number of specimens to better

characterize the nonlinear anisotropic material properties of skin tissue.

(2) The demonstration of significant differences between the fully-integrated

distributed fiber model and the pre-integrated generalized structure tensor

models when applied to skin tissue. When both models were fit to the inflation

tests of skin tissue, the anisotropy parameters were significantly different. Finite el-

ement analysis was used to compare model predictions to the structural response of

the inflated tissue. The results demonstrated that while the fully-integrated model

was in good agreement with experimental measurements, the generalized structure

tensor model greatly underestimated tissue anisotropy. The results support the find-

ings of other authors40,41 who have also found discrepancies between the two models.

Such discrepancies are not unexpected, because generalized structure tensor mod-

els are approximations of the fully-integrated models. Generalized structure tensor

models were originally developed for application to arteries by Gasser et al.28 The
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collagen structure of arteries is characterized by two fiber families with small disper-

sion, and arteries do not undergo large rotations when loaded. For such a tissue,

pre-integrating the fiber distribution is a reasonable approximation. The success of

the model for arteries has lead to implementation into commercial software packages

such as Abaqus. The accessibility of the model has lead researchers to apply it to

a range of soft tissues with very different structures and loading conditions than the

arteries.38,39 The discrepancies found in this work underscore the need for careful

consideration of the assumptions of a model for a given application and subsequent

validation of the model results.

(3) The development of a hierarchal modeling framework to incorporate

fiber-level mechanisms of growth and remodeling, which was used to illus-

trate that strain-protected degradation and collagen deposition can lead to

strain homeostasis. The mechanisms of growth and remodeling are not well un-

derstood and are not taken into account in current tissue-level, homeostatic models.

Micro-mechanical models have great utility to understand such fiber-level processes,

but are not often implemented into tissue-level frameworks. In this work a micro-

mechanical model for collagen fibers developed in 1976 by Comninou and Yannas45

was for the first time incorporated into a tissue-level anisotropic constitutive model,

specifically the fully-integrated distributed fiber model described in contribution (2).

This hierarchal model was used to describe the strain-dependent enzymatic degra-
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dation of collagen at the fiber level, based on available experimental data in the

literature. The model was capable of predicting tissue-level experiments based on

model calibration to fibril-level experiments. A key contribution of this work was

the illustration that the non-cellular mechanisms of strain-protected degradation and

collagen deposition can give rise to strain homeostasis, supporting these processes as

potential mechanisms of growth and remodeling.

7.3 Limitations

Several important limitations of this work should be acknowledged. First of all,

because the aim of the work in Chapters 2-3 was to develop the inflation test and anal-

ysis method, a very limited number of samples (6) with a wide range of mechanical

behavior were reported, precluding definitive conclusions about skin biomechanics.

However, observed trends were consistent with what is reported in the literature.

Additionally, the inflation analysis method assumes that the tissue is homogenous

both in and through the plane. While this assumption is reasonable for skin tissue, it

does ignore the changes in collagen density near the bottom of the dermis and might

limit the utility of the method for other tissues. The test method was also used in

Chapter 6 to show that skin and ocular tissues did not exhibit significant precondi-

tioning effects when tested by inflation. This was hypothesized to occur because the

fully fixed boundary condition of the inflation test prevents non-affine rotation of the

215



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

collagen fibers within the tissue during cyclic loading. However, this assumes that

collagen fibers are sufficiently long to span the diameter of the tissue tested (7.5 cm).

It is more likely that shorter collagen fibers overlap to create a network that spans

the diameter of the tissue, but this is unproved. Therefor the mechanisms of the

preconditioning response and the reasons for the minimal preconditioning response

seen in this work remain unclear, and more tissue systems would need to be tested

to determine if the results are generalizable for all planar tissues.

In this work, only elastic mechanical properties were considered. Skin tissues are

known to be viscoelastic, and to avoid confounding the results, skin was loaded at

very slow, consistent loading rates to measure the quasi-static response. The fully

integrated distributed fiber model used in Chapters 3-4 also described elastic behavior

only. Further, the modeling approach assumes an affine deformation of the fibers and

ground matrix, i.e. the fibers and surrounding ground matrix deform together without

interaction terms. The model also assumes that all fibers have the same initial crimp,

material stiffness, both in the plane and through the thickness of the tissue, and that

the density of the fibers is constant throughout the tissue. The model description

of the fiber distribution as one fiber family distributed about a preferred orientation

described by a von Mises function is an idealization, and the fiber structure was not

confirmed with histology or imaging studies. However, the stiffest direction identified

for skin tissue was in agreement with the known dominant fiber direction from the

literature.
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In Chapter 4, the same anisotropic hyperelastic model used to describe skin was

applied to bovine cornea while describing individual fibers as planar sinusoidal elastica

beams. However, unlike skin, the cornea is composed of alternating layers of collagen

fibers referred to as lamellae. These lamellae can have characteristic crimp and are

modeled as fibers in this work. However, lamellae are instead made up of collagen

fibers and are a higher-order structure in the cornea. Describing the lamellae as

fibers resulted in elastica parameters that did not agree with geometric parameters

measured by imaging and histology. These parameters were also obtained from limited

data points for equilibrated tissue, resulting in a non-unique parameter set that may

be more compliant than in vivo tissue. Additionally, the assumption of uniform

fiber crimp and length may have impacted the tissue-level degradation predictions.

Collagenous tissues are more accurately described as a distribution of collagen crimps

and lengths. In the case of a distribution of crimp, the longest and least-crimped

fibers are expected to degrade more rapidly. This could partially account for the

under-prediction of the experimental absolute creep rates. Non-affine deformation of

the fibers could also contribute to this discrepancy. Fibers that deform non-affinely

with the matrix may be subject to smaller stretches than the bulk tissue itself, and

therefor be more quickly degraded.

The model for strain-protected enzymatic degradation, though based on an Eyring

description for the change in the chemical activation energy, does not take into ac-

count the stochastic nature of the reaction. Degradation is also prescribed on the
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fiber level, but model parameters were calibrated to single-fibril experiments. Ignor-

ing this length scale difference may over-predict the effect of stretch protection, as

fibrils packed into fibers may experience strain shielding. Again, viscoelastic effects

were not considered when modeling degradation-induced creep experiments. These

two limitations could contribute to the lower absolute creep rates predicted by the

model for bovine cornea. In contrast, the higher absolute creep rates predicted for

bovine pericardium may have arisen from differences in enzyme concentration and

Ca2+ between these experiments and the fibril-level experiments used for model cal-

ibration. Finally, other important potential remodeling mechanisms were not con-

sidered. Collagen deposition was assumed to proceed by simply increasing the fiber

radius, though other authors have modeled collage deposition by the formation of

new collagen fibers in a pre-stretched state.51,70 More significantly, cellular effects

were ignored, such as the ability of the cells to apply force to the collagen fibers and

modulate the collagen crimp angle. It is likely that the inclusion of these effects could

result in a stress, rather than strain, homeostasis.

7.4 Future Directions

Future directions include both improving the hierarchical model developed in this

work and applying the model to new applications. In the near term, a primary focus

should be the incorporation of additional mechanisms into the growth and remodeling
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problem. In particular, active cellular contraction is likely an important mechanism

of growth and remodeling, and could be modeled as an added stress on an individual

collagen fiber. Collagen crimp remodeling could also be modeled by modulating

the crimp angle parameter, Θ0. Both of these mechanisms could be dependent on

the current stretch of the fiber. Further, in this work the deposition of collagen was

modeled simply as a constant increase in existing collagen fiber diameter. It would be

more accurate to model the deposition of collagen as modulating the collagen crimp,

particularly as new fibers are deposited in a pre-stretched state, following Watton

et al,70 and to incorporate the strain-dependence of the deposition rate.78 These

mechanisms, paired with the degradation model and a more sophisticated collagen

deposition model, may together result in a stress homeostasis for the tissue.

Another potential area of improvement for the hierarchal model would be to dis-

tinguish between the fiber and fibril length scale. It is likely that collagen fibers are

not as dramatically protected from degradation as fibrils because as fibrils packed

into fibers may be strain shielded. This could be taken into account by computing

a fibril stretch based on the fiber stretch - either by phenomenological assumption

i.e. fibril stretch is on average 75% of the fiber stretch, or by modeling the fibril

packing to compute a translating factor. This would likely improve the accuracy of

the degradation model, particularly over long time scales. Similarly, the mechanical

model for the cornea would be improved by distinguishing between the fiber scale and

the lamellae. This may result in geometric parameters that are in closer agreement
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with those measured from imaging and histology.

The growth and remodeling model developed in this work is analytical and for

a single material point, which limited test cases and analysis to simple uniaxial and

biaxial loading of homogenous simulations. To simulate more complex geometries

and loading cases, the model could be implemented into a Finite Element model.

This would allow a more realistic simulation of the loading of the eye wall, and could

allow for a non-homogenous fiber structure to be prescribed. Such a model could

be used to predict the development of disease states such as glaucoma or myopia.

Though the model was capable of predicting the normalized creep rates of constant

force tissue degradation experiments, the absolute creep rates were under-predicted

for bovine cornea and over-predicted for bovine pericardium. This discrepancy likely

arises from processes not modeled in this work such as nonlinear viscoelasticity and

diffusion effects. A heterogeneous finite element model could also be used to take

into account diffusion effects, , while nonlinear viscoelasticity could be incorporated

into the constitutive model. Both are expected to result in improved experimental

prediction of degradation-induced creep tests.

The hierarchal modeling approach developed in this work could be applied to a

variety of problems beyond human skin characterization and mechanistic studies of

growth and remodeling considered here. An interesting combination and extension

of both the human skin and remodeling work presented here would be to study pro-

gressive changes in the structure of skin, such as those associated with wound healing
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and scar formation. Alternatively, the skin-stiffening disease Scleroderma, is a painful

and debilitating condition of unknown causes associated with an increase in collagen

in the skin, leading to dramatic stiffening that limits movement.220 Finally, it has

been illustrated in this study and others that skin may become more isotropic with

age. Age-related changes in collagenous tissues are commonly ascribed to increased

cross-linking between collagen fibers. The model developed in this work could be used

to investigate if this increase in isotropy could also be due to growth and remodeling

over time.

The model could also be applied to other tissue systems and disease states, and

in particular other planar collagenous tissues that undergo pathological changes as-

sociated with remodeling, such as arteries or aneurisms. Further, the model could be

extended to cardiac tissues with the incorporation of smooth muscle cells and active

contraction. The model could also be used to investigate the contributions of differ-

ent components of soft tissues, such as ground matrix - collagen interactions. For

example, recent experimental evidence from our lab has illustrated that selectively

removing proteoglycans from porcine sclera lengthens the toe region of the stress-

strain curve.221 It is hypothesized that disrupting the proteoglycan-collagen bonds

leads to an effective increase in the crimp angle of the collagen fibers. The model

could be used to test this hypothesis by modulating the crimp angle and comparing

the result to experiments. Finally, the hierarchal degradation model could be applied

to functional tissue engineering. Maintaining the mechanical integrity of engineered
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tissues remains an ongoing challenge, particularly after implantation in the body.

The enzymatic degradation model presented in this work could be used to simulate

in vivo loading states to determine the loads needed to maintain the tissue integrity

and prevent in vivo degradation, or to condition developing tissue in vitro for optimal

mechanical strength.
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Appendix: Experimental Details

A.1 Equipment Details

MTS driven syringe pump:

MTS Insight 5, 0.01 mm position accuracy, 1 kN load cell, 1.535 mV/V sensi-

tivity.

Syringes:

Plunger of a 60 cc plastic syringe attached to MTS crosshead, syringe encased

in aluminum and mounted on the base of the MTS machine.

Honeywell TJE pressure transducer:

P/N 068-075C-03TJG, 2 psig range, 0.1% full scale accuracy, data converted

from analog to digital and written to a log file.
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Cameras:

Point Grey GRAS-20S4M/C, with 1/1.8” image sensors, positioned 0.38 m

above the chamber 7.5 cm apart (12°angle between cameras), depth of field

= 5.8 cm. Images collected at 0.5 Hz.

Lenses:

Edmund Optics, NT59-870, 16 mm focal length, f/8 aperture

Calibration Grid:

1” calibration grid (Correlated Solutions, #055893)

Software:

VicSnap 2009 (image capture), Vic3D 2009 (image correlation), both by Cor-

related Solutions

Powdered Graphite:

AGS Mr. Zip Graphite Powdered Libricant (MZ-5), applied to the tissue

surface through a stainless steel mesh with 61 µm openings (TWP Inc. p/n

50X250S0016W48T).
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A.2 Inflation Chamber Design

Note: Portions of this section have previously appeared in my Master’s Thesis87.

The stainless steel inflation chamber is an assembly of three main components: a top

ring, main chamber, and bottom plate. Engineering drawings of all three components

and the assembly are shown in Fig. A.1. The top ring was used to clamp the tissue

and fixture onto the main chamber. The main chamber was connected to MTS driven

syringe by 4 feet of 1/8” ID silicone tubing at the 0.35 cm diameter inlet port. The

inlet port also connected to the pressure transducer and a relief valve via a custom

connector and a union cross adaptor (Swagelok). This connector is fashioned from

a compression tube fitting (McMaster-Carr), stainless steal sleeve (McMaster-Carr),

and 1/8” ID tube-to-thread adaptor (Swagelok). A small lip on the inner diameter of

the upper surface of the chamber was included to hold the fixture in place, and the

1.25 cm diameter support post was included for mounting the chamber. The bottom

plate attaches to the bottom of the main chamber. Four light ports (McMaster-Carr

Part# 46755K32 and #4464K212) were attached to the center of the plate, spaced

1.6 cm apart. Silicone oil encased in latex was clamped between the bottom plate and

the main chamber to diffuse the fiber optic light. Twelve screws (McMaster-Carr part

#96242A573) were used to secure the top ring and bottom plate to the chamber. Two

O-rings (McMaster-Carr #5018T224) were used to seal the chamber to the diffuser

and to the fixture.
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(a)

(b)

(c)

(d)

Figure A.1: Custom pressure chamber: (a) top ring, (b) main chamber, (c) bottom
plate, (d) complete assembly.
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A.3 PID Control of Pressure

Note: Portions of this section have previously appeared in my Master’s Thesis87.

The PID loop was manually tuned, prioritizing a stable response. The PID param-

eters for loading, unloading, and the 15 minute hold are summarized in Table A.1.

Figure A.2 plots pressure-time behavior for these parameters for a representative skin

sample. The PID loop directly controlled the crosshead displacement rather than

pressure, so inertial effects could lead to overcompensation and instabilities in cham-

ber pressure. This effect was compounded by the stiffening behavior of the specimens.

Loading Unloading Hold
P 25000 200 1000
I 0 0.05 1000
D 0 0 0

Table A.1: Optimized PID parameters for loading, unloading, and hold.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Time [s]

P
re

s
s
u

re
 [

p
s
i]

Figure A.2: Resulting pressure-time behavior for PID parameters detailed in Table
A.1 (43/M/C).
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A.4 Skin Testing Protocol

Test Set-up:

16mm focal length lenses

Large pressure chamber (attach light ports)

Large (60cc) syringe, MTS stop adjusted to large syringe

7.5cm ID fixture, spray painted white, x and y axis marked from template

1 calibration grid target

Sample Testing Parameters:

Test baseline = 0.04 psi

Max pressure = 0.8 psi

Pressure rate = 0.01 psi/s, 0.1 psi/s

Experimental Protocol:

1. Thaw sample in PBS overnight in fridge

2. Record Room Temp and Humidity

3. Trim off all fat. May have to re-soak at end and trim some more.

4. Measure thickness at edges (top/bottom/left/right) with calipers. Take 3 mea-

surements at each location.

5. Glue specimen to fixture so that head direction is aligned with y-axis marked
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on fixture. Turn over, trans-illuminate, and mark edges of fixture ID with pen.

Score on this side and impregnate with glue. Let dry. Trim excess skin, and

add line of glue at boundary. Let dry. (15-30 minutes or until glue changes

from purple to clear).

6. Ensure chamber is level. Attach pressure transducer to chamber and support

with stand. Ensure cameras are 15 above chamber. Ensure chamber is centered

in both fields of view. Zero pressure transducer channel in TestWorks4.

7. Fill syringe with PBS with chamber valve open. Ensure no bubbles in line.

Lower syringe until sealed (maintain meniscus). Close valve, fill chamber with

PBS. Load sample and secure with 6 screws. Note baseline/bring to 0.04psi.

8. Manually increase pressure to determine when syringe will bottom out (i.e.

make sure you can get to 0.8 psi).

9. Speckle sample and fixture with graphite and 60micrometer mesh.

10. Focus cameras (at wide open aperture, 3ms exposure time) on x-axis part of

fixture. Return to 8/f aperture, 25ms.

11. Swing chamber/transducer out of the way. Turn off lights, put paper on bench,

shine lights on paper. Use 1 Calibration Target to take about 20 images. Cali-

brate system, check C.I. and that error ¡ 0.03. Save as project file w/date.
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12. Replace chamber in field of view. Take 3 images at baseline pressure. Run

correlation and ensure good speckle, level, etc.

13. Place Humidity chamber over sample. Place saturated honeycomb and humid-

ity/temp reader inside chamber. Target 40% humidity.

14. Hold sample at baseline for 15 minutes. (Run Initial15minhold method on

Testworks).

15. Ensure Analog data is being read. Start VicSnap acquisition. Start selected

TestWorks method.

16. Freeze sample (still on fixture). Wipe everything down with bleach.

Image Correlation Procedure:

1. Select main AOI as close to edges as reasonable (want circle for centering)

(a) Use subset =50

(b) Select 3 points and complete

(c) Ensure all images find the point

2. Select 4 more AOIs rectangles around grid markers on fixture

3. Import calibration

4. Correlate 1-2 images, ensuring that postprocesing is none (not autoplane)
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5. Correct stereo sytem (Callibrate Camera Orientatin)

6. Recorrelate 1-2 images

7. Select coordinant system (3-point). Save as 3pt-date

8. Save project, outside of folder containing images.

9. Delete 4 rectangular AOIs

10. Run complete correlation. Record maximum error & error at beginning.

11. Apply transform to all images

Data Extraction Procedure:

1. Extract node data at apex. Make note of node coordinates

FILE NAME: Test# grid MM.DD.YY.csv

2. Extract grid data (every 5 pixels) for all images of loading curve

NOTE: Save all data (including project file) to folder above images. Transfer a

copy with a flash drive.

FILE NAME: Test# apex MM.DD.YY.csv

3. Rename and copy test.csv file.

FILE NAME: Test# MM.DD.YY.csv
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Stress/Strain Data Analysis:

1. Copy Image, Time, and Pressure from node data and test files into excel. Con-

vert Pressure from psi to kPa. Input Radius (37.5 mm) and initial thickness.

2. Identify image with max pressure for all 3 loadings, and end of unloading for

all 3.

3. Load image into Nov10EllipsoidFit.m (see Sec. C.1) and fit to general ellipse

4. Use eigenvectors to determine counter-clockwise rotation angle needed to align

stiffest/fiber direction (b) with x-axis.

5. Run Nov10EllipsoidFit.m for all images on loading curve. Copy a, b, and c into

excel file.

6. Input angle into Jun16FittedStrains.m (see Sec. C.2). Run for max pressure

image. Check contours (esp. W over distorted, U and V) to make sure ev-

erything is aligned properly. (W oval should be vertical, U and V should not

be rotated/skewed). Check that strains are calculated at (0,0,Z) → check that

Xv(1)=Yh(1)=0, and that Xv(centerH)=Yh(centerV)=0. Adjust if necessary

and update in Jun16FittedStrainsGrid.m as well.

7. Run Jun16FittedStrainsGrid.m (see Sec. C.3) for all images on loading /un-

loading curve for all 3 load/unload cycles (including angle as an input).
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8. Copy resulting strains into excel file and compute associated stretches [stretch

= sqrt(2*strain+1)]

9. Calculate deformed thickness [original thickness/(StretchF*StretchP)]

10. Calculate StressFiber (circ.) and StressPerp(long,).

11. Determine baseline (i.e. where stress and strain pick up). Zero all subsequent

pressures accordininly and only plot stress/strain for those points.

Fitting Constitutive Model Parameters:

1. Select image corresponding to the end of the toe region

2. Input stretches, pressure, initial thickness, rotation angle, and initial guess for

parameters into the file ’parameterFittingConsistent Aug30.m’ (see Sec. C.4).

3. Select constitutive relation to fit parameters for from file ’constitutiveRela-

tion.m’ by commenting out the other models

4. Run file ’parameterFittingConsistent Aug30.m’.
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Appendix: Jacobians for

Remodeling Simulations

B.1 Solve for single degrading elastica

Nonlinear system, degradation ODE discretized with backward Euler scheme:

f1 = λapp −
1

L

∫ L

0

λf
cos(θ)

cos(Θ0)
dX1

f2 = D −Dprev + ∆G1 exp

[
− ε2

2G2

] (B.1)

Newton-Raphson Solver:



αn+1

Dn+1


 =



αn

Dn


− J

−1



f1

f2


 (B.2)
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With the Jacobian:

J =



df1

dα
df1

dD

df2

dα
df2

dD


 , (B.3)

until convergence, res ≤ tol :

res = |
√
f 2

1 + f 2
2 | (B.4)

Derivatives for Jacobian:

df1

dα
= − 1

L

∫ L

0

[
∂λf
∂α

cos(θ)

cos(Θ0)
− λf

sin(θ)

cos(Θ0)

∂θ

∂α

]
dX1

df1

dD
= − 1

L

∫ L

0

[
∂λf
∂D

cos(θ)

cos(Θ0)
− λf

sin(θ)

cos(Θ0)

∂θ

∂D

]
dX1

df2

dα
= −∆G1 exp

(
− ε2

2G2

)
ε

G2

∂ε

∂α

df2

dD
= 1−∆G1 exp

(
− ε2

2G2

)
ε

G2

∂ε

∂D

(B.5)

where:

∂λf
∂α

= cos(θ)− α sin(θ)
∂θ

∂α
(B.6)

∂λf
∂D

=
∂

∂D
[1 + α cos(θ)]

= −α sin(θ)
∂θ

∂D

(B.7)
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∂θ

∂α
=
−β(4 + 8α)Θ0

(4α(1 + α) + β)2
(B.8)

∂θ

∂D
=

∂

∂D

[
β0D

2Θ0

4α(1 + α) + β0D2

]

=
2β0DΘ0

4α(1 + α) + β0D2
− 2β2

0D
3Θ0

(4α(1 + α) + β0D2)2

(B.9)

∂ε

∂α
=

1

L

∫ L

0

∂λf
∂α

dX1 (B.10)

∂ε

∂D
=

1

L

∫ L

0

∂λf
∂D

dX1 (B.11)

B.2 Biaxial Stress for Degrading Tissue

Nonlinear system:

f1 = µ

(
λ2

11 −
1

λ2
11λ

2
22

)
+

∫ π

−π

∂Ψ

∂λ

1

λ
λ2

11 cos2(φ)ρ(φ)dφ− σ11,app

f2 = µ

(
λ2

22 −
1

λ2
11λ

2
22

)
+

∫ π

−π

∂Ψ

∂λ

1

λ
λ2

22 sin2(φ)ρ(φ)dφ− σ22,app

(B.12)

Newton-Raphson Solver for stretch:



λn+1

11

λn+1
22


 =



λn11

λn22


− J

−1



f1

f2


 (B.13)

With the Jacobian:

J =




df1

dλ11

df1

dλ22

df2

dλ11

df2

dλ22


 , (B.14)
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until convergence, res ≤ tol :

res = |
√
f 2

1 + f 2
2 | (B.15)

Derivatives for Jacobian:

df1

dλ11

= 2µ

(
λ11 +

1

λ3
11λ

2
22

)

+

∫ π

−π

[(
∂2Ψ

∂λ
2

∂λ

∂λ11

)(
λ2

11

λ

)
+

(
∂Ψ

∂λ

)(
2λ11

λ
− λ2

11

λ
2

∂λ

∂λ11

)]
cos2(φ)ρ(φ)dφ

df1

dλ22

= 2µ

(
1

λ2
11λ

3
22

)

+

∫ π

−π

[(
∂2Ψ

∂λ
2

∂λ

∂λ22

)(
λ2

11

λ

)
+

(
∂Ψ

∂λ

)(
−λ

2
11

λ
2

∂λ

∂λ22

)]
cos2(φ)ρ(φ)dφ

df2

dλ11

= 2µ

(
1

λ3
11λ

2
22

)

+

∫ π

−π

[(
∂2Ψ

∂λ
2

∂λ

∂λ11

)(
λ2

22

λ

)
+

(
∂Ψ

∂λ

)(
−λ

2
22

λ
2

∂λ

∂λ11

)]
sin2(φ)ρ(φ)dφ

df2

dλ22

= 2µ

(
λ22 +

1

λ2
11λ

3
22

)

+

∫ π

−π

[(
∂2Ψ

∂λ
2

∂λ

∂λ22

)(
λ2

22

λ

)
+

(
∂Ψ

∂λ

)(
2λ22

λ
− λ2

22

λ
2

∂λ

∂λ22

)]
sin2(φ)ρ(φ)dφ

(B.16)

where:

Ψ = Ψb + Ψa (B.17)
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Ψb =
D2

L

∫ L

0

Eβ

8
(θ −Θ0)2 dX1

=
D2

L

∫ L

0

ED2β0

8
(θ −Θ0)2 dX1

(B.18)

Ψa =
D2

L

∫ L

0

E

2
(λf − 1)2dX1 (B.19)

D = Dprev −∆G1 exp

(
− ε2

2G2

)
(B.20)

B.2.1 Macro-stretch partial derivatives

∂λ

∂λ11

=
λ11 cos2(φ)

λ

∂λ

∂λ22

=
λ22 sin2(φ)

λ

(B.21)

B.2.2 Strain energy partial derivatives

∂Ψ

∂λ
=
∂Ψb

∂α

∂α

∂λ
+
∂Ψa

∂α

∂α

∂λ
(B.22)

∂2Ψ

∂λ
2 =

(
∂2Ψb

∂α∂λ

∂α

∂λ
+
∂Ψb

∂α

∂2α

∂λ
2

)
+

(
∂2Ψa

∂α∂λ

∂α

∂λ
+
∂Ψa

∂α

∂2α

∂λ
2

)
(B.23)

∂Ψb

∂α
=
D2

L

∫ L

0

[
Eβ

4
(θ −Θ0)

dθ

dα

]
dX1 (B.24)
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∂Ψa

∂α
=
D2

L

∫ L

0

[
E (λf − 1)

dλf
dα

]
dX1 (B.25)

∂2Ψb

∂α∂λ
=

∂

∂λ

[
Eβ0

4L

∫ L

0

D4(θ −Θ0)
∂θ

∂α
dX1

]

=
Eβ0

4L

∫ L

0

[
4D3∂D

∂λ
(θ −Θ0)

∂θ

∂α
+D4

(
∂θ

∂λ

)(
∂θ

∂α

)
+D4(θ −Θ0)

∂2θ

∂α
∂λ

]
dX1

(B.26)

∂2Ψa

∂α∂λ
=

∂

∂λ

[
E

L

∫ L

0

D2(λf − 1)
∂λf
∂α

dX1

]

=
E

L

∫ L

0

[
2D

∂D

∂λ
(λf − 1)

∂λf
∂α

+D2

(
∂λf

∂λ

∂λf
∂α

)
+D2(λf − 1)

∂2λf

∂α∂λ

]
dX1

(B.27)

B.2.3 Elastica parameter partial derivatives

B.2.3.1 Partial derivatives of α

∂α

∂λ
=

[
1

L

∫ L

0

(
∂λf
∂α

cos(θ)

cos(Θ0)
− λf sin(θ)

cos(Θ0)

∂θ

∂α

)
dX1

]−1

(B.28)

239



APPENDIX B. APPENDIX: JACOBIANS FOR REMODELING SIMULATIONS

∂α2

∂λ
2 =

∂

∂λ

[[
1

L

∫ L

0

(
∂λf
∂α

cos(θ)

cos(Θ0)
− λf sin(θ)

cos(Θ0)

∂θ

∂α

)
dX1

]−1
]

= −
[

1

L

∫ L

0

(
∂λf
∂α

cos(θ)

cos(Θ0)
− λf sin(θ)

cos(Θ0)

∂θ

∂α

)
dX1

]−2

∗
(

1

L

∫ L

0

[
∂2λf

∂α∂λ
− λf

∂θ

∂λ

∂θ

∂α

)
cos(θ)

cos(Θ0)
−
(
∂λf
∂α

∂θ

∂λ
+
∂λf

∂λ

∂θ

∂α
+ λf

∂2θ

∂α∂λ

sin(θ)

cos(Θ0)

]
dX1

)

(B.29)

B.2.3.2 Partial derivatives of λf

∂λf

∂λ
=
∂λf
∂α

∂α

∂λ
+
∂λf
∂D

∂D

∂λ
(B.30)

∂λf
∂α

= cos(θ)− α sin(θ)
∂θ

∂α
(B.31)

∂λf
∂D

=
∂

∂D
[1 + α cos(θ)]

= −α sin(θ)
∂θ

∂D

(B.32)

∂2λf

∂α∂λ
=

∂

∂λ

[
cos(θ)− α sin(θ)

∂θ

∂α

]

= − sin(θ)
∂θ

∂λ
− α

(
cos(θ)

∂θ

∂λ
+ sin(θ)

∂2θ

∂α∂λ

) (B.33)

B.2.3.3 Partial derivatives of θ

∂θ

∂λ
=
∂θ

∂α

∂α

∂λ
+
∂θ

∂D

∂D

∂λ
(B.34)
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∂θ

∂α
=
−β(4 + 8α)Θ0

(4α(1 + α) + β)2
(B.35)

∂θ

∂D
=

∂

∂D

[
β0D

2Θ0

4α(1 + α) + β0D2

]

=
2β0DΘ0

4α(1 + α) + β0D2
− 2β2

0D
3Θ0

(4α(1 + α) + β0D2)2

(B.36)

∂2θ

∂α∂λ
=

∂

∂λ

[
−D2β0(4 + 8α)Θ0

(4α(1 + α) +D2β0)2

]

=
−2D ∂D

∂λ
β0(4 + 8α)Θ0 −D2β08∂α

∂λ
Θ0

(4α(1 + α) +D2β0)2
+

2D2β0(4 + 8α)Θ0

[
(4 + 8α)∂α

∂λ
+ 2D ∂D

∂λ
β0

]

(4α(1 + α) +D2β0)3

(B.37)

B.2.3.4 Partial derivatives of D

∂D

∂λ
= −∆G1 exp

(
− ε2

2G2

)(
− ε

G2

∂ε

∂λ

)
(B.38)

∂ε

∂λ
=

1

L

∫ L

0

∂λf
∂α

dX1 (B.39)
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Appendix: Skin Analysis Files

Table of Contents:

(See Sec. A.4 for data analysis protocols.)

Nov10EllipsoidFit.m (Section C.1 )

Calculates material directions for maximum pressure image

Jun16FittedStrains.m (Section C.2 )

Calculates and plots strains for a single image

Jun16FittedStrainsGrid.m (Section C.3 )

Calculates strains for all images

parameterFittingConsistent Aug30.m (Section C.4 )

Fits material parameters to stretch-stress resultant data

Called functions: (Section C.5)
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ellipsoid fit.m (by Yury Petrov, available for download)

rsquare.m (by Felix Hebeler, available for download)

ellipse fit.m ( by Tal Hendel, available for download)

RotateZ.m

plotContour.m

horizontalLagrange.m

verticalLagrange.m

fittedExx.m

fittedEyy.m

Aug29 dateExtract.m

calculateCurvatureWphi.m

fitMuNested.m

fitFiberNestedRevolved2D.m

constitutiveRelation.m
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C.1 Nov10EllipsoidFit.m

function [a,b,c, evecs, center] = Nov10EllipsoidFit(Data,Image, percent)
%Computes principal radii & orientations for an image (Image = image
% number from data file) based on an ellipsoid fit for the the 3D
% displacement using a specified percent of the image (i.e. 50%)
% from the center.

%Code to load image file:
%gridFileName = 'Test1 grid 1.31.11.csv';
%Data=dlmread(gridFileName,',',1,0);

%define columns
File Number=Data(:,1);
X=Data(:,3);
Y=Data(:,4);
Z=Data(:,5);
U=Data(:,6);
V=Data(:,7);
W=Data(:,8);

% Pull out selected Picture (Image = Image number from Data file)
count=1;
for i=1:length(File Number)
if isequal(File Number(i),Image);
X0(count,1)=X(i);
Y0(count,1)=Y(i);
Z0(count,1)=Z(i);
Ui(count,1)=U(i);
Vi(count,1)=V(i);
Wi(count,1)=W(i);
count=count+1;
end
end

%Create deformed XYZ
x=X0+Ui;
y=Y0+Vi;
z=Z0+Wi;

%select middle of curve
percent=percent/100;
middlePercent=percent;
r=(x.ˆ2+y.ˆ2).ˆ.5;
rLimit=middlePercent.*max(r);
count=1;
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for i=1:length(x)
if r(i) <= rLimit

xMiddle(count,1)=x(i);
yMiddle(count,1)=y(i);
zMiddle(count,1)=z(i);
count=count+1;

end
end

xapex=xMiddle;
yapex=yMiddle;
zapex=zMiddle;

x=xapex;
y=yapex;
z=zapex;

%fit to ellipsoid
[center, radii, evecs, v]=ellipsoid fit([x y z],0);
%0 = general elliptical fit
%1 = ellipsoid with axis at x,y,z
%3 = sphere
b=radii(1);
a=radii(2);
c=radii(3); %all in mm

end

%Code to automatically extract for all images:
%{
count=1;
for i=11:45
[a(count,1), b(count,1), c(count,1)]=Nov10EllipsoidFit(Data,i, 75);
count=count+1
end
%}
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C.2 Jun16FittedStrains.m

% Jun16FittedStrains.m:
%
% Computes strains along fiber and perpendicular directions for a
% Data file, given Image number and rotation angle (in degrees,
% counterclockwise) so that the stiffnest direction (identified with
% Nov10EllipsoidFit.m) is aligned with x-direction. Computes strains
% using both the central difference method and fitted polynomials
% differentiated analytically.
% Prints plots of smoothed displacements, and strain measures. Also
% prints strain "error" (variability within 5mm of apex) and
% strains for both methods in both the fiber and perpendicular
% direction at the apex. This file is intended to be used for
% inspection before running Jun16FittedStrainsGrid.m for all
% images.
% NOTE: in code, X=fiber direction, Y=perpendicular direction.

% Code to load image file:
% gridFileName = 'Test1 grid 1.31.11.csv';
% Data=dlmread(gridFileName,',',1,0);

%INPUTS:
Image=20; %Image number from data file for analysis
degrees=0; %Angle in degrees to rotate COUNTERCLOCKWISE
order=9; %Order of polynomial to fit displacments for strain calculation

%define columns
File Number=Data(:,1);
X=Data(:,3);
Y=Data(:,4);
Z=Data(:,5);
Ui=Data(:,6);
Vi=Data(:,7);
Wi=Data(:,8);

% Pull out selected Picture
count=1;
for i=1:length(File Number)
if isequal(File Number(i),Image);
X0(count,1)=X(i);
Y0(count,1)=Y(i);
Z0(count,1)=Z(i);
U(count,1)=Ui(i);
V(count,1)=Vi(i);
W(count,1)=Wi(i);
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count=count+1;
end
end

%Shift X0, Y0, Z0 so center is (0,0,0)
cx=(max(X0)+min(X0))/2;
cy=(max(Y0)+min(Y0))/2;
cz=min(Z0);
for i=1:length(X0)
X0c(i)=X0(i)-cx;
Y0c(i)=Y0(i)-cy;
Z0c(i)=Z0(i)-cz;
end

%Rotate XYZ and UVW data about z axis so that fibers are along x-axis
[ X0r,Y0r,Z0r ] = RotateZ( degrees,X0c,Y0c,Z0c );
[ Ur,Vr,Wr ] = RotateZ( degrees,U,V,W );
U=Ur;
V=Vr;
W=Wr;
X0=X0r;
Y0=Y0r;
Z0=Z0r;

% Calculate X,Y,Z at Max Pressure
Xm=X0+U;
Ym=Y0+V;
Zm=Z0+W;

%Define larger grid
x1=[min(X0):.25:max(X0)];
y1=[min(Y0):.25:max(Y0)];
[X1,Y1]=meshgrid(x1,y1);
NumberGridPoints=length(x1)ˆ2;

%Smooth Data over Initial Geometry
Xgrid=griddata(X0,Y0,X0,X1,Y1,'cubic');
Ygrid=griddata(X0,Y0,Y0,X1,Y1,'cubic');
Zgrid=griddata(X0,Y0,Z0,X1,Y1,'cubic');
Ugrid=griddata(X0,Y0,U,X1,Y1,'cubic');
Vgrid=griddata(X0,Y0,V,X1,Y1,'cubic');
Wgrid=griddata(X0,Y0,W,X1,Y1,'cubic');

%Plot out-of-plane displacment over undeformed and deformed geometry
plotContour(Wgrid,X1,Y1)
title('W over undeformed geometry')

x1m=[min(Xm):.25:max(Xm)];
y1m=[min(Ym):.25:max(Ym)];
[X1m,Y1m]=meshgrid(x1m,y1m);
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Wmgrid=griddata(Xm,Ym,W,X1m,Y1m,'cubic');

plotContour(Wmgrid,X1m,Y1m)
title('W over deformed geometry')

%Pull out Horizontal & Vertical line data for strain calculations
Size=size(Ygrid);

lineNumberH=round(Size(1,1)/2);

Xh=Xgrid(lineNumberH,:)';
Yh=Ygrid(lineNumberH,:)';
Zh=Zgrid(lineNumberH,:)';
Uh=Ugrid(lineNumberH,:)';
Vh=Vgrid(lineNumberH,:)';
Wh=Wgrid(lineNumberH,:)';

k=~isnan(Xh);
Xh=Xh(k);
Yh=Yh(k);
Zh=Zh(k);
Uh=Uh(k);
Vh=Vh(k);
Wh=Wh(k);

lineNumberV=round(Size(1,2)/2);

Xv=Xgrid(:,lineNumberV);
Yv=Ygrid(:,lineNumberV);
Zv=Zgrid(:,lineNumberV);
Uv=Ugrid(:,lineNumberV);
Vv=Vgrid(:,lineNumberV);
Wv=Wgrid(:,lineNumberV);

k=~isnan(Yv);
Xv=Xv(k);
Yv=Yv(k);
Zv=Zv(k);
Uv=Uv(k);
Vv=Vv(k);
Wv=Wv(k);

k=~isnan(Xh);
Xh=Xh(k);
Yh=Yh(k);
Zh=Zh(k);
Uh=Uh(k);
Vh=Vh(k);
Wh=Wh(k);
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%Plot U,V,W displacement components along y=0 and x=0
figure
plot(Xh,Uh)
hold
plot(Xh,Vh,'r')
plot(Xh,Wh,'k')
legend('U','V','W')
title('Displacments at y=0')

figure
plot(Yv,Uv)
hold
plot(Yv,Vv,'r')
plot(Yv,Wv,'k')
legend('U','V','W')
title('Displacements at x=0')

%Calculate Exx and Eyy by central difference method
[Xcd,Exxcd,label]=horizontalLagrange(0,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid);
[Ycd,Eyycd,lebel]=verticalLagrange(0,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid);

%Calculate strains by fitting polynomials to U,V,W and ...
differentiating analytically

[x,Exx]=fittedExx(order,Xh,Uh,Vh,Wh);
[y,Eyy]=fittedEyy(order,Yv,Uv,Vv,Wv);

%Plot comparision of both calculations for Exx and Eyy
orderLabel=num2str(order);
figure
plot(Xcd(2:length(Xcd)-1),Exxcd,'.r')
hold
plot(Ycd(2:length(Ycd)-1),Eyycd,'.')
plot(x,Exx)
plot(y,Eyy)
legend('Fiber Direction', 'Perpendicular direction')
title(['Strains in fiber and perpendicular direction, order ...

',orderLabel])

%Print analytical fit strains at apex
centerH=round(length(Exx)/2);
centerV=round(length(Eyy)/2);
%ExxApex=Exxcd(centerH)
%EyyApex=Eyycd(centerV)

%Calculate percent strain error for Central difference strains
range=5; % in mm
irange=range*4;

MaxExxCD=max(Exxcd(centerH-1-irange:centerH-1+irange));
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MinExxCD=min(Exxcd(centerH-1-irange:centerH-1+irange));
MaxEyyCD=max(Eyycd(centerV-1-irange:centerV-1+irange));
MinEyyCD=min(Eyycd(centerV-1-irange:centerV-1+irange));

rangeExxCD=(MaxExxCD-MinExxCD)*100;
rangeEyyCD=(MaxEyyCD-MinEyyCD)*100;
errorExxCD=rangeExxCD/2
errorEyyCD=rangeEyyCD/2

%Calculate percent strain error for analytical fit strains
MaxExx=max(Exx(centerH-irange:centerH+irange));
MinExx=min(Exx(centerH-irange:centerH+irange));
MaxEyy=max(Eyy(centerV-irange:centerV+irange));
MinEyy=min(Eyy(centerV-irange:centerV+irange));

rangeExx=(MaxExx-MinExx)*100;
rangeEyy=(MaxEyy-MinEyy)*100;
errorExxFitted=rangeExx/2
errorEyyFitted=rangeEyy/2

%Print both strain calculations in fiber and perp. direction at apex
ExxCD apex=Exxcd(centerH-1)*100
EyyCD apex=Eyycd(centerV-1)*100
ExxFitted apex=Exx(centerH)*100
EyyFitted apex=Eyy(centerV)*100
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C.3 Jun16FittedStrainsGrid.m

function [FiberStrain,PerpStrain] = ...
Jun16FittedStrainsGrid(Data,Image,angle)

% Functional form of Jun16FittedStrains.m (see for further details)
% Returns strain in the fiber and perpedicular direction at the
% apex given an Image number and rotation angle, Strains are
% calculated by fitting a polynomial to the displacements and
% differentiating analytically.

order=9; %order for polynomial fit

%define columns
File Number=Data(:,1);
X=Data(:,3);
Y=Data(:,4);
Z=Data(:,5);
Ui=Data(:,6);
Vi=Data(:,7);
Wi=Data(:,8);

% Pull out selected Picture
count=1;
for i=1:length(File Number)
if isequal(File Number(i),Image);
X0(count,1)=X(i);
Y0(count,1)=Y(i);
Z0(count,1)=Z(i);
U(count,1)=Ui(i);
V(count,1)=Vi(i);
W(count,1)=Wi(i);
count=count+1;
end
end

%Shift X0, Y0, Z0 so center is (0,0,0)
cx=(max(X0)+min(X0))/2;
cy=(max(Y0)+min(Y0))/2;
cz=min(Z0);
for i=1:length(X0)
X0c(i)=X0(i)-cx;
Y0c(i)=Y0(i)-cy;
Z0c(i)=Z0(i)-cz;
end

%Rotate XYZ and UVW data about z axis so that fibers are along x-axis
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degrees=angle; %Rotates COUNTERCLOCKWISE!!!
[ X0r,Y0r,Z0r ] = RotateZ( degrees,X0c,Y0c,Z0c );
[ Ur,Vr,Wr ] = RotateZ( degrees,U,V,W );
U=Ur;
V=Vr;
W=Wr;
X0=X0r;
Y0=Y0r;
Z0=Z0r;

% Calculate X,Y,Z at Max Pressure
Xm=X0+U;
Ym=Y0+V;
Zm=Z0+W;

%Define larger grid
x1=[min(X0):.25:max(X0)];
y1=[min(Y0):.25:max(Y0)];
[X1,Y1]=meshgrid(x1,y1);
NumberGridPoints=length(x1)ˆ2;

%Smooth Data over Initial Geometry
Xgrid=griddata(X0,Y0,X0,X1,Y1,'cubic');
Ygrid=griddata(X0,Y0,Y0,X1,Y1,'cubic');
Zgrid=griddata(X0,Y0,Z0,X1,Y1,'cubic');
Ugrid=griddata(X0,Y0,U,X1,Y1,'cubic');
Vgrid=griddata(X0,Y0,V,X1,Y1,'cubic');
Wgrid=griddata(X0,Y0,W,X1,Y1,'cubic');

Wmgrid=griddata(Xm,Ym,W,X1,Y1,'cubic');

%Pull out Horizontal & Vertical line data
Size=size(Ygrid);

lineNumberH=round(Size(1,1)/2);

Xh=Xgrid(lineNumberH,:)';
Yh=Ygrid(lineNumberH,:)';
Zh=Zgrid(lineNumberH,:)';
Uh=Ugrid(lineNumberH,:)';
Vh=Vgrid(lineNumberH,:)';
Wh=Wgrid(lineNumberH,:)';

k=~isnan(Xh);
Xh=Xh(k);
Yh=Yh(k);
Zh=Zh(k);
Uh=Uh(k);
Vh=Vh(k);
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Wh=Wh(k);

lineNumberV=round(Size(1,2)/2);

Xv=Xgrid(:,lineNumberV);
Yv=Ygrid(:,lineNumberV);
Zv=Zgrid(:,lineNumberV);
Uv=Ugrid(:,lineNumberV);
Vv=Vgrid(:,lineNumberV);
Wv=Wgrid(:,lineNumberV);

k=~isnan(Yv);
Xv=Xv(k);
Yv=Yv(k);
Zv=Zv(k);
Uv=Uv(k);
Vv=Vv(k);
Wv=Wv(k);

k=~isnan(Xh);
Xh=Xh(k);
Yh=Yh(k);
Zh=Zh(k);
Uh=Uh(k);
Vh=Vh(k);
Wh=Wh(k);

%Calculate Exx and Eyy by central difference
[Xcd,Exxcd,label]=horizontalLagrange(0,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid);
[Ycd,Eyycd,lebel]=verticalLagrange(0,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid);

%Fit polynomials to U,V,W and use to calculate Exx and Eyy
orderLabel=num2str(order);
[x,Exx]=fittedExx(order,Xh,Uh,Vh,Wh);
[y,Eyy]=fittedEyy(order,Yv,Uv,Vv,Wv);

%Pull out apex values to output
centerH=round(length(Exx)/2);
centerV=round(length(Eyy)/2);
ExxApex=Exx(centerH);
EyyApex=Eyy(centerV);
FiberStrain=ExxApex;
PerpStrain=EyyApex;

end

% Code to run over a series of images:
%{
count=1;
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for i=11:45
[FiberStrain(count,1),PerpStrain(count,1)] = ...

Jun16FittedStrainsGrid(Data,i,ANGLE);
count=count+1
end
%}
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C.4 parameterFittingConsistent Aug30.m

% parameterFittingConsistent Aug30.m
%
% Fits constitutive model parameters (mu, kappa, k1, k2) given
% Stretches (fiber + perpendicular direction, computed by
% Jun16FittedStrainsGrid.m), Pressure, thickness, and initial
% guess. Matrix shear modulus is fit to toe region only, while fiber
% parameters are fit to entire data set.

%Load raw data files:
FileName='Test1 grid 1.31.11.csv';
Data=dlmread(FileName,',',1,0);

%INPUTS:
StretchDIC F=[ 1.000077919 1.000081177 1.001842164 1.005329437 ...

1.010686471 1.017964124 1.027378777 1.039174633 1.053516928 ...
1.070503835 1.089584957 1.10989573 1.130266346 1.148841371 ...
1.161277387 1.168076535 1.172353611 1.173903104 1.174549644 ...
1.175510943 1.175861413 1.175984139 1.176272325 1.176668494 ...
1.177173227 1.17633339 1.177605755 1.177200277 1.178002901 ...
1.178201152 1.17848202 1.178569841 1.178793714 1.178888273 ...
1.179509361 1.179645979 1.17995341 1.180249617 1.179858291 ...
1.180528291]; %DIC measured strech, fiber direction

StretchDIC P=[ 1.000015431 1.00009998 1.00188064 1.005630312 ...
1.011161845 1.018683742 1.0285423 1.040646061 1.055477981 ...
1.072822494 1.093179224 1.116214688 1.142704643 1.171982477 ...
1.203485199 1.235077588 1.268005789 1.293038369 1.307644175 ...
1.317582384 1.322611726 1.326049555 1.329419857 1.332560268 ...
1.33402996 1.338404402 1.337848183 1.337683333 1.339617468 ...
1.341860969 1.341897206 1.343312162 1.344158386 1.345665887 ...
1.347148279 1.350604126 1.350099629 1.349794307 1.35065207 ...
1.353087795]; %DIC measured strech, perp. direction

Pressure tared=[ 0 -0.003447379 0.01875374 0.011307402 ...
0.031853779 0.044402237 0.070188629 0.09459607 0.130310913 ...
0.170714191 0.215254323 0.27441134 0.339773639 0.432163387 ...
0.546616358 0.728224265 1.033110432 1.479614914 1.937840484 ...
2.265341455 2.497832671 2.670339498 2.843260011 2.990118342 ...
3.123738738 3.277491825 3.418696455 3.563210567 3.708276261 ...
3.846309302 3.986548665 4.132028044 4.268820029 4.407266755 ...
4.557572464 4.683470732 4.836396449 4.977049497 5.112462531 ...
5.239601855]; %Experimental Pressures

to=4.38; %Tissue initial thickness
toe=14; %Image corresponding to end of the toe region
firstImage=3; %First image to use for data fitting
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MaxImage=42; %Last image to use for data fitting
rotAngle=0; %Angle to rotate image so fiber direction = x-direction
percent=75; %Select center % to use for ellipse fitting

mu0=4; % matrix shear modulus initial guess
param0=[.01, 10, 1]; % [kappa, k1, k2] initial guess

%Fit meridians to ellipse to determine curvature and stress resultants:
count=1;
for i=firstImage:MaxImage
[Xy,Zy, Yx ,Zx] = Aug29 dateExtract(Data,i, rotAngle, percent);
[ R1(count), R2(count) ] = calculateCurvatureWphi( Xy,Zy, Yx ,Zx );
count=count+1
end

K1=1./R1; %compute curvature from radius of curvature (fiber)
K2=1./R2; %compute curvature from radius of curvature (perp.)
Pressure=Pressure tared;
t=to./(StretchDIC F.*StretchDIC P); %compute deformed thickness

%Compute Stress Resultants (fiber + perp. direction)
NfluggeF(1)=0;
NfluggeP(1)=0;
NfluggeF=0.5.*Pressure.*R2;
NfluggeP=Pressure.*R2.*(2.*R1-R2)./(2.*R1);

% Calculate Stretches through thickness for integration
StretchFm=StretchDIC F-K1.*t.*0.5; %Compute stretch at midplane (fiber)
StretchPm=StretchDIC P-K2.*t.*0.5; %Compute stretch at midplane (perp.)
StretchFin=StretchDIC F-K1.*t; %Compute stretch at inner surface ...

(fiber)
StretchPin=StretchDIC P-K2.*t; %Compute stretch at inner surface ...

(perp.)

% Fit Parameters to Stress Resultants:
mu=fitMuNested(StretchDIC F, StretchDIC P, Pressure, t, K1, K2, ...

StretchFm,StretchPm,StretchFin,StretchPin, NfluggeF, NfluggeP, ...
mu0, toe);

[param, ResultantF, ResultantP, Nx, Ny, costInitial, ...
costFinal]=fitFiberNestedRevolved2D(StretchFm, StretchPm, R1, ...
R2, Pressure, t, mu, param0, NfluggeF, NfluggeP);

%Print fitting results
mu
kappa=param(1)
k1=param(2)
k2=param(3)

%Plot model fit:
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figure
plot(Pressure,NfluggeF,'.r')
hold
plot(Pressure,NfluggeP,'.k')
plot(Pressure,ResultantF,'r')
plot(Pressure,ResultantP,'k')
xlabel('Pressure')
ylabel('Resultant')
legend('Expt-F','Expt-P','Fit - F','Fit - P')

figure
h1=plot(StretchDIC F,Nx,'k');
hold on
h2=plot(StretchDIC P,Ny,'--k');
h3=plot(StretchDIC F,ResultantF,'ok');
h4=plot(StretchDIC P,ResultantP,'ˆk');
h5=xlabel('In-Plane Stretch at Surface');
h6=ylabel('In-Plane Stress Resultant [kPa]');
h8=legend('Expt-F','Expt-P','Fit - F','Fit - P');
h7=title('Model');
set(gca,'FontSize',18)
set(h3,'MarkerSize',8)
set(h4,'MarkerSize',8)
set(h1,'LineWidth',4)
set(h2,'LineWidth',4)
set(h5,'FontSize',18)
set(h6,'FontSize',18)
set(h7,'FontSize',18)
set(h8,'FontSize',18,'Location','NorthEast')
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C.5 Called Functions

C.5.1 RotateZ.m

function [ Ur,Vr,Wr ] = RotateZ( degrees,U,V,W )
%Rotates a displacement field about the Z axis by specified angle, ...

couterclockwise.

theta=degrees/180*pi;

Rz=[cos(theta), -sin(theta), 0;
sin(theta), cos(theta), 0;
0, 0, 1];

for i=1:length(W)
temp1 = [U(i); V(i); W(i)];
temp2 = Rz*temp1;
Ur(i,1) = temp2(1);
Vr(i,1) = temp2(2);
Wr(i,1) = temp2(3);

end
end

C.5.2 plotContour.m

function [] = plotContour( Data,X,Y )
%Colored Surface Plot of grid data

figure
surface(X,Y,Data,'EdgeColor','none');
axis equal
colorbar

end
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C.5.3 horizontalLagrange.m

function [ Xh,Exx,yLabel ] = ...
horizontalLagrange(delta,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid)

% Computes Central Difference Large Deformation Green-Lagrange Strain
% Along a horizontal line at y=delta

if delta==0
gridSize=size(Ygrid);
lineNumberH=round(gridSize(1,1)/2);

else ...
lineNumberH=round(gridSize(1,1)/2)-round(gridSize(1,1)/(delta*2));

end

Xh=Xgrid(lineNumberH,:)';
Yh=Ygrid(lineNumberH,:)';
Zh=Zgrid(lineNumberH,:)';
Uh=Ugrid(lineNumberH,:)';
Vh=Vgrid(lineNumberH,:)';
Wh=Wgrid(lineNumberH,:)';

%"TRIM" OUT NaN
k=~isnan(Xh);
Xh=Xh(k);
Yh=Yh(k);
Zh=Zh(k);
Uh=Uh(k);
Vh=Vh(k);
Wh=Wh(k);

yLabel=num2str(mean(Yh));

%Calculate Exx by central difference
for j=1:(length(Uh)-2)

dUdX(j)=(Uh(j+2)-Uh(j))/(Xh(j+2)-Xh(j));
dVdX(j)=(Vh(j+2)-Vh(j))/(Xh(j+2)-Xh(j));
dWdX(j)=(Wh(j+2)-Wh(j))/(Xh(j+2)-Xh(j));

Exx(1,j)=dUdX(j)+0.5*(dUdX(j)ˆ2+dVdX(j)ˆ2+dWdX(j)ˆ2);

end

end
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C.5.4 verticalLagrange.m

function [ Yv,Eyy,xLabel] = verticalLagrange( ...
delta,Xgrid,Ygrid,Zgrid,Ugrid,Vgrid,Wgrid )

% Computes Central Difference Large Deformation Green-Lagrange Strain
% Along a vertical line at x=delta

if delta==0
lineNumberV=round(length(Xgrid)/2);

else ...
lineNumberV=round(length(Xgrid)/2)-round(length(Xgrid)/(delta*2));

end

Xv=Xgrid(:,lineNumberV);
Yv=Ygrid(:,lineNumberV);
Zv=Zgrid(:,lineNumberV);
Uv=Ugrid(:,lineNumberV);
Vv=Vgrid(:,lineNumberV);
Wv=Wgrid(:,lineNumberV);

%"TRIM" OUT NaN
k=~isnan(Yv);
Xv=Xv(k);
Yv=Yv(k);
Zv=Zv(k);
Uv=Uv(k);
Vv=Vv(k);
Wv=Wv(k);

xLabel=num2str(mean(Xv));

%Calculate Eyy by central difference
for j=1:(length(Vv)-2)

dUdy(j)=(Uv(j+2)-Uv(j))/(Yv(j+2)-Yv(j));
dVdy(j)=(Vv(j+2)-Vv(j))/(Yv(j+2)-Yv(j));
dWdy(j)=(Wv(j+2)-Wv(j))/(Yv(j+2)-Yv(j));

Eyy(1,j)=dVdy(j)+0.5*(dUdy(j)ˆ2+dVdy(j)ˆ2+dWdy(j)ˆ2);

end

end
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C.5.5 fittedExx.m

function [ x,Exx ] = fittedExx( order,x,U,V,W )
% Computes Large Deformation Green-Lagrange Strain by fitting
% a polynomial to displacements and differentiating analytically
% along a horizontal line at y=delta

pU=polyfit(x,U,order);
plotpolyU=polyval(pU,x);
RsquareU=rsquare(U,plotpolyU);

pV=polyfit(x,V,order);
plotpolyV=polyval(pV,x);
RsquareV=rsquare(V,plotpolyV);

pW=polyfit(x,W,order);
plotpolyW=polyval(pW,x);
RsquareW=rsquare(W,plotpolyW);

for i=1:order
dUdx(i)=pU(i)*(order+1-i);
dVdx(i)=pV(i)*(order+1-i);
dWdx(i)=pW(i)*(order+1-i);
end

plotdU=polyval(dUdx,x);
plotdV=polyval(dVdx,x);
plotdW=polyval(dWdx,x);

for i=1:length(plotdU)
Exx(i)=plotdU(i)+.5*(plotdU(i)ˆ2+plotdV(i)ˆ2+plotdW(i)ˆ2);

end

end
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C.5.6 fittedEyy.m

function [ y,Eyy ] = fittedEyy( order,y,U,V,W )
% Computes Large Deformation Green-Lagrange Strain by fitting
% a polynomial to displacements and differentiating analytically
% along a vertical line at x=delta

pU=polyfit(y,U,order);
plotpolyU=polyval(pU,y);
RsquareU=rsquare(U,plotpolyU);

pV=polyfit(y,V,order);
plotpolyV=polyval(pV,y);
RsquareV=rsquare(V,plotpolyV);

pW=polyfit(y,W,order);
plotpolyW=polyval(pW,y);
RsquareW=rsquare(W,plotpolyW);

for i=1:order
dUdy(i)=pU(i)*(order+1-i);
dVdy(i)=pV(i)*(order+1-i);
dWdy(i)=pW(i)*(order+1-i);
end

plotdU=polyval(dUdy,y);
plotdV=polyval(dVdy,y);
plotdW=polyval(dWdy,y);

for i=1:length(plotdU)
Eyy(i)=plotdV(i)+.5*(plotdU(i)ˆ2+plotdV(i)ˆ2+plotdW(i)ˆ2);

end

orderLabel=num2str(order);

end
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C.5.7 Aug29 dateExtract.m

function [Xy,Zy, Yx ,Zx] = Aug29 dateExtract(Data,Image, rotAngle, ...
percent)

% Smooths displamcements and pulls out meridians for a specified image,
% rotation, and percent of image to use.

%define columns
File Number=Data(:,1);
X=Data(:,3);
Y=Data(:,4);
Z=Data(:,5);
Ui=Data(:,6);
Vi=Data(:,7);
Wi=Data(:,8);

% Pull out selected Picture (Max Pressure)
count=1;
for i=1:length(File Number)
if isequal(File Number(i),Image);
X0(count,1)=X(i);
Y0(count,1)=Y(i);
Z0(count,1)=Z(i);
U(count,1)=Ui(i);
V(count,1)=Vi(i);
W(count,1)=Wi(i);
count=count+1;
end
end

%Rotate XYZ and UVW data about z axis so that fibers are along ...
x-axis

degrees=rotAngle; %Rotates COUNTERCLOCKWISE
[ X0r,Y0r,Z0r ] = RotateZ( degrees,X0,Y0,Z0 );
[ Ur,Vr,Wr ] = RotateZ( degrees,U,V,W );
U=Ur;
V=Vr;
W=Wr;
X0=X0r;
Y0=Y0r;
Z0=Z0r;

%Shift (X0,Y0,Z0) so center is (0,0,0)
cx=(max(X0)+min(X0))/2;
cy=(max(Y0)+min(Y0))/2;
xC=X0-cx;
yC=Y0-cy;
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X0c=X0-cx;
Y0c=Y0-cy;

x=xC;
y=yC;
X0=X0c;
Y0=Y0c;

%select middle of curve
percent=percent/100;
middlePercent=percent;
r=(x.ˆ2+y.ˆ2).ˆ.5;
rLimit=middlePercent.*max(r);
count=1;

for i=1:length(x)
if r(i) <= rLimit

X0Middle(count,1)=X0(i);
Y0Middle(count,1)=Y0(i);
Z0Middle(count,1)=Z0(i);
UMiddle(count,1)=U(i);
VMiddle(count,1)=V(i);
WMiddle(count,1)=W(i);
count=count+1;

end
end

Uapex=UMiddle;
Vapex=VMiddle;
Wapex=WMiddle;
X0apex=X0Middle;
Y0apex=Y0Middle;
Z0apex=Z0Middle;

%Smooth over grid
xg1=[min(X0apex):(max(X0apex)-min(X0apex))/100:max(X0apex)];
yg1=[min(Y0apex):(max(Y0apex)-min(Y0apex))/100:max(Y0apex)];
[X1,Y1]=meshgrid(xg1,yg1);
NumberGridPoints=length(xg1)ˆ2;

Ugrid=griddata(X0apex,Y0apex,Uapex,X1,Y1,'cubic');
Vgrid=griddata(X0apex,Y0apex,Vapex,X1,Y1,'cubic');
Wgrid=griddata(X0apex,Y0apex,Wapex,X1,Y1,'cubic');

X0grid=griddata(X0apex,Y0apex,X0apex,X1,Y1,'cubic');
Y0grid=griddata(X0apex,Y0apex,Y0apex,X1,Y1,'cubic');
Z0grid=griddata(X0apex,Y0apex,Z0apex,X1,Y1,'cubic');

%pull out data to fit to ellipse, Y=0 (along fiber)
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SizeY=size(Y0grid);
lineNumberY=round(SizeY(1,1)/2);

Uy=Ugrid(lineNumberY,:)';
Vy=Vgrid(lineNumberY,:)';
Wy=Wgrid(lineNumberY,:)';
X0y=X0grid(lineNumberY,:)';
Y0y=Y0grid(lineNumberY,:)';
Z0y=Z0grid(lineNumberY,:)';

k=~isnan(X0y);
Uy=Uy(k);
Vy=Vy(k);
Wy=Wy(k);
X0y=X0y(k);
Y0y=Y0y(k);
Z0y=Z0y(k);

%pull out data to fit to ellipse, X=0 (along perp)
SizeX=size(X0grid);
lineNumberX=round(SizeX(1,2)/2);

Ux=Ugrid(:,lineNumberX);
Vx=Vgrid(:,lineNumberX);
Wx=Wgrid(:,lineNumberX);
X0x=X0grid(:,lineNumberX);
Y0x=Y0grid(:,lineNumberX);
Z0x=Z0grid(:,lineNumberX);

k2=~isnan(X0x);
Ux=Ux(k);
Vx=Vx(k2);
Wx=Wx(k2);
X0x=X0x(k2);
Y0x=Y0x(k2);
Z0x=Z0x(k2);

%Report Deformed Coordinants
Xy=X0y+Uy;
Zy=Z0y+Wy;
Yx=Y0x+Vx;
Zx=Z0x+Wx;

end
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C.5.8 calculateCurvatureWphi.m

function [ R1, R2 ] = calculateCurvatureWphi( Xy,Zy, Yx, Zx )
% Computes curvaturess by fitting meridians to an ellipse.

% Fiber direction:
FiberData(:,1)=Xy;
FiberData(:,2)=Zy;
[Major1, minor1, x1, z1, phi1 fit] = ellipse fit( ...

FiberData(:,1), FiberData(:,2));
c1=minor1;
a1=Major1;
R1=(a1ˆ2*c1ˆ2)/(a1ˆ2*sin(-phi1 fit)ˆ2+c1ˆ2*cos(-phi1 fit)ˆ2)ˆ(3/2);

% Perpendicular directioN:
PerpData(:,1)=Yx;
PerpData(:,2)=Zx;
[Major2, minor2, y2, z2, phi2 fit] = ellipse fit( PerpData(:,1), ...

PerpData(:,2));
c2=minor2;
b2=Major2;
R2=(b2ˆ2)/(b2ˆ2*sin(-phi2 fit)ˆ2+c2ˆ2*cos(phi2 fit)ˆ2)ˆ(1/2);

end
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C.5.9 fitMuNested.m

function [mu] = fitMuNested(StretchDIC F, StretchDIC P, Pressure, t, ...
K1, K2, StretchFm,StretchPm,StretchFin,StretchPin, NfluggeF, ...
NfluggeP, mu0, toe)
% Fits shear matrix (mu) to toe region of stress resultant - ...

pressure data

%Pull out toe region only:
StretchOutF toe=StretchDIC F(1:toe);
StretchOutP toe=StretchDIC P(1:toe);
Pressure toe=Pressure(1:toe);
t toe=t(1:toe);
K1t=K1(1:toe);
K2t=K2(1:toe);
StretchFm toe=StretchFm(1:toe);
StretchPm toe=StretchPm(1:toe);
StretchFin toe=StretchFin(1:toe);
StretchPin toe=StretchPin(1:toe);
NfluggeF toe=NfluggeF(1:toe);
NfluggeP toe=NfluggeP(1:toe);

%Integrate through thickess (toe region only):
resolution=1000;
Y tf=zeros(toe, resolution+1);
Y tp=zeros(toe, resolution+1);
IntF=zeros(toe,1);
IntP=zeros(toe,1);

%Fiber Integration (toe region only):
for i=1:length(StretchOutF toe)
zt=-t toe(i)/2:t toe(i)/resolution:t toe(i)/2;
Y tf(i,:)=(StretchFm toe(i)+K1t(i).*zt).ˆ2-((StretchFm toe(i)+K1t(i).*zt).*(StretchPm toe(i)+K2t(i).*zt)).ˆ-2;
IntF(i,:)=trapz(zt,Y tf(i,:));
end

%Perp Integration (toe region only):
for i=1:length(StretchOutP toe)
zt=-t toe(i)/2:t toe(i)/resolution:t toe(i)/2;
Y tp(i,:)=(StretchPm toe(i)+K1t(i).*zt).ˆ2-((StretchFm toe(i)+K1t(i).*zt).*(StretchPm toe(i)+K2t(i).*zt)).ˆ-2;
IntP(i,:)=trapz(zt,Y tp(i,:));
end

%Fit matrix shear modulus (toe region only):
[mu] = fminsearch(@muCostFunction,mu0);

function cost = muCostFunction(mu)
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cost = sum(sqrt(( mu.*IntF' - ...
NfluggeF toe).ˆ2)+(mu.*IntP' - NfluggeP toe).ˆ2);

end
end
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C.5.10 fitFiberNestedRevolved2D.m

function [param, ResultantF, ResultantP, Nx, Ny, cost, ...
exitflag]=fitFiberNestedRevolved2D(StretchFmstiff, ...
StretchPmstiff, R1, R2, Pstiff, tstiff, mu, param0, Nx, Ny)
% Fits fiber family parameters (kappa, k1, k2) to stress ...

resultant - pressure data

%Select tolerances for fminsearch
options=optimset('Display','Iter','TolFun',10ˆ-10, 'TolX',10ˆ-6);
param=param0;

% Minimize cost function to determine parameters
[param, cost, exitflag]=fminsearch(@fiberCostFunction,param0);
function cost = fiberCostFunction(param)
%param=[0.25 5 100];

K1=1./R1;
K2=1./R2;

kappa=param(1);
k1=param(2);
k2=param(3);

%fiber Integration
for i=1:length(StretchFmstiff)
z=-tstiff(i)/2:tstiff(i)/1000:tstiff(i)/2;
StretchFstiff(i,:)=StretchFmstiff(i)+K1(i).*z;
StretchPstiff(i,:)=StretchPmstiff(i)+K2(i).*z;
[ Yf(i,:), Yp(i,:) ] = constitutiveRelation( mu, kappa, k1, ...

k2, StretchFstiff(i,:), StretchPstiff(i,:) );
ResultantF(i,:)=trapz(z,Yf(i,:));
ResultantP(i,:)=trapz(z,Yp(i,:));
end

ResultantFT=ResultantF';
ResultantPT=ResultantP';

cost = sum( sqrt((Nx - ResultantFT).ˆ2 + (Ny - ...
ResultantPT).ˆ2 ));

end

end

269



APPENDIX C. APPENDIX: SKIN ANALYSIS FILES

C.5.11 constitutiveRelation.m

function [ StressF, StressP ] = constitutiveRelation( mu, kappa,k1, ...
k2, StretchF, StretchP )
% Computes stress given material parameters and stretch, for one of
% three constitutive models (use comments to select desired
% constitutive relation)

%Fully integrated fiber dispersion model

dtheta = pi/100;
theta = [dtheta:dtheta:pi];
vonMises= exp(kappa*cos(2*theta))/(pi*besseli(0,kappa));
jacobian = vonMises*dtheta;
sum(jacobian);

nsteps =length(StretchF);
StressF = mu.*(StretchF.ˆ2-(StretchF.*StretchP).ˆ(-2));
StressP = mu.*(StretchP.ˆ2-(StretchF.*StretchP).ˆ(-2));
StressFP = 0.0*StressF;
for k=1:nsteps

IF = StretchF(k)ˆ2;
IP = StretchP(k)ˆ2;
I4 = IF*cos(theta).ˆ2 + IP*sin(theta).ˆ2;
E = I4 -1;
StressF(k) = StressF(k) + ...

IF*sum(2.0*k1*E.*exp(k2*E.ˆ2).*cos(theta).ˆ2.*jacobian);
StressP(k) = StressP(k) + ...

IP*sum(2.0*k1*E.*exp(k2*E.ˆ2).*sin(theta).ˆ2.*jacobian);
StressFP(k) = StressFP(k) + ...

sqrt(IP*IF)*sum(2.0*k1*E.*exp(k2*E.ˆ2).*sin(theta).*cos(theta).*jacobian);
end

%Gasser-Odgen-Holzapfel (2006) model with 3D fiber dispersion
%{

I4= StretchF.ˆ2;
I1=StretchF.ˆ2 + StretchP.ˆ2 + (StretchF.*StretchP).ˆ-2;
alpha=kappa.*I1 + (1-3.*kappa).*I4 - 1;

StressF=(mu+2.*kappa.*k1.*alpha.*exp(k2.*alpha.ˆ2)).*...
(StretchF.ˆ2-(StretchF.*StretchP).ˆ-2)+...
(2.*k1.*(1-3.*kappa).*alpha.*exp(k2.*alpha.ˆ2)).*StretchF.ˆ2;

StressP=(mu+2.*kappa.*k1.*alpha.*exp(k2.*alpha.ˆ2)).*...
(StretchP.ˆ2-(StretchF.*StretchP).ˆ-2);

%}
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%Gasser-Odgen-Holzapfel (2006) model with 2D fiber dispersion
%{

E=kappa.*StretchP.ˆ2+(1-kappa).*StretchF.ˆ2-1;
StressF=mu.*(StretchF.ˆ2-(StretchF.*StretchP).ˆ(-2))+...

2.*k1.*StretchF.ˆ2.*E.*(1-kappa).*exp(k2.*E.ˆ2);
StressP=mu.*(StretchP.ˆ2-(StretchF.*StretchP).ˆ(-2))+...

2.*k1.*StretchP.ˆ2.*E.*kappa.*exp(k2.*E.ˆ2);
%}

end
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Appendix: Remodeling Simulation

Matlab Files

Table of Contents:

FitFlynn axialRodOnly.m (Section D.1 )

Simulates single-fibril degradation experiments of Flynn et al.80

FitUniaxialData ZareianEquillibrium.m (Section D.2)

Simulates constant force uniaxial extension data for undegraded bovine cornea

reported by Zareian et al.83

Zareian Prediction.m (Section D.3)

Simulates the degradation of bovine cornea strips under constant load reported
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by Zariean et al83 using parameters fit by FitFlynn axialRodOnly.m and FitU-

niaxialData ZareianEquillibrium.m.

constantStress Biaxial areaChange.m (Section D.4)

Simulates the degradation of a tissue for an applied biaxial stress state.

constantPressure withDeposition.m (Section D.5)

Simulates a constant pressure, followed by a step increase or decrease, applied

to a spherical tissue with both collagen degradation and deposition.

Called functions: (Section D.6)

herrorbar.m (by Jos van der Geest, available for download)

fitUniaxial analytical

stress noDeg.m

singleFiber.m

UniaxialCreep noDeg analytical.m

UniaxialCreep degAndDamage totalAreaLoss.m

stress degAndDamage.m

singleFiber degAndDamage meanSE.m

ApplyStress noDeg.m

ApplyStress degAndDamage.m

ApplyStress degAndDamage withDeposition.m

stress degAndDamage withDeposition.m
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singleFiber degAndDamage withDeposition.m

dfGrowdT.m

274



APPENDIX D. APPENDIX: REMODELING SIMULATION MATLAB FILES

D.1 FitFlynn axialRodOnly.m

% FitFlynn axialRodOnly.m
% Simulates first ~1000 seconds of single-fibril degradation experiments
% reported by Flynn et al. (2013) given mechanical and kinetic ...

parameters.
% Damage can also be included by including damage parameters. Solves the
% nonlinear system with a Newton-Raphson iterative scheme. Prints a
% plot of radius vs. time for both experimental data and model ...

simulation,
% as well as fiber stress vs. time plot.

clear all
clc
close all

%Flynn 2013 data - Zero Load
time zero exp = [ 0 301 602 903];
diam zero exp = [ 413.014 332.877 249.658 155.137];
ptime zero = [0 300 600 900];
pstrain zero = [0 -.1 0.5 1.8];

%Flynn 2013 data - Low load
time low exp = [ 308 602 910];
diam low exp = [ 245.548 235.274 215.753];
ptime low = [300 600 2700];
pstrain low = [0 0.3 0.3];

%Flynn 2013 data - Control
time control exp =[ 7 301 602 903];
diam control exp =[ 222.945 220.89 227.055 240.411];

%Define Constants
E0 = 0.7; %GPa
Force array = [0,46,1054]; %nN
Probe array = [2400.1, 1500.1, Force array(3)]; %nN
maxProbe array = [900 900 900]; %time of last mechanical probe
Gamma array = [206.5, 133.25, 111.473]; %nm
color = ['r','k','b'];
delta = 0.1; %timestep for degradation (s)
tol = 10e-12; %tolerance for newton-raphson solver

%Kinetic Degradation Parmeters
G1 = 6.7e-4;
G2 = 1.0e-6;
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%Damage Parameters
H = 100; % Turn damage off (H too high for damage to proceed)
%H = 0.053; % Turn Damage on
C = .05;

%Initialize Figures
figure(1)
set(gca,'FontSize',18)
hold
xlabel('time [s]','FontSize',24)
plot(time zero exp,diam zero exp,'xr','MarkerSize',8)
plot(time low exp,diam low exp,'*k','MarkerSize',8)
plot(time control exp,diam control exp,'ob','MarkerSize',8)
axis([0 1000 150 450])

figure(2)
set(gca,'FontSize',18)
hold

%Loop over all 3 load levels
for k=1:3

% Clear previous loop's variables
clear Force deg Force load Force unload Force total Force
clear D eta StretchF Stretch totalStrain
clear Stress
clear r r0 r compute time maxprobe
clear time

% Select applied force and initial fiber radius
Force app = Force array(k);
R = Gamma array(k);

% Simulate mechanical probing --> compute force vs time
Force probe = Probe array(k);
maxProbe = maxProbe array(k);
loadRate = 100; %nN/s
degInterval=300;

Force load = [Force app:loadRate*delta:Force probe];
Force unload = [Force probe:-loadRate*delta:Force app];
degmax0 = degInterval - length(Force load)*delta;
degmax1 = degInterval - ...

(length(Force load)+length(Force unload))*delta;
Force deg0 = Force app .* ones(1,degmax0/delta);
Force deg1 = Force app .* ones(1,degmax1/delta);
Force total 1 = [Force deg0,Force load, Force unload];
Force total 2 = [Force deg1,Force load, Force unload];
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count=length(Force total 1);

Force(1,1:length(Force total 1)) = Force total 1;

for probeT = [300:300:maxProbe-300]
Force(1,[1+count:length(Force total 2)+count]) = ...

[Force total 2];
count=count+length(Force total 2);

end

tmax = length(Force)*delta-delta;
time plot = [0:delta:tmax];

%Initial conditions
i = 1;
temp(1)=0;
it =0;
count = 2;
D(1) = 1;
eta(1) = 0;
StretchF(1) = 1/(1-Force(1)/(E0*(1-eta(1))*pi*D(i)ˆ2*Rˆ2));
Stress(1) = (1-eta(1)).*E0*(StretchF(1)-1);
time(1)=0;

%Timestepping to solve nonlinear system
for t= delta:delta:tmax

i=i+1;
time(i)=t;

%Initial Guess
D(i)=D(i-1);
eta(i) = eta(i-1);
StretchF(i) = StretchF(i-1);

f1 = D(i)- D(i-1) + ...
delta*G1*exp((-(1-eta(i))*(StretchF(i)-1)ˆ2)/(2*G2)); ...
%origional

f2 = Force(i) - E0*(1-eta(i))*pi*D(i)ˆ2*Rˆ2*(1 - 1/StretchF(i));
if (1-eta(i))*(StretchF(i)-1)/H <= 1

f3 = eta(i)-eta(i-1);
else

f3 = eta(i) -eta(i-1) - ...
delta*C*((1-eta(i))*(StretchF(i)-1)/H -1);

end
Residual = abs(sqrt(f1ˆ2 +f2ˆ2+f3ˆ2));

%Iterate
while abs(Residual) > tol

% Compute Jacobian
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df1dD = 1;
df1dSe = ...

delta*G1*exp(-(1-eta(i))*(StretchF(i)-1)ˆ2/(2*G2))*...
(-(1-eta(i))*(StretchF(i)-1)/G2);

df1de = ...
delta*G1*exp(-(1-eta(i))*(StretchF(i)-1)ˆ2/(2*G2))*...
((StretchF(i)-1)ˆ2)/(2*G2);

df2dD = 2*E0*(1-eta(i))*pi*D(i)*Rˆ2*(1-1/StretchF(i));
df2dSe = -E0*(1-eta(i))*pi*D(i)ˆ2*Rˆ2*StretchF(i)ˆ(-2);
df2de = E0*pi*D(i)ˆ2*Rˆ2*(1-1/StretchF(i));

if (1-eta(i))*(StretchF(i)-1)/H <= 1
df3dD = 0;
df3dSe = 0;
df3de = 1;

else
df3dD = 0;
df3dSe = -delta*C*(1-eta(i))/H;
df3de = 1+delta*C*(StretchF(i)-1)/H;

end

J = [df1dD df2dD df3dD;
df1dSe df2dSe df3dSe;
df1de df2de df3de];

% Update guess
temp = [D(i), StretchF(i), eta(i)] - [f1, f2, f3] /J;
D(i) = temp(1);
StretchF(i) = temp(2);
eta(i) = temp(3);

% Check if new guess is below tolerance
f1 = D(i)- D(i-1) + ...

delta*G1*exp((-(1-eta(i))*(StretchF(i)-1)ˆ2)/(2*G2)); ...
%origional

f2 = Force(i) - E0*(1-eta(i))*pi*D(i)ˆ2*Rˆ2*(1 - ...
1/StretchF(i));

if (1-eta(i))*(StretchF(i)-1)/H <= 1
f3 = eta(i)-eta(i-1);

else
f3 = eta(i) -eta(i-1) - ...

delta*C*((1-eta(i))*(StretchF(i)-1)/H -1);
end
Residual = abs(sqrt(f1ˆ2 +f2ˆ2+f3ˆ2));

end

end
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%Compute degraded and deformed radius, degradation rate, fiber ...
strain

gamma0 = D.*R;
gamma = gamma0 ./ sqrt(StretchF);
dr0dt = (max(gamma0)-min(gamma0))/(max(time)-min(time));
strainF = (StretchF-1);

% Compute "apparent" radius from change in fiber stiffness
% (equivilent to model fiber radius for no damage)
if k <3

count=1;
for l = 2:length(Force)-1

if Force(l) > Force(l-1) && Force(l) > Force(l+1)
r compute(count) = ...

sqrt(Force(l)/(pi*E0*strainF(l))); % in nm
time maxprobe(count) = time(l);
count=count+1;

end
end

else
r compute = sqrt(Force./(pi.*E0.*strainF));
time maxprobe =time;

end

%Plot fiber radius vs. time
figure(1)
if k <3
plot([0,time maxprobe],[Gamma array(k)*2,r compute.*2],..

['--o',color(k)],'LineWidth',2)
else
plot([0,time maxprobe],[Gamma array(k)*2,r compute.*2],...

['--',color(k)],'LineWidth',2)
end
ylabel('Fibril diameter [nm]','FontSize',24)
h1=legend('Expt - 0 nN','Expt - 46 nN','Expt - control','Model - ...

0 nN','Model - 46 nN','Model - 1054 nN');
set(h1,'Location','NorthEast')

%Plot fiber stress vs. time
figure(2)
plot(E0.*(1-eta).*(StretchF-1),color(k))
ylabel('Stress [GPa]')
legend('zero','load','high')

end
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D.2 FitUniaxialData ZareianEquillibrium.m

% FitUniaxialData ZareianEquillibrium.m
% Simulates uniaxial extension of a non-degrading tissue strips
% held under constant force. Compares the stress-strech behavior
% to that reported by Zareian et al. (2010) for bovine cornea
% strips, where each data point is measured after 15 minutes
% of creep (equillibrium). Plots stress-stretch results for
% both simulation and experiment.

clear all
close all
clc

%Input Parameters
E0 = .05; %Gpa
crimpAngle = 30; %Crimp angle in degrees.
AB = crimpAngle*2*pi/360; %Crimp angle in radians
Beta0 = 0.02;
b disp = 0;
mu = 2.6e-5;

a = AB;
b = 1;
xStep = (2*pi/b)/100;
X1=[0:xStep:2*pi/b];
X2 =a.*sin(b.*X1);
Theta0 = a*b.*cos(b.*X1);
L = max(X1);

%Degredation params
G1 = 6.8e-4;
G2 = 2e-6;
H = 0.05;
C=0.01;

%Discretization in phi and tolerance for nonlinear solve
dphi = pi/50;
phi = [0:dphi:pi];
tol = 1e-12;
%delta = 10;
%tmax = 1000;

% Data extracted from Zareian et al. (2010)
stretchEqm = [1.0377, 1.0524, 1.0759];
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stretchEqm error = [0.0044, 0.0036, 0.0105];
Force matrix = [0.1e-9, 0.25e-9, 0.5e-9]; %GN
A0 = (4.5/1000ˆ2); % mˆ2
Stress11 matrix = Force matrix.*stretchEqm./A0;
Stress22 target = 0;

% Specify max force and discretization
Force max = max(Force matrix);
forceStep = (Force max)/10;
Force = [0:forceStep:Force max];

% Initial Guess
alpha ramp= zeros(1,length(phi));
Stretch11 array = [1:(max(stretchEqm)-1)/10:max(stretchEqm)];
Stretch22 array = ones(1,length(Force));

%Timestepping to solve for stretch given applied forces
tic
for i = 2:length(Stretch11 array)

i
[ Stretch22 array(i), Stress11 ramp(i),Stress22 ramp(i), ...

alpha ramp(i,:), it, residual ] = fitUniaxial analytical( ...
Stretch11 array(i), Stretch22 array(i-1), mu, b disp, E0, ...
Beta0, Theta0, X1, alpha ramp(i-1,:), dphi, tol, ...
Stress22 target );

end
toc

% Plot Stress-Streth relationship for simulation and experiment
figure
set(gca,'FontSize',24)
h1=herrorbar(stretchEqm, Stress11 matrix.*10ˆ6, stretchEqm error,'*r')
hold
h2=plot( Stretch11 array, Stress11 ramp.*10ˆ6,'k')
set(h1,'MarkerSize',10)
set(h1,'LineWidth',1.25')
set(h2,'LineWidth',1.5)
xlabel('\lambda {11}','Fontsize',24)
ylabel('\sigma {11} [kPa]','Fontsize',24)
legend([h1(2),h2], 'Experiment','Model')
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D.3 Zareian Prediction.m

% Zarien Prediction.m
% Simulates the first 360 s of the degradation of bovine cornea
% strips under uniaxial constant force reported by Zariean et al. ...

(2010).
% Simulates all 3 load levels (load, medium, high). Capable of including
% damage if parameters are included. Plots stretch vs. time for
% both experimental data and simulation, and remaining fiber mass
% distribution at the end of degradation for each force level.

clear all
close all
clc

tic

%Elastica and Tissue Mechanical Parameters
E0 = 0.05;
crimpAngle = 30;
AB = crimpAngle*2*pi/360; %Crimp angle in radians
Beta0 = 0.02;
b disp = 0;
mu = 2.6e-5;

%Degredation params
G1 = 6.7e-4;
G2 = 1e-6;
H = 1e6; % NO DAMAGE
%H = 0.053; %Enable to model damage
C = 0.05;

%Descritize
a = AB;
b = 1;
xStep = (2*pi/b)/100;
X1=[0:xStep:2*pi/b];
X2 =a.*sin(b.*X1);
Theta0 = a*b.*cos(b.*X1);
L = max(X1);
dphi = pi/100;
phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
tol = 1e-12;
delta = 5;
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tmax = 360;
n=3;

%Force levels and initial cross-sectional area
Force matrix = [0.1e-9, 0.25e-9, 0.5e-9]; %GN
Stress22 target = 0; %uniaxial tension BC
A0 = (4.5/1000ˆ2); % mˆ2

% Data from Zariean 2010 degradation studies:
% (time in minutes vs percent strain, for Low, Medium,
% and High force levels, both lower and upper
% bounds of reported strain from multiple experiments).

Low lower = [15.040 3.380
18.064 4.507
21.008 6.056
23.952 7.254
27.056 8.169
30.000 9.014];

Low upper = [15.040 4.296
18.064 5.493
21.008 6.901
23.952 7.958
27.056 8.873
30.000 9.930];

Med lower = [15.080 5.000
17.968 5.274
21.016 6.370
24.064 7.192
27.032 7.945
30.000 8.836];

Med upper = [14.920 5.753
17.968 6.233
21.016 7.123
24.064 8.014
27.032 8.836
30.000 9.726];

High lower = [15.000 6.745
18.011 7.500
21.021 8.585
24.032 9.906
27.042 10.991
30.106 12.264];

High upper = [15.000 9.009
18.011 9.670
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21.074 10.708
24.032 11.651
27.042 13.066
30.053 14.434];

% Compute stretch and error bars from experimental data
t exp1 = (Low upper(:,1) - Low upper(1,1)).*60;
Low mean = (Low upper(:,2)+Low lower(:,2))./2;
Low error = Low upper(:,2)-Low mean;
stretch exp1 = sqrt(2.*Low mean./100+1);
stretch exp1 upper = sqrt(2.*Low upper(:,2)./100+1);
stretch exp1 error = stretch exp1 upper - stretch exp1;

t exp2 = (Med upper(:,1) - Med upper(1,1)).*60;
Med mean = (Med upper(:,2)+Med lower(:,2))./2;
Med error = Med upper(:,2)-Med mean;
stretch exp2 = sqrt(2.*Med mean./100+1);
stretch exp2 upper = sqrt(2.*Med upper(:,2)./100+1);
stretch exp2 error = stretch exp2 upper - stretch exp2;

t exp3 = (High upper(:,1) - High upper(1,1)).*60;
High mean = (High upper(:,2)+High lower(:,2))./2;
High error = High upper(:,2)-High mean;
stretch exp3 = sqrt(2.*High mean./100+1);
stretch exp3 upper = sqrt(2.*High upper(:,2)./100+1);
stretch exp3 error = stretch exp3 upper - stretch exp3;

%Initialize Plots
figure(1)
set(gca,'FontSize',18)
errorbar(t exp1(1:n),stretch exp1(1:n),stretch exp1 error(1:n),'--*b')
hold
errorbar(t exp2(1:n),stretch exp2(1:n),stretch exp2 error(1:n),'--*k')
errorbar(t exp3(1:n),stretch exp3(1:n),stretch exp3 error(1:n),'--*r')
xlabel('time [s]')
ylabel('\lambda {11}')
legend('Expt - 0.1 N','Expt - 0.25 N','Expt - 0.5 N','Model - 0.1 ...

N','Model - 0.25 N','Model - 0.50 N')

color = [ 'b','k','r'];
Force array = [ '0.25 N';'0.25 N';'0.50 N'];

% Loop over all 3 force levels applied
for k = 1:3

% Ramp up to applied constant force
Force max = Force matrix(k);
forceStep = (Force max)/10;
Force = [0:forceStep:Force max];
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%Initial Guess for Ramp-Up
alpha ramp= zeros(1,length(phi));
Stretch11 array = ones(1,length(Force));
Stretch22 array = ones(1,length(Force));

for i = 2:length(Force)
i
[ Stretch11 array(i), Stretch22 array(i), ...

Stress11 ramp(i),Stress22 ramp(i), alpha ramp(i,:), ...
avgStrainf0(i,:)] = UniaxialCreep noDeg analytical( ...
Stretch11 array(i-1), Stretch22 array(i-1), mu, b disp, ...
E0, alpha ramp(i-1,:), Beta0, Theta0, X1, dphi, tol, ...
Force(i), A0, Stress22 target );

end

%Initial guesses for degradation
Fg = [1, 0, 0;

0, 1, 0;
0, 0, 1];

alpha(1,:) = alpha ramp(i,:);
D(1,:) = ones(1,length(phi));
xi(1,:) = zeros(1,length(phi));

Stretch11(1) = Stretch11 array(i);
Stretch22(1) = Stretch22 array(i);
Stress11 = Stress11 ramp(i);
Stress11 deg(1) = Stress11;
Stress22 deg(1) = Stress22 target;

Stretch11 e(1) = Stretch11(1);
Stretch22 e(1) = Stretch22(1);

i=1;

% Timestep for tissue degradation nonlinear solve for stretches
for t = delta:delta:tmax

t
i=i+1;

% Compute elastic stretch from initial guess:
Stretch11 e(i-1) = Stretch11(i-1)/Fg(1,1);
Stretch22 e(i-1) = Stretch22(i-1)/Fg(2,2);

% Solve for elastic stretch given stress state:
[ Stretch11 e(i), Stretch22 e(i), Stress11 deg(i) ...

,Stress22 deg(i), alpha(i,:), D(i,:), xi(i,:), ...
avgStrainf(i,:), Fg ] = ...
UniaxialCreep degAndDamage totalAreaLoss( ...
Stretch11 e(i-1), Stretch22 e(i-1), alpha(i-1,:), ...
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D(i-1,:), xi(i-1,:), G1, G2, C, H, mu, b disp, E0, ...
Beta0, Theta0, X1, Stress22 target, Force max, A0, ...
delta, dphi, tol );

%Compute total stretch from elastic stretch and growth tensor:
Stretch11(i) = Stretch11 e(i)*Fg(1,1);
Stretch22(i) = Stretch22 e(i)*Fg(2,2);
Stretch33(i) = Fg(3,3)/(Stretch11 e(i)*Stretch22 e(i));

strain(i) = 1/2*(Stretch11(i)ˆ2-1);
time(i) = t;
macroStretch(i,:) = ...

sqrt(Stretch11(i)ˆ2.*cos(phi).ˆ2+Stretch22(i)ˆ2.*sin(phi).ˆ2 ...
);

avgStressf(i,:) = E0.*(1-xi(i,:)).*avgStrainf(i,:);

end

%For Initially Isotropic:
MassDist initial = D(1,:).ˆ2;
MassDist final = D(i,:).ˆ2;

%Plot Results
figure(1)
plot(time, Stretch11,color(k))
Stretch11 creep(k,:)=Stretch11;

%Polar plot of fiber mass distribution
figure
h0=polar([phi-pi,phi],[MassDist initial,MassDist initial],'--k');
hold
h1=polar([phi-pi,phi],[MassDist final,MassDist final],[color(k)]);
set(h1,'LineWidth',2);
set(h0,'LineWidth',2);
set(gca,'FontSize',18)
title(['Mass Fraction(\phi ) = Dˆ2(\phi ), Force = ...

',Force array(k,:)])
legend('Initial','Degraded (6 min.)')

end

% Compute creep rates (assuming linear)
temp1 = polyfit(t exp1(1:n),stretch exp1(1:n),1);
temp2 = polyfit(t exp2(1:n),stretch exp2(1:n),1);
temp3 = polyfit(t exp3(1:n),stretch exp3(1:n),1);
rateExp1 = temp1(1) %Print experimental creep rates
rateExp2 = temp2(1)
rateExp3 = temp3(1)
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temp01 = polyfit(time,Stretch11 creep(1,:),1);
temp02 = polyfit(time,Stretch11 creep(2,:),1);
temp03 = polyfit(time,Stretch11 creep(3,:),1);
rateMod1 = temp01(1) %Print simulation creep rates
rateMod2 = temp02(1)
rateMod3 = temp03(1)

%Print Relative creep rates
rateExp1/rateExp3 %Experimental
rateExp2/rateExp3
rateMod1/rateMod3 %Simulation
rateMod2/rateMod3

% Add figure legend
figure(1)
legend('Exp - 0.1N','Exp - 0.25N','Exp -0.5N','Model - 0.1N','Model ...

- 0.25N','Model - 0.5N')
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D.4 constantStress Biaxial areaChange.m

% constantStress Biaxial areaChange.m
%
% Simulates a degrading tissue subject to constant biaxial stress (or,
% uniaxial stress when Stress22 = 0). First ramps up to biaxial stress
% state without degradation, then simulates degradation while stress is
% held constant. Plots total mass loss vs time, stretch vs. time, and
% a polar plot of the fiber mass distribution for the final timestep.

clear all
close all
clc

% Elastica Mechanical Parameters
E0 = 0.05; % GPa
crimpAngle = 30;
AB = crimpAngle*2*pi/360; %Crimp angle in radians
Beta0 = 0.02;
b disp = 0; % isotropics
mu = 2.6e-5; % GPa
A0 = (4.5/1000ˆ2); % tissue initial cross-sectional area, [mˆ2]

% Degredation Parameters
G1 = 6.7e-4;
G2 = 1e-6;

% Damage Parameters
H = 1e6; % Turn damage off (H too high for damage to proceed)
%H = 0.053; % Turn damage on
C = 0.05;

% Loading Conditions
Stress11 target = 40e-6; % in GPa
Stress22 target = 30e-6; % in GPa

%Numerical Parameters
a = AB;
b = 1;
xStep = (2*pi/b)/100;
X1=[0:xStep:2*pi/b];
X2 =a.*sin(b.*X1);
Theta0 = a*b.*cos(b.*X1);
L = max(X1);
dphi = pi/100;
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phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
tol = 1e-12;
delta = 10;
tmax = 4000;

% Discretize
stressStep11 = (Stress11 target)/10;
stressStep22 = (Stress22 target)/10;
Stress11 ramp = [0:stressStep11:Stress11 target];
Stress22 ramp = [0:stressStep22:Stress22 target];

%Initial Guess for Ramp-Up
alpha ramp= zeros(1,length(phi));
Stretch11 ramp = ones(1,length(Stress11 ramp));
Stretch22 ramp = Stretch11 ramp;

% Ramp up to target stress state (initial guess for degradation)
for i = 2:length(Stress11 ramp)

i
[ Stretch11 ramp(i), Stretch22 ramp(i), ~,~, alpha ramp(i,:), ~] ...

= ApplyStress noDeg( Stretch11 ramp(i-1), ...
Stretch22 ramp(i-1), mu, b disp, E0, alpha ramp(i-1,:), ...
Beta0, Theta0, X1, dphi, tol, Stress11 ramp(i), ...
Stress22 ramp(i) );

end

%Initial guesses for degradation
Fg = [1, 0, 0;

0, 1, 0;
0, 0, 1];

alpha(1,:) = alpha ramp(i,:);
D(1,:) = ones(1,length(phi));
xi(1,:) = zeros(1,length(phi));

%Initialize Stretch and Stress Arrays
Stretch11(1) = Stretch11 ramp(i);
Stretch22(1) = Stretch22 ramp(i);
Stretch33(1) = 1/(Stretch11(1)*Stretch22(1));
Stretch11 e(1) = Stretch11(1);
Stretch22 e(1) = Stretch22(1);
Stretch33 e(1) = 1/(Stretch11 e(1)*Stretch22 e(1));
Stretch33 g(1) =1;
Stress11 = Stress11 target;
Stress22 = Stress22 target;

totalMassFrac(1) = 1;
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% Degradation Simulation - discretized over time
i=1;
tic
for t = delta:delta:tmax

t
i=i+1;
time(i) = t;

% Compute elastic stretch from Fe and Fg(n-1):
Stretch11 e(i-1) = Stretch11(i-1)/Fg(1,1);
Stretch22 e(i-1) = Stretch22(i-1)/Fg(2,2);

% Iteratively solve for elastic stretch given biaxial stress state,
% Compute Fg for next timestep.
[ Stretch11 e(i), Stretch22 e(i), ~ ,~, alpha(i,:), D(i,:), ...

xi(i,:), avgStrainf(i,:), Fg ] = ApplyStress degAndDamage( ...
Stretch11 e(i-1), Stretch22 e(i-1), alpha(i-1,:), D(i-1,:), ...
xi(i-1,:), G1, G2, C, H, mu, b disp, E0, Beta0, Theta0, X1, ...
Stress11 target, Stress22 target, delta, dphi, tol );

%Compute total stretch (F = FeFg)
Stretch11(i) = Stretch11 e(i)*Fg(1,1);
Stretch22(i) = Stretch22 e(i)*Fg(2,2);
Stretch33(i) = Fg(3,3)/(Stretch11 e(i)*Stretch22 e(i));
Stretch33 e(i) = 1/(Stretch11 e(i)*Stretch22 e(i));

D min = min(D(i,:))
xi max = max(xi(i,:));
totalMassFrac(i) = 1/pi * trapz(phi,D(i,:).ˆ2);
Stretch33 g(i) = Fg(3,3);

end
toc

MassDist initial = D(1,:).ˆ2;
MassDist final = D(i,:).ˆ2;

% Print plot of total mass fraction remaining vs time
figure
set(gca,'FontSize',18)
h3=plot(time, totalMassFrac,'--k')
set(h3,'LineWidth',2);
xlabel('time [s]')
ylabel('Total Mass Fraction Remaining')
axis([0 max(t) 0 1])

% Print plot of stretch vs time during degradation
figure
set(gca,'FontSize',18)
hold
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set(gca,'FontSize',18)
h00=plot(time, Stretch11,'--k');
set(h00,'LineWidth',2);
xlabel('time [s]')
ylabel('Stretch11')

% Print polar plot of initial & final mass distribution function
figure
set(gca,'FontSize',24)
h1=polar([phi-pi,phi],[MassDist initial,MassDist initial],':c');
hold
h4=polar([phi-pi,phi],[MassDist final,MassDist final],'r');
set(h4,'LineWidth',4);
legend('0 s','4000 s')
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D.5 constantPressure withDeposition.m

% constantPressure withDeposition.m
%
% Simulates a spherical tissue subject to a constant pressure,
% followed by a step increase or decrease in pressure, while both
% collagen degradation and deposition proceed. Plots tissue thickness,
% stress, and stretch with time before and after perturbation.

clear all
close all
clc

% Elastica Mechanical Parameters
E0 = 0.05; % GPa
crimpAngle = 30;
AB = crimpAngle*2*pi/360; %Crimp angle in radians
Beta0 = 0.02;
b disp = 0;
mu = 2.6e-5; %GPa

% Spherical tissue geometric parameters
t0 = 1; % mm
R0=12.5; % mm

%Degredation and deposition parameters
G1 = 6.7e-4; % degradation parameter
G2 = 1e-6; % degradation parameter
kd = 1e-4; % deposition parameter

% Damage parameters
H = 1e6; % Turn damage off (H too high for damage to proceed)
%H = 0.053; % Turn damage on
C = 0.05;

% Loading state and time
P init=2e-6; % initial pressure [GPa]
P peturb = 1.75e-6; % peteurbed pressure [GPa]
t peturb = 4000; % perturbation time [s]
tmax = 8000; % total simulation time [s]

%Numerical Parameters
a = AB;
b = 1;
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xStep = (2*pi/b)/100;
X1=[0:xStep:2*pi/b];
X2 =a.*sin(b.*X1);
Theta0 = a*b.*cos(b.*X1);
L = max(X1);
dphi = pi/100;
phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
tol = 1e-12;
delta = 10;

% Stress state for pressure applied to thin spherical shell
P0 = P init;
Stress11 target = (P0*R0)/(2*t0);
Stress22 target = Stress11 target;
stressStep = (Stress11 target)/10;
Stress11 ramp = [0:stressStep:Stress11 target];
Stress22 ramp = [0:stressStep:Stress22 target];

%Initial Guess for Ramp-Up
alpha ramp= zeros(1,length(phi));
Stretch11 ramp = ones(1,length(Stress11 ramp));
Stretch22 ramp = Stretch11 ramp;

% Ramp up to target stress state (initial guess for degradation)
for i = 2:length(Stress11 ramp)

i;
[ Stretch11 ramp(i), Stretch22 ramp(i), ~,~, alpha ramp(i,:), ~] ...

= ApplyStress noDeg( Stretch11 ramp(i-1), ...
Stretch22 ramp(i-1), mu, b disp, E0, alpha ramp(i-1,:), ...
Beta0, Theta0, X1, dphi, tol, Stress11 ramp(i), ...
Stress22 ramp(i) );

end

%Initial guesses for degradation
Fg = [1, 0, 0;

0, 1, 0;
0, 0, 1];

alpha(1,:) = alpha ramp(i,:);
D(1,:) = ones(1,length(phi));
xi(1,:) = zeros(1,length(phi));

%Initialize Stretch and Stress Arrays
Stretch11(1) = Stretch11 ramp(i);
Stretch22(1) = Stretch22 ramp(i);
Stretch33(1) = 1/(Stretch11(1)*Stretch22(1));
Stretch11 e(1) = Stretch11(1);
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Stretch22 e(1) = Stretch22(1);
Stretch33 e(1) = 1/(Stretch11 e(1)*Stretch22 e(1));
Stretch33 g(1) =1;
Stress11 = Stress11 target;
Stress22 = Stress22 target;

totalMassFrac(1) = 1;

i=1;

for t = delta:delta:tmax
t
i=i+1;
time(i) = t;

% Compute elastic stretch from Fe and Fg(n-1):
Stretch11 e(i-1) = Stretch11(i-1)/Fg(1,1);
Stretch22 e(i-1) = Stretch22(i-1)/Fg(2,2);

% Apply perturbation if t is past perturbation time
if t > t peturb

P0 = P peturb;
end

% Compute current thickness, radius and stresses based on previous
% timestep values of Fe and Fg
t = t0*Fg(3,3)/(Stretch11 e(i-1)*Stretch22 e(i-1));
R = R0*Stretch11 e(i-1);
Stress11 target = (P0*R)/(2*t);
Stress22 target = Stress11 target;

% Compute stretches given applied Stress state
[ Stretch11 e(i), Stretch22 e(i), Stress11(i) ,Stress22(i), ...

alpha(i,:), D(i,:), xi(i,:), avgStrainf(i,:), Fg ] = ...
ApplyStress degAndDamage withDeposition( Stretch11 e(i-1), ...
Stretch22 e(i-1), alpha(i-1,:), D(i-1,:), xi(i-1,:), G1, G2, ...
C, H, mu, b disp, E0, Beta0, Theta0, X1, Stress11 target, ...
Stress22 target, delta, dphi, tol, kd );

%Compute total stretch (F = FeFg)
Stretch11(i) = Stretch11 e(i)*Fg(1,1);
Stretch22(i) = Stretch22 e(i)*Fg(2,2);
Stretch33(i) = Fg(3,3)/(Stretch11 e(i)*Stretch22 e(i));
Stretch33 e(i) = 1/(Stretch11 e(i)*Stretch22 e(i));

D min = min(D(i,:))
xi max = max(xi(i,:));
totalMassFrac(i) = 1/pi * trapz(phi,D(i,:).ˆ2);
Stretch33 g(i) = Fg(3,3);
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end

% Plot thickness vs. time, before and after perturbation:
figure
set(gca,'FontSize',18)
hold
h00=plot(time, Stretch33 g.*t0,'--k');
set(h00,'LineWidth',2);
xlabel('time [s]')
ylabel('Thickness')

% Plot stretch vs. time, before and after perturbation:
figure
set(gca,'FontSize',18)
hold
h00=plot(time, Stretch11,'r');
set(h00,'LineWidth',2);
xlabel('time [s]')
ylabel('Stretch11')

% Plot stress vs. time, before and after perturbation:
figure
set(gca,'FontSize',18)
hold
h01=plot(time, Stress11.*10ˆ6,'--b');
set(h01,'LineWidth',2);
xlabel('time [s]')
ylabel('Stress11 [KPa]')
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D.6 Called functions

D.6.1 fitUniaxial analytical.m

function [ Stretch22, Stress11,Stress22, alphaNew, it, residual ] = ...
fitUniaxial analytical( Stretch11, Stretch22 initial, mu, ...
b disp, E, Beta, Theta0, X1, alphaPrev, dphi, tol, ...
Stress22 target )

% Computes Stretch22 for Stress22 (=0 for uniaxial tension),
% by a Newton-Raphson iterative scheme, when Stretch11 is known
% and given an initial guess for Stretch22 and the internal variable
% alpha(phi). [NO DEGRADATION]

% Check if initial guess is within tolerance, and compute jacobian
Stretch22 = Stretch22 initial;
[ Stress11, Stress22, alphaNew, avgStrain, dStress22dStretch22, ~...

] = stress noDeg( Stretch11, Stretch22, alphaPrev, mu, ...
b disp, E, Beta, Theta0, X1, dphi, tol );

residual = Stress22-Stress22 target;

% Iterate to solve for Stretch22
it=0;
if abs(residual) > tol

while abs(residual) > tol

it = it+1;

%Update guess
Stretch22 update = Stretch22 - residual/dStress22dStretch22;
Stretch22 = Stretch22 update;

%Check Residual
[ Stress11, Stress22, alphaNew, avgStrain, ...

dStress22dStretch22, ~ ] = stress noDeg( Stretch11, ...
Stretch22, alphaPrev, mu, b disp, E, Beta, Theta0, ...
X1, dphi, tol );

residual = Stress22 - Stress22 target;

end

it;

end
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D.6.2 stress noDeg.m

function [ Stress11, Stress22, alpha, avgStrain, ...
dStress22dStretch22, J ] = stress noDeg( Stretch11, Stretch22, ...
alphaPrev, mu, b disp, E, Beta, Theta0, X1, dphi, tol )

% Computes the plane stress state (Stress11 and Stress22) given a
% biaxial stretch state for a tissue modeled as a distribution of
% elasticas in an isotropic ground matrix. Requires an initial guess
% for the internal variable alpha(phi). [NO DEGRADATION]

% Discretize in phi, compute fiber distribution function and
% array of fiber micro-stretches:
phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
macroStretch = ...

sqrt(Stretch11.ˆ2.*cos(phi).ˆ2+Stretch22.ˆ2.*sin(phi).ˆ2 );

% Solve for fiber displacment and stress at each angle, phi
for i = 1:length(phi)

[ alpha(i), theta, stretchF, dSEbendDmacro(i), ...
dSEaxialDmacro(i), avgStrain(i), dSEdMacro2(i)] = ...
singleFiber( macroStretch(i), alphaPrev(i), E, Beta, ...
Theta0, X1, tol );

end

% Sum all fiber contributions and add to matrix stress for total
% tissue stress :
Stress11 = mu*(Stretch11ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...

2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch11ˆ2.*cos(phi).ˆ2...
.*vonMises);

Stress22 = mu*(Stretch22ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...
2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch22ˆ2.*sin(phi).ˆ2...
.*vonMises);

%Compute Jacobian for Newton-Raphson
dMacrodStretch11 = (Stretch11.*cos(phi).ˆ2)./macroStretch;
dMacrodStretch22 = (Stretch22.*sin(phi).ˆ2)./macroStretch;

dStress11dStretch11 = ...
2*mu*(Stretch11+1/(Stretch11ˆ3*Stretch22ˆ2)) + 2.*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch11ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(2.*Stretch11./macroStretch - ...
(Stretch11ˆ2./macroStretch.ˆ(2)).*dMacrodStretch11)).*cos(phi).ˆ2...
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.*vonMises);
dStress11dStretch22 = 2*mu/(Stretch11ˆ2*Stretch22ˆ3) + ...

2.*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch22.*Stretch11.ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch11ˆ2./macroStretch.ˆ2).*dMacrodStretch22)...
.*cos(phi).ˆ2.*vonMises);

dStress22dStretch11 = 2*mu/(Stretch11ˆ3*Stretch11ˆ2) + ...
2*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch22ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch22ˆ2./macroStretch.ˆ2).*dMacrodStretch11)...
.*sin(phi).ˆ2.*vonMises);

dStress22dStretch22 ...
=2*mu*(Stretch22+1/(Stretch11ˆ2*Stretch22ˆ3)) + ...
2.*trapz(phi, ...
dSEdMacro2.*dMacrodStretch22.*(macroStretch).ˆ(-1)...
.*(Stretch22.ˆ2.*sin(phi).ˆ2).*vonMises + (dSEbendDmacro + ...

dSEaxialDmacro).*(2.*Stretch22./macroStretch - ...
Stretch22ˆ2.*macroStretch.ˆ(-2).*dMacrodStretch22).*sin(phi).ˆ2...

.*vonMises);

J = [ dStress11dStretch11 dStress22dStretch11;
dStress11dStretch22 dStress22dStretch22];

end
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D.6.3 singleFiber.m

function [ alpha, theta, stretchF, dSEbendDmacro, dSEaxialDmacro, ...
avgStrain, dSEdMacro2 ] = singleFiber( macroStretch app, ...
alphaPrev, E, Beta, Theta0, X1, tol )

% Computes deformed shape (theta), fiber stretch, and internal variable
% alpha for a single elastica given an applied macro-stretch and an
% initial guess for alpha using a Newton-Raphson scheme.
% [NO DEGRADATION]

%Initial guess
alpha=alphaPrev;
L = max(X1);

%Check initial guess residual
theta = (Beta.*Theta0)./(4*alpha + 4*alphaˆ2 +Beta);
stretchF = 1+alpha.*cos(theta);
macroStretch = 1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));
avgStrain = mean(stretchF-1);

f1 = macroStretch app - macroStretch;
Residual = f1;

it=0;

% Iterate to solve for alpha given macro-stretch
while abs(Residual) > tol

it=it+1;

%Compute jacobian and update guess
dthetadAlpha = (-Beta*(4+8*alpha).*Theta0)./(4*alpha ...

+4*alphaˆ2+Beta)ˆ2;
dStretchFdAlpha = cos(theta) - alpha.*sin(theta).*dthetadAlpha;
dMacrodAlpha = 1/max(X1) ...

*trapz(X1,dStretchFdAlpha.*cos(theta)./cos(Theta0) - ...
stretchF.*sin(theta)./cos(Theta0).*dthetadAlpha);

df1dAlpha = -dMacrodAlpha;

temp = alpha - f1/df1dAlpha;

alpha = temp;

%Check residual of updated guess
theta = (Beta.*Theta0)./(4*alpha + 4*alphaˆ2 +Beta);
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stretchF = 1+alpha.*cos(theta);
macroStretch = 1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));
avgStrain = mean(stretchF-1);

f1 = macroStretch app - macroStretch;
Residual = f1;

end

it;

% Compute fiber strain energy and derivatives needed to compute ...
stress

% for converged alpha:

SEbend = 1/L*trapz(X1, E*Beta/8 *(theta-Theta0).ˆ2);
SEaxial = 1/L*trapz(X1, E/2.*(stretchF-1).ˆ2);

dthetadalpha = (-Beta*(4+8*alpha).*Theta0)./(4*alpha ...
+4*alphaˆ2+Beta)ˆ2;

dstretchFdalpha = cos(theta) - alpha.*sin(theta).*dthetadalpha;
dalphadMacro = ...

(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
(stretchF.*sin(theta)./cos(Theta0)).*dthetadalpha))ˆ(-1);

dSEbendDalpha = 1/L*trapz(X1, E*Beta/4 ...

*(theta-Theta0).*dthetadalpha);
dSEaxialDalpha = 1/L*trapz(X1,E*(stretchF-1).*dstretchFdalpha);

dSEbendDmacro = dSEbendDalpha * dalphadMacro;
dSEaxialDmacro = dSEaxialDalpha * dalphadMacro;

% Compute derivatives for tissue-level jacobian:

D=1;
dDdMacro = 0;
Beta0 = Beta;

dthetadD = 2.*Beta0.*D.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2) - ...
2*Beta0ˆ2.*Dˆ3.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2;

dthetadMacro = dthetadalpha.*dalphadMacro + dthetadD.*dDdMacro;

dstretchFdD = -alpha.*sin(theta).*dthetadD;
dstretchFdMacro = dstretchFdalpha .* dalphadMacro + ...

dstretchFdD.*dDdMacro;

dthetadalphadMacro = (-2*D.*dDdMacro.*Beta0.*(4+8*alpha).*Theta0 ...
- ...
Dˆ2.*Beta0.*8*dalphadMacro.*Theta0)/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2 ...
+ ...
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(2*Dˆ2*Beta0*(4+8*alpha).*Theta0.*((4+8*alpha).*dalphadMacro ...
+2*D*dDdMacro.*Beta0)) / (4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ3;

dstretchFdalphadMacro = -sin(theta).*dthetadMacro - ...
alpha.*(cos(theta).*dthetadMacro + ...
sin(theta).*dthetadalphadMacro);

dalphadMacro2 = ...
-(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
stretchF.*sin(theta)./cos(Theta0).*dthetadalpha))ˆ(-2) ...

*1/L*trapz(X1, (dstretchFdalphadMacro - ...
stretchF.*dthetadMacro.*dthetadalpha).*cos(theta)./cos(Theta0) ...
- (dstretchFdalpha.*dthetadMacro+ ...
dstretchFdMacro.*dthetadalpha + stretchF.*dthetadalphadMacro ...
).*sin(theta)./cos(Theta0));

dSEbenddalphadMacro = E*Beta0/(4*L) * ...
trapz(X1,4*Dˆ3.*dDdMacro.*(theta-Theta0).*dthetadalpha + ...
Dˆ4.*dthetadMacro.*dthetadalpha + ...
Dˆ4.*(theta-Theta0).*dthetadalphadMacro);

dSEaxialdalphadMacro = ...
E/L*trapz(X1,2*D.*dDdMacro.*(stretchF-1).*dstretchFdalpha + ...
Dˆ2.*dstretchFdMacro.*dstretchFdalpha ...
+Dˆ2.*(stretchF-1).*dstretchFdalphadMacro);

dSEbenddMacro2 = dSEbenddalphadMacro * dalphadMacro + ...
dSEbendDalpha*dalphadMacro2;

dSEaxialdMacro2 = dSEaxialdalphadMacro * dalphadMacro + ...
dSEaxialDalpha * dalphadMacro2;

dSEdMacro2 = dSEbenddMacro2 +dSEaxialdMacro2;

end
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D.6.4 UniaxialCreep noDeg analytical.m

function [ Stretch11, Stretch22, Stress11,Stress22, alphaNew, ...
avgStrain ] = UniaxialCreep noDeg analytical( Stretch11 initial, ...
Stretch22 initial, mu, b disp, E0, alphaprev, Beta0, Theta0, ...
X1, dphi, tol, Force, A0, Stress22 target )

% Solves for Stretch11 and Stretch22 for a given uniaxial force,
% reference cross-sectional area, and Sigma22 (=0 for uniaxial tension).
% Requires an initial guess for Stretch11, Stretch22, and the
% internal variable alpha(phi). [NO DEGRADATION]

%Initial guess:
Stretch11 = Stretch11 initial;
Stretch22 = Stretch22 initial;

%Check residual for initial guess and compute jacobian:
[ Stress11, Stress22, alphaNew, avgStrain, ~, J ] = ...

stress noDeg( Stretch11, Stretch22, alphaprev, mu, b disp, ...
E0, Beta0, Theta0, X1, dphi, tol );

f1 = Stress11 - Force*Stretch11/A0;
f2 = Stress22 - Stress22 target;

residual = abs(sqrt(f1ˆ2 + f2ˆ2));

it=0;

% Iterate to solve for Stretch11, Stretch22:
if abs(residual) > tol

while abs(residual) > tol

it = it+1;

% Adjust jacobian for Cauchy Stress
J = J - [Force/A0 0;

0 0];

% Update initial guess:
temp = [Stretch11, Stretch22] - [f1, f2]/J;
Stretch11 = temp(1);
Stretch22 = temp(2);

% Check residual of updated initial guess:
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[ Stress11, Stress22, alphaNew, avgStrain, ~, J ] = ...
stress noDeg( Stretch11, Stretch22, alphaprev, mu, ...
b disp, E0, Beta0, Theta0, X1, dphi, tol );

f1 = Stress11 - Force*Stretch11/A0;
f2 = Stress22 - Stress22 target;

residual = abs(sqrt(f1ˆ2 + f2ˆ2));

end

end
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D.6.5 UniaxialCreep degAndDamage totalAreaLoss.m

function [ Stretch11, Stretch22, Stress11,Stress22, alphaNew, DNew, ...
xiNew, avgStrain, Fg ] = ...
UniaxialCreep degAndDamage totalAreaLoss( Stretch11 initial, ...
Stretch22 initial, alphaprev, Dprev, xiprev, G1, G2, C, H, mu, ...
b disp, E0, Beta0, Theta0, X1, Stress22 target, Force, A0, ...
delta, dphi, tol )

% Solves for Stretch11, Stretch22, and fiber degradation D(phi)
% while degradation proceeds over time for a given uniaxial force,
% reference cross-sectional area, and Sigma22 (=0 for uniaxial
% tension). Requires an initial guess for Stretch11, Stretch22,
% the internal variable alpha(phi), and the fiber degradation D(phi).

% Initial Guess
Stretch11 = Stretch11 initial;
Stretch22 = Stretch22 initial;

% Check residual for initial guess and compute jacobian:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~,J, Fg] = ...

stress degAndDamage( Stretch11, Stretch22, alphaprev, Dprev, ...
xiprev, G1, G2, C, H, mu, b disp, E0, Beta0, Theta0, X1, ...
dphi, delta, tol );

f1 = Stress11 - Force*Stretch11/(A0*Fg(2,2)*Fg(3,3));
f2 = Stress22 - Stress22 target;

residual = abs(sqrt(f1ˆ2 + f2ˆ2));

it=0;

%Proceed if intial guess does not satify tolerance
if abs(residual) > tol

% Iterate to solve for Stretch11, Stretch22, and D(phi):
while abs(residual) > tol

it = it+1;

% Adjust jacobian for Cauchy Stress
J = J - [Force/(A0*Fg(2,2)*Fg(3,3)) 0;

0 0];

% Update initial guess:
temp = [Stretch11, Stretch22] - [f1, f2]/J;
Stretch11 = temp(1);

304



APPENDIX D. APPENDIX: REMODELING SIMULATION MATLAB FILES

Stretch22 = temp(2);

% Check residual of updated initial guess:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~, J, Fg] ...

= stress degAndDamage( Stretch11, Stretch22, ...
alphaprev, Dprev, xiprev, G1, G2, C, H, mu, b disp, ...
E0, Beta0, Theta0, X1, dphi, delta, tol );

f1 = Stress11 - Force*Stretch11/(A0*Fg(2,2)*Fg(3,3));
f2 = Stress22 - Stress22 target;

residual = abs(sqrt(f1ˆ2 + f2ˆ2));

% DEFINE OUTPUT VARIABLES %
alphaNew = alpha;
DNew = D;
xiNew = xi;

end

else
% Output variables if initial guess satisfies residual
alphaNew = alpha;
DNew = D;
xiNew = xi;

end
end
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D.6.6 stress degAndDamage.m

function [ Stress11, Stress22, alpha, D, xi, avgStrain, ...
dStress22dStretch22, J, Fg ] = stress degAndDamage( Stretch11, ...
Stretch22, alphaPrev, Dprev, xiprev, G1, G2, C, H, mu, b disp, ...
E0, Beta0, Theta0, X1, dphi, delta, tol )

% Computes the plane stress state (Stress11 and Stress22) and fiber
% degradation, D(phi),at a given time for a biaxial stretch state.
% Requires an initial guess for the internal variable alpha(phi)
% and the fiber degradation parameter, D(phi).

% Discretize in phi, compute fiber distribution function and ...
array of fiber

% micro-stretches:
phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
macroStretch = ...

sqrt(Stretch11ˆ2.*cos(phi).ˆ2+Stretch22.ˆ2.*sin(phi).ˆ2 );

% Solve for fiber stress and degradation at each angle, phi:
for i = 1:length(phi)

[ alpha(i), D(i), xi(i), theta, stretchF, dSEbendDmacro(i), ...
dSEaxialDmacro(i), it, avgStrain(i), dSEdMacro2(i) ] = ...
singleFiber degAndDamage meanSE( macroStretch(i), ...
alphaPrev(i),Dprev(i), xiprev(i), G1, G2, C, H, E0, ...
Beta0, Theta0, X1, delta, tol );

end

%Compute Growth tensor for next timestep
Fg = [1, 0, 0;

0, 1, 0;
0, 0, 2*trapz(phi,D.*vonMises)];

% Sum all fiber contributions and add to matrix stress for total ...
tissue stress

Stress11 = (mu*(Stretch11ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...
2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch11ˆ2.*cos(phi).ˆ2...
.*vonMises));

Stress22 = (mu*(Stretch22ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...
2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch22ˆ2.*sin(phi).ˆ2...
.*vonMises));

%Compute Jacobian for Newton-Raphson
dMacrodStretch11 = (Stretch11.*cos(phi).ˆ2)./macroStretch;
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dMacrodStretch22 = (Stretch22.*sin(phi).ˆ2)./macroStretch;

dStress11dStretch11 = ...
2*mu*(Stretch11+1/(Stretch11ˆ3*Stretch22ˆ2)) + 2.*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch11ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(2.*Stretch11./macroStretch - ...
(Stretch11ˆ2./macroStretch.ˆ(2)).*dMacrodStretch11)).*cos(phi).ˆ2...
.*vonMises);

dStress22dStretch22 = ...
2*mu*(Stretch22+1/(Stretch11ˆ2*Stretch22ˆ3)) + 2.*trapz(phi, ...
dSEdMacro2.*dMacrodStretch22.*(macroStretch).ˆ(-1).*(Stretch22.ˆ2...
.*sin(phi).ˆ2).*vonMises + (dSEbendDmacro + ...

dSEaxialDmacro).*(2.*Stretch22./macroStretch - ...
Stretch22ˆ2.*macroStretch.ˆ(-2).*dMacrodStretch22).*sin(phi).ˆ2...

.*vonMises);

dStress11dStretch22 = 2*mu/(Stretch11ˆ2*Stretch22ˆ3) + ...
2*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch22.*Stretch11ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch11ˆ2./macroStretch.ˆ2).*dMacrodStretch22)...
.*cos(phi).ˆ2.*vonMises);

dStress22dStretch11 = 2*mu/(Stretch11ˆ3*Stretch11ˆ2) + ...
2*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch22ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch22ˆ2./macroStretch.ˆ2).*dMacrodStretch11)...
.*sin(phi).ˆ2.*vonMises);

J = [ dStress11dStretch11 dStress22dStretch11;
dStress11dStretch22 dStress22dStretch22];

end

307



APPENDIX D. APPENDIX: REMODELING SIMULATION MATLAB FILES

D.6.7 singleFiber degAndDamage meanSE.m

function [ alpha, D, xi, theta, stretchF, dSEbendDmacro, ...
dSEaxialDmacro, it, avgStrain out, dSEdMacro2 ] = ...
singleFiber degAndDamage meanSE( macroStretch app, ...
alphaPrev,Dprev, xiprev, G1, G2, C, H, E0, Beta0, Theta0, X1, ...
delta, tol )

% Computes deformed shape (theta), fiber stretch, fiber degradation, D,
% and internal variable, alpha for a single elastica given an applied
% macro-stretch, timestep, and an intial guess for alpha and D,
% using a Newton-Raphson scheme.

L = max(X1);

%Initial Guess (previous step)
alpha=alphaPrev;
D = Dprev;
xi = xiprev;

%Check initial guess residual
theta = (Beta0*Dˆ2.*Theta0)./(4*alpha + 4*alphaˆ2 + Beta0*Dˆ2);
stretchF = 1+alpha.*cos(theta);
avgStrain = mean(stretchF-1);
avgStrain out = avgStrain; %Compression allowed

if avgStrain <= 0 % Compressive strain does not inhibit rate law!
avgStrain =0;

end
if mean(stretchF-1) <= 0

mean e2 = 0;
else

mean e2=mean((stretchF-1).ˆ2);
end

f1 = macroStretch app - ...
1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));

f2 = D-Dprev + delta*G1*exp(-(1-xi)*mean e2/(2*G2));%origional
if (1-xi)*avgStrain/H > 1

f3 = xi - xiprev -delta*C*((1-xi)*avgStrain/H -1);
else

f3 = xi - xiprev;
end

Residual = abs(sqrt(f1ˆ2+f2ˆ2 +f3ˆ2));

% Iterate to solve for D and alpha given macro-stretch
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it=0;
while Residual > tol

%Compute jacobian:
dthetadalpha = ...

-(Beta0*Dˆ2.*Theta0.*(4+8*alpha))./(4*alpha+4*alphaˆ2 + ...
Beta0*Dˆ2)ˆ2;

dthetadD = (2*Beta0*D.*Theta0)/(4*alpha ...
+4*alphaˆ2+Beta0*Dˆ2) - ...
(2*Beta0ˆ2*Dˆ3.*Theta0)/(4*alpha+4*alphaˆ2+Beta0*Dˆ2)ˆ2;

dstretchFdalpha = cos(theta) - alpha.*sin(theta) .*dthetadalpha;
dstretchFdD = -alpha.*sin(theta).*dthetadD;

davgStraindalpha = 1/L*trapz(X1, dstretchFdalpha);
davgStraindD = 1/L*trapz(X1, dstretchFdD);

df1dalpha = -1/L*trapz(X1, ...
dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
(stretchF.*sin(theta)./cos(Theta0)).*dthetadalpha);

df1dD = -1/L*trapz(X1, dstretchFdD.*cos(theta)./cos(Theta0) ...
- (stretchF.*sin(theta)./cos(Theta0)).*dthetadD);

df1dxi = 0;

df2dalpha = delta*G1*exp(-((1-xi)*avgStrainˆ2)/(2*G2)) * ...
(-((1-xi)*avgStrain/G2) * davgStraindalpha);

df2dD = 1+delta*G1*exp(-((1-xi)*avgStrainˆ2)/(2*G2)) * ...
(-((1-xi)*avgStrain/G2) * davgStraindD);

df2dxi = 0;

if (1-xi)*avgStrain/H > 1
df3dalpha = -(delta*C*(1-xi)/H) *davgStraindalpha;
df3dD = -(delta*C*(1-xi)/H) *davgStraindD;
df3dxi = 1 + delta*C*avgStrain/H;

else
df3dalpha = 0;
df3dD = 0;
df3dxi = 1;

end

J = [df1dalpha df2dalpha df3dalpha;
df1dD df2dD df3dD;
df1dxi df2dxi df3dxi];

% Update guess:
temp = [alpha, D, xi] - [f1, f2, f3] /J;
alpha = temp(1);
D = temp(2);
xi = temp(3);
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%Check residual of updated guess
theta = (Beta0*Dˆ2.*Theta0)./(4*alpha + 4*alphaˆ2 + Beta0*Dˆ2);
stretchF = 1+alpha.*cos(theta);
avgStrain = mean(stretchF-1);
avgStrain out = avgStrain; % Compression allowed
mean e2=mean((stretchF-1).ˆ2);

if avgStrain <= 0 % Compressive strain does not ...
inhibit rate law
avgStrain =0;

end
if mean(stretchF-1) <= 0

mean e2 = 0;
else

mean e2=mean((stretchF-1).ˆ2);
end

f1 = macroStretch app - ...
1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));

f2 = D-Dprev + delta*G1*exp(-(1-xi)*mean e2/(2*G2));%origional

if (1-xi)*avgStrain/H > 1
f3 = xi - xiprev -delta*C*((1-xi)*avgStrain/H -1);

else
f3 = xi - xiprev;

end

Dprev;
D;
Residual = abs(sqrt(f1ˆ2+f2ˆ2+f3ˆ2)) ;

% Remove fiber completely after D falls below 0.018
% (convergence issue)
if D < 0.018

D=0;
Residual =0;

end

end

it;

% No negative fiber radii
if D <= 0

D = 0 ;
end
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% Compute fiber strain energy and derivatives needed to compute ...
stress

% for converged D and alpha:

Beta = Beta0*Dˆ2;
E = E0*(1-xi);

SEbend = 1/L*trapz(X1, E*Beta/8 *(theta-Theta0).ˆ2);
SEaxial = 1/L*trapz(X1, E/2.*(stretchF-1).ˆ2);

dthetadalpha = (-Beta*(4+8*alpha).*Theta0)./(4*alpha ...
+4*alphaˆ2+Beta)ˆ2;

dstretchFdalpha = cos(theta) - alpha.*sin(theta).*dthetadalpha;
dalphadMacro = ...

(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
(stretchF.*sin(theta)./cos(Theta0)).*dthetadalpha))ˆ(-1);

dSEbendDalpha = Dˆ2/L*trapz(X1, E*Beta/4 ...

*(theta-Theta0).*dthetadalpha);
dSEaxialDalpha = Dˆ2/L*trapz(X1,E*(stretchF-1).*dstretchFdalpha);

dSEbendDmacro = dSEbendDalpha * dalphadMacro;
dSEaxialDmacro = dSEaxialDalpha * dalphadMacro;

% Compute derivatives for tissue-level jacobian:
davgStraindMacro = 1/L*trapz(X1,dstretchFdalpha.*dalphadMacro);
dDdMacro = -delta*G1*exp(-avgStrainˆ2 / (2*G2)) *(-avgStrain/G2) ...

* davgStraindMacro;

if (1-xi)*avgStrain/H > 1
dxidMacro = ((delta*C/H)*(1+delta*C*avgStrain/H)ˆ(-1) - ...

(xiprev + delta*C*(avgStrain/H ...
-1))*(delta*C/H)*(1+delta*C*avgStrain/H)ˆ(-2))* ...
davgStraindMacro;

else
dxidMacro = 0;

end

dthetadD = 2.*Beta0.*D.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2) - ...
2*Beta0ˆ2.*Dˆ3.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2;

dthetadMacro = dthetadalpha.*dalphadMacro + dthetadD.*dDdMacro;

dstretchFdD = -alpha.*sin(theta).*dthetadD;
dstretchFdMacro = dstretchFdalpha .* dalphadMacro + ...

dstretchFdD.*dDdMacro;

dthetadalphadMacro = (-2*D.*dDdMacro.*Beta0.*(4+8*alpha).*Theta0 ...
- ...
Dˆ2.*Beta0.*8*dalphadMacro.*Theta0)/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2 ...
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+ ...
(2*Dˆ2*Beta0*(4+8*alpha).*Theta0.*((4+8*alpha).*dalphadMacro ...
+2*D*dDdMacro.*Beta0)) / (4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ3;

dstretchFdalphadMacro = -sin(theta).*dthetadMacro - ...
alpha.*(cos(theta).*dthetadMacro + ...
sin(theta).*dthetadalphadMacro);

dalphadMacro2 = ...
-(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
stretchF.*sin(theta)./cos(Theta0).*dthetadalpha))ˆ(-2) ...

*1/L*trapz(X1, (dstretchFdalphadMacro - ...
stretchF.*dthetadMacro.*dthetadalpha).*cos(theta)./cos(Theta0) ...
- (dstretchFdalpha.*dthetadMacro+ ...
dstretchFdMacro.*dthetadalpha + stretchF.*dthetadalphadMacro ...
).*sin(theta)./cos(Theta0));

dSEbenddalphadMacro = ...
(-E0*Beta0/(4*L)*trapz(X1,Dˆ4.*(theta-Theta0).*dthetadalpha))*dxidMacro ...
+ E0*(1-xi)*Beta0/(4*L) * ...
trapz(X1,4*Dˆ3.*dDdMacro.*(theta-Theta0).*dthetadalpha + ...
Dˆ4.*dthetadMacro.*dthetadalpha + ...
Dˆ4.*(theta-Theta0).*dthetadalphadMacro);

dSEaxialdalphadMacro = (-E0/L *trapz(X1, ...
Dˆ2.*(stretchF-1).*dstretchFdalpha))*dxidMacro + ...
E0*(1-xi)/L*trapz(X1,2*D.*dDdMacro.*(stretchF-1).*dstretchFdalpha ...
+ Dˆ2.*dstretchFdMacro.*dstretchFdalpha ...
+Dˆ2.*(stretchF-1).*dstretchFdalphadMacro);

dSEbenddMacro2 = dSEbenddalphadMacro * dalphadMacro + ...
dSEbendDalpha*dalphadMacro2;

dSEaxialdMacro2 = dSEaxialdalphadMacro * dalphadMacro + ...
dSEaxialDalpha * dalphadMacro2;

dSEdMacro2 = dSEbenddMacro2 +dSEaxialdMacro2;

end
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D.6.8 ApplyStress noDeg.m

function [ Stretch11, Stretch22, Stress11,Stress22, alphaNew, ...
avgStrain ] = ApplyStress noDeg( Stretch11 initial, ...
Stretch22 initial, mu, b disp, E0, alphaprev, Beta0, Theta0, ...
X1, dphi, tol, Stress11 target, Stress22 target )

% Solves for Stretch11 and Stretch22 for a biaxial stress state (or
% uniaxial stress state when Stress22 =0). Requires an initial guess
% for Stretch11, Stretch22, and the internal variable alpha(phi).
% [NO DEGRADATION].

%Initial guess:
Stretch11 = Stretch11 initial;
Stretch22 = Stretch22 initial;

%Check residual for initial guess and compute jacobian:
[ Stress11, Stress22, alphaNew, avgStrain, ~, J ] = ...

stress noDeg( Stretch11, Stretch22, alphaprev, mu, b disp, ...
E0, Beta0, Theta0, X1, dphi, tol );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;
residual = abs(sqrt(f1ˆ2 + f2ˆ2));

% Iterate to solve for Stretch11, Stretch22:
it=0;
if abs(residual) > tol

while abs(residual) > tol
it = it+1;

% Update initial guess:
temp = [Stretch11, Stretch22] - [f1, f2]/J;
Stretch11 = temp(1);
Stretch22 = temp(2);

% Check residual of updated initial guess:
[ Stress11, Stress22, alphaNew, avgStrain, ~, J ] = ...

stress noDeg( Stretch11, Stretch22, alphaprev, mu, ...
b disp, E0, Beta0, Theta0, X1, dphi, tol );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;
residual = abs(sqrt(f1ˆ2 + f2ˆ2));

end
end

end
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D.6.9 ApplyStress degAndDamage.m

function [ Stretch11, Stretch22, Stress11,Stress22, alphaNew, DNew, ...
xiNew, avgStrain, Fg ] = ApplyStress degAndDamage( ...
Stretch11 initial, Stretch22 initial, alphaprev, Dprev, xiprev, ...
G1, G2, C, H, mu, b disp, E0, Beta0, Theta0, X1, ...
Stress11 target, Stress22 target, delta, dphi, tol )

% Solves for Stretch11, Stretch22, and fiber degradation D(phi)
% while degradation proceeds over time for a prescribed biaxial
% stress state (=0 for uniaxial tension). Requires an initial
% guess for Stretch11, Stretch22, the internal variable
% alpha(phi), and the fiber degradation D(phi).

% Initial Guess
Stretch11 = Stretch11 initial;
Stretch22 = Stretch22 initial;

% Check residual for initial guess and compute jacobian:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~,J, Fg] = ...

stress degAndDamage( Stretch11, Stretch22, alphaprev, Dprev, ...
xiprev, G1, G2, C, H, mu, b disp, E0, Beta0, Theta0, X1, ...
dphi, delta, tol );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;
residual = abs(sqrt(f1ˆ2 + f2ˆ2));

it=0;

%Proceed if intial guess does not satify tolerance
if abs(residual) > tol

% Iterate to solve for Stretch11, Stretch22, and D(phi):
while abs(residual) > tol

it = it+1;

% Update initial guess:
temp = [Stretch11, Stretch22] - [f1, f2]/J;
Stretch11 = temp(1);
Stretch22 = temp(2);

% Check residual of updated initial guess:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~, J, Fg] ...

= stress degAndDamage( Stretch11, Stretch22, ...
alphaprev, Dprev, xiprev, G1, G2, C, H, mu, b disp, ...
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E0, Beta0, Theta0, X1, dphi, delta, tol );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;

residual = abs(sqrt(f1ˆ2 + f2ˆ2));

% Define output variables
alphaNew = alpha;
DNew = D;
xiNew = xi;

end

else

% Output variables if initial guess satisfies residual
alphaNew = alpha;
DNew = D;
xiNew = xi;

end
end
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D.6.10 ApplyStress degAndDamage withDeposition.m

function [ Stretch11, Stretch22, Stress11,Stress22, alphaNew, DNew, ...
xiNew, avgStrain, Fg ] = ...
ApplyStress degAndDamage withDeposition( Stretch11 initial, ...
Stretch22 initial, alphaprev, Dprev, xiprev, G1, G2, C, H, mu, ...
b disp, E0, Beta0, Theta0, X1, Stress11 target, Stress22 target, ...
delta, dphi, tol, growthParam )

% Solves for Stretch11, Stretch22, and fiber degradation D(phi)
% while degradation AND DEPOSITION proceed over time for a
% prescribed biaxial stress state (=0 for uniaxial tension).
% Requires an initial guess for Stretch11, Stretch22, the
% internal variable alpha(phi), and the fiber degradation D(phi).

% Initial Guess
Stretch11 = Stretch11 initial;
Stretch22 = Stretch22 initial;

% Check residual for initial guess and compute jacobian:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~,J, Fg] = ...

stress degAndDamage withDeposition( Stretch11, Stretch22, ...
alphaprev, Dprev, xiprev, G1, G2, C, H, mu, b disp, E0, ...
Beta0, Theta0, X1, dphi, delta, tol, growthParam );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;
residual = abs(sqrt(f1ˆ2 + f2ˆ2));

it=0;

%Proceed if initial guess does not satify tolerance
if abs(residual) > tol

% Iterate to solve for Stretch11, Stretch22, and D(phi):
while abs(residual) > tol

it = it+1;

% Update initial guess:
temp = [Stretch11, Stretch22] - [f1, f2]/J;
Stretch11 = temp(1);
Stretch22 = temp(2);

% Check residual of updated initial guess:
[Stress11, Stress22, alpha, D, xi, avgStrain, ~, J, Fg] ...

= stress degAndDamage withDeposition( Stretch11, ...
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Stretch22, alphaprev, Dprev, xiprev, G1, G2, C, H, ...
mu, b disp, E0, Beta0, Theta0, X1, dphi, delta, tol, ...
growthParam );

f1 = Stress11 - Stress11 target;
f2 = Stress22 - Stress22 target;
residual = abs(sqrt(f1ˆ2 + f2ˆ2));

% Define output variables
alphaNew = alpha;
DNew = D;
xiNew = xi;

end

else

% Output variables if initial guess satisfies residual
alphaNew = alpha;
DNew = D;
xiNew = xi;

end
end
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D.6.11 stress degAndDamage withDeposition.m

function [ Stress11, Stress22, alpha, D, xi, avgStrain, ...
dStress22dStretch22, J, Fg ] = ...
stress degAndDamage withDeposition( Stretch11, Stretch22, ...
alphaPrev, Dprev, xiprev, G1, G2, C, H, mu, b disp, E0, Beta0, ...
Theta0, X1, dphi, delta, tol, growthParam )

% Computes the plane stress state (Stress11 and Stress22) and fiber
% radius, D(phi), at a given time for a biaxial stretch state while
% both degradation and DEPOSITION proceed over time.
% Requires an initial guess for the internal variable alpha(phi)
% and the fiber radius parameter, D(phi).

% Discretize in phi, compute fiber distribution function and ...
array of fiber

% micro-stretches:
phi = [0:dphi:pi];
vonMises= exp(b disp.*cos(2.*phi))./(2*pi*besseli(0,b disp));
macroStretch = ...

sqrt(Stretch11ˆ2.*cos(phi).ˆ2+Stretch22.ˆ2.*sin(phi).ˆ2 );

% Solve for fiber stress and degradation at each angle, phi:
for i = 1:length(phi)

phi print = phi(i) ;
macroStretch print = macroStretch(i);
[ alpha(i), D(i), xi(i), theta, stretchF, dSEbendDmacro(i), ...

dSEaxialDmacro(i), it, avgStrain(i), dSEdMacro2(i) ] = ...
singleFiber degAndDamage withDeposition( ...
macroStretch(i), alphaPrev(i),Dprev(i), xiprev(i), G1, ...
G2, C, H, E0, Beta0, Theta0, X1, delta, tol, growthParam );

end

%Compute Growth tensor for next timestep
Fg = [1, 0, 0;

0, 1, 0;
0, 0, 2*trapz(phi,D.*vonMises)];

% Sum all fiber contributions and add to matrix stress for total ...
tissue stress

Stress11 = (mu*(Stretch11ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...
2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch11ˆ2.*cos(phi).ˆ2...
.*vonMises));

Stress22 = (mu*(Stretch22ˆ2-(Stretch11*Stretch22)ˆ(-2)) + ...
2*trapz(phi, (dSEbendDmacro + ...
dSEaxialDmacro).*(macroStretch).ˆ(-1).*Stretch22ˆ2.*sin(phi).ˆ2...
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.*vonMises));

%Compute Jacobian for Newton-Raphson
dMacrodStretch11 = (Stretch11.*cos(phi).ˆ2)./macroStretch;
dMacrodStretch22 = (Stretch22.*sin(phi).ˆ2)./macroStretch;

dStress11dStretch11 = ...
2*mu*(Stretch11+1/(Stretch11ˆ3*Stretch22ˆ2)) + 2.*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch11ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(2.*Stretch11./macroStretch - ...
(Stretch11ˆ2./macroStretch.ˆ(2)).*dMacrodStretch11)).*cos(phi).ˆ2...
.*vonMises);

dStress22dStretch22 = ...
2*mu*(Stretch22+1/(Stretch11ˆ2*Stretch22ˆ3)) + 2.*trapz(phi, ...
dSEdMacro2.*dMacrodStretch22.*(macroStretch).ˆ(-1)...
.*(Stretch22.ˆ2.*sin(phi).ˆ2).*vonMises + (dSEbendDmacro + ...

dSEaxialDmacro).*(2.*Stretch22./macroStretch - ...
Stretch22ˆ2.*macroStretch.ˆ(-2).*dMacrodStretch22).*sin(phi).ˆ2...

.*vonMises);

dStress11dStretch22 = 2*mu/(Stretch11ˆ2*Stretch22ˆ3) + ...
2*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch22.*Stretch11ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch11ˆ2./macroStretch.ˆ2).*dMacrodStretch22)...
.*cos(phi).ˆ2.*vonMises);

dStress22dStretch11 = 2*mu/(Stretch11ˆ3*Stretch11ˆ2) + ...
2*trapz(phi, ...
(dSEdMacro2.*dMacrodStretch11.*Stretch22ˆ2./macroStretch + ...
(dSEbendDmacro + ...
dSEaxialDmacro).*(-Stretch22ˆ2./macroStretch.ˆ2).*dMacrodStretch11)...
.*sin(phi).ˆ2.*vonMises);

J = [ dStress11dStretch11 dStress22dStretch11;
dStress11dStretch22 dStress22dStretch22];

end
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D.6.12 singleFiber degAndDamage withDeposition.m

function [ alpha, D, xi, theta, stretchF, dSEbendDmacro, ...
dSEaxialDmacro, it, avgStrain out, dSEdMacro2 ] = ...
singleFiber degAndDamage withDeposition( macroStretch app, ...
alphaPrev,Dprev, xiprev, G1, G2, C, H, E0, Beta0, Theta0, X1, ...
delta, tol, growthParam )

% Computes deformed shape (theta), fiber stretch, fiber radius, D,
% and internal variable, alpha for a single elastica while both
% degradation and DEPOSITION proceed with time, given an applied
% macro-stretch, timestep, and an intial guess for alpha and D,
% using a Newton-Raphson scheme

L = max(X1);

%Initial Guess (previous step)
alpha=alphaPrev;
D = Dprev;
xi = xiprev;

%Check initial guess residual
theta = (Beta0*Dˆ2.*Theta0)./(4*alpha + 4*alphaˆ2 + Beta0*Dˆ2);
stretchF = 1+alpha.*cos(theta);
avgStrain = mean(stretchF-1);
avgStrain out = avgStrain; %Compression allowed

if avgStrain <= 0
avgStrain =0;

end
if mean(stretchF-1) <= 0

mean e2 = 0;
else

mean e2=mean((stretchF-1).ˆ2);
end

% Compute residual for current guess
f1 = macroStretch app - ...

1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));

[ fGrow, dGrowdlambda ] = dfGrowdT( growthParam, avgStrain, ...
mean e2 );
% compute deposition contribution

fDeg = G1*exp(-(1-xi)*mean e2/(2*G2));
f2 = D-Dprev + delta*(fDeg -fGrow);

if (1-xi)*avgStrain/H > 1
f3 = xi - xiprev -delta*C*((1-xi)*avgStrain/H -1);
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else
f3 = xi - xiprev;

end

Residual = abs(sqrt(f1ˆ2+f2ˆ2 +f3ˆ2));

% Iterate to solve for D and alpha given macro-stretch
it=0;
while Residual > tol

it=it+1;

%Compute jacobian:
dthetadalpha = ...

-(Beta0*Dˆ2.*Theta0.*(4+8*alpha))./(4*alpha+4*alphaˆ2 + ...
Beta0*Dˆ2)ˆ2;

dthetadD = (2*Beta0*D.*Theta0)/(4*alpha ...
+4*alphaˆ2+Beta0*Dˆ2) - ...
(2*Beta0ˆ2*Dˆ3.*Theta0)/(4*alpha+4*alphaˆ2+Beta0*Dˆ2)ˆ2;

dstretchFdalpha = cos(theta) - alpha.*sin(theta) .*dthetadalpha;
dstretchFdD = -alpha.*sin(theta).*dthetadD;

davgStraindalpha = 1/L*trapz(X1, dstretchFdalpha);
davgStraindD = 1/L*trapz(X1, dstretchFdD);

df1dalpha = -1/L*trapz(X1, ...
dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
(stretchF.*sin(theta)./cos(Theta0)).*dthetadalpha);

df1dD = -1/L*trapz(X1, dstretchFdD.*cos(theta)./cos(Theta0) ...
- (stretchF.*sin(theta)./cos(Theta0)).*dthetadD);

df1dxi = 0;

dDegdlambda = G1*exp(-((1-xi)*avgStrainˆ2)/(2*G2)) * ...
-((1-xi)*avgStrain/G2);

df2dalpha = delta*(dDegdlambda -dGrowdlambda) * ...
davgStraindalpha;

df2dD = 1+delta*G1*exp(-((1-xi)*avgStrainˆ2)/(2*G2)) * ...
(-((1-xi)*avgStrain/G2) * davgStraindD);

df2dxi = 0;

if (1-xi)*avgStrain/H > 1
df3dalpha = -(delta*C*(1-xi)/H) *davgStraindalpha;
df3dD = -(delta*C*(1-xi)/H) *davgStraindD;
df3dxi = 1 + delta*C*avgStrain/H;

else
df3dalpha = 0;
df3dD = 0;
df3dxi = 1;

end
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J = [df1dalpha df2dalpha df3dalpha;
df1dD df2dD df3dD;
df1dxi df2dxi df3dxi];

% Update guess:
temp = [alpha, D, xi] - [f1, f2, f3] /J;
alpha = temp(1);
D = temp(2);
xi = temp(3);

%Check residual of updated guess
theta = (Beta0*Dˆ2.*Theta0)./(4*alpha + 4*alphaˆ2 + Beta0*Dˆ2);
stretchF = 1+alpha.*cos(theta);
avgStrain = mean(stretchF-1);
avgStrain out = avgStrain; % Compression allowed
mean e2=mean((stretchF-1).ˆ2);

if avgStrain <= 0 % Compressive strain does not inhibit ...
rate law
avgStrain =0;

end
if mean(stretchF-1) <= 0

mean e2 = 0;
else

mean e2=mean((stretchF-1).ˆ2);
end

f1 = macroStretch app - ...
1/L*trapz(X1,stretchF.*cos(theta)./cos(Theta0));

[ fGrow, dGrowdlambda ] = dfGrowdT( growthParam, avgStrain, ...
mean e2 );

fDeg = G1*exp(-(1-xi)*mean e2/(2*G2)); %origional
f2 = D-Dprev + delta*(fDeg -fGrow);

if (1-xi)*avgStrain/H > 1
f3 = xi - xiprev -delta*C*((1-xi)*avgStrain/H -1);

else
f3 = xi - xiprev;

end

Residual = abs(sqrt(f1ˆ2+f2ˆ2+f3ˆ2)) ;

% Remove fiber completely after D falls below 0.018
% (convergence issue)
if D < 0.018

D=0;
Residual =0;

end
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end

% No negative fiber radii
if D <= 0

D = 0 ;
end

% Compute fiber strain energy and derivatives needed to compute ...
stress

% for converged D and alpha:

Beta = Beta0*Dˆ2;
E = E0*(1-xi);

SEbend = 1/L*trapz(X1, E*Beta/8 *(theta-Theta0).ˆ2);
SEaxial = 1/L*trapz(X1, E/2.*(stretchF-1).ˆ2);

dthetadalpha = (-Beta*(4+8*alpha).*Theta0)./(4*alpha ...
+4*alphaˆ2+Beta)ˆ2;

dstretchFdalpha = cos(theta) - alpha.*sin(theta).*dthetadalpha;
dalphadMacro = ...

(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
(stretchF.*sin(theta)./cos(Theta0)).*dthetadalpha))ˆ(-1);

dSEbendDalpha = Dˆ2/L*trapz(X1, E*Beta/4 ...

*(theta-Theta0).*dthetadalpha);
dSEaxialDalpha = Dˆ2/L*trapz(X1,E*(stretchF-1).*dstretchFdalpha);

dSEbendDmacro = dSEbendDalpha * dalphadMacro;
dSEaxialDmacro = dSEaxialDalpha * dalphadMacro;

% Compute derivatives for tissue-level jacobian:
davgStraindMacro = 1/L*trapz(X1,dstretchFdalpha.*dalphadMacro);
dDdMacro = -delta*G1*exp(-avgStrainˆ2 / (2*G2)) *(-avgStrain/G2) ...

* davgStraindMacro;

if (1-xi)*avgStrain/H > 1
dxidMacro = ((delta*C/H)*(1+delta*C*avgStrain/H)ˆ(-1) - ...

(xiprev + delta*C*(avgStrain/H ...
-1))*(delta*C/H)*(1+delta*C*avgStrain/H)ˆ(-2))* ...
davgStraindMacro;

else
dxidMacro = 0;

end

dthetadD = 2.*Beta0.*D.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2) - ...
2*Beta0ˆ2.*Dˆ3.*Theta0/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2;

323



APPENDIX D. APPENDIX: REMODELING SIMULATION MATLAB FILES

dthetadMacro = dthetadalpha.*dalphadMacro + dthetadD.*dDdMacro;

dstretchFdD = -alpha.*sin(theta).*dthetadD;
dstretchFdMacro = dstretchFdalpha .* dalphadMacro + ...

dstretchFdD.*dDdMacro;

dthetadalphadMacro = (-2*D.*dDdMacro.*Beta0.*(4+8*alpha).*Theta0 ...
- ...
Dˆ2.*Beta0.*8*dalphadMacro.*Theta0)/(4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ2 ...
+ ...
(2*Dˆ2*Beta0*(4+8*alpha).*Theta0.*((4+8*alpha).*dalphadMacro ...
+2*D*dDdMacro.*Beta0)) / (4*alpha*(1+alpha)+Beta0.*Dˆ2)ˆ3;

dstretchFdalphadMacro = -sin(theta).*dthetadMacro - ...
alpha.*(cos(theta).*dthetadMacro + ...
sin(theta).*dthetadalphadMacro);

dalphadMacro2 = ...
-(1/L*trapz(X1,dstretchFdalpha.*cos(theta)./cos(Theta0) - ...
stretchF.*sin(theta)./cos(Theta0).*dthetadalpha))ˆ(-2) ...

*1/L*trapz(X1, (dstretchFdalphadMacro - ...
stretchF.*dthetadMacro.*dthetadalpha).*cos(theta)./cos(Theta0) ...
- (dstretchFdalpha.*dthetadMacro+ ...
dstretchFdMacro.*dthetadalpha + stretchF.*dthetadalphadMacro ...
).*sin(theta)./cos(Theta0));

dSEbenddalphadMacro = ...
(-E0*Beta0/(4*L)*trapz(X1,Dˆ4.*(theta-Theta0).*dthetadalpha))*dxidMacro ...
+ E0*(1-xi)*Beta0/(4*L) * ...
trapz(X1,4*Dˆ3.*dDdMacro.*(theta-Theta0).*dthetadalpha + ...
Dˆ4.*dthetadMacro.*dthetadalpha + ...
Dˆ4.*(theta-Theta0).*dthetadalphadMacro);

dSEaxialdalphadMacro = (-E0/L *trapz(X1, ...
Dˆ2.*(stretchF-1).*dstretchFdalpha))*dxidMacro + ...
E0*(1-xi)/L*trapz(X1,2*D.*dDdMacro.*(stretchF-1).*dstretchFdalpha ...
+ Dˆ2.*dstretchFdMacro.*dstretchFdalpha ...
+Dˆ2.*(stretchF-1).*dstretchFdalphadMacro);

dSEbenddMacro2 = dSEbenddalphadMacro * dalphadMacro + ...
dSEbendDalpha*dalphadMacro2;

dSEaxialdMacro2 = dSEaxialdalphadMacro * dalphadMacro + ...
dSEaxialDalpha * dalphadMacro2;

dSEdMacro2 = dSEbenddMacro2 +dSEaxialdMacro2;

end
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APPENDIX D. APPENDIX: REMODELING SIMULATION MATLAB FILES

D.6.13 dfGrowdT.m

function [ fGrow, dGrowdlambda ] = dfGrowdT( growthParam, avgStrain, ...
mean e2 )

% Computes the collagen deposition rate as well as the dependence of the
% rate on the applied macro-stretch for Newton-Raphson solver. Multiple
% deposition laws are available; comment all but desired deposition law.

% Deposition parameters
kg1 = growthParam(1);
%kg1=0; % enable for no deposition

% OPTION 1: Constant Deposition Law
fGrow = kg1;
dGrowdlambda = 0;

% OPTION 2: Linear Deposition Law
%{
fGrow = kg1.*avgStrain;
dGrowdlambda = kg1;
%}

% OPTION 3: 3 Parameter Growth Curve
%{
Ka = growthParam(1);
Kb = growthParam(2);
Kc = growthParam(3);

%Sample values:
%Ka=1e-4; %Upper growth limit
%Kb=15; %Horizontal lag time
%Kc=1000; %growth rate

fGrow = Ka.*exp(-Kb*exp(-Kc.*avgStrain));

dGrowdlambda = Ka.*Kb*Kc*exp(-Kb*exp(-Kc.*mean e2));
%}

end
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