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ABSTRACT 

The 21st century energy challenges of climate change and energy access call for enhancements 

in power system planning models. This thesis studies three enhancements that make planning 

models proactive, conflict-aware, and aware of exogenous uncertainties and estimates potential 

benefits for case studies from developed and developing countries. Chapter 1 starts with a brief 

history of power system planning and introduces the challenges that renewable energy poses on 

transmission planning; conflict risk on electrification efforts; and climate change uncertainty on 

deterministic planning models.  

Chapter 2 compares traditional transmission planning practices — which invest in 

transmission to deliver energy from an assumed generation build-out — to a proactive 

transmission planning paradigm — which accounts for generators’ response to transmission 

additions. It estimates the costs proactive planning could save for a stakeholder-agreed 

representation of the Eastern Interconnection. Chapter 3 proposes a conflict-aware power system 

planning framework. The framework considers civil conflict’s multiple effects on power systems 

as well as uncertainty on how conflict will evolve. The results for a case study of South Sudan 

demonstrate how status-quo power system planning models underestimate the costs and unserved 

energy of conventional strategies due to omission of conflict. The results also show how a conflict-

aware framework differentiates investment plans based on the conflict trajectory and finds 

postponement and diversification of investments worthwhile under specific circumstances. 

Chapter 4 compares Robust Decision Making (RDM) to Stochastic Programming (SP) across three 

criteria: practical applicability, modeling capability, and contribution to decision making. Both 

methods can handle climate change and other exogenous uncertainties in power system planning. 

Results indicate that while both methods can model the uncertainties that power system planning 



 

 iii 

in Bangladesh faces, SP is more practical whereas RDM provides more information to decision-

makers. 

Using practical case studies, Chapters 2, 3, and 4 extend and assess enhancements to power 

system planning models that, in theory, improve their fidelity and usefulness. The results shed light 

on omissions and resulting unintended biases that status-quo models have. Chapter 5 concludes 

this thesis by discussing extensions of the three enhancements and additional enhancements 

analysts must implement to address the 21st century energy challenges.  
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CHAPTER 1  

INTRODUCTION 

Electricity is an essential commodity in modern societies — i.e., necessary to maintain a 

minimum standard of living [1]. Societies strive to provide electricity at an affordable cost [2]. As 

with other types of infrastructure, power system assets are capital-intensive, have long lifespans, 

and call for “smart” investment decisions with low anticipated regrets [3]. In the early years of 

electrification, consolidation of neighboring systems along with growth in demand encouraged 

investments in centralized units and led to declining costs of electricity due to economies of scale 

[4]. Centralized thermal and hydro power plants were clearly the most economical choices given 

the limited number of options available for electricity generation at that time.  

As electricity infrastructure expanded and the system became more complex, several questions 

with no easy answers emerged. As a result, interest grew in using computer models to assess the 

benefits and costs of alternative power plant and transmission investments.  Masse and Gibrat [5] 

addressed questions on the economic efficiency of tidal power and reservoir development in 1950s 

France. Existing methodologies at the time did not acknowledge the value of flexibility reservoirs 

could provide because each new investment was assessed according to its levelized cost per kWh. 

In levelized cost terms, development of a reservoir was unnecessarily expensive since it did not 

change the total amount of energy. Therefore, Masse and Gibrat [5]  formulated the problem of 

electricity investment as a linear program that endogenously evaluated the system cost under 
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alternative investment plans and recommended the least-cost investment plan.  Their seminal 

paper offers the first instance of a computerized optimization model (also known as mathematical 

program) applied to assess investments in electricity infrastructure. 

In the 1970s, US utilities were called to answer questions of similar difficulty and justify 

investment decisions in economic terms. An “anti-utility political constituency” emerged, 

criticizing past investments as wasteful and inefficient [4] and citing factors such as increasing fuel 

costs due to the 1973 oil embargo, rising construction costs, high demand forecast errors, and 

environmental concerns [4]. They called on utilities to consider alternative solutions such as energy 

conservation programs to limit the growth in demand. At the same time, new technologies such 

as gas turbines appeared promising and were included in the scope of utility investment planning 

[6]. This ferment led to the adoption of regular and explicit resource planning procedures with 

stakeholder participation in most states by the 1990s [3]. The formalized procedures signaled a 

need for sophisticated evaluation of expansion alternatives and spurred the development and 

application of several software programs such as WASP (Wien Automatic System Planning 

Package) by Oak Ridge National Lab [7].  The optimization methods — pioneered in the 1950’s 

— were adapted to the new requirements of “integrated resource planning” by including multiple 

objectives, risk, environmental concerns, demand-side as well as generation and transmission 

investments [8]. 

Today, planning procedures with varying degrees of stakeholder participation aided by 

computerized optimization models have been adopted by national governments, state authorities, 

local utilities and international donors. Mathematical programs for power system planning have 

been evolving in two areas: (1) refinement of physical system representation (generation, 

transmission, and load characteristics) and (2) representation of contextual information, such as 

environmental policies, institutional framework, market rules and structure. In the first area, the 

complexity of the physical system means that the mathematical problem is not a linear program.  

Simplifications are usually necessary because the resulting models are complex — for instance, 
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Mixed Integer Non-Linear Programs — and the number of variables involved is large — multi-

decadal horizon with thousands of nodes, leading to millions of decision variables. Continuous 

advances in mathematical programming enable analysts to formulate larger and more complex 

models that have more refined spatial and temporal resolution and that represent the physical 

structure and properties of power systems more accurately. Given the high cost of the power 

system planning problem, even incremental improvements in computational power and 

algorithmic procedures can lead to sizeable savings [9]. In the second area, recent discussions have 

focused on the integration of policy targets, institutional framework, uncertainties [10], market 

rules [11], and market structure [12].  

These planning procedures are being revised in the context of two challenges for the global 

energy agenda in the 21st century: energy access and climate change [13]. In 2018, the population 

without access to electricity fell below 1 billion for the first time since it has been tracked [14]. But 

the world remains off-track to achieve universal electrification by 2030 [14]. It is estimated that 

approximately 650 million people will lack access to electricity in 2030 and the vast majority of 

population without access (~600 million people) will be in Sub-Saharan Africa [15]. The access 

deficit has stimulated discussion of weaknesses of existing planning procedures and models 

(Section 1.2). The leapfrogging observed in the telecom industry in the developing world has also 

inspired discussions on the potential of novel solutions for electrification in Sub-Saharan Africa 

[16] and elsewhere in rural areas in the developing world. Consequently, there is a call for 

enhancement of power system planning models to make them more relevant for the developing 

country context [17].  

Meanwhile, concerns over climate change have drastically changed the landscape of electricity 

expansion. The electricity sector must mitigate its emissions contributing to climate change [18] as 

well as adapt to the effects of climate change [19]. Policies aimed at greenhouse gas mitigation have 

been major drivers of new investments [20]. Renewables are playing an increasingly important role 

in electricity generation [21]. The growth of renewables introduces new sources of uncertainty and 
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variability and calls for a higher degree of coordination among regions and between transmission 

and generation investments [3]. Existing planning procedures inadequately capture the 

interdependencies of transmission and generation investments and are being revisited (see Section 

1.1).  At the same time, climate change affects power systems in multiple ways — among them, 

rising temperatures leading to lower Carnot efficiencies in thermal power plants and greater air 

conditioning demands, and changing patterns of water availability for cooling and hydropower 

production [22]. New features such as resiliency must be added to a long list of desirable features 

of the future power grid [23]. Climate change introduces new uncertainties in resource planning 

models [3], and planners are called to adopt new methods that explicitly handle this uncertainty 

and can better assess adaptation strategies (see Section 1.3).  

This dissertation contributes to the literature of power system planning by proposing and 

assessing enhancements to power system planning models. These enhancements will lead to 

improved power system plans that aid policymakers in addressing the 21st century challenges of 

energy access and climate change. Chapters 2–4 each apply novel modeling frameworks and 

discuss the benefits of those enhancements through illustrative applications. The remainder of 

Chapter 1 (Sections 1.1–1.3) introduces three needs for improved methodologies for power system 

planning. Section 1.1 explains how alternative designs of transmission planning procedures affect 

system costs and integration of renewable resources. That discussion provides background for 

Chapter 2’s analysis of alternative transmission planning procedures, and its estimates of the 

economic benefits that planners could obtain by using models that endogenously account for 

complementarities between transmission and generation investments. Section 1.2 discusses 

progress towards universal electrification. The slow progress recorded in fragile and conflict-

affected countries necessitates novel planning approaches to achieve universal electrification in 

those countries. Chapter 3 addresses that need by proposing a framework for evaluation of 

electricity investments that accounts for conflict risk. Section 1.3 points out that new 

methodologies are necessary to evaluate adaptation efforts in the power sector. Fortunately, 
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multiple methods have been proposed to capture uncertainty related to climate change adaptation 

decisions. However, at present, the literature provides only an ambiguous and vague basis for 

choosing among those methods. To correct this deficiency in the literature, Chapter 4 applies two 

popular methods on power system planning in Bangladesh and documents insights resulting from 

a cross-comparison with respect to relative strengths and weaknesses of each method.  Section 1.4 

briefly introduces the basic operations research and software programs I employ within the models 

used in the dissertation, and then summarizes the scope of the remaining chapters. 

1.1 TRANSMISSION PLANNING PROCEDURES  

Chapter 2 focuses on transmission planning procedures. Transmission planning procedures 

aim to assess and approve transmission investments required for a cost-efficient and reliable power 

system [24].  In principle, transmission planning procedures are technology-agnostic — i.e., they 

do not pick winners and losers from among transmission and energy supply based on a prior 

definition of favored resources, but rather they select investments based on their impact on system 

net benefits. The design of transmission planning procedures is the cornerstone for a technology-

agnostic practice [25].  

Over the past few decades, the design of transmission planning procedures has evolved in 

incremental steps and does not necessarily effectively achieve the basic goal of reliably meeting 

demand at least cost [26]. The proliferation of goals (reliability, economic, public policy) for 

transmission procedures along with increasing renewable penetration led ISOs to adopt changes 

in procedures [27], [28].   

Renewable energy legislation, for example, mandated ISOs to reconsider their assumptions 

concerning future generation mix — traditionally ISOs assessed transmission investments 

assuming a fixed generation mix including existing and planned investments — for at least two 

reasons. First, renewables have shorter construction time than transmission lines [29]. So, at the 

time transmission investments are evaluated, the location and size of renewable projects that might 
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use those facilities at the day the line becomes operational are unknown. Second, quality of 

renewable generation is geographically-dependent and good resources are often located in areas 

far from the load. For instance, high quality wind resources in the Great Plains could provide 

energy to coastal regions in the Eastern United States with high load [30]. However, wind 

developers will not plan additional wind projects in the Great Plains unless transmission lines are 

available, leading to a “chicken-and-egg” problem [29]. 

ISOs could have improved their generation assumptions either by redesigning their procedures 

to endogenously account for complementarities of transmission and generation investment (so-

called proactive planning [12] or co-optimization) or by improving their projections of the 

generation mix. ISOs followed the latter approach [26], foregoing system benefits that the first 

approach could offer [26].   

Chapter 2 discusses three alternative designs of transmission planning procedures, their 

relative strengths and weaknesses. It aims to estimate the system benefits planners achieve under 

alternative transmission planning procedures, with a focus on the value of co-optimization of 

transmission and generation. For that purpose, I formulate alternative transmission procedures as 

mathematical programs for a realistic system — the Eastern Interconnection — and compare 

system costs, renewable penetration, and transmission investments under alternative transmission 

planning procedures.  

1.2 POWER SYSTEM PLANNING FOR UNIVERSAL ENERGY 
ACCESS 

It is estimated that 1.7 billion people did not have access to electricity in 2000 [31]. A wide gap 

between electrification rates in developed and developing countries had formed: 64% and 73% of 

the population in developing countries and the world as a whole had access to electricity 

respectively, while developed countries achieve nearly 100% access. Approximately 1 and 0.5 

billion people without access to electricity resided in developing Asia and Africa in 2000, 
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respectively. In 2011, the United Nations launched the “Sustainable Energy for All” campaign [13] 

and later in 2015 adopted “Sustainable Development Goal 7: Universal access to clean energy by 

2030” [2]. 

The estimated population without access to electricity fell to less than 1 billion people  in 2017 

[14]. However, the progress towards universal electrification has been uneven around the world. 

Developing Asia is now home to ~0.4 bn people without access to electricity, but is on track to 

reach almost universal electrification by 2030 [31]. On the other hand, the population without 

access to electricity in Sub-Saharan Africa (SSA) instead increased by 0.1 bn over the last 16 years 

because of population growth. According to IEA [31], 36% of population in SSA will lack access 

to electricity in 2030. Thus, accelerated and novel electrification efforts are necessary in SSA. 

SSA — the epicenter of the energy poverty challenge [32] — consists of some of the poorest 

and most fragile countries [33]. Collier [34] argues that conventional development strategies are 

condemned to fail in fragile countries. Development strategies for electricity also need to be novel. 

He argues that incremental de-centralized investments are more appropriate in a fragile 

environment and can significantly improve the energy access in the short term, fueling growth.  

Existing power system planning models overlook fragility and the risk of conflict; they do not 

recommend different investments plans according to the fragility status of a country. In fact, the 

impact of conflict on power system expansion is not well studied. As I will later explain in Chapter 

3, past literature has a narrow focus on single effects of conflict on power systems (such as sabotage 

of transmission towers, thereby ignoring other effects such as other types of sabotage, reduced 

maintenance, and fuel shortages) or specific technologies and does not capture the multi-faceted 

phenomenon of conflict nor the full range of options for managing power systems under conflict. 

Thus, in Chapter 3 I provide a comprehensive summary of conflict effects on power systems. I 

review state-of-the-art methods for conflict projections and propose a novel framework for 

evaluation of power system investments that integrates conflict risk.  The framework is applied to 

planning the power system under conflict uncertainty in South Sudan. 
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1.3 CLIMATE CHANGE UNCERTAINTY IN POWER SYSTEM 
PLANNING 

The interest in adaptation to climate change has recently increased [35] since mitigation efforts 

(defined as efforts to lower greenhouse gas emissions or to remove those gasses from the 

atmosphere) will not fully eliminate adverse impacts of climate change [36]. Decision makers are 

called to devise adaptation plans while they are still uncertain about the pace and local effects of 

climate change, costs of adaptation actions, and the magnitude of damages in case of inaction. 

New tools that explicitly consider uncertainty are necessary for evaluation of adaptation 

investments [37]. Research has been conducted on methods for including general uncertainties in 

power system planning, such as fuel costs, load growths, and policy changes.  These methods 

include decision trees, stochastic programs [38], robust decision making [39], and others [40], [41].  

In his 1989 review, Crousillat [42] concluded that no method for integration of uncertainty into 

power system planning is superior to others. More recent literature ([40], [41], [43]) discusses the 

relative strengths and weaknesses of various methods. However, recommendations with respect 

to applications are vague and ambiguous.  Systematic comparisons of methods are lacking 

discussion on the appropriateness of methods to the problem at hand, or theoretical validity, nor 

are there careful analyses of whether results from different methods differ significantly.  As a result, 

planners do not have the information they need to best match the method to their problem. 

Two methods — Robust Decision Making and Stochastic Programming — are frequently 

applied in power system planning under climate change uncertainty ([44], [45]). One would expect 

that reported practical experience with these methods would aid planners better understand the 

mechanics of each method and choose a method. Instead, as discussed in detail in Chapter 4, the 

literature on these applications is likely to confuse practitioners even further since in many cases 

methodological choices are not justified or contradictory rationales are provided.   

In order to remove ambiguity on the relative strengths and weaknesses of the two methods, 

Chapter 4 applies both methods on the same practical example.  The problem is generation 
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planning in Bangladesh over the next two and a half decades in the face of climate, fuel price, and 

other uncertainties.  The vis-à-vis application highlights choices and assumptions made by analysts 

under both frameworks. Based upon lessons learned from past applications of each method, 

Chapter 4’s cross-comparison is designed to be as informative and objective as possible.  Finally, 

another novel aspect of the application presented in Chapter 4 relates to the integration within 

planning of a careful characterization of flooding risks for power plants.  

1.4 TOOLS AND SCOPE 

I created multiple mathematical programs and automatic routines in order to study the 

problems described in Sections 1.1–1.3 for realistic case examples. For chapters 2–4, I formulate 

the power system planning problem as an optimization model (also called a mathematical 

program). In particular, I formulate mixed integer linear programs for Chapters 2 and 3 and a linear 

program for Chapter 4. I employ slightly different formulations for each chapter to accommodate 

for different contexts and information availability. For example, the transmission network is not 

represented in the case study of Chapter 4. For all case studies, I gathered information from 

publicly available resources such as past studies or reports. For the case studies of Chapters 3 and 

4, some of the input data were provided by sophisticated models projecting conflict and flooding, 

respectively. Python and Matlab routines were also developed to process geographical information 

in ArcGIS, fit data to probabilistic distributions, parallelize model runs, and process input and 

output data.  

There are three projects in this dissertation, organized into Chapters 2, 3, and 4. Alternative 

designs of transmission planning procedures are compared in Chapter 2. Section 2.1 introduces 

the problem and is followed by a literature review in Section 2.2. Section 2.3 lists the assumptions 

of the case study and explains the rationale behind them. Basic features of the case study are 

presented in Section 2.4 and a detailed model formulation is provided in Section 2.5. I document 

the experimental design for the comparison of alternative designs for planning procedures in 
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Section 2.6. Section 2.7 discusses the results of the comparison and major conclusions are 

highlighted in Section 2.8. 

Chapter 3 proposes a novel framework for power system planning in fragile and conflict-

affected countries. The motivation for this project is discussed in Section 3.1. I concisely discuss 

the observations from the literature review on conflict projections, conflict effects on power 

system, and integration of conflict risk in power system models in Section 3.2. In Section 3.3., I 

articulate the proposed framework step by step, outlining the purpose of each step and choices 

practitioners should make. I demonstrate the applicability of the framework on a case study in 

South Sudan in Section 3.4. Then, I follow the experimental design described in Section 3.5 to 

provide results in Section 3.6 that illustrate model features. I discuss the results in Section 3.7 and 

summarize major conclusions in Section 3.8. Appendix A contains detailed information on 

assumptions and results of the South Sudan case study. 

In Chapter 4, I compare Robust Decision Making to Stochastic Programming for integration 

of climate change uncertainty along with other uncertain factors in power system planning. The 

problem is introduced in Section 4.1, followed by background information on both methods in 

Section 4.2. Upon reviewing relevant literature in Section 4.3, I describe the case study in Section 

4.4. Then, I explain the experimental design in Section 4.5 and discuss the results of the cross-

comparison in Section 4.6. Conclusions are summarized in Section 4.7. Appendix B provides 

supplementary information on assumptions, results, and models used in the Bangladesh case study. 

The overarching conclusions that can be drawn from the projects comprising this thesis are 

presented in Chapter 5. Each project suggests one enhancement of the power system planning 

framework that will aid decision makers to better address the two challenges of our century: climate 

change and energy access. I have also published results from each project in scientific journals and 

technical reports. In a 2017 article in the IEEE Transactions on Power Systems [46], I discuss key 

results and take-aways from the project presented in Chapter 2. In a forthcoming article in Nature 

Energy, I present results and conclusions from the project of Chapter 3. Key results and insights 
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from Chapter 4 have been reported in a 2017 World Bank technical report [47]. The key message 

from all projects is that models need to integrate contextual information and uncertainty in order 

to suggest relevant investment plans. Adoption of off-the shelf modeling approaches will not yield 

the same benefits as context-aware modeling approaches that represent the institutional framework 

and relevant risks. Finally, directions for future research are also discussed in Chapter 5.   
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CHAPTER 2  

BENEFITS OF PROACTIVE 

TRANSMISSION PLANNING 

Transmission planning has tradi tional ly fo l lowed a “generation - f ir st” or  “reac tive” 

logic ,  in which network re inforcements  are  planned to  accommodate assumed 

generation bui ld-outs .  The emergence  of  renewables  has revealed def ic i encie s in this 

approach, in that it  ignores the  interdependence  o f transmission and generation 

investments .  For ins tance,  gr id inves tments can provide  access to  higher qual ity 

renewables and thus aff ect  plant  si t ing.  Disregarding  this complementari ty increases 

co sts . In theory,  this can be  correct ed by  “proac tiv e” transmission planning ,  which 

anti c ipates how generation inves tment responds by  co -opt imizing transmission and 

generation investments . I evaluate the po tential usefulness o f co -optimization by 

applying a mixed integer l inear  programming formulat ion to a 24 -bus stakeho lder -

deve loped representat ion of  the  U.S. Eastern Inter connection (EI).   Cost sav ings from 

co -optimizat ion are  es t imated by  c omparing co -opt imizat ion to  bo th reac tiv e planning 

and an approach that iterates be tween generation and transmission investment 

opt imization.   I also evaluate three congest ion metri cs as screens fo r reducing the 

number of candidate  transmission investments . They each improve so lution t imes,  but 

the  proposed Est imated Potential Bene fi t metric  i s much more  e f fe ct iv e in ident i fy ing 

cost- e f fec t ive  l ines than the o thers .  
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2.1 INTRODUCTION  

Transmission investments have grown significantly over the past decade in the USA [48].  They 

are expected to be sustained at high levels in the near future [49], [50] as policymakers and industry 

recognize the significant benefits of transmission upgrades and expansion [51], [52]. There are 

multiple categories of benefits. Among benefits, the improvement in system reliability and cost are 

most frequently quantified. Whereas, other benefits such as enablement of a competitive and more 

liquid market environment might be more difficult to quantify [53].   

Prior to restructuring of the electricity sector in parts of the USA, vertically integrated utilities 

identified investment needs at the generation and transmission level to satisfy projected electricity 

needs [54]. As a result of restructuring of electricity markets in parts of the USA, generation 

investments have become more market-driven while transmission investments have largely 

continued to be made on a regulated cost recovery basis [55]. In this framework, Independent 

System Operators (ISOs) — not-for-profit organizations formed by groups of transmission 

owners, responsible for the reliable and cost-efficient operation of power systems in their 

jurisdiction — play a central role in identifying and/or approving transmission projects.  

The unbundling of generation and transmission services explains the ISOs’ focus on 

transmission investment decisions. ISOs chose to use reliability criteria to evaluate and justify 

transmission investments. Thus, most transmission development in the past addressed reliability 

issues and facilitated interconnections [12]. However, FERC Order 890 [24] established economic 

planning studies as one of the nine planning principles for transmission providers. To comply with 

FERC Order 890, ISOs integrated production cost modeling in their economic planning 

procedures. Congestion analyses were also incorporated in the ISO economic planning 

procedures, examining past and projected congestion [56]. To economically evaluate the benefits 

of transmission expansion plans through production cost simulation and congestion analysis, 

planners had to assume a generation mix. Because of that assumption, the transmission planning 
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approach has been called “reactive” or “generation-first” planning, since the transmission planner 

“reacts” — decides on transmission investments — to a pre-defined generation fleet [12]. 

More recently, FERC Order 1000 [57] required a high degree of interregional coordination of 

planning processes and consideration of non-transmission alternatives. Considering non-

transmission alternatives is not straightforward given that most planners rely on fixed assumptions 

about the levels of non-transmission alternatives.  For example, the procedures cannot capture 

benefits such as deferral of capacity needs and changes in the composition of cost (e.g., shifts from 

capital to operational cost and vice versa). Despite submission of compliance fillings by the ISOs 

for FERC Order 1000, economic evaluation of non-transmission alternatives through ISO 

planning procedures is still relevant as demonstrated by the formation of a working group at the 

California ISO that discusses storage as a transmission asset [58].   

At the same time, the growing amount of renewables  — driven by policy incentives — has 

complicated the forecasting of future generation siting for at least two reasons [59].  First, high 

quality wind resources are often located at remote areas with weak or no transmission connections 

under the current network configuration [60]. The economic effectiveness of such resources 

depends in part on the expense of the new transmission needed to deliver them, which may be 

highly uncertain until detailed transmission plans are made.  Second, wind generators have shorter 

construction times than transmission, and generation expansion plans might change depending on 

where the transmission planner decides to expand the grid [29]. To overcome those challenges, 

transmission planners have developed new approaches to account for wind siting in reactive 

planning procedures. For example, Midcontinent Independent System Operator (MISO) 

conducted the Regional Generation Outlet Study (RGOS) to facilitate renewable integration [27]. 

RGOS identified wind zones and ranked them using criteria such as proximity to load and capacity 

factor. Then, RGOS developed wind siting scenarios by allocating equal amounts to zones starting 

from the top ranked zones until the renewable requirement for each region was satisfied.  Electric 

Reliability Council of Texas (ERCOT) pursued a similar study “Competitive Renewable Energy 
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Zones” (CREZ) [28] to develop wind siting assumptions for its planning procedures. ERCOT 

designed four scenarios for wind siting and estimated costs for each scenario. Consulting with 

stakeholders, the regulator  decided to build the transmission plan identified by one scenario [61].  

In summary, the restructuring of electricity sector along with mandates imposed by FERC 

orders and the growing amount of renewables have triggered tremendous evolution of 

transmission planning procedures in the past two decades. Practice illustrates the efforts of 

planners to enhance planning procedures through addition of steps/modules within a traditional 

reactive, generation-first planning framework. As Kahn [26] points out, this general approach still 

does not capture the trade-offs between transmission investment costs and generation mixes. By 

decomposing the problem into two separate and successive sub-problems (wind siting and then 

transmission planning), the interactions of these decisions are only partially captured, and the 

planner is unable to determine if the overall strategy selected is indeed least-cost. With this 

approach, the planner can only conduct “what-if” analyses and simulations of the system under a 

few wind siting scenarios. Thus, significant cost savings that might be gained from co-optimization 

of generation and transmission planning may be overlooked.  

Another problem of the reactive approach is that it does not account for the response of 

generator investors to transmission plans. That response might differ from the assumed generation 

projection. To account for generators’ response, some planners follow an iterative approach in 

which two optimization models, one for generation and one for transmission, are alternately 

applied until convergence is achieved (e.g., WECC’s Long Term Planning Tool [62]).  

 However, as demonstrated in Section 2.6.4 , such an iterative approach cannot guarantee 

convergence to the joint transmission-generation optimum.  This joint optimum, though, can in 

theory be identified by a co-optimization planning approach (which is equivalent to proactive or 

anticipative transmission planning under certain assumptions as proved in Section 2.5.2) [12], [63]. 

That approach optimizes generation and transmission investment simultaneously on a system-wide 
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basis, and so endogenously accounts for any interdependency between transmission and 

generation investments.  

Despite the proven result [12] that proactive planning, in theory, leads to superior results 

compared to traditional approaches, papers estimating the practical improvements in net benefits 

compared to traditional planning practice are lacking.  As discussed in Section 2.2, most of the 

existing academic literature acknowledges the general benefits of proactive planning, and has 

focused on: 1) resolution of the computational problems arising because of the Mixed Integer Non 

Linear Program (MINLP) nature of the generation and transmission planning problem in case 

strategic behavior is assumed [64], [65], [66] and 2) model enhancement through addition of new 

features such as outage contingencies [67]. In practice, though, no transmission planners have 

adopted a proactive planning framework such as the one described in [12].  

Thus, this chapter aims to contribute in literature by addressing two topics. First, I compare 

all three planning procedures (proactive, reactive, iterative) in theory (see Section 2.6.4) and 

through a case study that quantifies the benefits of more complex models, in terms of improved 

plans. Case studies such as the one presented here might help planners to decide whether changes 

to the planning framework are worthwhile and comprise a convincing case for changing 

transmission practice needs.  To the best of my  knowledge, only one paper presents relevant 

benefit estimates [63], in that case for a simplified 13-zone US network.  In contrast to [63], this 

chapter employs a more detailed network (24-bus representation of a real system (the Eastern 

Interconnection (EI)) and scenario assumptions that were developed by stakeholders participating 

in Eastern Interconnection Planning Collaborative (EIPC)  [68], [69]. In summary, the first 

research question addressed here is “How do plans and total system costs resulting from traditional 

planning approaches (reactive or iterative) compare to costs under full co-optimization of 

transmission and generation investment?” 

Second, I assess the effectiveness of congestion-based screening metrics in reducing the pool 

of candidate transmission investments without diminishing the benefits of co-optimization. The 
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size and complexity of the model for proactive planning might prove challenging for a real system, 

discouraging the adoption of the proactive approach. Thus, effectiveness of available screening 

metrics is important for planners that consider changing their practice.  Most screening metrics 

rely on shadow price information, which may misestimate the benefit of the expansion of an 

interface because they do not consider the extent of the interface expansion and its interaction 

with potential augmentation of other interfaces. To quantify the potential inefficiencies introduced 

by those screening procedures, I compare the solution of the co-optimization model considering 

a full set of alternatives with solutions that only consider subsets of interfaces that survive 

screening by the three criteria considered here. 

The rest of the chapter is structured as follows. Section 2.2.1 reviews literature on transmission 

planning procedures focusing on methods that consider the interaction between generation and 

transmission investment. Section 2.2.2 reviews screening metrics for transmission candidates. 

Section 2.3  describes the assumptions for the methodological analysis of this chapter. Section 2.4 

summarizes key features and assumptions of the case study. Section 2.5 summarizes the model 

formulation and proves the equivalence of co-optimization to proactive transmission planning 

under the assumptions of Section 2.3. Section 2.6 explains the experimental design, demonstrates 

the theoretical relationship among the three methods considered here and defines the screening 

metrics I use. Section 2.7 presents the results of transmission planning under all cases listed in 

experimental design, followed by conclusions in Section 2.8. 

2.2 LITERATURE REVIEW 

2.2.1 Review of  coordination of  generation and transmission investments 

Researchers and practitioners have acknowledged the importance of coordination between the 

generation and transmission investments as demonstrated by the multiple papers I review in this 

section. Based on the extent of coordination, I classify the proposed methods in three categories: 
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(1) methods that fully coordinate transmission and generation investments, (2) methods that 

anticipate the response of generator investors to announced transmission investments, and (3) 

methods that overlook the interdependencies between generation and transmission investments. 

The first category includes methods that find the joint optimum of transmission and 

generation expansion. The second category refers to methods that identify a transmission plan 

which induces generators to invest in a way that is identical to the generation assumptions made 

to evaluate the transmission investment plan. The third category of methods has been already 

discussed in Section 2.1 as the status-quo approach, followed by most planners and commonly 

called “reactive” or “generation-first”. In the following paragraphs, I present some key methods 

proposed under each category. 

A seminal paper in the first category is [12], where Sauma and Oren explain how a proactive 

network planner that anticipates generation investments is helpful for recovery of part of the 

welfare losses introduced by unbundling of generation and transmission. They assume that the 

transmission planner has an objective of maximizing net market surplus and prove that the 

proactive planner will lead to superior solutions in terms of market surplus compared to the 

reactive network planner’s approach but inferior compared to an integrated (or composite) 

resource planner [70]. In the applications presented in [12] and [71] , they do not solve the full 

proactive problem but instead use it as a framework to evaluate investments on transmission lines, 

considering one transmission investment at a time. 

The computational complexity of the proactive framework  proposed in [12] might explain 

why the authors did not attempt to find the optimal transmission investment plan. Their 

framework implies a multi-level structure with the lower number of levels being three. At the upper 

level, the transmission planner decides on transmission investments anticipating the decisions of 

middle and lower levels. At the middle level, generators decide on generation investments 

anticipating system operation. Finally, at the lower level operational decisions are made with 

respect to commitment, dispatch, and power flows. The lower level might be extended to comprise 



 

 19 

of two levels itself in case generators are strategic in their operational bids. Its multi-level structure 

along with generator’s strategic behavior introduces non-linearities. Whereas, the discrete level of 

transmission investments introduces non-convexities.   

The non-linear and non-convex nature of the problem is challenging for available solution 

procedures. Assumptions about the market environment and degrees of flexibility have been used 

by researchers to render the problem tractable. For example, authors of [64] adopt a set of 

assumptions that allows them to formulate the proactive problem as a Mixed Integer Linear 

Problem. In particular, they assume perfect competition at the lower level, which allows them to 

replace the lower level by a linear complementarity model. The bilinear terms of the 

complementarity model are linearized through disjunctive, “big M” constraints. Moreover, the 

authors of [64] assume discrete levels of generation investments, which allow them to handle non-

linearities at the middle and upper level through  binary expansion and use of “big M” constraints.   

In contrast, authors of [65] do not attempt to make the formulation more tractable. Instead, 

they propose a combination of solution methods and a set of criteria that would allow planners to 

determine if the optimal plan has been identified. In particular, they assume multiple generator 

companies (genco) behaving as Cournot competitors in both investment and operational levels. In 

that case, an EPEC (Equilibrium Problem with Equilibrium Constraints) describes the multi-genco 

game.  Authors state that the solution to the complementarity reformulation of the EPEC is not 

necessarily an optimal solution to the multi-genco game because of non-convexity. However, 

authors use the complementarity reformulation and solve the problem as a Mixed Integer Non 

Linear Program (MINLP) with an off-the-shelf solver. Then, for a given transmission plan (the 

one identified by MINLP) the diagonalization method is used to determine the equilibrium among 

generators. Depending on the result of the diagonalization method, more iterations of the scheme 

might follow. The MINLP problem with additional cuts is then used in subsequent iterations to 

identify alternative transmission plans (different from previous iterations). Alternative plans have 

better market surplus than solutions found in earlier iterations because of relevant constraints in 
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the MINLP problem.  Iterations between the MINLP and the diagonalization method stop when 

the MINLP is no longer feasible. Note that this method belongs to the second category because it 

cannot guarantee convergence to the joint optimum but identifies a transmission plan, anticipating 

the generators’ response. 

The approach followed in [66] is similar to [65] given that no assumptions on the market 

environment that would simplify the model are made. It is also similar to [12] and [71] in that  the 

benefits of a pre-determined set of transmission investment plans are estimated.  In this case 

though, authors use agent-based methods to determine generator bidding at the operational level 

and search-based algorithms to identify the generation investment. The approach in [66] also 

belongs to the second category since it does not necessarily identify the joint optimum and it 

actually uses an objective function for the transmission planner that differs from social welfare.1 

On the other hand, Gu et al. [72] limit the scope of the generation investment problem to 

wind investments and assume only one generation company. Their planning procedure starts with 

generation planning; then, given the generation investments identified, the procedure continues 

with transmission planning.  After defining a tentative set of transmission investments, it adjusts 

the generation investment plan, and continues iterating between the two planning modes 

(generation, transmission). The iterative approach guarantees that the joint optimum is found 

through addition of optimality cuts at the transmission planning level, which take into account the 

sensitivity of costs in the generation planning problem through Langrage multipliers.  

A similar procedure is followed by WECC’s LPTP model [62]. In [62] though, instead of 

optimality cuts, estimates for the transmission investment each generator requires are added in the 

generation planning problem. Those estimates are updated at each iteration based on the latest 

solution of the transmission planning problem. Note that this procedure is iterative but 

                                                      
1 There are multiple social welfare functions in the literature [315]. In this thesis, the term “social welfare” 

refers to the sum of the individual utility functions of all market participants. 
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convergence to the joint optimal is not guaranteed.  Therefore, the procedure belongs to the 2nd 

category.  

Finally, I would like to note that the transmission planning literature extends beyond the 

traditional structure where the ISO has a critical role in evaluating the benefits of candidate projects 

and approving them. For example, in [73] a deregulated market is investigated where the 

transmission investments are made by merchant transmission and the role of the ISO is limited to 

overseeing network security criteria and issuing capacity payments to guarantee network security. 

In [73], merchant transmission and generation investors are simultaneously considered in the same 

step where they individually decide on proposed investment plans. Then the ISO processes plans 

submitted by market participants and performs the following functions: (a) check if security criteria 

are met, (b) choose an investment plan that minimizes capacity payments to generation and 

transmission in case multiple plans are feasible; and (c) project prices for the optimal operational 

problem. Here, the ISO broadcasts two types of signals to coordinate the iterative procedure: 

capacity payment signals to guarantee compliance with security criteria; projected LMPs and FMPs 

(Locational and Flowgate Marginal Prices, respectively), which help market participants evaluate if 

the proposed investments are profitable. Investors react to those signals, submit updated plans 

and the procedure iterates until a defined stopping criterion is met. In [73], authors look at the 

difference between costs in subsequent iterations to decide if the iterations have converged. Note 

that the cost is defined as the sum of capacity payments by the ISO to market participants and the 

operational cost of the system at optimal dispatch.  This procedure does not aim for optimality in 

social welfare or capacity payments; and it is not guaranteed to converge.  

2.2.2 Background on transmission candidate selection 

The proactive transmission planning framework is computationally difficult as discussed in 

Section 2.2.1. The large size of the problem also contributes to model intractability. The number 

of binary variables grows linearly with the number of candidate transmission lines. Thus, screening 
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candidates for transmission investments is usually performed prior to evaluation of alternative 

transmission plans. Screening is widely used by ISOs to select projects submitted by stakeholders 

for detailed analysis.  

Screening aims to reduce the set of candidate transmission lines to a subset that appears 

particularly promising and should be studied in more detail.  Screening should ideally: 

a) require significantly less time than the full problem, 

b) have zero false negative rates, i.e., resulting to a reduced set that does not exclude 

lines that would be chosen for investment by the full model’s optimal solution, and 

c) have a relatively low false positive rate; that is, the resulting subset is much reduced 

compared to the original set of lines to reduce the effort required and improve the 

computational efficiency in subsequent analyses.   

Congestion metrics are frequently used by transmission planners as screening metrics. A 

transmission line is considered congested when the power flowing over it is equal to its available 

capacity. Thus, it seems reasonable that a line that is frequently congested and/or is characterized 

by high difference between the prices at its two ends would be a candidate for expansion resulting 

in market benefits.  There are at least three different metrics used by the ISOs to measure 

congestion: (1) binding hours (2) congestion cost (3) total shadow price of each transmission 

interface. PJM [74] provides to stakeholders the first two metrics in order to help them identify 

transmission projects that improve market efficiency:  (1) the number of binding hours — also 

called congestion frequency— and (2) congestion cost — also called market congestion. SPP [75] 

uses a congestion score that is equal to the product of the average shadow price of the congested 

lines multiplied by the number of binding hours. SPP selects for further review a maximum 

number of projects that have a congestion score above a specified threshold.  

However, congestion metrics have flaws. For example, congestion frequency is not 

informative by itself because congestion frequency might be high but the shadow price for the line 

(indicating the cost penalty of congestion) might be low. On the other hand, congestion cost 
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contains aggregated information for both frequency and the price differential. Congestion cost 

performs poorly because it uses existing capacity of lines in its calculations. In that case of lines 

with differing existing capacity, a metric such as shadow price (which expresses congestion cost 

per unit of MW capacity) might be more appropriate. However, both shadow price and congestion 

cost rely on the shadow price of the transmission constraint (i.e., the constraint that does not allow 

flows over lines to exceed the capacity of lines). Shadow prices are only accurate on the margin 

(and in the case of degenerate solutions might not be accurate even for marginal costs [76]). To 

clarify, when a solution is nondegenerate, the shadow price equals the marginal difference in the 

objective function (here cost) resulting from a marginal increase in the right-hand side of the 

constraint (here the transmission capacity constraint). 

Acknowledging the weaknesses of existing screening metrics, researchers from MISO have 

proposed a metric called Estimated Potential Benefit (EPB) [52].  EPB also relies on the shadow 

price, but it additionally approximates the magnitude of a useful expansion of the line. To be more 

specific, calculation of EPB requires an additional production cost run where the line has unlimited 

capacity and the flow over the line is recorded. Exact formulations for EPB and all other metrics 

are provided in Section 2.6.3. The authors of [52] compare congestion metrics based on their ability 

to reflect the rank order implied by the Actual Potential Benefit (APB) of interface expansions and 

conclude that EPB outperforms all other metrics. Note that APB refers to the reduction in system 

cost estimated by a production cost model after expanding an interface and is used by MISO to 

determine benefits of transmission expansion. However, later in Section 2.7 it will become clear 

that APB is of limited value when multiple interdependent expansions are considered. 

2.3 ASSUMPTIONS 

In this section, I describe the assumptions made in this chapter. I also discuss how realistic 

my assumptions are based on present US market design and any limitations the reader should be 

aware of when they attempt to interpret results. 
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2.3.1 Assumptions concerning the institutional framework and scope of  
transmission planning 

This chapter is dedicated to transmission planning in restructured US markets where the 

investments in generation are made by market participants and ISO has a central role in identifying, 

approving, and guaranteeing the cost recovery of transmission projects aiming at improvement of 

system costs. ISOs typically identify transmission needs as arising from three different purposes 

of transmission: (1) reliability improvement, (2) market efficiency, and (3) needs imposed by policy 

goals.  Projects are usually identified separately for each purpose except in the case of MISO’s 

multi-value process [77]. Benefits, though, should be calculated for all three categories when the 

ISO assesses the investment, since a transmission line built primarily for one purpose may affect 

the other two purposes as well. The focus here is on the last two categories because I formulate a 

problem that minimizes system cost, which includes the cost of carbon tax, subject to constraints 

imposed by renewable portfolio standards.  

The purpose of reliability is only considered in this chapter though provisions of surplus 

capacity above the projected peak demand. In practice, though, reliability covers multiple issues 

such as contingency events (N-1 criteria), system stability, voltage support that are not taken into 

account here. Adopting an approach that could consider all three needs in a single procedure would 

be much more efficient, but also very complex considering available computational power. The 

approach to the economic and policy objectives followed here is a standard paradigm in the 

industry for identifying promising trade between regions and is usually followed by detailed 

analyses that look into compliance with reliability standards.  

ISO transmission processes can also be differentiated by their horizon, addressing either 

short/medium-term needs or long-term needs. This chapter here falls in the latter category because 

it aims to propose conceptual transmission plans with promising economics. 

This chapter deviates from present US practice in that I assume that there is seamless 

collaboration of the planning procedures of multiple ISOs. In effect, I assume that a single planner 

is responsible for the transmission planning for the entire Eastern Interconnection. To the 
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contrary, multiple ISOs as well as states and provinces with non-restructured vertically integrated 

utilities constitute the Eastern Interconnection of the US and Canada, and coordination among 

these entities is far from perfect.  It is true that FERC Order 1000 [57] mandates interregional 

transmission planning processes and development of methods to allocate transmission costs 

among regions. However, present processes are in an early stage, far from seamless collaboration 

[78]. Even if collaboration is seamless, allocation of transmission costs might prove tricky, 

requiring side payments among ISOs or groups of market participants. I adopt this assumption 

though since it allows me to find the most promising projects for the entire Eastern 

Interconnection. 

Moreover, in this chapter I view the ISO as a social planner who is aiming to maximize social 

welfare considering all transmission projects at once. In practice though, ISOs do not optimize 

market efficiency. They usually evaluate projects one at a time by comparing their costs and 

benefits, which may be narrowly defined. As [71] discusses, various economic criteria might lead 

ISOs to select transmission plans different from the one that maximizes the social welfare.  

2.3.2 Assumptions concerning the market environment 

I make two important assumptions about the market environment: (1) perfect competition 

exists among generators at both investment and operational levels and (2) demand is inelastic. The 

first assumption is based on the premise that the Federal Energy Regulatory Commission, Public 

Utility Commissions and ISO procedures effectively oversee and facilitate the competitive 

operation of the market. For ISO-operated markets, several indexes such as Herfindahl-

Hirschman Index and mark-up premiums relative to a competitive benchmark are published every 

year by the Independent Market Monitors (see [79]) —  independent agencies that report to FERC. 

Those indexes suggest that present electricity markets are largely competitive, although there are 

times, places, and market products that occasionally experience the exercise of market power e.g. 

[80].  
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Demand is assumed to be inelastic. To be more accurate, demand curtailment is allowed at a 

price of $750/MWh. At that price, consumers might rely on their own resources, curtail use, or, 

in the long run, find it beneficial to do investments in higher energy efficiency. Moreover, the 

inelastic demand assumption applies to all representative hours of the year. Thus, deferral of loads 

or shift to other time periods which would result to change of the chronological load profile are 

not allowed. As I will explain later in the approximations, the assumption of no load shifting is not 

very restrictive because of the low temporal resolution of the model. In general, though, elastic 

demand might affect the cost and siting of transmission investments [81].  

2.3.3 Technical approximations 

Planning models such as the model of this chapter attempt to model continental-scale power 

systems, which consist of thousands of buses, transmission lines and generator units. Moreover, 

the planning horizon consists of multiple decades, including hundred thousand hours of operation.  

It is inevitable that several approximations of the system are made in order to formulate a 

computationally tractable problem. Thus, continental-scale tools aim to capture system details that 

significantly affect the results while keeping models manageable. Consistent with George Box’s 

quotation that “all models are wrong, but some are useful” [82], my presumption for all 

continental-scale power system models is that details not captured within models will not 

significantly change investment decisions, which is the desirable output of this type of model.  

Several continental-scale models have been developed and are maintained by different 

institutions. Examples of widely used continental-scale planning tools are IPM [43], which is used 

for both policy making and planning, and ReEDS [44], which is applied by the National Renewable 

Energy Laboratory to investigate power system futures, set federal research and development 

goals, and support policymakers at federal, state or city administration. While in this particular 

application, I focus on benefits that society might enjoy if the proposed co-optimization model is 

adopted by transmission planners, other parties might find it useful in their policymaking or 
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decision making processes.  Examples include but are not limited to generation investors who 

might apply the model for market intelligence purposes, and regulators or ISOs who could use the 

model when reviewing applications for new transmission facilities. 

Typical approximations shared among continental-scale planning tools which are also adopted 

in the model used here are the following: 

(a) Each year (8760 hours) is approximated by a set of few representative hours. 

Development of methods to select the set of representative hours is an active field of 

research ([83], [84], [85]). 

(b) The network is reduced to a representative network with a tractable number of 

(usually) aggregated nodes and lines.  

(c) Generator units are aggregated in representative units based on their technology, age, 

type of fuel. As a result, an average heat rate is considered for each generator ignoring 

its heat rate curve.  

Note that as of now all continental-scale planning tools use a method for selection of 

representative hours that does not preserve the chronological order of hours. This simplification 

means that the impact of storage resources may be mischaracterized.  Moreover, given that 

generating unit-level data are not preserved, all operational constraints that are chronologically 

dependent at the unit level such as ramping constraints, minimum on and down time are not 

considered.  

Another simplification is that planned and unplanned outages of generating capacity and 

transmission are not explicitly modeled, are only taken into account through average outage rates 

(i.e., “derating” of capacity). A final simplification is that, no other products than energy such as 

regulation, spinning, and non-spinning reserves are considered.  The result of this simplification 

might be that the generation mix is suboptimal in cases in which resources have different 

capabilities for providing ancillary services and the revenue streams from those products are 

significant.  
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2.4 CASE STUDY 

The database for the original EIPC study were developed by a collaborative stakeholder 

process [86] and the assumptions and results of that study have been used or analyzed in follow-

on studies [87], [88], [89].Therefore, I retain the original EIPC assumptions, except where noted, 

in order to make the results of this chapter as comparable as possible to previous studies.   

2.4.1 Representation of  Eastern Interconnection through a reduced 
network 

For all results reported in this chapter, I use the 24-bus representation of the Eastern 

Interconnection [68] as defined by knowledgeable experts from planning coordinators through a 

multi-stakeholder process. In the original study, this network was judged sufficient for generating 

conceptual transmission plans that would capture the fundamental economics of interregional 

transmission and be of sufficient interest to justify further study.   

I provide a list of key system characteristics assumed in this chapter below: 

(a) The EI is represented with 24 nodes (set N) where Balancing Authorities are 

aggregated to nodes. Internal congestion within the regions is ignored. Nodes are 

connected through 47 interfaces (set L). A single interface between any two regions 

is assumed where applicable instead of multiple lines at different voltages and 

locations. I omit regions outside of the EI in this case as the interchanges between 

them and the EI are relatively small. Note that I assume that trade between Quebec 

and EI will continue at historical levels. 

(b) Transfer limits are approximate estimates of the maximum power that could be 

transmitted between any adjacent nodes in 2020. The transfer limits were estimated 

in the original study by a variety of methods depending on stakeholder preferences. 

In brief, the following methods were used: linear transfer analysis, first contingency 
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incremental transfer capability (FCITC), operating limits (actual or augmented) to 

account for additions, and historical data. 

(c) Transmission capital costs are estimated based on EIPC data on costs per MW-mile 

for eligible configurations (345 kV single and double circuits, 500 kV, 765 kV), 

adjusted for regional differences.   

(d) Interface lengths are approximated using distances between center points of regions. 

(e) To represent wheeling cost and power trading frictions between regions, hurdle rates 

are considered and vary between 0 and 10 $/MWh. 

(f) The network is suitable for use as a transportation network. Data from [42] for 2010 

indicates that loop flows occur frequently (e.g., more than half of the time flows are 

from TVA to SOCO, SOCO to VACAR, and then from VACAR back to TVA), 

suggesting that Kirchhoff’s Voltage Low (KVL) does not hold for this zonal model.  

2.4.2 Input data and modeling of  policies 

The purpose of this case study is to explore and illustrate the benefits of co-optimization rather 

than to replicate the full EIPC study or come up with an actual transmission plan. Thus, I focus 

on one of the EIPC planning scenarios, the EIPC CO2+ scenario (also known as “Future 8 

Sensitivity 7”).  I choose this scenario because of its relatively high investments in transmission 

and renewable generation in the original EIPC study.  A high assumed CO2 price is the key driver 

of those investments (Table 2-1).  

 
Table 2-1: Indicative CO2 prices (source: EIPC [69]) 

Year 2015 2020 2025 2030 

Carbon tax (2010$/tn) 26.83 38.1 62.39 139.74 

 

In brief, some basic characteristics of the case study are: 
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1) Energy demand falls by 4% from 2011 to 2030 due to growth in energy efficiency and 

distributed generation. 

2) A high amount of Demand Response (DR) (152 GW in 2030) is installed.  That DR is 

given full credit in the planning reserve constraint and is dispatched as a pseudo-generator with a 

variable cost of 750 $/MWh. 

3) Renewable portfolio standards are applied to eight aggregated zones, and 6 zones are used 

specifically for solar. 

4) Generation capital costs are reduced annually to account for learning effects. They are 

also adjusted for regional differences and financing costs for various technologies.    

Finally, I briefly discuss some key data assumptions to make interpretation of results easier. 

First, I keep the same horizon (2011–2030) as the original study so stakeholders can better assess 

the benefits of co-optimization. Second, I consider twelve types of generators G for new 

investments.  These include combustion turbines, combined cycle (CC), hydro, pulverized coal, 

integrated gasification combined cycle (IGCC), IGCC with carbon capture and sequestration 

(IGCC_CCS), onshore/offshore wind, nuclear (Nuc), biomass, landfill gas, and photovoltaics. 

Third, all dollar values are in 2010$. A 5% real discount rate is used in present worth calculations 

in line with the original study and industry practice [90]. Lastly, three other policies modeled in the 

EIPC study are omitted here in order to simplify the model. These include renewable incentives, 

NOx and SO2 caps, and other EPA rules (such as once-through cooling restrictions) that may 

require plant retrofits. 

2.5 MODEL  

In this section, I provide the model formulation for proactive transmission planning under the 

assumptions outlined in Section 2.3. Assuming perfect competition, the objective function reduces 

to maximization of net market surplus or benefits. In addition, the assumption of inelastic demand 

reduces the nonlinear objective function under elastic demand to minimization of cost, which is a 
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linear objective in the formulation provided here. Under the assumption of perfect competition, I 

prove in Section 2.5.2 that the multi-level proactive planning framework is equivalent to integrated 

resource planning, which can be solved as a single-level maximization of market surplus problem 

[27]. In Section 2.6, I explain in detail how alternative frameworks such as the reactive and iterative 

are simulated by modifying the formulation provided in Section 2.5.1.  

2.5.1 Formulation 

In summary, the model identifies a set of transmission and generation investments required 

to meet demand at least cost over a multi-year planning period. Specifically, the costs considered 

include investment expenses along with fuel, variable and fixed maintenance costs for generators, 

carbon taxes, Renewable Portfolio Standards Alternative Compliance Payments, and hurdle rates 

that apply to power trade between regions. The problem is formulated as a Mixed Integer Linear 

Problem (MILP) with decision variables for generation and transmission investments in each year 

from 2011 to 2030. Transmission investments are modeled as discrete, integer variables to consider 

the lumpiness in line additions, while all other variables are modeled as continuous. Transmission 

expansion is possible only for existing interfaces, consistent with the EIPC study.  Dispatch is 

modeled for three seasonal load duration curves, defining a total of 20 periods per year, 

representing a range of load and renewable output conditions. 

Investment decisions for 20 years are modelled, which is a typical long-term planning horizon. 

Because investments have benefits beyond year 20 and full overnight capital costs are included in 

the objective function for new infrastructure, there could be large “end effects” distortions in cost 

calculations and investment decisions if no years after year 20 are simulated [91].  Therefore, I 

adopt an end-effects correction approach similar to EGEAS [92].  Specifically, I model a 40-year 

extension period with stationary conditions identical to year 20, essentially assuming that the last 

year’s capacity and dispatch are maintained in years 2031–2070. I also include annualized capital 

payments for any generation infrastructure that would exceed its lifetime over the 2031–2070 
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period, assuming that retired plants are replaced with similar facilities. This end effects treatment 

is captured in the second term of the objective function, shown in equation 2-1.  

Nomenclature 

Sets and Indices: 
𝐵 Time blocks, indexed by b  

𝐺 Generators, indexed g  

𝐺𝐸 Candidate generators (subset of G), indexed ge  

𝐺𝐼 Intermittent generators (subset of G), indexed gi  

𝐼𝑅 Intermittency region (partition of N), indexed ir  

𝐿 Transmission corridors, indexed l .  Each corridor has an arbitrarily defined forward 
and reverse flow direction. 

𝑁 Nodes/regions, indexed n  

𝑃 Planning reserve region (partition of N), indexed p  

𝑃𝑆 Pumped storage (subset of G), indexed ps  

𝑅 RPS constraints region (partition of N), indexed r  

𝑆 Seasons (partition of b), indexed s  

𝑇 Years, indexed t and u 

𝑉 Transmission configurations at different voltage levels, indexed by v 

 

Parameters: 

𝐴𝐶𝑃𝑟 Compliance payment in 2010$/MWh 

𝐴𝐼𝐶𝑔,𝑛 Annualized capital payment in 2010$/MW 

𝐶𝐶𝑔,𝑛 Capacity credit 

𝐶𝐹𝑔,𝑏,𝑛 Capacity factor 

𝐷𝑅 Discount rate 

𝐹𝑂𝑀𝑔 Fixed operation & maintenance cost in 2010$/MW 

𝐹𝑂𝑅𝑔 Forced Outage Rate 

𝐺𝐼𝑔𝑒,𝑛,𝑡 Generation capital cost in 2010 $/MW 

𝐺𝐼𝑙,𝑣  Transmission capital cost of voltage v for  interface l in 2010 $/unit 

𝐻𝑏 Duration of a block in hours 

𝐻𝑅𝑙 Hurdle rate in 2010 $/MWh 

𝐼𝐶 Initial capacity in MW with index g, n or l 

𝐿𝑏,𝑡,𝑛 Load in MW 

𝑀𝑔,𝑛,𝑡 Fraction of generation capacity in a region n that is past its lifetime in year t. 

𝑀𝑉𝐴𝑣 Capacity of transmission at voltage v in MW/unit 

𝑃𝐿𝑡,𝑝 Peak load in MW 

𝑃𝑂𝑅𝑔,𝑏 Planned Outage Rate 

𝑅𝐶𝑔,𝑛,𝑟 Renewable credit 

𝑅𝑀𝑝 Planning reserve margin 

𝑅𝑃𝑆𝑟,𝑡 Renewable Portfolio Standard target 

𝑆𝐿𝑛,𝑠 Max energy by pumped storage in MWh 

𝑈𝐿𝑔𝑒,𝑛 Resource potential in MW 

𝑉𝐶𝑔,𝑡,𝑏,𝑛 Variable cost of generator in 2010$/MWh 

Φ𝑛,𝑙 Element of node-line incidence matrix 
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Variables: 

𝑐𝑔,𝑡,𝑛 Capacity in MW 

𝑐ℎ𝑡,𝑏,𝑛 Charge of pumped storage in MW 

𝑑𝑖𝑠𝑐𝑡,𝑏,𝑛 Discharge of pumped storage in MW 

𝑓𝑙,𝑏,𝑡
+  Power flow in the forward direction in MW 

𝑓𝑙,𝑏,𝑡
−  Power flow in the reverse direction in MW 

𝑖𝑟,𝑡 Unmet RPS requirement in MWh 

𝐼𝑛𝑣𝑡 Investment costs in year t in 2010$ 

𝑜𝑔,𝑡,𝑏,𝑛 Output of generator in MW 

𝑂𝑝𝑡 Operational cost at year t in 2010$ 

𝜆𝑙,𝑏,𝑡
+  Shadow price for constraint (7a) in $/MW/year 

𝜆𝑙,𝑏,𝑡
−  Shadow price for constraint (7b) in $/MW/year 

𝑤𝑙,𝑡,𝑣 Number of interfaces added by year t (integer) 

𝑥𝑔𝑒,𝑛,𝑡 Generation Investment at year t in MW 

Mathematical Program  

min ∑
𝐼𝑛𝑣𝑡+𝑂𝑃𝑡

(1+𝐷𝑅)𝑡
20
𝑡=1 + ∑

𝑂𝑝20+∑ 𝐴𝐼𝐶𝑔,𝑛∗𝑀𝑔,𝑛,𝑡𝑔,𝑛

(1+𝐷𝑅)𝑡
60
𝑡=21        

 Eq.  2-1 

𝐼𝑛𝑣𝑡 =  ∑ 𝐺𝐼𝑔𝑒,𝑛,𝑡𝑥𝑔𝑒,𝑛,𝑡𝑔𝑒,𝑛 + ∑ 𝐺𝐼𝑙,𝑣 ∗ (𝑤𝑙,𝑡,𝑣 −𝑙,𝑣

𝑤𝑙,𝑡−1,𝑣)  

∀ 𝑡 Eq.  2-2 

𝑂𝑝𝑡 = ∑ 𝐻𝑏𝑉𝐶𝑔,𝑡,𝑏,𝑛𝑜𝑔,𝑡,𝑏,𝑛𝑏,𝑔,𝑛 + ∑ 𝐹𝑂𝑀𝑔𝑐𝑔,𝑡,𝑛𝑔,𝑛 +

∑ 𝐻𝑏𝐻𝑅𝑙(𝑓𝑙,𝑏,𝑡
+

𝑏,𝑙 + 𝑓𝑙,𝑏,𝑡
− ) + ∑ 𝐴𝐶𝑃𝑟𝑖𝑟,𝑡𝑟   

∀ 𝑡 Eq.  2-3 

∑ Φ𝑛,𝑙(𝑓𝑙,𝑏,𝑡
+

𝑙 − 𝑓𝑙,𝑏,𝑡
− ) + ∑ 𝑜𝑔,𝑡,𝑏,𝑛𝑔 + 𝑑𝑖𝑠𝑐𝑡,𝑏,𝑛 =

𝐿𝑏,𝑡,𝑛 +  𝑐ℎ𝑡,𝑏,𝑛  

∀𝑡, 𝑏, 𝑛 Eq.  2-4 

𝑜𝑔,𝑡,𝑏,𝑛 ≤ (1 − 𝐹𝑂𝑅𝑔)(1 − 𝑃𝑂𝑅𝑔,𝑏)𝐶𝐹𝑔,𝑏,𝑛𝑐𝑔,𝑡,𝑛  

  

∀𝑔, 𝑡, 𝑏, 𝑛 Eq.  2-5 

𝑐𝑔,𝑡,𝑛 ≤ 𝑐𝑔,𝑡−1,𝑛 + 𝑥𝑔𝑒,𝑛,𝑡,  ∀𝑔, 𝑡, 𝑛 Eq.  2-6 

𝑐𝑔,0,𝑛 = 𝐼𝐶𝑔,𝑛   

𝑓𝑙,𝑏,𝑡
+ ≤ 𝐼𝐶𝑙

+ + ∑ 𝑀𝑉𝐴𝑣 ∗ 𝑤𝑙,𝑡,𝑣

𝑣

 ∀𝑙, 𝑏, 𝑡 Eq.  2-7a 

𝑓𝑙,𝑏,𝑡
− ≤ 𝐼𝐶𝑙

− + ∑ 𝑀𝑉𝐴𝑣 ∗ 𝑤𝑙,𝑡,𝑣

𝑣

 ∀𝑙, 𝑏, 𝑡 Eq.  2-7b 
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𝑐𝑔𝑒,𝑡,𝑛 ≤ 𝑈𝐿𝑔𝑒,𝑛  ,     ∀𝑡, 𝑔𝑒, 𝑛 Eq.  2-8 

∑ 𝐶𝐶𝑔,𝑛𝑐𝑔,𝑡,𝑛

𝑛 ∈𝑃,𝑔

≥ (1 + 𝑅𝑀𝑝)𝑃𝐿𝑡,𝑝 ∀𝑝, 𝑡 Eq.  2-9 

0.75 ∗ ∑ 𝑐ℎ𝑡,𝑏,𝑛𝐻𝑏𝑏∈𝑆 ≥  ∑ 𝑑𝑖𝑠𝑐𝑡,𝑏,𝑛𝐻𝑏𝑏∈𝑆    ∀𝑠, 𝑡, 𝑛 Eq.  2-10 

𝑐ℎ𝑡,𝑏,𝑛 ≤  𝑐𝑝𝑠,𝑡,𝑛 , 𝑑𝑖𝑠𝑐𝑡,𝑏,𝑛 ≤  𝑐𝑝𝑠,𝑡,𝑛 ∀𝑡, 𝑏, 𝑛    Eq.  2-11 

∑ 𝑑𝑖𝑠𝑐𝑡,𝑏,𝑛𝐻𝑏

𝑏∈𝑆

≤ 𝑆𝐿𝑛,𝑠 ∀𝑠, 𝑡, 𝑛 Eq.  2-12 

𝑖𝑟,𝑡 + ∑ 𝐻𝑏𝑅𝐶𝑔,𝑛,𝑟𝑜𝑔,𝑡,𝑏,𝑛

𝑏,𝑔,𝑛

≥ 𝑅𝑃𝑆𝑟,𝑡 ∗ ∑ 𝐻𝑏𝐿𝑏,𝑡,𝑛

𝑏,𝑛

 ∀𝑡, 𝑟 Eq.  2-13 

∑ 𝐻𝑏𝑜𝑔,𝑡,𝑏,𝑛𝑏,𝑔𝑖,𝑛∈𝐼𝑅 ≤ 0.35 ∗ ∑ 𝐻𝑏𝐿𝑏,𝑡,𝑛𝑏,𝑛∈𝐼𝑅    ∀𝑡, 𝑖𝑟 Eq.  2-14 

In addition, all variables are assumed to be non-negative, and the transmission planning 

variable 𝑤𝑙,𝑡,𝑣 is integer. 

 
      The constraints modeled include a load balance constraint for each zone and time period 

(Eq. 2-4), generator capacity constraints taking into account forced and planned outages along with 

output profiles for intermittent resources (Eq. 2-5), interface flow limits (Eq. 2-7), limits on 

resource construction (Eq. 2-8), planning reserve constraints (Eq. 2-9), storage operational 

constraints (Eqs. 2-10 to 2-12), and renewable policy constraints (Eqs. 2-13 and 2-14).  Constraint 

(Eq. 2-6) allows units to retire in any year, which might be optimal if a unit is not dispatched often 

and its fixed Operational & Maintenance costs are high enough. For storage constraints, a 75% 

efficiency is assumed (Eq. 2-10). Since pumped storage’s energy capability was not available, an 

upper bound constraint (Eq. 2-12) is imposed on its discharge based on EIPC study results [40]. 

A similar approach is followed for hydro units. Equation 2-13 models Renewable Portfolio 

Standards (RPS) and equation 2-14 imposes an upper bound on wind and solar generation in each 

intermittency region equal to 35% of annual load, which was considered by EIPC to be a plausible 

penetration level. 
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Additional constraints, which are mainly slight modifications of constraint (Eq. 2-8), are 

imposed to take into consideration licensing issues for nuclear, lead time issues (e.g., for all 

generators, except natural gas, no investment is considered the first 4 years), maximum amount of 

investment per transmission interface (set to 20,000 MW), and limits on regional concentrations 

of investments (e.g., wind capacity installed in the SPP region cannot be higher than 50% of the 

total EI wind capacity). Many of these constraints represent stakeholder judgments concerning the 

feasibility of different resource development patterns.  

2.5.2 Proof  of  equivalence of  proactive transmission planning under 
perfect competition to single-level integrated resource planning 

In this section, I provide the mathematical proofs that show how a tri-level problem with the 

transmission planner at the top level, generation investment at the intermediate and system 

operation at the bottom level can be approximated with a single level optimization problem. In 

brief, I prove that the formulation I provide in Section 2.5.1 accurately models the tri-level problem 

of a proactive transmission planner in case the objective of the transmission planner is 

maximization of social welfare and the generation market is efficient and competitive. Note that 

this observation has already been made as a particular case of a general bi-level formulation for 

transmission planning in reference [93]. However, here I provide a simpler proof that does not 

require the full formulation of the multi-level problem. 

 
Lemma 2.1: If Problems 2.1 and 2.2 are feasible, then the optimal solution of Problem 2.2 — 

a single-level optimization problem subject to the union of two sets of constraints (upper-level and 

lower-level constraints) — is an optimal solution for Problem 2.1 — a bi-level optimization 

problem in which the same constraints apply and the objective function of the upper-level problem 

is identical to the objective function of the single-level problem and equal to the sum of the lower-

level objective function and a function of upper-level variables. Further, the value of the objective 
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function of Problem 2.1 at its optimal solution is equal to the value of the objective function of 

Problem 2.2 at the optimal solution. 

Stylized representation of the bi-level problem of Lemma 2.1:2 Problem 2.1: 

min
𝑥𝑢𝑙

(𝑓(𝑥𝑙𝑙) + 𝑔(𝑥𝑢𝑙)) 

Subject to:           ℎ(𝑥𝑢𝑙) = 0 

   Lower level problem:             min
𝑥𝑙𝑙

𝑓(𝑥𝑙𝑙) 

     Subject to:                𝑎(𝑥𝑙𝑙) = 0  

                                𝑏(𝑥𝑙𝑙 , 𝑥𝑢𝑙) = 0 

Stylized representation of the single-level problem of Lemma 2.1: Problem 2.2 

min
𝑥𝑢𝑙,𝑥𝑙𝑙

(𝑓(𝑥𝑙𝑙) + 𝑔(𝑥𝑢𝑙)) 

Subject to:           ℎ(𝑥𝑢𝑙) = 0 

𝑎(𝑥𝑙𝑙) = 0  

                                𝑏(𝑥𝑙𝑙 , 𝑥𝑢𝑙) = 0 

There are no restrictions on the function form of any of the objective function terms or functions 

in the constraints.  It is assumed that the feasible region of Problem 2.2 is not empty (a feasible 

solution exists). 

 Proof: I prove the proposition by contradiction. Let an optimal solution of the single level 

Problem 2.2 be 𝑦∗ = 𝑓(𝑥𝑙𝑙
∗ ) + 𝑔(𝑥𝑢𝑙

∗ ). Assume that the bi-level Problem 2.1 has an optimal 

solution 𝑦′. 

      Assume, contrary to the proposition, that Problems 2.1 and 2.2 do not have the same value 

for the objective function at optimality, i.e., 𝑦′ ≠  𝑦∗ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 1).  Note that 𝑦′ ≥

                                                      
2 This is a special case of the general bi-level problem in which the upper level does not necessarily include 

f() in its objective; the general problem can be very difficult to solve [316]. 
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 𝑦∗ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 2) because the feasible region of Problem 2.1 is a subset of the feasible region 

of Problem 2.2.  Because  𝑦′ ≠  𝑦∗ (1) and 𝑦′ ≥  𝑦∗ (2), it follows that 𝑦′ >  𝑦∗ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 3).  

Assume that a feasible solution of Problem 2.1 with the upper level variable at 𝑥𝑢𝑙
∗  has value 

of the objective function 𝑦′′  . Feasibility of this problem is guaranteed through feasibility of 

Problem 2.2. Let 𝑥𝑙𝑙
′′ be the optimal solution of the lower level of Problem 2.1 in that case. From 

optimality of the lower level and given that 𝑥𝑙𝑙
∗  is a feasible solution for the lower level problem it 

then follows that 𝑓(𝑥𝑙𝑙
′′) ≤ 𝑓(𝑥𝑙𝑙

∗ ) → 𝑓(𝑥𝑙𝑙
′′) + 𝑔(𝑥𝑢𝑙

∗ ) ≤ 𝑓(𝑥𝑙𝑙
∗ ) + 𝑔(𝑥𝑢𝑙

∗ ) →   𝑦′′ ≤

𝑦∗ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 4).  

Note that since 𝑦′ is by assumption the optimal solution of Problem 2.1, it follows that 𝑦′ ≤

𝑦′′ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 5).  

Based on statements 4 and 5, 𝑦′ ≤ 𝑦∗ (𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 6).  Statement 6 contradicts statement 3. 

Therefore, the assumption that 𝑦′ ≠  𝑦∗ must be incorrect.  So, the two problems have the same 

objective function at optimality i.e., 𝑦′ = 𝑦∗. Thus, since the optimal solution of the single level 

Problem 2.2 (𝑥𝑙𝑙
∗ , 𝑥𝑢𝑙

∗ ) is a feasible solution to Problem 2.1, it therefore also constitutes an optimal 

solution of the bi-level Problem 2.1. QED. 

Proposition 2.1: Proactive transmission planning under perfect competition for generation 

investment and operation is equivalent to co-optimization of generation and transmission 

planning. 

Proof: The proactive transmission planning problem can be formulated as a tri-level problem 

where at the upper level is the transmission operator, the intermediate level is the generator 

investor and at the lower level the ISO-operated market. The objective function at the lower level 

is defined as the operational costs of generators and payments for hurdle rates3 because the 

operational market is perfectly competitive. In the middle level, assuming that generators pay for 

                                                      
3 Note that I assume that hurdle rates reflect actual costs in the market e.g. transaction costs to coordinate 

operations among different entities and they are not simply a transfer payment between two parties. 
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the hurdle rates, the objective function is the sum of the lower level objective function added to 

the investment costs for generation expansion since a perfectly competitive environment for 

capacity additions is assumed. Finally, at the upper level the objective function is the sum of the 

middle level objective function and the costs for transmission investment. Therefore, it is obvious 

that by applying Lemma 2.1 twice, once at the lower and middle levels and a second time at the 

combined lower/middle and upper levels, the proactive planning framework is equivalent to co-

optimization of generation and transmission planning. QED.  

2.6 EXPERIMENTAL DESIGN: MODELING AND COMPARISON 
OF ALTERNATIVE PLANNING APPROACHES  

The objective of this chapter as specified in Section 2.1 is two-fold. The first objective is the 

comparison of three alternative transmission planning frameworks. The second objective is the 

comparison of the effectiveness of three screening metrics, used and proposed for reduction of 

the set of candidate transmission investments.  In Section 2.6.1, I explain how the model 

formulation presented in 2.5.1 is modified to simulate alternative planning frameworks. Then, in 

Section 2.6.2, I provide a detailed and precise description of the net benefits metric. In Section 

2.6.3, the steps and formulas for calculation of screening metrics are presented. Finally, in Section 

2.6.4, I discuss how the three planning frameworks are expected to perform relative to each other. 

2.6.1 Formulation of  alternative transmission planning procedures  

2.6.1.a Reactive transmission planning  

This planning approach attempts to model traditional practice. In Section 2.1, I define reactive 

transmission planning as transmission planning under a pre-defined scenario for the generation 

fleet. The definition is quite broad and might correspond to different methods for identifying the 

assumed generation mix. For example, approaches followed in the past by MISO and ERCOT are 

presented in the introduction and it is obvious that they are quite different.  
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In the application included here, I draft a generation mix scenario through optimization of 

generation investments given the existing transmission network. Then, transmission planner 

designs conceptual transmission plans by solving an optimization problem for the entire system 

given that generation mix. In brief, the transmission plan identified by the reactive planning 

approach corresponds to the second iteration of the iterative approach. First, generation capacity 

is optimized to create a generation build-out scenario under the existing grid, and then transmission 

is optimized subject to the generation scenario. Although the transmission planner can identify the 

transmission plan in two iterations, I run three iterations to estimate system costs, generation 

investment and operation of the reactive approach in order to account for generation investment's 

response to the transmission investment identified by the planner.   

For iterations 1 and 3, I fix transmission investment decisions to zero and the level identified 

by iteration 2 within the model formulation of Section 2.5.1, respectively. For iteration 2, I fix 

generation investment decisions to the level identified by iteration 1 within the model formulation 

of Section 2.5.1. To conclude, in all three cases I solve the model of Section 2.5.1 with lower 

number of decision variables because a subset of investment decisions is already fixed at pre-

determined levels. 

2.6.1.b Iterative transmission planning  

This planning approach is similar to the iterative planning approach used in [62]. The model 

of Section 2.5.1 is used iteratively, switching between generation-only and transmission-only 

investment modes. In the former mode, the transmission investment decisions are fixed at the 

levels decided at the previous iteration, and the only investments optimized are generation. 

Similarly, when the mode is transmission-investment only, generation capacity in each zone is fixed 

at the levels decided at the previous iteration. The first iteration is the generation investment mode, 

given the present grid. I stop iterating between the two modes when the objective function does 

not improve further.   



 

 40 

2.6.2 Definition of  metric for the benefits of  transmission planning  

I follow the definition of net transmission benefits presented in [49]. There, net benefits of 

transmission planning are quantified by subtracting (a) the total cost as estimated by the planning 

procedure under examination from (b) the total cost of a planning model that does not allow any 

transmission investment (which is the first iteration of the iterative planning approach).  The 

strength of this metric is its ability to acknowledge that part of the objective function is highly 

affected by exogenous parameters such as the carbon tax, fuel prices, existing infrastructure etc. 

and is relatively immune to changes in the grid. Therefore, the value of transmission investments 

can be judged only through the improvement in the cost that the transmission planning might 

contribute, given the existing set of assumed parameters. 

2.6.3 Definition of  metrics to screen transmission candidates 

ISOs usually calculate screening metrics by extracting flows and shadow prices based on 

extensive production cost simulations they run under a specific generation siting scenario. In the 

application presented in this chapter, I use the same definitions but obtain the flows and shadow 

prices from the planning model. In particular, I run the generation-only planning model 

(formulation of Section 2.5.1 with transmission investments fixed at zero). The model is a linear 

program because transmission investment is the only set of binary variables and now it is not a 

variable. Thus, shadow prices for the transmission flow limit constraints (Eq. 2-7) are provided by 

the solver. The flows are also recorded and used for calculation of the metric in (Eq. 2-15), below. 

Moreover, instead of the year-by-year calculations ISOs use, I calculate the metrics for the entire 

planning horizon considering all years at once.  The metrics are defined as follows: 

Total congestion cost (TCC) is defined as the product of hourly shadow price and hourly flow 

on the interface, summed over all hours of the year (in $/year): 
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           𝑇𝐶𝐶𝑡,𝑙 = ∑ (|𝜆𝑙,𝑏,𝑡
+ 4

𝑏 | + |𝜆𝑙,𝑏,𝑡
− |) ∗ (𝑓𝑙,𝑏,𝑡

+ + 𝑓𝑙,𝑏,𝑡
− )   Eq.  2-15 

Total shadow price (TSP) is defined as the sum of hourly shadow prices for the interface (in 

$/MW/year).  

  𝑇𝑆𝑃𝑡,𝑙 = ∑(

𝑏

|𝜆𝑙,𝑏,𝑡
+ | + |𝜆𝑙,𝑏,𝑡

− |)  
 Eq.  2-16 

Estimated Potential Benefit (EPB) is defined as the product of the hourly shadow price of the 

original model and the maximum overflow (flow over the capacity) that is recorded in a second 

run of the model if the congested interface is unconstrained (constraint (Eq. 2-7) is relaxed). In its 

practical application by MISO, congested interfaces are sorted into groups and one simulation per 

group is conducted in which (Eq. 2-7) is deactivated and the unconstrained flow (𝑓𝑢𝑛) is recorded 

for all interfaces of the group.  

𝐸𝑃𝐵𝑡,𝑙 = ∑(|𝜆𝑙,𝑏,𝑡
+ | + |𝜆𝑙,𝑏,𝑡

− |) ∗ |𝑓𝑙,𝑏,𝑡
+,𝑢𝑛 + 𝑓𝑙,𝑏,𝑡

−,𝑢𝑛 − 𝐼𝐶𝑙|

𝑏

 
 Eq.  2-17 

All three metrics consider the benefit of additional capacity through shadow prices or 

overflows, but they ignore the investment cost of the line. This omission could lead to retention 

of high value but very costly candidate interfaces, but exclusion of lower value interfaces that have 

a higher net benefit. Attempting to counter this weakness, I apply a charge to any overflow. I 

assume a charge that would be a lower bound to the fixed charge (in $/MWh) required to recover 

the investment cost. For that purpose, I calculate the discounted sum of hours included in the 

model (174,112 hours). Then, I assume that the interface will be used all 8760 hours at full capacity 

and divide the investment cost per MW of the least expensive configuration for each interface by 

~2*105 hours. 

                                                      
4Note that in all calculations we assume that there is one hourly shadow price per time block b and its 

relationship with the shadow price for constraint (7) is 𝜆𝑙.𝑏.𝑡 = 𝐻𝑏 ∗ ℎ𝑜𝑢𝑟𝑙𝑦 𝑠ℎ𝑎𝑑𝑜𝑤 𝑝𝑟𝑖𝑐𝑒. 
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2.6.4 Relationship among transmission planning approaches  

Reference [12] extensively discussed proactive and reactive transmission planning and proved 

that the reactive approach, in general, achieves a worse or equal objective compared to the 

proactive approach. However, the iterative planning approach was not discussed in reference [12]. 

For this reason, I discuss in this section how the iterative transmission planning approach 

compares to the reactive and proactive planning approaches. In the following paragraphs, I 

demonstrate through an example that it is possible for the iterative approach to identify a solution 

different from the joint optimum that the co-optimization approach finds. Moreover, I explain in 

detail the reasons why the iterative approach as defined in Section 2.6.1.b will always find a solution 

with a better or equal objective compared to the reactive approach as defined in Section 2.6.1.a.  

In the example, I assume a simple system consisting of two nodes. The candidate generators 

at nodes 1 and 2 have operational costs of 1 and 2 $/MWh, respectively, and capital costs of 5 and 

2 $/MW. A transmission line can be built between the two nodes at a cost of $1/MW. I assume 

that we optimize the system for 1 hour and the demand at nodes 1 and 2 are 3 and 4 MW, 

respectively. The two nodes are currently connected with a line that has capacity 𝐿0. The co-

optimization problem is described below:  

min
𝑥1,𝑥2,𝑧1,𝑧2,𝑙,𝑦

5 ∗ 𝑧1 + 2 ∗ 𝑧2 + 𝑥1 + 2 ∗ 𝑥2 + 𝑙 

Subject to    𝑥1 + 𝑦 = 3 

     𝑥2 − 𝑦 = 4 

𝑥1 ≤ 𝑧1 

𝑥2 ≤ 𝑧2 

𝑙 + 𝐿0 ≥ 𝑦 ≥ −𝑙 −  𝐿0 

𝑥1, 𝑥2, 𝑧1, 𝑧2, 𝑙 ≥ 0 

0 < 𝐿0 < 3 
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The co-optimization identifies optimum solution (𝑥1, 𝑥2, 𝑧1, 𝑧2, 𝑙, 𝑦) = (0,7,0,7,3 − 𝐿0, 3) 

and the cost is 31 − 𝐿0. In the iterative scheme, the solution identified by first iteration 

(generation-only optimization subject to present grid 𝐿0)  is (𝑥1, 𝑥2, 𝑧1, 𝑧2, 𝑦) = (3 − 𝐿0, 4 +

𝐿0, 3 − 𝐿0, 4 + 𝐿0, 𝐿0) and the cost is 34 − 2 ∗ 𝐿0. Then, the transmission-only iteration subject 

to that generation plan identifies as optimal solution (𝑥1, 𝑥2, 𝑙, 𝑦) = (3 − 𝐿0, 4 + 𝐿0, 𝐿0) and the 

cost is also 34 − 2 ∗ 𝐿0. So, the iterative approach converged in two iterations (i.e., in this example 

the iterative and reactive solutions are identical).  Because 𝐿0 < 3 , it follows that 𝐿0 < 34 −

31 → 2 ∗ 𝐿0 − 𝐿0 < 34 − 31 → 31 − 𝐿0 < 34 − 2 ∗ 𝐿0. Thus, the cost of the solution where 

the iterative approach converged at is higher than the cost of the solution identified by the co-

optimization problem. Therefore, this example demonstrates how the iterative approach does not 

necessarily converge to the joint optimum. 

On the other hand, the iterative approach is always guaranteed to perform as well as or better 

than the reactive approach with the same starting point (the same initial generation plan). Recall 

from Section 2.6.1 that I have defined the reactive planning procedure as the iterative method with 

a maximum number of iterations set to 3 with the following definition of the iterations: 

• the first iteration is the generation investment problem with fixed transmission 

(present grid);  

• the second iteration the transmission investment with fixed generation; and  

• the third iteration is again the generation investment.  

Note that the iterative approach leads to a monotonically non-increasing series of objective 

function valuations because in every iteration the levels at which transmission or generation 

investment was fixed in the previous iteration are feasible. So, each subsequent iteration will not 

choose a set of investments that worsens the objective; it will either identify a new level of 

investments that leads to a lower objective function value than the previous iteration, or it can 

choose the level at which investments were fixed before and the objective function value will 

remain the same. Given that the series of objective function valuations is monotonically non-
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increasing, it follows that the iterative approach (when run to convergence) will result to a solution 

with lower or equal cost compared to the reactive approach.  

2.7 RESULTS  

The problem is modeled in AIMMS.  The CPLEX 12.6 solver is used to solve the model with 

a MIP gap tolerance of 10-6 (expressed as a fraction of the objective function). 

2.7.1 Benefits of  proactive transmission planning for EI 

As demonstrated in Section 2.6.4,  the solution identified by co-optimization of generation 

and transmission planning cannot have higher cost than the solution identified by the iterative 

approach.  In brief, this is because the latter has the same objective function but a smaller feasible 

region since some of the decision variables are fixed at each iteration (e.g., generation investments 

are fixed for the 2nd iteration) and might not converge to the joint optimum. Since reactive planning 

is equivalent to the iterative approach with the maximum number of iterations set at three, and 

since the cost cannot be worsen from iteration to iteration, reactive planning cannot have a lower 

cost than the iterative method. 

Here, I quantify the extent to which co-optimization outperforms both methods (reactive and 

iterative).  Co-optimization increases the net benefits identified by the transmission planning 

process by $3.5bn compared to the iterative and reactive approaches (see Table 2-2). Note that in 

this case, the iterative and reactive approaches lead to identical solution since they identified the 

same transmission investment plan given that the iterative method converged in only 4 iterations. 

In particular, as part of iteration 3, generation investment changed slightly in response to the 

transmission investments made in iteration 2. This similarity of the iterative and the reactive 

approaches is not generally the case as proved in Section 2.6.4 and demonstrated in results obtained 

under sensitivity analysis. 
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 The increase in net transmission benefits seems significant. The iterative approach captures 

only 29% of the net benefits that the transmission planning procedure could add to the system if 

co-optimization was employed. 

 
Table 2-2: Transmission benefits and investment costs under base case 

In $2010 million Reactive 
(3rd iteration) 

Iterative  
(4th iteration)  

Co-optimization 

Net Transmission benefits 1,451 1,451 4,973 
Transmission investment cost 807 807 8,744 

 

Examining the time granularity of net benefits throughout the horizon in Table 2-3, I observe 

that the cost savings of using the co-optimization over the iterative approach manifest late in the 

horizon (post 2025). 

 
Table 2-3: Difference of transmission net benefits between co-optimization and iterative planning 
across the model horizon (in millions of $2010) 

Time period Co-optimization-Iterative 

2011–15 8 

2016–20 -23 

2021–25 -173 

2026–30 420 

2031–70 3,289 

 

The timing of the net benefits increase seems to coincide with the timing of generation and 

transmission investment differences between the two methods. As Table 2-4 and Table 2-5 

indicate, co-optimization invests more in wind and transmission investment and less in natural gas, 

but this deviation in the plan relative to reactive planning is observed only late in the horizon 

(2026–2030). The concentration of investment deviations in the late 2020’s (Table 2-4 and Table 

2-5) is probably explained by the high carbon tax required to make wind competitive with 

combined cycle capacity, even in regions with high quality wind. For example, 2020 is the first year 

that wind has a lower levelized cost in 4 regions. The number of such regions reaches 6 in 2030 
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(Figure 2-1). I further test the hypothesis that carbon tax affects significantly the timing of savings 

in one of the sensitivity cases in Section 2.7.2. 

 

Figure 2-1: EI transmission investments by 2030 (MW) 

 
Table 2-4: Generation investments in GW (Generation-only/Iterative/Co-optimization) 

Generation Type  2011–15  2016–20  2021–25  2026–30 

CC  16/16/15 63/57/59 19/22/18 43/45/35 
CT  0  0  0  6/8/7 
Nuclear, Hydro, IGCC_CCS 0  4/4/4  2/3/3  67/66/66 
Wind  0  5/5/7  41/42/42 67/67/118 
Other  0  5/5/5  4/4/4 4/4/3 

Table 2-5: Transmission investments in GW-miles 

Transmission investment (GW-miles) 2011–15 2016–20 2021–25 2026–30      
Co-optimization  1,242  10,624      
Iterative Planning  774        

  

Contrasting the two planning approaches, co-optimization invests more in wind and 

transmission lines (Table 2-4 and Table 2-5) increasing investment costs but saving operational 

costs (see Table 2-6). Co-optimization suggests investments in transmission that connects regions 

with wind capacity factors high enough to compete with conventional resources to high load 

regions that lack high quality wind resources. In that manner, co-optimization integrates 

approximately one-third more wind both in terms of capacity and energy (see Table 2-7). This 
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generation mix change is significantly driven by the carbon tax cost savings (which make up 

$51.5bn out of the $907bn-$818bn = $89bn savings in extension period operational costs in Table 

2-6).  

 
Table 2-6: Objective function components 

 Metric  
($bn NPV in 2010$) 

Co-optimization Iterative  
(4th iteration) 

Y
ea

rs
: 

2
0
1
1
–

3
0
 

Generation Operation 1,583 1,592 

Generation Investment 692 633 

Transmission Operation (Hurdle Rates) 9 8 

Y
ea

rs
: 

2
0
3
1
–

7
0
 Extension period annualized capital 

costs 
500 473 

Extension period 
operational costs 

818 907 

T
o

ta
l 

Transmission Investment 9 1 

Objective function 3,610.9 3,614.4 

Table 2-7: EI Capacity/Generation mix in 2030, GW/TWh 

Capacity Type Co-optimization Iterative 4th 

CC 220/770 233/921 

CT 49/7 45/7 

Nuc, Hydro, IGCC_CCS 219/1501 219/1505 

Wind 194/622 143/458 

DR 152/1 152/1 

Other 18/94 19/102 

 

In Section 2.6.4, I demonstrated the conjectured relationship among the cost of the three 

approaches and demonstrated how the iterative approach has a cost that is higher than the co-

optimization approach and lower than the generation-only approach. Here, I will explain the 

relationship by looking into the case study and provide some intuition on why the iterative 

approach converged before reaching the joint optimum. 

In the first iteration, which invests in generation only, tight transmission constraints and the 

lack of a clear economic advantage for wind means that investment in gas-fired plants occurs even 

in regions with high quality wind. Wind integration is modest, and no curtailment is observed. 

Then the 2nd iteration identifies which transmission lines are justified by operational cost savings, 

given the generation build-out from the 1st iteration. The presence of gas generation and absence 
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of wind curtailment leads the model to avoid new connections to regions with high quality wind. 

Thus, the iterative approach fails to recognize that operating cost savings can arise from 

simultaneously investing in remote wind and the interregional transmission needed to access it. In 

economic terms, those two investments are complementary, in that the presence of one increases 

the economic value of the other.  Co-optimization is needed to capture this interdependency. 

However, the iterative method does recognize operational savings due to regional fuel cost 

differences or/and differences in the marginal resource. Nevertheless, the former does not justify 

transmission investments here due to the wheeling charges exceeding fuel cost differences for the 

same type of resource. The latter, however, motivates the iterative method’s only transmission 

investment, which is also identified by co-optimization.  Ontario has spare low-cost capacity during 

most load periods. As a result, 3.6 GW of expansion is justified for one interface to facilitate export 

of its cheap capacity (Figure 2-1). 

Finally, the amount of trade in the EI increases significantly under co-optimization compared 

to the iterative solution. This is expected since gas-fired plants can be developed in any region with 

fairly similar costs while high quality wind is found only at specific regions. To measure trade, I 

divide the EI into zones by combining regions that have zero hurdle rates between them, and then 

calculate flows among those zones. Co-optimization increases the sum of net trade between these 

zones by 150% (from 64 TWh to 152 TWh) in 2030.  

2.7.2 Sensitivity analyses 

I also quantify co-optimization’s benefits for three sensitivity cases. All three sensitivities test 

the impact of different policies attempting to increase renewable penetration or mitigate carbon 

dioxide emissions. I choose to focus on those policies because they significantly affect renewable 

investments, which seem to be interlinked with transmission investments and subsequently affect 

the co-optimization benefits. 
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 In the first sensitivity, I replace the carbon tax with an EI-wide renewable portfolio standard 

given that RPS mechanisms seem to be more popular than carbon tax. In the second, I extend 

through 2030 a production tax credit (PTC) of 22$/MWh of wind production for the first 10 years 

of a wind investment. In the third sensitivity, I enforce a uniform carbon tax of 140$/tn from 2015 

onwards to examine if the timing of savings is affected.  

For the first sensitivity, I enforce an EI-wide renewable energy target that is calculated to 

match the TWh of renewables generated by year in the base case co-optimization results, and I 

remove the carbon tax. Note that the results of the first sensitivity analysis depend on the flexibility 

allowed for trading renewable energy credits as shown in [94]. In the formulation employed here, 

enforcement at the EI-level assumes full flexibility for credit trading within EI. The iterative model 

now needs 10 iterations to converge.  

Examining results obtained under this case, co-optimization benefits more than double 

compared to the base case. This is reasonable given that in the generation-only planning case, 

inefficient investments in renewables happen to comply with the renewable portfolio standard. 

Moreover, curtailments are much more frequent and responsible for part of the inefficiency. The 

presence of curtailments now motivates more transmission investments in the iterative approach. 

Thus, the iterative approach has a more similar pattern of transmission development with co-

optimization and not the reactive case as in the base case. Moreover, the iterative approach is able 

to capture ~89% of the benefits that co-optimization might achieve. Whereas, the reactive 

approach only realized 46% of co-optimization’s benefits in this case (Table 2-8).  Although both 

iterative and co-optimization methods procure the same amount of renewable energy, the co-

optimization approach builds more wind at the expense of biomass and wood. High quality of 

wind in specific regions compensates for the additional transmission investment needed to access 

them and makes those remote wind resources competitive to local renewables. 
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Table 2-8: Comparison of three planning approaches under sensitivity case with nationwide RPS 

Transmission planning 
approach/iteration Reactive/3 Iterative/10 Co-optimization 

Transmission net benefits 
($2010 million) 4,321 8,473 9,480 

Transmission investment cost 
($2010 million) 1,923 4,161 5,762 

By 2030: Transmission Investment 
(GW-mile) 1,950 5,598 7,506 

 

In the second sensitivity case, the PTC yields more wind investment in both approaches. 

However, the cost saved by co-optimization resembles that in the base case (see Section 2.7.1). 

Similar to the first sensitivity, the iterative approach is more similar to co-optimization and costs 

only $4.3bn more than the latter. However, the number of iterations required for convergence 

increases even further (4 in base case, 10 in first sensitivity, 24 now). The iterative now captures 

84% of the co-optimization net benefits while reactive only obtains ~14%. Thus, a pronounced 

cost improvement resulting from using iterative rather than reactive planning (Table 2-9) is 

observed in both sensitivities. 

 
Table 2-9: Comparison of three planning approaches under sensitivity case with production tax 
credit 
 

Transmission planning approach/iteration Reactive/3 Iterative/24 Co-optimization 

Transmission net benefits ($2010 million) 3,826 23,391 27,721 
Transmission investment cost ($2010 million) 1,877 13,782 24,680 
By 2030: Transmission Investment (GW-mile) 1,554 19,161 33,896 

 

I conduct the third sensitivity to test the impact of carbon tax on timing and magnitude of 

benefits. Specifically, I impose a 140$/ton carbon tax after 2015. The savings are observed earlier 

compared to the base case (post 2020 rather than post 2025). Further, it appears that tax affects 

significantly both the magnitude and timing of co-optimization benefits. 
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Table 2-10: Timing of net transmission benefits under sensitivity case with early implementation 
of high carbon tax 

 Net transmission benefits (in $2010 million) 
 Co-optimization- Iterative Co-optimization- Iterative 

Time period Base case 
3rd Sensitivity (High Carbon 
Tax Earlier) 

2011–15 8 (283) 
2016–20 (23) (30) 
2021–25 (173) 1,038 
2026–30 420 1,971 
2031–70 3,289 2,458 

 

To conclude, the magnitude of co-optimization benefits is significantly affected by exogenous 

assumptions such as RPS (sensitivity 1) and carbon tax (base case, sensitivity 3). In general, under 

any single set of assumptions, co-optimization is the approach that yields the maximum net 

benefits. The reactive approach captures the lowest amount of potential transmission benefits (14–

46% in cases simulated) among the three methods. Finally, the iterative approach realizes a higher 

fraction of co-optimization benefits, with a range of 14–89%, depending on the model 

formulation. 

2.7.3 Reduced transmission candidate set 

Computational time is a disadvantage of co-optimization. Here, co-optimization took 5–9 

times as long to solve as the iterative approach, even though the latter involved solution of multiple 

model instances. So, I evaluate whether pre-screening of investments to reduce model size could 

improve solution times, and whether restricting the options considered decreases the benefits of 

co-optimization. 

 I pre-specify the number of candidates the reduced set should have to 10. Then, I identify the 

10 most congested interfaces in the EI using the three metrics defined in 2.6.3. Thus, the set of 

candidate interfaces is greatly reduced from the original 47 interfaces.  Using the three sets of 

interfaces identified by the metrics as the reduced sets of transmission candidates (noted 𝑆𝑅), I 

then co-optimize the EI system under base case assumptions three times, once for each metric. 
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Even though all metrics use the same shadow prices in their definition, the sets of interfaces they 

identify are very different because of the different roles of existing flows (in the case of metric 

TCC) and overflows (for EPB), as shown in Table 2-11.  Only three interfaces appear in all three 

sets of 10 interfaces and one of them is the interface that expands under the iterative approach of 

the base case (Figure 2-1). 

 
Table 2-11: Intersections of reduced sets of candidate interfaces 

Set Size  Set Size  

𝑆𝑇𝐶𝐶 ∩ 𝑆𝑇𝑆𝑃  5 𝑆𝑇𝑆𝑃 ∩ 𝑆𝐸𝑃𝐵 4 

𝑆𝑇𝐶𝐶 ∩ 𝑆𝐸𝑃𝐵  5 𝑆𝑇𝑆𝑃 ∩ 𝑆𝐸𝑃𝐵 ∩ 𝑆𝑇𝐶𝐶  3 

 

Pre-screening lines results in a smaller number of integer variables for new lines. The reduction 

in the number of binary variables results to reduction of the solution time by two-thirds for the 

co-optimization model, when using the same gap tolerance (10-6). Unfortunately, however, by 

restricting which lines can be chosen by co-optimization, the benefits obtained from co-

optimization are also reduced (see Table 2-12).  

 
Table 2-12: Performance of restricted transmission planning models with screening metrics 

Co-optimization with  𝑺𝑹based on: TCC 
Metric 

TSP 
Metric 

EPB 
Metric 

Full set of 
lines 

Cost increase vs. full set of lines ($bn) 1.8 1.6 0.6 0 
Benefits increase vs. iterative ($bn) 1.7 1.9 2.9 3.5 
Time to solve (sec) 411 608 490 2081 
No. of integer variables 480 384 480 1968 

Note: The number of continuous variables is the same in each model (218,164). The LP Barrier method is 

used at each node of the Branch-and-Bound algorithm. The priority feature of integer variables for branching 

and full probing are adopted. These solution times are achieved on a desktop with Intel core processor i7-

5930K at 3.50GHz and 32 GB Ram. 

 

Cost savings achieved vary (Table 2-12) depending on the metric used. EPB outperforms the 

other two metrics: it captures the highest portion (82%) of co-optimization’s cost savings without 

taking more time. The restricted model with top candidates based on EPB also incurs the least 
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cost increase (+$0.6bn) compared to co-optimization with the full set of lines, while TCC and TSP 

incur an increase approximately three times as high. Given that the interface expanded by the 

iterative approach is part of all three reduced sets, the iterative approach is the same across all 

metrics. 

Digging further into metrics’ performance, I examine the number of interfaces at the 

intersection of two sets: 1) set 𝑂𝐹 , defined as the set of interfaces expanding under co-optimization 

with the full set of lines and 2) set 𝑆𝑅. Then, the number of false positives is defined as the size of 

𝑆𝑅 ∩ (𝑆𝑅 ∩ 𝑂𝐹)𝐶  and the number of false negatives is equal to the size of the set 𝑂𝐹 ∩

(𝑆𝑅 ∩ 𝑂𝐹)𝐶 . Given that in this application, the sizes of 𝑆𝑅 and 𝑂𝐹 are identical, the numbers of 

false positives and negatives are equal (Table 2-13). I see that EPB also performs best (fewest false 

positives/negatives). 

 

Table 2-13: Comparison of sets 𝑆𝑅 and 𝑂𝐹 

Reduction metric Size of 𝑺𝑹 ∩ 𝑶𝑭 False positives/negatives 

TCC 4 6 
TSP 4 6 
EPB 7 3 

  

There are two reasons for the success of the EPB metric. First, the overflow analysis indicates 

which interfaces might experience the greatest increase in use if all interfaces are expanded 

simultaneously. In that manner, it identifies economically attractive multi-interface paths. Second, 

the overflow charge guides the flow and prevents some false positives. For example, in the case of 

two parallel paths with same shadow prices, EPB will favor the one with the lowest cost.  

However, the success of EPB here does not depend on its ability to better approximate actual 

potential benefits (APB, defined above), contrary to the claim in [95]. Even if I identify the most 

promising interfaces using APB and co-optimize with this reduced set, I only get 77% of the full 

co-optimization savings because APB focuses on benefits from individual expansions, ignoring 

interactions among interfaces.  
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Examining the false positives of each 𝑆𝑅 , I now consider the reasons for their inclusion. First, 

all three metrics employ shadow price information. Those prices are useful, but they do not 

quantify the extent (in GW) of expansion that would be beneficial, nor do they provide information 

on how those benefits would be affected by expanding other interfaces. In particular, there is a 

false positive interface identified by all three screening methods. Expansion of that interface is 

beneficial for a much lower number of MW than the size of a new line for that interface. Also, the 

TCC and TSP metrics include all interfaces connecting two adjacent regions with large price 

differences, while in practice it may be optimal to expand just the least costly interface.  Finally, 

although the adjusted EPB does account for interface interactions, it could yield false positives 

because allowance of an overflow in one interface may cause overflows on other interfaces in 

series, not all of which may be optimal to expand.   

Reviewing the false negatives, I see that all metrics tend to miss interfaces that consist of the 

next most limiting element on a multi-interface serial path. EPB seems to suffer the least because 

the simultaneous release of the flow limits might lead to significant overflow in the multi-interface 

path, prioritizing even lines with low shadow prices. However, in case of zero shadow prices, EPB 

would also estimate zero improvement and might miss an optimal series of lines to expand.  To 

correct this, grouping techniques might be adopted [96] 

2.8 CONCLUSIONS 

I apply co-optimization, or “proactive transmission planning”, to a 24-bus representation of 

the Eastern Interconnection, using a dataset for the entire EI developed in a past study including 

stakeholders. Co-optimization is the approach that theoretically allows the planner to maximize 

the value added by the transmission planning procedure. Comparing the value added by traditional 

planning approaches such as reactive (generation-first) planning and a model that iterates between 

generation and transmission expansion, I observe that those widely used methods capture only a 

portion of the maximum value (14–46% and 14–89%, respectively). When co-optimizing in the 
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case study presented here, the transmission planner spends more on transmission since the planner 

anticipates that transmission investments will facilitate greater development of remote high-quality 

wind resources rendering more transmission additions economic. Integration of those resources 

leads to increasing trade between EI regions and system cost is reduced because the proactive 

planner recognizes the complementarity of transmission and remote generation investment.  

However, model size and solution times are a challenge for practical implementation of co-

optimization.  I apply and evaluate congestion metrics as screening criteria to reduce the number 

of transmission options considered. I observe that two widely used congestion metrics have a high 

rate of failure, in terms of overlooking lines that would actually be expanded in a co-optimization 

with the full set.  These metrics fail to achieve more than half of the cost savings of co-optimization 

with the full set.  In contrast, a version of the estimated potential benefit (EPB) metric proposed 

by MISO performs better, capturing ~82% of the savings while reducing solution times by more 

than 75%. 

Future work could test the benefits of co-optimization and the success of EPB as a screening 

criterion based upon more detailed representations of the EI network that include Kirchhoff’s 

Voltage Laws. Furthermore, co-optimization benefits could also be quantified assuming strategic 

players rather than perfect competition. This would require use of large-scale multi-level 

optimization models.   
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CHAPTER 3  

PLANNING POWER SYSTEMS IN 

FRAGILE AND CONFLICT-AFFECTED 

STATES   

Novel approaches are necessary to acce lerate provis ion of r e l iable e lec tr i c power in 

f ragi le and conf li ct -affe cted countrie s . Exist ing approaches  to planning power  sys tem 

investment tend to ignore confl ict r isk and its ser ious consequences . This chapter 

proposes a framework for ident i fy ing power sys tem inves tment s trateg ies in frag ile and 

confl ict -af fec ted countr ies and applies  i t  to South Sudan. Result s show that investment 

s trateg ies which cons ider the chal lenging confl ic t context may improve  re l iabi li ty o f 

e lec tr i c i ty serv ic e over the  status -quo approach.  The analysi s sugges ts inves ting in a 

diverse  resource mix for  the  e l ect r ic ity  supply  in the medium  term and bui lding  a 

power  sys tem with redundanc ies or higher  share o f local  resources in the  long  term.   

3.1 INTRODUCTION 

Sub-Saharan Africa (SSA) has been identified as the epicenter of the energy poverty challenge 

[32], with 588 million people lacking access to electricity as of 2016 [31]. Despite recent increases 

in the pace of electrification, the Sustainable Development Goal (SDG7) for universal energy 

access by 2030 [2] will not be met without intensified electrification efforts [97].  
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A challenge is that half of SSA countries have consistently ranked among the top 50 fragile 

countries in the world in the last decade [33]. Conditions in fragile countries may condemn 

conventional development plans to failure [34]. Conventional power system planning methods are 

also susceptible to failure. However, only a slim minority of peer-reviewed quantitative planning 

studies about SSA considers political factors [98], and almost all widely used energy planning 

models overlook socio-political aspects including political instability [17]. Therefore, new planning 

approaches are needed to identify actionable plans. 

A relatively small number of papers has considered the impact of political instability on power 

system planning and operation [99], [100], [101]. However, as I will discuss in detail in Section 

3.2.3, existing approaches are myopic in the way they simulate conflict. At least one of the 

following three weaknesses is observed in past studies. First, researchers focus on a single conflict 

effect, resulting in potentially biased recommendations. Second, status-quo approaches ignore the 

dynamic evolution of conflict and adopt uniform values for conflict-affected parameters over a 

multi-decadal horizon. In that case, implications of any future improvement or deterioration of 

conflict conditions for power system development are overlooked. In particular, the value of 

adaptive strategies is not recognized. Finally, previous articles propose methods without providing 

guidance on datasets and available models, which could be used in practical applications. In other 

words, practical difficulties are ignored, and planners would have to invest significant effort to 

draft an implementation plan for proposed methods.   

This chapter aims to design and implement a practical framework that considers conflict-

induced uncertainty over a multi-decadal time horizon, while accounting for multiple effects of 

conflict on power system investment and operation. The framework is designed to be readily 

applied to diverse situations around the globe, relying on qualitative analysis or statistical models 

for conflict uncertainty characterization and quantitative evidence of conflict impacts.  

The rest of this chapter is structured as follows. Section 3.2 provides background information 

and reviews literature on fragility, power system vulnerability to conflict, and existing conflict-
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aware power system planning methods. Section 3.3 articulates the proposed framework and 

explains its components in detail. Section 3.4 presents key features of the case study and explains 

the implementation of each step for the case study. Section 3.5 illustrates the experimental design. 

Results for all cases chosen in Section 3.5 are provided in Section 3.6. The chapter ends with 

discussion on results (Section 3.7), conclusions, and potential extensions of the framework (Section 

3.8). 

3.2 BACKGROUND AND LITERATURE REVIEW 

The United Nations and the World Bank Group have identified fragility, conflict and violence 

(FCV) as obstacles preventing the achievement of global development goals [102]. The 

Organization for Economic Cooperation and Development (OECD) defines fragility as “the 

combination of exposure to risk and insufficient coping capacity of the state, system and/or 

communities to manage, absorb or mitigate those risks. Fragility can lead to negative outcomes 

including violence, the breakdown of institutions, displacement, humanitarian crises or other 

emergencies” [103].  

There has been a remarkable rise of conflict around the globe in the past decade [102]. 

Approximately 2 billion people live in countries now suffering from fragility, conflict and violence 

(FCV) [104]. By 2030, 46% of the global poor population is projected to live in FCV-affected 

states [104]. As a result, methodologies that measure and predict fragility and conflict have 

attracted growing interest as they can support decision makers to prepare for, intervene in, and 

cope with fragility and conflict [105]. Section 3.2.1 provides a synopsis of methods that measure 

and project FCV. 

Access to reliable electricity possesses a unique position in the FCV agenda since it plays a role 

on all three phases of leading to, preventing, and coping with FCV conditions. In particular, 

discriminatory access to electricity might be perceived as an act of marginalization for certain 

populations within a state [106] and as a result act as a trigger for confrontation and conflict. If 
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connectivity and infrastructure lead to economic development, which subsequently mitigates the 

FCV conditions, then improvement of electricity infrastructure also belongs to the 

prevention/peace-building agenda [34]. Finally, development and operation of power systems are 

not immune to FCV. Under FCV, normal procedures are frequently disrupted [107]  and system 

resilience is necessary to cope with conflict and meet demand under adverse conditions. Currently, 

there is limited work on the role of electricity access as a predictor of conflict and its role on 

prevention. However, there is abundant historical evidence documenting the vulnerability of 

power system assets to conflict. In Section 3.2.2, I review past conflicts and create a comprehensive 

list of effects of conflict on power system assets. Lastly, in Section 3.2.3 I investigate how previous 

research articles have integrated conflict risks into power system models.  

3.2.1 Measuring and projecting fragility and conflict 

International agencies and donors have been developing and employing fragility indexes and 

conflict projection tools for decades. Recent advances in computational fields — e.g., in machine 

learning — have resulted in a new wave of quantitative conflict prediction tools [105], [108].  At 

the same time, qualitative frameworks are also evolving, and hybrid tools that use both qualitative 

and quantitative methods have been developed [109].  

Similar categories of inputs are used for fragility measurement and conflict projection across 

tools. Authors of [110] employ three types of indicators: input, process, and output indicators. 

Input indicators refer to structural factors and the institutional framework in a country. Analysis 

of governance effectiveness and human development fall under this category. Process indicators 

mainly measure economic development and social welfare. Output indicators directly measure 

conflict episodes and incidents of unrest. Using a different classification system, reference [111] 

divides inputs into three classes: tensions, shocks and institutions. While institutions are similar to 

the input indicators used in [110], tensions and shocks are slightly different. Tensions capture 

ethnic or religious fractionalization and uneven distribution of wealth and resources within a 
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country. Unlike structural factors which generally characterize chronic conditions, shocks refer to 

abrupt changes in trade or natural disasters. Overall, most methods that characterize a country’s 

status assess multiple aspects: history of conflict, quality of governance, human rights, international 

relationships, population heterogeneity, economic development, and demographic or 

environmental stresses [112].  

There exist qualitative, quantitative, and hybrid methods to translate input data into conflict 

projections [109]. Within qualitative methods, predictions might be devised based on structural 

analogies [113], structural frameworks [114] and alternative frameworks (e.g., Shell [115] and 

Delphi [116]). Quantitative methods range from regression models to machine learning 

approaches such as neural networks and random forests [109]. Modern software based on content 

analysis quantifies media coverage and, more recently, social media activity, which can be used as 

a conflict predictor [108]. Finally, hybrid methods rely on both quantitative measures and experts’ 

perceptions of a situation [109]. 

Outputs vary significantly among tools. For instance, temporal and spatial resolution differs 

across quantitative tools [108], [109]. Definition of conflict also varies. Some tools define conflict 

based on the number of battle-related deaths  and assign intensity levels accordingly [117]. Other 

tools choose to expand the definition of conflict to include the presence of peacekeeping 

operations and the displacement of the population [111]. In addition, tools might provide a 

qualitative [112], relative quantitative [118] or absolute quantitative measure of risk [119]. In the 

latter case of an absolute quantitative metric, tools might provide probabilities for onset and/or 

termination of conflict [108].  

These tools are likely to become more useful in the future for several reasons. Recent advances 

in computational methods offer the possibility of improved accuracy of quantitative conflict 

predictions [108]. Moreover, quantitative methods are easily applied across the world; international 

or local agencies can use these numerical estimates to assess interventions and programs in any 

country [105]. However, researchers emphasize that the accuracy of quantitative predictions is 
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constrained by epistemic and empirical uncertainty, which arise because of limited evidence and 

understanding of the complex phenomenon of conflict [108]. Moreover, quantitative methods are 

often criticized for being overly uniform, ignoring country-specific dynamics [109].  Thus, 

integration with relevant expert judgments is desirable. 

The framework proposed in Section 3.3 requires planners to develop scenarios on the 

evolution of conflict but does not specify which conflict prediction tool to use. I would 

recommend selecting a conflict prediction tool that acknowledges the influence of conflict history 

on the likelihood of future conflict. In that way, planners can adapt their plan as more information 

on any specific conflict becomes available. Later, in Section 3.4, I provide detailed information and 

justification for the quantitative conflict prediction tool used in the case study. 

3.2.2 Power system vulnerability to conflict  

There is abundant evidence from around the globe indicating that power system components 

and processes are vulnerable to conflict. Attacks on transmission lines and natural gas pipelines 

are regularly reported in the press. However, vulnerability of power system components to conflict 

extends beyond attacks on energy infrastructure. To develop a comprehensive list of these power 

system vulnerabilities, I reviewed academic papers, databases listing attacks on power systems, 

damage assessment reports, reports and news articles describing power system operations in 

conflict zones, and reconstruction efforts in post-conflict environments.  

Power system infrastructure constitutes a target for attacks that aim to disrupt power service. 

However, attacks take different forms. Bombing of transmission towers and substations occurred 

frequently during the extended civil conflict in Colombia [120]. Three Syrian cities [121], likewise, 

experienced attacks on 50% of substations and 10% of transmission towers between 2011 and 

2017. There are numerous other examples of attacks upon transmission lines from around the 

world, e.g., during the 2011 crisis in Yemen [122] and the civil war in El Salvador [123]. Direct 

attacks on power plants occur less frequently [124], though incidents of hostage taking or 
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occupation of power generation facilities are common. During the Liberian civil war, for instance, 

the main hydro plant for the country was wrecked [125].  Increased security for power plants 

during times of conflict might explain why fewer attacks have been recorded. For instance, several 

security measures were taken to safeguard the Hoover Dam during World War II [126]. However, 

the geographical extent of transmission and other infrastructure networks makes guaranteeing their 

security almost impossible.  

Infrastructure systems are highly interdependent and thus attacks to other sectors have the 

potential to disrupt the power sector. Attacks on fuel supply lines are such an example. In Nigeria, 

attacks on natural gas pipelines disrupted the fuel supply to several natural gas power plants in 

2015 [127]. Similarly, attacks on transportation infrastructure — e.g., railroads, ports, etc. — could 

disrupt fuel delivery and subsequently power system operations [128]. Cyberattacks targeting the 

communication system of electricity grids have recently emerged as a serious concern. In 

December 2015, hackers broke into the SCADA distribution management system of  three 

Ukrainian energy distribution companies [129]. 

In addition, adhering to recommended maintenance schedules is challenging in conflict zones 

[107]. Irregular maintenance leads to higher malfunction rates. Chronic improper maintenance may 

necessitate significant refurbishment of equipment [130]. Repair times also increase in conflict 

zones for multiple reasons such as lack of spare parts and inaccessibility. During the Colombian 

conflict, the repair time for replacement of transmission towers varied greatly, with the shortest 

repair time one day and the longest 1,626 days [131].  

Fuel shortages are also quite common during times of conflict. Shortages arise because of 

limited supplies, which in turn lead to increased prices. In South Sudan, existing diesel generators 

stayed idle because of the unavailability and unaffordability of oil [132]. Similarly, in Palestine, fuel 

shortages cause irregular electricity supply [133]. Limited supply is caused by multiple factors 

including attacks on fuel supply networks as mentioned above, import difficulties (which I discuss 

in more detail in the following paragraph), and loss of government control of natural resources. 
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For instance, in 2014 Syria ISIS (the Islamic State of Iraq and Syria) controlled oil and gas resources 

and the government of Syria allegedly purchased fuel for the Syrian electricity sector from the 

rebels[134].  

Conflict crises profoundly affect the economy [135] and subsequently power system 

investment and operations. Gross Domestic Product (GDP) usually experiences slower (or even 

negative) growth compared to peaceful times [136]. The composition of the economy in terms of 

each sector’s contribution to GDP is also distorted. The contribution of “war-invulnerable” and 

“war-vulnerable” sectors tend to increase and decrease, respectively [136]. Changes in growth and 

composition of GDP might result to changes in electricity demand.  

Economic decisions by governments, private companies and rebel groups also change during 

times of conflict [135]. Government revenues tend to be lower because of lower taxable income 

and reduced trade with international partners, caused by sanctions or loss of control of export 

commodities. As a result, government deficits usually increase during times of conflict [135]. 

Moreover, governments usually change the budget allocation among sectors. The budget for 

defense and military operations usually increases at the expense of other government-sponsored 

activities including infrastructure development and maintenance [137]. Inflation, interest rates [99] 

and exchange rates are also affected by conflict [138] and in some cases shortages of hard currency 

have resulted in the devaluation of local currencies and the inability to import equipment and fuel 

[132]. Private companies and international organizations usually limit their economic activity in 

conflict zones and capital “flies away” [139], [140].  

Conditions such as “capital flight” and difficulties in import of equipment are adverse for 

construction and might prolong construction times for power plants. Sabotage to construction 

sites might also lead to longer construction times. For example, in 1982 the African National 

Congress placed bombs at a site in South Africa, where construction of nuclear power plants was 

underway [141]. In Nigeria, kidnapping and killing of construction teams seriously impeded the 

construction of power plants [142]. Projects under development might be suspended until after 
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the conflict is resolved. Development of a hydropower plant in Turkey was suspended in February 

2016 because of violence in the vicinity of the power plant [143]. In Sierra Leone, construction of 

the Bumbuna Hydropower plant was 85% completed when conflict erupted in the country in 1992, 

but after suspension of construction for a decade, the project was finally completed in 2009 [144]. 

The Azito power plant at Ivory Coast is another case where conflict led to temporary suspension 

of power development plans. In that case, the Azito construction project consisted of multiple 

phases, starting in the first phase as a simple cycle gas plant with plans to convert it to a combined 

cycle in the second phase. However, the plant remained a simply cycle for more years than initially 

expected due to political crisis [145]. 

Finally, the negative impact of conflict on human capital translates into negative effects on 

power system operations and investment. Negative effects on human capital include lower 

numbers of skilled and unskilled workers along with population displacement. The former impedes 

construction and operations [146] and the latter changes the level and geographical distribution of 

electricity demand. For instance, Syrian refugees have increased the electricity demand in Lebanon 

[147].  

3.2.3 Conflict risk in power system models 

The above review has established that FCV conditions impact power system development and 

operations. So, it is surprising that widely used energy planning models do not take those 

conditions into account when they assess plans for power system development. An obvious reason 

is that that most of those models were created in developed countries [17] not torn by conflict in 

their recent past. I reviewed several articles analyzing conflict risks to power systems [148], [149], 

[150], [151], [152], [99], [100], [153], [101]. Based on their horizon, analyses can be classified as 

historical or forward-looking.  Historical articles usually examine evolution of power system and 

attempt to explain how conflict conditions might have contributed to present status of the grid. 

For example, Bawakyillenuo [151] analyzes trajectories for PV deployment in three Sub-Saharan 
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African countries and observes that stability prevailed in two out of the three countries, which 

were able to attract more foreign investment and deploy more PV. Forward-looking studies, on 

the other hand, examine power system development plans looking into future and comment on 

the impact of conflict risk. In terms of type, such analyses are either quantitative or qualitative. 

Reference [98] observes that most qualitative analyses consider impacts of political factors on 

power systems while only a slim minority of quantitative models account for political factors. 

Power system planning models are forward-looking quantitative models. Thus, in this subsection, 

I discuss this type of models in detail. 

Labordena et al. [99], for example, assess the potential for concentrated solar power in Sub-

Saharan Africa. They consider conflict risk in a single manner: by using county-specific financing 

cost and strictly assume that no investment can happen in fragile states. Zerriffi et al. [100] 

reviewed effects on power systems in several past conflicts. They discussed a single conflict effect, 

i.e., the increase of repair time during conflict, which leads to longer unavailability of power system 

assets and prolonged outages. Simulating the reliability performance of two alternate designs of a 

test system — one with fewer and larger units than the other — they conclude that distributed 

generation systems provide reliability benefits during conflict.  

Similar to Zerriffi et al. [100], Levin and Thomas [153] also start with two pre-determined 

power system development plans. They further test the performance of those plans through 

multiple simulations, where uncertain parameters are valued at levels drawn from a normal 

distribution. Within their simulations, they consider governance/political instability. They choose 

to model instability’s impact on power systems through a single effect, which makes capital 

unavailable for development. 

Trotter et al. [152] construct a metric for political risk. Then, they solve a least-cost power 

system planning problem imposing a constraint that does not allow the metric for political risk to 

exceed a maximum value set by the analyst. They solve this model multiple times for different 

levels of political risk. In other words, their approach is equivalent to the standard constraint 
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method, which is used to solve multi-objective problems. In their approach, political instability is 

included as one of the six aspects comprising the composite metric for political risk. For the 

valuation of political instability, they multiply the “WGI Political Stability and Absence of Violence 

Index” of supplier countries by the amount of electricity imported from the supplier country. That 

way, reliance of a country on suppliers located in politically instable countries is noted and 

penalized.  Their approach is characterized by at least three flaws. First, different aspects of political 

risk are weighted based on the number of references discussing that aspect. Second, the approach 

is deterministic using present values for political risk not allowing for adaptation of power system 

development plans. Third, the measure constructed for political risk recognizes risk based on 

“nationality” of a resource and not based on its vulnerability to conflict effects, which depends on 

multiple factors including location. 

Bazilian and Chattopadhyay [101] contend that novel planning models that account for 

conflict-induced risks are necessary and list three options for incorporation of conflict uncertainty 

within the power system planning framework. They suggest that conflict-induced uncertainties 

could be reflected through adjusted inputs, simulation-based analysis of proposed plans or 

stochastic planning frameworks. Their proposed framework greatly inspired this chapter but is 

characterized by several limitations. First, they focus on planning model enhancements without 

providing a comprehensive framework for consideration of conflict effects on power systems and 

relevant guidance for data gathering and framework updates. Second, they do not provide an 

exhaustive list of conflict effects in their case study. Omission of conflict effects results in 

impractical planning recommendations. For example, their case study recommends increased 

investments in diesel generators, completely overlooking the reality of fuel shortages in conflict 

zones. Third, the authors briefly describe three approaches, but they decide to demonstrate only 

the first one. That approach ignores the dynamics of the conflict and simply assumes uniform 

differentiated parameter values for the entire planning horizon. 



 

 67 

 Based on the above review, I have established that there is a need for a framework that 

systematically and comprehensively considers conflict effects, acknowledges the dynamic 

evolution of conflict, and encourages the development of adaptive power system plans.   

3.3 PROPOSED FRAMEWORK 

The proposed scenario-based modeling framework can be used to address many urgent 

questions that governments, donors, investors or utilities face. Should development of a 

centralized grid be an immediate priority for a fragile country? Should investments in large projects 

be postponed until conflict risk is lower? Which types of resources best serve domestic demand? 

The proposed framework consists of five analytical steps summarized in Figure 3-1, which I 

further explain in the subsections of this section: characterization of power system vulnerabilities, 

development of scenarios on conflict evolution, scenario-based power system planning, 

uncertainty characterization, and sensitivity analysis.  

 

Figure 3-1: Schematic of the proposed scenario-based conflict-aware planning framework 

3.3.1 Step 1: Characterization of  power system vulnerabilities 

Step 1 asks framework users to describe ways in which conflict affects the power system in 

both qualitative and quantitative terms.  The list of interactions should be as comprehensive as 
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possible. Omitting some interactions in the modeling framework will introduce biases favoring or 

disadvantaging certain investments. For example, past research [101] concluded that diesel 

generators can reduce outages in South Sudan during times of conflict, but this ignores the fact 

that diesel fuel shortages frequently occur in times of conflict.  Figure 3-2 depicts the complex 

network of interactions that the review of past conflicts in Section 3.2.2 revealed.  

 

 

Figure 3-2: Schematic describing conflict’s effects on power systems 

 
The very existence of the complex and multi-dimensional interactions depicted in Figure 3-2 

points to the intrinsic difficulty of modeling conflict’s effects.  Figure 3-2 should be used as a 

starting point in Step 1 to qualitatively describe conflict effects. Then, planners should customize 

it to make the framework representative of local conditions.  For instance, if past evidence or 

information available to planners suggests that conflict leads to restricted access to capital, Figure 

3-2 should expand to account for access to capital. Finally, planners should search for empirical 

research and data that could serve as an adequate basis for quantifying interactions. I provide a 
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comprehensive list of sources I used to quantify interactions for the case study presented in this 

chapter in Section 3.4. Some sources might be useful in other conflict environments, too.   

Following a hierarchical approach to describe conflict effects helps framework users to 

identify the primary characteristics of a conflict that impact power systems. In that manner, the 

framework facilitates generation and evaluation of actions planners could take to mitigate the 

impact of conflict on power systems. Following a hierarchical approach to develop Figure 3-2, I 

list in the upper level primary conflict characteristics. Then, in the middle level, I draw the 

mechanisms and procedures through which primary conflict characteristics affect power systems. 

Finally, the bottom level includes all conflict-affected power system planning parameters. 

Figure 3-2 showcases the value of the hierarchical approach since planning parameters are 

affected by multiple phenomena. For instance, multiple factors contribute to the increase of forced 

outage rate under conflict. Deliberate attacks to power system assets render the assets idle for more 

time than usual. Moreover, improper maintenance during conflict leads to a higher malfunction 

rate as well. In addition, repair time might increase because efforts to restore the operation of 

power system assets might be challenged by unavailability of technicians, spare parts, equipment 

and inaccessibility to the sites of power system assets.  

So, I list changes in economic conditions, demographics and attacks as primary conflict 

characteristics. Then, in the medium level, I describe the impact of upper-level stresses on efforts 

of power system agencies to import fuel and equipment, recruit personnel, access sites, guard assets 

and meet financial obligations. At the bottom level, I list conflict-affected parameters such as 

forced outage rate, cost, fuel supply, load, construction time.  In the following paragraphs, I explain 

the mechanisms through which each primary conflict characteristic affects power system planning 

and operation. 

Economic conditions are profoundly different in times of conflict (see Section 3.2.2 for a 

thorough discussion). In Figure 3-2, I include only two metrics (exchange rate and gross domestic 

product), but planners can expand the figure to include more metrics and/or use metrics that 



 

 70 

better represent the variables planners and governments control. Exchange rate is one 

macroeconomic metric frequently affected by conflict conditions [138]. Effects of exchange rate 

changes are widespread and alter the valuation of costs in local currency. It is important to note 

that financial obligations are often valued at an international currency and extreme exchange rate 

fluctuations significantly affect the ability to pay back loans for power system development. At the 

same time, the ability to import fuel, spare parts and equipment is affected. Import difficulties 

subsequently undermine the ability to repair power system components, build new assets and 

supply fuel. Gross domestic product is another metric that reflects the impact of conflict on 

economic development. Economic development is highly related to electricity demand growth and 

the willingness of consumers to pay for electricity services.  

Deliberate attacks to infrastructure affect power system operation and development directly 

and indirectly. Directly when power system infrastructure is the target of the attacks. Indirectly 

when attacks target fuel supply or transportation infrastructure. Interdependency of infrastructure 

sectors allows disruptions on one sector to translate into disruptions for other sectors (here power) 

as explained earlier in Section 3.2.2. 

Population dynamics are also quite challenging in conflict conditions. Involvement of 

population in violent activities limits personnel available to work on peaceful activities such as 

repair and construction of power system infrastructure. At the same time, population displacement 

is another sad reality in conflict zones. Displacement of population leads to change in geographical 

composition of population and subsequently load. If the displacement is permanent, then 

electricity demand projections should reflect population movements. 

3.3.2 Step 2: Development of  scenarios on conflict evolution 

In the second step, planners should choose an approach to generate scenarios for conflict 

evolution. As discussed in Section 3.2.1, to develop scenarios and their associated probabilities (if 

necessary), planners may choose a qualitative, quantitative or hybrid approach [114].  Planners 
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should first specify desirable attributes for scenarios. In that way, they can narrow their search for 

a method. For instance, time horizon is an attribute that planners should decide on under step 2. 

Usually, planning models assess investments in a multi-decadal horizon. Thus, only methods that 

can provide multi-decadal projections should be considered. In that manner, the set of alternative 

methods narrows as methods that provide intra-annual projections for next year do not meet the 

multi-decadal horizon requirement. Similarly, based on the review of conflict effects planners 

conducted in step 1, they can decide if they will model different levels of conflict intensity and 

which definition of conflict works best for them. Thus, planners should choose which states they 

want to consider. States reflect different degrees of political instability or conflict escalation. 

Another important consideration for planners here relates to the presence of signposts, i.e., 

information they can monitor or obtain as the future progresses and allows for adaptation of plans. 

In the case study, I use as a signpost the conflict history since it can be observed and is one of the 

predictors of future conflict. See Figure 3-3 for an example output of step 2. I explain in detail this 

scenario tree in Section 3.4.2. 
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Figure 3-3: Example output of Step 2: Decision tree considered for the South Sudan case study. 

3.3.3 Step 3: Scenario-based planning 

In the third step, the framework employs a model that uses the scenario tree of step 2 and 

scenario-dependent values for conflict-affected parameters of step 1. To allow for learning and 

updated conflict projections as more information becomes available e.g., on conflict history, the 

model is formulated as a multi-stage mathematical program [154] with decision variables on 

investment and operations. To reflect investors’ attitudes towards risk and account for available 

data, planners choose a model type (stochastic [154] or robust [155]). For example, a stochastic 

programming model that minimizes the probability-weighted present worth of costs can represent 

a competitive, risk-neutral investment environment, in which investment decisions are conditioned 

on the country’s conflict history and are made knowing only the probabilities of the following 

states. On the other hand, alternative objective functions such as Conditional Value at Risk [154] 
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or a risk-averse utility function might be more appropriate in case of risk-averse investors within a 

stochastic framework.  

For any of these choices, the mathematical program should model the dynamics of conflict, 

account for timing between planning studies, and acknowledge that the planner can adapt 

investments based on conflict history. A stochastic programming model, such as the one applied 

in the case study, endogenously assesses the conflict risks and suggests the most efficient strategy 

— in terms of the objective function — to meet the projected demand. Moreover, the temporal, 

technological, and geographical resolution of the model allows planners to assess the relative 

vulnerability to conflict effects of investments pursued in different years, technologies, and 

locations. In particular, a model with adequate temporal, technological, and geographical resolution 

evaluates three generic courses of action. First, planners can wait for some of the conflict 

uncertainty to be resolved, deferring certain investments. Second, planners can diversify or change 

the technological/geographical composition of the investment plan. Third, planners can adjust 

capacity levels (e.g., install redundant capacity as backups). In general, a strategy (i.e., the set of 

scenario-dependent investment plans comprising the solution of the model) can include a single 

action or combinations. Later, in Section 3.6, it becomes obvious that recommended strategies 

often include instances of all three.  

3.3.4 Step 4: Characterizing uncertainty  

In step four, planners describe how uncertain the values used for conflict-dependent 

parameters in step 1 are. Planners can choose to describe uncertainty either through a set of 

possible values or a range to consider. In the case study of Section 3.4, I focus on extreme values 

for each conflict-affected parameter. In other words, I do a type of min-max sensitivity analysis. 

The minimum for each parameter is the value considered in the conflict-naïve model (which 

disregards the possibility of conflict) and the maximum (worst possible value) is based on past data 

or experience elsewhere. 
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3.3.5 Step 5: Sensitivity analysis 

Sensitivity analysis (step 5) is needed because crucial information on conflict impacts is 

missing. This step investigates alternative recommendations suggested by model instances of step 

3 that account for values of uncertain parameters determined in step 4. Results obtained under 

step 5 indicate the importance of each uncertain parameter, informing discussions on actions that 

might limit the impact of the uncertainty. Example of such an action is to adopt emergency 

response practices to reduce vulnerability or repair times. 

3.4 CASE STUDY 

The framework can be applied to any country. The case study offers a concrete example of a 

framework application and illustrates what sort of insights can be derived.  I choose South Sudan 

for three reasons. First, two years after its independence in 2011, the country fell into a 5-year civil 

conflict. Divisions within the government that caused the civil conflict [156] have been at least 

temporarily resolved in August 2018 [157], [158]. Second, the country has the third lowest 

electrification rate in the world (9% in 2016 [159]). Electricity is almost entirely produced by local 

diesel generators (99 % of electricity came from oil sources in 2015 [160]). Thus, power grid 

development there is a green-field application, with no existing infrastructure constraining the 

design of the future power system. Third, the country has relatively large hydropower potential 

along the river Nile [161] and has previously encouraged investment in large-scale hydro projects 

that however did not materialize (see past preliminary agreements with investors for a 540 MW 

dam [162] and presentations by government officials [163]). I conjecture that one reason for this 

failure is the risk of conflict which was not considered in the planning phase of those projects. In 

the following subsections, I explain in detail how I applied each step of the framework. 
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3.4.1 Step 1: Implementation 

Here, I consider effects of conflict on the power system through four planning parameters for 

which I was able to draw assumptions on their values under conflict conditions based on past data. 

However, the framework allows planners to model more conflict effects and a greater number of 

levels of intensity of conflict by expanding the set of conflict-affected parameters and conflict 

states, respectively. The geographical resolution for the status identification is the entire country. 

In other words, I do not allow for differentiated status of the conflict among regions within the 

country. This assumption might seem limiting since it is common for conflicts to be more intense 

in specific states or areas. On the other hand, even when one region of the country is in conflict, 

there might be power disruptions and conflict effects experienced in other parts of the country as 

well. 

3.4.1.a Unavailability of  the transmission network  

Data from the Energy Infrastructure Attack Database (EIAD) [131] are used to quantify the 

impact of conflict on the transmission grid. EIAD has particularly good coverage of attacks to the 

Colombian power system for years 1995–2011. In the future, if more data become available, 

assumptions could rely on a broader analysis at a global level or within a set of countries with 

conflict dynamics similar to the country of interest.  

Here, I calculate an average outage rate of ~41% for lines that connect more than 1000 MW 

of generation to the Colombian network over 1998–2002 (when the homicide rate was consistently 

increasing [164]). Therefore, I adopt a uniform assumption concerning the unavailability of the 

transmission network. All lines are assumed to be unavailable for half a year when the country is 

in conflict. This approach could be interpreted as a rebel group taking over the control room and 

the warehouse with spare parts for transmission lines for 6 months, not allowing energy to flow 

over the transmission system. Note though that the estimated outage rate varied a lot within the 

sample (see Table A-1) with some lines being almost completely down during the full five-year 

period and others experiencing only short outages. Multiple reasons might explain the observed 
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differences but a model predicting the outage of a transmission line given its attributes (e.g., length, 

region, MW, etc.) is out of the scope of this chapter and could be the aim of future research. I 

consider alternative values for the outage rate in step 4. 

3.4.1.b Fuel shortages 

To estimate fuel availability in South Sudan, I base my assumptions on a recent report by the 

Sudd Institute [132]. That report provides historical availability of oil in South Sudan and outlines 

some options to increase availability in the future. In particular, the supply of oil for power 

generation during conflict occurring in the first stage is assumed to be equal to the supply of diesel 

in December 2015 (2.3 million liters). If the country experiences three years of peace between 

conflict events, I assume that the depots with total capacity of 100 million liters described in the 

report will be available and refilled once per year during times of conflict. Under peaceful 

conditions, I assume four levels for the supply of oil for power generation. When peace is restored 

in the country, the quantity of level 1 is supplied and then it takes 3 years of peace to move to a 

higher level:  

• Level 1: The Juba storage facility can be refilled once per month and the whole 

quantity can be used for power generation. On top of that, imports of 40 million liters 

per month resume. 

•  Level 2: In addition to Level 1 options, depots with a total capacity of 100 million 

liters are available and refilled once a quarter, increasing the annual quantity available 

by 400 million liters.  

• Level 3: Refinery producing 3,000 b/day [165] is added to the supply options of Level 

2.  

• Level 4: Refinery producing 50,000 b/day [165] is added to the supply options of 

Level 3.  
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In situations of fuel supply shortages, prices are higher than usual. To properly account for price 

increases, I would need a supply-demand model for the oil market in South Sudan. However, given 

the unavailability of such a model, I resort to a simple multiplier (2.0) that I apply every time the 

country is in conflict. My assumption seems to be in line with observed prices in Juba [166] (see 

Figure A-1). 

3.4.1.c Exchange rate 

Since the abandonment of the constant rate of 2.96 SSP/US $ on 15 Dec 2015 [167], the 

exchange rate has risen to 133 SSP/US$ in Dec 2017 [166]. Note that the aforementioned rate is 

the official/commercial exchange rate, which is much lower than the parallel exchange rate. 

Projecting the exchange rate in such an environment is highly challenging. So, for the purposes of 

this model, I adopt a simple assumption with two distinct levels for the real exchange rate based 

on IMF’s World Economic Outlook projections [168]: 13.6 SSP/US$ when the country in conflict 

and 6 SSP/US$ when peaceful conditions prevail. 

3.4.1.d Construction time 

 I assume that construction time in South Sudan is identical to construction time in the USA 

when the country is experiencing peace because the construction time for hydropower plants 

reported in a local report [169] is identical to the one assumed in the USA [170]. Because this 

assumption seems optimistic for developing countries [171], [172] , the initial construction time 

for hydropower plants is the one I consider when the country is in conflict. That assumption allows 

some time for recovery to normal operations in the post-conflict environment. The assumed time 

falls to the USA value post 2020 in case of continued peace. To predict the construction time 

under conflict, I applied the following logic. Units for which construction started in times of 

conflict under any of the first three stages will generate after: (a) Double the construction time of 

peace has passed; and (b) Consecutive years of peace equal to the construction time during peace 

have been experienced. 
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3.4.1.e Other conflict effects 

As noted in the beginning of the section, I consider conflict-dependent values for four 

planning parameters. Here, I briefly discuss how two conflict effects I did not consider could affect 

the results and suggest ways for future applications to consider them. 

   (1) Damages. Damages vary significantly across conflicts and I could not develop a good 

estimate of their magnitude. This simplification is not expected to significantly affect the results 

for at least two reasons. First, damage on generation assets is minor as long as power plants are 

well guarded. Second, repair cost for transmission lines might further discourage remote 

generation but the operational disruption caused by outages has already significantly shifted the 

plan away from remote generation options illustrating this insight in our case study. In future 

applications, planners might want to simulate different scenarios of attacks to infrastructure and 

perform Monte Carlo Simulations in order to obtain estimate of damages. 

(2) Load. Population displacement is frequently observed in a conflict [173]. For example, the 

2nd biggest city in South Sudan (Malakal) has been evacuated multiple times during the last couple 

of years [174], [175]. Existing literature on the return of forcibly displaced population is scarce and 

focuses on factors that influence the desire and/or the decision to return [176]. Hence, population 

distribution post-conflict is highly uncertain. Here, given the focus of the study on urban centers, 

I assume that reintegration programs by the United Nations or other agencies will be successful 

and the population distribution will be the same as pre-conflict. In addition, I did not consider any 

link between the national GDP and load projections, assuming that the demand projection just 

covers basic population needs.  

3.4.2 Step 2: Implementation  

Here, I chose the model developed by Hegre et al. [119] to develop scenarios for conflict 

evolution (i.e., sequence of states). To the best of my knowledge, this is the only quantitative model 

I could use to derive multi-decadal conflict scenarios because it provides the probability of 
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transition from conflict to peace, peace to conflict, peace to peace and conflict to conflict. 

Moreover, Hegre et al. [119]  have documented their procedure in detail and provide 

supplementary information online, rendering replication of their model easy. Finally, its predictive 

skill, as judged by the AIC and Brier score, is acceptable. Future framework users should compare 

the relative advantages of Hegre et al.’s model to other alternatives.  

I formulate the chosen model in Matlab using input data described in Appendix A.3. I generate 

9,000 sequences of states for South Sudan spanning from 2017 to 2045. Each year the country can 

be in any of the following three states: minor conflict, major conflict, peace. For each sequence, I 

determine the status of the country during the first three stages (stage 1: 2017–2019, stage 2: 2020–

2022, stage 3: 2023–2025). If the country is under minor or major conflict for two or three years 

belonging to a stage (2017–2019, 2020–2022, 2023–2025), the status of the relevant stage is 

conflict. I assign each of the 9,000 sequences to one of the eight scenarios of Figure 3-3 based on 

the conflict status during the first three stages. Upon assignment of each of the 9,000 sequences 

to a scenario, I calculate the probability of the scenario as the number of sequences assigned to 

the scenario divided by the total number of sequences, i.e., 9000. For years belonging to the fourth 

stage (i.e., 2026–2030, 2035, 2040, 2045), I calculate the probability of conflict for each year under 

each scenario as follows. First, I count the number of sequences that are assigned to the scenario 

and have minor/major conflict that year. Last, I divide this number by the total number of 

sequences that are assigned to the scenario. 

3.4.3 Step 3: Implementation 

I decide to use a multi-stage stochastic programming model, where the objective function is 

the expected value of costs. I use four stages, where each of the first three stages lasts three years 

and the fourth stage approximates 24 years. I choose three years as the duration of the first three 

stages to keep it short enough to benefit from recent history (if a stage is long, its very first years 

are probably of low predictive value for the status of the next period), but long enough to align 
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with typical power sector planning cycles. That way, for instance, I let the planner choose between 

investments in the 4th year based on the conflict record of the first three years (stage 1). Then, on 

7th year the planner can choose a strategy based on the conflict record of the first two stages, and 

finally in the 9th year the planner can choose a strategy based on the conflict record of the first 

three stages. Note that after year 9 I do not allow for further differentiation in strategies because 

the complexity of the model would not be justified by the limited value the additional options 

would provide to the immediate plan. However, I simulate operational impact of conflict and allow 

differentiation of operational decisions in the 4th stage. Second, given computational limitations 

and the limited data on how the extent of conflict effects might differentiate under different 

severities of conflict, I choose to model just one conflict state. The structure of the problem is 

illustrated through a decision tree in Figure 3-4 and described analytically in the mathematical 

formulation of Section 3.4.3.a. 
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Figure 3-4: Decision tree that schematically describes the multi-stage stochastic program used in 

the case study 

3.4.3.a Mathematical formulation  

This subsection documents the equations of the mathematical program I use in this case study 

and explains the purpose of each equation. Note that in the formulation at the end of this 

subsection, green font is used for the conflict-affected parameters, i.e., the parameters that have 

different value depending on the state or the trajectory of conflict. 

The model minimizes expected cost over all eight scenarios. Equation (3-1) calculates the 

expected (probability weighted) cost, which consists of annualized capital cost payments over the 

horizon (Eq. 3-2), operational costs (Eq. 3-3) and penalty for unserved energy (Eq. 3-4). VOLL is 

the penalty for unserved energy and  a value of 800$/MWh  is used in line with the estimated 

average willingness to pay by consumers in Juba [177]. In future applications, multiple levels of 

Value of Lost Load could be considered to reflect different types of load and the impact that 
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disruption of their provision could have on the community. For example, hospitals have loads with 

high VOLL, which however are usually secured through on-site back-up generators. The model 

could readily be formulated to recognize this value and capability and curtail such loads only if all 

other loads are curtailed first. Fuel costs constitute a significant portion of the operational cost. To 

estimate fuel prices, I adopt a typical approach [16] which assumes that oil is sold at the 

international price in the capital, but a markup applies to other regions. The mark-up is assumed 

to be equal to the transportation cost from the capital. I estimate it assuming a truck traveling at 

40 km/h, carrying 300 l per trip and consuming 12 l/hour. I slightly adjust some of the mark-ups 

based on historical data from the country. 

I assess the economics of possible investment in batteries and three types of power generation: 

oil, hydropower and photovoltaic (PV). For oil, PV and batteries, the technology characterization 

is general because it does not specify exactly how those resources are deployed — as centralized 

grid installations or distributed among customers or microgrids. Meanwhile for hydropower, I 

consider five specific projects ranging from small-scale to large-scale hydropower plants (see Table 

A-4). In the formulation, the size of each hydropower project is noted as 𝑃𝑂𝑇𝑔 and the modularity 

of projects is represented through binary variables (𝑏𝑢𝑖𝑙𝑑_ℎ𝑦). Equation (3-5) ensures that the 

capacity available each year is increased by the investments completed and decreased by 

retirements compared to last year. Equation (3-6) retires generating units that exceed their 

operational life. Equation (3-7) limits unit output by its available capacity in each hour. Moreover, 

to accommodate maintenance outages, every unit’s annual energy use is limited in (3-8). Fuel limits 

are enforced by (3-9) and transmission flows are bounded by (3-10).  

Equation (3-11) is the energy balance for each node and hour. Some nodes just connect 

generators to the system (e.g., that is the case for hydropower plants) whereas 13 nodes are used 

to model 13 major cities in the country. Demand for those 13 cities are set at target levels from a 

past study [169]. One key assumption is that resources can always provide energy to any load 

located at the same node as the resource, even when the centralized network has been 
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compromised. In other words, I ignore the operation of distribution system in my calculations. 

Hydropower generation is seasonal and thus, I limit hydro generation for two seasons (noted 𝑃) 

in (Eq. 3-12). I approximately model battery storage in equations (3-13)–(3-15). For storage, I 

assume 75% round-trip efficiency, the capacity to store three hours of maximum output, and daily 

cycles for charging and discharging.  

Here, I briefly discuss the temporal resolution of the model. I use k-means clustering to group 

the 8760 hours into 12 representative hours per year. I cluster the 8760 hours based on 

transmission line unavailability, load, and solar PV output. Clustering splits the 12 representative 

hours into two groups: 6 hours when the network is on and 6 hours when the network is off in 

times of conflict. Note that the network is always on when peace prevails in the country. Based on 

the profile of those two sets, they could also be interpreted as two representative days, consisting 

of six “hours” each and belonging to one season. This latter observation on the profile of the 

representative hours allowed me to enforce the storage and hydro seasonality constraints. Modelers 

can choose from several alternative temporal resolutions for operations within the planning model 

[178]. Recently proposed methods such as Tejada-Arango et al. [83] attempt to preserve 

chronological information in order to better simulate short-term constraints on operations; 

however, none of these recent methods is widely used yet. Generally, chronological representations 

require more variables and thus larger and less wieldy models. Thus, for this chapter I follow a 

simple clustering technique to choose a smaller sample of representative hours in order to keep a 

reasonable model size. In the future, however, planners could adopt a more sophisticated method 

and benefit from improved approximations of short-term operations.  

Finally, equations (3-16)–(3-25) are non-anticipativity constraints that require any investment 

decision made prior to the resolution of uncertainty to be identical across scenarios with same 

information revealed.  
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Nomenclature 

Sets and Indices   

𝐹  Fuels indexed by f 

𝐺  Generators indexed by g 

𝐼  Power system nodes indexed by i 

𝐿  Transmission lines indexed by l 

S Scenarios/trajectories for conflict, indexed by s, 𝑠′ 

𝑆1 Scenarios/trajectories for conflict in the first stage, indexed by s1 

𝑆2  Scenarios/trajectories for conflict in the first two stages, indexed by s2 

𝑆𝑇  States (i.e., peace, conflict), indexed by st 

𝑇  Representative hours of the year indexed by t 

𝑌  Years indexed by y 

Subsets 

𝐺𝐻𝑌  Hydropower plants (subset of 𝐺) 

P Seasons; partition of T, indexed by p 

𝑌1𝑠𝑡  Years (𝑌) belonging to 1st stage 

𝑌2𝑛𝑑  Years (𝑌)  belonging to 2nd stage 

𝑌3𝑟𝑑  Years (𝑌)  belonging to 3rd stage 

𝑌4𝑡ℎ  Years (𝑌) following the 4th stage 

Decision variables 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦  Generation investment in MW, construction starts at y 

𝑐𝑎𝑝𝑔,𝑠,𝑦  Capacity in MW  

𝑐𝑎𝑝𝑒𝑥𝑠  Present Value of annualized capital expenses over the horizon in scenario s 

𝑐ℎ𝑎𝑔,𝑠,𝑠𝑡,𝑡,𝑦  Charge of storage g in MW 

𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦  Generation in MW at hour t 

𝑜𝑝𝑒𝑥𝑠  Present Value of operational expenses over the horizon in scenario s 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠  Present Value of penalty for unserved energy over the horizon in scenario s 

𝑡𝑟𝑎𝑛𝑠𝑙,𝑠,𝑠𝑡,𝑡,𝑦  Power flow over line l 

𝑟𝑒𝑡𝑔,𝑠,𝑦   Retirement of generator g in MW 

𝑢𝑠𝑒𝑖,𝑠,𝑠𝑡,𝑡,𝑦  Unserved energy at node i in MW 
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Binary decision variables 

𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠,𝑦  Commit to build transmission line; construction starts at y 

𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_1𝑔,𝑦  Commit to develop hydropower; construction starts any year y 

belonging to stage 1 

𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_2𝑔,𝑦,𝑠1 ∈𝑆  Commit to develop hydropower; construction starts any year y    

belonging to stage 2 

𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_3𝑔,𝑦,𝑠2 ∈𝑆    Commit to develop hydropower; construction starts any year y 

belonging to stage 3 

𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_4𝑔,𝑦,𝑠  Commit to develop hydropower; construction starts any year y 

belonging to stage 4 

Parameters 

Φ𝑖,𝑙  Element of node-line incidence matrix 

𝐴𝑁𝐶𝐴𝑃𝑔  Annualized capital cost for generator g in $/MW 

𝐴𝐶𝐹𝑔  Maximum annual capacity factor for generator g 

𝐶𝐹𝑔,𝑡  Capacity factor for generator g at hour t 

𝐶𝐹𝐻𝑌𝑃  Capacity factor for hydro during period p 

𝐷𝑡  Duration of representative hour t in hours 

𝐷𝑖𝑒𝑠𝑒𝑙𝑠,𝑠𝑡,𝑦  Diesel available for power sector in MMBTU 

𝐸𝑅𝑠,𝑦  Exchange rate in 2014SSP to US$ 

𝐸𝑋𝑔,𝑠,𝑦,𝑦1
  1 for generators within their operational life; 0 otherwise 

𝐹𝑂𝑀𝑔  Fixed Operation and Maintenance costs in US$ 

𝐹𝑂𝑅𝑙,𝑠,𝑠𝑡,𝑡,𝑦  Forced outage rate  

𝐻𝑅𝑔  Heat rate for generator g in MMBTU/MWh 

𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦  Construction time in years 

𝐿𝑂𝐴𝐷𝑖,𝑡,𝑦  Electricity demand in MW 

𝑀𝑎𝑝𝑠1𝑠𝑠,𝑠1  1 if s has the same state in the first stage as s1; 0 otherwise 

𝑀𝑎𝑝𝑠2𝑠𝑠,𝑠2  1 if s has the same state in the first two stages as s2; 0 otherwise 

𝑝𝑓𝑠,𝑠𝑡,𝑦  Probability of state st 

𝑃𝑂𝑇𝑔  Potential for generator g in MW 

𝑟  Discount rate; assumed 10% 

𝑉𝐶𝑓,𝑔,𝑠,𝑠𝑡,𝑦  Variable cost in $/MWh 

𝑉𝑂𝐿𝐿  Value of lost load in $/MWh 
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Mathematical Program 

MINIMIZE ∑ 𝑝𝑠 ∗ (𝑐𝑎𝑝𝑒𝑥𝑠 + 𝑜𝑝𝑒𝑥𝑠 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠)

𝑠

 
 Eq.  3-1 

𝑐𝑎𝑝𝑒𝑥𝑠 = ∑ ∑
(1+𝑟1)𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦∗∑ 𝑝𝑓𝑠,𝑠𝑡,𝑦1∗𝐸𝑅𝑠𝑡,𝑦1𝑠𝑡 ∗𝐴𝑁𝐶𝐴𝑃𝑔∗𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦

(1+𝑟)𝑦1−2017

𝑦1<𝑦+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦+𝑙𝑖𝑓𝑒𝑔

𝑦1≥𝑦+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦
𝑔,𝑦 +  

∑ ∑
(1 + 𝑟1)𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑙,𝑠,𝑦 ∗ ∑ 𝑝𝑓𝑠,𝑠𝑡,𝑦1 ∗ 𝐸𝑅𝑠𝑡,𝑦1𝑠𝑡 ∗ 𝐴𝑁𝐶𝐴𝑃𝑙 ∗ 𝑏𝑢𝑖𝑙𝑑𝑙,𝑠,𝑦

(1 + 𝑟)𝑦1−2017

1<𝑦+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑙,,𝑠,𝑦

𝑦1≥𝑦+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑙,,𝑠,𝑦𝑙,𝑦

 

Eq.  3-2 

𝑜𝑝𝑒𝑥𝑠 = ∑
𝑝𝑓𝑠,𝑠𝑡,𝑦∗𝑬𝑹𝒔𝒕,𝒚∗(∑ 𝐹𝑂𝑀𝑔∗𝑐𝑎𝑝𝑔,𝑠,𝑦𝑔 +∑ 𝐷𝑡∗𝑉𝐶𝑓,𝑔,𝑠,𝑠𝑡,𝑦∗𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑓,𝑔,𝑡 )

(1+𝑟)𝑦−2017𝑦,𝑠𝑡   
Eq.  3-3 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠 = ∑
𝑝𝑓𝑠,𝑠𝑡,𝑦∗𝐷𝑡∗𝑉𝑂𝐿𝐿∗𝑢𝑠𝑒𝑖,𝑠,𝑠𝑡,𝑡,𝑦

(1+𝑟)𝑦−2017𝑖,𝑠𝑡,𝑡,𝑦   Eq.  3-4 

𝑐𝑎𝑝𝑔,𝑠,𝑦 = 𝑐𝑎𝑝𝑔,𝑠,𝑦−1|𝑦>2017 +

∑ 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦1𝑦1|𝑦1+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦1=𝑦 − 𝑟𝑒𝑡𝑔,𝑠,𝑦  

∀(𝑔, 𝑠, 𝑦)  Eq.  3-5 

𝑐𝑎𝑝𝑔,𝑠,𝑦 ≤  ∑ 𝐸𝑋𝑔,𝑠,𝑦,𝑦1
∗ 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦1𝑦1

  ∀(𝑔, 𝑠, 𝑦)  Eq.  3-6 

∑ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑓 ≤  𝐶𝐹𝑔,𝑡 ∗ 𝑐𝑎𝑝𝑔,𝑠,𝑦     ∀(𝑔, 𝑠, 𝑠𝑡, 𝑡, 𝑦)  Eq.  3-7 

∑ 𝐷𝑡 ∗ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑓,𝑡 ≤ 𝐴𝐶𝐹𝑔 ∗ 𝑐𝑎𝑝𝑔,𝑠,𝑦 ∗ 8760  ∀(𝑔, 𝑠, 𝑠𝑡, 𝑦)     Eq.  3-8 

∑ 𝐷𝑡 ∗ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦|𝑓=𝑑𝑖𝑒𝑠𝑒𝑙 ∗ 𝐻𝑅𝑔𝑔,𝑡 ≤ 𝐷𝑖𝑒𝑠𝑒𝑙𝑠,𝑠𝑡,𝑦  ∀(𝑠, 𝑠𝑡, 𝑦)  Eq.  3-9 

|𝑡𝑟𝑎𝑛𝑠𝑙,𝑠,𝑠𝑡,𝑡,𝑦| ≤ 𝐹𝑂𝑅𝑙,𝑠,𝑠𝑡,𝑡,𝑦

∗ ∑ 𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠,𝑦1
∗ 𝑆𝐼𝑍𝐸𝑙

𝑦1+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑔,𝑠,𝑦1≤𝑦

 

∀(𝑙, 𝑠, 𝑠𝑡, 𝑡, 𝑦)  Eq.  3-10 

∑ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑓,𝑔 ∈𝐼 − ∑ 𝑐ℎ𝑎𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑔 ∈ 𝐼 + ∑ Φ𝑖,𝑙 ∗𝑙

𝑡𝑟𝑎𝑛𝑠𝑙,𝑠,𝑠𝑡,𝑡,𝑦 + 𝑢𝑠𝑒𝑖,𝑠,𝑠𝑡,𝑡,𝑦 = 𝐿𝑂𝐴𝐷𝑖,𝑡,𝑦  

∀(𝑖, 𝑠, 𝑠𝑡, 𝑡, 𝑦)  Eq.  3-11 

∑ 𝑔𝑒𝑛𝑓,𝑔 ,𝑠,𝑠𝑡,𝑡,𝑦 ∗ 𝐷𝑡𝑓,𝑡 𝜖 𝑃(𝑡) ≤  𝐶𝐹𝐻𝑌𝑔,𝑝 ∗ 𝑐𝑎𝑝𝑔,𝑠,𝑦 ∗ ∑ 𝐷𝑡𝑡 ∈𝑃   ∀(𝑔 ∈ 𝐺𝐻𝑌, 𝑝, 𝑠, 𝑠𝑡, 𝑦)  Eq.  3-12 

∑ 𝑔𝑒𝑛𝑓=𝑠𝑡𝑜𝑟𝑎𝑔𝑒,𝑔,𝑠,𝑠𝑡,𝑡,𝑦𝑡 ∈𝑃 ∗ 𝐷𝑡 ≤ 0.75 ∗ ∑ 𝑐ℎ𝑎,𝑖,𝑠,𝑠𝑡,𝑡,𝑦 ∗𝑡 ∈𝑃

𝐷𝑡     

∀(𝑔 ∈ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑝, 𝑠, 𝑠𝑡, 𝑦) Eq.  3-13 

∑ 𝑐ℎ𝑎𝑔,𝑠,𝑠𝑡,𝑡,𝑦 ∗ 𝐷𝑡𝑡 ∈𝑃 ≤  𝑐𝑎𝑝𝑔,𝑠,𝑦 ∗
4

24
∗ ∑ 𝐷𝑡𝑡 ∈𝑃   ∀(𝑔 ∈ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑝, 𝑠, 𝑠𝑡, 𝑦)  Eq.  3-14 

𝑐ℎ𝑎𝑔,𝑠,𝑠𝑡,𝑡,𝑦 ≤ 𝑐𝑎𝑝𝑔,𝑠,𝑦     ∀(𝑔 ∈ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒, 𝑠, 𝑠𝑡, 𝑡, 𝑦)  Eq.  3-15 
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𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_1𝑔,𝑦 ∗ 𝑃𝑂𝑇𝑔    ∀(𝑔 ∈ 𝐺𝐻𝑌, 𝑠, 𝑦 ∈ 𝑌1𝑆𝑇)  Eq.  3-16 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦2𝑛𝑑 = ∑ 𝑚𝑎𝑝𝑠1𝑠(𝑠, 𝑠1) ∗ 𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_2
𝑔,𝑦,𝑠1𝑠1 ∗ 𝑃𝑂𝑇𝑔  ∀(𝑔 ∈ 𝐺𝐻𝑌, 𝑠, 𝑌2𝑛𝑑)  Eq.  3-17 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = ∑ 𝑚𝑎𝑝𝑠2𝑠(𝑠, 𝑠2) ∗𝑠2 𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_3𝑔,𝑦,𝑠2 ∗ 𝑃𝑂𝑇𝑔  ∀(𝑔 ∈ 𝐺𝐻𝑌, 𝑠, 𝑌3𝑟𝑑  Eq.  3-18 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑_ℎ𝑦_4𝑔,𝑦,𝑠 ∗ 𝑃𝑂𝑇𝑔  𝑔ℎ𝑦, 𝑦4𝑠𝑡, 𝑠  ∀(𝑔 ∈ 𝐺𝐻𝑌, 𝑠, 𝑦 ∈ 𝑌4𝑇𝐻)  Eq.  3-19 

𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠′,𝑦     ∀(𝑙, 𝑠, 𝑠′, 𝑦 ∈ 𝑌1𝑆𝑇)  Eq.  3-20 

 

 

𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠′,𝑦       ∀(𝑙, 𝑠 ∈ 𝑚𝑎𝑝𝑠1𝑠(𝑠, 𝑠1) = 1, 𝑠′ ∈

𝑚𝑎𝑝𝑠1𝑠(𝑠′, 𝑠1) = 1, 𝑠1 , 𝑦 ∈ 𝑌2𝑁𝐷)  

Eq.  3-21 

𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑_𝑙𝑖𝑛𝑒𝑙,𝑠′,𝑦  ∀(𝑙, 𝑠 ∈ 𝑚𝑎𝑝𝑠2𝑠(𝑠, 𝑠2) = 1, 𝑠′ ∈

𝑚𝑎𝑝𝑠2𝑠(𝑠′, 𝑠2) = 1, 𝑠2, 𝑦 ∈ 𝑌3𝑅𝐷)  

Eq.  3-22 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠′,𝑦      ∀(𝑔 ∉ 𝐺𝐻𝑌, 𝑠, 𝑠′, 𝑦 ∈ 𝑌1𝑆𝑇)  Eq.  3-23 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠′,𝑦      ∀(𝑔 ∉ 𝐺𝐻𝑌, 𝑠 ∈ 𝑚𝑎𝑝𝑠1𝑠(𝑠, 𝑠1) = 1, 𝑠′ ∈

𝑚𝑎𝑝𝑠1𝑠(𝑠′, 𝑠1) = 1, 𝑠1 , 𝑦 ∈ 𝑌2𝑁𝐷)  

Eq.  3-24 

𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦 = 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠′,𝑦  ∀(𝑔 ∉ 𝐺𝐻𝑌, 𝑠 ∈ 𝑚𝑎𝑝𝑠2𝑠(𝑠, 𝑠2) = 1, 𝑠′ ∈

𝑚𝑎𝑝𝑠2𝑠(𝑠′, 𝑠2) = 1, 𝑠2, 𝑦 ∈ 𝑌3𝑅𝐷))  

Eq.  3-25 

Variables 𝑏𝑢𝑖𝑙𝑑𝑔,𝑠,𝑦, 𝑐𝑎𝑝𝑔,𝑠,𝑦, 𝑐ℎ𝑎𝑔,𝑠,𝑠𝑡,𝑡,𝑦, 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑠𝑡,𝑡,𝑦, 𝑟𝑒𝑡𝑔,𝑠,𝑦, 𝑢𝑠𝑒𝑖,𝑠,𝑠𝑡,𝑡,𝑦 are positive. 

3.4.4 Step 4: Implementation 

The values for all conflict-affected parameters I use are uncertain. There are different ways to 

describe how uncertain the values used are. Here, I decide to use a min-max approach, where the 

minimum value for each uncertain factor is the value during peace.  

For forced outage rate, I assume that 50% of the time transmission lines would be unavailable. 

However, according to data from the Colombian conflict some lines were unavailable during the 

entire year. So, the maximum value considered is 100%.  
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For exchange rate, I use the IMF projection for the base case analysis (13.6 SSP/$). However, 

the observed exchange rate in December 2017 was much higher (130 SSP/$) [166]. Thus, the 

maximum value of 130 SSP/$ is considered. 

For construction time, I do not have detailed evidence. Whereas for fuel shortages, the impact 

on the results is already pronounced. So, for both of them I decide to not perform a sensitivity 

analysis.  Moreover, this case study is not an actual planning study and the main purpose of the 

analysis is to shed some light on the mechanisms of conflict. As it will become obvious from the 

results, this objective is achieved by just looking only into two cases with extreme impact for forced 

outage rate and exchange rate in this case study.  

3.4.5 Step 5: Implementation 

The main purpose of this step is to estimate the sensitivity of recommended plans to uncertain 

assumptions. So, using the maximum values determined in Section 3.4.4 and the model of Section 

3.4.3.a, I obtain additional investment strategies that I further analyze and provide additional 

insight on the impact of the uncertainties.  

Moreover, I  expand the scope of this step to include analysis of policy and financing 

constraints. According to practitioners and researchers working on electrification in Sub-Saharan 

Africa [179], policies and financing constraints might have significant impact on the development 

plans. Thus, I decide to explore how sensitive results obtained from my model are to both 

constraints. 

3.5 EXPERIMENTAL DESIGN 

This section aims to help the reader understand the set of model runs I performed and the 

rationale behind them. Overall, I solved the mathematical problem described in 3.4.3.a nine times 

under different specifications using CPEX 12.6 solvers within GAMS. The problem is a mixed 

integer program and the solution method I employ is branch and bound. I terminate the algorithm 
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and record the best feasible solution when either adequate time had passed (75,600 sec) or the 

optimality gap is less than 0.5%. 

Table 3-1 provides an overview of the model specifications for the nine strategies. Strategy 1 

or alternatively called “conflict-naïve” resembles the status-quo approach traditionally followed by 

power system planners. The model instance used for strategy 1 assumes conflict-free values for 

the conflict-affected parameters, completely ignoring the conflict environment. Then, in strategies 

2–5, I adjust values for conflict-affected parameters to reflect conflict conditions one at a time 

until all four conflict effects are simulated in strategy 5. In detail, strategy 2 considers the effect of 

increased transmission outages and then 3 adds fuel shortages, 4 adds exchange rate deterioration, 

and finally 5 adds increases in construction time, at which point all four effects are modelled. 

 

Table 3-1: Specifications for model runs 

 Conflict effects Unserved demand Financing constraint 

 
Forced 
Outage 

Fuel 
shortages 

Exchange 
Rate 

Construction 
time 

Allowed 
through
out the 
horizon 

Fixed to 
zero 
after a 
certain 
year per 
scenario 

No 
annual 
constrai
nt 

Annual 
require
ment to 
break-
even 

1: “Conflict-naïve 
strategy” +    +  +  

2: “Transmission 
outage-aware 
strategy” + +   +  +  

3: 
“Outage/shortage-
aware strategy” + + +  +  +  

4:Outage/shortage/
ER-aware strategy” + + +  +  +  

5: “Conflict-aware 
strategy” + + + + +  +  

6: “Maximum-FOR 
conflict-aware 
strategy” + + + + +  +  

7: “Maximum-ER 
conflict-aware 
strategy” + + + + +  +  

8: “Zero-unserved 
energy” strategy + + + +  + +  

9: “Conflict-aware 
strategy with 
financing 
constraint” + + + + +   + 

 

To demonstrate the additional value a strategy that is conflict-aware (i.e., considers conflict 

effects to devise a power system plan) offers, I also solve a slightly different model from the one 
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in Section 3.4.3.a. This modified model instance fixes the investment decisions at the levels 

obtained by the conflict-naïve strategy. Thus, investment decisions are no longer decision variables 

and the set of decision variables just includes operational decisions: output levels for generators, 

flows over transmission lines, and unserved demand at each representative hour of the model years 

in each scenario. I solve this modified model instance four times with direct correspondence to 

strategies 2–5 in order to estimate cost and performance of the conflict-naïve strategy under the 

influence of one, two, three, and four conflict effects. By construction of the model instances, 

strategies 2–5 will perform better in expected cost terms (i.e., have lower objective function) than 

their counterparts with investment decisions fixed because the feasible region of the former model 

instance is larger. 

As part of the sensitivity analysis, to account for different level of conflict effects, I solve two 

additional model instances with maximum values for forced outage and exchange rate considered 

(see strategies 6 and 7). Finally, strategies 8 and 9 account for policy and financing constraints 

respectively. Strategy 8 assumes that the global community is committed to achieve universal 

electrification at the earliest time possible. I model this commitment by not allowing the unserved 

energy to be non-zero after a specific year in each scenario (see Table A-5). Note that the target 

demand in the model does not correspond to 100% electrification since it is focusing on urban 

centers and accounts for a smooth trajectory of electrification. Lastly, the model instance for 

strategy 9 includes an additional financing constraint. That constraint ensures that the annual 

revenues from electricity services are adequate to pay off any operational costs and loan paybacks 

for power plant construction. The constraint considers the maximum value for revenues, which is 

calculated by multiplying the willingness to pay (VOLL) by the amount of served energy. 

3.6 RESULTS  

In the following sub-sections, I discuss results obtained from all model instances solved under 

the same set of assumptions with respect to conflict effects, policy and financing constraints. 
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Results demonstrate which course(s) of action is recommended for planners in each case i.e., 

differentiation, adjustment, postponing. For each strategy, I discuss capacity additions and provide 

the levelized cost of electricity (LCOE) and unserved energy rate (USE). 

𝐿𝐶𝑂𝐸𝑠 =
𝑐𝑎𝑝𝑒𝑥𝑠+𝑜𝑝𝑒𝑥𝑠

∑
∑ (𝑝𝑓𝑠𝑡∗(𝐿𝑂𝐴𝐷𝑖,𝑡,𝑦−𝑢𝑠𝑒𝑖,𝑠,𝑠𝑡,𝑡,𝑦)∗𝐷𝑡)𝑡,𝑖,𝑠𝑡

(1+𝑟)𝑦−2017𝑦

  Eq.  3-26 

𝑈𝑆𝐸𝑠 =  
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑠

∑ 𝑝𝑓𝑠𝑡,𝑦∗𝐷𝑡∗𝑉𝑂𝐿𝐿∗𝐿𝑂𝐴𝐷𝑖,𝑡,𝑦𝑖,𝑠𝑡,𝑡
   

Eq.  3-27 

 

Note that in sections 3.6.2–3.6.5 — where I discuss results obtained from both model 

instances (conflict-naïve and conflict-aware framework) under one to four conflict effects —  I 

choose to first discuss the impact of conflict effects on the performance of the conflict-naïve 

strategy and then explain how the conflict-aware strategy is different from the conflict-naïve 

strategy and in which ways this differentiation allows it to achieve better results.  

3.6.1 Conflict-naïve strategy 

The standard model assumes uninterrupted peace and recommends a plan with the following 

estimates: levelized cost of electricity (LCOE) of 942 2014SSP (South Sudanese Pound) per MWh 

and an unserved energy rate (USE) of 0.14%. In the short term (up to 2024) while hydropower 

capacity is under construction, the conflict-naïve plan relies mainly on oil (>75% of generation) to 

meet demand. In the medium term (up to 2035), large-scale hydropower becomes the major source 

of electricity (>80% of generation during 2024–2035). Finally, in the long term (2040–45), 

hydropower serves ~70% of the demand, while PV and oil provide the rest. Please see detailed 

results in Appendix Section A.6. 

From a least-cost perspective, the conflict-naïve plan seems reasonable for two reasons. First, 

hydropower is a promising option with low estimated construction costs and satisfactory capacity 

factors. Second, the other options are less attractive because of high oil prices (due to the absence 

of local refineries), and incompatibility of night peaking demand with PV generation. However, 

the LCOE and USE estimated ignore the fact that the power system would have to operate during 
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times of conflict and as it will become obvious in the following sub-sections the estimates obtained 

from the conflict-naïve framework grossly underestimate the values of those two metrics in case 

of conflict.  

3.6.2 Transmission outages during conflict 

During transmission outages, electricity from remote generation (especially hydro) and excess 

generation from different nodes does not reach load. Local generators, mostly oil, increase output 

to the extent possible to accommodate the loss of hydropower (see Table 3-2).  

 
Table 3-2: 2025 Energy mix (GWh) when the conflict-naïve strategy is followed and transmission 
outages are simulated 
 

Scenario Status Oil Hydro PV 
Energy served 
(GWh) 

Conflict-Conflict-Peace Peace 0% 86% 14% 2,412 

Conflict-Conflict-Conflict Conflict 38% 47% 15% 2,317 

Conflict-Peace-Peace Peace 0% 86% 14% 2,412 

Conflict-Peace-Conflict Conflict 38% 47% 15% 2,317 

Peace-Conflict-Peace Peace 0% 86% 14% 2,412 

Peace-Conflict-Conflict Conflict 38% 47% 15% 2,317 

Peace-Peace-Peace Peace 0% 86% 14% 2,412 

Peace-Peace-Conflict Conflict 38% 47% 15% 2,317 

 

On the other hand, strategy 2 installs more local capacity (oil, PV, storage) in the short term. 

Thus, even when the transmission network is unavailable, higher share of the demand can be met 

(see USE in Table 3-3). At the same time, strategy 2 adjusts hydropower capacity investments. 

Hydropower investments are still pursued early in the horizon, but they are in smaller units (300 

MW). The largest hydropower project considered (which also happens to be the more economical 

in $/MWh) is not constructed until 2035. In the long term, oil capacity is at least four times as 

high as in the conflict-naïve plan. The additional oil capacity, which is redundant under peaceful 

conditions, allows the system to cope with the transmission outages during conflict.  Overall, 

strategy 2 results in higher cost but lower unserved energy. Detailed information on strategy 2 are 

provided in Appendix Section A.7. 
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Table 3-3: Performance of strategies 1 and 2 under conflict with a single effect of transmission 
outages. Note that results for strategy 1 are reported right of “/” and results for strategy 2 are 
reported left of “/”. 
 

States in 2017–2019, 2020–2022, 2023–2025 
LCOE 
(2014SSP/MWh) 

 
USE (%) 

Conflict-Conflict-Peace 1,035/995 0.4%/2.7% 

Conflict-Conflict-Conflict 1,121/1,124 0.3%/5.5% 

Conflict-Peace-Peace 1,043/1,004 0.4%/3.1% 

Conflict-Peace-Conflict 1,126/1,120 0.4%/5.3% 

Peace-Conflict-Peace 1,028/989 0.4%/2.4% 

Peace-Conflict-Conflict 1,121/1,128 0.3%/5.5% 

Peace-Peace-Peace 1,048/1,008 0.4%/3.3% 

Peace-Peace-Conflict 1,113/1,118 0.4%/5.2% 

3.6.3 Transmission outages and fuel shortages 

Transmission outages do not allow remote generation to reach load and at the same time, fuel 

shortages significantly undermine oil’s generation capability (local resource) during conflict. 

Similar to strategy 2, strategy 3 recommends local investment. However, given the supply 

constraint oil generators face, strategy 3 recommends more PV and storage in the short term. In 

strategy 3, investments are differentiated according to the conflict trajectory realized. For example, 

in case the first stage is peaceful, there is a short-term shift from PV and storage towards oil 

capacity compared to scenarios in which conflict occurs in the first period.  

Development of the hydropower potential is also different compared to the conflict-naïve 

plan. Planners are advised to wait until 2035 before including the largest hydropower plant (1.1 

GW) in the mix. The long-term exploitation of the hydropower potential also depends on the 

conflict trajectory. In scenarios with conflict occurring in the third period, the long-term 

probability of conflict is relatively high, which discourages investments in remote large-scale 

hydropower, leaving some potential untapped. Under scenarios with untapped hydro, more PV is 

integrated leading to lower USE rates than the “conflict-naïve strategy”. See detailed results 

supporting all the arguments made here in Appendix Section A.8. 
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Table 3-4: Performance of strategies 1 and 3 under conflict with two effects: transmission 
outages and fuel shortages 
 

States in 2017–2019, 2020–2022, 2023–2025 
LCOE 
(2014SSP/MWh) 

 
USE (%) 

Conflict-Conflict-Peace 1,119/931 6%/20% 
Conflict-Conflict-Conflict 1,193/1,061 9%/31% 
Conflict-Peace-Peace 1,116/979 6%/13% 
Conflict-Peace-Conflict 1,232/1,125 6%/20% 
Peace-Conflict-Peace 1,111/986 4%/9% 
Peace-Conflict-Conflict 1,289/1,154 4%/17% 
Peace-Peace-Peace 1,098/1,011 4%/5% 
Peace-Peace-Conflict 1,195/1,139 5%/11% 

3.6.4 Transmission outages, fuel shortages and exchange rate deterioration 

Here, I assume that exchange rates deteriorate under conflict because the local currency 

depreciated during the most recent conflict in South Sudan [167]. Thus, I increase all cost 

components in line with the exchange rate except one: the willingness to pay for electricity. One 

consequence is that oil generation in all states except Central Equatoria becomes unaffordable 

during conflict, letting PV as the sole source of power at times the transmission grid is not 

operational.  

Strategy 4 performs better than the conflict-naïve plan. However, the unserved energy rates 

estimated by strategy 4 are much higher than the ones achieved when one or two conflict effects 

are considered (see strategies 2 and 3). As described in Section 3.4.3.a, the objective function 

consists of penalties for unserved energy and costs to build and operate generators. The model 

solution is essentially an equilibrium where balance between those two opposing forces (penalty 

for unserved energy and cost for system construction & operation) is achieved. Here, a 

deterioration of exchange rate would increase capital and operational cost, but the penalty for 

unserved energy stays the same. Thus, higher levels of unserved energy  result from conflict based 

on a shift in the balance of the two opposing forces away from costlier system construction and 

operating expenses.   

Strategy 4 further adjusts hydropower investment to the trajectory, even in the short term. For 

example, if the first period is peaceful or violent, a larger (1,100 MW) or smaller (300 MW) 
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hydropower plant investment is pursued respectively. In the long term, the capacity mix is similar 

to strategy 3 with some of the hydropower potential remaining untapped in case the third period 

experienced conflict. The PV and storage capacity of strategy 4 in 2025 is at least three times as 

high as the conflict-naïve strategy but lower than the amount installed in strategy 3. See detailed 

capacity mix over time in Appendix Section A.9. 

 
Table 3-5: Performance of strategies 1 and 4 under conflict with three effects: transmission 
outages, fuel shortages, and exchange rate deterioration 
 

States in 2017–2019, 2020–2022, 2023–2025 

LCOE 
(2014SSP/MWh) 

 
USE (%) 

Conflict-Conflict-Peace 1,353/1,228 13%/21% 

Conflict-Conflict-Conflict 1,900/1,877 19%/32% 

Conflict-Peace-Peace 1,256/1,204 9%/13% 

Conflict-Peace-Conflict 1,726/1,774 14%/22% 

Peace-Conflict-Peace 1,287/1,213 7%/9% 

Peace-Conflict-Conflict 1,944/1,858 14%/19% 

Peace-Peace-Peace 1,222/1,161 5%/5% 

Peace-Peace-Conflict 1,735/1,649 10%/13% 

3.6.5 Four conflict effects considered: transmission outage, fuel shortage, 
exchange rate increase and construction time delays 

Prolonged construction times during a conflict might delay commission of new generators, 

increasing the levels of unserved energy prior to commission of new units. If conflict continues 

through several stages, fulfillment of electricity demand seems impossible given disruption of PV 

supply chains, suspension of hydropower investment and fuel shortages. Under the conflict-aware 

framework, the average LCOE of the conflict-naïve plan varies between 1,161 and 2,213 

SSP/MWh depending on the scenario for the first three stages, and USE levels are, at best, 5% 

and, at worst, reach 47% (Table 3-6). So, the 0.14% unserved energy rate projected by the conflict-

naïve framework greatly underestimates the unserved energy rates that are likely to be realized, and 

its low value is explained by that framework’s disregarding of conflict conditions.  
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Table 3-6: Performance of strategies 1 and 5 under conflict with four effects: transmission 
outages, fuel shortages, exchange rate deterioration, and construction delays 
 

States in 2017–2019, 2020–2022, 2023–2025 

LCOE 
(2014SSP/MWh) 

 
USE (%) 

Conflict-Conflict-Peace 1,504/1,349 27%/25% 

Conflict-Conflict-Conflict 2,213/1,853 47%/42% 

Conflict-Peace-Peace 1,395/1,258 16%/14% 

Conflict-Peace-Conflict 1,981/1,833 31%/25% 

Peace-Conflict-Peace 1,407/1,407 12%/10% 

Peace-Conflict-Conflict 2,015/2,006 27%/22% 

Peace-Peace-Peace 1,161/1,198 5%/4% 

Peace-Peace-Conflict 1,768/1,687 20%/12% 

 

The full conflict-aware strategy (i.e., strategy 5) cannot reduce unserved energy in case of 

consecutive years of conflict following the first conflict period but it can lessen the financial 

burden. Anticipating the possibility of delays, the strategy chooses to wait until the probability of 

conflict has approached its long-term value to decide on high financial commitments such as the 

ones associated with large hydropower development. For example, if the first period is peaceful, 

construction of 0.3GW hydropower starts in 2020. On the other hand, if the first three periods 

are violent or the second period is a brief truce period, hydropower doesn’t become part of the 

energy mix until 2035. While postponing the investment in large-scale hydro, the plan recommends 

higher investment in local generation earlier in the horizon.  

3.6.6 Four conflict effects with extreme forced outage rate 

Here, network is assumed to be completely unavailable during times of conflict to simulate 

extreme disruption of centralized system operations. The unserved energy rates of strategy 1 

significantly increase because the system can only rely on PV and limited oil generation (mainly in 

Juba) during times of conflict. 

Strategy 6 accounting for the extreme vulnerability of transmission network to conflict, adjusts 

investments in remote hydropower. In particular, it invests in small hydropower (300 MW) in case 

the first period is peaceful; otherwise waits to see if the third period is peaceful.  In the long term, 
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hydropower potential is not exploited at the levels of the conflict-naïve plan in any of the scenarios 

considered. The 522 MW hydropower plant in Bedden is not pursued in any scenario.  Overall, 

PV supported by storage meets higher share of the electricity demand. Detailed information on 

strategy 6 are provided in Appendix Section A.11. 

3.6.7 Four conflict effects and extreme exchange rate increases 

Here, I consider exchange rates at the highest level experienced in 2017. According to 

calculations by my model, the payments for loans valued at international currency become 

unaffordable under strategy 1, exceeding customers’ WTP. At the same time, the high exchange 

rate renders oil unaffordable for electricity generation in the entire country. 

Alternatively, strategy 7 invests up to 2035 predominantly on oil capacity given its low capital 

cost (despite risk of oil supply disruption) and decreased PV capacity to avoid risk of high interest 

rates. Because of the high capital expenses required for hydropower development, strategy 7 

recommends none or one hydropower project in the long term. Therefore, significant share of the 

hydropower potential remains untapped. PV investment is significantly lower compared to strategy 

5 because of the risk of high loan payments in times of conflict. See detailed information on 

strategy 7 in Appendix Section A.12. 

3.6.8 Conflict-aware with policy constraints 

The earliest year that zero unserved energy can be achieved varies among scenarios: from 2017 

to 2027 (see Table A-5). The conflict-aware plan (strategy 5)  experiences unserved energy in times 

of conflict across scenarios and years because of its reliance on the central grid and oil resources. 

Alternatively, the focus of power development shifts from a balanced mix (strategy 5) to a mix 

heavily dominated by PV resources, supported by storage (strategy 8). Plans are very similar across 

scenarios with respect to the start time of construction, but the performance is different because 

of different timelines for construction across scenarios and exchange rates. Overall, strategy 8 
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recommends immediate commitment to low oil capacity (2017) and encourages large PV 

investments (2019) to meet the target demand as early as possible. See detailed capacity expansion 

plan in Appendix Section A.13. 

3.6.9 Conflict-aware plan with financing constraint 

Financing limitations are a practical constraint in most markets but are omitted by most 

planning models, which usually assume unlimited access to capital markets. Following the conflict-

aware strategy (strategy 5),utilities cannot pay back their loans in case conflict resumes immediately 

after its resolution at the beginning of the planning horizon. 

On the other hand, strategy 9 (i.e., the conflict-aware strategy with the financing constraint) 

differs from strategy 5 only in the short term (up to 2025). The short-term mix integrates less oil-

fired capacity under scenarios where conflict precedes the investment accounting for the possibility 

of oil shortages and acute prices that might prevent operation of oil capacity. Instead, investments 

in PV are made earlier. The precise timing depends on conflict history. Details in the short-term 

capacity expansion plan suggested by strategy 9 are provided in Appendix Section A.14. 

3.7 DISCUSSION 

A key feature of the proposed framework is that it simulates the evolution of the conflict, 

which allows for dynamic adjustment of investment decisions based on conflict history. In 

particular, the probability of being in one state in a given stage depends on the state in the previous 

stage, with, for instance, peace following peace being more likely than peace following conflict. 

Investment commitments are therefore made knowing the past state, but not the following states. 

Thus, considering the likelihood of conflict, the extent of conflict impacts, and customers’ 

Willingness to Pay (WTP), the model might shift the recommended strategy away from 

investments vulnerable to conflict effects, especially if conflict has already occurred which 

increases the posterior probability of conflict in the future.  
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In summary, alternative strategies 2–5 differ from the conflict-naïve plan in three ways. First, 

they invest in a more geographically diverse resource mix, integrating higher share of local 

resources (PV, Oil) in the medium term. The share of PV depends on the combination of conflict 

effects considered, being the highest when just outages and fuel shortages are considered. The 

share of oil resources, however, is the highest when only outages are considered and is significantly 

reduced when fuel shortages are taken into account.  

The second difference is that planners sometimes decide to postpone or re-prioritize large 

hydropower investments. For example, strategies 2 and 3 choose a 300 MW hydropower plant as 

the first hydropower investment over the 1,100 MW hydro plant recommended by the conflict-

naïve plan. Meanwhile, strategy 4 chooses the 300 MW or the 1,100 MW hydropower plant as the 

first hydropower investment in case the first period experiences conflict or is peaceful, respectively. 

Anticipating the possibility of delays, strategy 5 chooses to wait until the probability of conflict has 

approached its long-term value to decide on high financial commitments such as the ones 

associated with the largest hydropower plant (1,100 MW). Moreover, in contrast to the conflict-

naïve plan, strategies 3–5 choose not to integrate a 522MW hydropower plant in long term if the 

third period has conflict.  

The third way that alternative strategies differ from the conflict-naïve solution is that they 

sometimes include investments just for back-up. For example, strategy 2 includes back-up oil 

because fuel shortages are not accounted for and the redundant capacity helps the system cope 

with unavailability of the centralized system. Despite the improvements in unserved energy rates 

during conflict that the conflict-aware strategy achieves compared to the conflict-naïve strategy, 

the strategy’s 5 rate for 2030 can still approach ~30% under conflict conditions (see Figure 3-5). 

Therefore, I also investigate how the optimal mix would change in case the planner aimed to have 

zero unserved energy as soon as possible for each scenario (see Section 3.6.8). In that case (strategy 

8), expected costs are 56% higher than the conflict-aware strategy (strategy 5). This increase in 

supply costs greatly exceeds the assumed WTP for power. PV and storage are central in the power 



 

 100 

development strategy in that case, as PV and storage operations are assumed to be invulnerable to 

conflict, and that they only experience financial impacts. I also observe that strategy 5 decreases 

the amount of unserved energy in later years but not in the short term (up to 2025). So, if revenues 

depend on the served energy, they may be inadequate to pay back loans. Therefore, strategy 9 sets 

the upper bound for annual expenditure equal to the product of the demand fulfilled and the WTP. 

In that case, short-term investments in oil significantly drop because its ability to serve the load is 

affected by fuel shortages. In contrast, short-term installation of PV increases compared to a 

solution without this financing constraint, and that PV delivers energy as expected as soon as it is 

on-line, not being disrupted by transmission outages and fuel shortages.  

 

Figure 3-5: Unserved energy rate when the status is “conflict.” The four graphs present the 
levels of unserved energy as estimated by the conflict-aware model when one, two, three and four 
conflict effects are considered simultaneously for two strategies: strategy 1 and 2-5 respectively. 

 
 
Lastly, each effect that I examine penalizes some technologies more than others. As a result, 

the conflict-aware model recommends a strategy the almost completely eliminates the most 

impacted technology from the short-term mix and suggests a relatively low amount of investment 

in it in the later stages. Thus, severe shortages penalize oil investments (see strategy 3); long 

transmission outages restrict hydro investment (see strategy 6); and acute exchange rates 

discourage capital-intensive investments such as storage, hydro, and PV (see strategy 7). 
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3.8 CONCLUSIONS AND FUTURE RESEARCH 

To build a power system that better serves the population in a fragile and conflict-affected 

environment, there are at least three alternatives for power sector investment strategies. First, 

planners can wait to see how the conflict evolves before investing. Second, planners can pursue a 

more balanced and diverse portfolio of investments, integrating higher shares of technologies that 

are less vulnerable to conflict. Third, planners can strengthen the least-cost capacity mix with 

additional back-up resources.  

The trade-off between power outages and cost determines which of the three options to 

pursue. For example, conflict-aware model’s application to South Sudan considers the capital cost 

of hydropower and the effects of conflict-induced transmission outages on delivery of its 

generation and suggests wait-and-see for large hydropower investments. It also recommends 

diversifying generation mix in the medium term, with the optimal extent of geographical and 

technological diversity varying based on conflict history and thus the anticipated probability of 

future conflict. Finally, redundant oil-fired capacity is attractive if fuel supply is unlikely to be 

severely disrupted by conflict; otherwise, fuel shortages would render redundant capacity useless.  

The current outlook for electrification of major cities in South Sudan seems pessimistic since 

all available electrification options are financially or operationally vulnerable. The plan 

recommended by the framework proposed in this chapter has higher net benefits than the 

“conflict-naïve plan” because the latter is biased towards certain technologies for which conflict-

induced costs and deterioration of performance are high but disregarded in the conflict-naïve 

model. A centralized, predominantly hydropower system appears to be the most economical 

option for South Sudan under the assumption of continued peace; but the results in this chapter 

instead suggest postponing large-scale hydro projects until political conditions have stabilized.  

Lastly, it is worth emphasizing that the value of recommendations provided by frameworks 

such as the one proposed here depends on the credibility of conflict simulations and the quality of 

input data. Potential advancements in conflict prediction and quantification of power system 
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effects of conflict would improve the usefulness of the results. Collection of reliable data is often 

a challenge in developing countries, and characterizing societal risks is difficult everywhere. 

However, investments —and financial analyses of those investments— are necessary to achieve 

electrification.  Despite data difficulties, investors and planners presently evaluate investments 

using models that ignore context-specific risks either because such models are unavailable or 

because planners prefer to avoid assumptions concerning the risks. However, planners already 

implicitly make such assumptions. When they ignore the risks, they essentially assume a risk-free 

environment and obtain overly optimistic plans. Our framework corrects this by considering the 

possibility of conflict, even if precise estimates of conflict risks cannot be justified. On the other 

hand, when planners exclude certain technologies and candidate sites, they implicitly assume, 

without analysis, that the excluded options are less beneficial to the system than the included 

options. In this situation, planners can use the framework to explore how alternative risk 

assumptions affect the net benefits of a wide range of alternatives without a priori excluding any 

options.  

To conclude, the proposed framework can assist power system planners to adopt strategies 

that will be less vulnerable to the effects of conflict. Still, adoption of a particular planning 

approach cannot be a panacea. The technical contribution will likely not translate into benefits for 

service delivery unless many other steps are taken, including actively engaging with local agencies 

and researchers to improve the quality of data, and continuing to refine the prediction models and 

estimation of power system vulnerability to conflict. Finally, future research might support several 

framework extensions. For example, previous studies have investigated the impact of aid on 

conflict risk [180], [181] and discussed the necessity of public services for economic development 

and state building in a post-conflict environment [34], but the impact of power sector development 

on conflict risk remains unexamined. Thus, the proposed framework could be expanded to 

account for the impact of power sector development on conflict risk and thus its potential benefits 

to peace-building.  
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Besides incorporating an endogenous interaction between probability of conflict and 

electrification, there are several ways future applications of the framework could be more elaborate 

than this one. Several details are omitted from the model of the case study because the primary 

purpose of the chapter is to introduce the framework and the insights it can provide. The example 

of South Sudan is provided as a proof of concept for the proposed approach and is not as detailed 

and thorough as a comprehensive planning exercise for the country would be.  In future 

applications of the proposed framework, the planning model could be expanded in order to: (1) 

consider more resources such as solar home systems; (2) estimate system reliability; (3) simulate 

systems operations with finer temporal resolutions including operational constraints; (4) consider 

costs of expanding the distribution network; and (5) expand the scope to a regional level with trade 

in the entire East African region. 
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CHAPTER 4  

POWER SYSTEM PLANNING UNDER 

UNCERTAINTY: COMPARISON OF 

ROBUST DECISION MAKING AND 

STOCHASTIC PROGRAMMING 

Computational  advances  along with the  pro found impact  o f  uncertain factors  on power 

system planning cal l fo r nove l power system planning paradigms that endogenously 

handle long -run uncertainty .  This chapter compares two dist inct  approaches  for 

integrat ion o f  uncertainty within a power  sys tem planning problem: Robust  Decis ion 

Making and Stochast ic  Programming  across  three cr iter ia:  mode ling  capabi l ity , 

pract ical appl icabi li ty , and contribution to dec is ion making . The comparison is based 

on a case s tudy o f Bangladesh, where soc io -e conomic and c l imate  change  uncertaint ies 

are integrated into power  sys tem planning . The vis -à-v is comparison demonstrates the 

re l iance  o f both methods on approximations in large  s cale  pract ical  problem  and 

i l lus trates how SP might be more pract ical , whereas RDM might pr ov ide more 

information on the dec is ion context.  
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4.1 INTRODUCTION 

Climate change is one of the two challenges in the global energy agenda of the 21st century 

according to former UN commissioner Ban Ki-Moon [13]. The power sector contributes to 

climate change through emissions of greenhouse gases [18], but is also vulnerable to climate change 

effects [19]. Policymakers have been designing and implementing mitigation policies for over 20 

years — since the 1992 United Nations Earth Summit in Rio [182]. A breadth of literature has 

assessed the relative strengths and weaknesses of different mitigation policies [183]. Governments 

have implemented various programs around the globe. For example, the European Union, a 

coalition of Eastern States in the USA, and California have all implemented cap-and-trade schemes 

(EU Emissions Trading System [184], RGGI [185], and California’s AB32 [186], respectively).  

While in the past the focus was on mitigation policies, nowadays there is an increasing interest in 

adaptation policies and plans [35], [187], [188]. Targeted initiatives such as the World Bank’s Pilot 

Program on Climate Resilience [189] aim to improve adaptation knowledge & practice and 

incorporate principles on adaptation and resiliency into strategic planning for infrastructure. 

As an essential component of a nation’s infrastructure, power system planning has to adapt to 

a changing climate [190]. Traditionally, assessment of investments in the power sector assumes 

stationary climatic conditions [190]. Changes of climatic conditions cannot be predicted accurately 

because of imperfect knowledge and inherent uncertainty, and planning based on one set of climate 

assumptions may leave a power system vulnerable to disruption if other conditions emerge [191].  

For example, nuclear power plants in France regularly shut down during heatwaves because of 

environmental restrictions on the temperature of cooling water they dispose to natural water 

bodies such as lakes, rivers etc. [192], [193], [194].   Thus, power system planning has to account 

for uncertain factors in order to recommend investments appropriate for a changing climate. The 

list of methods that assist decision making under uncertainty is long and includes, among other 

tools, methods such as real option analysis and robust decision making[37]. 
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To the dismay of planners, there is limited guidance on consideration of future climate change 

into infrastructure planning — “Utilities in the Partnership for Energy Sector Climate Resilience note that 

managers would welcome additional guidance, tools, and methodologies to help them move forward.” [195] 

California Public Utility Commission (CA PUC) initiated a proceeding earlier in 2018 that aims to 

improve guidance on climate change adaptation for electric and gas utilities addressing questions 

such as  “How should climate scenarios, climate-relevant parameters, and resilience metrics be used in electric and 

gas utility planning and operations, and in Commission proceedings, to address climate adaptation in a consistent 

manner?” [196] 

So far, utilities and researchers choose methods without a careful comparison of methods 

according to a consistent set of criteria. For example, a recent research project on Western 

Electricity Coordinating Council (WECC) uses stochastic optimization [197], whereas CA PUC 

encouraged utilities to use a robust-decision-making framework in 2016 [198]. Recent past reviews 

[40], [43] agree that no method is superior to others and discuss strengths, weaknesses, and 

common problem types for each method. However, those reviews are not very helpful because 

they lack a consistent set of criteria and in some cases, they recommend multiple methods as 

equally suitable or specific methods based on incorrect characterization of methods’ properties. 

Past reviews acknowledge that practical experience with a variety of methods provides additional 

insights for method selection, but do not systematically critique that experience.  The need for a 

practical cross-comparison of methods that integrate uncertainty into power system planning 

problems was first identified in 1989 [42] and was reiterated more recently in the broader context 

of decision making under climate change uncertainty [41]. To the best of my knowledge, no cross-

comparison of two widely applied methods — Robust Decision Making and Stochastic 

Programming — on a realistic case study has been attempted [42]. 

 This chapter addresses the long-standing need for a cross-comparison of Robust Decision 

Making and Stochastic Programming on a practical problem. It applies both methods in order to 

recommend power system expansion plans in Bangladesh. I compare both methods across three 
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criteria: modeling capability, practical applicability, and contribution to decision making [42]. 

Additionally, the case study contributes to the literature by analyzing the impact of floods on power 

plants. Power plant designers and insurance companies have considered effects of floods on power 

plants for decades in order to design power plants and insurance programs respectively. However, 

relevant information is scarce in the public domain.  

The rest of this chapter is structured as follows. Section 4.2 provides background information 

on the two methods I implement on the case study. Section 4.3 reviews existing literature that 

compares the two methods and case studies on integration of climate change uncertainty within 

power system planning models. Section 4.4 discusses key features of the case study. The 

experimental design of the cross-comparison is provided in Section 4.5, followed by results in 

Section 4.6. Major conclusions are summarized in Section 4.7. Detailed information on data 

sources, assumptions and calculations are provided in Appendix B. 

4.2 BACKGROUND 

4.2.1 Background on Robust Decision Making 

In this thesis, “Robust Decision Making (RDM)” refers to a decision analysis framework that 

the RAND Corporation developed in the 1990s [199].5  There are four basic components in RDM, 

commonly organized within the “XLRM” framework [200]: 𝑋 refers to the set of exogenous 

uncertainties, 𝐿 refers to the set of strategies (the actions decisionmakers want to assess), 𝑅 

describes the relationships between input and outputs, and 𝑀 refers to the set of performance 

measures.  

Robust Decision Making is a multi-step framework that aims to identify vulnerabilities and 

trade-offs among strategies 𝐿 [39]. RDM uses models (𝑅) to estimate the performance (𝑀) of 

                                                      
5 In the general literature, the term robustness might refer to different concepts and multiple methods have 

been developed to identify robust solutions and decisions [317]. 
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strategies (𝐿)  under all scenarios describing uncertainties (𝑋). In other words, RDM conducts 

𝑅 × 𝐿 × 𝑋 simulations and calculates the value of performance metrics (𝑀) for each simulation. 

Then, RDM identifies vulnerable regions i.e., subset of simulations with poor values  in 

performance metrics. Trade-offs become clear when the performance of different strategies is 

compared. Note that RDM is an exploratory method [200]; it assists decision makers to explore 

the landscape of uncertainty. RDM, as usually implemented, does not recommend a specific 

strategy and is not guaranteed to identify a robust strategy [201], as one may not exist. RDM  has 

been applied  both as an open and closed loop framework; in the former case the set of strategies 

𝐿 is defined ahead of time, whereas in the latter case results of previous iterations inform 

development of new strategies 𝐿, which are then tested in subsequent iterations [202]. In the 

following paragraphs, I discuss each step of RDM in more detail. Note that RDM does not 

prescribe a specific implementation for each step. Instead, analysts are called to decide on each 

step. The review below provides examples on implementation of each step based on previous 

applications. The steps are [202]: 

1. Structure problem – specify 𝑋, 𝑅 and 𝑀 

2. Identify strategies to evaluate – specify 𝐿 

3. Evaluate each candidate strategy across scenarios – estimate 𝑀 for each strategy in 𝐿 for 

every model in 𝑅  under any scenario belonging to 𝑋  

4. Characterize vulnerabilities 

5. Identify additional new strategies to add in set 𝐿 and go back to step 3.  

Step 1: Structure problem.  I describe this step in three sub-steps because three components of 

RDM are specified in this step.  

Step 1a:  Specify M. Decision makers, here power system planners, undertake the analysis 

because they want to ensure that the system of interest performs satisfactorily in the future.  

Performance is measured with one or multiple metrics. For example, in reference [203] two metrics 

are used: one for reliability and one for cost. Actual power planning studies can involve dozens of 
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metrics and analysts have to consider several issues when they select and define metrics including 

but not limited to double counting and conceptual independence [204].   

Once the metrics are defined, then analysts in consultation with stakeholders usually specify 

thresholds that distinguish satisfactory from unsatisfactory performance. For instance, reference 

[203] examines Lima’s long term water resources plan, specifies a threshold for reliability  (meeting 

90% of the monthly demand 90% of the time), and sets a budget constraint for cost. Performance 

might also be assessed based on the relative distance (or “regret”) from the performance of the 

alternative that has the very best value of that metric [202].   

Step 1b: Specify R. Here, analysts have to specify how 𝑋 𝑎𝑛𝑑 𝐿 interact and affect the 

performance (𝑀). R is usually a set of equations or models that analysts can simulate using a 

computer. For example, in reference [45] two tools are specified under 𝑅: one that simulates the 

water demand and supply and another than optimizes power system expansion. 

Step 1c: Specify X. Analysts specify a set of scenarios that capture exogenous uncertain factors 

important — that each have the potential to change the recommended actions — for the problem 

at hand. Depending on the case study, the scenarios might describe uncertainties in future 

economics, technology, environmental policy etc. [200]. Under this step, analysts decide if they will 

generate their own scenarios or rely on past studies to design scenarios.  For example, reference 

[45] uses temperature and precipitation projections under 121 scenarios produced by climate 

models. 

Step 2: Identify strategies to evaluate.  In practical cases, approaches to determine the set of 

preliminary strategies 𝐿 vary: stakeholders might provide a set of preliminary strategies; 

deterministic problems might be solved to identify a perfect-foresight strategy per scenario [203]; 

and stochastic programming models with different probability distributions [205] might be solved 

to identify potentially robust decisions. For example, Inland Empire Utilities Agency (USA) 

decided to test against a large set of scenarios the performance of their status-quo strategy as well 

a couple of strategies that stakeholders had considered in the past but did not include in the official 
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plan [202]. The status-quo strategy documented in regional infrastructure development master 

plans was also selected as the first strategy to test in [45]. In reference [203], analysts first calculated 

the perfect-foresight strategies and included in the set of preliminary strategies for further testing 

the strategies with the highest frequency. In another application, Lempert et al. [205] generated 

alternative strategies using stochastic programming with varying probability distributions.    

Step 3.  Evaluate each candidate strategy across scenarios. This step performs computer simulations 

of models describing the relationships (𝑅) in an ensemble of (𝐿 × 𝑋). When the ensemble 

(𝐿 × 𝑋) is very large, sampling techniques are used and the simulations are performed only on a 

subset of the ensemble [39].  

Step 4.  Characterize vulnerabilities. Here, analysts aim to identify clusters of scenarios where each 

strategy performs poorly. Data mining algorithms such as the patient rule induction method 

(PRIM) are frequently employed [39]. In case of multiple criteria, analysts can assess performance 

of strategies by employing either trade-off curves [202] or aggregation rules that convert values of 

multiple metrics into a single score [206]. A rich literature has discussed trade-off analysis and 

aggregation metrics [204].   

Step 5. Identify additional new strategies. Analysts, in consultation with stakeholders, may be called 

to propose further strategies for testing, especially if Step 4 has failed to find satisfactorily robust 

strategies. Vulnerable regions — identified under step 4 — inform the design of new strategies. 

Overall, analysts aim to propose new strategies that might be less vulnerable than strategies already 

tested. Strategy refinement can include adding adaptive strategies that use information available at 

a future point. Adaptive strategies have been part of RDM since the first paper that introduced the 

method [39]. There [39], “safety-valve” strategies are discussed where costs of policies are 

monitored and performance targets are adjusted accordingly.  In reference [207],  rule-based near-

term energy strategies are tested for Israel. Adaptive strategies of [207] adopt rules that differentiate 

the suggested investment plans according to information on the levelized cost of electricity of 

different technologies and the level of a carbon cap. 
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The ultimate product of RDM is a multi-dimensional dataset with performance metrics (M) 

for multiple strategies (L) across all possible futures (X). Depending on the project, different 

visualizations of this multi-dimensional dataset are employed. Trade-off curves are frequently used 

where the cost of each strategy in L is in one axis and the performance values in the other axis/es 

[208]. Other trade-off curves might describe the trade-off between expected performance across 

the entire set of scenarios X and a subset of scenarios [39].  

4.2.2 Background on Stochastic Programming  

Dantzig [209] and Beale [210] studied linear programming under uncertainty and proved that 

a linear program with uncertain parameters — described through a discrete set of scenarios — on 

the right hand side of constraints can also be formulated as a linear program. This approach can 

also be applied to linear programs in which objective function parameters and left-hand-side 

constraint coefficients are also scenario dependent [210].  Any constrained optimization problem 

has three components: a set of decision variables 𝑙, an objective function 𝑚(𝑙),  and a set of 

constraints ℎ(𝑙). 

min
𝑙

𝑚(𝑙) Eq.  4-1 

subject to ℎ(𝑙) = 𝑏 Eq.  4-2 

 

In the case of stochastic programming, some parameters are uncertain. For example, a random 

vector 𝜉 might appear in the right-hand side 𝑏 of constraints in equation 4.2.  Moreover, the 

problem might consist of two stages: (a) 1st stage: when 𝜉 is uncertain and a subset of decision 

variables (𝑙1) has to be determined before 𝜉 is known; (b) 2nd stage: when 𝜉 is known and corrective 

actions can be made i.e., specify values for second-stage decision variables (𝑙2,X). Stochastic 

programs with more than two decision stages are also possible in which uncertainties are 
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represented as an event tree such that not all uncertainties are resolved in the second stage. See 

below a simple formulation for a stochastic (two-stage) linear program: 

min
𝑙1,𝑙2,𝑋

𝐶 ∗ 𝑙1 + ∑ 𝑝𝑋 ∗ 𝐷 ∗ 𝑙2,𝑋

X

 
  Eq.  4-3 

subject to   𝐴 ∗ 𝑙1 = 𝐵 Eq.  4-4 

𝐸 ∗ 𝑙1 + 𝐺 ∗ 𝑙2,X = 𝜉X Eq.  4-5 

 

I make three observations about the formulation above: 

1. The first-stage variables (𝑙1) and constraints (Eq. 4-4) are the same across all scenarios 

in 𝑋. Some decomposition algorithms such as progressive hedging [211] create 

scenario-dependent first-stage variables 𝑙1,X and impose a set of constraints to make 

sure that all first-stage variables have the same value across scenarios. That set of 

constraints is called the non-anticipativity restrictions. 

2. The second-stage variables (𝑙2,X) are scenario-dependent and allow for corrective 

actions (Eq. 4-5). 

3. The objective function (Eq. 4-3) consists of (a) the costs of first-stage variables and 

(b) the expected (probability-weighted) value of the cost associated with second-stage 

variables. 

Implementation of stochastic programming is rarely presented as a series of steps, but here I 

define some basic steps in order to parallel the discussion on RDM in Section 4.2.1. These steps 

are: 

1. Structure problem – specify 𝑋, 𝑙, 𝑚  

2. Choose approximations if the full problem is intractable 

3. Solve the (approximated) problem 

4. Test the solution for the original problem 

5. Conduct sensitivity/stability analysis 
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Step 1: Structure problem. Under this step, decision analysts formulate the problem at hand as a 

mathematical program. Thus, they make sure that all decisions are described in set 𝐿, the 

performance metrics decision makers care about are captured in the objective function 𝑚 and the 

uncertainties are described through a set 𝑋. In case the expected performance is optimized, 

probabilities for scenarios in set 𝑋 are required. I intentionally used the same notation as in Section 

4.2.1 so it is clear that both methods structure the problem in similar way. The basic difference of 

stochastic programming and RDM in this step is that (a) SP requires probabilistic description for 

scenarios in set 𝑋  and (b) the relationships (𝑅) are described in SP via a mathematical program’s 

objective, variables, and constraints.  

Step 2: Choose approximations. The problem size increases with the number of discrete scenarios 

in set 𝑋. If the number of scenarios is very large, the problem might become intractable. This 

intractability problem is called “the curse of dimensionality”. For instance, the stochastic program 

for the Bangladesh case presented later in this chapter would have ~40 million variables and ~40 

million constraints if all 486 possible scenarios were to be included.  To overcome the curse of 

dimensionality, researchers and practitioners solve an easier problem that approximates the 

original. Approximation techniques usually limit the problem horizon, ignore some variables, 

aggregate stages, sample scenarios and/or discretize time, states, decisions [212]. In the past 

decade, over ten research articles have proposed different techniques to select a reduced set of 

scenarios for power system planning  [213] and operational problems [214]. 

Step 3: Solve the (approximated) problem. This step solves the problem in order to identify a strategy 

for the first-stage decision variables. Common algorithms to solve mathematical programs are 

used, such as mixed integer linear programming solvers in commercial packages. In case of overly 

large problems, decomposition algorithms and/or parallel computing are necessary [154]. 

Decomposition schemes frequently applied in power system problems include Bender’s 

decomposition [215], progressive hedging [216], and stochastic dual dynamic programming [217].  
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Step 4: Test the solution for the original problem. This step requires analysts to build a “simulator” 

[212] for the original problem of step 1, ignoring any approximations chosen in step 2. The solution 

identified in step 3 is imposed on the simulator and the performance is recorded. Using the 

“simulator” as a testbed for solutions is crucial since the “simulator” estimates the actual 

performance of a solution. In a recent review, Powell and Meisel [212] observe that many studies 

skip this step, despite its importance. Note that if this step is skipped, there is a disconnection 

between the original problem analysts are trying to solve and the approximated problem, where 

the former is not being addressed unless a “simulator” is developed.  

Step 5: Conduct sensitivity/stability analysis. This step is also frequently skipped in practical 

applications. This step aims to calculate bounds on the resulting errors of approximate solutions 

and/or estimate the sensitivity of the recommended solution to perturbations in the assumed 

scenario probabilities. Theoretical papers [218] discuss stability properties, but applications rarely 

provide bounds [219] on the resulting errors of approximate solutions. 

The product of multiple-stage stochastic programming that is most useful to analysts is a 

recommended solution for first-stage variables and an estimate of the objective function value. 

Multiple-stage stochastic programming recommends a first-stage course of action anticipating the 

resolution of uncertainty in the second and later stages, when decision makers will have the 

opportunity to take corrective actions.  

4.3 LITERATURE REVIEW: CLIMATE UNCERTAINTY IN 
POWER SYSTEM PLANNING 

There is increasing concern about the effects of climate change on power system infrastructure 

[19]. In Section 4.3.1, I review articles that analyze the impact of climate change on power systems. 

The review summarizes approaches to represent climate change uncertainty in power system 

planning models and how researchers and practitioners justify their choice of uncertainty 

representation. In Section 4.3.2, I discuss articles that review methods for climate change 
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adaptation decisions. There, I summarize conclusions by past reviews and any limitations 

pertaining to their analysis. This review of the practical experience with methods and relevant 

literature provides more detailed arguments than Section 4.1 and establishes the need for a cross-

comparison of methods.  The review also informs the choice of criteria that I will use to compare 

Robust Decision Making to Stochastic Programming. 

4.3.1 Integration of  climate change effects into power system models 

Existing articles study climate change effects on power systems to various depths. At the very 

least, they estimate the impact of climate change on resource potential (e.g., renewable potential 

[220], [221], [222]) and operational parameters (e.g., capacity factors for thermal power plants based 

on cooling water availability [223]). Studies of intermediate depth estimate the impact of climate 

change on power system costs and reliability ([224], [225]). Lastly, at the greatest depth power 

system planning models propose investments  accounting for the fact that new infrastructure will 

have to operate under uncertain climate conditions  ([226], [197]). Table 4-1 summarizes 

information on 16 studies I reviewed. Note that studies investigating effects of extreme events are 

not included in this overview since they usually rely on simulation models, which have finer 

resolution than planning models. 
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Table 4-1: Summary of studies that model the impact of climate change trends on power systems 

Study Power system model/ 
Relevant power system 
parameter 

Technology/ 
Phenomenon  

If multiple 
scenarios, 
uncertainty handling 

Actions and cost 
information 

[220] No power system model/ 

Wind capacity factor 

Wind  One scenario No action 

(Study of potential 

impacts) 

[221] No power system model/ 

Wind capacity factor 

Wind Scenario analysis for 

two scenarios  

No action 

(Study of potential 

impacts) 

[222] No power system model/  

Wind capacity factor 

Wind Scenario analysis of 

three scenarios  

No action 

(Study of potential 

impacts) 

[223] No power system model /  

Usable daily capacity- seasonal 

capacity factor 

Cooling needs of 

thermoelectric plants 

Scenario analysis of 

two scenarios 

No action 

(Study of potential 

impacts) 

[227] No power system model/ PV 

capacity factor 

PV power production Scenario analysis of 

two scenarios 

No action 

(Study of potential 

impacts) 

[228] No power system model/ 

capacity factor 

PV and CSP One scenario No action/cost modeled 

[229] No power system model/ 

Usable daily capacity- seasonal 

capacity factor 

Hydro and thermal Scenario analysis of 

two scenarios 

What-if type of analysis 

for adaptation (change in 

cooling, efficiency) 

without cost 

[230] No power system model/ 

Available capacity 

Steam turbines, 

Combustion turbines, 

PV, wind, hydro  

Scenario analysis of six 

scenarios 

No action  

(study of potential 

impacts) 

[225] Capacity expansion model/ 

Outage factor for gas and 

nuclear, demand 

Temperature change One scenario Scenario-specific 

adaptation of the 

generation mix 

[231] Capacity expansion planning 

model/ (water constraint and 

supply curve added, cost, heat 

rate, water withdrawal rate) 

Water availability Scenario analysis of 

three scenarios 

Scenario-specific 

assessment of two 

resiliency solutions: 

installation of efficient 

cooling technologies, use 

of alternative water 

resources 

[232] Energy supply optimization 

model/ (power sector: capacity 

factor for HY, efficiency for 

gas-thermal, demand) 

Impact of temperature 

and precipitation on 

HY, gas-fired 

generation, and 

demand 

Scenario analysis of 

two scenarios 

Scenario-specific 

adaptation of the 

generation mix 

[233] Capacity expansion planning 

model  

Impact of temperature 

on electricity demand 

One scenario Scenario-specific 

adaptation of the 

generation mix 

[44] Capacity expansion planning 

model/ (explicit modeling of 

streamflow balance) 

Impact of temperature 

and streamflow 

changes on hydro and 

demand 

Scenario-based 

stochastic planning  

 Adaptation of the 

generation mix 

[45]  Coordination of two 

optimization models: one for 

irrigation and one for 

hydropower 

Impact of climate 

change on 7 basins 

Robust Decision 

Making with regret 

criterion 

Adaptation options 

considered at the farmer 

level and power system 

[224] Capacity expansion planning 

model (ICF’s IPM) 

Impact of temperature 

on demand and 

thermal capacity and 

efficiency 

Scenario analysis of 

four scenarios 

Adaptation of the 

generation mix 

[197] Capacity expansion planning 

model (SWITCH for WECC) 

Impact on load and 

hydropower 

Scenario-based 

stochastic planning 

Adaptation of the 

generation mix 
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Studies at the lowest depth usually estimate the impact of climate change on the resource 

potential of renewable generation such as wind ([220], [221], [222]) and solar ([227], [228]). The 

impact of rising temperatures and changes in precipitation patterns on availability of cooling water 

for thermal power plants is studied in [223]. Reference [230] studies the impact of changes in 

streamflow, stream temperature, air temperature, vapour pressure, wind speed and air density on 

the available capacity of power plants at the peak load hour in the WECC (Western Electricity 

Coordinating Council). Low-depth analysis translates climate change uncertainty into power 

system technical parameter uncertainty (e.g., MW capability or conversion efficiency), which can 

be then be further analyzed.  

 Studies of intermediate depth estimate the effects of climate change on power system costs 

and reliability. Those studies account for climate change effects by differentiating the values of 

certain parameters within power system planning models such as capacity, efficiency etc. among 

climate change scenarios. Most studies adopt a narrow scope for climate change modeling and 

focus on a single phenomenon or technology. For example, references [224] and [225] model the 

impact of changes in temperature patterns on demand (heating and cooling) and thermal power 

plants (capacity rating & efficiency).   

Studies of intermediate depth usually employ scenario analysis. They solve multiple 

deterministic problems under different climate scenarios as if they had perfect foresight on future 

climate and analyze investment decisions and costs. For example, reference [224] solves a capacity 

planning model under three scenarios: with no, moderate, and severe climate change.  Authors 

comment that under scenarios with moderate or severe climate change effects, the system cost is 

approximately the same: ~13–14% higher than the system cost without climate change. The 

capacity mixes though are different under the two climate change scenarios compared to the no 

change case. Results of such single scenario analyses provide useful information on the costs a 

sector would incur if planners could perfectly anticipate the effects of climate change. However, 

in reality decision makers do not have perfect foresight with respect to future climate change 
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effects and need to decide on investments anticipating uncertain effects. That is exactly the reason 

why models of greater depth and complexity are necessary to assist decision makers in choosing a 

strategy that recognizes the ability to adapt later as the future unfolds.   

Such highly sophisticated studies simultaneously consider multiple climate change scenarios 

in order to recommend adaptation plans. For instance, the authors of [44] assess hydropower 

investment in British Columbia using three climate change scenarios within a two-stage stochastic 

program, where investment decisions are made in the first stage and operational decisions at the 

second stage upon resolution of the uncertainty.  Similarly, two-stage stochastic programming is 

used in [226] to identify a climate resilient power system plan for parts of the Eastern 

Interconnection. The authors of [45] though explore seven strategies for hydro development (with 

varying capacity, reservoir and efficiency levels) in seven basins across 121 futures within a robust 

decision making framework and identify a robust strategy for each basin using regret-based 

metrics.  

The justification for selection of robust decision making or stochastic programming in the 

aforementioned examples is generally vague and ambiguous. Analysts do not compare all available 

methods across multiple criteria to select a method to follow. Instead, they provide some 

supporting arguments. For instance, the authors of [44] choose stochastic programming as an 

effective method “for proactively handling scenario-based uncertainties in large-scale system 

design problems.” The authors of [226] use stochastic programming without providing any 

justification; they also use a minimization of maximum regret formulation in addition to stochastic 

programming and they mention in their introduction that “the objective is to select a compromise 

solution under discrete climate scenarios, avoiding the possible risk associated with a poor decision 

that is only optimal for one particular scenario or only the average climate change.” Lastly, the 

authors of [45]  justify their choice by arguing that climate change uncertainties “cannot be 

confidently characterized by any single probability distribution and may not be resolved soon.” 
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According to [45], absence of probabilistic information favors RDM over stochastic 

programming. However, the authors of [45] contradict themselves since one of the criteria used 

to select the final strategy is “select the strategy with the lowest regret for 75% of the climate 

futures,” which implies a probabilistic interpretation of the scenarios. Meanwhile, both papers that 

use stochastic programming ([44], [226]) lack any discussion on practical difficulties a power system 

planner would face on his attempt to draft scenarios and assign probabilities. The authors of [226] 

assign probabilities to scenarios for demonstration purposes and no comment is made on the 

availability of probabilities in practice. Reference [44] infers probabilities for climate change 

scenarios based on the frequency distribution associated with hydro-climate scenario ensembles.6  

To conclude, past case studies offer ambiguous recommendations to analysts on method 

selection. The problems of the case studies are similar, but different methods are implemented 

based on contradictory rationales or rationales emphasizing different problem aspects. The 

examples discussed above suggest a lack of standard practice with respect to method selection. 

None of the studies used a set of criteria to guide their selection of method, contrary to what is 

proposed in reference [234]. So, in the next subsection I discuss which criteria past reviews have 

used to distinguish the two methods and any recommendations they provide.  

4.3.2 How to choose a method for climate change uncertainty in power 
system planning 

The choice of a decision analysis tool is a decision analysis problem itself. In practice, decision 

analysts compare available methods across a set of criteria, relevant for the problem, and decide 

on a method. For instance, Hobbs [234] suggested four criteria to aid selection of methods for 

environmental impact assessment: relevance to the purpose, ease of use, theoretical validity and 

whether methods differ significantly with respect to their recommendations. 

                                                      
6 An ensemble of 23 downscaled climate projections for British Columbia was developed by the Pacific 

Climate Impacts Consortium. 
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In 1989, Crousillat [42] conducted the first review of methods that integrate uncertainty within 

the power system planning problem. He used three criteria, similar to the ones used by Hobbs 

[234]: modeling capability, practical applicability, and transparency and contribution to decision 

making. He compared stochastic optimization, risk-trade-off analysis, and option pricing across 

the three criteria and concluded that no method is superior to others.  He recommended more 

case study applications that would shed light on the relative strengths and weaknesses of each 

method.  

The increased interest in climate change adaptation problems has renewed interest in 

methodological reviews similar to the one by Crousillat [42]. Recent methodological reviews of 

methods that integrate uncertainty into adaptation problems build upon knowledge gained from 

applications in order to describe methodological features and provide recommendations. In this 

section, I discuss three recent reviews of uncertainty-based planning methods for climate change 

adaptation [41], [43], [40], and the only cross-comparison of methods within a case study [205] that 

I am aware of.  The latter study though is quite simple assuming just a single uncertain factor at 

the right-hand side of a constraint. The methodological reviews cover multiple methods but none 

of them explicitly considers stochastic programming. Whereas the reviews might be useful for 

general adaptation problems, omission of stochastic programming limits their value for power 

system planning applications given the popularity of stochastic programming within the power 

system community [235], [236], [237] and the high level of familiarity that practitioners in the 

power system industry have with the tool.  

All three reviews [41], [43], [40] discuss real option analysis (ROA), which can be viewed as a 

particular application of stochastic programming; in [34], stochastic programming is mentioned as 

one of the mathematical methods that implement ROA. So, in the following paragraphs I discuss 

key take-aways from the reviews that compare ROA and RDM, focusing on the similarities of 

ROA and SP and highlighting the differences where appropriate. For example, ROA assesses one 
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project at a time while stochastic programming assesses many projects as a portfolio or integrated 

plan.  

In general, past reviews discuss more methods than the two compared in this chapter. I focus 

on RDM and SP because of their frequent application and omit some other methods proposed 

such as portfolio analysis, safety margins and “climate-informed decision analysis”. Portfolio 

analysis is a method originating in the finance literature that aims to diversify risk exposure and 

decides on a portfolio of investments using statistical measures such as the variance of costs. In 

the context of power system planning, multiple projects are evaluated at the same time within a 

mathematical program and objectives for diversification can be reflected through customized 

objective functions and constraints. Past applications have applied portfolio analysis in power 

system planning as a mathematical program with two objectives: the expected value and variance 

of costs [318], [319]. I omit precautionary approaches [204] because they address uncertainty 

outside of the power system planning problem. Precautionary approaches usually employ statistical 

methods in order to update parameters of deterministic power system problems. For example, 

safety margins on top of expected demand — also called reserves — are added to guarantee that 

the system will be able to serve demand within a range of forecast errors. Treatment of uncertainty 

with precautionary approaches does not always account for the trade-off between over-procuring 

and under-performing, resulting in potentially sub-optimal solutions. An example of approach that 

accounts for the trade-offs is the “over/under” approach [320] that employs probabilistic demand 

forecasts to determine the reserve margin for installed generation capacity that minimizes overall 

supply and disruption cost. Finally, I do not discuss separately “climate-informed decision analysis” 

because it shares similarities in its philosophy with robust decision making as both methods start 

by assessing the vulnerability of various strategies [44]. 

Neither the reviews [41], [43], [40] nor the cross-comparison [205] explicitly define criteria 

across which the methods are compared. In the following paragraphs, I summarize their 

observations on RDM and ROA using Crousillat’s criteria [42].  
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Criterion I: modeling capability. This criterion refers to model’s ability to capture the consequences 

of uncertainties on investment plans. Six questions below assist me in describing how the two 

methods handle different aspects of uncertainty and consequences. 

1a) Evolution of uncertainty: Can both methods model dynamic uncertainties? According to [40], [41], 

[43], ROA can model dynamic uncertainty; it allows for learning that will lead to partial or complete 

resolution of uncertainty and explicitly accounts for the possibility to delay projects until additional 

information is available. All past reviews [40], [41], [43] though do not discuss adaptive (closed 

loop/state contingent) strategies within the robust decision making framework, potentially 

misleading practitioners that flexibility of plans and adaptation to future information is not a 

possibility within RDM. 

1b) Probabilistic characterization of uncertainty: Do both methods need a probabilistic description of the 

uncertainty? Reference [43] argues that both stochastic programming and robust decision making 

use probabilities, but at different phases: at the first and last step of their implementation 

respectively. Reference [41] disagrees with that view and reports the requirement of probabilistic 

input data as a weakness for Real Option Analysis that favors application of Robust Decision 

Making in case of absence of probabilistic information, since that reference characterizes RDM as 

probability-independent.  Both reviews are correct to some extent because the use of probabilistic 

distributions within RDM depends on the performance criteria employed. For instance, if a 

performance criterion is the expected value of a metric across scenarios, then a probabilistic 

description of scenarios is required. However, when criteria such as min-max regret are employed, 

there is no need for a probabilistic description within RDM. Note though that in case of min-max 

criteria, stochastic programming would not be the mathematical program of choice and robust 

optimization, which also does not require probabilities, could be applied[155].  

1c) Probabilistic characterization of uncertainty: Can both methods model multiple views on the probabilistic 

characterization of uncertainty?  RDM allows multiple probabilistic views of uncertainty [43]: it assesses 

the performance of strategies at hand under all different views and lets stakeholders build 
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consensus and finalize their decision. Past reviews do not explain if ROA or stochastic 

programming can handle multiple probabilistic distributions. The cross-comparison in reference 

[205] highlights the ability of RDM to handle multiple probabilistic views as a feature that sets it 

apart from expected utility approaches such as stochastic programming, which instead use a single 

probabilistic description.  Note though that implementation of stochastic programming in [205]  

is incomplete because there is no sensitivity analysis of the solution to assumed probabilities, even 

though that is recognized as a critical step in any application of stochastic programming with 

imperfect probabilistic information [218].  

1d) Strategies: How does each method identify potential strategies? All reviews assume that decision 

makers already know a set of projects they want to assess. However, in case of power system 

planning, decision makers rely on mathematical programs to generate a set of strategies. Stochastic 

programming does not require a set of strategies as an input; it provides strategies as an output. 

RDM, though, does not generate strategies and relies on stakeholders or mathematical models for 

strategy generation. In the cross-comparison [205], multiple stochastic programs with different 

probabilistic distributions are used to define a set of alternative strategies. In that case, the 

generation of strategies in RDM is identical to the sensitivity analysis of the optimal stochastic 

solution to different probabilistic distributions. 

1e) Project features: What types of project (size, horizon) each method can assess? RDM is recommended 

for evaluation of near-term investment with long horizon [41] in case of a rich portfolio of 

alternatives [43]. In contrast, ROA is recommended for large irreversible investments [43], [41]. 

The cross-comparison [205] argues that RDM is appropriate only in cases with a rich portfolio of 

alternatives because only in that case is there potential for differentiation among robust and 

optimal strategies. These recommendations should be perceived as heuristics, aiming to identify 

problems where the application of the method at hand might add more value.  

1f) Type of benefits. Reference [40] does not recommend neither RDM nor ROA in case of non-

monetary benefits. On the other hand, reference [41] requires monetary expression of benefits 
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only for ROA and allows for quantitative benefits of any kind in RDM. The distinction based on 

type of quantitative benefits is irrelevant for this discussion as long as there is a quantitative 

definition or interpretation of the performance metrics. 

Criterion II: Practical applicability. All reviews [40], [41], [43] agree that both ROA and RDM are 

resource-intensive: complex models have to be built; experts should be hired; and practitioners 

should receive training. In particular, reference [40] does not recommend either method for the 

appraisal of adaptation strategies in case of limited budget.  

  Criterion III: Transparency and contribution to decision making. This criterion compares methods 

with respect to their comprehensibility and friendliness to decision makers. Reviews [41] and [43] 

describe stakeholder involvement within RDM as both positive and negative. Positive because 

RDM forces stakeholders to reveal their preferences when they define performance metrics and 

assess trade-offs. That way, RDM might help stakeholders build consensus. Negative because 

RDM analysis is more subjective and lack of expertise and stakeholder biases might hurt the quality 

of the solutions. Review [43] mentions as an advantage of ROA for contribution to decision 

making the fact that its analysis fits well into the social cost-benefit analysis framework 

governments use to approve investments. Lastly, the cross-comparison [205] emphasizes as a 

strength of RDM the transparency it provides to stakeholders.  

To conclude, existing overviews [40], [41], [43] and the only comparison of methods [205] 

each demonstrate at least one weakness and their recommendations and conclusions have limited 

value for power system planners. First, all reviews ignore stochastic programming, which is widely 

used in power system planning. Second, all reviews and the cross-comparison do not fully 

implement each method i.e., the possibility of considering adaptive strategies within Robust 

Decision Making or sensitivity analyses for stochastic programming are ignored. Third, overviews 

complicate the discussion through focus on less important capabilities i.e., the ability to model 

quantitative attributes.  This chapter contributes to the literature by providing insights on all three 
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criteria from a cross-comparison that is not limited by the aforementioned weaknesses as I later 

explain in the experimental design (Section 4.5). 

4.4 CASE STUDY 

The case country on which I conduct the cross-comparison is Bangladesh. Bangladesh, home 

to 161 million people, had 13,179 MW of electrical generating capacity in April 2017, about three-

fourths of which operated on domestic gas extracted from onshore gas fields. Bangladesh has not 

achieved universal electrification and the consumption per capita is relatively low. Thus, growth 

rates of demand are expected to be high. Bangladesh constitutes an interesting case because its 

domestic gas reserves are depleting, demand growth is expected to be high, and the country is 

usually listed among the most vulnerable to climate change. 

Although recent literature has discussed the vulnerability of Bangladeshi power system 

infrastructure to climate change [238], climate change effects are not considered in the planning 

analyses the Bangladeshi agencies employ. The least-cost planning analyses conducted in 2010 

[239] by the consulting division of Tokyo Electric Power Company (TEPCO) suggested a shift in 

the generation mix from natural gas to coal. The shift reflected the declining amount of natural 

gas available domestically and the low price of coal (relative to imported liquefied natural gas 

(LNG)). Construction of coal power plants, though, sparked a heated debate for different reasons. 

One coal project is adjacent to the Sundarbans forest [240], an UNESCO heritage center. Similar 

environmental and human rights concerns were raised for the exploitation of domestic coal 

through open pit mines [241]. Moreover, most sites are located at areas vulnerable to flooding and 

the preliminary environmental assessments call for expensive hardening investment to elevate the 

power plants. The case of Matarbari is characteristic where construction of an artificial hill, 11 m 

high, is recommended [242].  

The vulnerability of candidate coal investments to flooding risks motivated my interest in this 

case study. Besides uncertainty with respect to flooding, previous power system planning studies 
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for Bangladesh identified additional uncertain factors [243].  In this modeling exercise, 

uncertainties in four socio-economic factors (demand growth, fuel price, supply of domestic and 

imported fuels) are explicitly represented through multiple discrete values. Demand growth is 

affected by the economic growth of the country. Fuel prices are influenced by the balance of global 

supply and demand and by policies related to renewable energy and trade. In Bangladesh, the 

supply of domestic coal is considered uncertain because of long delays in already announced coal 

mine development, public opposition to mine projects, and the absence of a current coal policy. 

Natural gas supply could be considered uncertain for similar reasons and because of uncertain 

available reserves. Projections for two climate variables (and associated power sector parameters) 

are used in this analysis: temperature (and cooling degree days) and flooding (derived from rainfall 

projections). The uncertainty associated with the projections related to climate variables can be 

broken down into: (a) climate model uncertainty, (b) processing model uncertainty, and (c) impact 

function uncertainty [244]. Here, I only capture the first type of uncertainty through consideration 

of projections from multiple climate models. 

For the case study, I develop a power system planning model that assesses investments and 

retirements of power plants in Bangladesh for years 2016–2041. Investments and retirements are 

possible in any year within the horizon and operations are assessed using 28 representative hours 

for each year. The assessment accounts for operational and annualized investment costs. The 

transmission grid is ignored in this assessment. The model recommends investment for the entire 

horizon, but I assume that the planners will use this model only to decide on additions over the 

next 10 years since the power system plan will probably be updated within 5-10 years from now. 

Detailed information on the formulation of the model are provided in Appendix B.4.  

In Section 4.4.1 below, I describe key components of the power system planning problem i.e., 

technologies, costs, sites, fuel supply. In Section 4.4.2, I discuss which factors of the power system 

planning problem are considered uncertain in this application and explain how their values are 
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chosen. Finally, in Section 4.4.3 the results from a deterministic analysis under each scenario for 

the Bangladeshi power system planning problem are presented.  

4.4.1 Bangladesh: Options for power system expansion 

Natural gas power plants generated ~70% of Bangladesh’s electricity in 2016, whereas oil and 

power imports accounted for ~27% of the supply in that year [245]. As domestic natural gas 

reserves are depleting [246], alternative sources of electricity are being considered [243] and the 

ones I assess in this chapter are the following7: (1) imported coal; (2) domestic coal; (3)domestic 

natural gas; (4) imported natural gas (Liquified Natural Gas); (5) interconnection with India to 

import hydropower from Bhutan or Nepal or electricity from  India; (6) solar photovoltaic; and 

(7) biomass. In Table 4-2, I provide the capital cost and potential for all options except 

interconnection with India. For interconnection with India, I estimate transmission cost at 

3,184$/MW/km and varying cost of energy depending on the origin (see Table 4-3).  

 
Table 4-2: Capital cost and resource potential for candidate power plants in Bangladesh 

Power plant Capital cost ($/kW) Potential (GW) 

Domestic coal 2,032 30 (based on available 
land of 13,000 acres) 

Imported coal 2,622 

Combined cycle (Natural gas) 1,342 180 (based on available 
land of 18,000 acres) 

Simple cycle (Natural gas) 1,012 

PV 2,430 10 
Biomass 3,000 0.3 

 

Table 4-3: Cost of imported energy (Bangladesh) 

Source for imported electricity  Payment scheme 

Hydro from Nepal $47/MWh 
Hydro from Bhutan 500$/kW +37$/MWh 
Power plants in India Time-varying price (44 -223 $/MWh) 

 

                                                      
7 Nuclear power has not been assessed in this chapter due to the very slow pace of progress observed for 

the Ruppur project [318]. Wind is also omitted because of low potential (600 MW) [314]. 
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Note that capital costs for coal and natural gas power plants in this study vary per site to 

account for elevation of the grade level by a height equal to the inundation depth of a flood with 

200 years return period. In previous work [47], I concluded that integration of site-specific detail 

is important for countries such as Bangladesh where compliance with flood protection standards 

increases the construction cost of power plants and varies among sites (see Table 4-4). 

 
Table 4-4: Inundation depth for floods with return period 200 years and construction cost for 
flood protection at sites considered for power plants using imported coal 

 
Location Depth at rp = 200 years (m)  

[source: FATHOM] 
Additional construction 

cost ($/kW) 
Chandpur 0 - 

Meghnaghat 0.1 7 

Bheramara 0.1 7 

Orion Dhaka 0.1 7 

Mawa 0.2 14 

Cox Bazaar 0.3 21 

Zajira 0.5 36 

Khulna South 1.2 85 

Rampal 1.5 107 

Payra 3.8 270 

Matarbari 7.1 504 

Chittagong 8.5 604 

4.4.2 Bangladesh: Uncertain factors in power system planning 

As mentioned earlier, multiple parameters used in Bangladesh power system planning are 

uncertain. In Table 4-5, I summarize the sources for uncertain values. Note that in some cases 

such as fuel prices, I use a subset of the full set of scenarios I had access to in order to keep the 

total number of scenarios tractable.  
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Table 4-5: Uncertain factors for power system planning in Bangladesh 

Uncertain factor 
Full set of 
scenarios Source of data on uncertain factor 

Scenarios 
modeled 

Demand growth 3 (JICA and TEPCO [247]) 3 

Fuel prices 5 (JICA and TEPCO [247])F1–F4, [248] F1, F3, [248] 

Domestic coal 
availability 

3 (JICA and TEPCO [247]) 3 

Natural gas availability 2 Based on (JICA and TEPCO [247]) 2 

Temperature/cooling 
degree days 

17 http://climatewizard.ciat.cgiar.org/wbcli
mateanalysistool/  

bcc-csm1-1, cesm1-
bgc, mri-cgcm3 

Flooding  3 FATHOM and [250] 3 

 

For demand, I develop three scenarios with common forecasts up to 2025 (annual growth rate: 

7.4-7.5%) and then later apply differentiated annual demand growth rates between 5% and 7%. 

For gas supply, I construct two scenarios (see Table B-5)Error! Reference source not found. : 

one in which no new domestic gas reserves or new infrastructure for LNG imports (apart from 

already planned infrastructure) is available and another in which all the sources mentioned in [247] 

are available.  For domestic coal availability, I use the same scenarios as in [247] (see  

Table B-6Error! Reference source not found.).  

For fuel prices, I use IEA’s New Policies Scenario (F1) because it is presented as the most 

plausible scenario. I omit F2 (IEA’s Current Policies Scenario) because IEA considered it 

“extremely unlikely”. I include F3 (IEA’s 450 Scenario) since it simulates a pathway consistent 

with goals for mitigation of climate change. Finally, instead of using IEA’s Low Oil Price Scenario, 

I use World Bank Group’s 2017 projections, which also predict low oil prices. 

For temperature projections, I had access to downscaled results from 17 climate models. I 

translate the projections for cooling degree days into increases in MW electricity loads based upon 

an empirical equation estimated by [251]. Similarly, I convert projections for maximum 

temperature into generating capacity derates based upon a constant derate factor in % of maximum 

capacity per degree over the standard temperature at which the equipment is rated (see Appendix 

B4). I further analyze in this chapter only three of the seventeen scenarios. I choose those three 
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scenarios using hierarchical clustering (see their projections in Table B-4Error! Reference source 

not found.).8   

Finally, I consider three scenarios for flooding. Floods here affect power systems in two ways: 

(1) insurance costs, which are part of the Fixed Operation and Maintenance Costs and (2) outage 

rates, which limit the available output of the power plants. Note that both are considered in 

expected terms in this planning model. The expected value of damages increased by a premium is 

used to estimate the insurance cost and the expected outage days are used to decrease the 

availability factor.9 For instance, the annual flood insurance cost at Chittagong increases the 

annualized capital cost by 1, 2, and 5%, respectively, in the three scenarios considered. Expected 

availability factors for all power plants are close to 1 (lowest 0.96) for all three scenarios considered. 

4.4.3 Bangladesh: Scenario analysis of  power system plans 

I assume that all uncertain factors are probabilistically independent of each other, so that no 

combination of the six factors has zero probability. Thus, I consider all 486 = 3*3*3*2*3*3 

scenarios that include all potential combinations of the six uncertain factors (Table 4-5). As an 

indication of whether uncertainty might be important, I first conduct a scenario analysis, i.e., I 

solve the deterministic problems under all scenarios as if I had perfect foresight.  That is, for each 

scenario, I solve a power system expansion model formulated as a deterministic LP (see Appendix 

B.4) and record the near-term investment decisions (i.e., capacity additions up to 2025), which I 

designate as build_1st .  

                                                      
8 The clustering takes as input 17 vectors (one for each climate model) and cluster them based on hierarchical 
clustering using a Chebychev distance metric to describe the distance between points within a cluster [319]. 
Then from each cluster the scenario with the minimum max distance from scenarios in the same cluster is 
chosen. Each vector has 2,912 elements: 2,184 (3*28*26) elements to describe the demand increase for three 
demand growth scenarios; 28 representative hours and 26 years within the horizon; and 728(28*26) elements 
that describe the temperature degrees over the standard temperature for all 28 representative hours over the 
entire horizon of 26 years.   
9 Note that the consideration of an expected outage factor for power plants has smoothen out the impact 

of floods over the entire horizon and the results do not capture the disruption an extreme flood would cause.  
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The average cost for the entire 26-year horizon across the 486 deterministic (perfect-foresight) 

solutions is ~100,913 million US$. The near-term (prior to 2025) investment for the entire country 

is ~24 GW (average across 486 deterministic solutions) and the average size of investment per 

candidate site, technology, and scenario is 447MW. For each candidate power plant, the near-term 

investments recommended by the 486 deterministic solutions are quite similar, differing less than 

20 MW. However, the range is much larger for six candidate power generation options — which 

can be summarized in three groups based on the fuel used:  

(i)  additional investment in interconnections with India, which varies between 1 GW to 4 

GW,  

(ii) investment in power plants using imported coal at three sites (Rampal, Khulna and Zajira), 

which varies between 0.2 GW and 6.6 GW, and  

(iii) investment in coal capacity using domestic coal at two sites (Barapukuria and Kharaspir), 

which ranges between 0.8 and 2.5 GW.   
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Figure 4-1: Range of first-stage investments for six candidate sites under 486 perfect-foresight 

plans 

 

The ranges for those six candidate investments are large compared to the rest of the candidates 

which have a range less than 20 MW. Analyzing further the 486 perfect-foresight plans, there are 

three discrete levels for domestic coal (at Barapukuria and Kharaspir): 0.8, 1.6 and 2.5 GW. The 

selection of a level solely depends on the coal supply scenario. The 162 scenarios with low, base 

and high coal supply have 0.8, 1.6, and 2.5 GW of coal at Barapukuria and Kharaspir, respectively. 

This is reasonable because domestic coal is relatively inexpensive — only domestic gas is less 

expensive — and the least-cost plan would build domestic coal up to the available supply limit. 

Fuel price uncertainty explains the range of interconnection levels. Under the IEA New Policies, 

IEA 450 and, WB17 fuel scenarios, the interconnection with India is at 3.5–4 GW, 2.5–3.5 GW 

and 1–1.5 GW respectively. The fuel price scenarios above assume high, moderate, and low fuel 

prices, respectively. The interconnection to India, as currently modeled, provides access to nuclear 
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and coal supply during base hours (~50% of the year).  The lower the fuel prices of coal and LNG, 

the higher the incentive Bangladesh has to develop its own resources and optimally dispatch them 

throughout the year, instead of building transmission lines to interconnect with India and rely on 

those resources for part of the year when India does not use them for domestic demand. Finally, 

the observed range in levels of investment using imported coal cannot be explained by a single 

uncertain factor.  

In brief, each of the multiple possible investment levels for the first stage (through 2025) is 

the ideal choice for one or more specific scenarios, but planners can only choose one investment 

level per candidate when defining a strategy. The large ranges of possible investments are the very 

reason that practitioners need a tool that aids decision making under uncertainty in order to select 

a specific near-term investment plan. Here, I use RDM and SP. I provide details on the 

implementation of both methods in the next section. Results for both tools are provided and 

compared in Section 4.6. 

4.5 EXPERIMENTAL DESIGN 

The general need for a cross-comparison of methods on a realistic example has been 

established based on a survey of the literature in Section 4.3. Here, I design the cross-comparison 

for the case study of Section 4.4. This chapter addresses gaps of past comparisons by including SP 

as an alternative and structuring the discussion on the comparison across the three criteria 

introduced by Crousillat [42]. In Section 4.2, it is obvious that analysts have a good deal of flexibility 

in designing an application of either RDP or SP to a particular case. My cross-comparison cannot 

cover the entire spectrum of choices for either method. Instead, I apply both methods using the 

same amount of information. I describe custom choices for each step of each method in Section 

4.5.1, followed by a thorough discussion of choices for the second step in 4.5.2.  
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4.5.1 Step-by-step custom choices for RDM and SP in the case study 

Step 1: Structure the problem 

The first step is the same in both methods: “structure the problem”. It is crucial for the design 

of the cross-comparison because it ensures that methods are compared in their ability to solve the 

same problem (criterion I: modeling capability). I describe my choices for step 1 using the 

“XLRM” framework (see Section 4.2.1). 

Exogenous uncertainties (X): I use the same set of 486 scenarios for both methods and naively 

assume even probabilities for all scenarios. The probability of any particular scenario is the product 

of the marginal probabilities of the six uncertain factor values. More sophisticated assumptions 

(e.g., correlations among factors) could have been made, but were unnecessary for the purposes 

of this comparison of RDM and SP. Those probabilities are used to estimate the performance 

metric value as it will become clear in the paragraph below. Learning is assumed in both cases that 

allows planners to know with perfect certainty the values for uncertain factors past 2025 and during 

system operations (for example, loads and fuel prices are known when unit dispatch is decided). 

Note that complete resolution of uncertainties is not true in practice, as there will be residual 

uncertainty past 2025. However, the assumption reflects the fact that planners will have updated 

information with respect to the uncertainty in a later year.  The assumption on learning affects the 

model formulation as I discuss later in Relationships.  

Performance metrics (M): I employ the same performance metric (cost) in both methods and 

assume that the planner is risk-neutral, so that the objective can be minimization of expected 

(probability weighted) cost.  No threshold is used to judge if the performance is satisfactory.  

Strategies (L):  Each strategy refers to a set of investment decisions up to 2025 because I assume 

that the planner aims to determine the investment decisions for the first 10 years of the horizon. 

In a later year, planners will use a method to decide on investments past 2025. That is why 

investments past 2025 are not included in the definition of strategies. Moreover, contrary to  

investments prior to 2025, which are scenario-independent,  the investments after 2025 are 
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assumed to be scenario-contingent because the uncertainty resolves in 2025 (see Uncertainties (X)). 

Operational decisions are not included in the definition of a strategy because they can be 

determined on shorter notice (minutes to days). 

Relationships (R): In both methods, relationships refer to the model necessary for the 

vulnerability assessment. The vulnerability assessment aims to estimate the performance metric 

(M) for each strategy (L) across all scenarios (X). The strategy (L) specifies only a subset of the 

decision variables — investments prior to 2025 — with the remaining (recourse) decisions —

investments past 2025 along with dispatch of generation throughout the horizon — being yet to 

be determined. Note that recourse decisions are in general scenario-dependent because 

uncertainties have been resolved by the time those decisions are made. Therefore, for each strategy 

(L) and scenario (X), a linear program is formulated that optimizes the system cost by choosing 

values of the recourse decision variables. The first-stage (prior to 2025) investments are no longer 

decision variables, but they are parameters fixed at the values determined by (L); by being fixed, 

their values limit the scope for adaptation. This optimal determination of second-stage investment 

decisions through a linear program in the vulnerability assessment allows for learning and 

determination of adaptive strategies in an identical way in both methods. This modeling choice 

sets my cross-comparison apart from past reviews that do not discuss how RDM can allow for 

development of adaptive strategies.  Note that, at its heart, SP uses an additional mathematical 

program to recommend first-stage investments considering a reduced set of scenarios and 

imposing non-anticipativity on those investments (i.e., in the first stage, I can’t condition the 

decisions on the scenario because the planner does not yet know which scenario will occur in the 

future).  

Step 2: Identify strategies to evaluate (RDM) or Choose approximations if the full problem is 

intractable (SP). 

Under step 2, I must choose strategy/ies under RDM and a subset of scenarios to include in 

SP. In other words, I must choose an approximate description of the continuum of strategies and 
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the entire set of scenarios for RDM and SP, respectively.  None of the two methods prescribe a 

specific approach for the approximation. So, I decide to use the same approach for both 

approximations relying on the investments recorded under the 486 perfect-foresight runs (see 

Section 4.4.3). I discuss in detail how I rely on this information to select a subset of seven scenarios 

for SP and seven distinct strategies for RDM in section 4.5.2. 

Step 3 for SP: Solve the problem 

In case of SP, under this step I solve a two-stage stochastic program considering only the 

subset of scenarios chosen under step 2. The decision tree provided in Figure 4-2 illustrates the 

formulation of the model for stochastic programming. Seven scenarios (presented in Table 4-7) 

are considered as part of the stochastic programming formulation. 

 
Figure 4-2: Decision tree for SP model  

 

Step 4 for SP/Step 3 for RDM: Test the solution for the original problem/Evaluate strategy across scenarios. 

Steps 4 for SP and 3 for RDM use identical linear programs (described earlier in Relationships (R)) 

to assess the performance across scenarios. For SP, I impose first-stage investments at the levels 

identified by the stochastic program (solved with a subset of scenarios), and then optimize the 

second-stage investment and operational decisions using a linear program. Thus, one set of SP 

first-stage decisions are then imposed upon 486 linear programs, one per scenario, which are then 

solved for second-stage decisions that are optimal for that particular scenario. Analogously, for 

RDM, I consider the first-stage decisions for each of the 7 original RDM strategies and solve the 

linear program that optimizes second-stage investment and operational decisions. For each of 
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8*486 combinations of scenarios and strategies, I then record the value of the objective function 

and subtract from it the value of the objective function for the same scenario under the perfect-

foresight run. The result of this subtraction is the “regret”, i.e., the increase in cost because of 

deviation from the optimal strategy for the scenario. Thus, I have 486 regrets for the SP first-stage 

solution, and 7*486 regrets for the first-stage solutions from the 7 RDM strategies.  Next, I 

calculate for each of these strategies (including the SP solution) the expected (probability-weighted) 

regret over all 486 scenarios. The expected regret ranks the eight strategies in the same exact way 

as expected cost, which is the performance metric I specified earlier in this section. 

Note that in this implementation I skip Steps 4 and 5 of RDM and step 5 of SP. The reason 

for that choice is that in case of RDM, I did not have any stakeholders that would provide a 

definition of vulnerability or express their satisfaction or dismay with strategies already tested 

under RDM. For stochastic programming, I did not implement another iteration with a new subset 

of scenarios because the expected regret is already small relative to the expected cost.  

Figure 4-3 summarizes in schematic form the comparison of the two methods. Note that both 

methods can be implemented in an iterative manner. For example, if the performance of the 

strategy identified by the stochastic programming method is unsatisfactory, a different subset of 

scenarios could be considered. That subset could have been suggested by a different scenario 

reduction method — there is rich literature concerning such heuristics in the past decade [213], 

[214].  Alternatively, the same heuristic could have been used with a larger subset of scenarios. 

Similarly, RDM could test the vulnerability of a different set of strategies. RDM does not prescribe 

how additional, new strategies could be formulated. However, it suggests that planners could 

leverage information on vulnerable regions of strategies already tested to draft new ones. 
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Figure 4-3: Schematic for RDM and SP implementation in the case study 

4.5.2 Details on step 2: selection of  scenarios for SP and strategies for 
RDM  

In this section, I describe in detail how I used the results of the 486 deterministic runs with 

perfect foresight to identify candidate strategies for RDM and a subset of scenarios for SP. For 

stochastic programming, I select a subset of 7 scenarios with different assumptions on the values 

of uncertain factors. This is because a stochastic programming model with 486 scenarios 

simultaneously would have over 40 million variables and 40 million constraints, which I cannot 

solve. Meanwhile, for RDM, it is challenging to decide on a small number of candidate strategies 

in the power system planning problem, since it is practically impossible for the decision makers to 

enumerate all combinations of candidates and come up with a short list of candidate strategies.  
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Indeed, there are infinite number of candidate strategies, since the capacity decision variables are 

assumed to be continuous.   

Here, I use the same approximation technique to identify scenarios for SP and strategies for 

RDM. Given that the objective of the problem is to identify first-stage investments, I decided to 

approximate the scenarios for SP and the strategies for RDM using an algorithm that clusters the 

486 perfect-foresight cases of section 4.4.3 based on key first-stage investments. The method I 

followed is very similar to reference [252]. I define as key first-stage investments the ones that 

differ significantly among the 486 deterministic runs (see Section 4.4.3): interconnection with 

India, coal development at Barapukuria and Kharaspir (domestic coal) and coal development at 

Rampal, Khulna, Zajira (imported coal).  For each scenario, I create a vector with six elements 

being the cumulative investment up to 2025 for each of the six candidates. Then, I employ the 486 

vectors as an input into k-means clustering with Euclidean distance and identify seven clusters. 

The two last columns of Table 4-6 respectively contain the number of scenarios in each cluster 

and the mean value of investments for the six candidates under each cluster. 

For each cluster, I construct a strategy to test under RDM and select a scenario to consider 

within the reduced stochastic programming model (see Figure 4-2). This is done as follows.  For a 

given cluster, a single RDM strategy is defined as the investment levels for all candidate in years 

2016–2025 (i.e., the first stage) averaged across all perfect-foresight solutions for scenarios 

belonging to that cluster. For stochastic programming, I select seven scenarios by choosing within 

each cluster the scenario with the minimum maximum Chebychev distance from all other scenarios 

in the cluster.10 The probability of that scenario in the stochastic program is then set equal to the 

number of scenarios that belong to the cluster divided by the total number of scenarios (486). The 

RDM strategies are summarized in Table 4-6 and the scenarios for SP are given in Table 4-7. 

                                                      
10 Select scenario s, which is the minimizer of the optimization problem with objective 

function min
𝑠 𝜖 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

max
𝑠′∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

|𝑥𝑠 − 𝑥𝑠′|∞ ,where 𝑥 is a 6 by 1 vector describing the total first-stage 

investments of six candidate power generation options (see Figure 4-1).     
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Table 4-6: Candidate strategies for RDM [47] 

Scenarios clustered under 
this strategy 
(Names refer to the 
scenarios considered; coal 
and gas scenarios refer to 
supply) 

Near term strategy 
(investments up to 
2025) 

Number of 
future 
scenarios in 
the cluster 

Capacity for which 
construction started 
before 2025 (GW) 
(Domestic coal, 
Imported coal, 
Interconnection) 

'High-base demand-NO 
WB17-High-base domestic 

coal-Gas unclear' 

High domestic coal- 
Moderate imported 

coal- High 
interconnection 

84 (2.1,3.9,3.4) 

'Low-base demand-WB17-
High-base domestic coal-Gas 

unclear' 

High domestic coal- 
Low imported coal - 
Low interconnection 

54 (2.2,2.6,1.1) 

'Low-base demand-NO 
WB17-Low-base domestic 

coal-Gas unclear' 

Low domestic coal - 
Moderate imported 

coal-High 
interconnection 

75 (1.1,3.1,3.2) 

'Demand unclear-WB17-Coal 
unclear-Gas unclear' 

Moderate domestic 
coal- Moderate 

imported coal - Low 
interconnection 

66 (1.5,4.2,1.1) 

'Low demand-NO WB17-
High-base domestic coal-Gas 

unclear' 

High domestic coal - 
Low imported coal-

High interconnection 
93 (2.2,1.6,3.3) 

'High demand-WB17-Low-
base domestic coal-Gas 

unclear' 

Low domestic coal - 
High imported coal - 
Low interconnection 

42 (1.2,5.8,1.2) 

'High demand-NO WB17-
Low domestic coal-Low gas' 

Low domestic coal -
high imported coal - 
High interconnection 

72 (1.0,5.3,3.6) 

 

Table 4-7: Subset of scenarios considered for SP 

Scenarios selected to represent the cluster Probability (%) 

High demand-IEA New Policies-Base coal-High gas 17% 
Low demand-WB17-Base coal-High gas 11% 
Low demand-IEA 450-Low coal-Low gas 15% 

Base demand-WB17-Base coal-High gas 14% 
Low demand-IEA New Policies-Base coal-High gas 19% 
High demand-WB17-Base coal-Low gas 9% 
High demand-IEA New Policies-Low coal-High gas 15% 

 

The seven clusters adequately represent the full set of perfect-foresight strategies according to 

the comparison of mean (see Table 4-8) and range (see Table 4-10) between the original set of 486 

strategies with perfect foresight and the set of 7 RDM strategies. However, the covariance matrixes 

of the two sets are more dissimilar (see Table 4-9). By definition, the mean of the first-stage 

investments is identical between the two sets (see Table 4-8).  
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Table 4-8: Mean value of first-stage investments for three candidate power plants 

Strategies 

Domestic Coal Imported Coal Interconnection 

Barapukuria Kharaspir Rampal Khulna  Zajira  

7 RDM 1,136  516  1  1,876 1,737 2,631 

486 with perfect foresight 1,136  516  1  1,876 1,737 2,631 

Table 4-9: Covariance of first-stage investments within the set of 7 RDM strategies and within the 
set of 486 strategies with perfect foresight 

 

7 RDM strategies 

161,881  45,005  (297) (326,341) (25,363) (6,525) 

45,005  12,695  (106) (96,270) (7,617) (1,823) 

(297) (106) 7  1,736  52  (1,201) 

(326,341) (96,270) 1,736 1,594,685 106,325 (213,744) 

(25,363) (7,617) 52 106,325 15,467 (39,311) 

(6,525) (1,823) (1,201) (213,744) (39,311) 1,148,435 

486 strategies with perfect foresight 

294,939 78,495 (584) (333,761) (33,414) (4,684) 

78,495 33,402 (106) (97,657) (12,579) (1,414) 

(584) (106) 111 2,283 52 (1,091) 

(333,761) (97,657) 2,283 1,842,086 118,080 (208,837) 

(33,414) (12,579) 52 118,080 54,844 (32,812) 

(4,684) (1,414) (1,091) (208,837) (32,812) 1,292,109 

 

Table 4-10: Min and max values of first-stage investments within the set of 7 RDM strategies and 
within the set of 486 strategies with perfect-foresight 

 

 7 RDM strategies 

 Domestic Coal Imported Coal Interconnection 

 Barapukuria Kharaspir Rampal Khulna Zajira  

Min 629  387  -    167  1,482  1,094  

Max 1,575  645  9  3,989  1,800  3,555  

 486 strategies with perfect foresight 

Min 426 387 - - 205 1,000 

Max 1,743 775 146 4,654 1,800 4,000 

 

In column 1 of Table 4-6, I provide a brief description of the scenarios under each cluster. 

Descriptions of climate scenarios (flooding or temperature) are not provided in the description of 

the cluster, because there turned out to be little systematic difference between the clusters in those 

dimensions. Similarly, descriptions of gas supply are not provided in the description of six clusters. 

On the contrary, three factors (fuel prices, demand growth, and coal availability) vary strongly 
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among the clusters. This might lead to the conclusion that the latter uncertainties might be more 

relevant to near-term investment decision than climate or gas supply. I will discuss further the 

relative impact of each uncertainty in results (Section 4.6.3.b). 

4.5.2.a Discussion of  RDM strategies 

As described above, I employed clustering to identify initial strategies based on the 486 

deterministic runs. Note though that a set of strategies like Table 4-6 could have also been provided 

directly by stakeholders with different beliefs about the future, as discussed in Section 4.2.1. For 

example: 

• A stakeholder who considers plausible a future with high demand, low domestic coal 

supply, low gas supply and fuel prices in line with IEA scenarios (cluster 7) might logically 

propose relatively large short-term investments in both imported coal and 

interconnection. 

• Alternatively, a stakeholder who considers plausible a future with low demand, high/base 

domestic coal, and prices in line with IEA scenarios (cluster 5) might favor a plan with 

small short-term investments in imported coal, large investments in domestic coal, and 

large investments in interconnection. 

Similar descriptions, to the two provided above, reflecting stakeholder’s view favoring a particular 

strategy can be provided for the remaining 5 strategies of Table 4-6.  The advantage of the statistical 

approach I follow here is that it limits the reliance to stakeholders. As discussed earlier in Section 

4.3.2, specification of inputs by stakeholders might make the analysis more subjective. On the 

other hand, limited interaction with stakeholders might prevent the analysts (me in this case) from 

properly structuring the problem making sure it addresses the needs of decision makers. 
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4.5.2.b Discussion on scenarios for SP 

In the reduced SP of Figure 4-2, I used the input vector (assumptions regarding temperature, 

demand, fuel prices, coal/gas supply, flooding) of a specific scenario within the cluster and weight 

proportional to the number of original scenarios within the cluster, assuming equiprobable 

scenarios (see Table 4-7). Solving the reduced problem, the stochastic program recommends a 

strategy that invests 0.4, 0.4, 0, 1.4, 1.8, and 2.9 GW in domestic coal (Barapukuria, Kharaspir), 

imported coal (Rampal, Khulna, Zajira), and interconnection with India by 2025. The results for 

the vulnerability assessment for this strategy along with the 7 RDM strategies are discussed in the 

next section. 

4.6 RESULTS 

I compare the implementation and results from both methods (RDM, SP) across the three 

criteria by Crousillat [42] in Sections 4.6.1–4.6.3.  

4.6.1 Criterion I (Modeling capability): Performance of  RDM and SP on 
the case study 

Crousillat [42] defined modeling capability as “the models' ability to capture the possible 

consequences of multiple uncertainties inherent to alternative investment plans.” As shown in the 

experimental design (Section 4.5), both methods capture the dynamics of the multi-faceted 

uncertainty and assess the vulnerability of recommended strategies across multiple scenarios.  

Here, I examine modeling capability from a different angle, aiming to answer the following 

question “Did both methods identify a strategy that minimizes the expected regret — that was the 

target set in Section 4.5?” The results from the vulnerability assessment provide the answer to the 

question. In Table 4-11, I document the performance in terms of regret (expected, maximum, 

minimum) for the seven RDM strategies (see Section 4.5.2) and the strategy identified by the 

reduced stochastic program, i.e., the stochastic program with seven scenarios (see Figure 4-2). 
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Among all eight strategies of Table 4-11, the strategy identified by the SP (first row of Table 4-11) 

has the lowest expected regret. This strategy also happens to have the lowest worst (maximum) 

regret.   

 
Table 4-11: Performance of strategies across all 486 scenarios (in millions of 2015 U.S. dollars) 

Near-term strategy according to: 
Maximum 
regret 

Minimum 
regret 

Expected 
regret 

Stochastic model: Low domestic coal 
- Moderate imported coal-High 
interconnection 1,406 69 555 
High domestic coal- Moderate 
imported coal- High interconnection 1,785  175  867  

High domestic coal- Low imported 
coal - Low interconnection 3,727  92  1,476  

Low domestic coal - Moderate 
imported coal-High interconnection 1,408  175  612  

Moderate domestic coal- Moderate 
imported coal - Low interconnection 2,173  89  1,089  

High domestic coal - Low imported 
coal-High interconnection 2,610  155  965  

Low domestic coal - High imported 
coal - Low interconnection 3,274  118  1,262  

Low domestic coal -high imported 
coal - High interconnection 2,702  174  833  

 

This result might be expected because the SP identifies the strategy with the least expected 

regret by definition.11 However, this is true only if all 486 scenarios could be simultaneously 

considered in the stochastic program, rather than just a subset of 7 scenarios. Here, the stochastic 

program has indeed identified the solution with the least expected regret among all eight strategies. 

Note that this is not saying that the overall least expected regret solution has been identified; that 

would require a SP that optimizes over all 486 scenarios. In Appendix Section B.6, I selected a 

subset of scenarios using a different method [214] and the SP recommended a strategy with even 

lower expected regret than the one presented in Table 4-11.  

                                                      
11 The stochastic program minimizes the expected cost over all scenarios ∑ 𝑝𝑠 ∗ 𝑐𝑜𝑠𝑡𝑠𝑠 . The average cost of 

the perfect foresight solutions is defined as ∑ 𝑝𝑠 ∗ 𝑐𝑜𝑠𝑡_𝑝𝑒𝑟𝑓𝑒𝑐𝑡_𝑓𝑜𝑟𝑒𝑠𝑖𝑔ℎ𝑡𝑠𝑠 . The problem that 

minimizes the expected regret has as objective function ∑ 𝑝𝑠 ∗ (𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡_𝑝𝑒𝑟𝑓𝑒𝑐𝑡_𝑓𝑜𝑟𝑒𝑠𝑖𝑔ℎ𝑡𝑠)𝑠  and 
because the average cost of the perfect foresight solution is a fixed term, the stochastic program is guaranteed 
to minimize the expected regret. 
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The best RDM strategy has $57M higher present worth of expected regret (about 10% higher 

than the SP solution). This result is not saying that SP will always identify a strategy with lower 

expected regret than any RDM strategies. In [47],  where  I compared SP and RDM on a similar 

problem, SP led to higher expected regret than the least-expected regret RDM solution.  

Comparing the stochastic strategy with the least-expected-regret RDM strategy, I observe that 

the levels of investments are very similar; investments in domestic coal, imported coal, and 

interconnection differ by 260, 118, and 321 MW respectively. Moreover, the temporal profile 

within 2016–2025 is slightly different (see Table 4-12). 

 
Table 4-12: First-stage investments in three “key” candidates by the two methods (MW) 

  2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 

RDM 

cluster 

3 

Barapukuria 123 62 277  62     163 

Kharaspir       194 194   

Khulna         416 846 

Interconnection   1,000 500 500 500 370 290 79  

Zajira       89 949 704 57 

SP 

solution 

Barapukuria 149 194 45    39    

Kharaspir       194 194   

Khulna         625 755 

Interconnection   1,000 500 500 500 418    

Zajira       675 540 585  

 

I compare the investment levels of the SP solution to the 486 perfect-foresight solutions 

reported in Section 4.4.3 to draw some insights on the trade-offs that the least-expected regret 

solution identified. First, the investment level for domestic coal is at the lowest level recorded in 

the 486 perfect-foresight solutions. In other words, the stochastic programming solution 

recommends postponement of domestic coal development until the uncertainty on the domestic 

coal policy resolves. If planners had built the domestic coal plants and they did not have access to 
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fuel, Bangladesh would incur high financial loss because of the capital cost of the stranded assets. 

On the other hand, the SP suggests relatively high investment in interconnection with India at 3 

GW (ranges from 1 to 4 GW in the set of 486 perfect-foresight solutions).  The interconnection 

with India is at low capital cost and allows power system operators to adjust their imports 

according to future conditions. Lastly, the investment in  imported coal development is moderate 

at 3.2 GW (ranges from 0.2 to 6.6 GW in the set of 486 perfect-foresight solutions). Almost all 

perfect-foresight solutions with high demand and majority of perfect-foresight solutions with base 

demand in Section 4.4.3 recommend higher (than 3.2 GW) investment in imported coal. SP 

appears to recommend moderate levels. That way, planners can avoid high capital costs of 

investment in coal power plants until uncertainties are resolved. Meanwhile, planners resort to 

imports of electricity or natural gas to meet varying levels of demand in the first stage and the early 

years of the second stage (see Appendix Note B.5). 

To conclude the discussion on the first criterion (modeling capability), both methods can 

adequately assist planners to identify a strategy with the least expected regret. In the example 

presented above (Table 4-11), stochastic programming performs slightly better as judged by its 

~9% lower expected regret compared to the RDM strategy with the lowest expected regret. 

However, this is not a general result. As I discuss in detail in Appendix Note B.6, the choice of 

subset of scenarios for stochastic programming matters and applying additional scenario reduction 

methods, I obtained  SP solutions with higher and lower regret compared to the one reported in 

this chapter. 

4.6.2 Criterion II (Practical applicability): Performance of  RDM and SP on 
the case study 

Practical applicability was a major criterion in this project. World Bank staff emphasized that 

the models should always be tractable on personal computers given the limited resources some 

agencies might have for planning. In Table 4-13, the computational time for analyses are provided 

along with the specifications of my personal computer. 
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Table 4-13: Computational time (clock-time) for RDM and SP 

 RDM SP 

Step 2: approximations  ~550 min to solve 486 deterministic problem. First-
stage investments are variable. 

Step 2: clustering 92 sec to run k-means clustering and select RDM 
strategies and scenarios for SP 

Step 3 (SP)  ~76 minutes to 
identify stochastic 
solution for SP with 7 
scenarios 

Step 3 (RDM)/Step 4 (SP) ~1,410 minutes ~180 minutes 

Total time  ~1,962 minutes ~808 minutes 

 
Note: Those simulations were performed on a desktop with an Intel core processor i7-5930K 

at 3.50GHz and 32 GB Ram. For the vulnerability assessment (Step 3 (RDM)/Step 4 (SP)) I 

parallelized runs and solved ~4 models simultaneously. 

 
The stochastic programming approach took significantly less time to complete: 76 minutes of 

clock-time to solve the reduced two-stage stochastic program for the candidate near-term 

investments, and 180 minutes to solve the 486 deterministic linear programs to assess the 

vulnerability of the stochastic strategy for near-term investments (Step 4 of SP). By comparison, 

the vulnerability assessment for all seven RDM strategies against 486 scenarios took approximately 

one day (~1,410 min). I designed the vulnerability assessment in such a way that 486 optimization 

problems are solved for each strategy. Note that those optimization problems have fewer decision 

variables compared to the full horizon planning problem because investments up to 2025 are fixed 

in the former model at the levels determined by each strategy. Therefore, solution of 486 

optimization problems for the vulnerability assessment takes on average ~200 minutes, which is 

less than half the time it takes to solve the 486 perfect-foresight problems (550 minutes). Based on 

the information I decided to save for each solution, each vulnerability assessment results in a set 

of 486 files whose total size is~4 GB.  

To conclude, the cross-comparison agrees with previous literature that both methods are 

resource-intensive. The computational time for RDM is significantly higher in this case because I 
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tested all 7 RDM strategies that approximate the continuum of strategies. The computational time 

of both approaches would have been similar if 1-2 RDM strategies had been analyzed. 

4.6.2.a Practical applicability: extension 

The significant less time spent on SP with the reduced set of scenarios is the competitive 

advantage of SP in terms of practical applicability. RDM could potentially complete faster by 

limiting its scope to a small set of promising strategies. So, potential heuristics could use the 

reduced set of scenarios as a testbed for RDM strategies. That way, less promising RDM strategies 

—as judged by the reduced set of scenarios (seven here) —could be eliminated and the time-

intensive vulnerability assessment would take less time.   

Different heuristics could be used such as eliminating the bottom 50% of RDM strategies in 

terms of expected regret in the subset of seven scenarios.  Then, I could conduct the full 

vulnerability analysis for all remaining RDM strategies (the ones that passed the first screening), 

rather than all representative strategies resulting from clustering.  Of course, that would take less 

time because I would only have to conduct the vulnerability assessment for all RDM strategies 

across seven scenarios (7*7= 49 deterministic model runs) and the full assessment for just 50% 

(here 3) of RDM strategies ((486-7)*3=1437 deterministic model runs. That way, the runs done 

under the vulnerability assessment are reduced by ~58%.  

In Table 4-14, I implement this idea.  There, I provide the vulnerability assessment of all seven 

deterministic strategies across the subset of seven scenarios chosen by the method in Section 4.5.2. 

Here, the ranking of RDM strategies according to the reduced set of seven scenarios is almost 

identical with their true ranking across all 486 scenarios. In particular, the top 3 (in terms of lowest 

expected regret) and bottom 2 strategies among the 7 RDM strategies are correctly identified.  

To conclude, the computational time RDM spends on the vulnerability assessment is the major 

bottleneck for its practical applicability. Development of heuristics or reliance on theoretical results 

that will help analysts define a small set of promising strategies might limit the computational 
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burden. However, limiting the number of RDM strategies might limit benefits an abundant set of 

RDM strategies provide. I discuss those benefits in the next subsection. 

 
Table 4-14: Performance of strategies across seven discrete scenarios considered by SP (value in 
millions of 2015 U.S. dollars) (Green cell indicates best value) 

 

Near-term strategy  
Maximum 

regret 
Minimum 

regret  
Expected 

regret a 

Stochastic model: Low domestic coal - 

Moderate imported coal-High interconnection 840 193 416 

High domestic coal- Moderate imported coal- 
High interconnection 

                       
1,532             317             990  

High domestic coal- Low imported coal - Low 
interconnection 

                       
2,445             476          1,421  

Low domestic coal - Moderate imported coal-
High interconnection 

                          
921             328             480  

Moderate domestic coal- Moderate imported 
coal - Low interconnection 

                       
1,618               89          1,008  

High domestic coal - Low imported coal-High 
interconnection 

                       
1,507             394             932  

Low domestic coal - High imported coal - Low 
interconnection 

                       
2,700             275          1,312  

Low domestic coal -high imported coal - High 
interconnection 

                       
2,134             198             929  

4.6.3 Criterion III (Transparency and contribution to decision making): 
performance of  RDM and SP on the case study 

Under this criterion “transparency and contribution to decision making”, the two methods are 

compared in terms of how easily comprehensive their mechanics and results are. Ideally,  “the 

consequences of differing judgmental inputs should be reviewed without excessive effort. ” [42]  

Here, I consider as “judgmental” inputs the scenarios and their probabilities. In Section 4.6.3.a, 

I start with an example where planners acquire updated information on some uncertainties and 

only a subset of the original set of scenarios is relevant. The consequences are two-fold: (a) the 

expected performance of strategies within a subset of scenarios or alternative probability weights 

changes (b) the previously recommended strategy might not be the best-performing anymore and 

planners should follow an alternative strategy. Then, in Section 4.6.3.b, I examine if any method 

provides an estimate for the value of perfect information.  
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4.6.3.a Example 1: Updated information on fuel prices 

Assume that planners acquire reliable information on domestic coal supply and know with 

certainty that the scenario with high coal supply will be realized. In that case, only one of three 

coal supply scenarios (see Table 4-5) initially considered is valid and the set of scenarios now 

consists of 162 scenarios (486 initial scenarios divided by three fuel price scenarios).  

Both methods can estimate within seconds the updated expected performance i.e., the 

expected regret of the eight strategies over the updated set of 162 scenarios. According to results 

in the second column of Table 4-15, the expected regret of the eight strategies increases or 

decreases compared to the regret calculated over the 486 scenarios (see Table 4-11). For the 

stochastic strategy, the expected regret increases.  

The two methods though differ in their suggestions for alternative strategies, more appropriate 

for the updated set of scenarios. RDM recommends switch from strategy of row 4 to strategy of 

row 6 in Table 4-11, increasing the investment in domestic coal power plants and decreasing the 

investment in power plants using imported coal.  On the contrary, stochastic programming has 

provided just one solution and cannot recommend an alternative course of action based on the 

already available results.  A new stochastic program would have to be solved in order to assess if 

there is a better performing strategy. That new stochastic programming would either use the same 

set of seven scenarios with updated probability weights or re-clustering among the 162 scenarios 

would provide a new subset of scenarios. 
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Table 4-15: Performance of strategies across subset of scenarios (in millions of 2015 U.S. dollars) 
(Green solution indicates best strategy) 

Near-term strategy according to: 

Expected regret 
(across just 162 
scenarios having high 
coal supply occurring) 

Stochastic model: Low domestic coal - Moderate imported coal-
High interconnection 

774 

High domestic coal- Moderate imported coal- High 
interconnection 

595 

High domestic coal- Low imported coal - Low interconnection 878 

Low domestic coal - Moderate imported coal-High 
interconnection 

766 

Moderate domestic coal- Moderate imported coal - Low 
interconnection 

1,074 

High domestic coal - Low imported coal-High interconnection 511 

Low domestic coal - High imported coal - Low interconnection 1,457 

Low domestic coal -high imported coal - High interconnection 1,085 

  

  

4.6.3.b Value of  reliable information for each of  the uncertainties 

In case of uncertainty, planners are usually interested in learning how important each 

uncertainty is: which uncertain factor makes the biggest difference in solutions, and for which it 

would be most valuable to have additional information.  The expected value of perfect information 

(EVPI) is a widely used metric for such an analysis. I mention here a few examples: the EVPI of 

natural gas cost and demand growth uncertainty for the US power sector is calculated in [236], the 

EVPI  of uncertainty related to three policy instruments (carbon tax, carbon cap, renewable 

portfolio standards) for the US power sector is provided in [253], the EVPI of multiple 

uncertainties including carbon capture and storage development for the US electricity sector is 

reported in [254].  

Given the insights EVPI provides, here I compare the two methods in their ability to provide 

estimates of the EVPI. In particular, I aim to estimate the value of perfect information [255] for 

one uncertainty at a time i.e., assuming that planners will acquire more reliable information for one 

uncertain factor but the others will remain uncertain. To calculate the EVPI in that case, I need to 

know the optimal strategy for the updated set of uncertain scenarios. For instance, I consider three 
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coal supply scenarios in the original set of 486 scenarios. Assuming that I know with certainty 

which coal scenario will actually be realized, I would have to solve one stochastic program with 

162 scenarios (each with the same coal supply) for each of the three coal supply scenarios. So, for 

the full set of uncertainties, I would have to solve 17 (3+3+3+3+2+3) stochastic programs and 

each program would have to consider 162 (=486/3) or 243 (=486/2) scenarios simultaneously. 

Each such stochastic program is impractically large to solve. Instead, I decide to investigate if any 

method provides approximate information on the EVPI.  

Based on readily available information – without solving additional mathematical programs – 

SP provides an estimate of the EVPI if all uncertainties are simultaneously resolved. The EVPI 

for resolving all uncertainties is equal to the expected regret provided in Table 4-14. However, in 

line with observations made in Section 4.6.3.a, readily available information from the stochastic 

program I have solved in Section 4.5.2.b and the vulnerability assessment of the stochastic solution 

(see Section 4.6.1) cannot be used to estimate  the value of perfect information for just a single 

uncertainty. In order to calculate the EVPI for each uncertain factor assuming that the remaining 

five factors will continue to be uncertain, I would need to solve 17 additional (as just calculated 

above) stochastic programs, each with a subset of scenarios drawn from the relevant set of 

scenarios (see above: 162 or 243). For instance, in order to estimate the EVPI for fuel price 

uncertainty, I would need to know the cost of the optimal investment plan for each of the three 

fuel price scenarios. Thus, I would have to solve three stochastic programs, one per fuel price 

scenario. In each of those three stochastic programs, all factors other than fuel price would still be 

uncertain and would be described through 162 scenarios (3(demand)*3(coal supply)*2(gas supply)* 

3(temperature)* 3(flooding)). On the other hand, RDM can readily provide information on the 

expected cost improvement that planners would experience if they switch from the best-

performing RDM strategy for the entire set of scenarios to the best RDM strategy for the subset 

of scenarios that are still relevant upon the acquisition of perfect information. The value of EVPI 

estimated based on RDM results would be accurate if the discrete set of strategies considered 
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enumerates all possible strategies planners can follow. Given that this is not the case (only seven 

strategies are considered, not the infinite combinations), RDM thereby provides an approximate 

EVPI.  Table 4-16 provides estimates of EVPI for all uncertainties considered in this chapter using 

the formula of equation 4.6: 

 

𝐸𝑉𝑃𝐼𝜉
̃ = min

𝑥 𝜖 𝑅𝐷𝑀 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠
𝐸𝜉,𝜉′( 𝑓(𝑥, 𝜔)) −  𝐸𝜉( min

𝑥 𝜖 𝑅𝐷𝑀 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠
 𝐸𝜉′(𝑓(𝑥, 𝜔))) Eq.  4-6 

 

Equation 4-6 calculates the expected value of perfect information on one uncertain factor (𝜉), 

while the remaining five factors remain uncertain and noted with 𝜉′. The set of scenarios Ω is the  

set of 486 scenarios. The expected values consider all 486 scenarios when both (𝜉) and ( 𝜉′) are 

noted such as in the first term of equation 4-6. However, the inner expected value in the second 

term of equation 4-6 considers only a subset of the 486 scenarios, i.e., the scenarios that have the 

value for 𝜉 specified in the outer expected value. The first term of equation 4-6 refers to the 

expected cost of the least-expected cost solution across all 486 scenarios (here the strategy in the 

5th row of Table 4-6). The second term though is the expected value of multiple least-expected 

cost solutions, one for each scenario that describes uncertain factor  𝜉 . An example for the case 

of coal supply uncertainty in provided in the footnote.12 

 

                                                      
12 There are three scenarios on coal supply. To calculate the second term of equation 4-6, I identify the least 
expected cost solution among the 7 RDM strategies in three cases. First, I consider 162 scenarios where coal 
supply is low; in that case the RDM strategy of third row in Table 4-6 remains optimal and the expected 
regret is 550 million US$. The second case includes 162 scenarios where coal supply is medium and the least 
expected RDM strategy does not change; the updated expected regret is 519 million US$. Lastly, I look into 
a third case with 162 scenarios where coal supply is high and the RDM strategy of cluster 1 in Table 4-6 is 
optimal with regret 511 million US$. Therefore, the second term of equation 4.6 has expected cost (100,913 
million US$+1/3*(550+519+511) million US$. The first term of equation 4-6 is (100,913+612) million US$. 
Thus, the result of the subtraction is 85 million US$ as reported in Table 4-16.  Note that 100,913 is the 
expected cost of 486 perfect foresight plans mentioned in Section 4.4.3 and 612 million US$ is the expected 
regret of the least expected regret RDM strategy in Table 4-11. 
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Table 4-16: Approximation of expected value of perfect information in case the feasible set 
includes only the seven RDM strategies (in millions of 2015 U.S. dollars) 

Uncertainty 
Approximate value of 
perfect information 

Temperature 0 

Demand 149 

Fuel prices 35 

Coal policy/supply 85 

Gas supply 45 

Flooding 0 

  

Results for the value of perfect information in Table 4-16 indicate that resolution of the 

uncertainties with respect to demand, fuel supply and prices would lead to tangible benefits. On 

the other hand, zero value of information is calculated for the remaining two uncertain factors. 

This information contributes to decision making because it aids planners to understand the relative 

importance of each uncertainty and guides planners’ decisions on mitigation of each uncertainty. 

For example, the uncertainty of coal supply is majorly driven by the absence of a national coal 

policy. Results indicate that as long as there is uncertainty on domestic coal development, the 

recommended strategy moderately exploits that resource and foregoes any value that could be 

extracted in case of a policy that more aggressively exploits domestic coal potential.  

Resolution of uncertainty in four factors (coal and gas supply, fuel prices and demand) would 

potentially lead to different 1st stage investments. In that case, the EVPI is positive because 

planners would have pursued different first-stage investment plans if they knew with certainty 

which scenario would realize. For instance, the SP solution recommends low development of 

domestic coal in the 1st stage. However, if planners knew with certainty that the domestic supply 

of coal will be high, they would have invested in more coal units early on (strategy of cluster 1 in 

Table 4-6). Demand growth appears to be the most impactful uncertainty according to EVPI. This 

is reasonable because uncertain demand growth makes determination of total investment 

challenging and the recommended plans are facing the risk of over or under-procuring. The SP 

solution here recommends under-procurement of baseload capacity such as imported coal for 
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scenarios with high demand growth. If planners knew with certainty that scenarios with high 

demand growth would realize, they would have developed more power plants that use imported 

coal (switching to strategy of cluster 7 in Table 4-6). 

Finally, the value of information on climate change is surprisingly zero and contradicts my 

motivating hypothesis that Bangladesh faces high uncertainty with respect to climate change.  This 

surprising result is explained by (a) my relatively optimistic assumptions on climate change and its 

impact and (b) the relatively limited adaptation options included in this mathematical program. 

First, my assumptions on climate change and its impact are optimistic because I employ climate 

change projections for year 2025 (flooding) and 2016–2041 for temperature and cooling degree 

days. Note that the 5-day rainfall increases by 23% compared to historical levels in 2025 under the 

high climate change scenario, whereas it increases by 56% by the end of the century [249]. Second, 

I focus on a subset of climate change impacts on Bangladesh and potentially underestimate its 

impact. For instance, cyclones are not captured by FATHOM’s model and their potential impact 

on the availability of transmission grid and fuel. Third, I investigate the flooding risk at each facility 

as statistically independent from each other facility because FATHOM — the company that 

provided the flooding risk projections — did not provide information on the geographical 

interdependencies of risk. That way, the disruption the grid experiences due to flooding is 

underestimated because simultaneous outages are not considered. Fourth, I use data from a single 

flooding model, developed by FATHOM. However, there are multiple flooding models in the 

literature, which can potentially produce different flooding projections under the same climate 

projections because of modeling differences. For instance, a cross-comparison of six global 

flooding models in [256] found significant differences between models’ projections in river deltas. 

Fifth, the uncertainty resolves in the second stage (post 2025): that way planners prioritize 

investments in assets that are not expected to be affected by climate change and the plans can be 

adapted later.  
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Finally, in Table 4-17 I provide the estimates of the approximate EVPI in case the set of 

feasible strategies consists of the seven RDM strategies and the SP strategy. Note that in that case 

the first term of equation 4-6 is the expected cost of the SP strategy. Comparing the values of 

Tables 4-16 and 4-17, it is obvious that the approximate values of EVPI change. The relative 

importance of each uncertain factor — as determined by the ranking of each EVPI — is the same. 

However, the change of the value illustrates the fact that the values of EVPI calculated here are 

approximate. 

 
Table 4-17: Approximation of expected value of perfect information in case the feasible set 

includes only the SP and seven RDM strategies (in millions of 2015 U.S. dollars) 

Uncertainty 
Approximate value of 
perfect information 

Temperature 0 

Demand 110 

Fuel prices 0 

Coal policy/supply 90 

Gas supply 19 

Flooding 0 

 

Overall, these results are useful because they reveal actions planner could take to limit 

uncertainty and/or gaps in the consideration of uncertainty, e.g., with climate change. 

4.7 CONCLUSIONS 

Here, I summarize the major insights the cross-comparison of Robust Decision Making to 

Stochastic Programming offers across the three criteria suggested by Crousillat [42]: modeling 

capability, practical applicability, and contribution to decision making. Both methods can handle 

dynamic multi-factor uncertainties for power system planning and recommend adaptive strategies. 

In practical problems of large scale though, both methods rely on approximations.  The quality of 

approximations determines the quality of the recommended solution. For stochastic programming 

applications where many scenarios might be plausible, the performance of stochastic programming 
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is dependent on the quality of the scenario reduction or sampling method used. In power system 

planning problems where enumeration of all possible investment plans is impossible, performance 

of RDM is dependent on the set of strategies considered.   

In terms of practical applicability, both methods are complex and resource-intensive. 

However, implementation of RDM seems more difficult as its execution time increases with the 

number of strategies. The number of runs the planner has to do is usually large, and parallelization 

of model runs might be needed to complete the task in a timely manner. For example, in this 

analysis the SP solution was identified within 80 minutes. In the contrary, it took on average ~200 

minutes to conduct the vulnerability assessment for each strategy. 

RDM usually provides more information on the performance of alternative strategies and in 

that way, it can help planners build a deeper understanding of the problem they face. RDM results 

can shed light on the relative importance of uncertainty, guiding corrective actions to eliminate or 

better define the uncertainty.  

Overall, it seems that methods have complementary strengths and weaknesses. SP is more 

practical, whereas RDM provides a breadth of information to decision makers. Given the 

complementarities in strength and weaknesses of each method, as part of future research, it might 

worth to try different heuristics integrating aspects of both methods into a single method. As an 

example, I mention a heuristic that would have worked in this particular example. This heuristic 

relies on the reduced set of scenarios, identified for SP to screen promising strategies for further 

vulnerability analysis within RDM. Note however that there is no guarantee that the described 

heuristic would have been successful for another example.  

The insights from the cross-comparison might have limited applicability for at least four 

reasons. First, only one planning problem is considered. It is possible that the structure of the 

problem might favor one method over another. For example, in this problem, first-stage 

investment decisions differed only for a few candidates across plausible scenarios; which may have 

made the selection of discrete strategies easy. Second, both methods are applied as “open-loop”. 
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In other words, no additional strategies are tested for RDM after the vulnerability assessment and 

no sensitivity analysis of SP is conducted here. Third, no theoretical justification for the 

conclusions is provided that would guarantee applicability of the conclusions to other examples. 

Fourth, absence of stakeholders also limits the conclusions of the comparison since I miss any 

important differences on the way both methods facilitate stakeholder engagement. 

Finally, the cross-comparison presented in this chapter is also limited by its focus on a single 

probabilistic performance metric — the expected value.  In future applications, the scope of the 

cross-comparison could be expanded to include robust performance metrics such as min-max 

regret [45].  To optimize those metrics, robust optimization might be the method of choice instead 

of SP.  For the case study presented in this chapter, robust optimization can be formulated as a 

linear program because the uncertainties are described through a finite, discrete set of scenarios.  

However, solving that linear program would be challenging for a typical personal computer given 

the large (over 40 million) number of constraints and variables, hence smaller problems (equivalent 

to or approximating the full problem) would have to be formulated.  Note that robust optimization 

could also be used as a method to generate an initial strategy in step 2 of the RDM method (Section 

4.2.1).
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CHAPTER 5   

CONCLUSIONS 

5.1 SUMMARY 

This thesis proposes and assesses three enhancements to power system planning models. The 

need for those enhancements is becoming increasingly pronounced under the 21st century 

challenges of energy access and climate change. Policymakers and decision makers rely on power 

system planning models to analyze policies and assess investments. Thus, any enhancements to 

power system planning models should be scrutinized to verify that they are practical and 

sufficiently represent uncertainties, techno-economic and other key factors. Chapters 2, 3, and 4 

each assess one enhancement using a case study.  

Chapter 2 assesses an enhancement to transmission planning for restructured electricity 

markets. The enhancement was proposed in the academic literature over a decade ago [12], but 

has not as of yet been put into practice. In brief, academics have suggested that transmission 

planners should be proactive and consider themselves Stackelberg leaders, i.e., in assessing 

transmission investments, models should anticipate that generators will optimize their investments 

and operations in response to changes in the grid configuration. In theory, the proactive approach 

improves planners’ objective function compared to reactive approaches [12]. In [12], the proactive 

approach is formulated as a complex multi-level program, potentially discouraging its adoption by 

planners. Here, I prove that under assumptions of perfect competition the problem of the 

proactive planner can be formulated as a single-level co-optimization problem. Moreover, I 
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estimate that transmission planners in the Eastern Interconnection, USA forego ~11–86% of the 

benefits resulting from transmission investments by adhering to traditional non-proactive practices 

for evaluation of transmission investments. 

Chapter 3 proposes a conflict-aware power system planning framework for fragile and 

conflict-affected states. The analysis in Chapter 3 illustrates how traditional power system planning 

models that overlook conflict underestimate the cost and levels of unserved energy in conflict-

affected regions. The conflict-aware framework of Chapter 3 highlights the fact that no technology 

or resource is immune to conflict effects. Chapter 3 demonstrates how conflict projections can 

inform power system planning through a multi-stage stochastic program. As time progresses, 

planners form updated projections on future conflict, and adaptive power system development 

strategies are suggested. The conflict-aware strategies differ from conventional approaches in that 

they suggest postponement, diversification, and/or adjustment of investments according to the 

trajectory of conflict. Testing the new framework on a case study of South Sudan, I demonstrate 

that the conflict-aware framework reduces power disruptions and/or the costs of power supply 

compared to conventional approaches. 

Chapter 4 compares two methods that can recommend power plans that are more robust to 

long-term uncertainties compared to plans that are developed by models that consider only a 

“baseline” future. Uncertainty has been present and recognized in power system planning since 

the early days of the field [5]. However, climate change has renewed interest in the topic. Reviewing 

the literature in Chapter 4, I conclude that in current practice methods are chosen without 

justification, based on contradicting rationales or overly narrow characterization of methods. I 

compare two of the most popular methods — Stochastic Programming (SP) and Robust Decision 

Making (RDM)  — using three criteria: modeling capability, practical applicability and contribution 

to decision making [42]. In the case study of power system planning in Bangladesh under climate, 

demand, and fuel uncertainties over the next 25 years, the two methods prove to be equally capable 

of capturing the nature and consequences of those uncertainties. However, the two methods have 



 

 161 

complementary strengths and weaknesses with regards to the two other criteria. In particular, SP 

is more practical and less demanding in computational time and power, whereas RDM provides 

rich information on the problem at hand that can help planners better understand the decision 

context. In the case study of this chapter, SP defines a plan that performs better than any RDM 

strategy in terms of expected costs when evaluated over approximately 500 scenarios, even though 

the SP model itself only included 7 scenarios due to the curse of dimensionality. However, this is 

not necessarily a general result, as the performance of SP over all possible futures depends on the 

ability of the selected subset to satisfactorily represent the original set of scenarios.  

The enhancements proposed in this thesis are relevant for real-world power system planning 

studies. However, those enhancements are only a subset of the enhancements that power system 

planners should consider implementing as advances in software and hardware allow them to solve 

more complex models. This thesis focuses on enhancements that will improve the value of 

planning processes by better representing the context: the institutional framework in Chapter 2, in 

terms of the relationship of transmission and generation planning entities; civil conflict risk in 

Chapter 3; and exogenous long-term uncertainties in Chapter 4. In Sections 5.2–5.5 below, I 

elaborate on these limitations and identify promising research areas for power system planning 

models in general as well as for the specific topics that Chapters 2–4 address.  

5.2 GENERAL LIMITATIONS AND FUTURE RESEARCH ON 
POWER SYSTEM PLANNING 

I discuss limitations and areas for future research on power system planning in the following 

two subsections. The first highlights limitations and promising research directions rising from the 

emergence of new technologies. The second provides an overview of fundamental limitations of 

power system planning models and ongoing research to address them. 
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5.2.1 New technologies 

Emergence of new technologies might make traditional approximations and assumptions 

followed in power system planning models obsolete. Enhanced temporal approximations will be 

necessary to simulate electricity generation by renewable resources; representation of elastic 

demand will become necessary if there are high amounts of “smart” loads and storage; and the 

scope and objective of planning might be totally redefined in a future scenario with high 

penetration of distributed resources. 

The variable and uncertain nature of renewable generation is approximated crudely in 

traditional power system planning models [257]. For example, power system planning models 

usually include a capacity constraint, which ensures that sufficient capacity will be available for 

peak demand. Almost the entire rated capacity of conventional thermal power plants factors into 

that capacity constraint. However, the uncertain and variable nature of renewables makes the 

calculation of capacity credits for renewables less straightforward [258]. Renewables also increase 

the need for flexibility in power systems. This flexibility can be provided through storage and more 

cycling and ramping of conventional units.  Currently, most power system planning models cannot 

value that flexibility because of temporal resolutions that do not respect the chronology of loads 

and generation, nor constraints arising from unit commitment. Thus, new methods that improve 

temporal resolution are being developed [83], [84], [259], [260].   

Demand is modeled as inelastic in this thesis as well as in most power system planning models 

[6]. However, new technologies such as electric vehicles and smart appliances are projected to gain 

market share [261], [262]. Estimating the elasticity of demand as a result of those technologies and 

integrating updated descriptions of demand in power system planning models is another 

enhancement to consider. 

Moreover, this thesis assumes that the role of transmission and power system planners remains 

the same, i.e., planners are responsible for cost-efficient, reliable operation of the grid. But this 

role is being questioned today. For example, declining costs of distributed generation combined 
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with favorable regulation have led to growing adoption of community choice aggregation (CCA) 

programs in California [263]. Allocation of already incurred costs for customers that switched to 

CCA programs has initiated regulatory proceedings in California [264]. It is unclear what the role 

of planners will be if the grid becomes a last resort option. A recent report by the Electricity 

Advisory Committee [265] recommends additional research to avoid grid defection and discusses 

the possibility of risk sharing among customers through purchase of reliability plans.  

5.2.2 Scope of  power system planning 

Power system planning models will be always limited by their narrow scope, their reliance on 

data, and their forward-looking character. Accounting for their limitations, their results can be 

useful for analysis of policies and strategies in the power sector. I discuss those three limitations 

in the following paragraphs. 

Power system planning models — similar to the ones used in this thesis — usually solve single-

sector partial-equilibrium problems, in that feedback effects upon power demands on the supply 

and prices of inputs for power production through other sectors of the economy are not 

considered [266]. Therefore, power system planning fails to see any economy-wide effects and 

substitutions. Context-specific risks such as the ones of Chapters 3 and 4 usually affect the entire 

economy and partial equilibria fail to capture the intersectoral adjustments such as electrification 

of the economy under climate change mitigation scenarios.  In addition, power system modeling 

is blind to other infrastructure sectors. However, as Chapter 3 illustrates, the power sector highly 

depends on other sectors e.g. for fuel supply. Ongoing research on representation of infrastructure 

interdependencies [267] and development of links  between computable generable equilibrium 

models that look into the entire economy and power system planning models [268] are helpful to 

address economy-wide feedbacks. . 

Model results are as good as the quality of their inputs and assumptions. Access to good quality 

data is a challenge for any real-world power system planning study, but this challenge is far more 
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pronounced in the developing world [17], where institutions and agencies might be in their infancy. 

Data might not be available e.g., on assessments of domestic resources, or the information may be 

in non-electronic form or scattered among various reports by different agencies and institutions.  

As with any forward-looking model, power system planning models are bounded by epistemic 

uncertainty. In other words, models represent only relationships we are aware of. However, there 

are still unknown relationships and unknown unknowns. For instance, there is no empirical 

research on the effect of electrification on the probability of conflict. Moreover, the next 

technological breakthrough is in the sphere of unknown unknowns.  

Despite all those limitations, the enhancements proposed here lead to improvement of power 

system planning as long as existing market flaws do not prevent their benefits from being realized. 

The limitations discussed above introduce uncertainty on the potential value planners can realize 

by implementing those enhancements.  

In the remainder of this chapter, I elaborate on limitations and research directions for each 

chapter. Those limitations and directions are more project-specific compared to the general issues 

discussed above.  

5.3 LIMITATIONS AND FUTURE RESEARCH ON 
TRANSMISSION PLANNING 

There are at least four assumptions and limitations in Chapter 2 that could spur further 

research: (1) coordination of transmission planning across the entire Eastern Interconnection; (2) 

omission of reliability constraints and objectives; (3) compensation of transmission investments; 

and (4) approximate representation of the Eastern Interconnection power grid.  I explain how 

future research could investigate the intersection between proactive transmission planning and 

each topic in the paragraphs below.  

There are eight transmission planning regions recognized by FERC in the Eastern 

Interconnection (EI) [269] and many more agencies that a transmission developer would have to 
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apply for approval to start the construction of a transmission line. Chapter 2 though takes the 

perspective of an EI-wide planner who assesses transmission investments optimizing the costs 

across the interconnection. In cases where side payments are possible, the framework of Chapter 

2 could be equivalent to seamless coordination of transmission investments among planners. 

However, such coordination of planning procedures is not the case now [78]. As of September 

2016, no regional transmission plan had selected an interregional project for cost allocation [56]. 

Future research and policies mainstreaming the coordination of planning and operation on issues 

such as cost allocation between regions would be beneficial as interregional coordination can 

smoothen renewable variability [270] and lead to lower system costs. While coordination between 

transmission planners remains imperfect, further research on models such as the ones proposed 

by Kasina [271]  might be helpful to simulate the interactions between multiple strategic proactive 

transmission planners.  

Transmission planning in this chapter considers only economic and policy objectives. 

Developing methods that evaluate transmission investments based on all three criteria (reliability, 

economic, and policy-related) is challenging because reliability is assessed based on non-linear 

models of power system operations. Research so far has integrated a subset of reliability constraints 

in the planning models such as N-1 contingency criteria [272]. MISO’S MVP [77] demonstrates 

the interest of planners in such a process since projects that might be suboptimal under any single 

criterion, might offer the best value when all three criteria are considered. Thus, future research 

on computational challenges and integration of reliability considerations would be beneficial. 

Chapter 2 assumes that investments are compensated at a guaranteed rate of return, and 

investors would be incented to build the efficient investments identified by planning models. 

Furthermore, generators are assumed to be reacting to efficient locational marginal prices 

However, this is not the case everywhere [273] and different payment schemes might necessitate 

different formulations within the power system planning framework, for instance bi-level 

formulations that represent how generators and consumers react to inefficient transmission 
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pricing. Financial Transmission Rights (FTR) are also available in most US markets and future 

research could investigate the impact of new transmission investments on FTR allocation along 

with financial incentives FTRs might provide for transmission investment [274].  

The grid of the Eastern Interconnection is represented in Chapter 2 as a 24-node system. 

Better representation of the grid would allow future case studies to explicitly account for 

transmission grid constraints such as Kirchhoff’s Voltage Law and simulate practices such as 

transmission switching [275].  Recognizing the actual constraints that networks impose as well as 

the flexibility provided by smart grid practices such as transmission switching would hopefully lead 

to better estimates of interregional trade and benefits of transmission expansion. 

5.4 LIMITATIONS AND FUTURE RESEARCH ON CONFLICT-
AWARE PLANNING 

The conflict-aware framework of Chapter 3 would benefit from any advances in conflict 

prediction and systematical investigation of conflict effects on infrastructure. The analysis of 

Chapter 3 could be extended to include more sophisticated representation of conflict and account 

for technical feasibility of investment plans. I elaborate on those limitations and future research 

directions in the following paragraphs.  

Databases such as the EIAD [131] are relatively new and provide information on a subset of 

effects of interest to power system planners (e.g., outage days), covering only a subset of historical 

events (e.g., attacks on infrastructure during the Liberian civil war are not included). At the same 

time, rich information including quantitative data on conflict effects on power systems are 

scattered in damage assessment reports, documents for reconstruction programs, and articles in 

the press. Hence, systematic collection and presentation of relevant information would facilitate 

further research. 

In future applications, analysts could use finer resolution for conflict effects if conflict 

prediction methods provide it and represent the decision making process of attackers to the grid. 
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Finer resolution in three aspects might be beneficial: on the geographical extent because conflict 

effects tend to be more intense in certain regions of a country over others; temporal profiles 

because conflict effects are more meaningfully considered at a sub-annual granularity; and intensity 

of conflict because conflict effects are not constant (versus off/on, the assumption in Chapter 3). 

For instance, the conflict in South Sudan is more intense in some parts of the country and fuel 

prices have been fluctuating depending on the intensity of conflict. Such an extension of the model 

could be first tried out in an analysis that uses historical data on a conflict. Assessing the potential 

benefits of finer resolution in a historical case would only require updates on the resolution of the 

power system planning model and would indicate if the effort to create methods that predict 

conflict and its effect in finer resolution is worthwhile. The modeling framework could also be 

extended to include strategic rebels, relying on large literature on “opponent” type games in 

electricity networks primarily developed for terrorist and cyber-attacks. For instance, attackers 

might decide to target power system components that will cause the maximum disruption to the 

grid  [276].  

Analysis of Chapter 3 could be extended to include technical constraints. Here, I mention a 

couple of assumptions and results that make technical feasibility of recommended plans a high 

priority.  Each city is assumed to be able to operate as both a standalone microgrid and as part of 

a national transmission grid at will. Results recommend electricity generation almost entirely by 

renewable resources and storage during some hours of the year. Finally, future studies in South 

Sudan should consider additional options such as trade with neighbors, investment in natural gas 

infrastructure, and other renewable resources. 

5.5 LIMITATIONS AND FUTURE RESEARCH ON CLIMATE 
CHANGE ADAPTATION IN POWER SYSTEM PLANNING 

The cross-comparison of Robust Decision Making and Stochastic Programming of Chapter 4 

would greatly benefit by involvement of stakeholders. The conclusions of Chapter 4 would still be 
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valid, but they would be enriched by adding stakeholder’s perspective on all three criteria (modeling 

capability, practical applicability, contribution to decision making). Chapter 4’s analysis and 

conclusions also suggest that further research on approximations used within the two methods, 

representation of climate change impact, uncertainty characterization of climate change 

projections, and climate change risk management would be beneficial. I elaborate on all four 

aspects in the following paragraphs. 

Results of Chapter 4 highlighted the dependency of available methods on approximations of 

the scenario set or decisions. They also pointed out the complementarities between the two 

methods. So, future research on approximation heuristics such as scenario reduction methods and 

methods that measure the quality of those approximations e.g., through calculation of bounds 

would greatly help practitioners. Advances in parallelization methods would also reduce the 

computational burden for applications of RDM. Whereas, research proposing combination of 

both methods into a single framework to take advantage of the computational efficiency of SP and 

the transparency of RDM seems a promising area as well.  

The analysis of climate change impact on the Bangladeshi power system could also be 

extended in several ways. Chapter 4 only examined the impact of flooding and increased 

temperature on power plants. However, other effects of climate change on power system 

infrastructure were ignored due to limited resources and information such as the availability of 

water for cooling needs of thermal power plants and the climate change effects on the transmission 

grid. Moreover, the analysis would benefit by advances in flooding models. As of now, global 

flooding models disagree on their projections in delta areas [277]. Adding information on 

geographical correlation of the flooding projections would also be beneficial for system analysis.  

Any advances in climate change projections will obviously benefit adaptation modeling. More 

specifically though, decision making tools will benefit by additional characterization of the 

uncertainty. Additional research on the probabilistic interpretation of the projections would help. 

For instance, past research has suggested considering the genealogy of climate models to assign 
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probabilities to projections [278] or assigning weights based on the “skill” of models to represent 

climate variables [279].  

Finally, there is a fundamental question: How will the risk of climate change be managed and 

shared among countries, companies, and citizens?  This thesis assumed that Bangladeshi power 

plants would be able to purchase insurance to cover flood-related damage. I did not specify under 

which program or financial tool the power plant owners would buy such an insurance product. 

COP23 in November 2017 organized a panel on frontiers of risk sharing [280], where a clearing 

house with information on risk transfer [281] was launched. Policymakers and decisionmakers will 

further discuss climate change risk mitigation and management in the coming years assessing 

options including but not limited to insurance products, sovereign catastrophe risk pools [282], 

and climate-resilient standards [283]. Assessment of climate risk management options and 

adaptation strategies under varying risk attitudes — departing from the risk neutral framework —

at multiple scales (countries, companies, citizens) would probably provide useful insights for the 

forthcoming policy discussions. 
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APPENDIX A  

FURTHER DETAILS ON CHAPTER 3  

Appendix A provides detailed information on the quantitative analysis of Chapter 3. Sections 

A.1–A.5 document the assumptions regarding input data and Sections A.6–A.14 provide detailed 

results on strategies discussed in Sections 3.6.1–3.6.9. Sections A.1 and A.2 present detailed 

information on transmission outages during conflict in Colombia and fuel prices during conflict 

in Juba, respectively. Section A.3 lists the sources of input data for the conflict projection model. 

Section A.4 presents input assumptions for the power system planning model such as capital cost 

of candidate power plants. Section A.5. explains the enforcement of the policy constraint. Finally, 

Sections A.6–A.14 provide detailed results for Section 3.6.1–3.6.9, respectively and support 

arguments made in Chapter 3. 

A.1 ASSUMPTIONS RELATED TO THE EFFECT OF CONFLICT 
ON TRANSMISSION OUTAGES 

In order to develop realistic assumptions for the outage of transmission network during 

conflict, I analyze the Energy Infrastructure Attack Database (EIAD) [131] . EIAD has data on 

attacks from all over the world, but I decided to focus the analysis on Colombia because the 

database has particularly good coverage of it. As a benchmark, I calculate the outage rates observed 

during 1998–2002 because the armed-related deaths and homicide rate consistently increased over 

that period. I focus on lines which connect more than 1,000 MW of generation to the system 
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acknowledging that the attacks might be targeting lines with higher disruption potential if the 

attackers are strategic and have limited resources. 

Majority of the attacks to the transmission network in EIAD involved bombing of 

transmission towers. If at least one tower of the line is under repair, I assume that the line is not 

operational. I use the following information provided in EIAD to calculate the outage rate: 

1. Name of transmission line for identification purposes. 

2. Downtime. 

If the name of the line is missing, I used geographical information to determine the line 

targeted by the attack. For downtime, the entries were both quantitative and qualitative. In the first 

case, I use them directly but in the latter case I employ the following assumption: (<1 week: 5 days, 

<1 month: 20 days, <3 months: 50 days, <6 months: 120 days, >6 months: 200 days). 

 
Table A-1: Outage rates for transmission lines in Colombia connecting more than 1000 MW of 
generation capacity to the grid 

 
1998 1999 2000 2001 2002 

TL Ancón Sur-S.Carlos 230 kV. 18% 100% 100% 96% 98% 

TL Cerromatoso-San Carlos 500 kV. 95% 67% 100% 99% 100% 

TL Chivor-Sochagota 230 kV. 0% 0% 0% 0% 28% 

TL Chivor-Torca 230 kV. 6% 0% 0% 0% 0% 

TL Esmeralda-S.Carlos 230 kV. 24% 100% 81% 100% 100% 

TL Guatapé-San Carlos 230 kV. 0% 76% 14% 19% 40% 

TL Guavio-Torca 230 kV. 0% 0% 0% 0% 17% 

TL La Virginia-S.Carlos 500 kV. 40% 38% 100% 100% 100% 

TL San Carlos-Torca 230 kV 0% 0% 0% 5% 0% 

A.2 ASSUMPTIONS RELATED TO THE EFFECT OF CONFLICT 
ON FUEL PRICES  

During conflict, fuel shortages are frequently observed. During shortages, limited fuel quantity 

is available, and the price is usually higher. Given the absence of a supply-demand model for the 

oil market in South Sudan, I used a multiplier to simulate price increases. To make sure that the 

chosen multiplier is realistic, I downloaded historical price data for petrol [166] in Juba over 2012–

2017.  
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Acknowledging that in this case study I already account for two factors influencing the fuel 

price (i.e., the exchange rate and the international price of oil), I calculate the price I would expect 

to observe if the price was just affected by these two factors. Then, I divide the observed petrol 

price in Juba by the calculated/expected price and obtain a multiplier. I present the estimates for 

the multiplier in Figure A-1. The mean value of the multiplier during the first two and a half years 

is 0.92 (period: Dec 2012–July 2015) and for subsequent two and a half years the mean value is 3.6 

(period: Aug 2015–Dec 2017). So, the value (2) I used in the case study seems realistic.  

 

 

Figure A-1: Petrol price analysis in Juba 

A.3 INPUT DATA FOR ESTIMATION OF PROBABILITY OF 
CONFLICT 

I code the model by Hegre et al. [119] in Matlab, using the following inputs: 

1. Population: the forecast provided under the medium variant scenario by the United 

Nations [284] 

2. GDP: I use the GDP/capita for 2016 provided in [285]. For subsequent years, I vary 

GDP growth based on conflict history. In particular, I assume annual GDP growth 

of 0%, 0.5% and 2.5%, 5% if 0, 1, 2, 3 or more years of peace have been experienced 

since the last conflict, respectively. This assumption is similar to recent IMF 
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projections [286], where the 2018, 2019 and 2020 real GDP growths are 1.1%, 3.5%, 

and 6% respectively.  

3. Education: I did not find projections of education statistics for South Sudan. Instead, 

I use projections [287] provided under Shared Socio-Economic Pathway 2 (SSP2) for 

Ethiopia because the 2015 education statistics reported for the two countries are 

similar [288]. 

4. Neighboring countries: I do not run a global model as in [119]. As a result, I do not 

have data on neighboring conflicts to use as inputs. Instead, I rely on conflict forecast 

estimated by [119] under SSP2. For each year in the planning horizon, I compare the 

forecasted probability of conflict against a random number drawn from the uniform 

distribution. If the number is higher or lower, I assume the neighboring country to be 

under conflict or in peace, respectively. 

5. Coefficients: I draw 225 different sets of coefficients from a multi-variate normal 

distribution. Given the lack of estimate of random effects coefficients for South 

Sudan, I use the estimates for Central African Republic and draw 15 instances. 

The probabilities for each of the eight scenarios used in the case study are presented in Table 

A-2. In Table A-3, I provide the probability of each state in years 2026–2029, 2030, 2035, 2040, 

2045. 

 
Table A-2: Probabilities for scenarios used in the case study 

Scenario Probability 

Conflict-Conflict-Peace 0.19 

Conflict-Conflict-Conflict 0.29 

Conflict-Peace-Peace 0.26 

Conflict-Peace-Conflict 0.04 

Peace-Conflict-Peace 0.01 

Peace-Conflict-Conflict 0.02 

Peace-Peace-Peace 0.17 

Peace-Peace-Conflict 0.02 

 
 



 

 174 

Table A-3: Probability of conflict in years included in the model (past 2025) under all eight 
scenarios 

 
Scenarios 2026 2027 2028 2029 2030 2035 2040 2045 

Conflict-Conflict-Peace 0.10 0.13 0.15 0.17 0.17 0.20 0.21 0.20 

Conflict-Conflict-Conflict 0.72 0.63 0.56 0.50 0.47 0.39 0.33 0.27 

Conflict-Peace-Peace 0.12 0.16 0.18 0.20 0.21 0.23 0.23 0.23 

Conflict-Peace-Conflict 0.71 0.62 0.56 0.50 0.46 0.34 0.31 0.28 

Peace-Conflict-Peace 0.08 0.11 0.13 0.14 0.15 0.18 0.18 0.18 

Peace-Conflict-Conflict 0.71 0.62 0.58 0.55 0.52 0.38 0.30 0.26 

Peace-Peace-Peace 0.11 0.17 0.19 0.22 0.22 0.26 0.23 0.25 

Peace-Peace-Conflict 0.68 0.62 0.56 0.49 0.48 0.31 0.29 0.29 

A.4 ADDITIONAL INPUT DATA USED IN THE POWER 
SYSTEM PLANNING MODEL OF CHAPTER 3 

I use the annual load projections for major cities provided under the base scenario in [169]. I 

assume a chronological profile for load based on the typical daily profile and the monthly peaks 

recorded in Kenya [289]. 

As power system candidates, I evaluate investments using: 

- Assumptions for oil and hydropower plants provided in the same report as load 

projections [169]. See below in Table A-4, a list of candidate hydropower plants 

considered here. 

- Capital costs for PV and storage are assumed to be 1,200$/kW and 1,700$/kW 

respectively, in line with recent quotes for South Sudan [290]. 

- Annual PV capacity factors provided by Global Solar Atlas [291]. 

- I assume that all PV in the country have the same hourly profile as the one found for 

Jimma in  NREL PVWatts [292]. 

- For fuel prices, I use as starting price in 2014 the price provided in [169] and then apply 

the growth rate projected for crude oil price in [248]. 
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Table A-4: Candidate hydropower plants 

Candidate Capacity (MW) Annual capacity factor Capital cost ($ mil/MW) 

Lakki 300 45% 1.8 

Bedden 522 45% 2.1 

Shukoli 1100 49% 1.5 

Wau_Dam 10.5 65% 10.8 

Kinyeti 1.95 56% 7.6 

A.5 POLICY CONSTRAINT 

Here, I provide the earliest year unserved energy is not allowed to be positive per scenario. 

For scenarios starting with peace, the earliest year is the first year of the model horizon given that 

diesel generators can satisfy demand in times of peace.  

 
Table A-5: Earliest year for elimination of unserved energy 

Scenarios Year 
Conflict-Conflict-Conflict 2027 
Conflict-Conflict-Peace 2023 
Conflict-Peace-Conflict 2020 
Conflict-Peace-Peace 2020 
Peace-Conflict-Conflict 2017 
Peace-Conflict-Peace 2017 
Peace-Peace-Conflict 2017 
Peace-Peace-Peace 2017 
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A.6 CONFLICT-NAÏVE STRATEGY (STRATEGY 1): DETAILED 
RESULTS 

The conflict-naïve strategy is the solution to the optimization problem described in Section 

3.4.3.a that considers peace prevailing for the entire planning horizon. The optimality gap at the 

solution reported here for the “conflict-naïve strategy” is 0.4968%. In Table A-6, I provide the 

cost composition and observe that majority of the cost is capital expenses (hereafter mentioned as 

Capex).  

 
Table A-6: Cost composition of the conflict-naïve strategy under continued peaceful conditions 

Category Cost (in million 2014 SSP) 

Capex 17,546 

Dispatch 9,685 

Fixed Operation and Maintenance Expenses (FOM) 819 

Penalty for Unserved Energy 197 

Total 28,247 

 

 
In Table A-7, I provide the capacity mix under the conflict-naïve strategy. The solution 

recommends investment in the large hydropower plant (1.1 GW in Shukoli) as first priority given 

its favorable economics. Note that 2024 is the first year I let hydropower plants to be online in the 

model, accounting for some recovery time from the chronic conflict. In addition, Table A-8 

presents the generation mix over the entire planning horizon. 
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Table A-7: 2017–2045 Capacity mix of the conflict-naive strategy assuming continued peace 

Year Oil (MW) Hydro 
(MW) 

Storage 
(MW) 

PV (MW) Total Capacity 
(MW) 

2017 176 
   

176 

2018 184 
 

16 197 397 

2019 201 
 

16 213 429 

2020 227 
 

16 220 462 

2021 246 
 

16 222 484 

2022 256 
 

16 222 494 

2023 256 
 

16 222 494 

2024 97 1,100 8 222 1,427 

2025 97 1,100 8 222 1,427 

2026 97 1,100 8 222 1,427 

2027 97 1,100 8 222 1,427 

2028 97 1,100 8 222 1,427 

2029 97 1,100 8 222 1,427 

2030 97 1,100 8 222 1,427 

2035 146 1,100 
 

296 1,542 

2040 211 1,400 
 

872 2,482 

2045 287 1,922 
 

1,430 3,639 

 

Table A-8: 2017–2045 Generation mix of the conflict-naive strategy assuming continued peace 
 

Year Oil (GWh) Hydro(GWh) PV (GWh) 

2017 1,096 - - 

2018 942 - 295 

2019 1,056 - 321 

2020 1,181 - 337 

2021 1,325 - 350 

2022 1,472 - 357 

2023 1,612 - 357 

2024 - 1,983 356 

2025 - 2,218 343 

2026 - 2,445 347 

2027 - 2,697 352 

2028 - 2,996 336 

2029 - 3,283 350 

2030 - 3,610 353 

2035 582 4,733 439 

2040 842 5,931 1,409 

2045 1,167 7,997 2,307 
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A.7 TRANSMISSION OUTAGE-AWARE STRATEGY (STRATEGY 
2): DETAILED RESULTS 

The optimality gap of the solution reported here for the transmission outage-aware strategy is 

5% and the objective function of the transmission outage-aware strategy is 9% lower compared to 

the objective function recorded when the conflict-naïve strategy is followed and the effects of 

conflict on transmission outages are simulated. 

To demonstrate that the transmission outage-aware strategy (strategy 2) relies more on local 

capacity, I provide in Table A-9 the geographical distribution of energy generated for two 

indicative scenarios when the transmission outage-aware strategy (i.e., strategy 2) and the conflict-

naïve strategy are followed. There, I observe a more balanced geographical distribution under the 

transmission outage-aware strategy. In particular, for both strategies the top node in terms of 

energy generated connects a hydropower plant to the transmission grid: Lakki (300 MW) under 

the transmission outage-aware strategy and Shukoli (1,100 MW) under the “conflict-naïve 

strategy”. However, the transmission outage-aware strategy relies much less on the top generating 

node: under peaceful conditions 47% of the energy is generated at the top node (vs. 86% under 

the conflict-naïve strategy) and under conflict conditions 28% of the energy is generated at the top 

node (vs. 47% under the conflict-naïve strategy). Looking at the contribution of other nodes as 

well, it is clear that there is higher geographical diversification under the transmission outage-aware 

strategy. 
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Table A-9: Geographical distribution of energy generated in 2025 under two scenarios for two 
strategies: conflict-naïve and transmission outage-aware 

 

Conflict-Conflict-Conflict 
(status in 2025: conflict) 

Peace-Peace-Peace 
(status in 2025: peace) 

Node 

Transmission 
outage-aware 
strategy 

Conflict-naïve 
strategy 

Transmission 
outage-aware 
strategy 

Conflict-
naïve 
strategy 

Aweil 4% 3% 3% 2% 

Benitu 2% 2% 2% 1% 

Bor 3% 3% 1% 0% 

Juba 17% 13% 13% 0% 

Kapoeta 1% 1% 1% 0% 

Kuacjok 3% 2% 2% 1% 

Lakki 28% 0% 47% 0% 

Malakal 16% 14% 10% 6% 

Maridi 4% 2% 4% 0% 

Rumbeck 3% 2% 1% 1% 

Shukoli 0% 47% 0% 86% 

Torit 2% 1% 2% 0% 

Wau 6% 5% 4% 2% 

Yambio 4% 2% 4% 1% 

Yei 7% 3% 7% 0% 
Electricity demand 
met (GWh) 2,405 2,317 2,412 2,412 

  

In Table A-10 to Table A-14 , I provide the capacity mix for years 2025, 2030, 2035, 2040 and 

2045 for the transmission outage-aware strategy (strategy 2). For example, contrasting Table A-7 

to Table A-14, it is obvious that there is redundant oil capacity under the transmission outage-

aware strategy since the oil capacity is significantly higher in Table A-14 while capacity for hydro 

and PV is almost identical for both strategies (transmission outage-aware strategy and conflict-

naïve strategy). In addition, the higher contribution of oil generation to the energy mix during 

times of conflict compared to times of peace in 2045 can be observed in Table A-15. 
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Table A-10: 2025 Capacity mix recommended by the transmission outage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 280  300 97  594  1,271  

Conflict-Conflict-Peace 280  300 97  594  1,271  

Conflict-Peace-Conflict 255  300 97  593  1,245  

Conflict-Peace-Peace 255  300 97  593  1,245  

Peace-Conflict-Conflict 281  300  97  593  1,270  

Peace-Conflict-Peace 281  300  97  593  1,270  

Peace-Peace-Conflict 252  300  96  592  1,240  

Peace-Peace-Peace 252  300  96  592  1,240  

 

Table A-11: 2030 Capacity mix recommended by the transmission outage-aware strategy 

Scenarios Oil (MW) 
Hydro 
(MW) 

Storage 
(MW) PV (MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 467  300  97  870  1,734 

Conflict-Conflict-Peace 411  300  97  847  1,656 

Conflict-Peace-Conflict 447  300  112  876  1,736 

Conflict-Peace-Peace 433  300  97  842  1,672 

Peace-Conflict-Conflict 475  300  97  869  1,741 

Peace-Conflict-Peace 391  300  97  846  1,634 

Peace-Peace-Conflict 468  300  96  855  1,719 

Peace-Peace-Peace 433  300  96  847  1,676 

 

Table A-12: 2035 Capacity mix recommended by the transmission outage-aware strategy 

Scenarios Oil (MW) 
Hydro 
(MW) 

Storage 
(MW) PV (MW) Total Capacity (MW) 

Conflict-Conflict-Conflict 601  1,400  2 870  2,874  

Conflict-Conflict-Peace 528  1,400  2 847  2,778  

Conflict-Peace-Conflict 617  1,400  27 920  2,964  

Conflict-Peace-Peace 533  1,400  2 842  2,777  

Peace-Conflict-Conflict 601  1,400  2 869  2,873  

Peace-Conflict-Peace 519  1,400  2 846  2,767  

Peace-Peace-Conflict 584  1,400  1 855  2,840  

Peace-Peace-Peace 576  1,400  1 847  2,824  
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Table A-13: 2040 Capacity mix recommended by the transmission outage-aware strategy 

Scenarios Oil (MW) 
Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 887  1,400   883  3,170  

Conflict-Conflict-Peace 816  1,400   884  3,100  

Conflict-Peace-Conflict 879  1,400  25 882  3,187  

Conflict-Peace-Peace 822  1,400   883  3,105  

Peace-Conflict-Conflict 874  1,400   883  3,157  

Peace-Conflict-Peace 793  1,400   884  3,077  

Peace-Peace-Conflict 876  1,400   882  3,159  

Peace-Peace-Peace 822  1,400   883  3,106  

   

Table A-14: 2045 Capacity mix recommended by the transmission outage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict 1,153  1,922  
 

1,444  4,518  

Conflict-Conflict-Peace 1,102  1,922  
 

1,446  4,469  

Conflict-Peace-Conflict 1,190  1,922  10 1,450  4,572  

Conflict-Peace-Peace 1,118  1,922  
 

1,444  4,483  

Peace-Conflict-Conflict 1,141  1,922  
 

1,445  4,509  

Peace-Conflict-Peace 1,089  1,922  
 

1,446  4,456  

Peace-Peace-Conflict 1,189  1,922  
 

1,441  4,552  

Peace-Peace-Peace 1,134  1,922  
 

1,444  4,500  

 

Table A-15: 2045 Energy mix under all eight scenarios when the transmission outage-aware 
strategy is followed 

 

Scenarios Status Oil Hydro PV 
Energy served 
(GWh) 

Conflict-Conflict-Peace conflict 35% 44% 21% 10,424 

Conflict-Conflict-Peace peace 10% 70% 20% 10,843 

Conflict-Conflict-Conflict conflict 35% 44% 21% 10,486 

Conflict-Conflict-Conflict peace 10% 70% 20% 10,843 

Conflict-Peace-Peace conflict 35% 44% 21% 10,444 

Conflict-Peace-Peace peace 10% 70% 20% 10,843 

Conflict-Peace-Conflict conflict 36% 43% 21% 10,531 

Conflict-Peace-Conflict peace 10% 70% 20% 10,843 

Peace-Conflict-Peace conflict 35% 44% 21% 10,395 

Peace-Conflict-Peace peace 10% 70% 20% 10,843 

Peace-Conflict-Conflict conflict 35% 44% 21% 10,476 

Peace-Conflict-Conflict peace 10% 70% 20% 10,843 

Peace-Peace-Peace conflict 35% 44% 21% 10,465 

Peace-Peace-Peace peace 10% 70% 20% 10,843 

Peace-Peace-Conflict conflict 36% 43% 21% 10,525 

Peace-Peace-Conflict peace 10% 70% 20% 10,843 
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A.8 TRANSMISSION OUTAGE/SHORTAGE-AWARE STRATEGY 
(STRATEGY 3): DETAILED RESULTS 

The optimality gap of the solution reported here for the outage/shortage-aware strategy is 5% 

and the objective function of the outage/shortage-aware strategy is 19% lower compared to the 

objective function recorded when the conflict–naïve strategy is followed and the effects of conflict 

on transmission outages and fuel supply are considered. 

Here, I provide the capacity mix over time (Table A-16 to Table A-20). Comparing the first 

four rows (i.e., scenarios with violent first period) to the last four rows (i.e., scenarios with peaceful 

first period) of Table A-16, I observe different technological composition with more PV and 

storage in the former group and more oil in the latter group. Comparing the generation mix 

reported for conflict-naïve (strategy 1) and outage/shortage-aware strategy (strategy 3) in 2045 (see 

Table A-21), readers can confirm that there is limited room for additional generation by all 

technologies in times of conflict compared to their generation under peaceful conditions. More 

importantly, hydropower and oil produce lower amounts of energy given the unavailability of 

transmission network and fuel shortages. However, the outage/shortage-aware strategy 

demonstrates lower unserved energy rates due to higher integration of PV, whose operation is not 

affected by the two conflict effects modeled here. 

 
Table A-16: 2025 Capacity mix recommended by the outage/shortage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 83  300 673  1,323  2,380  

Conflict-Conflict-Peace 82  300 673  1,323  2,379  

Conflict-Peace-Conflict 99  300 630  1,210  2,238  

Conflict-Peace-Peace 97  300 630  1,210  2,236  

Peace-Conflict-Conflict 135  300 568  1,141  2,144  

Peace-Conflict-Peace 132  300 568  1,141  2,140  

Peace-Peace-Conflict 118  300 553  1,072  2,043  

Peace-Peace-Peace 114  300 553  1,072  2,039  
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Table A-17: 2030 Capacity mix recommended by the outage/shortage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict 176  300  688  1,635  2,798  

Conflict-Conflict-Peace 150  300  673  1,536  2,659  

Conflict-Peace-Conflict 197  300  664  1,617  2,779  

Conflict-Peace-Peace 173  300  630  1,548  2,651  

Peace-Conflict-Conflict 205  300  702  1,660  2,867  

Peace-Conflict-Peace 160  300  568  1,494  2,522  

Peace-Peace-Conflict 179  300  566  1,528  2,573  

Peace-Peace-Peace 167  300  553  1,487  2,508 

Table A-18: 2035 Capacity mix recommended by the outage/shortage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict 198  1,400  92  1,635  3,324  

Conflict-Conflict-Peace 182  1,400  77  1,536  3,195  

Conflict-Peace-Conflict 159  1,400  281  1,779  3,619  

Conflict-Peace-Peace 194  1,400  33  1,548  3,176  

Peace-Conflict-Conflict 208  300  913  2,315  3,735  

Peace-Conflict-Peace 192  1,400  15  1,494  3,101  

Peace-Peace-Conflict 196  1,400  12 1,528  3,136  

Peace-Peace-Peace 197  1,400  
 

1,487  3,084  

 
 
Table A-19: 2040 Capacity mix recommended by the outage/shortage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict 175 1,400 15 1,561 3,151 

Conflict-Conflict-Peace 178 1,400  1,537 3,115 

Conflict-Peace-Conflict 182 1,400 247 1,952 3,782 

Conflict-Peace-Peace 175 1,400  1,537 3,113 

Peace-Conflict-Conflict 153 1,400 792 1,975 4,320 

Peace-Conflict-Peace 161 1,400  1,478 3,039 

Peace-Peace-Conflict 173 1,400 12 1,558 3,143 

Peace-Peace-Peace 174 1,400  1,537 3,111 
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Table A-20: 2045 Capacity mix recommended by the outage/shortage-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 268  1,400  450  2,957  5,075  

Conflict-Conflict-Peace 172  1,922  33  2,202  4,329  

Conflict-Peace-Conflict 267  1,400  449  2,959  5,076  

Conflict-Peace-Peace 172  1,922  33  2,202  4,329  

Peace-Conflict-Conflict 189  1,400  764  3,266  5,619  

Peace-Conflict-Peace 172  1,922  32  2,200  4,326  

Peace-Peace-Conflict 269  1,400  450  2,957  5,076  

Peace-Peace-Peace 172  1,922  33  2,202  4,329  
 

Table A-21: 2045 Generation mix (in GWh) per scenario, status and fuel under conflict-naïve and 
outage/shortage-aware strategy when two conflict effects (transmission outages and fuel 
shortages) are modeled 

 

  

Conflict-naïve 
strategy 

Outage/shortage-
aware strategy 

Scenarios Fuel 
Status: 
conflict 

Status: 
peace 

Status: 
conflict 

Status: 
peace 

Conflict-Conflict-Peace Oil 572 1,167 572 554 

Conflict-Conflict-Peace Hydro 4,718 7,997 4,718 7,997 

Conflict-Conflict-Peace PV 2,195 2,307 3,102 3,181 

Conflict-Conflict-Conflict Oil 572 1,167 572 842 

Conflict-Conflict-Conflict Hydro 4,718 7,997 3,499 5,931 

Conflict-Conflict-Conflict PV 2,195 2,307 4,675 4,688 

Conflict-Peace-Peace Oil 572 1,167 572 555 

Conflict-Peace-Peace Hydro 4,718 7,997 4,718 7,997 

Conflict-Peace-Peace PV 2,195 2,307 3,102 3,181 

Conflict-Peace-Conflict Oil 572 1,167 572 840 

Conflict-Peace-Conflict Hydro 4,718 7,997 3,499 5,931 

Conflict-Peace-Conflict PV 2,195 2,307 4,660 4,680 

Peace-Conflict-Peace Oil 572 1,167 572 557 

Peace-Conflict-Peace Hydro 4,718 7,997 4,718 7,997 

Peace-Conflict-Peace PV 2,195 2,307 3,099 3,178 

Peace-Conflict-Conflict Oil 572 1,167 572 611 

Peace-Conflict-Conflict Hydro 4,718 7,997 3,499 5,931 

Peace-Conflict-Conflict PV 2,195 2,307 5,008 5,074 

Peace-Peace-Peace Oil 572 1,167 572 555 

Peace-Peace-Peace Hydro 4,718 7,997 4,718 7,997 

Peace-Peace-Peace PV 2,195 2,307 3,102 3,181 

Peace-Peace-Conflict Oil 572 1,167 572 844 

Peace-Peace-Conflict Hydro 4,718 7,997 3,499 5,931 

Peace-Peace-Conflict PV 2,195 2,307 4,675 4,688 
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A.9 TRANSMISSION OUTAGE/SHORTAGE/EXCHANGE RATE-
AWARE STRATEGY (STRATEGY 4): DETAILED RESULTS 

Here (in Table A-22 to Table A-26), I provide the capacity mix of the outage/shortage/ER-

aware strategy (strategy 4) overtime. The optimality gap of the solution reported here for the 

outage/shortage/ER-aware strategy is 6% and the objective function of the outage/shortage/ER-

aware strategy is 8% lower compared to the objective function recorded when the conflict–naïve 

strategy is followed and the effects of conflict on transmission outages, fuel supply and exchange 

rate are considered. 

 
Table A-22: 2025 Capacity mix recommended by the outage/shortage/ER-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 100  300  271  861  1,533  

Conflict-Conflict-Peace 103  300  271  861  1,536  

Conflict-Peace-Conflict 124  300  241  766  1,432  

Conflict-Peace-Peace 125  300  241  766  1,432  

Peace-Conflict-Conflict 75  1,100 194  643  2,012  

Peace-Conflict-Peace 78  1,100 170  643  1,990  

Peace-Peace-Conflict 79  1,100 183  643  2,005  

Peace-Peace-Peace 79  1,100 173  643  1,994  

 
 
Table A-23: 2030 Capacity mix recommended by the outage/shortage/ER-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict 161  300  400  1,336  2,197  

Conflict-Conflict-Peace 196  300  271  1,151  1,919  

Conflict-Peace-Conflict 183  300  312  1,226  2,021  

Conflict-Peace-Peace 203  300  241  1,125  1,869  

Peace-Conflict-Conflict 75  1,100  170  909  2,255  

Peace-Conflict-Peace 78  1,100  141  643  1,961  

Peace-Peace-Conflict 79  1,100  164  783  2,125  

Peace-Peace-Peace 79  1,100  119  643  1,941  
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Table A-24: 2035 Capacity mix recommended by the outage/shortage/ER-aware strategy 

Scenarios  
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 367  300  280  1,629 2,576  

Conflict-Conflict-Peace 131  1,400  45  1,151 2,727  

Conflict-Peace-Conflict 207  1,400  86  1,232 2,925  

Conflict-Peace-Peace 124  1,400  15  1,125 2,664  

Peace-Conflict-Conflict 60  1,100  
 

1,021 2,181  

Peace-Conflict-Peace 62  1,100  
 

806 1,968  

Peace-Peace-Conflict 63  1,100  
 

1,021 2,184  

Peace-Peace-Peace 63  1,100  
 

1,021 2,184  

 

Table A-25: 2040 Capacity mix recommended by the outage/shortage/ER-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 272  1,400  230 1,906  3,808  

Conflict-Conflict-Peace 96  1,400   1,537  3,033  

Conflict-Peace-Conflict 130  1,400  71 1,654  3,254  

Conflict-Peace-Peace 96  1,400   1,537  3,033  

Peace-Conflict-Conflict 210  1,100  64 1,639  3,013  

Peace-Conflict-Peace 227  1,100   1,584  2,911  

Peace-Peace-Conflict 210  1,100  64 1,639  3,013  

Peace-Peace-Peace 99  1,400   1,516  3,014  

Table A-26: 2045 Capacity mix recommended by the outage/shortage/ER-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 272  1,400  428  2,982  5,082  

Conflict-Conflict-Peace 176  1,922   2,135  4,233  

Conflict-Peace-Conflict 267  1,400  448 2,954  5,069  

Conflict-Peace-Peace 175  1,922   2,150  4,247  

Peace-Conflict-Conflict 269  1,400  446  2,952  5,068  

Peace-Conflict-Peace 179  1,922   2,115  4,216  

Peace-Peace-Conflict 270  1,400  448  2,955  5,073  

Peace-Peace-Peace 175  1,922   2,150  4,247  

 

A.10 CONFLICT-AWARE STRATEGY (STRATEGY 5): DETAILED 
RESULTS 

The conflict-aware strategy is the solution to the optimization problem described in Section 

3.4.3.a that considers conflict-dependent values for all four planning parameters. The optimality 
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gap at the solution reported here for the conflict-aware strategy is 1.78%. To achieve a smaller gap, 

I could either let the model run for more hours or experiment with different settings and 

formulations.  Please note that improving the gap would result in a solution with lower or equal 

cost to the one I identified here. However, for the purposes of this analysis, I consider the gap 

acceptable because the conflict-aware strategy identified has an objective function that is lower by 

8.7% compared to the conflict-naïve strategy. The conflict-aware strategy has lower penalty costs 

for unserved energy across all scenarios (compare results in Table A-27 and Table A-28).  

 
Table A-27: Cost composition of the conflict-naive strategy under all eight scenarios 

Cost per scenario (in 
million 2014 SSP) Capex Dispatch FOM 

Penalty for 
Unserved 
Energy 

Total 
Cost 

Conflict-Conflict-Peace 21,781 9,795 951 39,328 71,855 

Conflict-Conflict-Conflict 26,320 7,393 1,081 67,699 102,492 

Conflict-Peace-Peace 21,864 11,951 936 23,552 58,303 

Conflict-Peace-Conflict 25,586 14,258 1,065 44,029 84,937 

Peace-Conflict-Peace 21,198 14,854 939 16,946 53,937 

Peace-Conflict-Conflict 26,244 16,580 1,134 38,451 82,409 

Peace-Peace-Peace 21,065 10,835 962 7,347 40,208 

Peace-Peace-Conflict 24,525 16,422 1,002 29,263 71,212 

Table A-28: Cost composition of the conflict-aware strategy under all eight scenarios 

Cost per scenario (in 
million 2014 SSP) Capex Dispatch FOM 

Penalty for 
Unserved Energy 

Total 
Cost 

Conflict-Conflict-Peace 17,596  11,664  1,079  35,249  65,589  

Conflict-Conflict-Conflict 22,098  8,726  1,358  59,791  91,973  

Conflict-Peace-Peace 19,140  11,913  1,022  20,747  52,821  

Conflict-Peace-Conflict 23,956  15,690  1,352  35,814  76,812  

Peace-Conflict-Peace 20,191  16,698  1,039  13,736  51,664  

Peace-Conflict-Conflict 27,780  17,599  1,340  31,391  78,110  

Peace-Peace-Peace 20,201  12,986  1,034  6,027  40,248  

Peace-Peace-Conflict 26,682  16,237  1,324  17,292  61,535  

 

In Table A-29 to Table A-33, I provide the capacity mix recommended by the conflict-aware 

strategy under each of the eight scenarios.  
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Table A-29: 2025 Capacity mix recommended by the conflict-aware strategy 

Scenario Oil (MW) 
Hydro 
(MW) 

Storage 
(MW) PV (MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 332    332 

Conflict-Conflict-Peace 332   276 608 

Conflict-Peace-Conflict 326  10 269 604 

Conflict-Peace-Peace 326  10 328 663 

Peace-Conflict-Conflict 280  73 183 536 

Peace-Conflict-Peace 280  73 596 949 

Peace-Peace-Conflict 239  117 596 951 

Peace-Peace-Peace 166 300 117 616 1,199 

 

Table A-30: 2030 Capacity mix recommended by the conflict-aware strategy 

Scenario 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 354  343 1,276 1,972 

Conflict-Conflict-Peace 161 1,100 25 692 1,978 

Conflict-Peace-Conflict 352  344 1,280 1,976 

Conflict-Peace-Peace 129 1,100 10 328 1,567 

Peace-Conflict-Conflict 200 300 246 1,156 1,903 

Peace-Conflict-Peace 241 300 105 931 1,577 

Peace-Peace-Conflict 199 300 254 1,167 1,920 

Peace-Peace-Peace 237 300 119 965 1,621 

 

 
Table A-31: 2035 Capacity mix recommended by the conflict-aware strategy 

Scenario 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 116 1,100 343 1,276 2,834 

Conflict-Conflict-Peace 145 1,100 25 908 2,179 

Conflict-Peace-Conflict 123 1,100 336 1,280 2,839 

Conflict-Peace-Peace 113 1,100 10 920 2,143 

Peace-Conflict-Conflict 113 1,400 173 1,156 2,842 

Peace-Conflict-Peace 130 1,400 32 931 2,493 

Peace-Peace-Conflict 122 1,400 153 1,167 2,842 

Peace-Peace-Peace 139 1,400 21 965 2,525 
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Table A-32: 2040 Capacity mix recommended by the conflict-aware strategy 

Scenario Oil (MW) 
Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 118 1,100 343 2,083 3,645 

Conflict-Conflict-Peace 219 1,100 25 1,605 2,949 

Conflict-Peace-Conflict 121 1,100 335 2,074 3,630 

Conflict-Peace-Peace 226 1,100  1,584 2,911 

Peace-Conflict-Conflict 44 1,400 173 1,818 3,435 

Peace-Conflict-Peace 104 1,400 30 1,432 2,965 

Peace-Peace-Conflict 57 1,400 138 1,761 3,356 

Peace-Peace-Peace 95 1,400 3 1,542 3,039 

 
 
Table A-33: 2045 Capacity mix recommended by the conflict-aware strategy 

Scenario 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 269 1,400 447 2,953 5,069 

Conflict-Conflict-Peace 175 1,922  2,150 4,247 

Conflict-Peace-Conflict 269 1,400 448 2,954 5,072 

Conflict-Peace-Peace 175 1,922  2,150 4,247 

Peace-Conflict-Conflict 269 1,400 446 2,952 5,067 

Peace-Conflict-Peace 175 1,922  2,144 4,241 

Peace-Peace-Conflict 269 1,400 448 2,955 5,072 

Peace-Peace-Peace 175 1,922  2,150 4,247 

A.11 CONFLICT-AWARE STRATEGY WITH EXTREME 
TRANSMISSION OUTAGE (STRATEGY 6): DETAILED RESULTS 

 

For the maximum-FOR sensitivity (strategy 6), I assume outage rate of 100% during times of 

conflict, which was the maximum value recorded for the benchmark lines (see Table A-1). The 

optimality gap for the maximum-FOR conflict-aware strategy reported here is 0.94%. In Table 

A-34 to Table A-38, I provide the capacity mix obtained.  
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Table A-34: 2025 Capacity mix of the maximum-FOR conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  296  
   

 296  
Conflict-Conflict-Peace  296  

  
 355   651  

Conflict-Peace-Conflict  274  
 

 176   355   805  
Conflict-Peace-Peace  274  

 
 176   745   1,195  

Peace-Conflict-Conflict  257  
 

 71   172   501  
Peace-Conflict-Peace  257  

 
 71   601   929  

Peace-Peace-Conflict  235  
 

 130   601   966  
Peace-Peace-Peace  164   300   130   627   1,221  

 
 
Table A-35: 2030 Capacity mix of the maximum-FOR conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  305  
 

 720   1,702   2,726  
Conflict-Conflict-Peace  242   300   289   1,199   2,031  
Conflict-Peace-Conflict  286  

 
 651   1,625   2,562  

Conflict-Peace-Peace  210   300   275   1,185   1,970  
Peace-Conflict-Conflict  210   300   567   1,527   2,604  
Peace-Conflict-Peace  214   300   244   1,171   1,929  
Peace-Peace-Conflict  208   300   578   1,540   2,626  
Peace-Peace-Peace  204   300   276   1,184   1,964  

 
 
Table A-36: 2035 Capacity mix of the maximum-FOR conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  426  
 

 842   2,230   3,498  
Conflict-Conflict-Peace  363   300   300   1,653   2,616  
Conflict-Peace-Conflict  272   300   663   2,027   3,261  
Conflict-Peace-Peace  347   300   359   1,703   2,709  
Peace-Conflict-Conflict  292   300   583   1,935   3,110  
Peace-Conflict-Peace  374   300   257   1,640   2,571  
Peace-Peace-Conflict  294   300   569   1,920   3,083  
Peace-Peace-Peace  344   300   377   1,712   2,733  

 

Table A-37: 2040 Capacity mix of the maximum-FOR conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total 
Capacity 
(MW) 

Conflict-Conflict-Conflict  131   1,100   842   2,735   4,808  
Conflict-Conflict-Peace  152   1,400   300   2,013   3,865  
Conflict-Peace-Conflict  128   1,400   486   2,319   4,333  
Conflict-Peace-Peace  167   1,400   182   1,884   3,633  
Peace-Conflict-Conflict  131   1,400   527   2,379   4,437  
Peace-Conflict-Peace  200   1,400   201   1,884   3,685  
Peace-Peace-Conflict  134   1,400   455   2,283   4,272  
Peace-Peace-Peace  192   1,400   262   2,012   3,866  
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Table A-38: 2045 Capacity mix of the maximum-FOR conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  273   1,400   395   3,080   5,149  
Conflict-Conflict-Peace  274   1,400   397   3,041   5,112  
Conflict-Peace-Conflict  244   1,400   544   3,110   5,297  
Conflict-Peace-Peace  274   1,400   400   3,037   5,111  
Peace-Conflict-Conflict  275   1,400   400   3,037   5,112  
Peace-Conflict-Peace  269   1,400   444   2,969   5,082  
Peace-Peace-Conflict  241   1,400   552   3,124   5,317  
Peace-Peace-Peace  274   1,400   400   3,037   5,111  

A.12 CONFLICT-AWARE STRATEGY WITH EXTREME 
EXCHANGE RATE (STRATEGY 7): DETAILED RESULTS 

For the maximum-ER sensitivity (strategy 7), I assume an exchange rate of 130 SSP/$, which 

is in line with the 2017 end of the year exchange rate. The optimality gap for the maximum-ER 

conflict-aware strategy reported here is 0.5%. In Table A-39 to Table A-43, I provide the capacity 

mix. 

Table A-39: 2025 Capacity mix of the maximum-ER conflict-aware strategy 

Scenarios Oil (MW) PV (MW) 
Total Capacity 
(MW) 

Conflict-Conflict-Conflict  16    16  
Conflict-Conflict-Peace  16    16  
Conflict-Peace-Conflict  343    343  
Conflict-Peace-Peace  343   17   360  
Peace-Conflict-Conflict  253    253  
Peace-Conflict-Peace  253   15   267  
Peace-Peace-Conflict  346   15   360  
Peace-Peace-Peace  346   29   375  

 
 
Table A-40: 2030 Capacity mix of the maximum-ER conflict-aware strategy 

Scenarios 
Oil 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  385  
 

 385  
Conflict-Conflict-Peace  505   64   568  
Conflict-Peace-Conflict  463   17   480  
Conflict-Peace-Peace  515   18   533  
Peace-Conflict-Conflict  305   15   319  
Peace-Conflict-Peace  557   113   671  
Peace-Peace-Conflict  454   29   482  
Peace-Peace-Peace  510   29   539  
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Table A-41: 2035 Capacity mix of the maximum-ER conflict-aware strategy 

Scenarios 
Oil 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  596    596  
Conflict-Conflict-Peace  782   64   846  
Conflict-Peace-Conflict  738   17   755  
Conflict-Peace-Peace  744   21   765  
Peace-Conflict-Conflict  738   15   753  
Peace-Conflict-Peace  754   143   897  
Peace-Peace-Conflict  736   29   765  
Peace-Peace-Peace  713   54   767  

 

Table A-42: 2040 Capacity mix of the maximum-ER conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  771    175   945  
Conflict-Conflict-Peace  1,064    71   1,135  
Conflict-Peace-Conflict  1,056    17   1,074  
Conflict-Peace-Peace  1,051    78   1,129  
Peace-Conflict-Conflict  1,069    15   1,083  
Peace-Conflict-Peace  477   1,100   143   1,720  
Peace-Peace-Conflict  1,067    29   1,096  
Peace-Peace-Peace  565   1,100   54   1,718  

 

Table A-43: 2045 Capacity mix of the maximum-ER conflict-aware strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict 785  1,100  465  2,350  
Conflict-Conflict-Peace 1,629  

 
86  1,715  

Conflict-Peace-Conflict 952  1,100  17  2,069  
Conflict-Peace-Peace 898  1,100  60  2,058  
Peace-Conflict-Conflict 1,524  

 
15  1,538  

Peace-Conflict-Peace 925  1,100  129  2,153  
Peace-Peace-Conflict 1,492  

 
21 1,513  

Peace-Peace-Peace 919  1,100  25 2,044  

A.13 CONFLICT-AWARE STRATEGY WITH EARLY 
ELECTRIFICATION (STRATEGY 8): DETAILED RESULTS 

In this sensitivity, I add several constraints which do not allow the unserved energy to be 

positive after a particular year for each scenario. I refer to this strategy as zero-unserved energy 

strategy (strategy 8) and the optimality gap for the solution reported here is 1.2%. 
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Table A-44: Cost composition of the “zero-unserved energy” strategy 

Category Cost (in million 2014 SSP) 

Capex 41,835 

Dispatch 8,137 

FOM 1,724 

Penalty for Unserved Energy 24,179 

Total 75,875 

 

 
Table A-45: 2025 Capacity mix of the “zero-unserved energy” strategy 

Scenarios 
Oil 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  295   92  
 

 387  
Conflict-Conflict-Peace  295   92   1,524   1,911  
Conflict-Peace-Conflict  176   725   1,524   2,425  
Conflict-Peace-Peace  182   725   1,524   2,431  
Peace-Conflict-Conflict  135   825   1,524   2,484  
Peace-Conflict-Peace  135   825   1,524   2,484  
Peace-Peace-Conflict  154   733   1,524   2,411  
Peace-Peace-Peace  182   733   1,524   2,439  

 

 
Table A-46: 2030 Capacity mix of the “zero-unserved energy” strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  187  
 

 1,548   2,640   4,375  
Conflict-Conflict-Peace  195   300   1,246   2,274   4,014  
Conflict-Peace-Conflict  177  

 
 1,339   2,418   3,934  

Conflict-Peace-Peace  222   300   961   1,947   3,430  
Peace-Conflict-Conflict  166  

 
 1,330   2,408   3,904  

Peace-Conflict-Peace  157   300   1,205   2,208   3,869  
Peace-Peace-Conflict  166  

 
 1,330   2,408   3,904  

Peace-Peace-Peace  220   300   962   1,945   3,427  

 

Table A-47: 2035 Capacity mix of the “zero-unserved energy” strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  180   311   1,793   3,177   5,460  
Conflict-Conflict-Peace  226   311   1,620   3,088   5,244  
Conflict-Peace-Conflict  218   311   1,627   3,095   5,250  
Conflict-Peace-Peace  220   311   1,620   3,086   5,236  
Peace-Conflict-Conflict  223   300   1,667   3,151   5,342  
Peace-Conflict-Peace  220   311   1,617   3,079   5,226  
Peace-Peace-Conflict  223   311   1,622   3,089   5,244  
Peace-Peace-Peace  220   311   1,620   3,086   5,236  
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Table A-48: 2040 Capacity mix of the “zero-unserved energy” strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  221   311   2,769   4,949   8,249  
Conflict-Conflict-Peace  221   311   2,769   4,949   8,249  
Conflict-Peace-Conflict  218   311   2,782   4,963   8,274  
Conflict-Peace-Peace  218   311   2,781   4,963   8,273  
Peace-Conflict-Conflict  219   311   2,779   4,960   8,268  
Peace-Conflict-Peace  223   311   2,757   4,932   8,223  
Peace-Peace-Conflict  218   311   2,782   4,963   8,274  
Peace-Peace-Peace  218   311   2,782   4,963   8,273  

 

Table A-49: 2045 Capacity mix of the “zero-unserved energy” strategy 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Total Capacity 
(MW) 

Conflict-Conflict-Conflict  228   311   4,235   7,336   12,110  
Conflict-Conflict-Peace  228   311   4,235   7,336   12,110  
Conflict-Peace-Conflict  228   311   4,235   7,336   12,110  
Conflict-Peace-Peace  228   311   4,235   7,336   12,110  
Peace-Conflict-Conflict  228   311   4,235   7,336   12,110  
Peace-Conflict-Peace  229   311   4,227   7,320   12,086  
Peace-Peace-Conflict  228   311   4,235   7,336   12,110  
Peace-Peace-Peace  228   311   4,235   7,336   12,110  

A.14 CONFLICT-AWARE STRATEGY WITH FINANCING 
CONSTRAINTS (STRATEGY 9): DETAILED RESULTS 

Adding a constraint that does not allow the annual expenses to exceed the maximum amount 

of revenue that the utility can collect based on the amount of energy served at the same year and 

the customer’s WTP does not significantly change the capacity mix after 2025. However, the timing 

of the investments changes early in the horizon (before 2025). As figures in Table A-50 to Table 

A-52 indicate, the plan with the financing constraint recommends lower investment in oil units 

early on and higher investment on PV and storage compared to the plan without the financing 

constraint. The optimality gap for the solution reported here is 1.7%. 
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Table A-50: 2019 Capacity mix recommended by the conflict-aware model with and without 
financing constraint 

 With financing constraint Without financing 
constraint 

Scenarios Oil (MW) PV (MW) Oil (MW) PV (MW) 

Conflict-Conflict-Conflict 82   196  
Conflict-Conflict-Peace 82   196  
Conflict-Peace-Conflict 82   196   
Conflict-Peace-Peace 82   196   
Peace-Conflict-Conflict 82  239 196  25  
Peace-Conflict-Peace 82  239 196  25  
Peace-Peace-Conflict 82  239 196  25  
Peace-Peace-Peace 82  239  196  25  

 

 
Table A-51: 2022 Capacity mix recommended by the conflict-aware model with and without 
financing constraint 

 
 With financing constraint Without financing constraint 

Scenarios 
Oil 
(MW) 

Storage 
(MW) PV (MW) Oil (MW) 

Storage 
(MW) 

PV 
(MW) 

Conflict-Conflict-Conflict 71    245    
Conflict-Conflict-Peace 71    245   
Conflict-Peace-Conflict 71   406 245   184  
Conflict-Peace-Peace 71   406  245   184  
Peace-Conflict-Conflict 227  81 365  232  73 183  
Peace-Conflict-Peace 227  81 365  232  73 183  
Peace-Peace-Conflict 227  81 506  232  73 494  
Peace-Peace-Peace 227  81 506  232  73 494  

Table A-52: 2025 Capacity mix recommended by the conflict-aware model with and without 
financing constraint 

 

 With financing constraint  Without financing constraint 

Scenarios 
Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Oil 
(MW) 

Hydro 
(MW) 

Storage 
(MW) 

PV 
(MW) 

Conflict-Conflict-Conflict  73     332     

Conflict-Conflict-Peace  73     536  332    276 

Conflict-Peace-Conflict  316    14   460  326   10  269 

Conflict-Peace-Peace  316    14   476  326   10  328 

Peace-Conflict-Conflict  286    81   365  280   73  183 

Peace-Conflict-Peace  286    81   601  280   73  596 

Peace-Peace-Conflict  238    118   601  239   117  596 

Peace-Peace-Peace  165   300   118   619  166  300 117  616 
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APPENDIX B  

FURTHER DETAILS ON CHAPTER 4  

Appendix B provides detailed information on the quantitative analysis of Chapter 4. Section 

B.1 explains in detail how flooding projections are integrated into the power system planning 

model. Section B.2 provides information on the impact of rising temperatures on power system 

operations included in the analysis of Chapter 4. Section B.3 provides an overview of key inputs 

and values for uncertain factors. I document the mathematical formulation of the power system 

planning problem of Chapter 4 in Section B.4 and quantitative information on the SP solution that 

supports arguments made in the main text in Section B.5. Lastly, Section B.6 employs a set of 

scenario reduction techniques different from those used in Chapter 4 to select a subset of scenarios 

for SP and compares the resulting SP solutions. 

B.1 INTEGRATION OF FLOOD PROJECTIONS WITHIN 
POWER SYTSEM PLANNING 

B.1.1 Impact of  floods on power systems 

Floods affect power plants in at least two ways. First, during floods power plants might shut 

down if their operation is judged as unsafe. The duration of outages, especially after a flood, 

depends on repairs needed in case of damage. Second, damages and the subsequent repairs lead to 

additional expenses. Here, I assume that power plants will procure insurance to hedge themselves 

against damage caused by floods.  

As of 2016, there was limited data on outages and damages power plants experience because 

of floods. In the USA, relevant damage estimates are provided by FEMA [293]. HAZUS 4.2 — 

the model FEMA employs for multi-hazard loss estimation — estimates damages for power plants 

up to 10 feet of inundation depth. In Bangladesh though, higher inundation depths have been 
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historically recorded and are currently projected by flooding models. Thus, I interviewed the JHU 

Power Plant Manager — at the time David Ashwood — and collected data from past floods.  

Discussing with Mr. Ashwood, it became clear that the layout of the power plant is important 

for quantification of the flooding risk. The same inundation depth will cause different levels of 

damage at a power plant where the turbine and boiler are located at grade level compared to 

another power plant where the turbine and boiler are located at an operating floor higher than the 

grade level. Elevation drawings of the power plants would be the ideal source of information to 

characterize the potential damage due to inundation. However, in the planning stage investments 

are still conceptual and elevation drawings are only available later when the feasibility of plans is 

examined. According to Mr. Ashwood, the design and elevation drawing is customized for each 

power plant based on site specifications and thorough analysis of costs and benefits of different 

designs. Ideally, elevation drawing for each power plant design along with its associated cost should 

be available to estimate the depth-damage curves for a power plant. However, to keep the 

assumptions here simple but at the same time as realistic as possible, I based them on the suggested 

elevation for equipment found in the feasibility report for Khulna power plant [294] with the 

operating level relocated from 17m (assumed for Khulna) to 3.5m. Using cost data provided in 

[294] and assuming that by the time water reaches the equipment replacement is required, I draw 

the depth-damage curve of Figure B-1.   
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Figure B-1: Flood damage and inundation depth (assumptions and historical datapoints) 

Comparing the fragility curve I constructed to data I collected from past floods (see Figure 

B-1), my assumption seems realistic. However, note that there is one datapoint with inundation 

depth at ~20 feet and less than 18% damage. That point refers to Watson Power Plant, where the 

elevation for expensive equipment (see Table B-1) was so high that neither the boilers nor the 

generator turbines suffered any damage. 

Restoration time increases are expected to increase similarly to damages. Similar to depth-

damage curve, I constructed a depth-outage curve that provides an estimate for outage days at 

each inundation depth. The underlying assumption for the depth-outage curve is the following: 

the duration of the outage is 1 day per dm up to 1.5m, the entire monsoon period for inundation 

depths between 1.5 and 4.5 m, and the entire year for inundation depths over 4.5m. Note that the 

observations vary widely. For example, superstorm Sandy caused damages to multiple PSEG 

assets. In that case, PSEG had to prioritize restoration efforts among different units [295] and 

repair days ranged from 12 to 63. 
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Figure B-2: Outage due to flooding and inundation depth (assumptions and historical datapoints) 

Table B-1:  Data on flooding damage and outage at a sample of coal power plant facilities 
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Row  Power plant Flood event 
Inundation 
depth (ft) 

Repair 
time 
(days) 

Damage (as % 
of the capex) 

1  Simhapuri, India 11/18/2015 4–5 [296] 18 <0.03% [297] 

2  
6th street generating 
station, Iowa (USA) June 2008 n/a  29% [298] 

3  
Prairie Creek, Iowa, 
USA June 2008 n/a  26% [299] 

4  Sutherland [300] June 2008 2–4 14 0 

5  Watson  
Hurricane 
Katrina, 2005 20 46 [301] <18% [302] 

6  Watson 
Hurricane 
Katrina, 2005 20 120 [301] <18% [302] 
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Table B-2: Data on flooding damage and outage at a sample of natural gas power plant facilities 

Row Power plant Flood event 
Inundation 
depth (ft) 

Repair 
time (days) 

Damage (as % 
of the capex) 

1 Linden, New 
Jersey 

Hurricane 
Sandy, 2012 

 
21 [295] n/a 

2 Kearny, New 
Jersey 

Hurricane 
Sandy, 2012 

 
12 [303] n/a 

3 Sewaren, New 
Jersey 

Hurricane 
Sandy, 2012 

 
63 [303] n/a 

4 [304] Michoud, 
Louisianna 

Hurricane 
Katrina, 2005 

<6 <81 1% 

5 Sabine, 
Louisiana 

Hurricane Ike 
2008 

4 [305] 150 
 

6 Rojana power 
plant 

Thailand, 2011 4–7 ~365 29% [306] 

    
 
Table B-3: Data on flooding damage and outage at a sample of diesel power plant facilities [307] 

Row Power plant Flood event Damage (as % of the capex) 

1 Hadramount Wadi Yemen, 2008 4% 

2 Hadramount Sahel Yemen, 2008 29% 
3 Mahara Yemen, 2008 58% 

B.1.2 Flood-dependent power system planning parameters 

Three power system planning parameters are assumed to be flood-dependent in this thesis: 

Fixed Operation and Maintenance cost (FOM), Forced Outage Rate (FOR), and capital cost.  

Fixed Operation and Maintenance (FOM) cost include expenses that do not vary significantly 

with generation such as staffing costs, general and administrative expenses [308]. Insurance costs 

for protection against damage of the property qualify as FOM expenses. The annual cost for 

insurance in this thesis is assumed to be 2.59 times the expected annual damage cost, in line with 

premiums recorded during the sale of New York Metropolitan Transportation Authority (MTA) 

catastrophe bonds. New York MTA catastrophe bonds offered three-year reinsurance protection 

for storm surge risks. 13 

                                                      
13 The probability of the catastrophic event was estimated to be 1 in 60 years and the expected loss was 
estimated to be 1.71 percent. Investors asked for a 4.5 percent spread [320]. 
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To calculate the expected damage, I adopt a micro-scale approach where the damage potential 

and the expected damage is evaluated at the object level: power plant [309]. This micro-scale 

approach uses a depth-damage function that estimates the damage incurred at the power plant at 

different inundation depths — here the one developed in Section B.1.1.  Note that the depth-

damage function of equation B-1 assumes that damage depends only on the inundation depth, 

ignoring any other flood characteristics such as duration of the flood or salinity of the water that 

might affect the magnitude of the damage. 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒

= ∫ 𝑑𝑥 ∗ ∫ 𝑑𝑦

𝑖𝑛𝑓

−𝑖𝑛𝑓

𝑖𝑛𝑓

−𝑖𝑛𝑓

∗ ∫ 𝑑𝑧 ∗ 𝐷(𝑥 + 𝑦 + 𝑧) ∗ 𝑓𝑠(𝑥) ∗ 𝑓𝑠(𝑦) ∗ 𝑓𝑠(𝑧)

𝑏−𝑥−𝑦

𝑎−𝑥−𝑦

 (Eq.  B-1) 

 
 

I use the integral of equation B-1 to estimate the expected damage under different climate 

scenarios s. In the equation B-1, 𝑎 is the grade level of the power plant post any protection measure; 

𝑏 is the height of the power plant. The three risks considered here are fluvial (𝑥), pluvial (𝑦) and 

coastal (𝑧) floods and they are assumed to be independent. For all three risks, I estimate power 

plant-specific probability distribution functions (pdf) 𝑓 by fitting a Gumbel pdf to data provided 

by FATHOM (see Section B.1.3). Function D (see Figure B-1) provides an estimate of the damage 

at inundation depth 𝑥 + 𝑦 + 𝑧. The expected outage is calculated in the same way as expected 

damage but using a different damage function. 

The grade level in present calculations is determined by an assumed building standard. 

Specifically, I assume that there is a building standard that requires power plant developers to 

protect their facility against the 200-year inundation depth. To the best of my knowledge, as of 

2016 such a standard did not exist, but it was common practice by developers as indicated in 

completed Environmental Impact Assessment and Feasibility studies.  The grade level assumption 

obviously affects the calculation of expected damage, but at the same time it increases the 
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construction cost. Here, I simply assume that the increase of capital cost is equal to the cost of 

filing material for the area of the power plant. To calculate the volume of filling material needed 

for each power plant site, land requirements are assumed to be 0.45 acres/MW for coal and 0.1 

acres/MW for gas units and the height is equal to the inundation depth at return period of 200 

years. Lastly, I multiply the cost of filling material ($39/cubic meter) with the volume and update 

the capital cost estimate for each power plant site to include this additional cost component. 

B.1.3 Probability distribution function for flooding risks 

In 2016, WBG purchased flooding data from FATHOM (at that time SSBN) for this project. 

FATHOM has developed a global flooding model which is documented in [310]. FATHOM 

provided fluvial and pluvial flooding projections using low, mean, and high projections for 5-day 

precipitation change from climate scenario RCP 8.5 [249], the scenario with the highest radiative 

forcing among the scenarios considered in AR5.14 Coastal flooding risk was provided for various 

levels of seal level rise from 0 m (historical) to 50 cm.   

FATHOM provided flood hazard maps with a ~90 m resolution for three flooding risks at 

return periods 5, 10, 20, 50, 75, 100, 200, 250, 500 and 1000 years. I use these datapoints to estimate 

the parameters of a Gumbel distribution. Note that the Bangladesh Power Water Development 

Board uses Gumbel probability distributions upon recommendation of this type of distribution 

under the Flood Assistance Program of 1992.  For each power plant site (see details later), I 

calculate the average inundation depth at each return period using ArcGIS. Using the average 

inundation depth at the return periods, I fit a Gumbel distribution at each site for every climate 

scenario. In particular, for each site I estimate the location (𝑎) and scale parameter (𝑏) of a Gumbel 

distribution by performing ordinary least squares for the linear relationship described in (Eq. B-2), 

which uses as input the mean inundation depth over the power plant area (𝑥) and the respective 

                                                      
14 RCP 8.5 has also been described as “a high-emission business as usual scenario.”  [321] 
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cumulative probability 𝐹(𝑥) (see Eq. B-3). For most power plant locations, I was able to fit a 

distribution with relatively acceptable R-squared. 

𝑥 = 𝑎 − 𝑏 ∗ ln (− ln(𝐹(𝑥))   Eq.  B-2 

𝐹(𝑥) = 1 −
1

𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑒𝑟𝑖𝑜𝑑
 

Eq.  B-3 

 
Upon completing the calculations for each climate scenario, I observe that the difference 

among the three flooding scenarios provided by FATHOM was negligible in terms of their impact 

on power system parameters. So, I decided to retain only the high scenario and to create one 

additional scenario relying on projections published by [250]. According to [250], the return period 

of a 100-year event under historical climate conditions will be 5–25 years in Bangladesh by the end 

of the century, as projected by the median model of AR5 in the RCP 8.5 scenario.  Using this 

result, I constructed a new scenario with modified flood profiles in order to project the historical 

100-year event as a 20-year event for fluvial/pluvial flooding and as a 25-year event for coastal 

flooding. 

B.2 TEMPERATURE EFFECTS ON POWER SYSTEMS 

Here, I consider two effects of temperature on power system: (1) capacity derates and (2) 

demand increases. Capacity derating of 0.4 percent  is assumed for coal, 0.5 percent for combined 

cycle gas turbine, and 0.7 percent for peaking open cycle gas turbine for every Celcius degree above 

27°C.  

The impact of cooling degree days on electricity demand is captured through empirical 

relationships provided in McNeil and Letschert [251]. These relationships rely on GDP and 

cooling degree days projections to estimate the penetration of air conditioners (AC units) in the 

residential sector and annual energy consumption per AC unit. 
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Table B-4: Temperature and CDD projections 

 
increase in cooling degree days over historical 

conditions  
summation of (max temperature -27) over all 12 

months  
bcc-csm1-1 cesm1-bgc mri-cgcm3 bcc-csm1-1 cesm1-bgc mri-cgcm3 

2016                    36                  451                 119                     73                    77                   72  

2017                  143                  351                 216                     65                    81                   66  

2018                  107                  513                 159                     69                    85                   68  

2019                  563                  564                   96                     86                    84                   69  

2020                  429                  332                   60                     81                    73                   64  

2021                  266                  363                   26                     76                    85                   61  

2022                  355                  520                 213                     79                    84                   71  

2023                  473                  603                   37                     80                    85                   63  

2024                  339                  447                   87                     74                    81                   65  

2025                  216                  292                   57                     72                    75                   62  

2026                  417                  348                 (21)                    80                    76                   57  

2027                  476                  404                 (93)                    88                    80                   51  

2028                  413                  377                   97                     78                    77                   63  

2029                  399                  289                 209                     81                    77                   69  

2030                  529                  626                 (44)                    82                    90                   55  

2031                  534                  554                 155                     80                    82                   69  

2032                  420                  365                 100                     79                    76                   62  

2033                  566                  680                 218                     85                    93                   71  

2034                  422                  813                 134                     79                    93                   65  

2035                  448                  721                   84                     84                    89                   63  

2036                  271                  628                   67                     78                    87                   57  

2037                  461                  495                 186                     80                    88                   67  

2038                  552                  415                 366                     83                    79                   84  

2039                  424                  345                 233                     77                    82                   64  

2040                  550                  434                 277                     83                    80                   68  

2041                  646                  530                 218                     87                    88                   61  

 

B.3 OTHER INPUTS 

The reference year for discounting of the objective function is 2015, and real 2015 U.S. dollars 

are used. The discount factor is 6 percent and the weighted average cost of capital is 10 percent 

for new investment projects. The value of lost load is assumed to be 50 U.S. cents/kWh.  

With respect to power imports, Bangladesh already has a 500 MW interconnection with India. 

In addition, new interconnections with Bhutan, Nepal, and India may be possible following the 

SAARC Regional Trade study. Here, I consider them as possibilities, and use the following 

assumptions:  

• The transmission investment cost is $3,184/MW/km.  
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• Interconnection capacity is constrained by an annual ceiling that increases from 

1,500 MW (2020) to 13,500 MW (2041).  

• An upper bound of 8 GW per interconnection option is used. 

Price assumptions are as follows: 

• For India, for each time block I assume that the price will be set by the most 

expensive power plant that is online at the moment. I use the  energy mix projections 

provided for the scenario “IEA New Policies”[311] to specify the most expensive type of 

power plant among the online power plants for each time block. In particular, I assume: 

high-speed diesel, 2,600 hours; natural gas, 1,828 hours; coal, 2,019 hours; nuclear, 2,313 

hours. The price assumptions are: high-speed diesel, $223.4/MWh; LNG, $98–

172.32/MWh; coal, $53.6/MWh; and nuclear, $44/MWh. Note that I assume the variable 

part of the price (assumed to be 67% for HSD, 73% for LNG, 48% for NG, 46% for 

coal) will increase at the same rate as international prices for fuel. 

• For hydropower imported from Nepal, I assume $47/MWh and availability 50 

percent of the year. 

• For hydropower imported from Bhutan, I assume a price of $37/MWh and $0.5 

million/MW based on a review of existing agreements with India [312]; availability 44 

percent of the year; and a production profile based on imports from Bhutan to India as 

reported in executive summaries over the past 10 years [313] 

New coal capacity up to a limit of 30 GW is considered, with a capital cost of $2,032/kW for 

domestic coal (4 sites) and $2,622/kW for foreign coal (13 sites). Given the paucity of land in 

Bangladesh I do not assume any sites for coal or gas beyond what has been considered in the 2010 

PSMP and the Ashugonj Power Station Company’s master plan. 
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Investments in natural gas power plants are considered at a capital cost of $1,342/kW for 

combined cycle units and $1,012/kW for open cycle units across 95 locations (see Figure B-3).15 I 

assume that the new gas power plants can either be developed on land being considered for coal 

power plant development (that is, competing with foreign coal power plants for the roughly 

~13,000 acres of land that in total are available for development) or on land already being used or 

proposed to be used for gas power plant development (~5,000 acres). 

 

Figure B-3: Map with sites for power plants (existing and candidate) 

 

Regarding investment in renewable sources, biomass is assumed to have a capital cost of 

$3,000/kW. Its potential is capped at 274 MW in line with the estimate provided in [314]. 

Photovoltaics’ capital cost is set at $2,430/kW; this includes an estimate of $880/kW for land 

                                                      
15 Some of the 95 locations are quite close to one another. For future runs, I could aggregate them but here 

I keep as much spatial detail as possible since the flooding risk depends on the elevation of the terrain, which 
might change abruptly. 
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acquisition. Investments in wind farms are not considered since the estimated potential is of ~600 

MW [314]. 
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B.3.1 Natural gas supply scenarios 

 

Table B-5: Natural gas supply scenarios in mmcfd 

 
High Low 

 
Domestic gas LNG Domestic gas LNG 

2016 2544 0 2544 0 

2017 2599 0 2599 0 

2018 2562 0 2562 0 

2019 2453 500 2453 500 

2020 2435 500 2435 500 

2021 2108 500 2108 500 

2022 2005 500 1835 500 

2023 1787 500 1617 500 

2024 1690 1000 1490 1000 

2025 1681 1000 1381 1000 

2026 1708 1000 1308 1000 

2027 1754 1500 1254 1000 

2028 1700 1500 1200 1000 

2029 1645 1500 1145 1000 

2030 1627 2000 1127 1000 

2031 1609 2000 1109 1000 

2032 1590 2000 1090 1000 

2033 1590 2500 1090 1000 

2034 1590 2500 1090 1000 

2035 1554 3000 1054 1000 

2036 1463 3000 963 1000 

2037 1463 3000 963 1000 

2038 1463 3500 963 1000 

2039 1463 3500 963 1000 

2040 1463 4000 963 1000 

2041 1154 4000 654 1000 
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B.3.2 Coal supply scenarios 

 

Table B-6: Coal supply in thousand tons 

 
Barapukuria Phulbari Kharaspir Dighipara 

 
High_
coal 

Base_
coal 

Low_
coal 

High_c
oal 

Base_
coal 

Low_
coal 

High
_coal 

Base_
coal 

Low_
coal 

High
_coal 

Base_
coal 

Low_
coal 

2016 1000 1000 850 
         

2017-19 1000 1000 900 
         

2020-21 1500 1100 1000 
         

2022 2000 1600 1000 
         

2023-24 2500 1600 1000 
         

2025-26 3000 2100 1000 
         

2027 3000 2100 1000 
   

500 500 500 
   

2028 3000 2100 1000 
   

1000 1000 1000 
   

2029 3000 2100 1000 
   

1500 1000 1000 500 500 500 

2030 4500 3200 1100 500 500 500 2000 1000 1000 1000 1000 1000 

2031 4500 3200 1100 1000 1000 1000 2000 1000 1000 1500 1000 1000 

2032 4500 3200 1100 2000 1000 1000 2000 1000 1000 2000 1000 1000 

2033 5500 3200 1100 2000 2000 1000 2000 1000 1500 2000 1000 1000 

2034 5500 3200 1100 3000 2000 1000 2000 2000 1500 2000 1000 1000 

2035 5500 3200 1100 3000 2000 1000 2500 2000 1500 2000 1000 1500 

2036 5500 3200 1100 4000 3000 1000 2500 2000 1500 2000 2000 1500 

2037 5500 3200 1100 4000 3000 2000 2500 2000 1500 2500 2000 1500 

2038 5500 3200 1100 5000 3000 2000 2500 2000 1500 2500 2000 1500 

2039 5500 3200 1100 5000 4000 2000 2500 2000 1500 2500 2000 1500 

2040-41 5500 3200 1100 6000 4000 2000 2500 2000 1500 2500 2000 1500 

 

B.4 FORMULATION FOR POWER SYSTEM PLANNING IN 
BANGLADESH  

Nomenclature 
Sets and Indices 

𝐹 Fuels indexed by f 

𝐺 Generators indexed by g 

𝑅 Regions indexed by r 

𝑆 Scenarios indexed by s 
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𝑇 Representative hours of the year indexed by t 

𝑌 Years indexed by y 

 
Decision variables 

𝑏𝑢𝑖𝑙𝑑_1𝑠𝑡𝑔,𝑦,𝑙  Generation investment in MW, added at y within 1st stage 

𝑏𝑢𝑖𝑙𝑑_2𝑛𝑑𝑠,𝑔,𝑦,𝑙  Generation investment in MW, added at y within 2nd stage 

𝑐𝑎𝑝𝑔,𝑠,𝑙,𝑦  Capacity in MW  

𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑙,𝑡,𝑦  Generation in MW at hour t 

𝑟𝑒𝑡_1𝑠𝑡𝑔,𝑦,𝑙  Retirement of generator g in MW at year y within first stage 

𝑟𝑒𝑡_2𝑛𝑑𝑠,𝑔,𝑦,𝑙  Retirement of generator g in MW at year y within second stage 

𝑢𝑠𝑒𝑠,𝑡,𝑦  Unserved energy at node i in MW 

𝑢𝑟𝑒𝑠𝑠,𝑦  Deficit in planning reserve margin constraint in MW 

 
Parameters 

𝐴𝑁𝐶𝐴𝑃𝑔,𝑙,𝑦  Annualized capital cost for generator g in $/MW 

𝐴𝐶𝐹𝑔  Maximum annual capacity factor for generator g 

𝐶𝐹𝑠,𝑙,𝑔,𝑡,𝑦  Capacity factor for generator g at hour t 

𝐷𝑡  Duration of representative hour t in hours 

𝐸𝑋𝑔,𝑠,𝑦,𝑦1
  1 for generators within their operational life; 0 otherwise 

𝐹𝑂𝑀𝑔,𝑙  Fixed Operation and Maintenance costs in US$ 

𝐻𝑅𝑔  Heat rate for generator g in MMBTU/MWh 

𝐿𝐴𝑁𝐷𝑙  Available land at location l in acres 

𝐿𝐴𝑁𝐷𝑃𝐸𝑅𝑀𝑊𝑔  Land requirement in acres per MW for generator g 

𝐿𝐸𝐴𝐷𝑔 Lead time (construction time for generator g) 

𝐿𝑂𝐴𝐷𝑠,𝑡,𝑦  Electricity demand in MW 

𝑝𝑠  Probability of scenario s 

𝑃𝐸𝐴𝐾𝑠,𝑦  Peak Load in MW 

𝑃𝑅𝑀  Planning reserve margin; assumed 15% 

PRMP  Penalty for violation of planning reserve margin constraint in $/MW 

𝑟  Discount rate; assumed 10% 

𝑉𝐶𝑓,𝑔,𝑠,𝑡,𝑦  Variable cost in $/MWh 

𝑉𝑂𝐿𝐿  Value of lost load in $/MWh 

 

MINIMIZE (capex + opex + penalty)  Eq.  B-4 

capex = ∑ 𝐴𝑁𝐶𝐴𝑃𝑔,𝑙,𝑦 ∗ 𝑏𝑢𝑖𝑙𝑑1𝑠𝑡𝑔,𝑙,𝑦𝑔,l,𝑦 + ∑ 𝑝𝑠 ∗ 𝐴𝑁𝐶𝐴𝑃𝑔,𝑙,𝑦 ∗𝑠,𝑙,𝑔,𝑦

𝑏𝑢𝑖𝑙𝑑_2𝑛𝑑𝑠,𝑔,𝑙,𝑦  

Eq.  B-5 

𝑜𝑝𝑒𝑥 = ∑ 𝑝𝑠 ∗
(𝐹𝑂𝑀𝑔,𝑙∗𝑐𝑎𝑝𝑔,𝑠,l,𝑦+∑ 𝐷𝑡∗𝑉𝐶𝑓,𝑔,𝑠,𝑡,𝑦∗𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑙,𝑡,𝑦𝑓,𝑡 )

(1+𝑟)𝑦−2016𝑠,𝑔,𝑙𝑦   
Eq.  B-6 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑
ps∗𝐷𝑡∗𝑉𝑂𝐿𝐿∗𝑢𝑠𝑒𝑠,𝑡,𝑦

(1+𝑟)𝑦−2016𝑠,𝑡,𝑦 + ∑ 𝑝𝑠 ∗
𝑢𝑟𝑒𝑠𝑠,𝑦∗ PRMP

(1+𝑟)𝑦−2016𝑠,𝑦   Eq.  B-7 
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𝑐𝑎𝑝𝑔,𝑠,𝑙𝑦 = 𝑐𝑎𝑝𝑔,𝑠,l,𝑦−1|𝑦>2016 +

𝑏𝑢𝑖𝑙𝑑_1𝑠𝑡𝑔,𝑙,𝑦−𝐿𝐸𝐴𝐷(𝑔) + 𝑏𝑢𝑖𝑙𝑑_2𝑛𝑑𝑠,𝑔,𝑙,𝑦−𝐿𝐸𝐴𝐷(𝑔) −

𝑟𝑒𝑡1𝑠𝑡𝑔,𝑦,𝑙
 − 𝑟𝑒𝑡2𝑛𝑑𝑠,𝑔,𝑦,𝑙

     

∀(𝑔, 𝑠, l, 𝑦)  Eq.  B-8 

𝑐𝑎𝑝𝑔,𝑠,l,𝑦 ≤  ∑ 𝐸𝑋𝑔,𝑠,𝑦,𝑦1
∗ (𝑏𝑢𝑖𝑙𝑑_1𝑠𝑡𝑔,𝑙,𝑦1

+𝑦1

𝑏𝑢𝑖𝑙𝑑_2𝑛𝑑𝑠,𝑔,𝑙,𝑦1
)  

   ∀(𝑔, 𝑠, l, 𝑦)

  

Eq.  B-9 

𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑙,𝑡,𝑦 ≤  𝐶𝐹𝑠,𝑙,𝑔,𝑡,𝑦 ∗ 𝑐𝑎𝑝𝑔,𝑠,l,𝑦     ∀(𝑓, 𝑔, 𝑠, 𝑙, 𝑡, 𝑦) Eq.  B-10 

∑ 𝐷𝑡 ∗ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑙,𝑡,𝑦𝑓,𝑡 ≤ 𝐴𝐶𝐹𝑔 ∗ 𝑐𝑎𝑝𝑔,𝑠,l,𝑦 ∗ 8760      ∀(𝑔, 𝑠, 𝑙, 𝑦)     Eq.  B-11 

∑ 𝐷𝑡 ∗ 𝑔𝑒𝑛𝑓,𝑔,𝑠,𝑙,𝑡,𝑦 ∗ 𝐻𝑅𝑔𝑔,l,𝑡 ≤ 𝐹𝑈𝐸𝐿𝑠,𝑓,𝑦  ∀(𝑠, 𝑓, 𝑦)  Eq.  B-12 

∑ 𝑔𝑒𝑛𝑓,𝑔,𝑠,l,𝑡,𝑦𝑓,𝑔,𝑙 + 𝑢𝑠𝑒𝑠,𝑡,𝑦 = 𝐿𝑂𝐴𝐷𝑠,𝑡,𝑦  ∀(𝑠, 𝑡, 𝑦)  Eq.  B-13 

∑ 𝑐𝑎𝑝𝑔,𝑠,𝑙,𝑦 ∗ 𝐿𝐴𝑁𝐷𝑃𝐸𝑅𝑀𝑊𝑔𝑔 ≤ 𝐿𝐴𝑁𝐷𝑙  ∀(𝑠, 𝑙, 𝑦)  Eq.  B-14 

∑ 𝑐𝑎𝑝𝑔,𝑠,𝑙,𝑦𝑔,𝑙 ≥ (1 + 𝑃𝑅𝑀) ∗ 𝑃𝐸𝐴𝐾𝑠,𝑦  ∀(𝑠, 𝑦)  Eq.  B-15 

  

B.5 ANALYSIS OF SP SOLUTION 

In Section 4.6.1, I briefly describe system operations when the solution of the SP with the 

seven scenarios of Table 4-7 is followed. There, I mention that the investment in power plants 

using imported coal is relatively low. For instance, in 159 out of 162 scenarios with high demand 

the perfect foresight plans recommend higher investment in imported coal. In this subsection, I 

aim to identify which resources generate electricity to compensate for the lower generation from 

power plants using imported coal. This analysis supports arguments in Section 4.6.1 such as 

“Meanwhile, planners resort to imports of electricity or natural gas to meet varying levels of demand in the first stage 

and the early years of the second stage.” In particular, I analyze the generation mix in two cases (a) the 
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highest regret solution obtained under the vulnerability assessment of the SP (b) the solution 

provided for the subset of 7 scenarios by the SP.   

B.5.1 Highest regret scenario in the vulnerability assessment of  SP 

The scenario with the highest regret has high demand, IEA 450 fuel prices, high supply of 

domestic coal and low natural gas supply. Under the SP solution, less electricity is generated by 

imported and/or domestic coal in years 2025, 2030, and 2035 compared to the perfect-foresight 

solution. Instead, imports from India and LNG increase under the SP solution to meet the 

demand. Finally, at the end of the horizon both solutions (SP and perfect foresight) are identical.  

 
Table B-7: Generation mix for years 2020, 2025, 2030, 2035 and 2040 when the SP strategy is 

followed under the scenario with high demand, IEA 450 fuel prices, high supply of domestic coal 

and low natural gas supply. The mix under the SP solution and the perfect-foresight solution are 

provided left and right of the “/”, respectively. 

Fuel 2020 2025 2030 2035 2040 
Domestic Coal 1.5/1.5 3/9 10/23 37/37 44/44 

Domestic Gas 47/47 27/27 22/22 21/21 20/20 

Imports 11/11 15/15 28/14 13/11 49/49 

Imported coal 0/0 64/63 102/113 176/180 227/227 

LNG 9/9 4/0 9/0 0/0 10/10 

Oil 11/11 <1/<1 1,<1 <1/0 0/0 

B.5.2 Generation mix under the subset of  7 SP scenarios 

Figures in this subsection provide the generation mix for years 2020, 2025, 2030, 2035 and 

2040 recorded by the SP of Figure 4-2. Note that I refer to scenarios by numbers 1 to 7 following 

the same order as Table 4-7.  My observations are similar to Section B.5.1, i.e., LNG and electricity 

imports generate more electricity in case domestic gas supply is low in 2025, while in 2030 LNG 

and electricity imports constitute flexible resources, with varying levels of production across 

scenarios.    
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Figure B-4: 2020 generation mix recorded by the SP 

 

 

Figure B-5: 2025 generation mix recorded by the SP 
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Figure B-6: 2030 generation mix recorded by the SP 

 

 

Figure B-7: 2035 generation mix recorded by the SP 
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Figure B-8: 2040 generation mix recorded by the SP 

B.6 ALTERNATIVE SCENARIO REDUCTION SCHEMES 

In Section 4.5.2, I selected a subset of 7 scenarios for the SP using a heuristic similar to the 

one described in [252]. There are many heuristic methods for scenario reduction. Here, I apply 

three additional heuristics to select three alternative subsets of seven scenarios and I record the 

strategy they recommend and their expected performance across the entire set of 486 scenarios. 

The  first heuristic is proposed by [214] and clusters the scenarios based on the cost of perfect-

foresight solutions. The second heuristic is similar to the one I implemented in Section 4.5.2 but 

instead of selecting a representative scenario based on the min-max Chebychev distance, it selects 

a representative scenario using the fast-forward-selection algorithm and it more closely 

approximates [252]. Lastly, the third heuristic is identical to the second heuristic but instead of 

using k-means, it uses hierarchical clustering to decide on seven clusters. According to Table B-8, 

one heuristic led to lower expected regret than the one in the main text by ~4 million and the other 

two to worse by 4–6 million US$. The fact that heuristic 1 identified a solution with lower expected 
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regret than the SP solution in the main body of the text supports the statement made in Section 

4.6.1 that the SP might not have found the least-expected-regret solution overall.  

 
Table B-8: Performance of alternative heuristics 

 
Expected regret (in million 2015 US$) 

Alternative heuristic 1 551 

Alternative heuristic 2 559 

Alternative heuristic 3 601 

 

In Table B-9, I provide the first-stage investment levels for the six candidate power plants of 

Section 4.4.3  recommended by each heuristic. Alternative heuristic 2 recommends a strategy 

similar to the one in Section 4.6.1 with the exception of higher investment in power plants using 

imported coal. Whereas, heuristic 3 recommends higher level of investment in all options 

compared to the heuristic in Section 4.6.1. Both heuristics 2 and 3 lead to worse expected regret 

than the heuristic of Section 4.6.1. However, alternative heuristic 1 identifies a better performing 

strategy by slightly reducing the investment in interconnection, while at the same time increasing 

the investment in coal power plants (using imported and domestic fuel).  

 
Table B-9: First-stage investment levels under SP with different subsets of 7 scenarios 

  Heuristic in 
Section 4.6.1 

Alternative 
heuristic 1 

Alternative 
heuristic 2 

Alternative 
heuristic 3 

Domestic coal 
Barapukuria 426 739 426 520 

Kharaspir 387 387 387 387 

Imported coal 
Khulna 1,380 2,286 1,741 2,596 

Zajira 1,800 1,800 1,800 1,800 

 Interconnection 2,968 2,595 3,050 3,050 

 

Finally, I compare how well the four heuristics (the one in Section 4.6.1 and the three applied 

here) approximate the probabilistic distribution of each uncertain factor. According to the 

distances between the original probabilistic distribution and the approximate by each heuristic, 

alternative heuristic 1 has the lowest sum of distances among the four heuristics. In particular, it 

has the lowest distance for fuel supply and the second lowest distance for the other four uncertain 
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factors. Note that this low distance does not guarantee that the subset of scenarios is representative 

of the full set of 486 scenarios since the metric examines the probabilistic description of one 

uncertain factor each time. However, this calculation is helpful to demonstrate if any of the 

heuristics is biased towards a particular scenario.  

 
Table B-10: Comparison of probabilistic description of uncertain factors by alternative heuristics 

Uncertainty Scenarios 

Full set 
of 486 
scenario
s 

Heuristic 
in 
Section 
4.6.1 

Alternative 
heuristic 1 

Alternative 
heuristic 2 

Alternative 
heuristic 3 

Temperature/
CDD 

bcc-csm1-1 0.3 0.2 0.6 1.0 1.0 

cesm1-bgc 0.3 0.3 0.3 - - 

mri-cgcm3 0.3 0.5 0.1 - - 

 Norm 2 from original 0.055175 0.133118 0.666667 0.666667 

Demand 
growth 

Low 0.3 0.5 0.3 0.5 0.3 

Base 0.3 0.1 0.4 0.5 0.4 

High 0.3 0.4 0.3 - 0.3 

Norm 2 from original 0.059747 0.017206 0.170401 0.014403 

Fuel prices IEA New 
Policies 

0.3 0.5 0.4 0.7 0.2 

IEA 450 0.3 0.2 0.2 - 0.5 

WB17 0.3 0.3 0.4 0.3 0.3 

Norm 2 from original 0.064091 0.039857 0.222222 0.033608 

Coal supply High 0.3 - 0.3 0.5 0.0 

Base 0.3 0.7 0.4 0.1 0.6 

Low 0.3 0.3 0.3 0.4 0.3 

Norm 2 from original 0.244704 0.017206 0.062262 0.198217 

Gas supply Low 0.5 0.2 0.4 1.0 0.7 

High 0.5 0.8 0.6 - 0.3 

Norm 2 from original 0.134431 0.007621 0.5 0.115912 

Flooding 
scenarios 

Historical 0.3 0.4 0.3 0.6 0.3 

High by 
FATHOM 

0.3 0.3 - 0.2 0.4 

High based on 
[239] 

0.3 0.3 0.7 0.2 0.2 

Norm 2 from original 0.011203 0.26727 0.137403 0.024691 
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