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Abstract

A significant boost in robotics technology has been observed in recent years

and more and more tasks are being automated by robots such as robotic surgery,

autonomous driving, package delivery, etc. Not only has the precision of robots

been improved, but the number of robots involved in a specific task has also

grown in many scenarios. An important part in a robotic automated task in-

volves the relative pose estimation among objects, and this often boils down

to calibration and tracking. The dissertation begins with a robotic catheter

tracking system and then focuses on calibration of robotic systems.

The presentation first introduces a novel robotic catheter tracking system

which uses an embedded active piezoelectric element at the tip of the catheter.

Catheter intervention procedure is performed exclusively with X-ray, while ul-

trasound comes as an alternative modality which is radiation free. However,

the catheter tip is usually very small and hard to be differentiated from human

tissue in an ultrasound image. Moreover, an ultrasound photographer needs to

hold the ultrasound probe during the procedure which can easily last for over
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an hour. The proposed system can tackle these issues using a robot arm and

the active echo signal, and is, to the best knowledge of the author, the first

robotic catheter tracking system using ultrasound. It is demonstrated in both

the simulation and experiment that a robotic arm holding the ultrasound probe

can track the catheter tip without image input.

To better assist the tracking process, other procedures can be automated

such as catheter insertion and phantom localization, etc. All these require in-

troducing an extra robot and a precise calibration between robots and targets

of interest. Out of many calibration approaches, the most classical one is called

the hand-eye calibration problem formulated as AX = XB which takes in data

from sensors in different locations to solve for an unknown rigid-body trans-

formation. A generalization of this problem is the AX = YB robot-world and

hand-eye calibration, where two unknowns need to be recovered simultane-

ously. The above two approaches mainly deal with the calibration of a single

robot system. For multi-robot systems, a problem cast as the AXB = YCZ for-

mulation arises where three unknowns need to be solved given three sensor

data streams. The second portion of the presentation investigates in the prob-

abilistic approaches toward all three problems above. Different methods based

on the probabilistic theory on Lie group are developed to show their superior

performance over non-probabilistic equivalents when there is partial knowl-

edge of the correspondence among sensor data.
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Chapter 1

Introduction

This dissertation presents two main topics. The work begins by presenting

a robotic ultrasound system that can track the tip of a catheter. Both the hard-

ware and software frameworks are described in detail and it is demonstrated

in both simulation and experiments that the system is able to track the tip of

a catheter in a low-cost and computationally efficient manner. In order to fully

automate the catheter tracking and insertion processes for real clinical appli-

cation, calibration techniques become critical for the entire system to operate

both consistently and precisely. This leads to the discussion of various calibra-

tion techniques for both single robot and multi-robot systems. The calibration

solvers presented can be applied to various kinds of robotic systems, and the

fundamental mathematical concepts are given in Chapter 2.

1
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1.1 Robotic Assisted Catheter Tracking

Robotic technology has played an important role in surgical applications,

and a number of successful platforms have been launched such as da Vinci,

CyberKnife, and the Raven. Despite the clinical use of various robotic surgical

system, the application of robotic technology in cardiac catheterization is still

under development. An important part of this is to automate tracking proce-

dure for the tip of the catheter. One popular approach is to use ultrasound

information for catheter tip localization due to the fact that it is radiation free.

Most of the proposed systems employ either a 2D or 3D ultrasound probe and

use the corresponding 2D or 3D ultrasound images to help locate the position

of the catheter tip. However, none of them really use ultrasound to perform

tracking tasks on the catheter tip. Chapter 3 presents a robotically assisted

catheter tracking system that can track the catheter tip utilizing an embedded

active piezoelectric element. The hardware system is consisted of a 6 degrees

of freedom robot arm, an ultrasound system and a phantom, and the software

framework is built on top of the Robot Operating System. A position controller

is designed to track the 2D position of the catheter tip within the phantom

based on the active echo signal. It is demonstrated in both simulation and ex-

periment that the system can track the catheter tip in a multi-vein phantom,

and a 3D structure of the vein can be built for potential visualization usage.
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1.2 Robotic System Calibration

The term sensor calibration can mean different things in different contexts,

both within the field of robotics, and in other areas of study. In the most general

terms, a sensor is a device that produces measurements that provide informa-

tion about the state of the world. For example, an inertial measurement unit

(IMU) consisting of an accelerometer and gyroscope can provide information

about the motion of a rigid body. Cameras provide visual information about a

scene in the form of pixel intensities.

Note also that the word “calibration” has been used in robotics previously in

the context of kinematic calibration [1]. This topic is concerned with obtaining

manipulator kinematic parameters that are not known a priori by having the

manipulator move around and using the information from encoders and from

an external sensor that tracks markers (typically on the end-effector) to obtain

the link twists and offsets. A calibration problem that is somewhat analogous

to this in spirit is the dynamic calibration problem in which the inertial proper-

ties of a manipulator are obtained by swinging it through various motions and

measuring the torques on the motors [2] using the linearity of inertial param-

eters in the nonlinear dynamical equations. This fact is also useful in adaptive

control [3–6].

Extrinsic calibration is another important field, which describes the fixed

3
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3D rigid-body transformation either between a sensor and the mounted body

frame or between two sensors fixed on the same rigid body. The sensors that

can benefit from such calibration techniques include but are not limited to

monocular cameras, stereo cameras, ultrasound (US) probes, and IMUs. Once

the unknown rigid-body transformations in the system are calibrated, one can

determine the pose of the target more accurately. This is beneficial in many

ways such as helping the manipulator to better determine the configuration of

the object to be grasped, improving the accuracy in constructing the 3D envi-

ronment and facilitating the localization of a robot. Calibrating the extrinsic

parameters of various sensors can also help with the sensor fusion in a system.

From the perspective of simulation, employing the calibrated configurations

of sensors can enable the simulation to better reflect the implementation in

the physical world compared to using artificial sensor frames or those obtained

from the spec sheet.

In the fields of robotics and computer vision, sensor calibration problems

are often codified using the “AX = XB” formulation. Example applications in-

clude camera calibration, robot eye-to-hand calibration [7], aerial vehicle sen-

sor calibration [8], image-guided therapy (IGT) sensor calibration and endo-

scopic surgery [9]. An alternative name that describes this system is “hand-

eye” calibration. Several methods exist in the literature that can perform hand-

eye calibration without directly dealing with the AX = XB formulation such

4
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as [10–16]. Another problem, called the robot-world and hand-eye calibration,

deals with the case where an additional calibration of the robot pose with re-

spect to the world frame is needed. This calibration technique is formulated

as the “AX = Y B” problem and multiple methods have been developed such

as [17–23]. Furthermore, a hand-eye, tool-flange, and robot-robot calibration

problem is formulated as the “AXB = Y CZ” problem in [24,25].

In Chapter 4, a comprehensive review on robot & sensor calibration, specif-

ically the hand-eye calibration, is given to provide an overview of the history,

state-of-the-art and other related techniques of AX = XB calibration. Some of

the mathematical concepts and theorems are also covered which will be heavily

used in later chapters. Most calibration algorithms deal with the case where

there is exact correspondence among the sensor data. However, this might not

be true for asynchronous systems. Therefore, through Chapter 5 to Chapter

7, various probablistic solvers are presented for AX = XB, AX = Y B and

AXB = Y CZ calibrations. Chapter 5 discusses different approaches to obtain

the mean of a set of SE(3) rigid-body transformation matrices, which can im-

prove the computation accuracy of a probabilistic AX = XB solver. Chapter

6 focuses on using probabilistic formulation of the AX = Y B equation to re-

cover the correspondence of shifted data streams and boost the performance of

non-probabilistic AX = Y B solvers. Chapter 7 looks at the multi-robot cali-

bration scenario and presents two probabilistic approaches in comparison with

5
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the state-of-the-art AXB = Y CZ solvers. A hybrid approach is also discussed

to better handle noisy data.
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Chapter 2

Mathematical Background

This chapter presents an overview of the mathematical concepts that will

be heavily used in the dissertation.

2.1 Group Theory

A group is a set G with a binary operation ◦where the elements in the group

satisfy the following four principles:

• Closure: For all g1, g2 ∈ G, g1 ◦ g2 ∈ G.

• Associativity: For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)

• Identity element: There exists an identity element e such that, for every

g ∈ G, e ◦ g = g ◦ e = g.

7
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• Inverse element: For each g ∈ G, there exists a unique g−1 ∈ G, such that

g−1 ◦ g = e.

2.1.1 Matrix Lie Group and Lie Algebras

One type of group which is widely used in the area of robotics is the matrix

Lie group. A matrix Lie group is a group whose element g ∈ G is an N ×N di-

mensional matrix and group operation ◦ is matrix multiplication. To every Lie

group, there is an associated Lie algebra H whose vector space is the tangent

space of the Lie group at the identity element:

g(t) = exp(tX) (2.1)

where X ∈ H and t close to zero and exp represents matrix exponentiation.

There are two important matrix Lie groups in the field of robotics, special or-

thogonal group SO(n) and special Euclidean group SE(n).

The special orthogonal group SO(n) is defined as

SO(n)
.
= {R |RRT = RTR = I, det(R) = 1, R ∈ Rn×n} (2.2)

and the associated Lie algebra so(n) is

so(n)
.
= {Ω |R = exp(Ω),Ω ∈ Rn×n, R ∈ SO(n)} (2.3)

8
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Two cases of interest in the dissertation are n = 2 and n = 3, which relate to

planar rigid-body rotation and spatial rigid-body rotation. When n = 3,

Ω = ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.4)

where ω = [ω1, ω2, ω3] and ̂ is called the “hat” operator that converts a 3 × 1

vector into a 3× 3 skew symmetric matrix. The inverse “vee” operation ∨ does

the following

Ω∨ = ω (2.5)

The special Euclidean group SE(n) is defined as

SE(n)
.
= {H |H =

(
R, t;0T , 1

)
∈ Rn+1×n+1, R ∈ SO(n), t ∈ Rn} (2.6)

whereas the associated Lie algebra is

se(n)
.
= {Ξ |H = exp(Ξ),Ξ =

(
Ω, ξ; 0T , 0

)
∈ Rn+1×n+1,Ω ∈ so(n), ξ ∈ Rn, H ∈ SE(n)}

(2.7)

When n = 2, 3, SE(n) represents the rigid-body motions in 2D and 3D respec-
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tively. Take n = 3 for an example,

Ξ = log(H) = ĥ =



0 −h3 h2 h4

h3 0 −h1 h5

−h2 −h1 0 h6

0 0 0 0


(2.8)

where h = log∨(H) ∈ R6×1 and ĥ is the vectorized Lie algebra element, ĥ ∈ se(3),

such that H = exp(ĥ). The “hat” operator ̂ : R6×1 → se(3) maps a 6 by

1 vector to its corresponding Lie algebra which satisfies the exponential map

exp : se(3)→ SE(3).

2.2 Integration on SE(3)

Let Σ = ΣT ∈ R6×6 be a positive definite covariance matrix. Assuming the

norm ‖Σ‖ is small, we define a Gaussian probability distribution function on

SE(3) as:

ρ(H;M,Σ) =
1

(2π)3|Σ| 12
e−

1
2
F (M−1H), (2.9)

where H ∈ SE(3), M ∈ SE(3) is the mean, Σ ∈ R6×6 is the covariance matrix,

‖Σ‖ denotes the determinant of Σ and

F (H) = [log∨(H)]TΣ−1[log∨(H)]. (2.10)

10
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If Z ∈ se(3) is the corresponding Lie algebra of H ∈ SE(3), then exp(Z) = H,

logH = Z and log∨(H) = z where z ∈ R6×1 is the vectorization of Lie algebra.

SE(3) is a six-dimensional matrix Lie group, and there is a unique and

correct way to define integration on SE(3) called the “Haar measure”, and is

denoted as dH. If H = H(q) where q = [q1, ...., q6]
T is a global set of coordinates,

then functions f : SE(3)→ R can be integrated as

∫
SE(3)

f(H)dH
.
=

∫
q∈D

f(H(q))|J(q)|dq

whereD is the domain of integration in the parameter space and dq = dq1dq2 · · · dq6.

The Jacobian determinant |J(q)| is computed from the Jacobian matrix:

J(q) =

[(
H−1

∂H

∂q1

)∨
;

(
H−1

∂H

∂q2

)∨
; · · ·

(
H−1

∂H

∂q6

)∨]
.

For example, if Cartesian coordinates are used for the translation vector and

ZXZ Euler angles are used for rotations, then q = [x, y, z, α, β, γ]T , D = R ×

R× R× [0, 2π]× [0, π]× [0, 2π] and |J(q)| = sin β. While D and J(q) will change

depending on which parameterization is used, the value of the integral itself

does not as it is a property of the Lie group. The integral depends on the

function themselves but not a matter of how the function is expressed or the

coordinates used for integration.

SE(3) is unimodular, which means that the integration measure, dH =

11
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|J(q)|dq, has the property that for any fixed H0 ∈ SE(3) and “well-behaved

function1” f : SE(3)→ R, [26]

∫
SE(3)

f(H0 ◦H)dH =

∫
SE(3)

f(H ◦H0)dH =

∫
SE(3)

f(H)dH. (2.11)

In addition, it can be shown that when these conditions hold, so too does

∫
SE(3)

f(H−1)dH =

∫
SE(3)

f(H)dH. (2.12)

A common source of confusion is that many books on Lie groups are concerned

with compact Lie groups, which possess both bi-invariant metrics and bi-invariant

integration measures. When discussing the noncompact case, bi-invariant met-

rics generally do not exist (except for special cases such as products of tori and

Euclidean spaces), and they do not exist for SE(3). Though bi-invariant inte-

gration measures also do not exist in general, they do exist for a broader class

of special noncompact Lie groups, and this includes SE(3).
1Here a well-behaved function means a function for which the integral exists, and hence

f ∈ L1(SE(3)), and later that the convolution integral exists, which is guaranteed by further
requiring that f ∈ L2(SE(3)). And so, with the notable exception of the Dirac delta function,
the discussion is restricted to f ∈ (L1 ∩ L2)(SE(3)).
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2.3 Convolution on SE(3)

The convolution of two well-behaved functions is defined as [27,28]:

(f1 ∗ f2)(H) =

∫
SE(3)

f1(K)f2(K
−1H) dK (2.13)

where K,H ∈ SE(3). The integral over SE(3) can be expressed in various

coordinates and here we choose the exponential coordinates, where the six-

dimensional integral over SE(3) and its measure can be found in [29].

Convolution inherits the associative property from the underlying group,

which is written as

(f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3)

where the dependence of these functions onH has been temporarily suppressed.

Analogous with the way convolution inherits associativity, it also inherits non-

commutativity for general functions, with the exception of special functions

called “class functions”.

The Dirac delta function on SE(3) can be thought of as follows:

δ(H) =


+∞, H = I

0, H 6= I

(2.14)
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which satisfies the constraint that:

∫
SE(3)

δ(H)dH = 1. (2.15)

A slightly further expansion of allowable functions to include shifted delta func-

tions of the form:

δX(H)
.
= δ(X−1H) = δ(HX−1). (2.16)

The unshifted delta function is an example of a symmetric function, in that

δ(H) = δ(H−1).

If the class of functions is expanded to consider beyond (L1 ∩ L2)(SE(3)) to

include Dirac delta functions, then the following is true for every f ∈ (L1 ∩

L2)(SE(3)):

(f ∗ δ)(H) = (δ ∗ f)(H) = f(H). (2.17)

Eq. (2.15) and Eq. (2.17) constitute the formal definition of delta function on

SE(3).

Using the properties of the invariant integral on SE(3), convolving a shifted

delta function with an arbitrary function transfers the shift:

(δX ∗ f)(H) =

∫
SE(3)

δ(X−1K)f(K−1H)dK

=

∫
SE(3)

δ(J)f((XJ)−1H)dK = f(X−1H)

(2.18)
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where the change of variables J = X−1K and the invariance of integration have

been used.
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Chapter 3

Robotic Assisted Catheter

Tracking

Robotic-assisted catheter insertion is becoming increasingly popular due to

its potential applications including cardiac catheterization. Typically, catheters

are tracked during insertion procedures to verify the location of the tip relative

to anatomy or features of interest, and this procedure is performed exclusively

with X-ray. Ultrasound is a good alternative because it is radiation free. How-

ever, the catheter tip is usually very small and hard to be differentiated from

human tissue in an ultrasound image. Moreover, an operator needs to hold

the ultrasound probe for the entire procedure lasting for over an hour which is

very physically demanding. As a result, this chapter proposes an ultrasound-

enabled robotic catheter tracking system that uses a 2D ultrasound probe and
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an active piezoelectric element to track the tip of a catheter. This system, to

the best of the author’s knowledge, is the first robotic catheter tracking system

using ultrasound. This approach has the potential to guide catheters from ini-

tial insertion, in a vein in the groin, to final placement at a target area inside

of the heart. During the tracking process, no information from the ultrasound

image is necessary; however, this information can be used to help clinicians to

steer the catheter or to perform diagnostic procedures.

This chapter outlines the procedure by first discussing the individual com-

ponents of the system and then by describing the methodology for tracking

the catheter tip. Next, the system is simulated in ROS to test its effective-

ness, and finally we experimentally verify that a robotic arm equipped with a

2D ultrasound probe can accurately track a catheter in a multi-vein phantom.

Furthermore, the data collected during tracking are used to virtually recon-

struct the 3D structure of veins while tracking. The remainder of this chap-

ter is organized in the following manner: Section 3.2 discusses, in detail, the

elements and components of the RUSTCAPE system; Section 3.3 develops the

control methodology and introduces the ROSAUS system and its corresponding

simulation environment; Section 3.4 presents and analyzes the experimental

results; and finally Section 3.5 draws the conclusions.

17



CHAPTER 3. ROBOTIC ASSISTED CATHETER TRACKING

3.1 Introduction

Cardiac catheterization is a common diagnostic and interventional proce-

dure employed by physicians around the world. In fact, according to the United

States’ Centers for Disease Control and Prevention, in 2010 there were approx-

imately 1 million cardiac catheterizations in the United States alone [30]. Car-

diac catheterization uses catheters to monitor a patient’s heartbeat, diagnose

cardiovascular disease, or place interventional devices such as pacemakers or

stents. During these procedures, the catheter is typically inserted through a

small incision in the groin region and then into a large blood vessel and artery.

Once inserted, the catheter is manually pushed by a physician to the proper

location in or around the heart. The placement of the catheter tip is then

confirmed by a diagnostic X-ray, which results in the patient, radiologist, and

physician being exposed to potentially harmful ionizing radiation [31–33].

The amount and effect of this radiation depends not only on the type of pro-

cedure (diagnostic or interventional) [31], but also the location of exposure [34]

and the age of the person exposed [35]. In general, repeated exposure to X-

rays or ionizing radiation above normal levels has been linked to an increased

risk of cancer. This risk is pronounced in children and adolescents especially

in patients with repeated and cumulative exposures [36]. The risk of radi-

ation exposure is even further increased with diagnostic procedures such as
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X-ray fluoroscopy where a dye is injected in the patient to monitor heart flow

and movement. Therefore, a need exists to develop methods and systems that

reduce radiation exposure during cardiac catheterization and subsequent diag-

nostic or interventional procedures.

3.1.1 Robotic Catheter Systems

One approach that is increasingly gaining the attention of researchers is

the use of robotic systems for catheter insertion. These systems seek to re-

duce or possibly eliminate radiation exposure to radiologists and physicians by

providing teleoperative or autonomous capabilities for insertion. One such sys-

tem, developed by Jayender et al. [37], uses visual feedback from some imaging

modality to autonomously insert the catheter into the patient . More recently,

a second robotic system was described by Loschak et al. [38] that can precisely

control the tip and insertion of an ultrasound (US) imaging catheter; however,

the autonomous use of this system has yet to be shown . The main drawback of

these systems is that they still require the patient to undergo X-rays to ensure

proper placement of the catheter tip. On the commercial platform side, Hansen

Medical developed two robotic catheterization systems called Sensei R© X and

Magellan TM respectively, which don’t provide radiation-free tracking technol-

ogy. A more complete review on the robotic catheterization systems can be seen

as in [39].
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As a result, other researchers have developed systems to track catheters

using modalities without ionizing radiation, which effectively decrease expo-

sure to patients, radiologists, and physicians, such as electromagnetic (EM)

and bioelectric navigation. In fact, Condino et al. [40] showed that EM nav-

igation and tracking of a catheter tip had no significant difference from its

X-ray fluoroscopy counterpart. However, there are some cases where US is

preferred over EM tracking, as it is also non-ionizing, unobtrusive, and can

provide additional diagnostic or interventional capabilities. Fuerst et al. [41]

proposed a bioelectric navigation technique to determine the relative position

of the catheter within the vessel tree, which is inspired by the electrolocaliza-

tion behavior of weakly electric fish.

Currently, US is being used in a variety of robotic procedures including

needle biopsy, high-intensity focused US ablation, thrombosis, and catheter-

ization [42–44]. In many of these procedures, the main control method is US

visual-servoing (USVS), where a particular feature is used to inform the con-

trol strategy to reposition the ultrasound probe so that a desired cross-section

image is reached. Specifically, Mebarki et al. [45] used USVS to actuate a US

probe to reach a desired cross-sectional image of an object of interest. How-

ever, the proposed visual servoing technique is devoted for motionless objects

and not applicable for catheter tracking.
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3.1.2 The RUSTCAPE System

As a solution to some of these drawbacks, a new system on Robotic Ultra-

Sound Tracking of CAtheter with Piezoelectric Element (RUSTCAPE) is pro-

posed which utilizes an embedded active piezoelectric (active echo (AE)) ele-

ment [46, 47]. The system consists of an AE element embedded near the tip of

a catheter and a robotic manipulator (UR5) equipped with a US probe at the

end-effector. The system also includes the Robot Operating System (ROS) [48]

based Active echo-UltraSound system (ROSAUS) which connects the US sys-

tem and UR5, and fulfils the control and visualization functions. Autonomous

tracking of the catheter is then accomplished by using data obtained from the

AUSPIS system to localize the AE element in reference to the US probe and

hence the robotic manipulator. As the catheter is inserted by the physician,

the resulting change in location and data sent from the AE element is used

to provide an appropriate update and subsequent motion of the robotic arm.

In addition to autonomous tracking, if the pattern injection functionality of

the AE element is utilized as outlined in [46], the catheter tip can be more

easily identified in the US image by clinicians improving the accuracy and ef-

fectiveness of diagnostic and interventional procedures. Therefore, by utilizing

concepts outlined in [49] and by developing additional methodology, one can

realize a fully autonomous catheter tracking system that reduces or eliminates

the need for ionizing radiation and opens the possibility for further diagnostic
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Figure 3.1: The RUSTCAPE system contains the phantom, Active Echo (AE)
catheter, US machine, UR5 robot, US probe, teaching pendant, and AUSPIS
system as displayed in Fig. 3.2. A workstation is also needed, which is not
shown.

Figure 3.2: Active Ultrasound Pattern Injection System (AUSPIS) with the
control unit and receiver board.

capabilities.
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3.2 System Description

As shown in Fig. 3.1 and Fig. 3.2, the hardware of the RUSTCAPE system

is comprised of five parts: a multi-vein phantom, a Sonix CEP system (US

machine), the Active Ultrasound Pattern Injection System (AUSPIS) and ac-

tive echo (AE) catheter, a workstation, and a UR5 robot arm. The software

of the system, ROSAUS, includes the commercial Ultrasonix software, ROS

packages, and the Linux-based Universal Robots graphical programming envi-

ronment (URGPE) provided by the Universal Robotics company. In the rest of

this section, a detailed description of the RUSTCAPE system will be provided.

3.2.1 The Multi-vein Phantom

The multi-vein phantom is formed from a mixture of plastisol and plastic

softener (used for mimicking the stiffness and elasticity of human tissue) that

is poured into a mold with multiple veins. The phantom has a footprint of

203 × 203 × 51 mm3. The radius of the veins are 3.57 mm which is slightly

smaller than the average measured radius, of approximately 5.5 mm, of pul-

monary veins in adults [50]. We designed the veins of the phantom to have a

tree-like structure as shown in Fig. 3.3. Note that all the veins are inside the

phantom and invisible to human beings, and the depth of the branches are vari-

able to better mimic human arteries. Therefore, light violet lines are overlaid
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on the picture of the phantom to show the approximate shape of the tree-like

branches. The hole on the right side of phantom is the entrance where the

physician, or the experimental operator, inserts the catheter with the AE ele-

ment located at its tip. Depending on how the operator maneuvers, the catheter

can traverse any of the branches and emerge from one of the six exits on the

left side of the phantom. The material of the phantom is less dense than water,

therefore it is impossible to submerge the phantom in a water bath without the

use of a fixture. Every branch in the phantom was designed to terminate on

the surface of the phantom with the actual veins traveling approximately 3 cm

below the surface to permit the veins to hold fluid. Two holes are also present

on the top surface which are connected to the six branches of the phantom. It

is only necessary to fill one of these holes to completely fill all of the channels

up to their respective entrances and exits, which enables transmission of the

US wave through the entire phantom. Under this condition, the US probe has

to be in contact with the top surface of the phantom to capture a US image and

activate the AE element.
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Figure 3.3: The multi-vein phantom with tree-like channels and the active
echo catheter. Note that the six channels inside the phantom are invisible
to the naked-eye and that the six orange branches are manually drawn for
illustration purposes only.

3.2.2 The AUSPIS System and Active Echo Ele-

ment

The AUSPIS system was previously developed by Guo et al. [46] for accurate

tool visualization and US mid-plane detection. The system achieved a maximal

accuracy of ±0.3 mm in placing an active echo element (AE element) within the

US image mid-plane at a depth of over 8.5 cm which is beyond traditional US

imaging resolution. The small US transducer (AE element) is a customized

tube made of PZT5-H material with an outer diameter of 2.08 mm, an inner di-

ameter of 1.47 mm, and a length of 2 mm. One embodiment of AUSPIS consists

25



CHAPTER 3. ROBOTIC ASSISTED CATHETER TRACKING

of a catheter with an AE element very close to the tip, a customized controller

board, and a signal receiver. In this project, the output obtained from the con-

troller unit will serve as the control input into ROS to manipulate the UR5.

Instead of using any type of visual servoing, the signal generated by the ac-

tive echo element under the effect of US waves is used for tracking the tip of the

catheter. The active echo element is integrated into the tip of a catheter shown

as the white tip in Fig. 3.3. The small size of the AE element makes it possible

to insert the catheter into the phantom without much effort. Once inside the

detection range of the US probe, the element receives transmission beams from

the US probe and counts how many of the acoustic waves transmitted by each

probe element in a single image frame surpass a predetermined energy thresh-

old. This count number is correlated with how far away the AE element is from

the US image plane; however, the count number cannot be used to determine

on which side the AE tip is located with respect to (w.r.t.) the US mid-plane.

For in-plane position, the automatic segmentation of the point can be achieved

by using the beacon delay method as described in [47]. This will be discussed

in detail in Section 3.3.

3.2.3 The Workstation and UR5 Robot Arm

The UR5 is a lightweight industrial robot arm designed by Universal Robots

[51]. The UR5’s low cost and collaborative/safety features make it a potential
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Figure 3.4: GUI of the Universal Robots Graphical Programming Environ-
ment (URGPE) used for simulation.

option for applications in clinical environments. In our experiment, the col-

laborative feature is necessary because a clinician or experimenter manually

inserts the catheter alongside the robot. The UR5 is designed such that the

force exerted by the robot on any surface (including an operator) is limited

below the threshold for personal injury effectively guaranteeing an operator’s

safety. In addition, with 6 degrees of freedom and an end-effector positioning

repeatability of±100 µm, the UR5 is suitable for this AE element tracking task.

The actual repeatability might differ depending on the usage time of the robot.

A 58.5mm L14-5W US probe (Ultrasonix. Inc) is attached to the end-effector of

the UR5 by a specially designed 3D printed holder.

A workstation is connected to the controller of the UR5 through an Ethernet

cable and to the AUSPIS controller unit via an FTDI cable. The workstation

sends interpolated time-stamped joint trajectories to the controller given the

input received from the controller unit as in Fig.3.6. Our communication and
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Figure 3.5: The UR5 with a US probe attached at the end-effector in Rviz.
The reference frame below the US probe displays the reference frame of the
detected AE element.

Figure 3.6: Diagram of the RUSTCAPE and core ROSAUS framework. The
arrows denote the data flow of the system and the control system is illustrated
in the blue boxes on the right. Ellipses within the blue box denote ROS nodes
(Only the core ROS nodes are plotted here for simplicity. Dark blues ellipses
indicate custom-made nodes for this project and the light blue ellipses indicate
nodes available online).

control platform was built within ROS Hydro, and the online meta-package

universal robot developed under the ROS-industrial program [52] is used

as the communication interface between ROS and the UR5.

3.2.4 Simulation and Experimental Environment

Because the operator will be inserting the catheter alongside the robot, sim-

ulation is still very necessary despite the safety features of the UR5. The
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URGPE as shown in Fig. 3.4 is a Linux-based software that can simulate the

behavior and conditions of the real robot. It resembles the interface of the

teach pendant and is very helpful in building up the ROS-based control sys-

tem in a simulation environment before directly applying the system to actual

hardware. For real experiments, the workstation is directly connected to the

controller of the UR5 and all the processes are monitored in ROS terminals,

and visualized in a built-in GUI, Rviz, as shown in Fig. 3.5.

3.3 Methodology

In this section, the methodology is discussed in detail, including the frame-

work of the system and the control strategy. A brief simulation is shown in a

video clip to show the effectiveness of the system [53]. The complete RUST-

CAPE system diagram is illustrated in Fig. 3.6. The arrows depict the major

data flow within the system and the different colors in the diagram are used to

separate the different functional parts of the system.

Note that though the US machine is connected to the control unit of the

AUSPIS system, no information from the US image is transmitted during the

process. Only the trigger information from the US machine is used to compute

the in-plane position of the catheter tip.
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3.3.1 Tip Position of the Catheter

As briefly discussed in Section 3.2.2, the beacon delay method can be used to

obtain the in-plane position of the segmented AE element. This is achieved by

sending the line trigger and frame trigger into the AUSPIS system for compu-

tation. The time of flight (TOF ttof ) of the US wave can be used to calculate the

axial position of the AE element. ntof denotes the transmitted acoustic waves

from each probe element that surpass a pre-determined energy threshold. The

counting of ntof will start when the frame trigger is received and stop when the

next frame trigger is received, and it is used for obtaining the lateral position.

If the image frame of the US probe is defined as in Fig. 3.7, then the in-plane

position denoted by (y, z) is obtained as:

y = ntof ∗
Lprobe
ntotal

(3.1a)

z = −ttof ∗ vsound (3.1b)

where ttof = tdelay/srate, Lprobe is the array length, ntotal is the total number of

line triggers in each frame, srate is the sampling rate, tdelay is the delay between

a line trigger and the corresponding beacon signal received by the AE element,

and vsound is the speed of sound in the media.

The absolute value of the off-plane displacement |x| is indicated by the count
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Figure 3.7: A close-up of the detected catheter tip (AE element) in the refer-
ence frame of the US probe. The orange dot denotes the physical position of
the catheter tip. The count number c in terms of the off-plane position x has a
Gaussian-like distribution if the environmental parameters are fixed.

number c which corresponds to the US beacon intensity detected by the AE

element. It has been noted in [49] that c = f(x) has a distribution similar

to a Gaussian function whose amplitude is affected by the focus point of the

US machine, the US beacon intensity emitted by the US probe, and the in-

plane axial position z. Fig. 3.7 illustrates the reference frames of both the US

probe and the detected AE element. In the water tank, data samples of c,

ttof , and ntof are obtained for different x and z positions of the AE element as

shown in Fig. 3.8. It can be seen that: 1) the amplitude of the fitting Gaussian

distribution f(c) decreases as the depth z increases; 2) the ttof signal can be

very noisy when the AE element is close to the limit of the detection range,

which means ttof becomes unreliable when c is very small (≤ 3); 3) ntof might
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Figure 3.8: Trigger count c, ntof , and time of flight ttof v.s. off mid-plane po-
sition x with different depths in z. f(c) denotes the fitted curve of c into the
Gaussian distribution on x. (Data collected in water tank)

fluctuate but is very reliable even when the AE element is about to go out of the

detection range along the x axis. The relationship between the AE signals and

positions above will be used as a benchmark for use in the phantom, because

the current phantom has specific tree-like branches and it is not possible to

choose x and z freely.
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3.3.2 Tracking Strategy and Simulation

Because the surface of the phantom is almost flat and the US probe has to

be kept in contact with it, the motion of the robot along the normal direction

of the phantom surface (or equivalently the axial direction of the US probe)

is disabled, and the problem is converted into a 2D tracking problem, while

the virtual vein construction problem is still 3D. However, this is not a sim-

ple 2D position feedback control problem because in the phantom, the count

number c can provide neither the exact relative position nor the relative di-

rection of the AE element relative to the US mid-plane. When tracking the

catheter, it is assumed that the catheter will initially move forward along the

direction of insertion. If the catheter is moved backward, the system is de-

signed to stay at the last point of forward motion. To facilitate the position

adjustment and backward tracking, a GUI is built on top of the ROS pack-

age dynamic reconfigure to enable/disable tracking functionality as well as

selecting the tracking direction (forward/backward) and speed.

The control diagram is provided in Fig. 3.9, which shows how ntof , ttof and c

are used to track the catheter and construct the virtual channels of the phan-

tom. First, ntof and ttof are taken for segmentation to generate the in-plane

position Yactive and Zactive. With the assumption that the AE element is in the

mid-plane while detected, the x-axis position of the robot end-effector Xprobe(i)

is used to “recover” the 3D position of the AE element along with Yactive and
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Zactive, where i stands for the current pose and i + 1 denotes the next desired

pose for tracking the catheter. This data is stored in Precord which is then plot-

ted in Rviz to construct the virtual veins in real time. Count number c is used

to calculate the moving step dX of the robot along the x-axis, so that the next

desired x position is obtained byXprobe+dX. Given the Gaussian distribution as

in Fig. 3.8, one can inversely calculate the absolute value of x as x = finv(c) ≥ 0

when c is greater than a lower bound clow, which marks the bound of reliable

detection range. Since the phantom is flat, there is no motion along the z axis

of the robot, so the current Zprobe(i) is passed directly to the next Zprobe(i+ 1) in

Pprobe(i+ 1). Yactive is used for updating Yprobe(i+ 1) and the next position of the

probe Pprobe(i+ 1) is complete. Next, the position of the end-effector Probot(i+ 1)

is obtained and fed into the inverse kinematics of the UR5 to obtain the corre-

sponding joint angles q1(i + 1), ..., q6(i + 1). After the interpolation between the

current joint angles and next joint angles, a joint trajectory is generated and

sent to the controller of the UR5 for low-level PID control.

Back to the ROS system as shown in Fig. 3.6, the AE publisher node reads

the data socket from the AUSPIS control unit through the FTDI cable and

parses it into ntof , ttof and c. It publishes these three variables to the rostopic

named active echo data which is subscribed to by segment point. The

pose publisher node subscribes to the estimated position of the AE element

in the US image plane published by the node segment point, and outputs
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Figure 3.9: Control diagram and data flow in ROSAUS.

the next desired pose of the end-effector (setpose) of the UR5 for tracking the

AE tip. Based on the current configuration of the robot, the controller node

reads the newly published rostopic setpose and calculates the corresponding

joint angles for the next step using Jacobian-based inverse kinematics. Then

using the current joint angles, a first-order Taylor series update step is com-

pleted to generate the next joint angles in the trajectory. Next, the joint trajec-

tory is time-stamped and sent to either the UR5 controller or the URGPE UR5

simulation software through the ur driver node depending on whether one is

performing an experiment or a simulation.

Two simple tracking simulations are performed in the ROSAUS system,

one tracks an AE element moving along a straight line at a constant speed,

and the other tracks an AE element moving along a sine wave path at a con-
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(a) Straight line path tracking.

(b) Sine wave path tracking.

Figure 3.10: Straight line (a) and sine wave path (b) tracking of the AE ele-
ment in ROSAUS. The horizontal axis denotes time (second) and the vertical
axis denotes distance (meter) of the targets in the world frame.

stant speed. Fig. 3.10a and Fig. 3.10b are obtained directly from the rqt plot

of ROS in real time. The purple and cyan lines are the x/y position of the AE

element in the world frame, while the blue and red lines are the x/y position of

the US frame. It can be seen that the UR5 is able to maintain a very close sep-

aration between the ultrasound probe and the AE element so that it falls into

the narrow 1 cm detection range along the x-axis and the 5cm detection range
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Figure 3.11: Time elapsed screen shots of catheter tracking experiment in the
water tank. Seven pictures are taken over the course of 18 seconds.

along the y axis. Theoretically, the AE element should fall into the US mid-

plane when c achieves the maximum; however, there is usually a small shift

between the US mid-plane and the cmax position, and this partially contributes

to the small shifts in Fig. 3.10.

3.4 Experiment Results

In this section, experiments are performed using the RUSTCAPE system,

and both the effectiveness of the system and problems encountered are dis-

cussed. Experimental results are illustrated in combination with a video [53]

to validate the performance of the system in action. Time elapsed screen shots

for the experiments for both water tank and phantom can be seen as in Fig. 3.11

and Fig. 3.12. A time elapsed picture of the robot arm tracking the catheter can

be seen in Fig. 3.13.
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Figure 3.12: Time elapsed screen shots of catheter tracking experiment in the
phantom. Seven pictures are taken over the course of 36 seconds.

3.4.1 Experiments

Three operators are needed to use the system in a safe manner. To be-

gin with, one operator inserts the tip of the catheter into the entrance of the

phantom so that the AE element is submerged in water. Then the UR5 robot is

manually operated to place the US probe over the entrance of the phantom and

the AE element. The position of the probe can be further adjusted to detect the

AE element until the count number c is larger than zero. The same operator

inserts the catheter alongside the robot and a second operator holds the UR5

control panel in case a situation arises where the emergency stop button must

be pressed. A third operator monitors the ROS terminals and sends commands

to either start/stop or forward/reverse tracking.

In the video, it is demonstrated that the US probe can track the catheter

tip from near the entrance of the phantom up to the vicinity of the exit au-
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Figure 3.13: Robot in action while tracking the tip of the catheter maneuvered
by a human being. Three poses are selected for illustration.

tonomously. The positions of the detected AE element are also recorded in Rviz

to build a virtual structure of the vein in real time. Even though the channels

are invisible, by reconstructing the virtual channels the system can gradually

provide a more and more complete picture of the phantom, which can help

with the maneuvering of the catheter in the future. Experiments show that

one can traverse all of the six branches of the phantom and construct the vir-

tual channel in Rviz for each of them. A screen shot of the constructed phantom

channels during tracking is included in Fig. 3.14 which contains four out of the

six branches of the phantom. The red dots are the raw data obtained from

the AUSPIS system. The outliers as seen in Fig. 3.14 are caused by the shift

of ttof as designed in the AUSPIS system and can be easily filtered by post-

processing in software such as Matlab. In addition, it is also demonstrated the

US probe tracking the catheter tip inside the water tank and the vein path can

be constructed in real time.
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3.4.2 Discussion

Several observations are made after performing the experiments. First, the

count number c plays a critical role in helping track the off-plane position x

of the catheter tip. Its value depends on both its physical off-plane distance

and the adjustable parameters of the US machine. In the water tank, the

relationship between c and x is relatively stable and it mainly depends on the

depth of the AE element, the type of ultrasound probe that is used, and the

tuning position of the sensitivity knob on the receiver board of the AUSPIS

system. In the phantom, however, the maximum of c can range from 10 to

60 depending on where the catheter is located. For example, the amplitude

of c = f(x) will be larger if the focus of the US probe is closer to where the

AE tip is located. However, this condition is difficult to achieve because of

the curved shapes of the channels inside of the flat phantom. The AE tip will

be very close to the top surface of the phantom near the entrance and exits

while close to the bottom in the middle, which can also cause c to fluctuate.

This issue may be fixed in an autonomous manner by hacking into the US

machine via the available API and adjusting the focus based on the current

axial position z of the AE tip. In addition, the amplitude can also experience a

noticeable increase if the probe contacts the phantom with greater force. As the

amplitude increases, the detection range of the AE element is also broadened.

This will be very useful since the off-plane detection range of the AE element
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varies from several millimeters to one centimeter. The length of the search

step of the robot is also in the scale of millimeters, so even a slight increase in

the detection range can enable the robot to better track the catheter. However,

too much contact between the phantom and probe can deform the channel and

increase friction to a point where the catheter will get stuck.

Second, the tracking speed of the catheter in the water is faster than that in

the phantom. In the experiments, as shown in the video, it took approximately

17 seconds for the catheter to traverse an 46 cm long water tank, whereas it

took 38 seconds to the go through an 20 inch long phantom. The detection

range of the AE element is relatively larger in the water tank, and the reliable

range is 8 - 10 mm as shown in Fig. 3.8. However, in the phantom, the en-

tire detection range of the AE element varies from several millimeters to one

centimeter depending on how tight the probe is in contact with the phantom.

Therefore, both the catheter and the robot have to move at a lower speed so

that the catheter will not move out of the detection range in the phantom.

Thirdly, the robot arm and hence the US probe can cease to move due to the

contact force and friction between the phantom and the probe. The probe is

usually placed deeper onto the phantom to achieve a better detection range of

the AE element; however, the slow speed of the robot results in moving steps as

small as 1 mm which ceases robot motion due to large forces generated by the

local unevenness of the phantom. This issue is currently resolved by setting
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Figure 3.14: Side view and bottom view for the four out of a total of six
branches are constructed in Rviz by tracking the AE tip of the catheter.

a larger step length in the beginning of the process and applying ultrasound

gel periodically. An ideal solution would be to incorporate force feedback to

automatically adjust the probe contact force with the phantom.

In addition, for the phantom, there are currently two fluid inlets on its top

surface, and this can affect the interaction between the US probe and the AE

element when the probe is passing over the holes. The received signals from

the AUSPIS system can become unstable at the inlets, but this can be fixed by

designing a phantom that has no holes on top.

3.5 Conclusion

In this chapter, a new US-assisted robotic system for catheter tracking is

proposed. The active piezoelectric element is installed at the tip of the catheter

for tracking purposes. A phantom is specially built to mimic human tissues
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and arteries/veins. Both simulations and real experiments are performed to

demonstrate that the 2D US probe is able to track the catheter by detecting

the AE element at the tip, and the tree-like structure of the channels inside

the phantom can be reconstructed from the experimental data. The above fea-

tures show that the system is low-cost and efficient in terms of computational

intensity. Currently, the position of the phantom is unknown to the robot and

the probe is manually moved to the vicinity of the phantom for locating the

initial position of the tip catheter. The catheter is also manually inserted by

an operator instead of using a 2nd robot arm. However, if one wants to further

automate some of the procedures such as locating the phantom autonomously

and inserting the catheter using a 2nd robot arm, then calibrations between

the phantom and the robots become very necessary. The later chapters dis-

cuss the calibration techniques that can be potentially applied for augmenting

the existing system. However, both of the reviewed and novel calibration tech-

niques that will be covered can be used in various kinds of robotic systems

where the same problems arise.
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Chapter 4

Robot and Sensor Calibration

The calibration of a robotic system is the prerequisite for the whole system

to function wtih high accuracy. This is especially true when there are mul-

tiple robots and sensors in the system. Out of various types of calibrations,

the external calibration of the relative transformation between two fixed rigid

bodies becomes more and more useful. In the context of a robotic system, the

two rigid bodies can be a robot and a sensor, a robot and a robot, or a robot

and a marker. The very original problem deals with the calibration between a

robot and a sensor, which is also known as the robot hand-eye calibration. This

problem is usually cast as the AX = XB problem. Many methods have been

proposed to solve X given data streams of A and B under different scenarios.

This review chapter presents a complete picture of the AX = XB solvers up to

date. In Section 4.1, a brief overview of the various important sensor calibra-
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tion techniques is given and problems of interest are highlighted. In Section

4.2, a detailed review of the various AX = XB algorithms is presented. The

notations used in the literature are very different from each other and this

can cause confusion for readers. A major effort is spent on unifying the no-

tations for all of the classic and state-of-the-art solvers to clearly reflect their

inner connections. In Section 4.3, the criterion for data selection and various

error metrics are introduced, which are of critical importance for evaluating

the performance of AX = XB solvers. Note that some of the techniques and

concepts are directly applied in the novel calibration solvers to be covered in

later chapters.

4.1 AX = XB Calibration

In the AX = XB formulation A, X, and B are each homogeneous transfor-

mations with each pair of measurements (A,B) coming from sensors such as

cameras, US probes, optical, or electromagnetic pose tracking systems, among

others. X is the unknown rigid-body transformation that is found as a result of

solving AX = XB. It is well known that it is not possible to solve for a unique

X from a single pair of exact (A,B), but if there are two instances of indepen-

dent exact measurements, (A1, B1) and (A2, B2) satisfying certain constraints,

then the problem can be solved for a unique, fixed X. However, in practice,
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sensor noise is always present, and an exact solution is not possible. The goal,

therefore, becomes one of finding an X with the least error given corresponding

noisy pairs of data (Ai, Bi) for i = 1, 2, . . . , n.

The Hand-eye calibration problem, or the AX = XB problem dates back

to the 1980s when Shiu and Ahmad [54] first proposed a solution. Various

AX = XB solvers have been proposed so far for either same or different sce-

narios and applications. Tsai [7] proposed a method as well as several prin-

ciples on data selection in 1989. A geometric view of AX = XB is given

by Fassi and Legnani [55] and the over-constrained and singular conditions

are also discussed. Many other AX = XB methods include but are not lim-

ited to the Euclidean Group method [56], the quaternion method [57, 58], the

dual quaternion method [59], the Kronecker method [60], and the screw mo-

tion method [61]. Several new optimization methods emerged recently such as

the convex optimization method [62] and the global optimization methods [22].

Most of the above methods are designed for off-line usage where a complete list

of data pairs (Ai, Bi) with i = 1, 2, ..., n has to be provided to recover X whereas

online methods are more preferable in real time applications [60, 63]. A com-

mon feature of these methods is that they demand the exact correspondence

between the data streams {Ai} and {Bi}. This might not always hold because

of asynchronizicity of the sensors or missing data, etc. Therefore, a probabilis-

tic method called the “Batch method” that deals with data pairs without cor-
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respondence was first brought up in [64]. An information-theoretic approach

is proposed in [65] by viewing the problem as distributions on the special Eu-

clidean group SE(3) and minimizing the Kullback-Leibler divergence on the

distributions.

4.1.1 The Mathematical Formulation

Given:

AX = XB (4.1)

where A,B,X ∈ SE(3), it is well known that, in non-degenerate cases, there

are two unspecified degrees of freedom to the problem for a single pair of sensor

measurements, (A,B). This situation is rectified by considering two pairs of

exact measurements of the form in Eq. (4.1), i.e., A12X = XB12 and A23X =

XB23, provided that some mild conditions are observed for the selection of the

pairs (A12, B12) and (A23, B23) [56, 66, 67]. Note that (Aij, Bij) here are relative

transformation data pairs, and (Ai, Bi) & (Aj, Bj) are absolute transformation

data pairs. For simplicity of notation, we will use (Ai, Bi) to denote the relative

transformation data pair, which is also the desired input data for anyAX = XB

solver. So in real experiments at least 3 absolute transformation data pairs

have to be measured. Additionally, if there is sensor measurement error, then

it may not be possible to find compatible pairs that reproduce the exact value of
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Figure 4.1: Application of AX = XB in ultrasound sensor calibration: an
ultrasound probe is attached to the end-effector and the calibration phantom
is used for ultrasound probe calibration.

Figure 4.2: Application of AX = XB in humanoid camera calibration: The
humanoid robot named Atlas designed by Boston Dynamics requires head-body
calibration before turning the knob. Different pairs of (Ai, Bi) are measured by
changing the head pose of the humanoid robot.

X. For this reason, minimization and least squares approaches are often taken

over large sets of A′s and B′s.

The following two equations can be obtained by separating out the rota-
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tional and translational parts in Eq. (4.1):

RARX = RXRB (4.2a)

RAtX + tA = RXtB + tX . (4.2b)

There are in general two approaches to solve the unknown rotation and trans-

lation. One way solves Eq. (4.2a) for only rotation and then rearranges Eq. (4.2b)

to obtain the solutions of tX satisfying (RA−I3)tX = RXtB−tA. The other way is

to solve for RX and tX simultaneously based on some cost function f(RX , tX) or

reformulating the matrix equation into other representations such as the dual

quaternion. However, more than two exact sensor measurements are needed

for the first approach. As pointed out in [56,67], in nondegenerate cases, there

is a one-parameter set of solutions to Eq. (4.2a), and the matrix RA − I3 in gen-

eral has a rank of 2. Hence, there are two unspecified degrees of freedom on

the whole problem, which makes it impossible to calculate a unique solution

unless additional measurements are taken.

Additionally, minimization approaches are often taken on a cost function if

there is sensor error, because it may not be possible to find compatible pairs

that reproduce the exact value of X. The cost falls in the following form

C(X) =
n∑
i=1

wi d
2(AiX,XBi) (4.3)
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where n > 2, d(·, ·) is some distance metric on SE(3) and {wi} is a set of weights

which can be taken as a partition of unity.

4.2 Existing AX = XB Solvers

The problem of solving Eq. (4.1) for X when multiple corresponding pairs

of As and Bs are present has a history that stretches back more than a quar-

ter of a century [56, 67, 68], with the earliest proposed method introduced by

Shiu [54, 67] and Tsai [7]. Applications involving this problem still remain

active today [14, 69]. Shah [70] overviewed several different AX = XB meth-

ods qualitatively. Fassi and Legnani [55] gave a geometric view of AX = XB

and discussed the over-constrained and singular conditions. A more complete

list of the traditional AX = XB solvers includes: the Shiu method [67], the

screw motion method [61,66], the Euclidean group method [56,71], the quater-

nion method [57, 58, 68], the dual quaternion method [59, 72], and the Kro-

necker method [60, 73]. Several new optimization methods emerged recently

such as the convex optimization method [62], some global optimization meth-

ods [22, 73, 74] and a structure from motion (SfM) approach [75]. The SfM

method deals with the case where a calibration target is not applicable and a

scaling factor needs to be calibrated in addition to rotation and translation. The

methods mentioned previously are all off-line methods where X can be calcu-
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lated given a complete list of data pairs. However, several online methods have

been proposed that are more preferable to real-time applications [60,63,76]. All

the methods above assume {Ai, Bi} data pairs with correspondence. Probabilis-

tic methods that deal with data pairs without correspondence are introduced

in [64, 65]. In the following sections, representatives of the above AX = XB

solvers will be reviewed in detail.

4.2.1 Shiu and Ahmad

Shiu and Ahmad [54,67] use two data pairs (Ai, Bi) to solve for X. The nec-

essary condition for the uniqueness of X is that the rotation axes of RA1 and

RA2 are neither parallel nor anti-parallel, and the angles of rotation are nei-

ther 0 nor π. Though this method shows tolerance to noise to a certain extent,

it is specifically designed to solve for the case where only two sets of (A,B) are

given. The rotation matrix RX is solved for first and the translation is obtained

using a least squares technique given a known RX .

The closed form expression for RX is:

RX = exp (n̂Aβ)RXP
(4.4)

where

RXp = exp (n̂XθX)
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nX = nB × nA

θX = atan2(|nB × nA|,nB · nA)

and β is an arbitrary angle. Given a vector n = (n1, n2, n3)
T ∈ R3, n̂ is a skew-

symmetric matrix defined as below:

n̂ =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 . (4.5)

Equation (4.4) shows that Rx has one degree of freedom which is determined

by the angle β. Therefore, two relative arm motions are needed to generate

two (Ai, Bi) data pairs in order to calculate the unique solution of X. Given two

pairs of As and Bs, two equations can be obtained as:

A1X = XB1 (4.6a)

A2X = XB2. (4.6b)

Instead of giving a closed-form solution, RX is calculated by solving for β in

Eq. (4.7), which is formulated as a system of linear equations obtained by

equating two instances of Eq. (4.4) obtained by substituting in (A1, B1) and

(A2, B2):

CY = D. (4.7)
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In Eq. (4.7), Y =
(

cos(β1), sin(β1), cos(β2), sin(β2)
)T where β1, β2 correspond

to Eq. (4.6a) and Eq. (4.6b) respectively, C ∈ R9×4 and D ∈ R9×1 are determined

from nA1, nB1, nA2, and nB2. The explicit expressions for C and D are given in

Eq. (44) of [67].

Similarly, with known RX , tx can be calculated using the least squares

method: ( RA1 − I3

RA2 − I3

)
tX =

( RXtB1 − tA1

RXtB2 − tA2

)
. (4.8)

This is not a closed-form solution and it is constrained to the case where only

two data pairs are provided.

4.2.2 Lie Group Method

The Lie Group method [56] by Park and Martin is the first method to solve

the AX = XB problem from the perspective of Lie groups. It uses the axes of

rotation of Ai and Bi to construct RX and gives both the closed-form solution for

the no-noise case and the numerical solution for multiple noisy (Ai, Bi) pairs.

4.2.2.1 Closed-Form Solution with Two Exact Pairs

The closed-form solution for RX is as follows:

RX = AB−1 (4.9)
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where

A = (nA1 ,nA2 ,nA1 × nA2) ∈ R3×3

B = (nB1 ,nB2 ,nB1 × nB2) ∈ R3×3

n̂A1 = log(RAi
)/‖ log∨(RAi

)‖

n̂B1 = log(RBi
)/‖ log∨(RBi

)‖

The solution for RX is uniquely determined given two pairs of (Ai, Bi), and the

solution for tX can be obtained using Eq. (4.8) once RX is obtained.

4.2.2.2 Estimation of X Using Multiple Pairs with Noise

When there are multiple pairs of (Ai, Bi) with noise, rotation matrix RX

is solved for first and then the translation vector tx is obtained using a least

squares method given known RX . The closed-form expression for RX is as fol-

lows:

RX = (MTM)−
1
2MT (4.10)

where

M =
∑n

i=1 nBi
nTAi

.

Note that i ≥ 3 is a necessary condition for M to be a non-singular matrix, but

it does not guarantee M to be nonsingular. Theoretically, the Lie group method
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is more likely to fail when the number of data pairs is small, i.e., close to 3

pairs, while in real application, failure is rarely seen as long as the data pairs

are not specially chosen such that M is degenerate. Given known RX , tX can

be calculated using the least squares method shown in Eq. (4.11):

tx = (CTC)−1CTd (4.11)

where

C =



I3 −RA1

I3 −RA2

.

.

.

I3 −RAn



d =



tA1 −RXtB1

tA2 −RXtB2

.

.

.

tAn −RXtBn



.

4.2.3 Quaternion Method

The Quaternion method proposed by Chou and Kamel [57, 68] uses unit

quaternions to transform the rotation parts of AiX = XBi (i = 1,2) into two

linear systems. Then a singular value decomposition (SVD) is performed to ob-

tain a closed-form solution for RX . In order to estimate X given multiple pairs

of (Ai, Bi) with noise, Horaud and Dornaika [58] cast the problem into a non-
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linear optimization one. Two different approaches are discussed: (1) estimate

the rotation matrix RX by minimizing an objective function, and solve for the

translation tX using a least squares method separately and (2) estimate RX

and tX simultaneously by minimizing an objective function that incorporates

both the rotational and translational information. Method (1) turns out to have

a closed-form solution for the unit quaternion qX representing the rotation RX ,

while method (2) is a nonlinear optimization problem which requires an initial

guess and will be discussed in Section 4.2.6.

4.2.3.1 Closed Form Solution with Two Exact Pairs

First, the rotation equation in Eq. (4.2) is transformed into the equation of

quaternion multiplication as below:

RARX = RXRB ⇔ qA � qX = qX � qB (4.12)

where qA, qB and qX are unit quaternions that represent the rotation parts of

matrices A, B and X, and � denotes quaternion multiplication.

Given two quaternions qα =
(
α0, α

T
)T

= (α0, α1, α2, α3)
T and qβ =

(
β0, β

T
)T

=
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(β0, β1, β2, β3)
T , quaternion multiplication � is defined as:

qα � qβ =

 α0β0 − αTβ

α0β + β0α + α̃β

 . (4.13)

α0 is called the scalar component and α is the vector component of the quater-

nion qα. In order to solve for qX , the quaternion equation is transformed into:

EqX = 0 (4.14)

where E ∈ R4×4 is obtained by grouping qA and qB together, and qX ∈ R4 is the

vector representation of the unit quaternion qX .

It turns out that the unit quaternion qX which represents the rotation part

of X can be written as:

qX = V2y2. (4.15)

To obtain the matrix V2 and vector y2, E is first written as E = sin(θA|B/2)E0

with θA|B = θA = θB, which is the constraint that the corresponding transforma-

tions Ai and Bi should have the same angle of rotation. Next, the SVD of M is

computed as E0 = UΣV T where V = (V1, V2), V1 ∈ R4×2, V2 ∈ R4×2, U ∈ R4×4 and

Σ is a diagonal matrix. Vector y2 is obtained by calculating y = V Tqx where

y = (yT
1 ,y

T
2 )T, y1 ∈ R2×1 and y2 ∈ R2×1. Their expressions are also outlined as
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follows:

E = sin(θA|B/2)E0

M = UΣV T

V = (V1, V2)

y = V Tqx

y = (yT
1 ,y

T
2 )T.

The translation vector tx satisfies the following equation:

(
cot(

θA
2

)n̂A(RA − I3) + RA + I3
)
tx = nAz (4.16)

where z ∈ R is arbitrary. A unique solution can be calculated using Eq. (4.15)

and Eq. (4.16) given two nondegenerate pairs of (Ai, Bi).

4.2.3.2 Estimation of X Using Multiple Pairs With Noise

As shown in [58], in the case where there are n pairs of (Ai, Bi), the prob-

lem of recovering RX is converted into minimizing the following error objective

function:

f(RX) =
∑n

i=1 ||nAi
− qX � nBi � q̄X ||2

= qX
T K̃qX

(4.17)
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where nAi
=
(
0,nAi

T
)T and nBi

=
(
0,nBi

T
)T . K̃ =

∑n
i=1 K̃i and K̃i ∈ R4×4

is a symmetric positive definite matrix determined by nAi
and nBi

; q̄X is the

conjugate of qX where qX � q̄X = 1.

To minimize Eq. (4.17) under the constraint that qX is a unit quaternion,

the Lagrangian multiplier is introduced as:

min
q
f = min

q
(qX

T K̃qX + λ(1− qX
TqX)). (4.18)

Differentiating the error function with respect to qX , the 1st order necessary

optimality condition is obtained as:

K̃qX = λqX . (4.19)

It can be shown that the unit quaternion qX that minimizes f is the eigen-

vector of K̃ associated with its smallest positive eigenvalue. After recovering

qX (or equivalently RX), tX can be recovered using the least square techniques

introduced in previous methods.

4.2.4 Dual Quaternion Method

The dual quaternion method proposed by Daniilidis and Bayro-Corrochano

[72] (Daniilidis [59]) treats the rotation and translation parts of the matrix X
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in a unified way and facilitates a new simultaneous solution of X using SVD.

To begin with, Eq. (4.1) is transformed into an equation of dual quaternions:

AX = XB ⇔ ǎ = q̌X�̂b̌�̂¯̌qX (4.20)

where ǎ, b̌ and q̌ are the dual quaternions that represent matrices A, B and X,

and ¯̌q is the conjugate of q̌.

The dual quaternion that corresponds to a 4×4 rigid transformation matrix

is defined as follows:

q̌X =

(
cos( θ+εd

2
)

sin( θ+εd
2

)(l + εm)

)
(4.21)

where θ, d, l and m are screw parameters and ε2 = 0. θ is the rotation angle,

d is the pitch,~l is the direction of the screw, and m = p × l is the line moment

where p is a point on the line. The six tuple (l,m) defines a line in 3-D space.

Furthermore, by expanding the dual terms in q̌X , Eq. (4.21) can also be written

as:

q̌X = qX + εq′X . (4.22)

Both q and q′ are quaternions satisfying the following constraints:

qTXqX = 1 and qTXq
′
X = 0 (4.23)
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where qX and q′X are the vector representations of qX and q′X . Then equation

AiX = XBi can be converted into the form below:

Si

( qX

q′X

)
︸ ︷︷ ︸

x

= 0 (4.24)

where

Si =

( a− b (a + b)∧ 03×1 03×3

a′ − b′ (a′ + b′)∧ a− b (a + b)∧

)
∈ R6×8. (4.25)

The notation for x here will be also used in Section 4.2.5. To maintain the

consistency of notation throughout the chapter as well as preserve the original

notation in [72], for a vector v ∈ R3×1, v∧ is the same as ṽ which maps a vector

into the corresponding skew-symmetric matrix. a′ =
1

2
tX × a and a is the

vector part of qX . Similarly, b is the vector part of q′. After concatenating Si,

the following matrix T can be obtained and used to solve for X:

T =
(
ST1 ST2 ... STn

)T
. (4.26)

By calculating the SVD of T = UΣV T , the dual quaternion for matrix X can be

expressed as a linear combination of the last two right-singular vectors (v7, v8)
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of matrix T , which are the last two columns of matrix V , as shown below:

( qX

q′X

)
= λ1v7 + λ2v8 ∈ R8 where λ1, λ2 ∈ R. (4.27)

Different from the quaternion method in 4.2.3.1, the dual quaternion method

solves the rotational part and translational part in a united way, and it con-

tains all the information to reconstruct matrix X. However, it does not use all

of the available information, only the imaginary parts of ǎ and b̌. Despite the

advantages of the dual quaternion method, its major drawback is the need to

filter the data pairs to ensure appropriate solutions when there is noise on Ai

and Bi.

4.2.5 Kronecker Product Method

Inspired by the well known Sylvester equation ( AX + XB = C ) in linear

systems, Andreff et al. [60] proposed the Kronecker method which converts

Eq. (4.1) into the form of Kronecker products [60]:

AX = XB ⇔

(
I9 −RB ⊗RA 09×3

tTB ⊗ I3 I3 −RA

)
︸ ︷︷ ︸

C

(
vec(RX)

tX

)
︸ ︷︷ ︸

x

=

(
09

tA

)
︸ ︷︷ ︸

d

.
(4.28)
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where C, d,x will be referred to in Section 4.2.6. Given multiple pairs of As and

Bs with noise, the Kronecker product is reformulated as:



I9 −RB1 ⊗RA1

I9 −RB2 ⊗RA2

...

I9 −RBn ⊗RAn


vec(RX) = 09n×1, (4.29)

and 

I3 −RA1

I3 −RA2

...

I3 −RAn


tX =



tA1 −RXtB1

tA2 −RXtB2

...

tAn −RXtBn


. (4.30)

The vectorized version ofRX obtained from Eq. (4.29) is not an element of SO(3)

and orthogonalization on RX is required to obtain a rotation matrix [77] :

RXe = RX(RT
XRX)−1/2 (4.31)

where RXe denotes the orthogonalized RX .

The orthogonalized matrix RXe is further normalized as:

RXn =
sign(det(RXe))

|det(RXe)|
1
3

RXe (4.32)
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where RXn is the normalized matrix of RXe. After getting the estimation of

RX , a least squares method is implemented on Eq. (4.30) to recover tX . One

advantage of the Kronecker product method is its capability of dealing with

small motions, because the associated orthogonal matrix RXn is always defined,

while the rotation can be ill-defined when using the axis-angle representation.

Moreover, the linear system can also be used to analyze the recoverable infor-

mation in X based on the available type and number of motions. Details are

included in Section 4.3. In addition, an on-line hand-eye calibration method

is developed for an unknown scene based on the above algorithm, where the

camera translations are estimated up to a scaling factor.

4.2.6 Optimization Methods

Different optimization methods have been proposed in the literature and

most of them are built upon the various parameterizations of the AX = XB

equations mentioned previously.

4.2.6.1 Quaternion Based Simultaneous Approach

When trying to solve for RX and tX simultaneously, it is impossible to find

a closed-form solution. Horaud and Dornaika [58] presented an objective func-
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tion for minimization, which is a sum of squares of nonlinear functions as:

f(qX , tX) = λ1

n∑
i=1

||vec(qX � tBi
� q̄X)− (RAi

− I)tX − tAi
||2

+λ2

n∑
i=1

||nAi
− qX � nBi

� q̄X ||2 + λ3(1− qTXqX)2
(4.33)

where λ1, λ2, λ3 ∈ R. Note that vec() here represents the vector part of a quater-

nion such that vec(q) ∈ R3. The third term is a penalty function where the

modulus of q will approach 1 when λ3 becomes large. This is a non-convex op-

timization problem which requires a good initial guess due to the existence of

multiple local minima. However, the result can be more accurate than the rest

of the solvers for certain motion pairs when the initial guess is “good”.

4.2.6.2 Polynomial Global Optimization

Heller et al. [22] developed a polynomial global optimization method which

does not require an initial estimate and is also globally optimal in the L2-norm

sense. Defining a certain parameterization of X ∈ SE(3) as P (X), the previous

minimization problem Eq. (4.3) is formulated as:

min
X∈SE(3)

n∑
i=1

||AiX −XBi||2 ⇔

minimize f(P (X))

subject to c(P (X)) ≥ 0

(4.34)
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where f(X) is the converted multivariate polynomial function using the convex

linear matrix inequality (LMI) relaxations technique [78].

WhenRX is parameterized using the orthonormal basis asRX(u,v) = (u,v,u×

v) where v,u ∈ R3, then Eq. (4.34) becomes:

minimize f1(u,v, tX) =

n∑
i=1

||AiX(u,v, tX)−X(u,v, tX)Bi||2

subject to uTu = 1,vTv = 1,uTv = 0.

(4.35)

Similarly, using the quaternion representation of RX , Eq. (4.34) becomes:

minimize f2(qX , tX) =

n∑
i=1

||AiX(qX , tX)−X(qX , tX)Bi||2

subject to qTXqX = 1, qX1 ≥ 0.

(4.36)

If A, B and X are parameterized using dual the quaternion representation,

then

minimize f3(q̌X) =

n∑
i=1

||q̌A�̂q̌X − q̌X�̂q̌B||2

subject to qTXqX = 1, qX1 ≥ 0

qX1qX5 + qX2qX6 + qX3qX7 + qX4qX8 = 0.

(4.37)
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As pointed out in [22], the polynomial global optimization method as described

in Eq. (4.37) can give better solutions than Park [56], Eq. (4.33), Eq. (4.35)

and Eq. (4.36). For those who are also interested in robot-world and hand-eye

calibration, several solvers for AX = Y B using the LMI technique are also

given; however, they fail to give better results than the traditional methods.

4.2.6.3 Convex Optimization

Based on different ways of formulating the rotation part of the rigid body

transformation, Zhao [62] gives two formulations that use a L∞ optimization

technique. L∞ optimization is the minimax problem:

min
x

max
i
fi(x) i = 1,2, ...,n (4.38)

where x represents all the unknown transformation parameters and fi(x) is

the error function corresponding to (Ai, Bi). Eq. (4.38) can be converted into

a convex optimization problem if fi(x) is a quasi-convex function on a convex

domain on which it is to be minimized.

Using the Kronecker formulation as in Eq. (4.28) and introducing an addi-
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tional variable δ, the equivalent form of the L∞ optimization problem is:

min
δ,x

δ

subject to ||Cix− di||2 ≤ δ

where i = 1, 2, ..., n.

(4.39)

The matrix Ci, vector x, and di correspond to those in Eq. (4.28). Above is

a convex optimization problem that can be solved using a second-order cone

program, which can be solved using toolboxes available online.

When the AX = XB problem is formulated as a dual quaternion represen-

tation as in Eq. (4.24), the equivalent L∞ optimization problem can be written

as:

min
δ,x

δ

subject to ||Six||2 ≤ δ

where i = 1, 2, ..., n with Dx ≥ f .

(4.40)

The matrix Si and vector x correspond to those in Eq. (4.24). The inequality

constraint Dx ≥ f is added manually in order to prevent x from reaching zero,

which is a meaningless solution for the program. x must also satisfy two addi-

tional constraints: ‖qX‖ = 1 and ‖q′X‖ = 1.

The proposed methods need no initial guess and are less time consuming
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compared to the simultaneous optimization method given in Eq. (4.33). How-

ever, the errors for both of the convex optimization methods are larger than the

latter.

4.2.7 Gradient Descent Method

Except for the Kronecker product method, all the methods mentioned above

are only able to solve for matrix X offline, which means {Ai, Bi} data pairs

should be fully collected before being put into the algorithm. The gradient

descent method [76] by Ackerman et al. is an online sensor calibration method

which uses a gradient descent optimization on the Euclidean group (SE(3))

given an appropriate cost function.

To begin, define X ∈ se(3) as the Lie algebra corresponding to G = SE(3),

and let f : G → R be an analytic function and g ∈ G. As defined in [26], the

concept of directional derivatives in Rn is extended to functions on a Lie group

as:

(X̂ rf)(g)
.
=

d

dt
f(g ◦ exp(tX ))

∣∣∣∣
t=0

. (4.41)

Note that t is just a scalar denoting the time, while t represents the translation

part of a homogeneous transformation. Eq. (4.41) is the “right” Lie derivative

and the “left” Lie derivative can be defined in a similar form. A gradient on

SE(3) is then defined using the right Lie derivative with the “natural” basis of
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Lie algebra {Ei} where i = 1, 2, ..., 6. Therefore, the gradient of the function on

Lie group f(g) is as follows:

∇f(g) =



d
dt
f(g ◦ exp(tE1))|t=0

d
dt
f(g ◦ exp(tE2))|t=0

...

d
dt
f(g ◦ exp(tE6))|t=0


. (4.42)

In order to update g, the rigid body velocity is introduced where V r
g = g−1ġ,

and the update law is written as below:

gs+1 = gsexp(∆tV r
g ) (4.43)

where ts+1 = ts + ∆t is the discrete time step corresponding to gs+1. To prevent

steps from becoming too small, the update law of gs is modified by defining V r
g

as:

V r
g = g−1ġ = −α∇̂f(g). (4.44)

where α is a scaling factor. After choosing the cost function as:

C(X) =
n∑
i=1

||AiX −XBi|| (4.45)

70



CHAPTER 4. ROBOT AND SENSOR CALIBRATION

X can be optimized using Eq. (4.44). The gradient descent method updates the

calibrations parameters online based on new incoming data. The initial guess

of X will converge to the true X; however, the rate of convergence depends on

how “good” the initial guesses are.

4.2.8 Batch Method

This section presents a probabilistic method [64] by Ackerman et al. to solve

for X in the absence of a priori knowledge of the correspondence between the

exact sets of measurements A = {Ai} and B = {Bj}. In other words, the sets A

and B each can be given as unordered “batches” without knowing how each Ai

matches to a specific Bj.

A commonality of all the methods in the previous sections is that exact

knowledge of the correspondence between {Ai} and {Bj} is assumed; however,

this is not always the case. There are many instances in the literature when

the sensor data used in calibration becomes “unsynchronized”. Different at-

tempts have been implemented to solve this problem, such as time stamping

the data, developing dedicated software modules for syncing the data, and an-

alyzing components of the sensor data stream to determine a correlation [8], to

varying effects. The Batch method bypasses these issues without recomputing,

correspondence. By modeling the set of A’s and B’s as probability distributions

on SE(3), the data can be taken as an unordered, uncorrelated “batch” and a
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solution for X can be generated.

In this section, part of the mathematical framework for Batch method is

introduced, some of which will be revised and used for other calibration solvers

in later chapters. In the Batch method, two key equations, or the equivalent

probabilistic equations, are obtained for solving X. The first equation describes

the relationship among the means of {Ai}, {Bj} and X. The second equation

reflects the relationship among the covariance matrices of {Ai} & {Bj} and X.

4.2.8.1 Mathematical Framework

Given a set of data pairs (Ai, Bi) ∈ SE(3) × SE(3) with correspondence, the

following is true:

AiX = XBi, (4.46)

where i = 1, 2, ..., n. If we use the probability theory on SE(3), Eq. (4.46) can be

converted into:

(δAi
∗ δX)(H) = (δX ∗ δBi

)(H). (4.47)

Note that convolution is a linear operation on functions, therefore n in-

stances of Eq.(4.47) can be added into a single equation as:

(fA ∗ δX)(H) = (δX ∗ fB)(H), (4.48)
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where

fA(H) =
1

n

n∑
i=1

δ(A−1i H) and fB(H) =
1

n

n∑
i=1

δ(B−1i H). (4.49)

The above functions can be normalized to be probability densities:

∫
SE(3)

fA(H)dH =

∫
SE(3)

fB(H)dH = 1. (4.50)

If we let the mean M ∈ SE(3) and covariance Σ ∈ R6×6 of a probability

density f(H) satisfy:

∫
SE(3)

log(M−1H)f(H)dH = O (4.51a)

Σ =

∫
SE(3)

log∨(M−1H)[log∨(M−1H)]Tf(H)dH. (4.51b)

where O is a 6 by 6 matrix with all elements equal to zero. Then for a PDF

fA(H) as given in Eq.(4.49), the discrete version of the mean MA and covariance

ΣA will be:

n∑
i=1

log(M−1
A Ai) = O (4.52a)

ΣA =
1

n

n∑
i=1

log∨(M−1
A Ai)[log∨(M−1

A Ai)]
T . (4.52b)

In [29], f1 and f2 are assumed to be highly focused functions so that the
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mean and covariance for the convolution can be closely approximated as:

M1∗2 = M1M2 (4.53a)

Σ1∗2 = Ad(M−1
2 ) Σ1Ad

T (M−1
2 ) + Σ2, (4.53b)

where

Ad(H) =

 R O

x̂R R

 . (4.54)

Employing the fact that the mean of δX(H) is MX = X and the covariance

ΣX = O6×6 is a zero matrix, Eq. (4.53a) and Eq. (4.53b) give two key equations

in the Batch method as:

MAX = XMB (4.55)

and

Ad(X−1) ΣAAd
T (X−1) = ΣB. (4.56)

[65] notes that there are two degrees of freedom in Eq. (4.55), so ΣA and ΣB

are decomposed to provide the required constraints:

Σi =

 Σ1
i Σ2

i

Σ3
i Σ4

i

 , (4.57)

where Σ3
i = (Σ2

i )
T and the subscript i can be either A or B. We can extract the
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first two blocks of Eq. (4.56) and get:

Σ1
MB

= RT
XΣ1

MA
RX (4.58a)

Σ2
MB

= RT
XΣ1

MA
RX(R̂T

Xtx) + RT
XΣ2

MA
RX . (4.58b)

As described in [65], a unique RX can be obtained by calculating the eigen-

decomposition of Σ1
MA

and Σ1
MB

as Σi = QiΛQ
T
i , where Qi is the square matrix

whose ith column is the eigenvector of Σi and Λ is the diagonal matrix with

corresponding eigenvalues as diagonal entries. After further derivations, the

mean of the rotation component of X can be written as:

RX = QMA
QQT

MB
, (4.59)

where Q is a diagonal matrix and there exist four candidates of Q in total. The

optimal solution of RX can be picked by minimizing a cost function that con-

tains the constraint information from Eq. (4.55). The translation component

tX can be uniquely determined using Eq. (4.58b)

4.3 Data Selection and Error Metrics

In this section, a review is given on the existing techniques for data selec-

tion for AX = XB problem. When performing hand-eye calibration in experi-
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ments, the accuracy of the calibrated X is highly dependent on the data that

is obtained in the process. Tsai and Lenz [7] proposed several principles on

designing the movement of the robot. This is useful when the motion planning

under these constraints is practical. However, data selection has to be consid-

ered when such movement is not applicable, such as when there is a lack of

free space or a hand-held sensor is used. In this section, several principles and

methods for data selection are reviewed. In addition, different error metrics

are also discussed to give a more complete picture of the AX = XB problem.

Some of the data selection techniques and error metrics will be used in the

novel calibration solvers to be presented in later chapters.

4.3.1 Data Selection

Selection of well defined (Ai, Bi) is very important for the AX = XB solvers.

Data selection methods for off-line application have been proposed in [79–81],

and corresponding selection techniques for on-line solvers are introduced in

[82, 83]. For probabilistic methods, data sets {Ai} and {Bi} must be highly

concentrated, which means small and relative motions are preferable [64]. This

is opposite to the data selection criterion of other non-probabilistic approaches.

To determine the hand-eye transformation, at least 2 non-parallel rota-

tion axes from the data pairs are needed (which is also referred at the non-

parallelism criterion), and further data selection algorithms are all built on
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top of this.

In the error analysis of [7], four observations are given to show the relation-

ships between the errors in rotation and translation and the features of the

robot motions. In addition, seven steps are suggested to improve the calibra-

tion accuracy. Shi et al. [82] developed a motion selection algorithm based on

three out of the four observations in [7]. However, the thresholds in [82] are

chosen in a heuristic manner. To fix this problem, Zhang et al. [83] proposed

an adaptive selection method which can update the thresholds online. All of

the above approaches share some common standards such that small relative

rotations between (Ai, Bi) and (Ai+1, Bi+1) should be avoided, and the rotation

angles for both {Ai} and {Bi} should be large enough to avoid the singularity

of the representation. The Kronecker product method, however, has a toler-

ance on small robot motions as pointed out in Section 4.2.5. It also offers an

algebraic analysis to show what information of X can be obtained using certain

types and numbers of motions. Interesting results are: (1) three independent

pure translations can fully define RX but not tX ; (2) with two or more indepen-

dent pure rotations, both RX and tX can be recovered. A more detailed sum-

mary can be seen in Table 1 of [60]. Schmidt et al. [9] discussed data selection

for the dual quaternion hand-eye calibration algorithm based on a RANSAC

approach for filtering, which shows that the dual quaternion method can yield

a better X after data selection; without filtering the method can either fail or
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perform worse. However, the computation of all possible relative movements

from the data set results in a long computational time.

For a set of continuous robot motions, a sequence of images or sensor recorded

information will be obtained. But due to the small differences between consec-

utive images or sensor recordings, it is often undesirable to process the data in

the temporal order because this can yield high errors. Schmidt et al. [79] then

proposed a vector quantization based data selection technique which selects a

globally consistent set of motions that optimizes the non-parallelism criterion.

The main idea is to select a subset of the given rotation axes of (Ai, Bi) using

clustering algorithms. It is shown that compared to the above two approaches,

the algorithm presented is both fast and accurate. Ackerman et al. [81] also

proposed a method which uses the Euclidean group invariants in the structure

of {Ai} and {Bi} to realign asynchronous data streams.

Take the ultrasound sensor calibration in Fig. (4.1) as an example. The data

stream {Ai} is calculated from the joint angles of the robot arm, which is very

accurate due to the high sensitivity of the encoder on each motor. However,

due to the sensing accuracy of 2D US probe, {Bi} obtained from the ultrasound

sensor might not be as accurate and sometimes one can get Bk that is far from

the “correct” measurement. In order to get X that is closer to the ground truth,

the above data selection algorithms can be used to detect the mismatched data

pair (Ak, Bk) caused by the big measurement noise on Bk.
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4.3.2 Calibration Verification

Normally, the verification of a calibration algorithm consists of two parts:

synthetic data and real experiments. For the verification with synthetic data,

ground truth Xtrue is usually given in advance. The data stream {Ai} (or

{Bi}) then is generated according to a predetermined trajectory or distribu-

tion on SE(3) and the other stream is obtained by Bi = X−1trueAiXtrue (or Ai =

XtrueBiX
−1
true). Till this point, both {Ai} and {Bi} are noise-free which can be

regarded as the exact sensor measurements in an ideal experiment. However,

different types and levels of noise exist in real experiments, and noise is usu-

ally artificially applied onto either one or both of the data streams. There are a

lot of ways to apply noise onto the data stream and one can choose based on the

properties of the sensor measurement in the specific experiment setup. At last,

noisy data streams are fed into the calibration solvers to compute Xcalc, which

will be compared with Xtrue using error metrics. The verification of calibration

solver with synthetic data is relatively consistent in the literature, because one

can artificially provide the ground truthXtrue. However, in the real experiment,

it is quite often impossible to get the ground truth of X and the validation pro-

cess usually uses the calibrated Xcalc for other tasks, e.g. 3D reconstruction,

to evaluate its accuracy. The validation procedure in real experiments varies

from platform to platform.
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4.3.3 Error Metrics

There are multiple ways to define the errors of rigid body transformations,

and some methods rely heavily on the metric that is chosen [84]. One approach

is to measure the errors of Rx and tX simultaneously which is rarely seen in

more recent literature. The other approach is to measure the rotation error

and translation error separately.

4.3.3.1 Metrics for Rotation and Translation Errors

Various metrics for rotation error have been used in the literature. In [7]

and [58], the matrix error metric is defined as:

Erot
.
= ‖RXtrue −RXcalc

‖. (4.60)

However, this is less preferable because rotation matrices lie in SO(3) and the

deduction operation is not defined for SO(3). In [59] and [60], the quaternion

error metric is used as:

Erot
.
= ‖qXtrue − qXcalc

‖. (4.61)

As noted in [72], ‖RXtrue − RXcalc
‖F is 2

√
2 times larger than ‖qXtrue − qXcalc

‖

so it is important to maintain a consistent error metric especially for result

comparisons. Another rotational error metric is to calculate the norm of the
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relative rotation between Xtrue and Xcalc as:

Erot
.
= ‖RT

Xtrue
RXcalc

‖. (4.62)

In [64], the Lie algebra error metric is defined for the relative rotationRT
Xtrue

RXcalc

as:

Erot
.
= ‖ log∨(RT

Xtrue
RXcalc

)‖. (4.63)

This is also the metric for measuring the rotation errors in later chapters.

Metrics for the translation error are relatively simple because translation

lies in Euclidean space. A common method is to use the relative translation

error to eliminate the influence of the translation unit:

Etran
.
=
‖tXtrue − tXcalc

‖2
‖tXtrue‖2

. (4.64)

Conventionally, multiple trials are performed at each fixed noise level in nu-

merical simulation, and the “averaged” errors in rotation and translation are

defined in [58] as:

erot
.
=

√√√√ 1

N

N∑
i=1

E2
rot, (4.65)

etran
.
=

√√√√ 1

N

N∑
i=1

E2
tran. (4.66)

It should be noted due to the diversity of rotation error metrics, it is yet to
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be seen which metric is better or whether different metrics make a difference

at all.

4.4 Conclusion

In this chapter, the AX = XB formulation of the sensor calibration problem

is examined, which is widely used in head-eye calibration. A review of some

of the most influential and effective methods was presented and their positive

and negative traits were discussed. For the various AX = XB solvers, the

focus is put on the case where there is noise on the incoming sensor data, and

therefore multiple sensor readings are needed. It was clear that each algorithm

has strengths and weaknesses in different contexts, and it is important to use

the appropriate method for different circumstances.

In addition to measurement error contributing to noise, it was emphasized

that the sensor data streams containing the A’s and B’s may be present at dif-

ferent sampling rates, may be asynchronous, and/or each stream may contain

gaps in information. Therefore, a probabilistic method is reviewed in detail

which is used for calculating the calibration transformation that works for data

without any a priori knowledge of the correspondence between the A’s and B’s.

Data selection is of critical importance to AX = XB solvers. Depending on

the quality of the data pairs, the usage of data selection techniques can either
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greatly improve the final result or prevent the solver from failing.
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Chapter 5

Probabilistic Approaches

Towards AX = XB Hand-eye

Calibration

Many AX = XB solvers have been reviewed in Chapter 4 in terms of both

the traditional methods and probabilistic methods. Similar to the fact that the

performance of traditional solvers can be influenced by the trajectory of the

robot motions, it is presented in this chapter that the probabilistic approach,

namely the Batch method, can perform up to different levels of accuracy given

{A} and {B} samples with different distributions. There are several ways of

defining the mean and covariance for a set of SE(3) matrices, and they play an

important role for probabilistic approaches in general. In this chapter, two new
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means are defined for SE(3) based on the 1st order and 2nd order approxima-

tions of Eq. 4.51a. It is shown that instead of being just the approximations of

original mean, the new mean definitions can boost the accuracy of the Batch

method when solving for the unknown X. The rest of the chapter is orga-

nized as follows. In Section 5.1, a brief introduction is given to the AX = XB

problem. In Section 5.2, the motivation for deriving the 1st and 2nd order mean

approximations is given. Section 5.3 and Section 5.4 present the detailed math-

ematical formulations for the 1st order mean and 2nd order mean respectively.

In Section 5.5, simulation experiments are performed among the Kronecker

product method, Batch method, and two new Batch methods to show both the

effectiveness and the accuracy of the latter. Finally, conclusions are given in

Section 5.6.

5.1 Introduction

Fig. (5.1) shows that a UR5 robot uses a phantom to calibrate the relative

transformation between the ultrasound probe and the end-effector of the robot.

X is the unknown rigid body transformation calculated by solving AX = XB.

It is well known that for non-probabilistic methods, at least two exact data

pairs (A1, B1) and (B2, B2) are required to recover a unique X. For probabilis-

tic approaches such as the Batch method, no correspondence between A and B
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Figure 5.1: Application of the AX = XB problem in the extrinsic calibration
of the ultrasound probe with respect to the UR5 robot arm. The white squarish
object in the middle represents the ultrasound calibration phantom.

is needed and a comparison between the Batch method and Kronecker product

method in [64] shows its extraordinary capability of handling data sets without

correspondence. However, as claimed in [64], the Batch method has restrictions

on the data set that can be used which limits its scope of application. In ad-

dition, the definition of mean on SE(3) plays an important role in the Batch

method, and the current definition can’t provide the optimal “average” of a set

rigid body transformations for the use of AX = XB problem. In this chapter,

it is shown that this restriction can be alleviated and by using new definitions,

the accuracy of the calibrated X can be improved significantly.
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5.2 Motivation

Analogous to non-probabilistic approaches which require data selection to

filter out ill-conditioned data pairs, the Batch method has restrictions on the

data set {Ai} and {Bj} that can be used. We propose two new probabilistic ap-

proaches built on top of the Batch method by giving new definitions of the mean

on SE(3), which alleviate the restrictions on the data set and significantly im-

prove the calibration accuracy of X.

To determine the mean and covariance of the convolution of two highly fo-

cused PDFs as in [29], the Baker-Campbell-Hausdorff (BCH) formula is used:

log(eXeY ) = X + Y︸ ︷︷ ︸
0th order

+
1

2
[X, Y ]︸ ︷︷ ︸

1st order

+h.o.t. (5.1)

where h.o.t. stands for the 2nd and higher order terms. If X and Y are further

constrained to be small so that ‖X‖ � 1 and ‖Y ‖ � 1, then the first order

approximation of Eq. (5.1) can be used to derive Eq. (4.53a) and Eq. (4.53b).

In the AX = XB context, eX and eY represent Ai and Bi respectively. This

derivation constrains the distribution function fA and fB to be highly focused.

Moreover, the current definition of mean on SE(3) as in Eq.(4.52a) can’t always

reflect the desired MA and MB in the probabilistic AX = XB context. It will

be shown that two new ways of defining the mean can be used to augment

the existing Batch method which can significantly improve the accuracy of X
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depending on the distributions of {Ai} and {Bj}. In later sections, we will call

the original Batch method as the “Batch method” and the two augmented Batch

methods as the “Batch1” and “Batch2” methods.

Then two new definitions of the mean on SE(3) will be given based on the

1st order and 2nd order approximation of of Eq. (4.51a). The new means for

{Ai} and {Bj}, and the corresponding covariance matrices ΣA and ΣB, can be

directly incorporated into the Batch method to form the Batch1 and Batch2

methods.

5.2.1 Conditions for the Key Equations

It is shown in [16] that {Ai} and {Bj} don’t have to highly concentrated

in order for the key equations to hold. This result broadens the types of data

sets {Ai} and {Bj} that can be used for the Batch method. However, the mean

definition as in Eq.(4.51a) doesn’t always provide the desired MA and MB in

terms of minimizing C1(RX) = ||RMA
RX − RXRMB

|| or C2(tX) = ||RMA
tX +

tMA
− RMX

tMB
− tMB

||, which are simply the error metrics for the rotational

and translational components of Eq. (4.55). To find a better definition of mean

under the “AX = XB” context, we start by assuming M−1H is small such that

‖M−1H − I‖ � 1. This is different from the assumption of the Batch method

that H is small enough such that ‖log(H)‖ � 1. From there, the 1st order and

2nd order approximations of the mean in Eq.(4.51a) can be achieved and new
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definitions are proposed accordingly. As will be shown in section IV, the new

definitions are more than just the approximations of the original mean.

Note that though Eq. (4.51a) and Eq. (4.51b) have a similar form, they are

not necessarily bounded together. Equivalently, Eq. (4.51b) will be valid as long

as the mean M is given, which does not have to be defined as in Eq. (4.51a).

Therefore, it is appropriate to use a different mean while using the same defi-

nition of the covariance. One thing to be noted is that the proof of Eq. (4.53b)

does not depend on the definition of mean, but only on the 1st order approxi-

mation of BCH. Therefore, Eq. (4.56) will still be valid when we use the new

definitions of mean. As for Eq. (4.55), the 1st or 2nd order approximations can

be made on log(XM−1
B X−1K) in the previous proof by treating XM−1

B X−1 as a

whole. The same result can be obtained by following the similar procedure in

the definitions as below, which will not be mentioned in detail here.

Batch1 and Batch2 methods simply replace the old means of {Ai} and {Bj}

with new ones, obtain the corresponding covariances in terms of the new means,

and use the two key equations to solve for X. For the two different kinds of dis-

tributions of {Ai} and {Bj} that are tested, Batch1 and Batch2 methods are

able to recover a much more accurate RX in a consistent manner, and recover

tX to a certain level of accuracy depending on the type of distribution.
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5.3 Mean Based on the 1st Order Approx-

imation

Consider the Taylor expansion of the matrix logarithm described as:

log(I +X) = X − 1

2
X2 +

1

3
X3 − ... (5.2)

If ‖M−1H− I‖ � 1 and we retain the 1st order approximation of Eq.(5.2), it can

be written as:

log(M−1H) = log(I + (M−1H − I)) ≈
(
M−1H − I

)
. (5.3)

The first order approximation of Eq.(4.51a) is:

∫
SE(3)

(M−1H − I)f(H)dH ≈ O. (5.4)

Note that f(H) is a normalized probability density such that
∫
SE(3)

f(H)dH = 1,

so:

M−1
∫
SE(3)

Hf(H)dH ≈ I. (5.5)
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Define the first order approximation of M ∈ R4×4 as M̂ :

M̂
.
=

∫
SE(3)

Hf(H)dH /∈ SE(3). (5.6)

Take {Ai} for an example, the corresponding discrete version of M̂ will be:

M̂A
.
=

n∑
i=1

Ai

(
1

n

n∑
j=1

δ(A−1j Ai)

)
=

1

n

n∑
i=1

Ai /∈ SE(3). (5.7)

Note that though Eq.(5.6) and Eq.(5.7) are obtained based on the 1st order

approximation of the matrix logarithm, M̂ is not the 1st order approximation

of the mean M ∈ SE(3) because it is not necessary a group element in SE(3)

and elements in SE(3) do not add. Therefore, we define a new mean based

on Eq.(5.7) by projecting M̂ onto SE(3), where singular value decomposition is

performed on the “rotation component” R̂M̂A
of M̂A:

R̂M̂A
= UΣV T . (5.8)

The rotation component RMA
∈ SO(3) can be obtained according to [85] as:

RMA
= UV T . (5.9)

After recovering the rotation component, the new mean based on the 1st
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order approximation becomes:

M1
A =

 RMA

1
n

∑n
i=1 tAi

0T 1

 . (5.10)

Using this definition of mean, M1
A and M1

B can be calculated in a straight way.

Σ1
A and Σ1

B can be obtained by Eq. (4.52b) afterwards. Batch1 method uses the

above means and covariances for recovering X, and all the other procedures

strictly follow the procedure described as in Eqs. (4.55-4.59).

5.4 Mean Based on the 2nd Order Ap-

proximation

In this section, we further define a mean on SE(3) based on the second order

approximation of Eq.(4.51a). Under the assumption that ‖M−1H − I‖ � 1 and

using the Eq, (5.3), the 2nd order approximation of Eq.(4.51a) can be written

as: ∫
SE(3)

(
(M−1H − I)− 1

2
(M−1H − I)2

)
f(H)dH ≈ O. (5.11)

Expand Eq.(5.11) and multiply M on both sides of Eq.(5.11):

∫
SE(3)

(
2H − 1

2
HM−1H − 3

2
M

)
f(H)dH ≈ O. (5.12)
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Substituting Eq. (5.6) into Eq.(5.12), we have:

2M̂ − 1

2

∫
SE(3)

HM−1Hf(H)dH − 3

2
M ≈ O. (5.13)

Let the 2nd order approximation of M ∈ R4×4 be denoted by M :

2M̂ − 1

2

∫
SE(3)

HM−1Hf(H)dH − 3

2
M = O. (5.14)

Take the data set {Ai} for an example, the discrete version of Eq.(5.14) is:

2

n

n∑
i=1

Ai −
1

2n

n∑
i=1

AiM
−1
A Ai −

3

2
MA = O. (5.15)

Similar to the 1st order case, MA is the 2nd order approximation of MA ∈ R4×4,

because the candidates that satisfy Eq.(5.15) are not typically elements of

SE(3). A straight forward way of calculating MA is by using nonlinear opti-

mization technique given an initial guess. It is possible to solve for MA ∈ R4×4

and then project MA back to M2
A ∈ SE(3) as shown in [86], where M2

A denotes

the new mean based on the 2nd order approximation. However, this highly

nonlinear problem can be linearized by defining the update law as below:

MA[j + 1] = MA[j] exp (ΩA) ≈MA[j](I + ΩA), (5.16)
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where MA[j] is the value of MA at the jth step, ΩA ∈ se(3) is a Lie algebra

element such that ‖ΩA‖ � 1. Under this assumption, the inverse of MA can be

updated as:

M−1
A [j + 1] = exp−1 (ΩA)M−1

A [j] ≈ (I− ΩA)M−1
A [j]. (5.17)

Substituting Eq. (5.16) and Eq. (5.17) into Eq. (5.15), the previous nonlinear

problem on MA is then converted into a linear one on ΩA, where only ΩA needs

to be solved for given a known MA[j]:

J · vec(ΩA) = b, (5.18)

where

J =
1

2n

n∑
i=1

(
(MA[j]Ai)

T ⊗ Ai
)
− 3

2
(I⊗MA[j]) (5.19a)

b = vec

[
− 2

n

n∑
i=1

Ai +
1

2n

n∑
i=1

(AiMA[j]Ai) +
3

2
MA[j]

]
. (5.19b)

⊗ is the symbol for Kronecker product and vec() denotes the vectorization of a

matrix formed by stacking its columns into a single column vector. .

To start with, we use the result M1
A obtained by Batch1 as the initial guess

such that MA[0] = M1
A. We keep solving for ΩA and update MA[j + 1] and

M−1
A [j + 1] until the matrix norm of left hand side of Eq. (5.15) falls below a
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small threshold. It is observed that MA[j] can converge quickly in approxi-

mately 4 steps to obtain MA, which will be projected onto SE(3) to get M2
A.

Similar to the Batch1 method, Batch2 method uses the new means (M2
A,M

2
B)

and the corresponding covariances (Σ2
A,Σ

2
B) to recover X.

5.5 Numerical Simulations

In this section, numerical simulations are performed to show the advan-

tages of using M1 and M2 as the means for {Ai} and {Bj} when solving for X.

These Batch methods are compared with each other to show the accuracy in

terms of recovering RX and tX . They are also compared with the Kronecker

product to show the effectiveness of probabilistic methods when dealing with

data streams without correspondence.

5.5.1 Generation of {Ai} and {Bj} Using Differ-

ent Distributions

First, we generate (Ai, Bi) data pairs which have correspondence given the

ground truth of Xtrue. Then we scrambled the data in {Ai} and {Bi} up to

a certain percentage rate to get {Ai} and {Bj} which have only partial or no

correspondence. Finally, the scrambled data streams will be used in Batch,
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Batch1, Batch2 and Kronecker product methods to calculate the RX and tX

which will be compared with RXtrue and tXtrue .

Eq. (5.20) and Eq. (5.21) show two ways to generate (Ai, Bi) data pairs for

numerical experiments, both of which sample on Bi first and then given Xtrue

obtain the corresponding Ai:

Bi = B0 exp(δ̂i) exp(γ̂i) (5.20a)

δi = (0T3×1, σn
T
1 )T ∈ R6×1 (5.20b)

γi = (σnT2 /‖n2‖,0T3×1)T ∈ R6×1 (5.20c)

σ ∈ R, n1,n2 ∈ N 3×1(0, 1) ∈ R3×1, (5.20d)

and

Bi = B0exp(δ̂i) (5.21a)

δi ∈ N (0; Σ) ⊂ R6 (5.21b)

Σ = σI6×6, σ ∈ R, (5.21c)

where B0 ∈ SE(3) is an arbitrary “baseline” for generating the cloud of Bi,

N 3×1(0, 1) denotes a 3 by 1 vector where each vector element follows a stan-

dard normal distribution N (0, 1). N (0; Σ) is a zero mean multivariate Gaus-
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sian distribution. The major difference between Eq. (5.20) and Eq. (5.21) is

that when perturbing B0 to get {Bi}, the former samples on the rotational and

translational component of se(3) separately while the latter samples on each

component simultaneously. After generating {Bi}, {Ai} can be easily obtained

as:

Ai = XtrueBiX
−1
true. (5.22)

It turns out that the way of generating the data streams influences the effec-

tiveness of different means. Equivalently speaking, each type of mean might

be better at representing certain transformations in the AX = XB context.

Next, we compare the performances of all the four methods in numerical

simulation. Given an arbitrary B0, 50 instances of Bi are generated using

Eq. (5.20) and Eq. (5.21) respectively, with σ = 0.9. If we provide the ground

truth Xtrue, 50 corresponding Ai can be calculated as in Eq. (5.22). In addition,

different sets of {Bj} are obtained by permuting the elements in {Bi} by a per-

centage rate r = 0, 10, 20, ... , 100. Then the calculated RX and tX are compared

with the ground truth Xtrue using the following error metrics:

errorR = || log∨(RT
XRXtrue)||2 (5.23)

errort =
||tX − tXtrue ||2
||tXtrue ||2

. (5.24)
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Figure 5.2: Rotation error vs. percentage of scrambling in {Ai} and {Bj} for
the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is gen-
erated using Eq. (5.20).
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Figure 5.3: Translation error vs. percentage of scrambling in {Ai} and {Bj}
for the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is
generated using Eq. (5.20)

Eq. (5.24) has the advantage of eliminating the influence of using different

units for the translation. 70 trials are performed for each scrambling rate r

and the averages of errorR and errort are calculated for comparison.
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Figure 5.4: A close look at Fig. (5.2) for the Batch1 and Batch2 methods which
shows that the rotation errors from Batch1 and Batch2 methods are at the
magnitude of 10−15.
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Figure 5.5: Rotation error vs. percentage of scrambling in {Ai} and {Bj} for
the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is gen-
erated using Eq. (5.21). Results of Batch method are overlapped by Batch1 &
Batch2 and a close look can be found in Fig. (5.7)

99



CHAPTER 5. PROBABILISTIC APPROACHES TOWARDS AX = XB
HAND-EYE CALIBRATION

Percentage of scrambling in the A and B sets

0 20 40 60 80 100

T
ra

ns
la

tio
n 

er
ro

r 
of

 X

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Batch Method

New Batch Method 1st Order

Ned Batch Method 2nd Order

Kronecker Product

Figure 5.6: Translation error vs. percentage of scrambling in {Ai} and {Bj}
for the Batch, Batch1, Batch2 and Kronecker product methods where {Bi} is
generated using Eq. (5.21)
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Figure 5.7: A close look at Fig. 5.5 for the Batch, Batch1 and Batch2 meth-
ods. It shows that the rotation errors from Batch1 and Batch2 methods are
at the magnitude of 10−15 which is significantly smaller than that of the Batch
method.

5.5.2 Numerical Simulation Results

All the simulation results are plotted as in Figs. 5.2-5.7 where Fig. 5.2-5.4

use the data sampled from Eq. (5.20) and Figs. 5.5-5.7 use the data sampled
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from Eq. (5.21). In addition, Fig 5.4 and Fig. 5.7 are closer looks at the Batch

methods in Fig. 5.2 and Fig. 5.4 respectively. Several observations can be made

from the figures. First, Figs. 5.2-5.3 and Figs. 5.5-5.6 show that all the Batch

methods are invariant on the scrambling rate r whereas the results of the Kro-

necker product deteriorate quickly as r increases. Second, no matter which

data sampling method is used, Batch1 and Batch2 methods show significant

improvements over the Batch method on recovering RX . The rotation error

magnitude of Batch1 and Batch2 ranges from 10−14 to 10−15, while the rota-

tion error from Batch is at the level of 10−1 in Fig. 5.2 and 10−4 in Fig. 5.7.

Moreover, the rotation error of Batch method can go beyond reasonable ranges

occasionally as can be seen in Fig. 5.2. Third, Fig. 5.3 shows that the transla-

tional component tX obtained by Batch1 and Batch2 are also better than Batch.

However, Fig. 5.6 shows that the performance of Batch1 and Batch2 is not as

good as that of Batch if Eq. (5.21) is used for data sampling. Lastly, in Fig. 5.3

and Fig. 5.6, the translational error from Batch2 is smaller than that of Batch1,

which reflects the necessity of using the new mean M2 based on the 2nd order

approximation to solve for X.

In summary, for data sets {Ai} and {Bj} without correspondence, Batch1

and Batch2 are extremely good at recovering RX in a precise and consistent

manner no matter which sampling method is chosen. The accuracy of the cal-

culated tX is dependent on the sampled data, which is true for both the old and
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new Batch methods. One can be better than another if a different type of data

samples is used. However, the Batch2 method is always better than Batch1

method in terms of getting a more accurate tX .

5.6 Conclusions

In this chapter, two new probabilistic methods are presented which can han-

dle the AX = XB problem without a priori knowledge of the correspondence

between {Ai} and {Bj}. The new approaches are built on top of the Batch

method, which shows that an appropriate definition of mean for a set of rigid

body transformations in SE(3) can affect the effectiveness of the probabilis-

tic methods to a large extent. The new definitions of means are derived from

the 1st order and 2nd order approximations of the original definition. Rather

than simple approximations, they reflect the “average” of a set of rigid body

transformations from different perspectives, which significantly improves the

accuracy and consistency for the calibration of X given data sets without cor-

respondence. Numerical simulations are performed to show the superiority of

the Batch1 and Batch2 methods.
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Chapter 6

Probabilistic Approaches

Towards AX = Y B Hand-Eye and

Robot-World Calibration

The AX = XB hand-eye calibration is widely used in calibration of a robot-

sensor system, and a natural extension is the AX = Y B hand-eye and robot-

world calibration. In the case of the AX = Y B problem, the relative hand-eye

(X) and robot-world (Y ) transformations must be determined to provide accu-

rate data for use in control. As an added difficulty, the exact correspondence

between the streams of sensor data (A’s and B’s) is typically unknown due to

asynchrony in sampling rates and processing time. One common scenario is a

constant shift between the two data streams.
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The rest of the chapter is organized as follows. In Section 6.1, a literature

review is given on AX = Y B problem. In Section 6.2, a novel probabilistic

method is presented to solve for eight candidates of X and Y . In Section 6.3,

an algorithm involving both a temporal correlation calculation and Euclidean

group invariants is proposed to recover the correspondence between {Ai} and

{Bj}, which is used to select the optimal solution among the candidates. In

Section 6.4, the simulation results obtained by taking noisy data without cor-

respondence are illustrated. In Section 6.5, we briefly discuss the case where

one can obtain (X, Y ) without recovering the correspondence between the data

sets. In Section 6.6, conclusions are drawn based on the numerical results.

6.1 Introduction

A variation of this problem is the AX = Y B problem, where both the hand-

eye transformation and the pose of the robot base with respect to the world

frame need to be calibrated. In a typical environment, the relationships be-

tween the sensor frame, robot frame, and world frame are variant and un-

certainties exist. Therefore, simultaneous coordinate calibrations have to be

determined frequently in order to enable the robot to respond to dynamic envi-

ronments.

In theAX = Y B problem, data streams ofA’s andB’s can be respectively ob-
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tained via different sensors. The data streams may arrive in an asynchronous

fashion due to the different working frequencies of the sensors. This asyn-

chrony causes a shift between the two data streams which can obscure the

correspondence between the A’s and B’s. Moreover, data loss can destroy in-

formation about correspondence altogether. In this chapter, a novel method is

presented to solve for X and Y without a priori knowledge of the correspon-

dence between the A’s and B’s.

The hand-eye calibration problem can be modeled as AX = XB, where A

and B are the homogeneous transformation matrices describing the relative

motions of the end-effector and the sensor respectively. As shown in Fig. 6.1

part (2), A = Ai(Ai+1)−1 and B = (Bi)−1Bi+1. Given multiple pairs of (Ai, Bi)

with correspondence (note that (Ai, Bi) are the relative transformations ob-

tained from the raw data), many deterministic methods have been proposed

to solve for X.

Simultaneous estimation of the hand-eye and robot-world transformations

has been viewed as the AX = Y B problem. As shown in Fig. 6.1 part (1),

Y is the transformation from the robot base to the world frame, A denotes

the pose of the sensor in the world frame and B is the transformation from

the end-effector to its fixed base. Other concrete examples are the camera-

IMU calibration in Fig. (6.2) and IR camera & drone camera calibrations in

Fig. (6.3). The A and B in AX = Y B are different from those in AX = XB
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Figure 6.1: (1) The hand-eye and robot-world calibration problem formulated
as AX = Y B. (2) The hand-eye calibration problem formulated as AX = XB.
Note: matrices A and B above have different physical meanings in the AX =
XB and AX = Y B problems.
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Figure 6.2: Application of AX = Y B in IMU-camera calibration of a mobile
phone using checkerboard.

Figure 6.3: Application of AX = Y B in IR camera and drone camera calibra-
tions.

where the former uses absolute transformations and the latter uses relative

transformations. This problem has been solved by many different methods

such as the Kronecker product, quaternion, dual quaternion, and nonlinear

optimization methods [17–22, 84, 87]. Simultaneous calibration of X and Y

can be problematic in that all the methods above assume exact correspondence
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between {Ai} and {Bj}, which is not the case in the real world, and this is

why a simultaneous solution for X and Y in the AX = Y B problem can be a

challenging issue. In the above methods, the correspondence between A and

B is known a priori. In this chapter, we focus on one case of the AX = Y B

problem where there is no a priori knowledge of the correspondence between

the data streams.

6.2 SolvingAX = Y B Using a Probabilis-

tic Method on Motion Groups

In this section, the probabilistic representation of AX = Y B is derived

based on the mathematical concepts and formulations introduced in Chapter 2

and Chapter 4.

6.2.1 Fundamental Mathematical Framework

Given

AiX = Y Bi. (6.1)
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where i = 1, . . . , n, after employing the property of Delta function of SE(3) on

both sides of the equation separately, one can get

(δAi
∗ δX)(H) = δ(A−1i HX−1) (6.2a)

(δY ∗ δBi
)(H) = δ(Y −1HB−1i ). (6.2b)

Using Eq. (2.14) and Eq. (6.1), the above two equations can be combined into a

single equation as:

(δAi
∗ δX)(H) = (δY ∗ δBi

)(H). (6.3)

Defining the PDF of {Ai} and {Bi} as:

fA(H) =
1

n

n∑
i=1

δAi
(H) (6.4a)

fB(H) =
1

n

n∑
i=1

δBi
(H), (6.4b)

then by using the bi-linearity of convolution, add n instances of Eq. (6.3), and

substitute Eq. (6.4) into the summation, and we will have:

(fA ∗ δX)(H) = (δY ∗ fB)(H). (6.5)
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The mean and covariance of fA and fB are defined as in Eq. (4.51a) and Eq. (4.51b).

Given {Ai} with the cloud of frames Ai clustering around MA, an iterative for-

mula can be used for computing MA [29] as:

k+1MA =k MA ◦ exp

[
1

n

n∑
i=1

log(kM−1
A ◦ Ai)

]
. (6.6)

An initial estimate of the iterative procedure can be chosen as:

0MA = exp

(
1

n

n∑
i=1

log(Ai)

)
.

Alternatively, MA can be obtained by solving a nonlinear optimization problem

with the cost function

C1(MA) =

∥∥∥∥∥
n∑
i=1

log(M−1
A Ai)

∥∥∥∥∥
2

.

Note, however, that mathematically this is not the same as minimizing

C2(MA) =
n∑
i=1

∥∥log(M−1
A Ai)

∥∥2 ,
though in practice they often are minimized by very close values of MA.

A similar procedure can be used to compute MB. ΣA and ΣB are then

straightforward to compute once MA and MB are known. Because X and Y
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are constant, their corresponding PDF will be δX(g) and δY (g), of which the

mean and covariance are MX = X, ΣX = O6 and MY = Y , ΣY = O6, respec-

tively. If we further assume that fA(H) and fB(H) are two highly focused PDFs,

then Eq. (4.53a) and Eq. (4.53b) can be used to the propagation of mean and

covariance, and the following equations can be obtained:

MAX = YMB (6.7a)

Ad(X−1)ΣAAd
T (X−1) = ΣB. (6.7b)

This is a nonparametric result, meaning that the underlying probability den-

sity functions fA(H) and fB(H) need not be Gaussian or belong to any other

family of parametric distributions.

6.2.2 Generalization Beyond Highly Focused Data

Moreover, it can be shown that in the context of AX = Y B, Eq. (6.7a) and

Eq. (6.7b) don’t require fA and fB to be highly concentrated. Starting with

Eq. (6.5), performing a convolution on both of the left sides of the equation

with δY −1(H), and using the associativity of convolution, we will have:

(δY −1 ∗ fA ∗ δX)(H) = fB(H). (6.8)
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Use the definition of mean as in Eq. (4.53a) along with Eq. (6.8), one can get

∫
SE(3)

log(M−1
B H)fB(H)dH =

∫
SE(3)

log(M−1
B H)(δX−1 ∗ fA ∗ δX)(H)dH =

∫
SE(3)

log(M−1
B H)fA(Y HX−1)dH = O4. (6.9)

Change the variable as K = Y HX−1 and use the invariance of integration [27],

then Eq. (6.9) becomes:

∫
SE(3)

log(M−1
B Y −1KX)fA(K)dK = O4. (6.10)

which falls into the form of the mean definition of {Ai}. If we further multiplyX

andX−1 on the left and right of both sides of Eq. (6.10), thenX[log(M−1
B Y −1KX)]

X−1 = log(M−1
A K). Knowing that X[log(M−1

B Y −1KX)]X−1 = log(XM−1
B Y −1K),

and we have XM−1
B Y −1 = M−1

A which is equivalent to Eq. (6.7a). Eq.(6.7b)

follows from [29] because the F (A,B) term as defined in [29] has products of

covariances of the functions being convolved, and delta functions have zero co-

variance so the F (A,B) term is zero, which results in Eq. (6.7b).
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6.2.3 Candidates of (X, Y) and Screw Invariants

The problem of solving the above equations, Eq. (6.7a) is decomposed into a

rotational equation and a translational equation as follows:

RMA
RX = RYRMB

(6.11a)

RMA
tX + tMA

= RY tMB
+ tY . (6.11b)

ΣA and ΣB can be decomposed into blocks as

 Σ1
A Σ2

A

Σ3
A Σ4

A

 and

 Σ1
B Σ2

B

Σ3
B Σ4

B

,

respectively. Knowing that X−1 =

 RT
X −RT

XtX

0 1

, then the first two blocks

of Eq. (6.7b) can be written as follows:

Σ1
MB

= RT
XΣ1

MA
RX (6.12a)

Σ2
MB

= RT
XΣ1

MA
RX(R̂T

XtX) + RT
XΣ2

MA
RX . (6.12b)

Because Eq. (6.12a) is a similarity transformation between Σ1
MB

and Σ1
MA

, they

share the same eigenvalues and can be eigendecomposed into Σ1
MA

= QMA
ΛQT

MA

and Σ1
MB

= QMB
ΛQT

MB
where Λ is a diagonal matrix whose diagonal elements
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are the eigenvalues of Σ1
MA

(or Σ1
MB

), and QMA
(or QMB

) is a square matrix

whose columns are the corresponding eigenvectors. The following equation is

obtained after substituting Σ1
MB

and Σ1
MA

into Eq. (6.12a):

Λ = (QT
MA
RT
XQMB

)Λ(QT
MB
RXQMA

) = PΛP T (6.13)

where P = QT
MA
RXQMB

. Since QMA
and QMB

are further constrained to be

rotation matrices, the orthogonal matrix P satisfies Eq. (6.14).


P T = P−1

det(P ) = ±1.

(6.14)

Combing Eq. (6.13) and Eq. (6.14), then an orthogonal matrix P can be one of

P or −P :

P =




1 0 0

0 1 0

0 0 1

 ,


−1 0 0

0 −1 0

0 0 1

 ,


−1 0 0

0 1 0

0 0 −1

 ,


1 0 0

0 −1 0

0 0 −1




.

(6.15)

Therefore, there are eight candidates for RX which can be calculated via
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RX = QMA
PQT

MB
, and the corresponding tX can be obtained from Eq. (6.12b).

Given known X, Y can be solved from Y = MAXM
−1
B . At last, eight candidate

pairs of {Xk, Yk} can be obtained as:

Xk =

 RXk
tXk

0T 1

 , Yk =

 RYk tYk

0T 1

 (6.16)

where k = 1, 2, ..., 8.

The problem then becomes selecting the best pair of {Xk, Yk} from the eight

candidates. Based on screw theory, it is known that a homogeneous transfor-

mation H can be expressed by the four screw parameters (θ, d,n,p) as:

H =

 eθn̂ (I3 − eθn̂)p+ dn

0T 1

 (6.17)

where θ is the angle of rotation, d is the translation along the rotation axis, n is

the unit vector representing the axis of rotation and p is the position of a point

on the line relative to the origin of a space-fixed reference frame with p · n = 0.

Moreover, AXk = YkB can be written as AXk = Xk(X
−1
k YkB). Defining

Bk = X−1k YkB, we have AXk = XkB
k. As discussed in [81], for AX = XB

problem, there exist two Euclidean-group invariant relationships for each pair

of (Ai, B
k
i )(i = 1, · · · , n; k = 1, . . . , 8) as follows:
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θAi
= θBk

i
, dAi

= dBk
i
. (6.18)

Among the eight pairs (Xk, Yk), one can find an optimal solution which min-

imizes the cost function defined as:

(X, Y ) = argmin
(Xk,Yk)

1

n

n∑
i=1

(‖ θAi
− θBk

i
‖ + ‖ dAi

− dBk
i
‖). (6.19)

In summary, eight candidates of (Xk, Yk) can be calculated without knowing the

correspondence between Ai and Bj. However, the correspondence needs to be

recovered to pick the optimal (Xk, Yk). Note that the Euclidean-group invariant

relationships in the context of AX = Y B problem are still unknown. Therefore,

AX = Y B is converted into AX = XB problem to recover the correspondence

of data using screw invariants.

6.3 Solution with Unknown Correspon-

dence between Ai and Bk
j

In most cases, the two sets of homogeneous transformations {Ai} and {Bj}

are calculated based on the data obtained from different sensors. Due to the

asynchronous timing of the sensor readings, the correspondence between {Ai}

and {Bj} is usually unknown. This section deals with the case where there is
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a shift between {Ai} and {Bj}, and the Euclidean-group invariants are used to

recover the correspondence between the data streams. The advantage of the

above probabilistic solution lies in that X and Y can be calculated even if there

is no a priori knowledge of the correspondence. However, there are still eight

possible candidates of (Xk, Yk) to choose from and by using Euclidean-group

invariants, it is straightforward to determine which is the optimal pair if the

correspondence between Ai and Bk
j can be known.

The Discrete Fourier Transform (DFT) decomposes a time-domain signal

into its constituent frequencies. The input is a finite list of equally spaced

samples of a function. Given a discrete signal consisting of a sequence of N

complex numbers x0, x1, · · · , xN−1, the DFT is denoted by Xκ = F(xn) as:

Xκ =
N−1∑
n=0

xn · exp(−i
2π

N
nκ). (6.20)

where i here is the imaginary unit.

The Inverse Discrete Fourier Transform (IDFT) is denoted as:

xn =
1

N

N−1∑
n=0

Xκ · exp(i
2π

N
nκ). (6.21)

The discrete convolution of two sequences fn and gn is defined as:

(f ∗ g)(τ) =
N∑
j=0

f(tj)g(tj − τ). (6.22)
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In the convolution theorem, the Fourier transform of a convolution is the prod-

uct of the Fourier transforms, namely:

f ∗ g = F−1[F(f) · F(g)]. (6.23)

The correlation theorem indicates that the correlation function, Corr(f, g),

will be larger for a shift vector where the two sequences fn and gn share more

similar features. The correlation can be obtained based on the convolution

theorem. The DFT of Corr(f, g) is equal to the product of the DFT of fn and the

complex conjugate F∗ of the DFT of gn:

Corr(f, g) = f ? g = F−1[F(f) · F∗(g)]. (6.24)

Compared to the standard time-domain convolution algorithm, the complex-

ity of the convolution by multiplication in the frequency domain is significantly

reduced with the help of the convolution theorem and the Fast Fourier Trans-

form (FFT).

Given two sequences {θAi
} and {θBk

j
} corresponding to {Ai} and {Bk

j }, the

shift that is needed to recover the data correspondence is obtained as below.

Firstly, θAi and θBk
j

are normalized as:

θ1,k =
(θAi
− µA)

σA
, θ2,k =

(θBk
j
− µBk)

σBk

(6.25)
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where µA(µBk) is the mean of θAi
(θBk

i
) and σA(σBk) is the standard deviation.

Here, the correlation function Corr(θ1,k, θ2,k) is the function of the time se-

quence index n which describes the probability of these two sequences being

separated by this particular index. The index corresponding to the maximum

of Corr(θ1,k, θ2,k) indicates the amount of shift τshift between {θAi
} and {θBk

j
}.

τshift = argmax
index

(Corr(θ1,k, θ2,k)) (6.26)

Therefore, the correspondence between the two sequences can be found.

The data of θAi
or dAi

are shifted by −τshift to obtain a sequence of new pairs

(θAi
(i+ τshift), θBk

i
) and (dAi

(i+ τshift), dBk
i
), where max(0, τshift) ≤ i ≤ min(n, n+

τshift). The data stream can be shifted back to regain correspondence to syn-

chronize the data streams once the shift is computed, and the optimal solution

of X and Y can also be recovered by minimizing the cost function in Eq. (6.19)

using the Euclidean-group invariants.
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Figure 6.4: The translational and rotational errors versus the shift between
data streams {Ai} and {Bi}.
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Figure 6.5: Box-and-whisker plots of translational and rotational errors ver-
sus the covariance noise on data stream {Bi}.
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Figure 6.6: (a) The solved X (in red) and the actual X (in black) for 10 simu-
lation trials with covariance noise of 0.05 and shift of 2. (b) The solved Y (in
blue) and the actual Y (in black) for 10 simulation trials with covariance noise
of 0.05 and shift of 2.

6.4 Numerical Simulations

For the numerical experiments in this section, the rotational and transla-

tional errors for X and Y are measured as

Error(RX) =‖ log∨(RT
XSolved

RXtrue) ‖ (6.27a)

Error(tX) =‖ tXSolved
− tXtrue ‖ (6.27b)

Error(RY ) =‖ log∨(RT
YSolved

RYtrue) ‖ (6.27c)

Error(tY ) =‖ tYSolved
− tYtrue ‖ (6.27d)

There are multiple ways of generating the data streams {Ai} and {Bi}. One

way is to first generate {Bi} and then map it to {Ai} using A = Y BX−1. {Bi}

can be obtained by randomly sampling on the Lie algebra of B from a zero
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mean multivariate Gaussian distribution as follows:

δi ∈ N (0; Σ) ⊂ R6 (6.28a)

Bi = exp(δ̂i)exp(µ) (6.28b)

where the mean µ = 0 ∈ se(3) and the covariance matrix Σ ∈ R6×6 is a diag-

onal matrix with same diagonal elements σ. The hat operator δ̂ converts a 6

by 1 vector into its corresponding Lie algebra. The data stream {Ai} can be

easily obtained as described above. After employing the proposed probabilistic

method, 8 sets of sequences (θAi
, θBk

i
) and (dAi

, dBk
i
) can be obtained respectively

where i = 1, · · · , 100 and k = 1, . . . , 8.

If the data stream {Ai} is shifted by m units relative to {Bi}, then the maxi-

mum of the cross correlation can be used to recover the shift. After that, we can

shift the data stream {Ai} back to its original position to recover the correct cor-

respondence with {Bi}, which will be used to find a correct solution satisfying

the Euclidean-group invariants as defined in Eq. (6.18). Therefore, a unique

pair of (Xk, Yk) (k = 1, · · · , 8) can be selected to minimize the cost function. In

Fig. 6.4, because the shift between {Ai} and {Bi} is calculated accurately, the

translational and rotational errors fluctuate by only a small amount compared

to the errors of the no-shift data streams.
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Figure 6.7: Orientation and translation errors of X and Y versus shift using
Li’s and Shah’s methods without correspondence.
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Figure 6.8: Orientation and translation errors of X and Y versus shift using
Li’s and Shah’s methods with correspondence.

To test the robustness of the proposed method, noises are exerted onto {Bi}

by employing Bnoise
i = Biexp(x̂noise), where each element of the Lie Algebra

xnoise belongs to the Gaussian distribution defined as N ∼ (µnoise, σnoise). In

Fig. 6.5, as the covariance noise σnoise increments from 0.01 to 0.08, the errors

of RX , RY , tX , and tY increase as shown in the box-and-whisker plot. There

are several outliers outside the whiskers, while the median is calculated as the

final solved X and Y . Fig. 6.6 shows the solved (X,Y )s in red and blue with the

actual (X,Y ) in black with covariance noise of σ = 0.05 and shift n = 2.
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The probabilistic method can recover the correspondence between shifted

data streams, which is useful for other sensor calibration methods. In the

AX = Y B problem, there have been many calibration methods developed for

solving X and Y given data streams with correspondence. However, few of

them considered the cases without correspondence. When data streams of A

and B are shifted or asynchronous, most of these methods fail to give a valid

solution. To further test the effectiveness of our method, we shift the data se-

quence of {Ai} by n = 0, 1, 2, 3, 4, 5 with respect to the data sequence of {Bi}

such that Ak+n “matches” Bk where k = 1, 2, · · · ,m − n and i = 1, 2, · · · ,m. We

augment other AX = Y B solvers with our probabilistic approach by recover-

ing the correspondence between shift data sets. In Li’s method [20], X and Y

are solved for at the same time, while Shah [87] solved for X and Y in a sep-

arate way. As shown in Fig. 6.7, when dealing with the shifted data streams

{Ak+n, Bk}, the errors on both rotations and translations are significant. After

recovering the correspondence between data streams by using the probabilis-

tic method, Li and Shah’s methods achieve the same level of performance as

shown in Fig. 6.8.
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6.5 A Brief Case Study with Completely

Scrambled Data

In this section, we will briefly discuss the case where {Ai} and {Bj} are

completely scrambled. Unlike the case of shifted data, it is extremely hard to

recover the correspondence between two completely scrambled data sets {Ai}

and {Bj}. The correlation theorem can’t be applied because there is no shift in

the scrambled data sets. Euclidean group invariants are not practical because

given {Ai} and {Bj} both of which have the size of m, there are m! = m×m−1×

· · · 1 combinations between the data sets, and it is extremely computationally

intensive to test all the combinations. Without recovering the correspondence

between the data sets, it is impossible to choose the optimal solution from the

eight candidates of {Xk, Yk}.

In the above approach, we used Eq. (6.7b) to calculate Xk and Eq. (6.7a)

to obtain the corresponding Yk. However, we now show that one can calculate

the eight candidates of Y independently and employ Eq. (6.7a) as a constraint

to filter out the optimal {X, Y } pair. Given the equation AX = Y B, apply

an inverse on both sides of the equation and we will have B−1Y −1 = X−1A−1.
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Following the same derivations from Eq. (6.1) to Eq. (6.7b), we have:

MB−1Y −1 = X−1MA−1 (6.29a)

Ad(Y )ΣB−1AdT (Y ) = ΣA−1 . (6.29b)

Similarly, Eq. (6.29b) can give eight candidates of Y −1, or equivalently, the

eight candidates of Y . Let Xk1 where k1 = 1, 2, · · · , 8 denote the Xs obtained

from Eq. (6.7b) and Yk2 where k2 = 1, 2, · · · , 8 denote the Y s obtained from

Eq. (6.29b), and we can use Eq. (6.7a) and Eq. (6.29a) to form a minimization

problem as:

min
k1,k2
||MAXk1 − Yk2MB||F + ||M−1

B Y −1k2 −X
−1
k1 M

−1
A ||F (6.30)

which can give the optimal (Xk1, Yk2) pair. We call this approach the prob

method, and compare it with Li’s method for testing its effectiveness of han-

dling scrambled data sets. For simplicity, we use Eq. (6.29a) and Eq. (6.29b)

to generate {Bi}, whereas compute {Ai} using Ai = X−1Y Bi without exerting

noise on Bi. Then {Ai} is scrambled at each percentage from 0% up to 100%.

50 times of simulations are performed for each percentage rate and the same

error metrics are used as in Section 6.6. As shown in Fig. (6.9) and Fig. (6.10),
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Figure 6.9: Rotation error in X and Y v.s. scrambling rate for the prob and Li’s
methods

as the percentage of scrambled data goes up, the errors in rotation and transla-

tion for Li’s method gradually diverge, while the errors for the prob method are

very stable and small. This shows the significant advantage of the probabilis-

tic method in handling disordered data sets. However, Li’s method is still more

accurate when the exact correspondence is known between {Ai} and {Bi}.

6.6 Conclusions

In this section, a probabilistic approach is developed to recover the corre-

spondence between shifted data streams to augment traditional AX = Y B
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Figure 6.10: Translation error in X and Y v.s. scrambling rate for the prob
and Li’s methods

solvers. Without a priori knowledge of the correspondence between {Ai} and

{Bj}, the proposed probabilistic method on Lie groups is used to constrain

the possible solutions of X and Y to eight pairs of candidates. Given shifted

data streams of {Ai+s} and {Bi}, using the correlation theorem with Euclidean-

group invariants, the correspondence is recovered to determine the correct so-

lution among the eight candidates. In the numerical simulation, the method

performs well with different sets of data samples. In addition, the shifted-back

data streams are further validated by the Li and Shah solvers. Lastly, a new

approach is presented to deal with completely disordered data sets and briefly

show its effectiveness in simulation.
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Chapter 7

Probabilistic Approaches

Towards AXB = Y CZ of Robotic

System Calibration

A multi-robot system is usually composed of several individual robots such

as mobile robots or unmanned aerial vehicles. Many problems have been in-

vestigated for multi-robot system such as motion planning, collision checking

and scheduling. However, not much has been published previously about the

calibration problem for multi-robot system despite the fact that it is the pre-

requisite for the whole system to operate in a consistent and accurate manner.

Compared to the traditional hand-eye & robot-world calibration, a relatively
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new problem called the AXB = Y CZ calibration problem arises in the multi-

robot scenario, where A,B,C are rigid body transformations measured from

sensors and X, Y, Z are unknown transformations to be calibrated. Several

solvers have been proposed previously in different application areas that can

solve for X, Y and Z simultaneously.

However, all of the solvers assume a priori knowledge of the exact temporal

correspondence among the data streams {Ai}, {Bi} and {Ci}. Moreover, the

existing methods in the literature require good initial estimates that are not

always easy or possible to obtain. To address this, two probabilistic approaches

are presented that can solve the AXB = Y CZ problem without a priori knowl-

edge of the correspondence of the data. In addition, no initial estimates are

required for recovering X, Y and Z. However, noise is ubiquitous in the real

world and the above two methods are sensitive to the noisy data. In addition,

a hybrid method is presented which combines traditional AXB = Y CZ solvers

with the probabilistic methodology. It is shown that the new algorithm is ro-

bust to both the noise and the loss of correspondence information in the data.

These methods are particularly well suited for multi-robot systems, and also

apply to other areas of robotics in which AXB = Y CZ arises.

The rest of the chapter is organized as follows. In section 7.1, we intro-

duce the background of multi-robot calibration. Section 7.2 describes in detail
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the formulation of the two probabilistic AXB = Y CZ solvers. In section 7.3,

we perform numerical simulations to compare the probabilistic and traditional

AXB = Y CZ solvers, and show the effectiveness and robustness of the former.

Comparison between the two probabilistic approaches are also performed to

show their respective desired application scenarios. Section 7.4 presents a new

hybrid approach which combines traditional solvers with probabilistic method-

ology to handle noisy data. In section 7.5, conclusions are given.

7.1 Introduction

Many multirobot calibration problems can be formulated using the equa-

tion AXB = Y CZ, where A, B and C are known homogeneous transformations

from sensor readings, and X, Y and Z are unknown relationships between two

target frames. For the dual arm system [24] shown in Fig. (7.1), the problem

becomes the hand-eye (X), robot-robot (Y ) and tool-flange (Z) calibration prob-

lem where robot 1 holds the camera and robot 2 holds the marker. For a team of

mobile robots [88] illustrated in Fig. (7.2), a triple hand-eye ( or camera-marker

) calibration problem exists where each robot agent is “looking at” the marker

on the next agent. In Fig. (7.3), the problem of the serial-parallel hybrid robot

system [89] is cast as the tool-gripper (X), flange-base (Y ) and camera-base (Z)
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Figure 7.1: The Hand-Eye, Robot-Robot, Tool-Flange Calibration of a Dual
Arm System

calibrations. The same mathematical modeling also exists in co-robotic ultra-

sound (US) tomography where two hand-eye and one robot-robot calibrations

are needed [90]. However, relatively little work has been done on AXB = Y CZ

calibration. To the best of our knowledge, only Wang [24,91] and Yan [89] have

proposed several algorithms for solving X, Y and Z simultaneously.

In this chapter, we proposed two “probabilistic” frameworks for solving the

AXB = Y CZ robot system calibration problem. Due to the different physical

properties of robotic systems, two types of probabilistic AXB = Y CZ solvers

are built which greatly reduce the need for a priori knowledge of the corre-

spondence between sensor data. We use the word “probabilistic” because the

measured datasets {Ai}, {Bi}, and {Ci} are each replaced with histograms on
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Figure 7.2: Triple Hand-Eye Calibration of a Multi-Robot System

the space of rigid-body poses, and normalized to be probability densities. That

is, while there are no random variables in this problem, the tools of proba-

bility and measure theory can still be employed with great benefit.In addi-

tion, we presented a hybrid approach which combines traditional determinis-

tic AXB = Y CZ solvers and probabilistic estimates of rigid-body poses. The

framework is simple and turns out to be very effective at handling noisy data

when there is partial knowledge of the correspondence.
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Figure 7.3: Flange-Base, Camera-Base and Tool-Gripper Calibration of a
Serial-Parallel Manipulator

7.2 Problem Formulation

In this section, we derive the mathematical frameworks of the two proba-

bilistic approaches for the AXB = Y CZ problem. They share a common theo-

retical framework but are designed for different types of robotic systems. Note

that for the three types of robotic systems described in Fig. 7.1, Fig. 7.2 and

Fig. 7.3, different types of constraints can be applied onto the datasets {Ai},

{Bi} and {Ci}. For the multi-mobile robotic system, any two robot agents can

remain static with the third agent moving freely. Or equivalently, any one of A,

B and C can be fixed without fixing the other two. For the dual-arm and serial-

parallel robotic systems, only A or C can be fixed without fixing the other two.
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This is because B describes the transformation between the marker frame and

the camera frame, while A and C are solely determined using the forward kine-

matics of the robots. Hence it is very difficult to keep B constant while varying

A and C. We employ the above physical properties of the systems to build the

fundamental framework for the probabilistic approaches.

7.2.1 Fundamental Framework

Given a large set of triples (Ai, Bi, Ci) ∈ SE(3) × SE(3) × SE(3) where i =

1, · · · , n, the following equation can be obtained:

AiXBi = Y CiZ. (7.1)

Using the shifting property of Dirac delta function, we have

(δAi
∗ δX ∗ δBi

)(H) = δ(B−1i X−1A−1i H) (7.2a)

(δY ∗ δCi
∗ δZ)(H) = δ(Z−1C−1i Y −1H). (7.2b)

Using Eq. (2.14) and Eq. (7.1), the above two equations can be combined into a

single equation as:
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(δAi
∗ δX ∗ δBi

)(H) = (δY ∗ δCi
∗ δZ)(H). (7.3)

The relationship still holds if we fix Ai to be a constant transformation A:

(δA ∗ δX ∗ δBi
)(H) = (δY ∗ δCi

∗ δZ)(H). (7.4)

Fixing A (or B or C) while letting the other two sensor streams take various

values is practical by employing the physical properties of the robotic systems

as described above. We only provide the derivation for fixed A, as the deriva-

tions for fixed B or C follow in a similar way, and the results for all three cases

are summarized later in Table 1. Next, define the PDF of {Gi} as:

fG(H) =
1

n

n∑
i=1

δGi
(H) (7.5)

where G ∈ {A,B,C}. If we use the bi-linearity of convolution, add n instances

of Eq. (7.4) and substitute Eq. (7.5) into the summation, the following equation

can be achieved:

(δA ∗ δX ∗ fB)(H) = (δY ∗ fC ∗ δZ)(H). (7.6)

Then by employing Eq. (4.53a) twice, we get the mean equation of AXB =
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Y CZ as

MAMXMB = MYMCMZ . (7.7)

Because X, Y , Z and A are all single elements of SE(3), MX = X, MY = Y ,

MZ = Z, MA = A and ΣX = O, ΣY = O, ΣZ = O, ΣA = O. Eq. (7.7) then becomes

AXMB = YMCZ (7.8)

The covariance equation is obtained by first computing ΣA∗X and then ΣA∗X∗B

as:

ΣA∗X∗B = Ad(B−1)Ad(X−1)ΣAAd
T (X−1)AdT (B−1) + ΣB (7.9a)

= ΣB (7.9b)

Similarly, ΣY ∗C∗Z can be obtained as:

ΣY ∗C∗Z = Ad(Z−1)ΣCAd
T (Z−1) (7.10)

Therefore, by equating Eq. (7.9a) and Eq. (7.10), the covariance equation for

AXB = Y CZ with A fixed becomes
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ΣB = Ad(Z−1)ΣCAd
T (Z−1) (7.11)

In order to decompose Eq. (7.11) into sub-equations, define the covariance

matrix as

ΣH =

Σ1
H Σ2

H

Σ3
H Σ4

H

 ∈ R6×6 (7.12)

where H = A,B,C and Σi
H ∈ R3×3. To simplify the notation, we define U = t̂.

Substitute Eq. (7.12) into Eq. (7.11) and one gets the upper left block as

Σ1
B = RT

ZΣ1
CRZ , (7.13)

and the lower right block as

Σ2
B = RT

ZΣ1
CRZU

T
Z +RT

ZΣ2
CRZ (7.14)

where WXB := UBR
T
BR

T
X +RT

BUXR
T
X . For convenience, we call Eq. (7.13) the Sig-

Rot equation and Eq. (7.14) the Sig-Trans equation. Sig-Rot equation contains

only the rotational information from the unknown matrices while Sig-Trans

equation contains both the unknown rotations and translations. These two

equations are not sufficient to solve the problem since Eq. (7.13) contains only
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RX and RZ , and Eq. (7.14) contains only tX and tZ in addition to the above two

rotations, whereas Y is “lost” in the covariance equation. However, it turns

out that by rearranging the order of X, Y , Z and fixing different sensor data

(A,B,C), similar equations to Eq. (7.13) and Eq. (7.14) can be obtained to solve

for the unknown transformations.

There are a total of six variations of AXB = Y CZ formulations. If we write

AXB = Y CZ as AXBZ−1C−1Y −1 = I, premultiply it by A−1 and it postmultiply

by A on both sides of the equation, we have XBZ−1C−1Y −1A = I which “moves”

A from the left to the right. The same operation can be done in turn for X,

B, Z−1, C−1 and Y −1 and these give a total of six variations as shown in the

“Representation” column of Table 7.1. For simplicity, we only list the Sig-Rot

equations and leave out the Sig-Trans equations. In the next part, we present

the frameworks for solving the calibration problem for each of these two types

of systems.
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No. Representation Fixing Simplified Sig-Rot

1 AXB = Y CZ
A Σ1

B = RT
ZΣ1

CRZ

2 A−1Y C = XBZ−1

3 BZ−1C−1 = X−1A−1Y
B RCΣ1

CR
T
C = RT

YRAΣ1
AR

T
ARY

4 B−1X−1A−1 = Z−1C−1Y −1

5 C−1Y −1A = ZB−1X−1

C RBΣ1
BR

T
B = RT

XΣ1
ARX

6 CZB−1 = Y −1AX

Table 7.1: The simplified Sig-Rot equations after fixing A,B or C

7.2.2 Two Frameworks for AXB = Y CZ Calibra-

tion

7.2.2.1 Framework 1

For the dual-arm and serial-parallel systems, we show that X, Y and Z can

be recovered without a priori knowledge of the correspondence between the

data. This is achieved by fixing A and C to give datasets I and II respectively.

When A is fixed, or equivalently A = AI, datasets {BIi} and {CIj} can be mea-

sured where i, j = 1, · · · , n. In addition, with the zero covariance constraints,

ΣAI = O and ΣA−1
I

= RAIΣAR
T
AI

= O, we can simplify Eq. (7.13) to the form

Σ1
BI

= RT
ZΣ1

CI
RZ . (7.15)

140



CHAPTER 7. MULTI-ROBOT CALIBRATION

However, note that the zero constraint on ΣAI applies to neither Rep.3 nor

Rep.6, where Rep.3 and Rep.6 denote the No.3 and No.6 Representation equa-

tions in Table 7.1 respectively. When A is fixed to AI, the right hand side of

Rep.6, namely Y −1AIX, becomes a single “point” on SE(3), whereas both CIi

and B−1Ij are PDFs on SE(3). The corresponding convolution equation of Rep.6

becomes

(fCI ∗ δZ ∗ fB−1
I

)(H) ≈ (δY −1 ∗ δAI ∗ δX)(H). (7.16)

which does not hold because the convolution of PDFs is a general PDF instead

of a Dirac delta function. Therefore, the underlying constraint of every con-

volution equation is that there should be at least one non-trivial PDF on both

sides of the equation, and we call it the balanced-PDF constraint. The zero

covariance constraint can only be applied to the Sig-Rot equation whose corre-

sponding convolution equation satisfies the balanced-PDF constraint.

As shown in [92], Σ1
B and Σ1

C have the same eigenvalues due to the fact that

Eq. (7.15) is a similarity transformation between Σ1
B and Σ1

C . Calculate the

eigendecomposition of ΣB and ΣC as Σ1
B = QBΛQT

B and Σ1
C = QCΛQT

C where Λ

denotes the diagonal matrix. Substitute these two equations into Eq. (7.15),

and we have

Λ = QT
BR

T
ZQC︸ ︷︷ ︸
Q

ΛQT
CRZQB = QΛQT . (7.17)
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According to [92], the special structure of Eq. (7.17) gives four solutions for Q.

Thus, we also get four candidates of RZ as:

RZ = QCIQQ
T
BI
. (7.18)

For the translation part tZ , Eq. (7.14) can be simplified as

Σ2
BI

= RT
ZΣ1

CI
RZU

T
Z +RT

ZΣ2
CI
RZ (7.19)

and tZ = U∨Z can be solved directly.

Similarly, when fixing C ≡ CII, ΣCII = ΣC−1
II

= O, the Sig-Rot equation for

Rep.6 (denoted as Sig-Rot.6) becomes

Σ1
B−1

II
= RT

XΣ1
AII
RX . (7.20)

Recall that this leads to an equation with structure similar to Eq. (7.17) and

so Q has four possibilities, and the four candidates of RX can be calculated as

RX = QAIIQQ
T
B−1

II
(7.21)

There are two possible methods to recover Y . One method is to apply Σ1
C = O
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to Sig-Rot.2 to get

RT
CR

T
Y Σ1

A−1RYRC = RT
Z−1Σ1

BRZ−1 , (7.22)

and hence we obtain a total of sixteen candidates of RY that are based on the

candidates of Q and RZ :

RY = QA−1QQT
BR

T
ZR

T
C . (7.23)

The other method is to employ the mean equations to recover Y using the can-

didates of X and Z as

Y = AIXMBIZ
−1M−1

CI
(7.24)

and

Y = MAIIXMBIIZ
−1C−1II

(7.25)

Hence the second approach gives a total of 16 + 16 = 32 candidates of Y . When

numerically simulating the two approaches above, the second approach is bet-

ter in terms of generating candidates of Y that are closer to the ground truth,

whereas the first one is more likely to result in candidates far from the true Y .
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The solution for tZ and tX becomes trivial once RZ and RX are known. Using

the second approach to compute Y , we will have a total of 4 × 4 × 32 = 512

combinations of {X, Y, Z}. In order to filter out the best combination among the

512 choices, the two datasets can be used to minimize an objective function.

For simplicity, let MLI = AIXiMBI, MRI = YjMCIZk, MLII = MAIIXiMBII and

MRII = YjCIIZk.

It turns out that the objective function is critical in getting an optimal

X, Y, Z consistently out of the possible 512 candidates. We tried a few func-

tions and found that this function

min|| log∨(RT
MLI

RMRI
)||2 + || log∨(RT

MLII
RMRII

)||2

w · ||tMLI
− tMRI

||2 + w · ||tMLII
− tMRII

||2

(7.26)

where i = 1, . . . , 4, j = 1, . . . , 4, k = 1, . . . , 32 has the highest success rate of

picking the optimal X, Y, Z. Here w is the weighting factor and can be varied

depending on the precision requirement on rotation and translation. Different

X, Y, Z will be selected given different w, and we settled on w = 1.5 for the

simulation.
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7.2.2.2 Framework 2

For the multi-robot hand-eye calibration problem, a less restrictive approach

exists to solve for X, Y and Z. In addition to fixing A or C, we can also fix B,

and this will produce three datasets that are labeled as follows.

Dataset I: A = AI with {BIi} and {CIj}

Σ1
B = RT

ZΣ1
CRZ . (7.27)

Dataset II: B = BII with {AIIi} and {CIIj}

Σ1
C−1 = RT

Y Σ1
A−1RY . (7.28)

Dataset III: C = CIII with {AIIIi} and {BIIIj}

Σ1
B−1 = RT

XΣ1
ARX . (7.29)

Under this situation, X, Y and Z are solved independently and there are a

total of 4× 4× 4 = 64 combinations of solutions. By letting MLIII = MAIIIXiMBIII

and MRIII = YjCIIIZk, we can form the following objective function using all 3
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Figure 7.4: Two Probabilistic Frameworks for Multi-robot Calibration

datasets:

min|| log∨(RT
MLI

RMRI
)||2 + || log∨(RT

MLII
RMRII

)||2

|| log∨(RT
MLIII

RMRIII
)||2 + w · ||tMLI

− tMRI
||2+

w · ||tMLII
− tMRII

||2 + w · ||tMLIII
− tMRIII

||2

where i = 1, · · · , 4, j = 1, · · · , 4 and k = 1, · · · , 4.

(7.30)

A complete diagram illustrating both the calibration frameworks can be

seen as in Fig. (7.4) where “Prob1” denotes the calibration problem for system

1 and “Prob2” denotes the calibration problem for system 2.
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7.3 Numerical Simulation

In this section, we compared our probabilistic approaches numerically with

the existing methods in the literature. For convenience, we called the prob-

abilistic methods presented in Framework 1 and Framework 2, Prob1 and

Prob2 respectively. In [89], two approaches were proposed for solving the

AXB = Y CZ problem: one is called the DK method while the other is the PN

method. In [24], a simultaneous AXB = Y CZ solver was introduced and we

call it Wang in this chapter. Note that all of the three methods in the literature

require a priori knowledge of the exact correspondence between the datasets

{Ai}, {Bi} and {Ci}, and in this section we refer to them as the “traditional

methods”. We performed numerical simulations on both the traditional and

probabilistic methods to show that: 1) probabilistic approaches showed supe-

rior performance when dealing with data that has little or no correspondence

compared to traditional solvers; 2) Prob2 performed better than Prob1 when

the former had complete datasets.

There are several things to pay attention to when comparing the probabilis-

tic approaches with the traditional methods. Firstly, PN is an unconstrained

nonlinear optimization algorithm which requires multiple initial guesses of X,

Y and Z to achieve an almost global minimum solution. Secondly, Wang is
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a least-squares-based search algorithm that requires good initial guesses of at

least two of RX , RY and RZ . Thirdly, both of them are simultaneous approaches

meaning that none of A, B or C needs to be fixed during the calibration pro-

cess. Lastly, DK is a separable method requiring A or C to be fixed during the

calibration process. However, no initial guesses are needed to obtain the final

result.

7.3.1 Data Generation and Error Metrics

In order to compare all of the five AXB = Y CZ solvers together, we gener-

ated the simulated datasets as follows. First, we fixed A such that A = AI, and

{BIi} are given by

BIi = exp(δ̂i)BI0 (7.31a)

δi ∈ N (0; Σ) ⊂ R6 (7.31b)

where the mean µ = 0 ∈ se(3), the covariance matrix Σ = σdataI6 ∈ R6×6 and

i = 1, 2, . . . , 100. The hat operatorˆconverts a 6 by 1 vector into its corresponding

Lie algebra in se(3). Given the ground truth of X, Y and Z, {CIi} is generated

by

CIi = Y −1AIXBIiZ
−1, (7.32)
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and we call this dataset I.

Then, we generated dataset II where we fixed C such that C = CII, and

generated BIIi and AIIi in a similar fashion:

BIIi = exp(δ̂i)BII0 (7.33a)

AIIi = Y CIIZB
−1
IIiX

−1 (7.33b)

Lastly, dataset III was obtained by fixing B such that B = BIII, and {AIIIi},

{CIIIi} were given by

AIIIi = exp(δ̂i)AIII0 (7.34a)

CIIIi = Y −1AIIIXBIIiZ
−1. (7.34b)

In each dataset, the number of measurement data for A,B,C is 100, i.e. i =

1, . . . , 100. Note that there were a total of three datasets but only the first two

could be applied on DK and Prob1 methods, but all three sets could be used by

PN, Wang and Prob2 methods. In order to compare the methods, the datasets

being passed into each method are indicated by checkmarks in Table 7.2. The

recovered X, Y and Z were compared with the actual transformations using
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the following metrics for the errors in rotation and translation:

Error(RH) =‖ log∨(RT
Hsolved

RHtrue) ‖ (7.35a)

Error(tH) =‖ tHsolved − tHtrue ‖ / ‖ tHtrue ‖ (7.35b)

where H = X, Y, Z.

Dataset Prob1 Prob2 Wang PN DK

I AI, {BIi}, {CIi} X X X X X
II CII, {BIIi}, {AIIi} X X X X X
III BIII, {AIIIi}, {CIIIi} × X X X ×

Table 7.2: Datasets used on each method

7.3.2 Simulation and Discussion

To compare all the five algorithms comprehensively, we performed numeri-

cal simulations by varying

1. the scrambling rate r,

2. standard deviation σdata for generating the measurement data,

3. noise level σnoise.

For each set of conditions, we ran 10 trials and plotted the average error of the

computed X, Y, Z from the true values. For experiments (2) and (3) the range of
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the errors were very big across all the methods. Hence we used the logarithm

scale for the vertical axis in Fig. (7.6), Fig. (7.7) and Fig. (7.8).

First, given the three sets of {A}, {B} and {C}, we scrambled BIi, AIIi, CIIIi

up to a certain percentage r where r = 0%, 20%, 40%, 60%, 80%, 100%. We set

σdata = 0.02 to generate the original datasets A, B and C. 10 trials were run for

each algorithm at each scrambling rate r, and the average errors in rotation

and translation were plotted as in Fig. (7.5). It can be seen that the rotation

and translation errors of both Prob1 and Prob2 remain close to zero despite

the scrambling rate r increasing, while the errors of DK, PN and Wang either

diverged quickly or blew up in the beginning. This showed the outstanding

performance of the probabilistic approaches when dealing with data streams

that had missing correspondence information. In addition, no initial estimates

of any kind were needed to calculate X, Y and Z.

Next, we varied the datasets with different values of σdata where σdata =

{0.02, 0.04, 0.06, 0.08, 0.1} and r = 1%. As shown in Fig. (7.6), as the standard

deviation σdata increased, both the rotation and translation errors increased.

This was consistent with the assumption on the datasets that they should be

“highly focused”. Moreover, Prob2 gave smaller rotation and translation errors

compared to Prob1, when all three datasets were available. This meant that

although Prob1 can be applied to a broader scope of robotic systems, Prob2 is
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Figure 7.5: Rotation/Translation Errors in X, Y, Z v.s. scrambling rate for 10
trials and 100 measurements

Figure 7.6: Rotation/Translation errors v.s. standard deviation of measure-
ment data for r = 1% and σnoise = 0
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Figure 7.7: Rotation/Translation errors v.s. standard deviation of noise ap-
plied to the data for r = 1% and σdata = 0.02

preferable if the system allowed the acquisition of complete datasets. This is

important because candidates of Y can affect the picking of both X and Z. If

no Y is close to its ground truth, it is possible to pick the wrong X and Z even

when there are some candidates very close to their ground truths. Besides, the

performance of the probabilistic methods in general are comparable to or better

than the traditional methods even when the scrambling rate is as low as 1%.

In the real world, data gathered from experiments are usually noisy, and it

is interesting to see how the five algorithms perform with noisy and scrambled

data. In Fig. (7.7) and Fig. (7.8), we fixed the standard deviation for generating

the datasets as σdata = 0.02. For a homogeneous matrix H, we apply noise with
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Figure 7.8: Rotation/Translation errors v.s. standard deviation of noise ap-
plied to the data for r = 10% and σdata = 0.02

zero mean and standard deviation σnoise = {0, 0.002, 0.004, 0.006, 0.008, 0.01} to

get a noisy Hnoise = Hexp(δ̂), δ ∈ N (0; Σ), where the covariance matrix Σ =

σnoiseI6 ∈ R6×6. The scrambling rate in Fig. (7.7) is r = 1% and the scrambling

rate in Fig. (7.8) is r = 10%. There are several observations from these two

figures.

1. Probabilistic methods deteriorate relatively faster than the traditional

methods when the scrambling rate is very low, in this case r = 1%.

2. The probabilistic methods become closer or much better than the tradi-

tional methods when the scrambling rate increases from 1% to 10%, de-
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spite the effects of noise.

3. For traditional methods, the scrambling rate was the dominant factor

on the errors of the solved X, Y and Z when it is large enough. As in

Fig. (7.8), when r = 10%, the performance of the traditional methods only

fluctuated within a small range despite the increasing noise.

7.4 A Hybrid Approach towards Handling

Noise and Lack of Correspondence

7.4.1 Algorithm Formulation

As can be observed in Fig. 7.7 and Fig. 7.8, the two probabilistic approaches

deteriorate quickly as the noises on the sensor measurements increase. This

is reasonable because the nature of the probabilistic approaches demand that

{A}, {B} and {C} be highly concentrated, and the applied noises are compara-

ble to or on the same scale of the sensor measurements themselves. In practice,

one has to keep the noise level really low in order for Prob1 and Prob2 to work

well. To solve this problem, we seek to introduce multiple clouds of sensor

measurement clattered around different means instead of just one. This is log-
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ical because the perturbation of the noise on the means of the data cloud is

much smaller compared to its influence on each sample point of the cloud. To

avoid the confusion of notation, we use Aijk to represent the new sets of data

measurements. i is the index of the sequence of all the point clouds where

i = 1, . . . , ns, j = I, II, III indicates the types of motion constraints when gath-

ering data and k represents the kth individual data in the corresponding point

cloud. For consistency, we use the Arabic numbers for the j index instead and

one has j = 1, 2, 3. The algorithm is described as the following work flow:

MA11XMB11 = YMC11Z

MA12XMB12 = YMC12Z

MA13XMB13 = YMC13Z

...

MAns1XMBns1 = YMCns1Z

MAns2XMBns2 = YMCns2Z

MAns3XMBns3 = YMCns3Z

↓

Traditional AXB = Y CZ Solver
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Figure 7.9: Rotation/Translation errors in X, Y, Z v.s. σnoise for 20 trials and
50 measurements with ns = 4 and σdata = 0.02

where MAij, MBij and MCij are obtained as in Eq. (4.52a), denoting the mean

of the ith cloud under the jth motion constraint. These 3ns equations can be fed

into Wang or PN method to solve for X, Y and Z in a simultaneous manner.

The overall formulation of the solver is very simple and straightforward, but it

turns out to be very effective in handling both the noise and incorrespondence

in the data.

7.4.2 Numerical Comparison

In this section, we picked Wang method as the traditional solver for the

hybrid method and compared it with Prob1 and Prob2 methods. For a com-
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Figure 7.10: Rotation/Translation errors in X, Y, Z v.s. ns for 20 trials and 50
measurements with σdata = 0.1 and rnoise = 0%

Figure 7.11: Rotation/Translation errors in X, Y, Z v.s. standard deviation of
the original data cloud for 20 trials and 50 measurements with rnoise = 1% and
ns = 3

prehensive study, we compared these three solvers against σdata, σnoise and ns.

We adopted the same way to generate the data cloud as in Section 7.3.1 except
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Figure 7.12: Rotation/Translation errors in X, Y, Z v.s. standard deviation of
the original data cloud for 20 trials and 50 measurements with rnoise = 0% and
ns = 3

that a number of ns clouds are needed instead of one for each case of motion

constraint. In Eq. (7.37), Bi10 denotes the initial B for generating the ith data

cloud under case I. Data scrambling within each point cloud is not needed

because none of the probabilistic or hybrid methods use this information for

solving the unknowns. To better reflect the noise level, the data noise is set as

σnoise = rnoise ∗ σdata where rnoise is the percentage of noise on σdata. The same

error metrics were used for evaluating the errors of the solved X, Y and Z.

Bi1j = exp(δ̂j)Bi10 (7.37a)

δj ∈ N (0; Σ) ⊂ R6 (7.37b)
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The numerical simulation results can be seen as in Fig. (7.9 - 7.12). Note

that the y axes in Fig. (7.9) and Fig. (7.10) are in logarithm due to the large

range of the errors. In Fig. 7.9, the noise level r is r = {0%, 2%...., 10%}, the

number of sets of data clouds is ns = 4, and the standard deviation used for

generating each no-noise cloud is σdata = 0.02. A total of 50 points were cho-

sen for each data cloud. 20 trials were run for each combination of parameters

and the averaged errors were plotted. It can be seen that Prob1 and Prob2

methods diverged quickly as the rnoise went up while the hybrid method main-

tained a relatively low level of errors. Fig. (7.10) showed that the errors of hy-

brid method decreased very quickly as the number of data set ns incremented.

The hybrid method is competent or even better than Prob1 and Prob2 when

σdata = 0.1 and rnoise = 0. This behavior is a reflection of the property of the tra-

ditional AXB = Y CZ solver which demands more data with correspondence.

However, the sets of means of A,B,C fed into the solver do not have the exact

correspondence, since they are the “average” of the corresponding data cloud.

Fig. (7.11) and Fig. (7.12) showed the performances of the three solvers when

σdata increased. It can be seen that all of the solvers share similar sensitive-

ness towards σdata. The hybrid method performed better when there is noise

and Prob2 gave more accurate results when the data is noise free.
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7.4.3 Discussion

The proposed hybrid method is better at handling noise compared to the

probabilistic approaches. This is achieved by providing extra amount of data

clouds which cluttered around different means, and this mitigated the affect

of noise on the entire data sets. However, the pure probabilistic methods gave

better results when the data is noise free and require much less complicated

data gathering process. In analogy to combining deterministic and probabilis-

tic approaches in the area of robot path planning, the hybrid method presented

here is a tentative approach to apply the same methodology onto the field of

robot-sensor calibration. We think this is a very empty and open field and

worth the further pursue of the community.

7.5 Conclusion

Motivated by problems that arise in multi-robot systems, in this chapter,

we proposed two probabilistic approaches to solve the AXB = Y CZ calibration

problem for the case where partial or all correspondence information between

the datasets was lost. Numerical simulations were performed to show the

outstanding performance of the probabilistic approaches over the traditional

AXB = Y CZ solvers that demand exact correspondence among the datasets.
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In addition, the probabilistic approaches did not require initial estimates which

made the calibration process easier. We compared the performance between the

two probabilistic approaches and showed that given complete datasets, Prob2

gave better RY and tY . However, Prob1 required fewer datasets and had wider

applications. Though the probabilistic methods can handle scrambled data

very well, they are very sensitive to the noise. As a tentative action to solve

this problem, we also proposed a hybrid approach which combines traditional

AXB = Y CZ solvers with probabilistic methodology. The probabilistic meth-

ods deteriorated quickly as the noise level went up, because the desired data

clouds are highly concentrated and even small noise can perturbate the data

a lot. However, by introducing multiple data clouds clattered around different

centers, the influence of noise on the data is mitigated. It was shown that the

hybrid method converged quickly as the number of data clouds incremented,

and its performance beat the pure probabilistic methods when the noise level

is high. However, when the data is noise free, the probabilistic approaches are

still better than the hybrid method, and it also requires much fewer sets of

data.
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Conclusion

This dissertation demonstrated new methodologies in robotic assisted catheter

tracking and robotic system calibration in general. The first part presented a

novel robotic ultrasound system built on top of the middleware Robot Operat-

ing System. The system avoided the intensive computation in common catheter

tracking systems by utilizing an embedded piezoelectric element. The element

was attached at the tip of the catheter, and the vibration signal generated be-

tween the element and the ultrasound probe was converted into the relative

position of the tip with respect to the ultrasound plane. Then a position feed-

back controller is employed to guide the robot arm to track the catheter tip in

simulation, a water tank, and a customized multi-vein phantom. It is demon-

strated that the system is able to track the catheter tip without any informa-
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tion of the ultrasound image. In the current setting, the catheter is inserted by

a human being. In the more automated setup, one might want to use another

robot arm to automate the catheter insertion procedure. In this case, a com-

prehensive and precise calibration of the whole system becomes very necessary.

This inspired the second topic as robotic system calibration. First, a detailed

review was given on the most classical robot hand-eye calibration problem. A

major effort was put on unifying the mathematical notations across various

AX = XB solvers to reveal their interconnection. Then several probabilis-

tic approaches were presented on AX = XB, AX = Y B and AXB = Y CZ

calibration problems, which deal with the case where there is partial or no in-

formation of the prior knowledge of correspondence among sensor data. For

the AX = XB problem, new ways of calculating the mean of a set of SE(3) ma-

trices were proposed, which improved the accuracy of the probabilistic solver

dramatically. For the AX = Y B problem, a probabilistic approach was derived

in combination of group invariants to recover the correspondence of shifted

data streams. It was illustrated that this approach can be used to facilitate

existing non-probabilistic AX = Y B solvers. For the AXB = Y CZ problem,

two probabilistic solvers were presented that can solve for X, Y and Z without

a prior knowledge of the correspondence among sensor data. The new solvers

were compared with three state-of-the-art non-probabilistic solvers and demon-
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strated their superior performance. In addition, to strike a balance between

handling loss of correspondence information and the noise in the data, a hy-

brid approach was also derived, which was more robust to noise but required

more sensor data gathering.
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