DYNAMIC REGULATION OF RNA EDITING IN HUMAN BRAIN DEVELOPMENT AND DISEASE

by Taeyoung Hwang

A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

March, 2016

© 2016 Taeyoung Hwang All Rights Reserved

Abstract

RNA editing is increasingly recognized as a molecular mechanism regulating RNA activity and recoding proteins. Here, I surveyed the global landscape of RNA editing in human brain tissues and identify three unique patterns of A-to-I RNA editing during cortical development: stable high, stable low and increasing. RNA secondary structure and the temporal expression of adenosine deaminase acting on RNA (ADAR) contribute to cis- and trans- regulatory mechanisms of these RNA editing patterns, respectively. Interestingly, the increasing pattern in development is most apparent in brain and conserved in mouse brain development. The increasing pattern associates with the growth of cortical layers and neuronal maturation, correlates with mRNA abundance, and influences miRNA binding energy. Gene ontology analyses implicate the increasing pattern in vesicle or organelle membrane-related genes and glutamate signaling pathways. I also show that the increasing pattern is selectively perturbed in spinal cord injury and glioblastoma. These findings reveal dynamic and functional aspects of RNA editing in brain, providing new insight into epigenetic regulation of sequence diversity.

Readers:

Daniel R. Weinberger, M.D. (Thesis advisor)

Anthony K. L. Leung, Ph. D.

Acknowledgments

It has been almost six years since I first enrolled in Ph. D. program and I am about to finish my journey to a Ph. D. very soon. It was not easy and not like as what I first expected. I had to go through many hurdles in studying biomedical sciences since I didn't take any related courses in undergraduate, as well as in orienting myself toward a career as a researcher in the field of biomedical engineering. Reflecting on the past time in this journey to a Ph. D., I realized that this chapter of life would not be successful without people who support and encourage me. I would like to acknowledge a couple of them here although many others are in my mind.

First of all, I would like to express my appreciation to my thesis advisor, Dr. Daniel R. Weinberger for his support and encouragement. Despite his busy schedule as C.E.O. of the Lieber Institute for Brain Development, Danny always finds time to take care of me as well as to advise me. His encouraging words have been motivation that I rely on up to the moment of defending this dissertation.

I thank my committee members, Dr. Steven Salzberg and Dr. Anthony K. L. Leung for their insightful suggestions and comments. Steven and Anthony have given their valuable advices throughout this dissertation. I am so happy to have them as my committee advisors. I am also deeply grateful to Dr. Chul-Kee Park for his expert views on brain tumors and his generosity to provide glioblastoma samples for this study.

Another appreciation is to my lab mates, including Dr. Jooheon Shin, Amanda Price, Anandita Rajpurohit, Carrie Wright and Dewey Kim. Without their cheers and daily chats, my graduate life would have no joy. In particular, I would like to express my appreciation for Jooheon who has given many life lessons. Finally but most importantly, I want to shout out my gratitude to my family. My parents are truly the energy of my life. I can't thank my younger brother, JuYoung, enough, who plays a role as a stout pillar in Korea while I have been in the U.S. for my study. And my wife, Hyo Ju is the one healing me whenever I was tired, exhausted and disappointed.

I will remember all these supports in my heart.

Table of Contents

Chapter 1 Introduction	1
1.1 RNA editing	2
1.2 A-to-I editing	6
1.3 A-to-I editing in brain and diseases	. 10
Chapter 2 Identification of RNA editing events from genome-wide sequencing of RNA (RNA-	·seq)
	. 21
2.1 Overview	. 22
2.2 Issues in identifying RNA editing sites from RNA-seq data only	. 23
2.3 Development of computational tools to identify RNA-editing from RNA-seq data	. 24
2.4 Validation of the computational tool	. 26
Chapter 3 Landscape of RNA editing in human brain development	. 34
3.1 Significance of RNA editing study in human brain development	. 35
3.2 Post-mortem human brain samples	. 35
3.3 Identification of RNA editing sites from RNA-seq across human brain development	. 36
3.4 Landscape of RNA-editing in human brain development	. 37
3.5 Comments on the increasing pattern	. 39
Chapter 4 Regulation of developmental A-to-I editing pattern	. 61
4.1 Representative editing sites for developmental A-to-I editing pattern	. 62

4.2 <i>trans</i> -regulation	
4.3 <i>cis</i> -regulation	
4.4 Methods	
Chapter 5 Functional implications of increasing A-to-I editing pattern	
5.1 Tissue variation of the increasing editing pattern	
5.2 The increasing editing pattern in mouse brain development	
5.3 Cellular understanding of the increasing editing pattern	
5.4 Molecular understanding of the increasing pattern	
5.5 The increasing pattern in brain disorders	
5.6 Methods	
Chapter 6 Conclusions	
References	
Curriculum Vitae	
Appendix	See attached files

List of Figures

Figure 1.1 Three types of RNA editing	15
Figure 1.2 RNA editing in apolipoprotein B (apoB) mRNA	16
Figure 1.3 Schematics of ADAR family	17
Figure 1.4 A-to-I editing in ADAR2	18
Figure 2.1 False positive call of RNA editings at SNP sites	28
Figure 2.2 Varying sequencing qualities in a sequencing read	29
Figure 2.3 Computational pipeline to identify RNA editing sites from RNA-seq	30
Figure 2.4 Position bias filter	31
Figure 2.5 Strand bias filter	32
Figure 3.1 RNA editing types in human brain development	41
Figure 3.2 Distribution of A-to-I editing sites according to gene regions	42
Figure 3.3 Examples of RNA editing rates	43
Figure 3.4 Genome-wide profiles of A-to-I editing rates in human brain development	44
Figure 3.5 The number of sites with increasing pattern in 33 human brain samples	46
Figure 3.6 Increasing editing patterns	47
Figure 3.7 Comparison of ADAR RNA level across cell types	48
Figure 3.8 Increasing pattern normalized by neuronal or glial proportions in human brain	
development	49
Figure 3.9. Editing rate differences among brain regions	51

Figure 4.1 Criteria for selecting the representative sites for the increasing A-to-I editing patter	ns
	68
Figure 4.2 Representative sites for developmental A-to-I editing patterns	69
Figure 4.3 ADAR expression across human brain development	70
Figure 4.4 Sequence motif around A-to-I editing sites	71
Figure 4.5 Distance between an editing site and a double-stranded structure	72
Figure 4.6 Distribution of degree of double-stranded structures among the three groups of	
selected sites	73
Figure 4.7 Effect of ADAR enzymes knockdown by siRNA in B-cells	74
Figure 4.8 Quantification of degree and distance of double-stranded structure around RNA-	
editing sites	75
Figure 5.1 Fetal and adult editing rates at sites in 'Group II. increasing'	99
Figure 5.2 Differences of mean editing rates between fetal and adult samples across multiple	
tissues	. 100
Figure 5.3 mRNA expression levels of ADAR enzymes	. 101
Figure 5.4 Genome-wide editing rate differences between fetal and adult samples in multiple	
tissues	. 102
Figure 5.5 Venn diagram showing the overlap of sites across brain, liver and lung	. 103
Figure 5.6 Increasing pattern in mouse brain development	. 104
Figure 5.7 Increasing pattern in mouse brain development according to gene regions	. 105
Figure 5.8 mRNA expression levels of ADAR1 (blue) and ADAR2 (purple) in mouse brain	
development	. 106

Figure 5.9 A-to-I editing sites in NEIL1 in human brain development	107
Figure 5.10 A-to-I editing sites in PDZD7 in human brain development	108
Figure 5.11 The magnitude of editing rate changes found at increasingly-edited sites	109
Figure 5.12 The increasing editing pattern in the differentiation of human embryonic ster	n cells
into cortical neurons	110
Figure 5.13 Editing rate changes in <i>in-vitro</i> differentiation of mESCs to cortical neurons	111
Figure 5.14 Cellular markers in in-vitro differentiation of hESCs to cortical neurons	
Figure 5.15 Editing rate change during the culture of primary mouse neuron	114
Figure 5.16 Cellular markers in primary culture of mouse cortical neurons	115
Figure 5.17 The enriched GO terms for genes with the increasing pattern	116
Figure 5.18 Correlation of editing rates with mRNA expression levels	117
Figure 5.19 Binding energy between miRNA and mRNA target	118
Figure 5.20 Editing rate changes in the mouse model of spinal cord injury at the CDS-res	siding
conserved editing sites in the increasing pattern.	119
Figure 5.21 The comparison of editing rates in the groups of selected sites between a	
glioblastoma and neighboring non-tumor tissue	

List of Tables

Table 1.1 Examples of RNA editing in Eukaryotes	19
Table 1.2 Amounts of IMP in different rat tissues	20
Table 2.1 Evaluation of computational pipeline for identifying RNA editing from RNA-seq	33
Table 3.1 Demographic details of the human brain tissues	52
Table 3.2 Number of RNA editing sites in individual samples with total number of sequencing	g
reads	54
Table 3.3 Number of RNA editing sites in genic regions according to types	55
Table 3.4 Number of A-to-I editing sites according to gene regions	55
Table 3.5 A-to-I editing sites with increasing pattern	56
Table 3.6 CDS-residing A-to-I editing sites in different mouse brain cell types	57
Table 3.7 Additional brain samples	59
Table 3.8 A-to-I editing sites showing significant differences in editing rates among brain reg	ions
	60
Table 4.1 Genotype confirmation of sites in group II. increasing	78
Table 4.2 The representative sites for developmental A-to-I editing patterns	85
Table 4.3 Effect of ADAR knock down (KD) by siRNA on developmental A-to-I editing patt	erns
	88
Table 5.1 The conserved sites between human and mouse among the sites with the increasing	
pattern	. 123

Table 5.2 Increasing pattern in mouse brain development 12	24
Table 5.3 Gene ontology (GO) terms associated with genes with increasing editing pattern 12	29
Table 5.4 Gene ontology (GO) terms associated with genes with increasing editing pattern in 3'	
UTR	32
Table 5.5 Gene ontology (GO) terms associated with genes with increasing editing pattern in	
CDS	35
Table 5.6 Effect of A-to-I editing sites in CDS region 13	36
Table 5.7 Disease association of genes with increasing editing pattern 13	37
Table 5.8 Genes involved in neurodevelopmental disorders with increasing A-to-I editing pattern	15
	39
Table 5.9 Previous RNA-seq datasets 14	11

Chapter 1

Introduction

RNA editing is a molecular process perturbing RNA sequences in a post-transcriptional manner. In this chapter, I will review the RNA editing in general, focusing on A-to-I editing in messenger RNA.

1.1 RNA editing

RNA editing is a post-transcriptional modification that alters RNA sequences from their original DNA templates. These processes affect most cellular RNAs including messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), as well as small RNA such as miRNA. RNA editing expands the repertoire of RNA transcripts, contributing to the complexity of genetic information through recoding amino acids and affecting regulatory roles of RNA.

Overview

In 1986, Benne et al. coined the term "RNA-editing" to describe molecular phenomena in which uridines were inserted or deleted in RNAs of trypanosome mitochondria (Benne et al. 1986). Since then, the term RNA editing has been used to describe various molecular processes resulting in the modification of RNA sequences differing from original DNA templates (Sansam & Emerson 2005).

Three types of editing (Figure 1.1) - insertion, deletion and substitution - have been identified in all major types of RNA (messenger, ribosomal, and transfer RNAs) as well as in miRNA in various species of eukaryotes, as shown in Table 1.1. In particular, eukaryotic organelles such as chloroplasts and mitochondria harbor the greatest variety of RNA editing (Gray 2012). In this study, I specifically focused on mRNA editing.

In mammals, two substitutional types of RNA editing have been identified mainly so far: cytidine is converted to uridine ("C-to-U editing") and adenosine is modified to inosine ("A-to-I editing"). Both are generated by a hydrolytic deamination process catalyzed by specific enzymes: apoB mRNA editing complex (APOBEC) for C-to-U editing and Adenosine Deaminase acting on RNA (ADAR) for A-to-I editing.

C-to-U editing

The most well characterized C-to-U editing in mammals is an event found in the apolipoprotein B (*apoB*) gene, which is also the first reported instance of C-to-U editing in human (Powell et al. 1987). C-to-U editing in the *apoB* gene converts a CAA (glutamine) codon to a UAA (stop) codon, resulting in a truncated *apoB* protein due to premature termination of translation (Figure 1.2). Importantly, this editing event is responsible for tissue-specific modification of the *apoB* transcript. While a full-length *apoB* protein, denoted by apoB100 (512 kilo daltons), is expressed in the liver, a truncated version of *apoB*, known as apoB48 (241 kilo daltons) is synthesized in intestine through C-to-U editing. Functionally, this tissue-specific modification of the *apoB* transcript has important consequences because apoB100 comprises a low density lipoprotein (LDL) complex that works for the transport of dietary cholesterol in liver, but apoB48, which lacks the C-terminal domain that in apoB100 binds to LDL receptors on cell membranes, is a component of the triglyceride-rich chylomicrons that deliver dietary lipids to intestine (Davidson & Shelness 2000).

C-to-U editing of *apoB* mRNA is mediated by a multicomponent protein complex, APOBEC that consists of a catalytic subunit for cytidine deamination, APOBEC-1, and several auxiliary proteins. One cofactor is an APOBEC-1 complementation factor (ACF), which serves to bind a target RNA with RNA recognition motifs (Blanc & Davidson 2010). In terms of *cis*regulation, three sequence elements around the editing position, referred to as the mooring sequence, enhancer and spacer region, are known to be necessary factors for efficient editing (Backus & Smith 1992).

Other than C-to-U editing in the *apoB* gene, 32 additional mRNA targets of APOBEC-1 for C-to-U editing were identified by a recent genome-wide screen (Rosenberg et al. 2011). Here,

all C-to-U editing sites were found to be located in AU-rich segments of 3' untranslated regions (3' UTR) of transcripts. However, functional roles of these editing sites are not characterized yet.

A-to-I editing

A-to-I editing is the most prevalent form of RNA editing in the animal kingdom. It is catalyzed by a family of enzymes known as ADARs, which deaminate adenosines in double-stranded structures of RNAs (Savva et al. 2012). The effect of A-to-I editing can be diverse depending on the location of the edited nucleotide, because inosine is recognized as guanosine by the cellular machinery. For example, A-to-I editing at protein-coding regions can change a codon (Pullirsch & Jantsch 2010), while it also has potential to modulate splice site usage especially when residing in an intron (Rueter et al. 1999; Schoft et al. 2007).

In mammals, A-to-I editing was first identified in transcripts encoding glutamate-gated ion channels (Sommer et al. 1991). Here, A-to-I editing converts a glutamine (Q) to an arginine (R) in a gene encoding a subunit of glutamate receptors, affecting the ion permeability of the receptors. While originally believed to be a rare event, A-to-I editing event is now recognized as a widespread process in mammals. In particular, recent genome-wide studies identified huge number of A-to-I editing sites in human tissues (Li et al. 2011; Park et al. 2012; Ramaswami et al. 2013). Because of its importance, A-to-I editing is discussed in detail in the next section of this chapter (see 1.2 A-to-I editing).

Evolutionary perspectives

RNA editing can be considered as a mechanism for adaptive evolution (Gommans et al. 2009). It confers phenotypic variation at relatively low evolutionary cost because RNA editing is

not a hard-wired process - in other words, it can retain predominant production of the wild-type protein. If the RNA editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function (Knisbacher & Levanon 2015). A recent example with octopus describes the utilization of RNA editing for adaptation to environment (Garrett & Rosenthal 2012). While an Antartic and a tropical octopus share the same potassium channel gene in their genomes, they have distinct editing status at a site in the channel's pore to accommodate different temperatures. Specifically, the site modulating gating kinetics is extensively edited, recoding an isoleucine (I) to a valine (V) in the Antarctic species while it is mostly unedited in the tropical species. This editing dramatically accelerates deactivation kinetics of potassium channels, suggestive of candidate mechanism for cold adaptation. This result suggests that RNA editing can contribute to the kind of adaptation to the physical environment achievable by genetic variation in general. Regarding this, it is hypothesized that RNA editing increases the evolvability of species by providing a molecular mechanism to express diverse phenotypic variations in response to changing environments, and selection may favor such a system with higher levels of genetic flexibility (Gommans et al. 2009).

RNA editing is also involved in a process known exonization of Alu elements, where Alu elements can become new exons (Pandey & Mukerji 2011). Alu elements are retro-transposable repeat sequences in a genome, found only in primates. RNA editing can affect exonization through the creation of a functional 3' splice site or "AG" and the alteration of functional exonic splicing enhancers within the exon (Lev-Maor et al. 2007). These observations suggest the possibility that RNA editing is involved in primate evolution.

1.2 A-to-I editing

ADAR

A-to-I editing is a deamination process of adenosines to inosine, which is mediated by the enzyme ADAR targeting double-stranded RNA (dsRNA). ADAR was initially characterized as a protein with double-stranded RNA (dsRNA)- unwinding activity (Bass & Weintraub 1987; Rebagliati & Melton 1987). Soon after, it was recognized as an enzyme responsible for A-to-I editing (Bass & Weintraub 1988; Wagnert et al. 1989). It turns out that ADAR targets duplex regions in RNA, switching A-U pairs to less stable I-U pairs.

There are three ADAR genes that have so far been identified in mammals: *ADAR1*, *ADAR2* and *ADAR3* (Nishikura 2010). *ADAR1* has two isoforms of a long "*ADAR1p150*" and a short "*ADAR1p110*", which are determined by alternative promoters and different start codons. *ADAR2* and *ADAR1p110* are relatively ubiquitously expressed while *ADAR1p150* is induced by interferon. *ADAR3* is mainly detected in central nervous system but its editing capacity is known to be inactive, at least *in-vitro*. ADARs share a common structure (Figure 1.3), consisting of a highly conserved, C-terminal deaminase (catalytic) domain and a variable number of double-stranded RNA-binding domains (dsRBDs) in the N-terminal half of the protein.

The targets of *ADAR1* and *ADAR2* differ but also overlap (I. X. Wang et al. 2013). For example, in *GluA2*, a key subunit of the AMPA receptor, the editing site converting an amino acid from glutamate (Q) to arginine (R), called as 'Q/R site', is only edited by *ADAR2*, while the site changing arginine (R) to glycine (G), denoted as 'R/G site', can be edited by both *ADAR1* and *ADAR2* (Higuchi et al. 2000).

ADARs are essential in mammals although ADAR-null inverterbrates are viable with behavioral defects. Specifically, *ADAR1*-knockout mice are embryonic lethal at embryonic day

12.5 (E12.5) owing to defects in erythropoiesis, stress-induced apoptosis, liver disintegration, and overproduction of type I interferon (Wang et al. 2004; Hartner et al. 2004). Mice that lack *ADAR2* died within 3 weeks after birth as a result of seizures (Brusa et al. 1985; Higuchi et al. 2000). In the case of *C. elegans* with homozygous deletions of both *ADAR1* and *ADAR2*, defective chemotaxis is observed (Tonkin et al. 2002). Drosophila without the ADAR locus exhibits uncoordinated locomotion and age-dependent neurodegeneration (Palladino et al. 2000). Interestingly, the impaired phenotype caused by knockout of *ADAR2* in mice can be rescued by introducing an arginine (R) codon at the Q/R site in *GRIA2* (Higuchi et al. 2000), implying that Q/R editing is essential for survival in *ADAR2*-mediated A-to-I editing. However, the rescued *ADAR2* knockout mouse still showed significant changes in behavior, hearing ability, allergy parameters and transcript profiles of brain, suggesting that *ADAR2* affects broad physiology in mice (Horsch et al. 2011).

Site-selective editing and hyper-editing

ADARs can deaminate various numbers of adenosines in a target mRNA. Because of this characteristic, A-to-I editing can have two different modes: site-selective and nonselective, called hyper-editing. Typically, in site-selective editing, one or a few A-to-I editing sites are observed. In the case of hyper-editing, multiple adenosines are subjected to deamination (Wahlstedt & Öhman 2011). Coding regions of mRNAs usually undergo site-selective deamination while noncoding regions of mRNA such as introns and untranslated regions (UTRs) tend to be a target of hyper-editing.

Previous studies demonstrate that the number of A-to-I editing sites usually increases with the length of RNA duplexes and is affected by structure of RNA duplexes. Site-selective editing is often found in short duplexes, between 15 and 40 bp in length, interrupted by bulges and internal loops. Hyper-editing, on the other hand, is usually observed in long (greater than 50 bp) and almost completely base-paired dsRNA (Hundley & Bass 2010).

Hyper-editing is enriched in Alu elements because their genomic structure is favorable to form a long and perfect double-stranded structure when expressed. The Alu repeat element with about 300 nucleotides in length is the most abundant primate-specific retroelement, and makes up more than 10% of the human genome. Most Alu repeats are located within genes (usually in introns or 3' UTRs), and are hence transcribed as part of the pre-mRNA transcript of the gene. Owing to the abundance of Alus, it is very frequent to find mRNA transcripts containing two nearby Alus in opposite orientation. As the mRNA molecule folds, these two Alus may form secondary RNA structures that are targeted by ADAR, resulting in a substrate for hyper-editing (Knisbacher & Levanon 2015). Recent genome-wide studies of the human transcriptome (Blow et al. 2004; Sakurai et al. 2014) confirm large numbers of A-to-I editing associated with Alu elements.

Molecular function of A-to-I editing

Site-selective editing in coding sequence (CDS) can alter amino acid sequences, diversifying protein isoforms. A limited number of cases have been identified so far, especially in genes involved in the central nervous system, such as ligand- and voltage-gated ion channels as well as G-protein-coupled receptors. In most cases, A-to-I editing creates multiple isoforms of proteins essential for balanced neuronal kinetics (Rosenthal & Seeburg 2012). Several examples are reviewed in a detail in the next section (1.3 A-to-I editing in brain and disease).

Site-selective editing is also found in intronic regions and has the potential to modulate splice site usage (Rueter et al. 1999; Schoft et al. 2007). The exemplary case is an A-to-I editing found in *ADAR2* (Figure 1.4). Here, A-to-I editing in an intron between exon3/4 and exon 5 of

ADAR2 generates 3' splicing signal ('AG'), producing a longer transcript containing the 47nucleotides insert. Insertion of the 47-nucleotides induces decreased *ADAR2* protein expression, representing a negative autoregulatory mechanism by which *ADAR2* can prevent its own expression (Rueter et al. 1999).

Moreover, site-specific editing in 3' UTRs evades or creates the binding of miRNA (Liang & Landweber 2007; Q. Wang et al. 2013). Specifically, Wang et al. showed that A-to-I editing in ARHGAP26, a negative regulator of the Rho family essential for muscle development, disrupts the binding of miR-30b-ep and miR-573, resulting in the loss of repression by these miRNAs (Q. Wang et al. 2013).

Functional roles of hyper-editing are not well characterized yet but several studies have suggested their functions. First, previous studies showed that synthetic inosine-containing RNAs are specifically retained in the nucleus, which is mediated by RNA-binding protein, p54nrb (Zhang & Carmichael 2001; DeCerbo & Carmichael 2005). They proposed the possibility that nuclear retention of inosine-containing RNA works as a cellular mechanism to suppress gene expression. In fact, an endogenous inosine-containing RNA in mouse, Cat2 transcribed nuclear-RNA (*Ctn RNA*) was shown to be retained in the nucleus and released upon cleavage (Prasanth et al. 2005). It should be noted here that a nuclear structure, the paraspeckle was involved in this nuclear retention, and p54nrb was found in the paraspeckle.

Second, hyper-edited RNA is known to be a target of tudor staphylococcal nuclease (Tudor-SN), an eukaryotic RISC (RNA-induced silencing complex) subunit. A previous *in-vitro* study showed that Tudor-SN specifically interacts with and promotes cleavage of synthesized hyper-edited dsRNA substrates containing I-U and U-I pairs (Scadden 2005). However, no endogenous substrate of Tudor-SN has been reported so far. Some researchers hypothesized that

endogenous RNA is targeted by Tudor-SN only in response to certain environmental conditions (Hundley & Bass 2010).

Lastly, there were reports that hyperedited dsRNA can exert its functions *in trans*. For example, inosine-containing dsRNA lead to global downregulation of gene expression (Scadden 2007), which is mediated by stress granules (SGs) interacting with edited transcripts. Also, the same group showed that hyperedited dsRNA with multiple IU pairs suppresses interferon induction and apoptosis (Vitali & Scadden 2010).

All of these studies demonstrated direct or indirect roles of hyper-editing, especially for sites in 3' UTR. However, their functional roles are still under debate. For example, endogenous mRNA with multiple inosines in their 3' UTRs have been found in mammalian and *C. elegans* cell cytoplasm, arguing that nuclear retention of inosine-containing RNA is not a general phenomenon (Hundley & Bass 2010). The roles of hyper-editing might be diverse depending on the cellular context and further studies will give better understanding on the functionalities of hyper-editing.

1.3 A-to-I editing in brain and diseases

A-to-I editing in brain

It is believed that A-to-I editing is most abundant in brain among all mammalian tissues (Table 1.2) (Paul & Bass 1998). In fact, some important A-to-I editing events are found in the nervous system. These A-to-I editing events are often involved in amino acid changes regulating neurotransmission. The followings are some important examples of A-to-I editing.

The first example is A-to-I editing in glutamate receptors. In fact, this is the first A-to-I editing found in mammals (Sommer et al. 1991). It was found serendipitously while researchers studied the excitatory glutamate receptors. Cloning of the mammalian AMPA receptor subunit GRIA2/GluA2 showed a discrepancy between the mRNA and the corresponding DNA template, which indicated A-to-I editing. The function of the editing is significant because it recodes amino acids from a glutamine (Q) to an arginine (R) around the channel pore, affecting the permeability of calcium ions. In normal physiological situations, full editing prevents calcium ions from moving through the assembled receptors. The failure of this editing causes epileptic seizures and death in mice (Higuchi et al. 2000). In addition to AMPA glutamate receptors, kainate glutamate receptors including GRIK1/GluR5 and GRIK2/GluR6 also have Q/R editing (Barbon & Barlati 2011). In particular, GRIK2 Q/R editing is involved in synaptic plasticity via long-term potentiation (Vissel et al. 2001). In glutamate receptors, there is another important A-to-I editing site, namely an R/G editing site where an arginine (R) is converted to glycine (G) in the extracellular ligand binding domain of the receptors (Barbon & Barlati 2011). This is mainly found in subunits of AMPA receptors such as GRIA2/GluA2, GRIA3/GluA3 and GRIA4/GluA4. Editing at this site increases the recovery rate from desensitization of the ion channels, allowing faster response to repeated impulses (Kappler et al. 2002).

The second A-to-I editing example involves the serotonin receptor. Serotonin or 5-HT is a neurotransmitter that modulates a wide array of physiological processes including mood, appetite, pain perception, locomotion, memory and sexual behavior (Roth 2006; Berger et al. 2009). RNA editing is found in one of the G-protein-coupled serotonin receptor, 5-HT2cR. The A-to-I editing in 5-HT2cR, which alters the amino acid sequences of the second intracellular loop of the receptor, lead to a 10~15 fold reduction in the efficacy of the interaction between receptors and their G proteins (Burns et al. 1997). Because 5-HT2cR is involved in many human psychiatric and behavioral disorders including depression and schizophrenia, the A-to-I editing in 5-HT2cR draws much attention in terms of clinical implications (O'Neil & Emeson 2012).

The last example is A-to-I editing found in a voltage –gated potassium channel, Kv1.1. The Kv1.1 is one of the most widely expressed voltage-gated potassium channel playing an important role in excitability by repolarizing membranes and shaping the firing properties (Jan & Jan 2012). A-to-I editing in the Kv1.1transcript substitutes an isoleucine (I) for a valine (V) in the highly conserved ion-conducting pore of the channel, resulting in an increased recovery rate of the channel (Bhalla et al. 2004). This is an example showing that A-to-I editing shapes the action potential, a fundamental element of the neuronal system.

A-to-I RNA editing in brain development

Interestingly, some A-to-I editing events are differentially regulated in brain development and these differential regulations of A-to-I editing are expected to have functional significance in this respect. For example, several sites including the R/G site in glutamate receptors (e.g. GRIA2, GRI3, GRIA4) show a gradual increase in editing during brain development (Wahlstedt et al. 2009). Considering the effects of R/G editing on functions of glutamate receptors, it can be hypothesized that unedited status of R/G editing sites of glutamate receptors in fetal brain makes the recovery of the receptors from desensitization slow, which avoids their hyper-activation under elevated glutamate conditions.

Another instance can be found in GABAA receptors, a ligand-gated chloride channel. The GABAA receptor produces a hyperpolarizing influx of chloride ions when active in the mature brain. However, it generates depolarizing currents creating an excitatory response to GABA in fetal brain, which is crucial for a number of developmental processes including proliferation and synaptogenesis (Ben-Ari 2014). This functional switching is largely due to different subunit

composition of the receptors. The alpha subunit is particularly important as alpha3 (GABRA3) is found in the receptor in fetal brain while alpha1 (GABRA1) is expressed in adult brain (Rula et al. 2008). A-to-I editing in GABRA3 in part plays a role here because an edited GABRA3 transcript tends to be inefficiently transported to neurites and falls under enhanced lysosomal degradation, contributing to a component change of GABAA receptors from GABRA3 to GABRA1 (Daniel et al. 2011).

A recent study discovered a more striking case regarding A-to-I editing change in neuronal differentiation (Pachernegg et al. 2015). In general, GRIA2 Q/R site is known to be almost exclusively edited across brain development. However, Pachernegg et al. showed that editing levels of GRIA2 Q/R site increases rapidly during the very early stages of *in vitro* neural differentiation. They also demonstrated that neural progenitor cells (NPCs) express glutamate receptors permeable to calcium ion, when GRIA2 remains unedited by Q/R editing. Consistent with these results, delivery of ADAR2 into NPCs prevents neuronal differentiation (Whitney et al. 2008). Along with a gradual increase of R/G editing in brain development, a rapid increase of Q/R editing during early neurogenesis highlights the importance of A-to-I editing in neuronal development.

A-to-I RNA editing in diseases

Dysregulation of A-to-I editing is observed in many diseases, primarily neurological or psychiatric diseases (Gallo & Locatelli 2012). For example, aberrant A-to-I editing in GRIA2 is implicated in amyotrophic lateral sclerosis (ALS), malignant glioma and ischemia (Yamaguchi et al. 1999; Maas et al. 2001; Kawahara & Kwak 2004). Also, imbalance of A-to-I editing in the serotonin receptor, 5-HT2cR was found in psychiatric diseases such as suicide and schizophrenia (Niswender et al. 2001; Sodhi et al. 2001). However, psychiatric associations of A-to-I editing in general are still debates (Lyddon et al. 2012; Eran et al. 2013). Moreover, functional roles of Ato-I editing in pathological conditions are largely unclear although deficiency of A-to-I editing at GRIA2 Q/R site is related to death of neuronal cells in some pathological conditions such as glioma and ALS (Slotkin & Nishikura 2013).

Figure 1.1 Three types of RNA editing. Deletion, Insertion and Substitution are depicted.

Figure 1.2 RNA editing in apolipoprotein B (apoB) mRNA. C-to-U editing at cytidine 6666 in apoB mRNA generates a protein isoform functionally different from the unedited one. LDL: low-density lipoprotein.

Figure 1.3 Schematics of ADAR family. dsRBD: double-stranded RNA binding domain.

Figure 1.4 A-to-I editing in ADAR2. A-to-I editing in an intron between exon 3/4 and exon 5 extends the length of transcript by adding 47 additional bases before exon5.

Type of editing	edited RNAs	Organisms	Genetic system
U insertion/deletion	mRNA	kinetoplastid protozoa	mitochondrial
N insertion	mRNA, rRNA, tRNA	Physarum polycephalum, other myxomycete slime molds	mitochondrial
	apolipoprotein B mRNA	mammals	nuclear
	mRNA, tRNA	land plants	mitochondrial, chloroplast
C-to-U substitution	tRNA ^{asp} (anticodon)	marsupials	nuclear
	tRNA ^{trp} (anticodon)	kinetoplastid protozoa	nuclear/mitochondrial
	cox1 mRNA	P. polycephalum	mitochondrial
	cox1, cox3 mRNAs	Naegleria gruberi	mitochondrial
	mRNA	land plants	mitochondrial, chloroplast
U-to-C substitution	cox1 mRNA	placazoan (Trichoplax adhaerens)	mitochondrial
	WT1 mRNA	mammals	nuclear
A-to-I substitution	mRNA, miRNA, viral RNA	metazoan animals	nuclear

Table 1.1 Examples of RNA editing in Eukaryotes. *N insertion* means insertion of C, U, dinucleotide. 'nuclear/mitochondrial' indicates that the substrate is a nucleus-encoded tRNA that is imported into mitochondria where it undergoes editing. This table is modified from Gary 2012.

Tissue	IMP (pmol)	One IMP for every:
Brain	1.8 ± 0.9	17,000 nt
Lung	0.9 ± 0.7	33,000 nt
Heart	0.9 ± 0.6	33,000 nt
Thymus	0.5 ± 0.3	60,000 nt
Muscle	0.2 ± 0.1	150,000 nt

Table 1.2 Amounts of IMP in different rat tissues. IMP: inosine monophosphate. This table ismodified from Paul & Bass 1998.

Chapter 2

Identification of RNA editing events from genome-wide sequencing of RNA (RNA-seq)

In order to accurately identify RNA editing sites using RNA-seq, a computational pipeline is necessary to reliably identify RNA editing sites. In this chapter, I will review issues in identifying RNA editing sites from RNA-seq and describe the computational tool developed in this study to identify RNA editing sites at a genome-wide level from RNA-seq.

2.1. Overview

In principle, detecting RNA editing events is straight forward because it just requires comparisons of RNA sequences or complementary DNA (cDNA) sequences with template DNA sequences. In particular, A-to-I editing is easily identified as an adenosine to guanosine (A-to-G) discrepancy in the comparison because an inosine base pairs with cytosine in cDNA synthesis and Sanger sequencing. In fact, several important A-to-I editing sites were found serendipitously through comparisons of cDNA with the genomic sequence.

With the recent advent of next generation sequencing (NGS) technology that generates a huge number of short sequences ("sequencing reads") in a parallel way, it is now possible to have sequence information from DNA or RNA at a genome-wide level, where the genome-wide sequencing of DNA and RNA are referred to as "whole-genome sequencing" and "RNA-seq", respectively. Now, RNA editing can be found in a systematic way at a genome-wide level by comparing sequences between whole-genome sequencing and RNA-seq obtained from the same sample.

However, because whole-genome sequencing is still inefficient in terms of cost, an efficient way to identify RNA editing using only RNA-seq has been of special interest in the RNA editing field. In particular, it is still daunting to perform both whole-genome sequencing and RNA-seq for all the samples in a study necessary for a large sample size. A typical approach to identify RNA editing from the only RNA-seq is to compare sequencing data from RNA-seq with a reference genome, and controlling for false-positive calls at a reasonable rate. In this chapter, I will review several issues in the discovery of RNA-editing from RNA-seq and present the computational pipeline to detect RNA editing sites, which was developed for this study.

2.2. Issues in identifying RNA editing sites from RNA-seq data only

There are three main issues in calling RNA editing sites from RNA-seq: contamination of genomic variants, technical errors originating from inherent RNA-seq technology, and errors introduced by an alignment step during processing of RNA-seq data.

Contamination of genomic variants

When RNA editing is called from RNA-seq without the corresponding DNA template information, a typical approach is to compare RNA sequence determined by RNA-seq with a reference genome and detect sequence discrepancies as putative RNA editing sites. But significant proportions of these candidates are likely genomic variation, especially due to single nucleotide polymorphisms (SNPs) (Figure 2.1). Therefore, the false positive rate in the initial call obtained from a simple comparison between RNA-seq with reference genome is unacceptably high.

Technical errors inherent to sequencing technology

A typical sequencing read from NGS has non-uniform sequencing qualities from base to base. Generally, 3' ends of sequencing reads have poor sequencing quality (Figure 2.2). Therefore, one should be cautious if a called RNA editing site is enriched by sequencing reads whose bases at the editing site have poor sequencing qualities. For a given base of a sequencing read, sequencing quality is quantified by the Phred score, Q defined as follows:

$$Q = -10 \log_{10} P$$

where P is the probability that the base is called wrong. A Phred score smaller than 20 indicates that the accuracy of the base call is less than 99%. In addition to non-uniform sequencing qualities, 5' ends of sequencing reads can have random sequence regardless of biological sources due to a PCR step with random primers necessary for the preparation of a sequencing library.

Alignment errors in RNA-seq

Although most of sequencing reads from RNA-seq are accurately aligned to the reference genome when aligned by commonly-used software such as TopHat (Trapnell et al. 2009) or STAR (Dobin et al. 2013), there are still sequencing reads that are aligned ambiguously, mainly around the regions with RNA splicing and repeat sequence. Although these ambiguously-mapped reads may not be a critical problem when using RNA-seq as a tool to estimate mRNA abundances, currently a main reason for performing RNA-seq, they should be critically considered for an RNA editing study as they can be a source of false positive calls of RNA editing sites (Kleinman & Majewski 2012).

2.3. Development of computational tools to identify RNA-editing from RNA-seq data

In order to accurately identify RNA editing sites using RNA-seq, I developed a computational pipeline to make reliable calls of RNA editing sites, considering the issues discussed in the previous section. This pipeline consists of several steps including alignment, variant-calling, and filtering of false positives. Figure 2.3 summarizes the computational pipeline.

Alignment

RNA-seq reads were aligned by BWA (Li & Durbin 2009) to the reference genome (UCSC hg19) as well as the annotated transcriptome obtained from several public databases including NCBI RNA reference sequence collection (RefSeq), UCSC and Ensembl. Using the combined transcript information from multiple databases and not attempting to detect novel isoforms from RNA-seq data help to avoid false positives due to alignment errors.

Variant calling

After alignment is done, putative RNA editing sites were identified by a variant-calling software, "Genome Analysis Toolkit" (GATK) (DePristo et al. 2011), using uniquely mapped reads after PCR duplicates were removed by the Picard tool (Auwera et al. 2013). Note that A-to-I editing events appear as A-to-G discrepancies in variant-calling.

Computational Filters

For initial list of RNA editing sites, computational filters were applied to deal with the major issues in calling RNA editing sites from RNA-seq: (1) contamination of genomic variants, and (2) false positives due to sequencing or alignment errors. In our pipeline, potential genomic variants were filtered out through three steps: (i) removing all known SNPs in dbSNP version 137 (Sherry et al. 2001) except for SNPs of molecular type "cDNA"; (ii) taking out sites with variant-supporting reads only under the assumption that 100% editing efficiency is unrealistic; (iii) keeping variants detected in at least two individuals because they are unlikely to be rare variants. Possible false positive RNA editing sites due to sequencing or alignment errors were removed by taking advantage of their tendency to have bias in terms of positions on a sequencing read and
strands (Kleinman & Majewski 2012). After categorizing sequencing reads spanning a putative RNA editing site into two groups, a reference-supporting group and a variant-supporting group according to the alleles in the reads, we applied a two sample t-test and a Fisher-exact test to see if the two groups were statistically different in terms of position bias (Figure 2.4) and strand bias (Figure 2.5), respectively. For a given site, the position on a sequencing read was defined as the smaller distance from either end of the read. If the p-value from the test was smaller than a given threshold, the site was declared as a false positive. In this study, 0.01 was chosen as the p-value threshold and used Bonferroni-correction for multiple testing correction.

Final call of RNA editing sites

Finally, reliable RNA editing sites were identified if there were enough sequencing reads at the sites, such that at least one individual had more than or equal to 5 high-quality (PHRED score \geq 20) reads and more than two high-quality and variant-supporting reads were found in at least one person. Sites with two or more variants were excluded under the assumption that RNA editing is generated only by transition from purine to purine or pyrimidine to pyrimidine.

2.4. Validation of the computational tool

In order to evaluate the developed computational pipeline, we obtained both DNA and RNA sequence information from two samples. Specifically, two pairs of DNA exome-sequencing (exome-seq) and RNA-seq were generated and used to estimate the false discovery rate (FDR) of

the developed pipeline, under the assumption that observed DNA and RNA sequence differences are mainly caused by RNA editing.

Exome-sequencing

Exome-sequencing is a variant of whole genome sequencing. Here, instead of sequencing a genome, exon regions are enriched and sequenced. For a given sequencing capacity, exome-sequencing gives much higher number of sequencing reads for exonic regions, compared to whole genome sequencing, which makes it possible to call accurate genotype. I used the *Agilent Sure Select Capture* system to enrich exonic regions from DNA samples.

Validation

First, RNA editing sites were identified from individual RNA-seq through the above pipeline, except for the step requiring the multiple samples. Second, genotypes for RNA editing sites were called from matched exome-seq using uniquely-mapped reads as determined by BWA and GATK pruning tools for realignment and recalibration (Auwera et al. 2013). A given genomic site was declared as homozygous if reads supporting major alleles comprise a proportion greater than 90% of the sequencing depth. Finally, the false discovery rate (FDR) was estimated with the sites whose sequencing depths in exome-seq were greater than or equal to 20 to ensure reliable genotype calls. Here, false positives are RNA editing sites where corresponding genomic sites do not have homozygous genotypes with the reference allele. FDR of two matched sets are 5.1% and 6.0%, respectively (Table 2.1). It should be noted that the additional filters in the pipeline, which take advantage of the multitude of samples, were not used for this evaluation but would be expected to decrease FDR further in the application of pipelines to multiple samples.

Figure 2.1 False positive call of RNA editing at SNP sites. Two sites are shown where RNA editing sites are initially called from RNA-seq (top) as reference sequences are T and C but sequencing reads have C and A at the sites, respectively. However, they are previously-annotated SNP sites (rs3748956 and rs819976). In fact, they turned out to be false positives, based on DNA sequencing (bottom) as DNA and RNA have same sequences.

'https://en.wikibooks.org/wiki/Next Generation Sequencing (NGS)/Pre-processing'.

procedures are described with a brief description.

Figure 2.4 Position bias filter. For a given site, reference-supporting reads and variantsupporting reads are identified. They are statistically compared in terms of distance from an end of the sequencing reads. In the figure, aligned sequencing reads denoted by gray horizontal bars are described. Vertical dotted line indicates a site to be tested, where the reference is G (with no letter indication) and the variant is T (marked by red letter). Blue circle and red circle describe two groups consisting of reference-supporting reads and variant supporting reads, respectively. Numbers in the circles are distance from the tested site to an end of sequencing reads.

Figure 2.5 Strand bias filter. For a given site, reference-supporting reads and variant-supporting reads are identified. They are statistically compared in terms of strand of sequencing reads. In the figure, aligned sequencing reads denoted by gray horizontal bars are described. Vertical dotted line indicates a site to be tested, where the reference is A (with no letter indication) and the variant is T (marked by red letter). Two by two tables are constructed, as shown in the figure, to apply the Fisher exact test.

Brain ID	DNA ID	RNA ID	Total number of reads in RNA-seq	The number of RNA editing sites	The number of testable sites (exome- sequencing depth >= 20)	The number of false positives	FDR (%)
B925	D2136	R3763	83,059,552	55,271	4,833	250	5.1
B1016	D2278	R3670	112,386,874	214,400	7,119	428	6.0

Table 2.1 Evaluation of computational pipeline for identifying RNA editing from RNA-seq. Two matched sets of DNA exome-sequencing (exome-seq) and RNA-seq were generated to evaluate the performance of our computational pipeline to identify RNA editing sites from RNAseq. RNA editing sites were identified from RNA-seq through the pipeline described in methods, except for the step requiring the multiple samples. The false discovery rate (FDR) was estimated with the sites whose sequencing depths in exome-seq were greater than or equal to 20 (testable sites). The false positives are RNA editing sites whose genotypes are not homozygous with the reference alleles.

Chapter 3

Landscape of RNA editing in human brain development

Here, I analyzed RNA-seq in post-mortem human brain tissues obtained from a total of 33 individuals spanning fetal to old age in order to generate comprehensive RNA editing profiles in human cortical development. In addition to confirming previous results about RNA editing, I found that the genome-wide landscape of A-to-I editing reflects a set of uniquely regulated RNA editing sites, comprising three distinct patterns: stable high, stable low and increasing across cortical development.

3.1. Significance of RNA editing study in human brain development

Despite the apparent frequency and consequence of RNA editing in brain as discussed in the Chapter 1, its broader regulation and functional roles are unclear (Li & Church 2013). In particular, the contribution of RNA editing is largely unexplored in human cortical development where diverse molecular processes must be orchestrated in a timely and precise manner. Previous studies investigating A-to-I editing in human brain have offered a very limited picture of editing sites and of their developmental variation (Blow et al. 2004; Li & Church 2009; Li et al. 2013; Ramaswami et al. 2013; Sakurai et al. 2014). For examples, prior studies have looked at only known editing sites (Li et al. 2013) or only in adult brain samples (Blow et al. 2004; Sakurai et al. 2014). This limited profile of RNA editing makes it impossible to elucidate mechanisms or functions in the development of the nervous system. A single previous study that explored global A-to-I editing profiles across brain development in the mouse (Dillman et al. 2013) did not address mechanistic or functional implications. More importantly, the results from mouse brain tissues are limited in their translation into RNA editing in human brain, particularly as A-to-I editing is enriched in Alu repeats, a primate-specific DNA element (Athanasiadis et al. 2004; Kim et al. 2004). Therefore, it is valuable to investigate comprehensive RNA editing profiles in human cortical development, which can provides insights to understand the function and regulation of Ato-I editing.

3.2. Post-mortem human brain samples

Post-mortem brain tissues from 33 individuals without neurological or psychiatric illnesses were obtained as previously described (Jaffe et al. 2015) and dissected at the Lieber

Institute for Brain Development (LIBD), USA. Specifically, the samples are of prefrontal cortex (DLPFC) grey matter (BA 9/46) spanning from birth to the eight decade of life. Fetal tissue was taken from the prefrontal region, over the dorsal convexity of the frontal lobe just anterior to the temporal pole. The samples were categorized into six distinct life stages: fetal, infant (< 12 months), child ($1 \le age < 10$), teen ($10 \le age < 20$), middle ($20 \le age < 50$) and old life ($age \ge 50$). In addition, 20 brain samples were collected from 5 additional healthy old individuals, each generating four samples for different brain regions including dorsolateral prefrontal cortex (DLPFC), cerebellum (CB), hippocampus (HIPPO), and entorhinal cortex (ERC). In order to reduce heterogeneity in the samples, only brain tissue from Caucasian individuals were collected. The demographic details of the samples are presented in the Table 3.1.

3.3. Identification of RNA editing sites from RNA-seq across human brain development

RNA-seq

The poly-A enriched RNA-seq libraries were prepared according to the standard Illumina protocol. RNA-seq was performed to generate paired-end reads with 100-bp read length. Approximately 120M reads per sample were acquired (Tables 3.2).

Identification of RNA editing sites

As a discovery set to identify RNA editing sites, 33 DLPFC samples were interrogated by the computational pipeline described in Chapter 2. This results in the genome-wide identification

of RNA editing sites across human brain development. RNA editing types were assigned based on strand information from RefSeq.

3.4. Landscape of RNA-editing in human brain development

Global characteristics of RNA editing in human brain development

A total of 267,766 RNA variant sites were identified in our 33 fully sequenced samples across brain development. On average, over 66,000 sites were identified in an individual sample (Table 3.2). Four major variant types were identified in genic regions, including A-to-G, T-to-C, G-to-A and C-to-T, each comprising a proportion greater than 1% (Fig. 3.1 and Table 3.3). While T-to-C and G-to-A variants are not canonical RNA editing types, they can be understood as possible A-to-I editing and C-to-U editing, respectively, if we consider incomplete strand annotation or antisense transcription. With this consideration, the proportion of the two known RNA editing types (A-to-I and C-to-U) accounts for most of the RNA variants in the list (94%). In particular, A-to-I editing sites are disproportionately enriched, as expected. I also confirmed that 85.5% of the identified A-to-I editing sites have been found in previous studies of various human tissues (Ramaswami & Li 2014) (115,336 of 134,914 sites). These results collectively indicate a successful identification of RNA editing sites in our study.

Next, A-to-I editing was focused, which is the most enriched editing type in human brain development. It is found mainly in introns and in 3' UTRs as well as in Alu repeat regions (Table 3.4), which is consistent with previous studies using human brain tissues (Blow et al. 2004; Sakurai et al. 2014). Interestingly, as shown in figure 3.2, a large proportion of RNA editing sites in coding sequence (CDS) regions and 5' UTRs are not within Alu repeat regions that frequently

form double-stranded RNA secondary structures required for ADAR's target recognition. This indicates that A-to-I editing in CDS regions and in 5' UTRs is not simply a reflection of expansion of Alu repeats in primate evolution.

Landscape of A-to-I editing rates in human brain development

To explore A-to-I editing quantitatively on a genome-wide scale, the A-to-I editing rates were estimated across all samples. For a given RNA editing site in a given sample, the A-to-I editing rate was estimated as a ratio of the number of reads supporting RNA editing to the total number of reads covering that site (Figure 3.3). Only aligned reads with high sequencing quality (PHRED score ≥ 20) on the sites were used. A-to-I editing rates was compared across the six age groups: namely, fetal, infant, child, teen, middle and old age. Specifically, in order to identify differentially edited A-to-I editing sites across developmental stages, the sites on mRNA structure (5'UTR, CDS and 3' UTR) whose median number of reads across samples was greater or equal to 20 were evaluated by ANOVA among the six age groups followed by multiple test correction with FDR. 0.01 was chosen as a significance cutoff of FDR adjusted p-values. 748 sites were identified as ones with significant editing rate differences among the six age groups. Among these sites, 742 sites have a developmentally-increasing editing pattern from fetal to adult samples (Figure 3.4a, top in Figure 3.4b and Table 3.5). These increasing sites were found in at least 10 samples (Figure 3.5) and comprise five clusters based principally on their relative baseline editing rates during fetal life (Figure 3.6). In contrast, most of the other editing sites show stable editing rates across samples from fetal age to late life. Specifically, the majority of these stable sites showing low editing rates have a mean rate of about 0.1, but there are a few sites with stably high editing rates around 0.9 (bottom in Figure 3.4b). These global editing rate profiles during brain development were highlighted with three unique labels: 'stable high editing', 'stable low editing'

and 'increasing editing', which are hereafter collectively called 'developmental A-to-I editing patterns' (Figure 3.4b).

3.5. Comments on the increasing pattern

Because the increasing editing profile might also reflect cell composition change towards relatively more glia postnatally, I considered the possibility that increasing populations of glia account for these regional and developmental differences. However, in an available dataset with purified mouse cortical cells (Zhang et al. 2014), CDS-residing editing sites in the increasing pattern generally have higher editing rates in neurons than in non-neuronal cell types (Table 3.6). Also, in a comparison of mRNA levels of ADARs among different cell types using a previous human brain single-cell RNA-seq dataset (Darmanis et al. 2015), neurons have higher ADAR expression levels than various glial cell types (Figure 3.7). Thus, the possibility that the increasing pattern is related to relative glial enrichment in postnatal brain samples is highly unlikely. This is further confirmed by an analysis of editing rates after normalization to neuronal and/or glial proportions. After estimating relative neuronal and glial composition using a previously-proposed computational method (Jaffe et al. 2015) with available genome-wide DNA methylation data (Jaffe et al. 2016) from the same postnatal brain tissues in the 33 discovery set, we find that the increasing pattern in brain development is found to be present after the normalization of editing rates (Figure 3.8). Here, for fetal samples, two independent fetal tissues were used, which have both DNA methylation and RNA-seq datasets (Table 3.7). Finally, it should be noted that cerebellum, which has the highest proportion of neuronal cells among brain tissues, has both higher and lower editing rates, compared to neocortical regions, at the sites showing the increasing editing pattern in brain development (Figure 3.9 with Table 3.8). Because neurons have higher ADAR expression levels compared to other cell types as described, the simple proportional differences of neuronal or glial population do not explain the lower editing rates at some sites in cerebellum. In this analysis, 20 brain samples (Table 3.7) were collected from 5 additional healthy old individuals, each generating four samples for different brain regions including dorsolateral prefrontal cortex (DLPFC), cerebellum (CB), hippocampus (HIPPO), entorhinal cortex (ERC). When editing rates were compared among brain regions, repeated measures ANOVA followed by FDR was performed to identify the editing sites showing differences across brain regions. These results collectively suggest that spatiotemporal changes of A-to-I editing rates in brain development do not simply reflect proportional differences in cellular compositions.

Figure 3.1 RNA editing types in human brain development. A-to-I editing is disproportionately enriched among RNA variants. A-to-I editing is described as A-to-G variant. Sites with ambiguous strand information are marked as 'Uncertain'.

Figure 3.2 Distribution of A-to-I editing sites according to gene regions. The numbers of A-to-I editing sites across genic regions are shown at the top of the grey bar. The proportion of editing sites not residing in an Alu repeat is represented by black bar.

Figure 3.3 Examples of RNA editing rates. For a given site whose reference is 'T', editing rates are different between two samples: in R3497, 37 sequencing reads support the allele 'C' among a total of 41 reads, assigning 0.9 (\approx 37/41) as an editing rate. In R5807, only 5 reads in 38 reads have an allele 'C', resulting in an editing rates of 0.13 (\approx 5/38). Here, the sense strand is (-).

Figure 3.4 Genome-wide profiles of A-to-I editing rates in human brain development. (a) The editing rates for 4,282 A-to-I editing sites that have higher median numbers of sequencing reads in 33 brain samples. For a given RNA editing site in a given sample, the A-to-I editing rate was estimated as a ratio of the number of reads supporting RNA editing to the total number of reads covering that site. Color (from blue to red) indicates editing rate (from 0 to 1) for a given site (row) in a sample (column). Samples are ordered according to age from fetal (left) to old age (right). The differentially edited sites (marked as *significant*) across the six age groups are determined by ANOVA with multiple testing correction. The *significantly increasing* sites are clustered into five groups denoted by numbers in the figure, which vary principally by their absolute editing rates and not by the slope of developmental change (see figure 3.6). (b) The top

figure is the histogram of mean editing rate differences between prenatal age group and postinfant age groups for significant sites while the bottom histogram describes the mean editing rate across 33 samples for non-significant sites. Overall, the global profiles of A-to-I editing rates in human brain development are summarized by three patterns: 'stable low editing', 'stable high editing' and 'increasing editing' which collectively comprise a set of '*developmental A-to-I editing patterns*'.

Figure 3.5 The number of sites with increasing pattern in 33 human brain samples. (a) Histogram of the number of editing sites according to the number of samples at which editing sites occur: Testable sites are sites whose median sequencing depth across samples is greater than 20 in mRNA regions (5' UTR, CDS and 3' UTR), which correspond to all sites in figure 3.4. The increasingly-edited sites indicate the sites with the increasing pattern in figure 3.4. (b) The cumulative proportion of the increasingly-edited sites according to the number of samples at which editing sites occur: only 14% of sites were found in 10 samples or less. In other words, 86% of the increasingly-edited sites were found in more than 10 samples.

Figure 3.6 Increasing editing patterns. The *significant* sites determined by ANOVA followed by FDR-correction have an increasing editing pattern which is represented by five groups varying in their absolute editing rates but not in their slopes (noted by numbers) based on hierarchical clustering. Lines are generated by fitting generalized additive models (GAM) to data with integrated smoothness estimation. Shades indicate 95% confidence interval.

Figure 3.7 Comparison of ADAR RNA level across cell types. (A) ADAR1 (B) ADAR2. Normalized counts of sequencing reads from a previous single cell RNA-seq dataset (Darmanis et al. 2015) were used to compare RNA levels across cell types. Each dot represents a single cell. The number of cells are 62 (astrocyte), 16 (microglia), 131 (neuron), 38 (oligodendrocyte), respectively.

Figure 3.8. Increasing pattern normalized by neuronal or glial proportions in human brain development. (a) The proportions of four cell types including embryonic stem cells (ES), neural progenitor cells (NPC), neuronal cells (NeuN pos) and glial cells (NeuN Neg) were estimated from the same brain tissues in the 33 subject discovery set with the available genome-wide DNA methylation data using the previously-published algorithm (Jaffe et al. 2015). For fetal samples, we used two independent fetal tissues which have both DNA methylation and RNA-seq datasets. (b) Editing rates normalized by glial proportion (c) Editing rates normalized by the neuronal proportion to glial proportion. Normalization is simply done by dividing editing rates by the proportions. In b, c and d, lines indicate the five increasing clusters defined in figures 3.4 and 3.6 (The same colors and the same

numbers are used across the figures). Lines are generated by locally weighted scatterplot smoothing (loess) regression with 95% confidence interval indicated by shades.

Figure 3.9. Editing rate differences among brain regions. A-to-I editing sites showing significant differences between cerebellum (CB) and other brain regions (DLPFC: dorsolateral prefrontal cortex, HIPPO: hippocampus, ERC: entorhinal cortex) are described. Each line corresponds to an editing site and the associated gene name is indicated. (a) Editing sites whose editing rates are higher in CB. (b) Editing sites with higher editing rates in neo cortical regions. Lines are generated by locally weighted scatterplot smoothing (loess) regression with 95% confidence interval indicated by shades.

RNA ID	Region	RIN	Sex	Race Age Group		Age (year)	Gestational week
R5805	DLPFC	9.4	F	CAUC	Fetal	-0.52	13
R5807	DLPFC	9.8	М	CAUC	Fetal	-0.52	13
R5789	DLPFC	8.9	F	CAUC	Fetal	-0.44	17
R3404	DLPFC	8.4	М	CAUC	Fetal	-0.42	18
R5795	DLPFC	9.6	F	CAUC	Fetal	-0.36	21
R5815	DLPFC	9.5	М	CAUC	Fetal	-0.35	22
R3594	DLPFC	8.5	М	CAUC	Infant	0.33	57
R3571	DLPFC	8.8	М	CAUC	Infant	0.35	58
R3591	DLPFC	8.8	М	CAUC	Infant	0.36	59
R3650	DLPFC	8.2	F	CAUC	Child	1.62	
R3547	DLPFC	8.1	F	CAUC	Child	2.49	
R3552	DLPFC	7.1	М	CAUC	Child	3.05	
R4699	DLPFC	8.7	М	CAUC	Child	4.14	
R4703	DLPFC	7.9	М	CAUC	Child	4.65	
R3545	DLPFC	7.9	М	CAUC	Child	4.71	
R5824	DLPFC	8.1	F	CAUC	Teen	16.65	
R3497	DLPFC	8.9	М	CAUC	Teen	16.93	
R3523	DLPFC	9.7	F	CAUC	Teen	17.24	
R3557	DLPFC	9	М	CAUC	Teen	18.12	
R3447	DLPFC	8.3	М	CAUC	Teen	18.42	
R4029	DLPFC	8.9	F	CAUC	Teen	18.76	NIA
R4054	DLPFC	8.6	F	CAUC	Middle	40.61	INA
R2897	DLPFC	8.7	М	CAUC	Middle	41.04	
R4049	DLPFC	8.6	F	CAUC	Middle	41.20	
R4371	DLPFC	7.5	М	CAUC	Middle	41.78	
R3791	DLPFC	8.5	М	CAUC	Middle	42.07	
R2826	DLPFC	8.6	М	CAUC	Middle	42.84	
R3539	DLPFC	7.7	F	CAUC	Old	57.48	
R3479	DLPFC	8.1	М	CAUC	Old	58.61	
R3766	DLPFC	8.4	F	CAUC	Old	59.26	
R3445	DLPFC	8.2	М	CAUC	Old	61.17	
R4038	DLPFC	8.3	М	CAUC	Old	67.87	
R3990	DLPFC	8.5	F	CAUC	Old	71.11	

Table 3.1 Demographic details of the human brain tissues. RNA ID: sample identifier; Region: brain region, DLPFC (dorsolateral prefrontal cortex); RIN: RNA integrity number indicating RNA quality; Sex: M (male) or F (female); RACE: CAUC (Caucasian); Age Group:

six categories according to age, fetal (before birth), infant (birth to 12 months), child ($1 \le age < 10$), teen ($10 \le age < 20$), middle ($20 \le age < 50$) and old life ($age \ge 50$); Age: years old; Gestational week: age of fetal tissues represented by conventional week of pregnancy.

RNA ID	Total number of reads	Number of RNA editing sties
R5805	80,337,568	25,567
R5807	124,013,892	24,408
R5789	115,578,312	49,525
R3404	101,440,880	69,143
R5795	135,185,718	72,255
R5815	137,933,864	24,355
R3594	115,856,986	93,553
R3571	136,135,132	93,483
R3591	155,835,950	86,731
R3650	167,953,146	103,649
R3547	93,909,690	61,348
R3552	119,030,262	57,923
R4699	95,116,394	69,460
R4703	197,052,880	104,694
R3545	122,085,850	76,074
R5824	184,243,872	102,841
R3497	107,834,650	65,739
R3523	176,310,414	89,674
R3557	100,916,134	62,852
R3447	96,398,214	67,615
R4029	186,789,930	91,690
R4054	91,322,460	64,596
R2897	93,746,042	47,099
R4049	97,608,938	69,177
R4371	105,055,680	70,288
R3791	82,526,684	49,291
R2826	118,781,082	73,717
R3539	114,574,246	53,600
R3479	87,319,298	43,724
R3766	82,157,476	40,286
R3445	93,543,730	58,576
R4038	98,241,300	65,126
R3990	149,259,434	65,025
Average	120,124,124	66,457

Table 3.2 Number of RNA editing sites in individual samples with total number ofsequencing reads

Туре	Number	Proportion (%)
A->G	134,914	81.0
T->C	17,133	10.3
G->A	3,192	1.9
C->T	1,803	1.1
C->A	1,219	0.7
T->A	991	0.6
G->T	824	0.5
A->T	647	0.4
G->C	528	0.3
A->C	465	0.3
T->G	457	0.3
C->G	437	0.3
Uncertain	3,915	2.3
Total	166,525	100.0

Table 3.3 Number of RNA editing sites in genic regions according to types

Annotation	Number	Proportion (%)		
Total	134,914	100.0		
Intronic	109,411	81.1		
3' UTR	13,940	10.3		
CDS	282	0.2		
5' UTR	247	0.2		
ncRNA	11,034	8.2		

Table 3.4 Number of A-to-I editing sites according to gene regions

Table 3.5 A-to-I editing sites with increasing pattern See Appendix 1: Chromosome and Coordinate: location of A-to-I editing sites in UCSC human genome hg19; Strand, Gene and Gene region: gene annotation based on RefSeq; DB: whether a A-to-I editing site is found in RADAR(Ramaswami & Li 2014), a public A-to-I editing database; Prenatal mean, Post-infant mean, Mean difference (diff.), Cluster in Editing rate: summary of editing rates in 33 samples. Cluster indicates an index of cluster described in Figures 3.4 and 3.6.

Site	Gene	Gene region	Neu.	Ast.	МО	NFO	OPC	MG	End.
chr1:172092348	COPA	CDS	0.05	0.22	0.07	0.28	0.49	0.55	0.48
chr1:172074326	NCSTN	CDS	0.01	0.00	0.00	0.00	0.00	0.02	0.01
chr19:40327452	SORBS1	CDS	0.00	0.00	0.00	0.00	0.00	NA	0.00
chr19:40327453	SORBS1	CDS	0.00	0.00	0.00	0.00	0.00	NA	0.00
chr7:130759165	TACC2	CDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chr9:4456006	GRIA4	CDS	0.65	0.33	0.01	0.09	0.16	NA	0.25
chr14:50919694	OSGEP	CDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chr12:46700334	NOVA1	CDS	0.08	0.00	0.00	0.00	0.02	0.00	0.00
chr9:57144307	NEIL1	CDS	0.03	0.00	0.00	0.00	0.00	0.00	0.00
chr11:102479070	GPATCH8	CDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chr8:83661176	GIPC1	CDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chr8:83661088	GIPC1	CDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00
chr16:87940543	GRIK1	CDS	0.53	0.00	0.00	0.12	0.06	NA	NA
chr3:32561485	MFN1	CDS	0.33	0.01	0.00	0.00	0.01	0.00	0.00
chr5:93189584	CCNI	CDS	0.01	0.00	0.00	0.01	0.01	0.06	0.03
chr3:80706908	GRIA2	CDS	0.28	0.08	0.05	0.06	0.07	0.00	0.00
chr3:80692286	GRIA2	CDS	0.51	0.07	0.00	0.05	0.15	0.00	0.50
chr17:45662949	TMEM63B	CDS	0.45	0.01	0.00	0.02	0.05	0.00	0.01
chr10:49272776	GRIK2	CDS	0.73	0.05	0.04	0.02	0.25	0.00	0.00
chr10:49244347	GRIK2	CDS	0.10	0.00	0.00	0.00	0.00	NA	0.00
chr10:49244330	GRIK2	CDS	0.88	0.05	0.00	0.04	0.19	NA	0.00
chrX:150648527	TRO	CDS	0.00	0.00	0.00	0.00	0.00	NA	0.00
chrX:41654252	GRIA3	CDS	0.54	0.06	1.00	0.15	0.26	NA	NA
chr9:57144308	NEIL1	CDS	0.12	0.00	0.00	0.02	0.00	0.00	0.00
chr3:80706912	GRIA2	CDS	0.97	0.67	0.67	0.84	0.99	1.00	1.00
chr14:75719719	COG3	CDS	0.27	0.76	0.57	0.75	0.83	0.91	0.97

Table 3.6 CDS-residing A-to-I editing sites in different mouse brain cell types. Site: location of A-to-I editing sites in UCSC mouse genome mm10. The A-to-I editing sites whose editing rates are greater than 0 in at least one cell type are marked by red; Gene and Gene region: gene annotation of A-to-I editing sites based on RefSeq; Columns 4 to 10: editing rates in Neuron (Neu.), Astrocyte (Ast.), Myelinating Oligodendrocyte (MO), Newly Formed Oligodendrocyte (NFO), Oligodendrocyte Precursor Cell (OPC), Microglia (MG), Endothelial cells (End.). Gray

indicates detected A-to-I editing rate. Yellow and green describe the highest and second-highest editing rate, respectively.

RNA ID	Region	RIN	Sex	Race	Age Group	Age	Gestational week	RNA-seq
R3715	DLPFC	7.3	F	CAUC	Fetal	-0.40	19	poly-A
R3390	DLPFC	9.9	М	CAUC	Fetal	-0.40	19	poly-A
R2855	DLPFC	8.5						Ribo-zero
R4936	Hippocampus	8.3	м	CAUC	Old	56.00		Ribo-zero
R10023	CB	7.9	1 V1	CAUC	Olu	30.09		Ribo-zero
R10065	ERC	7.4						Ribo-zero
R3395	DLPFC	8.9						Ribo-zero
R5455	Hippocampus	8.6	м	CAUC	Old	57.62		Ribo-zero
R10012	CB	7.4	1 V1	CAUC	Olu	57.05		Ribo-zero
R10055	ERC	6						Ribo-zero
R3766	DLPFC	8.4						Ribo-zero
R4869	Hippocampus	8.1	Б	CAUC	014	50.26	NIA	Ribo-zero
R10029	CB	7	Г	CAUC	Old	39.20	INA	Ribo-zero
R10070	ERC	6						Ribo-zero
R3052	DLPFC	7.3						Ribo-zero
R4757	Hippocampus	7.7	Б	CAUC	Old	75 57		Ribo-zero
R10022	CB	7.3	Г	CAUC	Olu	15.57		Ribo-zero
R10092	ERC	6						Ribo-zero
R2839	DLPFC	8.3						Ribo-zero
R4992	Hippocampus	8.2	м	CAUC	Old	77.00		Ribo-zero
R10003	СВ	7.6	IVI	CAUC	Old	//.99		Ribo-zero
R10052	ERC	7						Ribo-zero

Table 3.7 Additional brain samples. RNA ID: sample identifier; Region: brain region, DLPFC (dorsolateral prefrontal cortex), CB (cerebellum), HIPPO (hippocampus), ERC (entorhinal cortex); RIN: RNA integrity number indicating RNA quality; Sex: M (male) or F (female); RACE: CAUC (Caucasian); Age Group: fetal (before birth) and old life (age \geq 40); Age: years old; Gestational week: age of fetal tissues represented by conventional week of pregnancy. RNA-seq library type, poly-A (poly-A enrichment), Ribo-zero (ribosomal RNA depletion).

Site	Como	Gene	Mean editing rate				
Site	Gene	region	CB	DLPFC	ERC	HIPPO	
chr1:19544002	EMC1	3' UTR	0.29	0.65	0.59	0.56	
chr12:69237056	MDM2	3' UTR	0.53	0.31	0.25	0.28	
chr12:120899075	GATC	3' UTR	0.55	0.88	0.87	0.78	
chr12:132407137	ULK1	3' UTR	0.04	0.24	0.26	0.16	
chr13:20247023	MPHOSPH8	3' UTR	0.42	0.53	0.56	0.49	
chr14:70834087	SYNJ2BP	3' UTR	0.3	0.09	0.12	0.06	
chr17:3763779	CAMKK1	3' UTR	0.26	0.65	0.63	0.54	
chr17:17092596	MPRIP	3' UTR	0.43	0.25	0.17	0.28	
chr17:29861403	RAB11FIP4	3' UTR	0.22	0.33	0.42	0.33	
chr17:49042206	SPAG9	3' UTR	0.32	0.12	0.15	0.14	
chr17:79780692	FAM195B	3' UTR	0.31	0.75	0.67	0.56	
chr19:54487949	CACNG8	3' UTR	0.72	0.35	0.29	0.24	
chr2:176791181	KIAA1715	3' UTR	0.3	0.71	0.64	0.54	
chr2:201842411	FAM126B	3' UTR	0.61	0.21	0.18	0.23	
chr20:5175805	CDS2	3' UTR	0.04	0.15	0.17	0.14	
chr22:37765609	ELFN2	3' UTR	0	0.29	0.14	0.2	
chr3:119545199	GSK3B	3' UTR	0.15	0.36	0.37	0.34	
chr3:170181366	SLC7A14	3' UTR	0.49	0.28	0.22	0.25	
chr4:77979680	CCNI	exonic	0.07	0.23	0.21	0.19	
chr4:89180382	PPM1K	3' UTR	0.13	0.31	0.39	0.36	
chr4:158281294	GRIA2	exonic	0.76	0.57	0.51	0.5	
chr6:102372572	GRIK2	exonic	0.05	0.38	0.41	0.3	
chr7:38764438	VPS41	3' UTR	0.59	0.33	0.29	0.29	
chr7:65619303	CRCP	3' UTR	0.32	0.09	0.09	0.1	

Table 3.8 A-to-I editing sites showing significant differences in editing rates among brain regions. Mean editing rates in 5 individuals. Site: location of A-to-I editing sites in UCSC human genome hg19; Gene and gene region: gene annotation of A-to-I editing sites based on RefSeq; Editing rates in DLPFC (dorsolateral prefrontal cortex), CB (cerebellum), HIPPO (hippocampus), ERC (entorhinal cortex).

Chapter 4

Regulation of developmental A-to-I editing pattern

In Chapter 3, I reported "the developmental A-to-I editing patterns", comprising three distinct patterns across cortical development: "stable high", "stable low" and "increasing". In this chapter, I will demonstrate that these patterns are explained by the secondary structures of RNA and the temporal pattern of expression of ADAR enzymes and propose them as possible cis- and trans-regulatory mechanisms of the developmental A-to-I editing patterns, respectively.
4.1. Representative editing sites for developmental A-to-I editing pattern

To compare three distinct A-to-I editing patterns in brain development, the sites that explicitly represent each pattern were selected. Here, I considered that ADAR enzymes can edit multiple adenosines in a target transcript. This characteristic of editing can blur differences among the three editing patterns especially when sites from different patterns are close to each other in their genomic coordinates. For example, there are some cases of increasingly-edited sites that are within a few bases from stable high-edited sites. This is likely due to incomplete efficiency of editing at the sites around a stable high-edited site in fetal samples, which generates seemingly increasingly-edited sites but truly passive byproducts around stable high editing. Therefore, I selected the representative sites for each pattern, which are spatially isolated from other patterns. The following three parameters are used to formulate conditions to select representative sites for each pattern: i) magnitude of increasing of editing rates from fetal to adult samples (parameter 1), ii) maximum editing rates (parameter 3) at the neighboring editing sites within a given distance (parameter 2). Specific conditions are as follows. From now on, the following labels were used for groups of selected sites representing each pattern: "Group II. Low", "Group II. Increasing", and "Group III. High".

Editing sites in "Group II. Increasing": Representative sites for increasing pattern

Sites representing the increasing pattern, which comprises '*Group II*. *Increasing*', were chosen from the sites in figure 3.4 such that they have clear increasing pattern from fetal to adult ages and no stable high-edited sites are near increasingly-edited sites. These conditions were formalized by two quantitative requirements using the above three parameters: i) parameter 1

should be greater than a certain threshold, ii) parameter 3 should be less than a certain threshold for a given neighbor region specified by parameter 2. Currently we used 0.3, 800 bp, and 0.4 for the values of the parameters 1, 2 and 3, respectively. These values were determined systematically as follows: for parameter 2, I chose 800 bp to have an adequate number of sites for statistical tests (Figure 4.1a), considering that the number of selected sites decreases as parameter 2 increases. I assumed that 800 bp is enough to check effects of neighboring sites. Parameters 1 and 3 were chosen as conservatively as possible but keeping enough number of sites (Figure 4.1b). For parameter 1, 0.4 is too strict to identify enough sites, resulting in 0.3 being the choice. As for parameter 3, 0.4 is selected to maximize the number of selected sites. Using these conditions, a total of 58 sites were chosen for '*Group II: Increasing*' (denoted by green in Figure 4.2).

For all sites in group II except for 5 sites around DNA repeat regions, genotypes were checked in 12 selected samples covering fetal, infant and post-infant age groups in order to confirm that editing rates of about 50% after post-infant age are not affected by genomic variants. Specifically, a targeted DNA sequencing with extremely-high sequencing depth (mean: 5417 reads, minimum: 113 reads) was performed for accurate genotyping. Table 4.1 showed that in three samples, for example, all the amplified sites are homozygous with reference alleles, confirming that sites in 'Group II. Increasing' are not genomic variants.

Editing sites in "Group I. Low": Representative sites for stable low patterns.

For the stable low pattern, the sites were selected such that none of the stable high-edited and increasingly-edited sites are close to the stable low-edited sites. This was achieved by the conditions require that i) parameter 1 should be less than a certain threshold (0.1), ii) parameter 3 should be less than a certain threshold (0.3) for a given parameter 2 (800), iii) sites should have average editing rates greater than 0.1 and less than 0.3. As a result, '*Group I: Low*' consists of 65 selected sites for the stable low pattern (denoted by blue in Figure 4.2).

Editing sites in "Group III. High": Representative sites for stable high patterns.

Here, the required conditions are i) parameter 1 should be less than a certain threshold (0.1), ii) sites should have average editing rates greater than 0.7. The 40 sites were selected for the stable high editing pattern and defined '*Group III. High*' (denoted by red in Figure 4.2).

To summarize, the selected sites comprise three groups each representing the three patterns respectively as follows: '*Group I: Low*' consisting of 65 selected sites for the stable low pattern, '*Group II: Increasing*' consisting of 58 selected sites for the increasing pattern and '*Group III: High*' consisting of 40 sites for the stable high pattern (Fig. 4.2 and Table 4.2).

4.2. trans-regulation

The expression levels of the known A-to-I editing enzymes across brain development were investigated as a potential *trans*-regulatory mechanism. There are two ADAR enzymes (ADAR1 and ADAR2) expressed in brain and known to be responsible for A-to-I RNA editing in humans. The expression level of ADARs was measured by RNA-seq with an RPKM (Reads Per Kilobase per Million) unit that is typically used for quantifying gene expression levels with RNAseq. The figure 4.3 showed that changes of expression of ADARs are correlated selectively with the developmentally-increasing A-to-I editing pattern. Specifically, the mean Spearman correlation coefficients between ADAR mRNA levels and editing rates of the "Group II. Increasing" are 0.56 and 0.51 for ADAR1 and ADAR2 respectively.

4.3. cis-regulation

For a potential *cis*-regulatory mechanism, the neighbor sequence preferences were first examined to compare the sensitivities to ADAR 1/2 among the three groups. There is no statistically significant difference in the frequency of 5' and 3' sequence preferences among the three groups, as all three groups share previously known 5' and 3' sequence preferences (Eggington et al. 2011) as T>A>C>G and G>C>A≈T respectively (Figure 4.4).

Next, RNA secondary structure was considered as another *cis*-regulatory mechanism. Although ADARs are known to recognize the double-stranded structure of target RNAs, the subtle differences of RNA secondary-structures around editing sites may affect the efficiency of A-to-I editing. I developed quantitative measures of the degree and the distance of double-stranded structure around A-to-I editing sites to compare the sensitivities of the three groups to ADAR 1/2 (see 4.4 methods). While the distance measure does not reveal significant differences (Figure 4.5), statistically-significant mean differences (ANOVA and post-hoc two-sample t-test) were observed in the degree of secondary structure among the three groups (Figure 4.6), where the group of increasingly-edited sites tend to have an intermediate degree of double stranded structure between the high and low editing sites. However, the high-edited sites have a broad range of degrees of double-stranded structure, which suggests additional or alternative regulatory mechanisms for these sites. In fact, evaluation of prior RNA-seq data from ADAR 1/2 knockdown by siRNA in B-cells (I. X. Wang et al. 2013) showed that the high-edited sites are not

affected by ADAR 1/2 knockdown as much as the increasingly-edited sites (Figure 4.7 and Table 4.3). Here, the effect of ADAR 1/2 knockdown for a given site is measured by the percent decrease of editing rate in ADAR siRNA-treated experiments compared to controls. These results suggest that the increasingly-edited sites are particularly dependent on ADAR 1/2 mechanisms.

It is interesting to see these results from the perspective of a previously-proposed model of RNA editing. Previous studies (Daniel et al. 2012; Daniel et al. 2014) proposed that the long hairpin structure of RNA induces A-to-I editing by promoting the recruitment of ADAR enzymes to the transcript. This model, however, does not fully explain how different RNA editing rates are regulated. For example, A-to-I editing sites in Gabra3 and NEIL1 that were considered in a previous study (Daniel et al. 2014) as examples for the proposed model show two different editing patterns (increasing and stable-high, respectively) in brain development. The defined quantitative representation of double-stranded structure of RNAs may improve the model by adding another feature of RNA hairpin structure that has not been noted before.

4.4. Methods

RNA-seq processing

For RNA-seq data obtained from previous studies, STAR (Dobin et al. 2013) is used for alignments. To estimate ADAR expression levels, RPKM (Reads Per Kilobase per Million) were calculated using HTSeq (Anders et al. 2014).

Targeted DNA sequencing

This was done with the Fluidigm Access Array and the Illumina MiSeq through which PCR amplicons around target sites were generated on microfluidic chips and then sequenced. Only uniquely-mapped reads determined by BWA were used to determine genotypes. If a proportion of reference allele-supporting reads are greater than 90% of total sequencing reads at a site, its genotype is declared as homozygous with the reference allele.

RNA secondary structure analyses

The degree of double-stranded structure around and its distance from a given A-to-I editing site was calculated from computationally-predicted RNA-structure. First, RNA structure was predicted by RNAfold in Vienna RNA package 2.0 (Lorenz et al. 2011) using a pre-mRNA sequence spanning 800 bp upstream and downstream from a given editing site. Second, the number of nucleotides in a double-stranded configuration was counted within a flanking 100 bp region for every position on a pre-mRNA sequence. Finally, after the site associated with the maximum value within 500 bp upstream and downstream from an editing site was identified, the associated value was declared as the degree of double-stranded structure and the distance from the site to an editing site was called as the distance between a double-stranded structure and an editing site. Figure 4.8 summarizes the method.

Figure 4.1 Criteria for selecting the representative sites for the increasing A-to-I editing patterns. (a) As parameter 2 increases, the number of selected sites is decreasing for given parameters 1 and 3. Here, parameter 1 and 3 are 0.3 and 0.4, respectively. (b) For parameter 1 and 3, several values were tried with parameter 2 fixed at 800 bp.

Figure 4.2 Representative sites for developmental A-to-I editing patterns. Regression lines generated with the selected sites explicitly represent each pattern. Specifically, lines are generated by locally weighted scatterplot smoothing (LOESS) regression with shades indicating 95% confidence interval.

Figure 4.3 ADAR expression across human brain development. mRNA expression levels of ADAR enzymes, ADAR1 (red) and ADAR2 (blue) across development. Each dot represents an individual brain.

Figure 4.4 Sequence motif around A-to-I editing sites. (a) 5' and 3' sequence features flanking the sites in the three groups of selected sites, (b and c) Details of sequence frequency at 5' and 3' immediate neighbor respectively. Chi-Square test was performed to determine the significance of motif differences among three groups: p-values are 0.59 and 0.29 for 5' and 3' immediate neighbor, respectively.

Figure 4.5 Distance between an editing site and a double-stranded structure. The groups were compared in terms of the distance between an editing site and a double-stranded structure, which is defined by the distance from an editing site to the site associated with the maximum number of local base-pairings ('the double-stranded degree'). * indicates *p*-value ≤ 0.05 in two-sample t-tests.

Figure 4.6 Distribution of the degree of double-stranded structures (double-stranded degree) among the three groups of selected sites. The double-stranded degree represents the maximum number of local base-pairings around editing sites. *** and ** indicate *p*-value \leq 0.001 and *p*-value \leq 0.01 in two-sample t-tests, respectively.

Figure 4.7 Effect of ADAR enzymes knockdown by siRNA in B-cells. The knockdown effect is defined by the percent decrease of editing rate in ADAR siRNA-treatments compared to control experiments. *** and * indicate *p*-value ≤ 0.001 and *p*-value ≤ 0.05 in two-sample t-tests, respectively.

5'- AGCAACCUUGACUACCUAACGUUCCUAACAAGAGGAGCC•••GGCACGAAGGGUAGCAAGGUCGUA-3'

Figure 4.8 Quantification of degree and distance of double-stranded structure around RNA-editing sites. The degree of double-stranded structure for a given A-to-I editing site was calculated from computationally-predicted RNA-structure. First, RNA structure was predicted by *RNAfold* (rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) using a pre-mRNA sequence spanning 800 bp upstream and downstream from a given editing site. Second, the number of nucleotides in a double-stranded configuration was counted within a flanking 100 bp region for every position on a pre-mRNA sequence (moving-window search). In the figure, this is depicted by the rolling window of 5 nucleotides for simplicity. Finally, after the site associated with the maximum value within 500 bp upstream and downstream from an editing site was identified, the associated value was taken as the degree of double-stranded structure while the distance from the site to an editing site was called as the distance between a double-stranded structure and an editing site.

		D019	9 (paired	to R3404	in fetal)	D1390) (paired t	to R3594	in infant)	D140	8 (paired	to R5824	in teen)
Site	Ref.	Total read count	Ref. read count	Ref. read rate	Genotype	Total read count	Ref. read count	Ref. read rate	Genotype	Total read count	Ref. read count	Ref. read rate	Genotype
chr1:40147856	Т	7707	7685	0.997	TT	4756	4746	0.998	TT	3546	3539	0.998	TT
chr1:53289852	Α	7894	7850	0.994	AA	7884	7854	0.996	AA	7871	7838	0.996	AA
chr1:53291420	Α	7994	7963	0.996	AA	7478	7452	0.997	AA	7995	7958	0.995	AA
chr1:67874689	Т	7994	7976	0.998	TT	7994	7980	0.998	TT	7987	7956	0.996	TT
chr1:67874696	Т	7992	7965	0.997	TT	7996	7967	0.996	TT	7985	7959	0.997	TT
chr1:109748657	Α	7787	7745	0.995	AA	7785	7739	0.994	AA	7804	7768	0.995	AA
chr10:15120275	Т	7975	7969	0.999	TT	6898	6895	1.000	TT	4984	4979	0.999	TT
chr10:15120306	Т	7980	7957	0.997	TT	6952	6945	0.999	TT	5013	5008	0.999	TT
chr10:102777342	Т	7994	7976	0.998	TT	7988	7971	0.998	TT	7884	7865	0.998	TT
chr12:107280405	Α	0	0	NA	NA	0	0	NA	NA	0	0	NA	NA
chr14:26917530	Т	6618	6605	0.998	TT	3114	3109	0.998	TT	2393	2389	0.998	TT
chr14:31916464	Т	3877	3863	0.996	TT	2126	2126	1.000	TT	1308	1305	0.998	TT
chr16:23476581	Т	7964	7957	0.999	TT	7968	7951	0.998	TT	7960	7944	0.998	TT
chr16:23477179	Т	0	0	NA	NA	0	0	NA	NA	0	0	NA	NA
chr16:67715890	Т	7961	7929	0.996	TT	7940	7914	0.997	TT	7922	7892	0.996	TT
chr16:89630026	Α	8004	7986	0.998	AA	7997	7981	0.998	AA	7018	7003	0.998	AA
chr17:3763779	Т	8005	7990	0.998	TT	4209	4203	0.999	TT	3294	3291	0.999	TT
chr17:29862208	Α	7985	7957	0.996	AA	7975	7946	0.996	AA	7987	7960	0.997	AA
chr17:79780692	Т	7962	7944	0.998	TT	7950	7931	0.998	TT	7950	7933	0.998	TT
chr19:30191863	Т	2579	2574	0.998	TT	1124	1121	0.997	TT	767	766	0.999	TT
chr19:38887763	Α	3919	3911	0.998	AA	3346	3332	0.996	AA	2070	2066	0.998	AA
chr19:38888055	Α	2251	2244	0.997	AA	787	787	1.000	AA	548	546	0.996	AA
chr19:38889352	Α	5076	5067	0.998	AA	3574	3563	0.997	AA	1980	1923	0.971	AA

chr2:172605884	Α	8002	7989	0.998	AA	7676	7655	0.997	AA	5823	5817	0.999	AA
chr2:176791181	Т	7991	7957	0.996	TT	7998	7883	0.986	TT	7992	7962	0.996	TT
chr2:176791182	Т	7991	7971	0.997	TT	7993	7968	0.997	TT	7993	7971	0.997	TT
chr2:176791183	Т	7985	7956	0.996	TT	7996	7973	0.997	TT	7989	7967	0.997	TT
chr2:202486541	Т	7999	7980	0.998	TT	6933	6919	0.998	TT	5338	5329	0.998	TT
chr20:5175539	Α	7989	7985	0.999	AA	5163	5159	0.999	AA	3160	3158	0.999	AA
chr21:30953750	Т	8000	7972	0.997	TT	7022	6996	0.996	TT	5256	5236	0.996	TT
chr21:44452594	Α	0	0	NA	NA	0	0	NA	NA	0	0	NA	NA
chr3:10195096	Α	2625	2617	0.997	AA	1392	1388	0.997	AA	1230	1227	0.998	AA
chr4:100801747	Т	7881	7832	0.994	TT	7866	7821	0.994	TT	7844	7805	0.995	TT
chr4:158281294	Α	7988	7945	0.995	AA	6723	6693	0.996	AA	4947	4931	0.997	AA
chr5:68576744	Т	5825	5819	0.999	TT	4113	4110	0.999	TT	3052	3048	0.999	TT
chr5:156904831	Т	7982	7931	0.994	TT	7978	7950	0.996	TT	7983	7956	0.997	TT
chr5:156904853	Т	7972	7959	0.998	TT	7977	7959	0.998	TT	7981	7959	0.997	TT
chr5:156904922	Т	7896	7862	0.996	TT	7897	7848	0.994	TT	7887	7850	0.995	TT
chr5:156904950	Т	7924	7903	0.997	TT	7915	7879	0.995	TT	7908	7872	0.995	TT
chr5:156905396	Т	7951	7881	0.991	TT	7944	7910	0.996	TT	7951	7897	0.993	TT
chr5:156905398	Т	7932	7909	0.997	TT	7934	7906	0.996	TT	7927	7904	0.997	TT
chr5:156905405	Т	7973	7949	0.997	TT	7966	7920	0.994	TT	7971	7918	0.993	TT
chr5:156905560	Т	7999	7964	0.996	TT	7999	7972	0.997	TT	7999	7958	0.995	TT
chr6:18129214	Т	7999	7969	0.996	TT	8000	7964	0.996	TT	8004	7947	0.993	TT
chr6:52965317	Α	0	0	NA	NA	0	0	NA	NA	0	0	NA	NA
chr6:90344222	Т	7975	7926	0.994	TT	7976	7943	0.996	TT	7962	7935	0.997	TT
chr6:90344571	Т	386	382	0.990	TT	330	327	0.991	TT	325	320	0.985	TT
chr6:90344605	Т	385	385	1.000	TT	329	328	0.997	TT	324	322	0.994	TT
chr6:90344706	Т	385	385	1.000	TT	331	330	0.997	TT	323	323	1.000	TT
chr6:102337702	Α	7993	7978	0.998	AA	6698	6693	0.999	AA	6185	6181	0.999	AA

chr6:109784286	Т	7965	7932	0.996	TT	7946	7914	0.996	TT	7374	7357	0.998	TT
chr6:109784327	Т	4489	4432	0.987	TT	3773	3747	0.993	TT	3069	3048	0.993	TT
chr7:5662192	Т	0	0	NA	NA	0	0	NA	NA	0	0	NA	NA
chr8:38828267	Α	121	118	0.975	AA	158	154	0.975	AA	136	134	0.985	AA
chr8:48889633	Α	7983	7941	0.995	AA	7976	7952	0.997	AA	7977	7943	0.996	AA
chr8:48890109	Α	7996	7986	0.999	AA	8001	7990	0.999	AA	7989	7965	0.997	AA
chrX:19931744	Т	7992	7969	0.997	TT	7459	7445	0.998	TT	6676	6667	0.999	TT
chrX:151358319	Т	6097	6083	0.998	TT	3194	3193	1.000	TT	2918	2915	0.999	TT

Table 4.1 Genotype confirmation of sites in *Group II. Increasing.* Among 12 samples genotyped, three samples are shown as examples. Site and Reference (Ref.): location and reference sequence at A-to-I editing sites in UCSC human genome hg19; Total read count, Reference (Ref.) read rate, Genotype in each sample: uniquely-mapped reads are counted. The numbers and the proportions of reads supporting the reference allele are described. If a proportion of reference allele-supporting reads are greater than 90% at a site, its genotype is declared as homozygous with the reference allele.

						Edit	rate	
Group	Chr	omosome	Gene	Gene region	Mea n	Prenata 1 mean	Post Infan t mean	Mean diff.
Group III: High	chr1	1595586	SLC35E2B	3' UTR	0.822	0.889	0.800	-0.089
Group III: High	chr1	3730400	CEP104	3' UTR	0.770	0.712	0.788	0.076
Group III: High	chr1	36067817	PSMB2	3' UTR	0.903	0.831	0.927	0.095
Group III: High	chr1	36067886	PSMB2	3' UTR	0.735	0.676	0.757	0.081
Group III: High	chr1	226791920	C1orf95	3' UTR	0.710	0.755	0.691	-0.064
Group III: High	chr1	226793282	C1orf95	3' UTR	0.731	0.665	0.759	0.094
Group III: High	chr2	201843471	FAM126B	3' UTR	0.805	0.804	0.809	0.006
Group III: High	chr3	179115627	GNB4	3' UTR	0.859	0.792	0.867	0.075
Group III: High	chr4	17803019	DCAF16	3' UTR	0.725	0.729	0.737	0.008
Group III: High	chr4	17803537	DCAF16	3' UTR	0.969	0.961	0.972	0.011
Group III: High	chr4	158257875	GRIA2	CDS	0.927	0.928	0.921	-0.007
Group III: High	chr5	131287375	ACSL6	3' UTR	0.937	0.842	0.959	0.117
Group III: High	chr5	131289291	ACSL6	3' UTR	0.973	0.981	0.968	-0.012
Group III: High	chr6	158619523	GTF2H5	3' UTR	0.822	0.730	0.846	0.116
Group III: High	chr10	15118748	ACBD7	3' UTR	0.851	0.829	0.855	0.026
Group III: High	chr10	15118774	ACBD7	3' UTR	0.761	0.713	0.767	0.054
Group III: High	chr11	16778023	C11orf58	3' UTR	0.886	0.849	0.889	0.040
Group III: High	chr12	98942688	ТМРО	3' UTR	0.885	0.811	0.905	0.094
Group III: High	chr12	98943033	ТМРО	3' UTR	0.954	0.940	0.953	0.013
Group III: High	chr12	117014187	MAP1LC3B 2	3' UTR	0.938	0.956	0.926	-0.030
Group III: High	chr12	120899011	GATC	3' UTR	0.876	0.823	0.896	0.073
Group III: High	chr13	50487444	SPRYD7	3' UTR	0.776	0.854	0.767	-0.086

Group III: High	chr15	75646086	NEIL1	CDS	0.931	0.928	0.931	0.004
Group III: High	chr15	90375494	AP3S2	3' UTR	0.937	0.896	0.949	0.053
Group III: High	chr15	90375568	AP3S2	3' UTR	0.759	0.781	0.760	-0.020
Group III: High	chr15	90375859	AP3S2	3' UTR	0.840	0.818	0.850	0.032
Group III: High	chr17	2320651	METTL16	3' UTR	0.837	0.795	0.846	0.051
Group III: High	chr17	49042252	SPAG9	3' UTR	0.916	0.826	0.938	0.112
Group III: High	chr19	4654380	TNFAIP8L1	3' UTR	0.703	0.650	0.717	0.067
Group III: High	chr19	10742170	SLC44A2	CDS	0.703	0.819	0.704	-0.115
Group III: High	chr19	13883381	MRI1	3' UTR	0.857	0.843	0.859	0.015
Group III: High	chr19	39981298	TIMM50	3' UTR	0.966	0.938	0.972	0.033
Group III: High	chr19	40537196	ZNF780B	3' UTR	0.716	0.712	0.721	0.009
Group III: High	chr19	54488967	CACNG8	3' UTR	0.723	0.712	0.726	0.014
Group III: High	chr20	3851209	MAVS	3' UTR	0.919	0.910	0.916	0.006
Group III: High	chr20	43706947	STK4	3' UTR	0.829	0.839	0.820	-0.019
Group III: High	chr21	34636361	IFNAR2	3' UTR	0.917	0.834	0.935	0.102
Group III: High	chr21	34636384	IFNAR2	3' UTR	0.950	0.974	0.944	-0.031
Group III: High	chr22	18572675	PEX26	3' UTR	0.894	0.831	0.910	0.080
Group III: High	chrX	118672671	CXorf56	3' UTR	0.710	0.677	0.719	0.042
Group II: Increasing	chr1	40147856	HPCAL4	3' UTR	0.345	0.067	0.412	0.345
Group II: Increasing	chr1	53289852	ZYG11B	3' UTR	0.395	0.056	0.488	0.432
Group II: Increasing	chr1	53291420	ZYG11B	3' UTR	0.547	0.130	0.653	0.523
Group II: Increasing	chr1	67874689	SERBP1	3' UTR	0.679	0.128	0.818	0.690
Group II: Increasing	chr1	67874696	SERBP1	3' UTR	0.308	0.034	0.379	0.345
Group II: Increasing	chr1	109748657	KIAA1324	3' UTR	0.600	0.240	0.689	0.449
Group II: Increasing	chr2	172605884	DYNC112	3' UTR	0.345	0.063	0.418	0.354

Group II: Increasing	chr2	176791181	KIAA1715	3' UTR	0.350	0.028	0.449	0.421
Group II: Increasing	chr2	176791182	KIAA1715	3' UTR	0.505	0.109	0.613	0.503
Group II: Increasing	chr2	176791183	KIAA1715	3' UTR	0.265	0.018	0.345	0.327
Group II: Increasing	chr2	202486541	TMEM237	3' UTR	0.282	0.025	0.352	0.327
Group II: Increasing	chr3	10195096	VHL	3' UTR	0.391	0.134	0.454	0.320
Group II: Increasing	chr4	100801747	LAMTOR3	3' UTR	0.704	0.215	0.823	0.608
Group II: Increasing	chr4	158281294	GRIA2	CDS	0.477	0.166	0.554	0.388
Group II: Increasing	chr5	68576744	CCDC125	3' UTR	0.304	0.034	0.379	0.345
Group II: Increasing	chr5	156904831	ADAM19	3' UTR	0.538	0.040	0.675	0.635
Group II: Increasing	chr5	156904853	ADAM19	3' UTR	0.279	0.016	0.360	0.344
Group II: Increasing	chr5	156904922	ADAM19	3' UTR	0.368	0.112	0.443	0.331
Group II: Increasing	chr5	156904950	ADAM19	3' UTR	0.304	0.039	0.381	0.342
Group II: Increasing	chr5	156905396	ADAM19	3' UTR	0.422	0.084	0.512	0.427
Group II: Increasing	chr5	156905398	ADAM19	3' UTR	0.370	0.015	0.450	0.435
Group II: Increasing	chr5	156905405	ADAM19	3' UTR	0.308	0.033	0.377	0.344
Group II: Increasing	chr5	156905560	ADAM19	3' UTR	0.493	0.111	0.609	0.497
Group II: Increasing	chr6	18129214	TPMT	3' UTR	0.401	0.008	0.515	0.507
Group II: Increasing	chr6	52965317	FBXO9	3' UTR	0.349	0.025	0.443	0.419
Group II: Increasing	chr6	90344222	LYRM2	3' UTR	0.586	0.122	0.716	0.594
Group II: Increasing	chr6	90344571	LYRM2	3' UTR	0.348	0.037	0.425	0.388
Group II: Increasing	chr6	90344605	LYRM2	3' UTR	0.393	0.104	0.473	0.369
Group II: Increasing	chr6	90344706	LYRM2	3' UTR	0.266	0.045	0.324	0.279
Group II: Increasing	chr6	102337702	GRIK2	CDS	0.645	0.216	0.758	0.542
Group II: Increasing	chr6	109784286	ZBTB24	3' UTR	0.443	0.159	0.508	0.349
Group II: Increasing	chr6	109784327	ZBTB24	3' UTR	0.445	0.180	0.509	0.330

Group II: Increasing	chr7	5662192	RNF216	3' UTR	0.340	0.059	0.426	0.367
Group II: Increasing	chr8	38828267	PLEKHA2	3' UTR	0.327	0.040	0.387	0.346
Group II: Increasing	chr8	48889633	MCM4	3' UTR	0.480	0.100	0.586	0.485
Group II: Increasing	chr8	48890109	MCM4	3' UTR	0.659	0.182	0.786	0.605
Group II: Increasing	chr10	15120275	ACBD7	3' UTR	0.458	0.139	0.546	0.406
Group II: Increasing	chr10	15120306	ACBD7	3' UTR	0.324	0.118	0.376	0.258
Group II: Increasing	chr10	102777342	PDZD7	CDS	0.613	0.144	0.734	0.590
Group II: Increasing	chr12	107280405	RIC8B	3' UTR	0.391	0.067	0.488	0.421
Group II: Increasing	chr14	26917530	NOVA1	CDS	0.245	0.015	0.309	0.294
Group II: Increasing	chr14	31916464	DTD2	3' UTR	0.496	0.182	0.577	0.394
Group II: Increasing	chr16	23476581	GGA2	3' UTR	0.683	0.213	0.803	0.590
Group II: Increasing	chr16	23477179	GGA2	3' UTR	0.310	0.077	0.380	0.304
Group II: Increasing	chr16	67715890	GFOD2	3' UTR	0.452	0.111	0.538	0.427
Group II: Increasing	chr16	89630026	RPL13	3' UTR	0.515	0.141	0.626	0.484
Group II: Increasing	chr17	3763779	CAMKK1	3' UTR	0.483	0.069	0.608	0.539
Group II: Increasing	chr17	29862208	RAB11FIP4	3' UTR	0.535	0.162	0.629	0.466
Group II: Increasing	chr17	79780692	FAM195B	3' UTR	0.526	0.069	0.655	0.586
Group II: Increasing	chr19	30191863	C19orf12	3' UTR	0.357	0.100	0.419	0.319
Group II: Increasing	chr19	38887763	SPRED3	3' UTR	0.249	0.047	0.306	0.259
Group II: Increasing	chr19	38888055	SPRED3	3' UTR	0.360	0.050	0.452	0.402
Group II: Increasing	chr19	38889352	SPRED3	3' UTR	0.340	0.032	0.422	0.390
Group II: Increasing	chr20	5175539	CDS2	3' UTR	0.327	0.040	0.406	0.366
Group II: Increasing	chr21	30953750	GRIK1	CDS	0.517	0.130	0.599	0.469
Group II: Increasing	chr21	44452594	PKNOX1	3' UTR	0.283	0.040	0.346	0.305
Group II: Increasing	chrX	19931744	CXorf23	3' UTR	0.529	0.153	0.633	0.480

Group II: Increasing	chrX	151358319	GABRA3	CDS	0.694	0.201	0.804	0.603
Group I: Low	chr1	20978457	DDOST	3' UTR	0.131	0.230	0.108	-0.122
Group I: Low	chr1	109474780	CLCC1	3' UTR	0.184	0.148	0.191	0.043
Group I: Low	chr1	160112527	ATP1A2	3' UTR	0.143	0.171	0.142	-0.029
Group I: Low	chr1	179070646	ABL2	3' UTR	0.179	0.188	0.174	-0.014
Group I: Low	chr2	102508477	MAP4K4	3' UTR	0.110	0.109	0.108	-0.001
Group I: Low	chr2	166730667	TTC21B	3' UTR	0.131	0.062	0.157	0.095
Group I: Low	chr3	49452787	ТСТА	3' UTR	0.108	0.143	0.105	-0.038
Group I: Low	chr3	101545798	NXPE3	3' UTR	0.134	0.120	0.138	0.018
Group I: Low	chr3	155480786	C3orf33	3' UTR	0.171	0.172	0.180	0.008
Group I: Low	chr4	7059305	TADA2B	3' UTR	0.109	0.085	0.118	0.033
Group I: Low	chr4	166000148	TMEM192	3' UTR	0.136	0.068	0.153	0.085
Group I: Low	chr6	42175084	MRPS10	3' UTR	0.107	0.126	0.104	-0.022
Group I: Low	chr6	42175097	MRPS10	3' UTR	0.103	0.098	0.106	0.008
Group I: Low	chr7	65618305	CRCP	3' UTR	0.141	0.148	0.139	-0.009
Group I: Low	chr7	65618306	CRCP	3' UTR	0.136	0.134	0.138	0.004
Group I: Low	chr7	65618332	CRCP	3' UTR	0.101	0.089	0.103	0.013
Group I: Low	chr7	73150707	ABHD11	3' UTR	0.121	0.163	0.110	-0.054
Group I: Low	chr7	73646106	RFC2	3' UTR	0.137	0.122	0.142	0.020
Group I: Low	chr7	73646121	RFC2	3' UTR	0.112	0.100	0.116	0.016
Group I: Low	chr7	73646147	RFC2	3' UTR	0.145	0.144	0.148	0.004
Group I: Low	chr7	73646229	RFC2	3' UTR	0.130	0.089	0.141	0.052
Group I: Low	chr7	92166602	RBM48	3' UTR	0.115	0.135	0.110	-0.024
Group I: Low	chr7	102089037	ORAI2	3' UTR	0.123	0.114	0.125	0.011
Group I: Low	chr7	102090451	ORAI2	3' UTR	0.131	0.135	0.132	-0.003

Group I: Low	chr8	42884354	HOOK3	3' UTR	0.152	0.081	0.172	0.091
Group I: Low	chr8	42884422	HOOK3	3' UTR	0.112	0.116	0.114	-0.003
Group I: Low	chr8	42884423	HOOK3	3' UTR	0.162	0.119	0.174	0.054
Group I: Low	chr8	104411941	SLC25A32	3' UTR	0.112	0.107	0.115	0.008
Group I: Low	chr9	132590069	C9orf78	3' UTR	0.105	0.085	0.104	0.019
Group I: Low	chr10	82192318	FAM213A	3' UTR	0.172	0.204	0.166	-0.038
Group I: Low	chr10	82282216	TSPAN14	3' UTR	0.102	0.064	0.110	0.046
Group I: Low	chr10	126451032	METTL10	CDS	0.143	0.085	0.154	0.069
Group I: Low	chr11	8707840	RPL27A	3' UTR	0.153	0.153	0.156	0.003
Group I: Low	chr11	61567700	FADS1	3' UTR	0.103	0.099	0.105	0.006
Group I: Low	chr11	63724420	NAA40	3' UTR	0.136	0.048	0.159	0.111
Group I: Low	chr11	111653930	ALG9	3' UTR	0.125	0.110	0.135	0.025
Group I: Low	chr12	54629209	CBX5	3' UTR	0.115	0.098	0.116	0.019
Group I: Low	chr13	46090371	COG3	CDS	0.106	0.031	0.120	0.090
Group I: Low	chr14	23303976	MRPL52	3' UTR	0.228	0.150	0.244	0.094
Group I: Low	chr16	28976933	NFATC2IP	3' UTR	0.108	0.127	0.098	-0.029
Group I: Low	chr16	69390514	TERF2	3' UTR	0.125	0.104	0.125	0.021
Group I: Low	chr16	70407018	DDX19A	3' UTR	0.133	0.121	0.134	0.013
Group I: Low	chr16	70413821	ST3GAL2	3' UTR	0.118	0.130	0.110	-0.020
Group I: Low	chr17	1368284	MYO1C	3' UTR	0.106	0.119	0.096	-0.023
Group I: Low	chr17	1368288	MYO1C	3' UTR	0.105	0.118	0.097	-0.020
Group I: Low	chr17	20217878	SPECC1	3' UTR	0.134	0.057	0.151	0.094
Group I: Low	chr17	20217935	SPECC1	3' UTR	0.132	0.073	0.154	0.081
Group I: Low	chr17	25640011	WSB1	3' UTR	0.106	0.107	0.107	0.000
Group I: Low	chr17	28513019	NSRP1	3' UTR	0.109	0.080	0.113	0.034

Group I: Low	chr18	11882606	GNAL	3' UTR	0.149	0.101	0.166	0.065
Group I: Low	chr19	5206255	PTPRS	3' UTR	0.111	0.167	0.108	-0.058
Group I: Low	chr19	40022726	EID2B	3' UTR	0.107	0.085	0.115	0.030
Group I: Low	chr19	41828971	CCDC97	3' UTR	0.119	0.033	0.135	0.102
Group I: Low	chr19	58774627	ZNF544	3' UTR	0.134	0.093	0.150	0.057
Group I: Low	chr20	3805458	AP5S1	3' UTR	0.109	0.214	0.083	-0.132
Group I: Low	chr20	3805459	AP5S1	3' UTR	0.200	0.286	0.171	-0.115
Group I: Low	chr20	3805511	AP5S1	3' UTR	0.146	0.129	0.153	0.024
Group I: Low	chr20	3853956	MAVS	3' UTR	0.115	0.088	0.129	0.041
Group I: Low	chr20	3853967	MAVS	3' UTR	0.165	0.124	0.184	0.060
Group I: Low	chr20	3854106	MAVS	3' UTR	0.145	0.108	0.159	0.051
Group I: Low	chr21	34728113	IFNAR1	3' UTR	0.124	0.079	0.124	0.045
Group I: Low	chr21	34728136	IFNAR1	3' UTR	0.133	0.190	0.109	-0.081
Group I: Low	chr21	37666181	DOPEY2	3' UTR	0.122	0.106	0.125	0.019
Group I: Low	chr22	21244926	SNAP29	3' UTR	0.104	0.133	0.099	-0.034
Group I: Low	chrX	123044597	XIAP	3' UTR	0.112	0.058	0.129	0.070

Table 4.2 The representative sites for developmental A-to-I editing patterns. Group: a pattern that a site represents, corresponding to figure 4.2; Chromosome and Coordinate: location of A-to-I editing sites in UCSC human genome hg19; Gene and Gene region: gene annotation based on RefSeq; Mean, Prenatal mean, Post-infant mean and Mean difference (diff.) in Editing rate: summary of editing rates in 33 samples.

				Edit rate		Knock do	wn effect
Site	Group	Depth	Control	ADAR1	ADAR2	ADAR1	ADAR2
			Control	KD	KD	KD	KD
	Group III:						
chr1:1595586	High	138	0.78	0.56	0.74	0.29	0.06
	Group III:						
chr1:3730400	High	54	0.93	0.22	0.84	0.76	0.10
	Group III:						
chr1:36067817	High	449	0.82	0.40	0.80	0.51	0.02
1 1 2 (0 (700 (Group III:	220	0.75	0.51	0.01	0.00	0.00
chr1:3606/886	High	320	0.75	0.51	0.81	0.32	-0.09
-12-201042471	Group III:	12	0.00	0.7	0.76	0.25	0.14
cnr2:2018434/1	High	43	0.88	0.6/	0.76	0.25	0.14
abr1.17902010	Group III:	55	0.80	0.50	0.72	0.27	0.10
ciii4.17803019	Group III:		0.80	0.39	0.72	0.27	0.10
chr4.17803537	High	11	0.84	0.72	0.08	0.15	0.16
CIII4.17803337	Group III:		0.04	0.72	0.98	0.15	-0.10
chr12.98942688	High	243	0.93	0.50	0.92	0.46	0.01
CIII 12.70742000	Group III.	243	0.75	0.50	0.72	0.40	0.01
chr12.98943033	High	262	0.93	0 72	0 97	0 22	-0.05
	Group III:		0.70	0.72	0.77	0	0.00
chr12:117014187	High	41	0.98	1.00	1.00	-0.03	-0.03
	Group III:						
chr12:120899011	High	277	0.89	0.51	0.87	0.42	0.02
	Group III:						
chr13:50487444	High	34	0.76	0.40	0.76	0.48	0.00
	Group III:						
chr15:90375494	High	44	0.96	0.74	0.91	0.22	0.05
	Group III:						
chr15:90375568	High	46	0.78	0.63	0.83	0.19	-0.05
	Group III:						
chr15:90375859	High	45	0.86	0.38	0.78	0.56	0.09
1 15 000 (51	Group III:	10.4					0.04
chr17:2320651	High	134	0.75	0.37	0.72	0.50	0.04
1 17 400 400 50	Group III:	70	0.04	0.40	0.70	0.40	0.16
chr17:49042252	High	70	0.94	0.49	0.78	0.48	0.16
ab #10.4654290	Group III:	120	0.74	0.26	0.72	0.65	0.04
CIII 19.4034380		120	0.74	0.20	0.72	0.03	0.04
obr10.10742170	Gloup III. High	200	0.52	0.40	0.47	0.06	0.00
CIII 19.10/421/0	Group III:	399	0.32	0.49	0.47	0.00	0.09
chr19.13883381	High	99	0.98	0.58	0.84	0.41	0.15
CIII 17.15005501	Group III.		0.70	0.50	0.04	0.71	0.15
chr19·39981298	High	42	1.00	0.32	0.98	0.68	0.02
	Group III [.]	12	1.00	0.52	0.20	0.00	0.02
chr19:40537196	High	32	0.66	0.37	0.54	0.43	0.17
	Group III:						
chr20:3851209	High	50	0.98	0.47	0.94	0.52	0.04

	Group III:						
chr20:43706947	High	728	0.61	0.40	0.62	0.35	0.00
	Group III:						
chr21:34636361	High	371	0.65	0.21	0.69	0.68	-0.06
	Group III:						
chr21:34636384	High	357	0.86	0.51	0.88	0.41	-0.03
	Group III:						
chr22:18572675	High	352	0.68	0.32	0.77	0.52	-0.14
	Group III:						
chrX:118672671	High	119	0.68	0.26	0.66	0.61	0.03
	Group II:						
chr1:53289852	Inc.	32	0.31	0.00	0.14	1.00	0.55
	Group II:						
chr1:53291420	Inc.	75	0.31	0.08	0.40	0.75	-0.30
	Group II:						
chr1:67874689	Inc.	225	0.68	0.03	0.72	0.95	-0.06
1 4 6 - 0 - 4 60 6	Group II:						
chr1:67874696	Inc.	232	0.26	0.00	0.28	0.99	-0.08
	Group II:	•		0.00	0.00	1.00	
chr2:176791181	Inc.	30	0.30	0.00	0.09	1.00	0.71
1 0 15(501100	Group II:	20	0.00	0.00	0.10	1.00	0.47
chr2:176791182	Inc.	30	0.33	0.00	0.18	1.00	0.47
1 2 10105007	Group II:	0.0	0.60	0.04	0.45	0.02	0.00
chr3:10195096	Inc.	93	0.62	0.04	0.45	0.93	0.28
1 4 100001747	Group II:	4.1	0.20	0.00	0.40	1.00	0.00
chr4:100801/4/	Inc.	41	0.39	0.00	0.49	1.00	-0.26
1 5 60576744	Group II:	50	0.24	0.00	0.17	1.00	0.26
chr5:685/6/44	Inc.	59	0.24	0.00	0.17	1.00	0.26
-1-5-15(004921	Group II:	100	0.22	0.02	0.14	0.96	0.26
cnr5:150904851	Inc.	182	0.22	0.03	0.14	0.80	0.30
abr5.156004022	Group II:	120	0.20	0.02	0.14	0.01	0.52
CIII 5.1 50904922	Crown II:	129	0.29	0.05	0.14	0.91	0.55
abr5:156004050	Group II:	147	0.12	0.00	0.08	1.00	0.20
CIII 5.1 50904950	Croup II:	14/	0.12	0.00	0.08	1.00	0.39
chr5.156005306	Inc	110	0.20	0.03	0.26	0.85	0.31
CIII 5.150905590	Group II:	117	0.20	0.05	0.20	0.85	-0.51
chr5.156905560	Inc	145	0.35	0.03	0.40	0.92	-0.16
cm3.150705500	Group II [.]	145	0.55	0.05	0.40	0.72	-0.10
chr6.90344222	Inc	67	0.51	0.11	0.42	0 78	0.17
0110.90311222	Group II [.]	07	0.01	0.11	0.12	0.70	0.17
chr6·90344605	Inc	77	0.31	0.00	0.20	1.00	0.37
	Group II [.]	, ,	0.51	0.00	0.20	1.00	0.07
chr6 [.] 90344706	Inc	67	0 22	0.00	0 21	1.00	0.06
	Group II [.]		••		••==		
chr6:109784286	Inc.	99	0.27	0.01	0.22	0.96	0.16
	Group II:						
chr6:109784327	Inc.	104	0.41	0.00	0.50	1.00	-0.22
	Group II:	-					
chr8:38828267	Inc.	178	0.33	0.03	0.19	0.90	0.43

	Group II:						
chr8:48889633	Inc.	481	0.13	0.01	0.09	0.89	0.34
	Group II:						
chr8:48890109	Inc.	479	0.27	0.02	0.23	0.92	0.16
	Group II:						
chr14:31916464	Inc.	79	0.59	0.05	0.63	0.92	-0.06
	Group II:						
chr16:23476581	Inc.	250	0.35	0.02	0.38	0.94	-0.07
	Group II:						
chr16:67715890	Inc.	23	0.31	0.00	0.22	1.00	0.29
	Group II:						
chr16:89630026	Inc.	154	0.31	0.01	0.34	0.97	-0.09
	Group II:						
chr19:30191863	Inc.	26	0.35	0.00	0.18	1.00	0.49
	Group II:						
chr20:5175539	Inc.	69	0.25	0.06	0.23	0.78	0.07

Table 4.3 Effect of ADAR knock down (KD) by siRNA on developmental A-to-I editing patterns. Site: location of A-to-I editing sites in UCSC human genome hg19; Group: a pattern that a site represents, corresponding to figure 4.2, 'Group II: Inc.' stands for 'Group II. Increasing'; Depth: minimum sequencing depth among control, ADAR1 KD, ADAR2 KD RNAseq experiments; Editing rate and Knock down effect: The knock down effect for a given site is the percent decrease of editing rate in ADAR1/2 KD experiments compared to controls.

Chapter 5

Functional implications of increasing A-to-I editing pattern

In this chapter, I explore the functional implications of the developmental A-to-I editing patterns. First, I report that the increasing editing pattern is much less apparent in other organ tissues and is conserved in mouse brain development, highlighting the importance of the increasing pattern in the nervous system. Second, the increasing editing pattern is analyzed at the cellular level with the differentiating human and mouse embryonic stem cells, which reveals its temporal association with the growth of cortical layers and neuronal maturation. Gene Ontology (GO) analyses implicate genes with the increasing A-to-I editing pattern in vesicle/organelle membrane and glutamate signaling pathways. Third, possible roles of the increasing editing pattern are presented at a molecular level. The computational analyses show that editing rates are correlated with gene expression levels and have potential to affect miRNA-binding. Finally, I demonstrate that the increasing editing pattern involves genes associated with neurodevelopmental disorders and is perturbed in spinal cord injury and glioblastoma, noting potential clinical relevance.

5.1. Tissue variation of the increasing editing pattern

In order to explore the functional implications of the developmental A-to-I editing patterns, I first investigated how the three patterns manifest in other human tissues, using available RNA-seq datasets (see section 5.6 Methods). Editing rates at the sites showing the increasing pattern in brain were compared across brain, heart and liver, each consisting of one fetal and one adult sample. It should be noted that here independent brain samples were used from the initial 33 discovery brain tissues, which allows further validation of the patterns. Interestingly, the brain shows the clearest separation of the three editing patterns, with the increasing editing pattern found principally in brain (Figure. 5.1a), and with very little of the increasing pattern in heart (Figure. 5.1b) and less in liver (Figure. 5.1c). In contrast, high-edited sites and low-edited sites show similar editing rates in fetus and adult regardless of tissue types. This analysis was extended to a total of 6 different organ tissues with multiple fetal and adult samples in every tissue (Figure 5.2). Brain tissue has again the most significant distinction of the increasing A-to-I editing pattern (ANOVA and post-hoc two-sample t-test). It turned out that only brain tissue has higher expression levels of both ADAR1 and ADAR2 in adult samples compared to fetal samples (Figure 5.3). In short, the increasing pattern of RNA editing, though found to a small degree in some other tissues, is strongest in brain tissue, at least at these specific A-to-I editing sites we found changing across brain development. But it is also confirmed that some other tissues have their own set of sites showing a developmentally increasing editing pattern (see 5.6 Methods, Figure 5.4). Specifically, lung and liver also show relative enrichment of increasingly-edited sites, compared to heart and muscle. But the sites showing an increasing editing pattern in these tissues are mostly different in each tissue and for the most part not the same as those in brain (Figure 5.5). Therefore, it should be noted that the discovery of the A-to-I editing sites showing the increasing pattern in brain development does not mean that increasing

editing patterns per se are unique to brain. Increasing patterns might be seen in the development of different organs at different editing sites.

5.2. The increasing editing pattern in mouse brain development

Available mouse RNA-seq data (Sauvageau et al. 2013; Fertuzinhos et al. 2014) were also surveyed to see if the increasing A-to-I editing pattern in human brain development is conserved in mouse brain development. Among 742 A-to-I editing sites showing the increasing pattern in human brain, 95 sites are found to be conserved in the mouse genome (Table 5.1). The 64 sites with adequate sequencing depth (median depth \geq 20) were investigated and a similar increasing pattern was mainly found at the sites in CDS regions (Figures 5.6 and 5.7 with Table 5.2). As expected, this increasing is correlated with mouse ADAR expression levels, especially for ADAR2 (Figure 5.8). One exceptional site in a CDS, showing marked loss of the increasing pattern, is the editing site in NEIL1, which may be understood in terms of Alu repeats in the human genome. The Alu repeats neighboring this site form long double-stranded structures (Figure 5.9) and are believed to induce RNA editing only in human tissues (Daniel et al. 2014). These results show that although the number of editing sites showing the increasing pattern is relatively limited in mouse, the pattern itself is conserved in both human and mouse brain development.

But it should be also noted that sites with increasing pattern that is found only in human genome, not in model organisims such as mouse, are likely human or primate-specific editing sites with potential functionalities. One possible example is the novel RNA editing site in PDZD7 (PDZ-domain containing protein 7). This site has a developmentally-increasing editing rate and causes the loss of a stop codon (UAG to UGG) in the gene isoform specific to humans (Figure 5.10). In fact, PDZD7, a scaffolding protein implicated in Usher syndrome is known to be involved in the cilia compartment which is important in the developing brain (Sarkisian & Guadiana 2015; Valente et al. 2013).

5.3. Cellular understanding of the increasing editing pattern

The relative brain-selectivity of the evolutionary-conserved developmentally-increasing A-to-I editing pattern implies a potentially unique functional role in the nervous system. To explore this possibility at a cellular level, I investigated in-vitro differentiation of human and mouse embryonic stem cells (hESCs and mESCs) into cortical neurons from available RNA-seq datasets (van de Leemput et al. 2014; Hubbard et al. 2013). Although the amount of increasing is modest compared to the post-mortem brain samples (Figure 5.11), I confirmed similar increasing patterns of A-to-I editing such that the relative differences within the increasing pattern found in brain tissues are replicated in the *in-vitro* corticogenesis with hESCs, as marked by the matching numbers between figure 3.4 (also in figure 3.6) and figure 5.12. The in-vitro differentiation of mouse ESCs shows the increasing pattern more clearly (Figure 5.13). This *in-vitro* recapitulation of the increasing pattern enables us to annotate a developmental stage manifesting this pattern. Specifically, the increasing pattern appears to occur coincidentally with deep cortical layer (DL) formation after cortical speciation (CS) according to previously-defined cellular phenotypes as shown in a top bar in figure. 5.12 (van de Leemput et al. 2014). Indeed, it correlates with expression of a deep cortical layer marker, TBR1 and an axon marker, MAPT (Figure 5.14), showing that cortical layer development with neuronal maturation may be a specific period involving the emergence of the increasing RNA editing pattern. The relevance for neuronal

maturation is further supported by the change in editing rate found in primary culture of mouse neurons (Figure 5.15). A reanalysis of the previous data (Rybak-Wolf et al. 2015) reveals that the editing rates are increasing as early neurons mature with the increasing expression of synaptic markers such as SYN1 and SYN2 (Figure 5.16). These results are also consistent with the observation from *in-vivo* mouse brain tissues (Figure 5.6) where the increasing pattern emerges in embryonic day 15 to 18 and continues into early post-natal days, a period characterized by cortical layer expansion and neuronal maturation.

The GO terms associated with genes showing the increasing RNA editing pattern (Figure 5.17 and Table 5.3), such as glutamate signaling and organelle or vesicle-related transport, are cellular processes known to be active during cortical circuit development that we highlight. For example, glutamate signaling participates in neuronal migration in cortex (Luhmann et al. 2015) and also stimulates the growth of functional spines in developing cortex (Kwon & Sabatini 2011). Organelles and vesicles are critical in regulating neuronal morphogenesis including neurite growth and synaptic plasticity (Sekine et al. 2009). Interestingly, the genes in the increasing pattern have different functional implications depending on the location of the editing site in the gene. Editing sites in 3' UTR's are associated with localization-related GO terms, while CDS-residing A-to-I editing sites are involved primarily with synapse or glutamate-related GO terms (Tables 5.4 and 5.5).

5.4. Molecular understanding of the increasing pattern

Functional implications of the increasing pattern were also interrogated at a molecular level. First, the impact of A-to-I editing in CDS on protein function was computationally

predicted. Seventy-seven percent (24 out of 31 in CDS) of these sites cause non synonymous shifts including one stop codon deletion and six damaging amino acid changes (Table 5.6). Second, a potential relationship between editing rates and mRNA abundances was investigated. The increasingly-edited sites have some correlation with host mRNA abundances, either positive or negative (Figure 5.18a). Interestingly, the distributions of correlation coefficients of editing rates with their respect mRNAs are significantly different between CDS-residing editing sites and 3'UTR-associated editing sites (Figure 5.18b, p-value≤0.05 by Kolmogorov-Smirnov test), implying that RNA editing in 3' UTRs may have relatively richer regulatory potential to affect RNA abundances through either RNA stabilization or degradation depending on genes, than ones in CDS regions, as generally expected. Finally, the potential of increasingly-edited sites to perturb miRNA-binding was explored. After computationally predicting the binding energy between miRNA and mRNA regions flanking editing sites (see 5.6 methods), it was found that edited mRNA regions generally have lower binding energy with miRNA, compared to mRNA regions without RNA editing (Figure 5.19, p-value≤0.001 by two-sample t-test). These results implicate possible regulatory roles of RNA editing in the context of brain development.

5.5. The increasing pattern in brain disorders

RNA editing is known to be involved in several human diseases (Slotkin & Nishikura 2013). I hypothesized that the increasing pattern of A-to-I editing may be especially relevant to clinical conditions that involve brain development or damage. First, I looked into two neuropathological conditions in which RNA editing has already been implicated, glioblastoma and spinal cord injury (SCI). The increasing pattern is selectively and significantly disrupted in

both conditions. Specifically, in the previous mouse model of spinal cord injury (Chen et al. 2013), the editing sites in CDS regions, which show the increasing pattern in mouse brain development (Figure 5.6), tend to decrease as the disease progresses from acute and subacute phases (Figure 5.20). Also, the editing rates of sites in Group II. Increasing, found in the developing brain, are decreased in the glioblastoma samples compared to the flanking non-tumor tissues of the same individual, while the editing sites in the Group I. Low and the Group III. High keep their editing rates stable regardless of conditions (Fig. 5.21). Given the increase in glia after injury and in this tumor, it might be questioned whether this change in cellular composition accounts for these disease-associated findings. However, as shown in the chapter 3 (specifically, 3.5), simple compositional changes do not seem to be the principle explanation for the developmental pattern and its selective alteration in glioblastoma and spinal cord injury. Rather, the observation that these pathological states involve reversals of a specific developmental editing pattern in brain, i.e. the increasing editing pattern, may provide insights into how the imbalance of RNA editing influences these pathological conditions. For example, the aberration of the increasing RNA editing might be invovled in the dedifferentiation of cell types in glioblastoma. Also, the increasingly-edited sites can have direct clinical significance as a recent study showed that two A-to-I editing sites, R/G site in GRIA2 and I/V site in COG3, showing the increasing pattern in our dataset affects drug sensitivity of cancer cell lines (Han et al. 2015).

Second, the enrichment test of genes showing the increasing pattern was performed in terms of previously-defined gene sets associated with various neurodevelopmental disorders including autism, schizophrenia, bipolar disorder, intellectual disability (ID) as well as disorders thought not to be neurodevelopmental, e.g. type 2 diabetes (T2D), Alzheimer disease (AD) and Parkinson disease (PD) (Birnbaum et al. 2014; Ripke et al. 2014). Several genes with increasing A-to-I editing patterns were involved in neurodevelopmental disorders (Tables 5.7 and 5.8), while they are generally not associated with T2D, AD and PD (with one exception, AP3S2 for T2D).

This tendency is not limited to the genes with the increasing pattern but in general with genes having A-to-I editing sites. While these results do not suggest that editing is a pathogenic factor in these disorders, it implies that editing plays a role in the regulation of at least some genes that are involved in these conditions. Regarding this, a recent study showed that the balance of RNA editing is perturbed by FMRP, a key protein involved in intellectual disability (Bhogal et al. 2011). Perhaps related to this observation, some genes with the increasing editing pattern are implicated in intellectual disabilities as well as potentially other neurodevelopmental disorders.

5.6. Methods

Datasets from public database

RNA-seq raw datasets for various samples were downloaded from the following references: Illumina Body Map 2.0 project, GSE69360 (Choy et al. 2015), NIH Roadmap Epigenomics (http://www.roadmapepigenomics.org/) and ENCODE project (Bernstein et al. 2012) for human organ tissues, *in-vitro* differentiation of human embryonic stem cells (hESCs) (van de Leemput et al. 2014) and mouse embryonic stem cells (mESCs) into cortical neurons (Hubbard et al. 2013), *in-vivo* mouse brain tissues (Sauvageau et al. 2013; Fertuzinhos et al. 2014), primary culture of mouse cortical neurons (Rybak-Wolf et al. 2015), cell type specific RNA-seq with mouse cortical tissues (Zhang et al. 2014), single cell RNA-seq with human brain tissues (Darmanis et al. 2015), mouse model of spinal cord injury (Chen et al. 2013). The details are found in Table 5.9. DNA methylation data used to estimate cellular composition in brain tissues can be found in the reference (Jaffe et al. 2016).

RNA-seq data preprocessing

RNA-seq data from previous studies are aligned by STAR (Dobin et al. 2013). RPKM (Reads Per Kilobase per Million) were calculated to estimate gene expression level using HTSeq (Anders et al. 2014).

Genome-wide editing rate differences between fetal and adult samples in multiple tissues.

The computational tool described in Chapter 2 was modified to identify RNA editing sites for a simple but thorough comparison of RNA editing rates between fetal and adult samples as follows: First, an initial call of RNA editing sites was made, which include the sites with at least five sequencing reads with at least two variant-supporting reads. Second, the possible genomic variants were removed by excluding SNP sites (except for SNPs of molecular type 'cDNA'), sites only shown in a single sample, and sites with multiple variants (by removing those sites whose numbers of sequencing reads supporting the major and the minor allele are less than 95% of total sequencing reads). Finally, A-to-I editing rates were compared between fetal and adult samples if the median depth of a site is greater than 20 and a site is in mRNA regions (5'UTR, CDS and 3'UTR).

miRNA binding prediction

Whether a miRNA binds to the mRNA regions around RNA editing sites was computationally predicted using the software *miRanda* (Enright et al. 2003). Specifically, mature miRNA sequences are obtained from the well-known database, miRBase (Griffiths-Jones et al. 2008). For mRNA target sequences, two types of sequences are prepared with flanking regions (50 bp upstream and downstream) of editing sites in all mRNA transcripts in refSeq: the reference
sequence ('reference') and the sequence affected by A-to-I editing ('edited'). The binding energies were calculated between a miRNA and both a 'reference' and 'edited' mRNA. The comparison was performed with all the predicted binding pairs of miRNAs and mRNA targets.

Bioinformatics for functional analyses

The coordinates in the human genome (UCSC hg19) was converted to the mouse genome (UCSC mm10) using UCSC coordinate converter or *liftOver* (https://genome.ucsc.edu/cgi-bin/hgLiftOver). The effect of CDS-associated RNA editing on protein functions was predicted by PolyPhen-2 (Maathuis et al. 2000). Enrichment of genes in pre-defined gene sets was evaluated by the Fisher exact test.

Figure 5.1 Fetal and adult editing rates at sites in 'Group II. increasing'. The editing rates at the sites in the groups in Figure 4.2 were compared between fetal and adult tissues for brain (a), heart (b) and liver (c). Only sites with sequencing depth greater than 20 in both fetal and adult tissues were used. Note that these brain samples are independent from the 33 discovery samples in Figure 3.4. The same colors from Figure 4.2 are used to indicate the three developmental pattern groups: 'Group I. Low' (blue), 'Group II. Increasing' (green), 'Group III. High' (red). Color shade in a,b,c and point size in e are proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Figure 5.2 Differences of mean editing rates between fetal and adult samples across multiple tissues. At least three samples, except for a liver fetal tissue, are used to calculate mean editing rates for fetal and adult samples respectively. Note that 3 fetal and 3 adult samples were selected from our 33 discovery brain tissues. ANOVA reveals that brain, liver and lung show clear separation among patterns (*p*-value ≤ 0.01), though the increasing pattern is much more marked in brain as evaluated by post-hoc two-sample t-tests. *** indicates *p*-value ≤ 0.001 .

Figure 5.3 mRNA expression levels of ADAR enzymes. In each tissue, fetal and adult samples are compared: (a) ADAR1 (b) ADAR2. Note that boxplots are generated for visualization, even with 3 fetal and 3 adult samples in every tissue, except for adult heart (4 samples) and fetal liver (2 samples) tissues.

Figure 5.4 Genome-wide editing rate differences between fetal and adult samples in multiple tissues. (a) Histogram of mean editing rate difference between fetal and adult samples. Mean editing rate difference is defined by the mean editing rate of adult samples minus the mean editing rate of fetal samples. The blue is used to describe a site whose mean editing rate is greater in fetal compared to adult while the red indicates the opposite.

Figure 5.5 Venn diagram showing the overlap of sites across brain, liver and lung. Sites whose editing rate differences are greater than 0.2 are analyzed. Numbers indicate the number of editing sites.

Figure 5.6 Increasing pattern in mouse brain development. The increasing pattern is conserved in mouse brain development (E: embryonic day, P: postnatal day in x-axis). Each line represents a conserved A-to-I editing site showing the increasing pattern in human brain development. The same colors as in Figure 3.6 are used to show conserved relative editing rates within the increasing pattern.

Figure 5.7 Increasing pattern in mouse brain development according to gene regions. The conserved A-to-I editing sites are classified according to clusters of increasing pattern (Figure 3.6) and gene regions. Most of the A-to-I editing sites in CDS regions show an increasing pattern (except for the site in NEIL1 in the cluster 5, denoted with a brown line). Dot size is proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Figure 5.8 mRNA expression levels of ADAR1 (blue) and ADAR2 (purple) in mouse brain development. Lines are generated by locally weighted scatterplot smoothing (LOESS) regression with shades indicating 95% confidence interval.

Figure 5.9 A-to-I editing sites in NEIL1 in human brain development. NEIL1 in the human genome has Alu repeats forming double-stranded structures near A-to-I editing sites. A double-stranded structure is depicted by arcs, which connect two base-paired nucleotides ('baseparing arcs') using an R library, R-CHIE (www.e-rna.org/r-chie). A-to-I editing sites with two different patterns are found in NEIL1: a green (increasing) and a red (stable high).

Figure 5.10 A-to-I editing sites in PDZD7 in human brain development. The A-to-I editing site in the PDZD7 is only found in a transcript specific to the human genome. This A-to-I editing can destroy a stop codon.

Figure 5.11 The magnitude of editing rate changes found at increasingly-edited sites. The magnitude of editing rate changes is defined as the mean editing rate difference between fetal and post-infant samples for human brain development while it is defined as the mean editing rate differences between samples of in-vitro day 0 and 7 and samples of in-vitro day 33 and 49 for hESC samples. The comparisons between samples in human brain development and samples in in-vitro differentiation of hESC into cortical neurons are performed separately according to the five increasing clusters defined in figures 3.4 and 3.6. The x-axis numbers indicate the clusters, which is the same as the numbers shown in the figures 3.4, 3.6 and the following figure 5.12.

Figure 5.12 The increasing editing pattern in the differentiation of human embryonic stem cells into cortical neurons. Numbers are matched with Figures 3.4 and 3.6. The letters in the upper bar stands for the following (van de Leemput et al. 2014): P, pluripotency; ND, neural differentiation; CS, cortical specification; DL, deep layer; UL, upper layer. Note that colors indicate the corresponding clusters in Figure 3.6.

Figure 5.13 Editing rate changes in *in-vitro* **differentiation of mESCs to cortical neurons.** Different colors indicate different clusters in Figures 3.4 and 3.6 to show conserved relative editing rates within the increasing pattern. *Days In-vitro* (DIV) descriptions were adapted from (Hubbard et al. 2013). Dot size is proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Figure 5.14 Cellular markers in in-vitro differentiation of hESCs to cortical neurons. Expression levels of markers are measured by RNA-seq with an RPKM unit: OCT4 and Nanog for pluripotency, PAX6 and Sox1 for neural differentiation, EMX2 and OTX2 for cortical specification,

TBR1 and BCL11B (CTIP2) for deep layer neurons, CACNE1 for upper layer neurons, GFAP for glial cells, MAP2 for dendrites, MAPT for axons. Lines are generated by LOESS regression with shades indicating 95% confidence interval.

Figure 5.15 Editing rate change during the culture of primary mouse neuron. Only the conserved sites whose sequencing depth is sufficient to estimate editing rate reliably are depicted. Note that colors indicate the corresponding clusters in Figure 3.6. Point sizes are proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Figure 5.16 Cellular markers in primary culture of mouse cortical neurons. Expression levels of markers are measured by RNA-seq with an RPKM unit: Rbfox3 (NeuN) for neurons, Gfap for glial cells, Syn1 and Syn2 for synaptic formation, MAP2 for dendrites, MAPT for axons.

Figure 5.17 The enriched GO terms for genes with the increasing pattern. Two GO

categories, cellular component and biological process denoted by different colors, are described.

Figure 5.18 Correlation of editing rates with mRNA expression levels. Spearman correlation coefficient between editing rates and mRNA expression levels are calculated at the sites showing the increasing pattern. When there are multiple editing sites in a gene, the highest correlation value is assigned to a gene. (a) Distribution of correlation coefficient at the total sites with the increasing pattern (b) Distributions of correlation coefficients are separately described according to the two gene regions associated with the sites: CDS and 3' UTR.

Figure 5.19 Binding energy between miRNA and mRNA target. Binding of miRNA to an mRNA region spanning increasingly-edited sites are computationally predicted and the associated binding energy is compared between canonical mRNA sequence ('Reference') and mRNA sequence affected by RNA editing ('Edited'). *** indicates *p*-value ≤ 0.001 in two-sample t-tests.

Figure 5.20 Editing rate changes in the mouse model of spinal cord injury at the CDSresiding conserved editing sites in the increasing pattern. Sites with enough sequencing depth are only described. Colors indicate the corresponding clusters in Figure 3.6. Point sizes are proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Figure 5.21 The comparison of editing rates in the groups of selected sites between a glioblastoma and neighboring non-tumor tissue. Each figure is generated with an independent patient. Color denote group same as Figure 4.2. Color shade is proportional to three categories of sequencing depth: low (less than 20), medium (20 to 50), high (greater than 50).

Chasmassa	Coordinata	Carra	Company	Mouse genome		
Chromosome	Coordinate	Gene	Gene reion	Location	Reference	
chr1	2436080	PLCH2	CDS	chr4:154984234	G	
chr1	40147856	HPCAL4	3' UTR	chr4:123191224	А	
chr1	41089410	RIMS3	3' UTR	chr4:120893807	А	
chr1	160185788	DCAF8	3' UTR	chr1:172196141	G	
chr1	160302244	COPA	CDS	chr1:172092348	А	
chr1	160319987	NCSTN	CDS	chr1:172074326	Т	
chr2	25381529	EFR3B	3' UTR	chr12:3962972	С	
chr2	73171432	SFXN5	3' UTR	chr6:85215002	G	
chr2	172605884	DYNC1I2	3' UTR	chr2:71264165	А	
chr2	202486541	TMEM237	3' UTR	chr18:48047793	А	
chr3	42590546	SEC22C	3' UTR	chr9:121681599	А	
chr3	119545199	GSK3B	3' UTR	chr16:38241020	А	
chr3	179093028	MFN1	CDS	chr3:32561485	А	
chr4	77979680	CCNI	CDS	chr5:93189584	Т	
chr4	158257879	GRIA2	CDS	chr3:80706908	Т	
chr4	158281294	GRIA2	CDS	chr3:80692286	Т	
chr5	156904831	ADAM19	3' UTR	chr11:46146839	Α	
chr5	156904833	ADAM19	3' UTR	chr11:46146837	Α	
chr5	156904853	ADAM19	3' UTR	chr11:46146821	Α	
chr5	156904922	ADAM19	3' UTR	chr11:46146777	А	
chr5	156904929	ADAM19	3' UTR	chr11:46146770	Т	
chr5	156904947	ADAM19	3' UTR	chr11:46146752	А	
chr5	156904950	ADAM19	3' UTR	chr11:46146749	А	
chr5	156904965	ADAM19	3' UTR	chr11:46146734	А	
chr5	156905396	ADAM19	3' UTR	chr11:46146102	Α	
chr5	156905397	ADAM19	3' UTR	chr11:46146101	Α	
chr5	156905398	ADAM19	3' UTR	chr11:46146100	А	
chr5	156905411	ADAM19	3' UTR	chr11:46146089	А	
chr5	156905556	ADAM19	3' UTR	chr11:46145955	Т	
chr5	156905560	ADAM19	3' UTR	chr11:46145951	G	
chr6	44120349	TMEM63B	CDS	chr17:45662949	Т	
chr6	102337702	GRIK2	CDS	chr10:49272776	Т	
chr6	102372572	GRIK2	CDS	chr10:49244347	Т	
chr6	102372589	GRIK2	CDS	chr10:49244330	Т	
chr7	25160004	CYCS	3' UTR	chr6:50562746	Т	
chr8	9639522	TNKS	3' UTR	chr8:34826795	Т	
chr8	12886333	KIAA1456	3' UTR	chr8:36518849	А	
chr9	127712691	SCAI	3' UTR	chr2:39073337	Т	
chr9	136229572	SURF4	3' UTR	chr2:26921169	Т	

chr9	139335555	SEC16A	3' UTR	chr2:26410275	Т
chr9	139335597	SEC16A	3' UTR	chr2:26410306	С
chr9	139335623	SEC16A	3' UTR	chr2:26410329	С
chr9	139335882	SEC16A	3' UTR	chr2:26410574	С
chr10	102121601	SCD	3' UTR	chr19:44304213	G
chr11	68523904	CPT1A	3' UTR	chr19:3384947	Т
chr11	68524809	CPT1A	3' UTR	chr19:3384135	G
chr11	75316685	MAP6	3' UTR	chr7:99317823	G
chr11	75316752	MAP6	3' UTR	chr7:99317759	А
chr11	75316759	MAP6	3' UTR	chr7:99317752	А
chr11	82868441	PCF11	5' UTR	chr7:92669661	Т
chr11	105804694	GRIA4	CDS	chr9:4456006	Т
chr11	119532688	PVRL1	3' UTR	chr9:43806689	А
chr12	5021742	KCNA1	CDS	chr6:126642158	Т
chr12	48736610	ZNF641	3' UTR	chr15:98288379	Т
chr12	56633548	ANKRD52	3' UTR	chr10:128394072	А
chr12	120531332	CCDC64	3' UTR	chr5:115649059	А
chr12	132407137	ULK1	3' UTR	chr5:110785005	Т
chr14	20920211	OSGEP	CDS	chr14:50919694	Т
chr14	26917530	NOVA1	CDS	chr12:46700334	Т
chr15	40710778	IVD	3' UTR	chr2:118880849	G
chr15	65425334	PDCD7	CDS	chr9:65346924	G
chr15	75646087	NEIL1	CDS	chr9:57144307	Т
chr15	89739330	ABHD2	3' UTR	chr7:79360823	А
chr17	3763779	CAMKK1	3' UTR	chr11:73041884	G
chr17	29862338	RAB11FIP4	3' UTR	chr11:79695576	С
chr17	37826529	PNMT	CDS	chr11:98387978	G
chr17	42154831	HDAC5	3' UTR	chr11:102195028	Т
chr17	42154907	HDAC5	3' UTR	chr11:102195105	С
chr17	42475813	GPATCH8	CDS	chr11:102479070	Т
chr17	56049824	VEZF1	3' UTR	chr11:88083835	А
chr17	56049829	VEZF1	3' UTR	chr11:88083830	G
chr17	79780692	FAM195B	3' UTR	chr11:120543288	А
chr18	51061986	DCC	3' UTR	chr18:71253914	Т
chr18	51061990	DCC	3' UTR	chr18:71253910	С
chr19	14593605	GIPC1	CDS	chr8:83661176	А
chr19	14593693	GIPC1	CDS	chr8:83661088	Т
chr19	18892789	CRTC1	3' UTR	chr8:70382669	Т
chr19	38887763	SPRED3	3' UTR	chr7:29160661	Т
chr19	38888055	SPRED3	3' UTR	chr7:29160385	С
chr19	38888069	SPRED3	3' UTR	chr7:29160371	Т

chr19	38888095	SPRED3	3' UTR	chr7:29160345	Т
chr19	38889352	SPRED3	3' UTR	chr7:29159681	Т
chr19	54485579	CACNG8	CDS	chr7:3415084	А
chr20	2128469	STK35	3' UTR	chr2:129831568	G
chr20	5175539	CDS2	3' UTR	chr2:132309649	А
chr20	5175805	CDS2	3' UTR	chr2:132309873	А
chr20	44802643	CDH22	3' UTR	chr2:165111769	А
chr20	44802728	CDH22	3' UTR	chr2:165111853	Т
chr21	30953750	GRIK1	CDS	chr16:87940543	Т
chr22	37765609	ELFN2	3' UTR	chr15:78668715	G
chrX	54955567	TRO	CDS	chrX:150648527	Т
chrX	84346885	APOOL	3' UTR	chrX:112384042	А
chrX	84346892	APOOL	3' UTR	chrX:112384049	А
chrX	122598962	GRIA3	CDS	chrX:41654252	А
chrX	151358319	GABRA3	CDS	chrX:72445292	Т

Table 5.1 The conserved sites between human and mouse among the sites with the increasing pattern. Among 742 A-to-I editing sites showing the increasing pattern in human brain, 95 sites are found to be conserved in the mouse genome (UCSC mm10).

Table 5.2 Increasing pattern in mouse brain development. See appendix 2. Site: corresponding location of A-to-I editing sites found in human brain tissues in UCSC mouse genome mm10; Increasing cluster (Clu.): an index of cluster described in figures 3.4 and 3.6; Gene and gene region (Reg.): gene annotation of A-to-I editing sites based on RefSeq; Editing rate (ER) and Depth: editing rate with sequencing depth at a given site are shown according to embryonic (E) day or postnatal (P) day.

Category	ID	Term	Count	Percentage	p-value	FDR	Genes
GOTERM_ BP_FAT	GO:0031646	establishment of protein localization	25	11.31	2.02E-05	0.033	COPA, GRIK2, SNX1, VPS53, GIPC1, TIMM50, ZFYVE20, HOOK3, SEC16A, SEC22C, PEX13, TNKS, RAB2B, VPS41, AP4S1, RAB11FIP4, PHAX, GRIA2, RAB36, GSK3B, PEX26, GGA2, NUP43, SRP9, SSR3
GOTERM_ BP_FAT	GO:0051971	protein localization	27	12.22	2.36E-05	0.038	COPA, GRIK2, SNX1, VPS53, GIPC1, TIMM50, ZFYVE20, HOOK3, SEC16A, SEC22C, PEX13, TNKS, COX18, RAB2B, VPS41, AP4S1, RAB11FIP4, PHAX, GRIA2, ULK1, RAB36, GSK3B, PEX26, GGA2, NUP43, SRP9, SSR3
GOTERM_ BP_FAT	GO:0050806	protein transport	24	10.86	5.13E-05	0.083	RAB2B, COPA, GRIK2, VPS53, SNX1, GIPC1, VPS41, TIMM50, ZFYVE20, AP4S1, HOOK3, RAB11FIP4, PHAX, RAB36, GSK3B, SEC16A, PEX26, SEC22C, PEX13, TNKS, GGA2, NUP43, SRP9, SSR3
GOTERM_ BP_FAT	GO:0006886	regulation of synaptic transmission, glutamatergic	4	1.81	0.0014955 14	2.384	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_ BP_FAT	GO:0016192	cellular protein localization	14	6.33	0.0015849 5	2.525	COPA, GRIK2, SNX1, GIPC1, VPS41, AP4S1, GSK3B, PEX26, PEX13, TNKS, COX18, GGA2, SRP9, SSR3
GOTERM_ BP_FAT	GO:0007215	cellular macromolecule localization	14	6.33	0.0016905 91	2.691	COPA, GRIK2, SNX1, GIPC1, VPS41, AP4S1, GSK3B, PEX26, PEX13, TNKS, COX18, GGA2, SRP9, SSR3
GOTERM_ BP_FAT	GO:0046907	intracellular transport	18	8.14	0.0027618	4.361	COPA, GRIK2, SNX1, GIPC1, VPS41, ZFYVE20, AP4S1, TAPBP, HOOK3, PHAX, GSK3B, PEX26, PEX13, SEC22C, GGA2, GOLGA3, SRP9, SSR3

GOTERM_ BP_FAT	GO:0070727	glutamate signaling pathway	4	1.81	0.0033645 26	5.289	GRIK1, GRIK2, GRIA3, GRIA4
GOTERM_ BP_FAT	GO:0034613	vesicle-mediated transport	16	7.24	0.0045971 04	7.160	RAB2B, COPA, CRCP, SNX1, VPS41, ZFYVE20, AP4S1, TAPBP, HOOK3, RIMS3, GRIA2, ULK1, SEC16A, SEC22C, GGA2, GOLGA3
GOTERM_ BP_FAT	GO:0051966	intracellular protein transport	12	5.43	0.0061720 99	9.500	COPA, GRIK2, GSK3B, PEX26, SNX1, VPS41, PEX13, GIPC1, AP4S1, GGA2, SRP9, SSR3
GOTERM_ BP_FAT	GO:0015031	positive regulation of synaptic transmission	4	1.81	0.0080804	12.261	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_ BP_FAT	GO:0008104	positive regulation of transmission of nerve impulse	4	1.81	0.0102169 47	15.259	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_ BP_FAT	GO:0045184	positive regulation of neurological system process	4	1.81	0.0118063 36	17.427	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_ CC_FAT	GO:0031090	organelle membrane	36	16.29	7.75E-08	0.000	MAVS, ACOX1, COPA, APOOL, MTDH, TIMM50, GIPC1, SFXN5, HOOK3, TAPBP, CDS2, ATP5S, PEX13, TNKS, COX18, GOLGA3, ACSL6, RAB2B, CACNG8, SCD, GRIA3, VPS41, GRIA4, SYNJ2BP, NDUFA10, CPT1A, NCSTN, MFN1, GRIA2, ULK1, L2HGDH, PEX26, MDM2, TMPO, SRP9, SSR3
GOTERM_ CC_FAT	GO:0031967	organelle envelope	20	9.05	1.81E-04	0.239	MAVS, APOOL, MTDH, SCD, CYCS, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CBX5, CDS2, MFN1, L2HGDH, ATP5S, TNKS, TMPO, COX18, NUP43, ACSL6
GOTERM_	GO:0031975	envelope	20	9.05	1.88E-04	0.249	MAVS, APOOL, MTDH, SCD, CYCS,

CC_FAT							TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CBX5, CDS2, MFN1, L2HGDH, ATP5S, TNKS, TMPO, COX18, NUP43, ACSL6
GOTERM_ CC_FAT	GO:0030666	endocytic vesicle membrane	5	2.26	6.47E-04	0.855	GRIA2, CACNG8, MDM2, GRIA3, GRIA4
GOTERM_ CC_FAT	GO:0030139	endocytic vesicle	6	2.71	7.26E-04	0.959	GRIA2, CACNG8, MDM2, GIPC1, GRIA3, GRIA4
GOTERM_ CC_FAT	GO:0005829	cytosol	30	13.57	0.0012402 7	1.632	COPA, XIAP, PNMT, GNE, RPL13, GIPC1, GSR, PGPEP1, SORBS1, PSMB2, EEF2K, GUCY1A3, RPS20, INPP5B, SMAD9, VHL, CYCS, EIF2S3, VPS41, RIC8B, TPMT, PHAX, PKNOX1, ULK1, PPIA, GSK3B, MTR, MDM2, APAF1, DYNC1I2
GOTERM_ CC_FAT	GO:0005740	mitochondrial envelope	14	6.33	0.0017642 41	2.314	MAVS, APOOL, CYCS, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CDS2, MFN1, L2HGDH, ATP5S, COX18, ACSL6
GOTERM_ CC_FAT	GO:0044429	mitochondrial part	17	7.69	0.0023357 62	3.053	MAVS, APOOL, PDP2, CYCS, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CDS2, MFN1, L2HGDH, IVD, PPM1K, ATP5S, COX18, ACSL6
GOTERM_ CC_FAT	GO:0012506	vesicle membrane	8	3.62	0.0024111 31	3.150	COPA, GRIA2, CACNG8, ULK1, MDM2, GIPC1, GRIA3, GRIA4
GOTERM_ CC_FAT	GO:0012505	endomembrane system	20	9.05	0.0029111 46	3.792	RAB2B, COPA, MTDH, CACNG8, SCD, GIPC1, GRIA3, GRIA4, AP4S1, CBX5, TAPBP, GRIA2, ULK1, MDM2, TNKS, TMPO, NUP43, GOLGA3, SRP9, SSR3
GOTERM_ CC_FAT	GO:0031966	mitochondrial membrane	13	5.88	0.0030697 58	3.994	MAVS, APOOL, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CDS2,

							MFN1, L2HGDH, ATP5S, COX18, ACSL6
GOTERM_ CC_FAT	GO:0005739	mitochondrion	24	10.86	0.0059924 92	7.660	MAVS, ACOX1, APOOL, PDP2, CXORF23, VHL, CYCS, AASS, TIMM50, SYNJ2BP, NDUFA10, MRPL30, CPT1A, SFXN5, CDS2, GSR, MFN1, L2HGDH, IVD, PPM1K, ATP5S, CTSB, COX18, ACSL6
GOTERM_ CC_FAT	GO:0031903	microbody membrane	4	1.81	0.0061294 88	7.828	ACOX1, PEX26, PEX13, ACSL6
GOTERM_ CC_FAT	GO:0005778	peroxisomal membrane	4	1.81	0.0061294 88	7.828	ACOX1, PEX26, PEX13, ACSL6
GOTERM_ CC_FAT	GO:0030659	cytoplasmic vesicle membrane	7	3.17	0.0069121 95	8.786	COPA, GRIA2, CACNG8, ULK1, MDM2, GRIA3, GRIA4
GOTERM_ CC_FAT	GO:0008328	ionotropic glutamate receptor complex	3	1.36	0.0120833 89	14.886	GRIK1, GRIK2, GRIA4
GOTERM_ CC_FAT	GO:0043198	dendritic shaft	3	1.36	0.0120833 89	14.886	GSK3B, GIPC1, GRIA3
GOTERM_ CC_FAT	GO:0005793	ER-Golgi intermediate compartment	4	1.81	0.0133120 79	16.279	GNPNAT1, SURF4, UGGT1, GOLGA3
GOTERM_ CC_FAT	GO:0044439	peroxisomal part	4	1.81	0.0151434 66	18.316	ACOX1, PEX26, PEX13, ACSL6
GOTERM_ CC_FAT	GO:0044438	microbody part	4	1.81	0.0151434 66	18.316	ACOX1, PEX26, PEX13, ACSL6
GOTERM_ CC_FAT	GO:0016023	cytoplasmic membrane- bounded vesicle	14	6.33	0.0163378	19.620	TGOLN2, COPA, CACNG8, GIPC1, VPS41, GRIA3, GRIA4, NCSTN, SPAG9, GRIA2, ULK1, SLC30A4, MDM2, CTSB

Table 5.3 Gene ontology (GO) terms associated with genes with increasing editing pattern. Category: GO category, GOTERM_BP_FAT for biological process and GOTERM_CC_FAT for cellular component; ID: GO ID; Term: GO term; Count: the number of genes associated with a given term; Percentage: The proportion of genes with increasing pattern in a given term; p-value and FDR (False Discovery Rate): based on Fisher-exact test with DAVID tool (https://david.ncifcrf.gov/summary.jsp); Genes: list of genes with increasing pattern associated with a given term.

Category	ID	Term	Cou nt	Percenta ge	p-value	FDR	Genes
GOTERM_BP_F AT	GO:00081 04	protein localization	23	11.62	1.56E- 04	0.247	RAB2B, AP3S2, VPS53, SNX1, VPS41, TIMM50, ZFYVE20, AP4S1, HOOK3, RAB11FIP4, PHAX, RAB36, ULK1, GSK3B, SEC16A, PEX26, SEC22C, PEX13, TNKS, COX18, GGA2, NUP43, SSR3
GOTERM_BP_F AT	GO:00150 31	protein transport	21	10.61	1.64E- 04	0.259	RAB2B, AP3S2, VPS53, SNX1, VPS41, TIMM50, ZFYVE20, AP4S1, HOOK3, RAB11FIP4, PHAX, RAB36, GSK3B, SEC16A, PEX26, SEC22C, PEX13, TNKS, GGA2, NUP43, SSR3
GOTERM_BP_F AT	GO:00451 84	establishme nt of protein localization	21	10.61	1.85E- 04	0.292	RAB2B, AP3S2, VPS53, SNX1, VPS41, TIMM50, ZFYVE20, AP4S1, HOOK3, RAB11FIP4, PHAX, RAB36, GSK3B, SEC16A, PEX26, SEC22C, PEX13, TNKS, GGA2, NUP43, SSR3
GOTERM_BP_F AT	GO:00161 92	vesicle- mediated transport	15	7.58	0.0033 38	5.154	RAB2B, AP3S2, CRCP, SNX1, VPS41, ZFYVE20, AP4S1, TAPBP, HOOK3, RIMS3, ULK1, SEC16A, SEC22C, GGA2, GOLGA3
GOTERM_BP_F AT	GO:00469 07	intracellular transport	15	7.58	0.0103 1	15.12 6	AP3S2, SNX1, VPS41, ZFYVE20, AP4S1, TAPBP, HOOK3, PHAX, GSK3B, PEX26, PEX13, SEC22C, GGA2, GOLGA3, SSR3
GOTERM_BP_F AT	GO:00346 13	cellular protein localization	11	5.56	0.0124 91	18.03 9	GSK3B, PEX26, AP3S2, SNX1, VPS41, TNKS, PEX13, AP4S1, COX18, GGA2, SSR3
GOTERM_BP_F AT	GO:00707 27	cellular macromolec ule localization	11	5.56	0.0130 9	18.82 2	GSK3B, PEX26, AP3S2, SNX1, VPS41, TNKS, PEX13, AP4S1, COX18, GGA2, SSR3
GOTERM_CC_F AT	GO:00310 90	organelle membrane	28	14.14	2.89E- 05	0.037	MAVS, APOOL, ACOX1, MTDH, TIMM50, SFXN5, HOOK3, TAPBP, CDS2, ATP5S, PEX13, TNKS, COX18, GOLGA3, ACSL6, RAB2B, CACNG8, SCD, VPS41, SYNJ2BP, NDUFA10, CPT1A, ULK1, L2HGDH, PEX26, MDM2, TMPO, SSR3
GOTERM_CC_F	GO:00319	organelle	19	9.60	9.93E-	0.128	MAVS, APOOL, MTDH, SCD, CYCS, TIMM50,

AT	67	envelope			05		SYNJ2BP, NDUFA10, CPT1A, SFXN5, CBX5, CDS2, L2HGDH, ATP5S, TNKS, TMPO, COX18, NUP43, ACSL6
GOTERM_CC_F AT	GO:00319 75	envelope	19	9.60	1.03E- 04	0.133	MAVS, APOOL, MTDH, SCD, CYCS, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CBX5, CDS2, L2HGDH, ATP5S, TNKS, TMPO, COX18, NUP43, ACSL6
GOTERM_CC_F AT	GO:00444 29	mitochondri al part	16	8.08	0.0016 47	2.106	MAVS, APOOL, PDP2, CYCS, TIMM50, SYNJ2BP, NDUFA10, CPT1A, SFXN5, CDS2, L2HGDH, IVD, PPM1K, ATP5S, COX18, ACSL6
GOTERM_CC_F AT	GO:00057 40	mitochondri al envelope	13	6.57	0.0017 06	2.181	MAVS, CDS2, APOOL, L2HGDH, ATP5S, CYCS, TIMM50, SYNJ2BP, NDUFA10, COX18, ACSL6, SFXN5, CPT1A
GOTERM_CC_F AT	GO:00057 39	mitochondri on	23	11.62	0.0024 56	3.127	MAVS, ACOX1, APOOL, PDP2, CXORF23, VHL, CYCS, AASS, TIMM50, SYNJ2BP, NDUFA10, MRPL30, CPT1A, SFXN5, CDS2, GSR, L2HGDH, IVD, PPM1K, ATP5S, CTSB, COX18, ACSL6
GOTERM_CC_F AT	GO:00319 66	mitochondri al membrane	12	6.06	0.0032 23	4.084	MAVS, CDS2, APOOL, L2HGDH, ATP5S, TIMM50, SYNJ2BP, NDUFA10, COX18, SFXN5, CPT1A, ACSL6
GOTERM_CC_F AT	GO:00058 29	cytosol	26	13.13	0.0033	4.207	XIAP, GNE, RPL13, GSR, PGPEP1, PSMB2, EEF2K, GUCY1A3, RPS20, INPP5B, SMAD9, VHL, CYCS, EIF2S3, VPS41, RIC8B, TPMT, PHAX, PKNOX1, ULK1, PPIA, GSK3B, MTR, MDM2, APAF1, DYNC112
GOTERM_CC_F AT	GO:00319 03	microbody membrane	4	2.02	0.0042 59	5.364	ACOX1, PEX26, PEX13, ACSL6
GOTERM_CC_F AT	GO:00057 78	peroxisomal membrane	4	2.02	0.0042 59	5.364	ACOX1, PEX26, PEX13, ACSL6
GOTERM_CC_F AT	GO:00057 93	ER-Golgi intermediate compartmen t	4	2.02	0.0093 51	11.42 7	GNPNAT1, SURF4, UGGT1, GOLGA3
GOTERM_CC_F AT	GO:00444 38	microbody part	4	2.02	0.0106	12.92 7	ACOX1, PEX26, PEX13, ACSL6

GOTERM_CC_F AT	GO:00444 39	peroxisomal part	4	2.02	0.0106 6	12.92 7	ACOX1, PEX26, PEX13, ACSL6
GOTERM_CC_F AT	GO:00057 94	Golgi apparatus	18	9.09	0.0110 81	13.40 4	TGOLN2, RAB2B, MGAT4A, GNPNAT1, AP3S2, VPS53, SNX1, VPS41, AP4S1, TAPBP, HOOK3, NMT2, RAB36, SEC16A, TNKS, MAP6, GGA2, GOLGA3
GOTERM_CC_F AT	GO:00057 43	mitochondri al inner membrane	9	4.55	0.0165 47	19.38 7	CDS2, APOOL, L2HGDH, ATP5S, TIMM50, NDUFA10, COX18, SFXN5, CPT1A

Table 5.4 Gene ontology (GO) terms associated with genes with increasing editing pattern in 3' UTR. The description of columns is same as

table 5.3.

Category	ID	Term	Count	Percentage	p-value	FDR	Genes
GOTERM_BP_FAT	GO:0007268	synaptic transmission	8	2.27	3.01E-07	0.000	GRIA2, GRIK1, GRIK2, GABRA3, KCNA1, GIPC1, GRIA4, NOVA1
GOTERM_BP_FAT	GO:0019226	transmission of nerve impulse	8	2.27	8.92E-07	0.001	GRIA2, GRIK1, GRIK2, GABRA3, KCNA1, GIPC1, GRIA4, NOVA1
GOTERM_BP_FAT	GO:0051966	regulation of synaptic transmission, glutamatergic	4	1.13	3.56E-06	0.005	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_BP_FAT	GO:0007215	glutamate signaling pathway	4	1.13	8.39E-06	0.012	GRIK1, GRIK2, GRIA3, GRIA4
GOTERM_BP_FAT	GO:0050806	positive regulation of synaptic transmission	4	1.13	2.16E-05	0.030	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_BP_FAT	GO:0051971	positive regulation of transmission of nerve impulse	4	1.13	2.80E-05	0.038	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_BP_FAT	GO:0007267	cell-cell signaling	8	2.27	3.10E-05	0.043	GRIA2, GRIK1, GRIK2, GABRA3, KCNA1, GIPC1, GRIA4, NOVA1
GOTERM_BP_FAT	GO:0031646	positive regulation of neurological system process	4	1.13	3.28E-05	0.045	GRIA2, GRIK1, GRIK2, GRIA4
GOTERM_BP_FAT	GO:0050804	regulation of synaptic transmission	5	1.42	6.21E-05	0.085	GRIA2, GRIK1, GRIK2, GIPC1, GRIA4
GOTERM_BP_FAT	GO:0051969	regulation of transmission of nerve impulse	5	1.42	8.41E-05	0.115	GRIA2, GRIK1, GRIK2, GIPC1, GRIA4
GOTERM_BP_FAT	GO:0031644	regulation of	5	1.42	9.82E-05	0.135	GRIA2, GRIK1, GRIK2, GIPC1,
		neurological system process					GRIA4
---------------	------------	---	----	------	----------	-------	--
GOTERM_CC_FAT	GO:0044456	synapse part	7	1.98	1.48E-06	0.002	GRIA2, GRIK1, GRIK2, GABRA3, GIPC1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0045211	postsynaptic membrane	6	1.70	1.67E-06	0.002	GRIA2, GRIK1, GRIK2, GABRA3, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0030139	endocytic vesicle	5	1.42	1.88E-06	0.002	GRIA2, CACNG8, GIPC1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0012506	vesicle membrane	6	1.70	2.89E-06	0.003	COPA, GRIA2, CACNG8, GIPC1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0045202	synapse	7	1.98	1.23E-05	0.015	GRIA2, GRIK1, GRIK2, GABRA3, GIPC1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0030666	endocytic vesicle membrane	4	1.13	1.73E-05	0.021	GRIA2, CACNG8, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0043235	receptor complex	5	1.42	2.79E-05	0.033	SORBS1, GRIK1, GRIK2, GRIA4, SRP9
GOTERM_CC_FAT	GO:0030659	cytoplasmic vesicle membrane	5	1.42	5.67E-05	0.067	COPA, GRIA2, CACNG8, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0030054	cell junction	7	1.98	1.03E-04	0.121	GRIA2, SORBS1, GRIK1, GRIK2, GABRA3, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0030425	dendrite	5	1.42	1.05E-04	0.125	GRIK1, GRIK2, GIPC1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0031090	organelle membrane	9	2.55	1.41E-04	0.166	NCSTN, MFN1, COPA, GRIA2, CACNG8, GIPC1, GRIA3, GRIA4, SRP9
GOTERM_CC_FAT	GO:0044459	plasma membrane part	12	3.40	1.42E-04	0.168	NCSTN, COPA, GRIA2, SORBS1, GRIK1, CACNG8, GRIK2, GABRA3, TRO, KCNA1, GRIA3, GRIA4
GOTERM_CC_FAT	GO:0016023	cytoplasmic membrane- bounded vesicle	7	1.98	1.43E-04	0.169	NCSTN, COPA, GRIA2, CACNG8, GIPC1, GRIA3, GRIA4

 Table 5.5 Gene ontology (GO) terms associated with genes with increasing editing pattern in CDS. The description of columns is same as table 5.3.

			CDS			
Chromosome Coordina	Coordinate	Gene	Effect	Description	Nonsynonymous Prediction	
chr1	2436080	PLCH2	nonsynonymous	R->G	Neutral	
chr1	160302244	COPA	nonsynonymous	I->V	Neutral	
chr1	160319987	NCSTN	nonsynonymous	S->G	Neutral	
chr1	225974581	SRP9	synonymous	L->L	NA	
chr3	179093028	MFN1	synonymous	A->A	NA	
chr4	77979680	CCNI	nonsynonymous	R->G	Deleterious	
chr4	158257879	GRIA2	synonymous	Q->Q	NA	
chr4	158281294	GRIA2	nonsynonymous	R->G	Neutral	
chr6	44120349	TMEM63B	nonsynonymous	Q->R	Deleterious	
chr6	102337702	GRIK2	nonsynonymous	Y->C	Neutral	
chr6	102372572	GRIK2	synonymous	G->G	NA	
chr6	102372589	GRIK2	nonsynonymous	Q->R	Neutral	
chr10	102777342	PDZD7	stoploss	X->W	NA	
chr11	105804694	GRIA4	nonsynonymous	R->G	Neutral	
chr12	5021742	KCNA1	nonsynonymous	I->V	Deleterious	
chr14	20920211	OSGEP	nonsynonymous	I->M	Deleterious	
chr14	26917530	NOVA1	nonsynonymous	S->G	Neutral	
chr15	65425334	PDCD7	synonymous	A->A	NA	
chr15	75646087	NEIL1	synonymous	K->K	NA	
chr17	37826529	PNMT	nonsynonymous	S->G	Neutral	
chr17	42475813	GPATCH8	nonsynonymous	K->R	Deleterious	
chr19	14593605	GIPC1	nonsynonymous	T->A	Neutral	
chr19	14593693	GIPC1	synonymous	P->P	NA	
chr19	54485579	CACNG8	nonsynonymous	S->G	Neutral	
chr21	30953750	GRIK1	nonsynonymous	Q->R	Neutral	
chrX	54955567	TRO	nonsynonymous	S->G	Deleterious	
chrX	122598962	GRIA3	nonsynonymous	R->G	Neutral	
chrX	151358319	GABRA3	nonsynonymous	I->M	Neutral	

Table 5.6 Effect of A-to-I editing sites in CDS region. Chromosome and Coordinate: location of A-to-I editing sites in UCSC human genome hg19; Gene: gene annotation based on RefSeq; Effect: synonymous or nonsynonymous; Description and Nonsynonymous prediction: amino acid change by A-to-I editing and its predicted effect.

Gene		Genomic background (N=23368)		Brain-ex (N=1	kpressed 7244)	Quarterna di sana s
Disease	set size	Number of overlap	p-value	Number of overlap	p-value	Overlapped genes
ASD	408	7	0.134	7	0.368	MTR, CCDC64, DCTN5, CDH22, GSK3B, GRIK2, MCPH1
SCZ	722	4	0.336	4	0.088	SLC4A8, CBX5, GFOD2, PLCH2
BPAD	123	3	0.127	3	0.214	MGAT4A, MRPL30, PTPRT
ID	88	3	0.059	3	0.119	AP4S1, GRIA3, GRIK2
T2D	66	1	NA	1	NA	AP3S2
AD	42	0	NA	0	NA	
PD	41	0	NA	0	NA	

Table 5.7 Disease association of genes with increasing editing pattern. Enrichment of genes with the increasing pattern in previously-defined gene sets associated with various neurodevelopmental disorders including autism (ASD), schizophrenia (SCZ), biplolar (BPAD), intellectual disability (ID) and disorders thought not to be neurodevelopmental: type 2 diabetes (T2D), Alzheimer disease (AD) and Parkinson disease (PD). Brain-expressed genes indicate genes whose RPKM are greater than 1 at least one samples in the 33 samples. p-value is obtained with Fisher-exact test.

Disease-associated genes					RNA editing site	
Gene	Description	Disease	Genetic	showing increasing		
		Discuse	evidence	р	attern	
MTR	5- methyltetrahydrofolate -homocysteine methyltransferase	ASD DATABASE	Functional	chr1	237066314	
CCDC64	coiled-coil domain containing 64	ASD DATABASE	Genetic Association	chr12	120531332	
				chr16	23684186	
			Rare Single	chr16	23684193	
DCTN5	dynactin 5 (p25)	ASD DATABASE	Gene	chr16	23684265	
		DATADASL	variant	chr16	23684625	
				chr16	23684636	
CDH22	andharin lika 22	ASD	Genetic	chr20	44802643	
CDH22	caunerini-nke 22	DATABASE	Association	chr20	44802728	
GSK3B	glycogen synthase kinase 3 beta	ASD DATABASE	Functional	chr3	119545199	
	glutamate receptor, ionotropic, kainate 2	ASD DATABASE, ID	Genetic Association	chr6	102337702	
GRIK2		ASD DATABASE, ID	Genetic Association	chr6	102372572	
		ASD DATABASE, ID	Genetic Association	chr6	102372589	
MCPH1	microcephalin 1	ASD DATABASE	Rare Single Gene variant	chr8	6500879	
	solute carrier family 4,			chr12	51903940	
SLC4A8	sodium bicarbonate	SCZ SNV	Exome sequencing	chr12	51905425	
	8			chr12	51907308	
CBX5	chromobox homolog 5 (HP1 alpha homolog, Drosophila)	SCZ SNV	Exome sequencing	chr12	54634284	
	glucose-Fructose			chr16	67715404	
GFOD2	Öxidoreductase	SCZ PGC2	GWAS	chr16	67715585	
	Domain Containing 2			chr16	67715890	

PLCH2	phospholipase C, Eta 2	SCZ PGC2	GWAS	chr1	2436080
MGAT4A	mannosyl (alpha-1,3-)- glycoprotein beta-1,4- N- acetylglucosaminyltra nsferase, isozyme A	BPAD GWAS	GWAS	chr2	99239382
				chr2	99812336
				chr2	99812429
				chr2	99812815
				chr2	99812897
MRPL30	mitochondrial ribosomal protein L30	BPAD GWAS	GWAS	chr2	99812978
				chr2	99812988
				chr2	99813003
				chr2	99813015
				chr2	99813020
PTPRT	protein tyrosine phosphatase, receptor type, T	BPAD GWAS	GWAS	chr20	40705281
				chr14	31563916
				chr14	31564294
A D 4 C 1	adaptor-related protein	ID	NIA	chr14	31564650
AF451	subunit	ID	INA	chr14	31564700
	Sucurit			chr14	31564752
				chr14	31565032
GRIA3	glutamate receptor, ionotrophic, AMPA 3	ID	NA	chrX	122598962
	adaptor-Related	Type 2		chr15	90375419
AP3S2	Protein Complex 3 Subunit Sigma-2	Diabete	NA	chr15	90375513

 Table 5.8 Genes involved in neurodevelopmental disorders with increasing A-to-I editing

 patterns. Detail description of genes associated with diseases. Disease and Genetic evidence is

 obtained from (Birnbaum et al. 2014).

Section	Description	Reference	Accession	
	Brain: adult (77 year old)		ERR030882, ERR030890	
	Kidney: adult (60 year old)		ERR030885, ERR030893	
	Lung: adult (65 year old)	Illumina BodyMan2	ERR030879, ERR030896	
	Skeletal muscle: adult (77 year old)	BodyMapz	ERR030876, ERR030899	
	Brain (PFC): fetal (22 week)		ENCLB181ZZZ	
C 1 T.	Heart: adult (34 year)		ENCLB172ZZZ	
5.1 Tissue	Heart: fetal (28 weak)		ENCLB183ZZZ	
variation	Kidney (metanephros): fetal (24 week)	ENCODE	ENCLB186ZZZ	
	Liver: adult (32 year)	ENCODE	ENCLB174ZZZ	
	Liver: fetal (20 week)		ENCLB187ZZZ	
Lung: fetal (20 week) Skeletal muscle: fetal (22 week)		ENCLB189ZZZ		
	Skeletal muscle: fetal (22 week)		ENCLB196ZZZ	
	In-vivo mouse E13.5 (pooled)		GSM1202240, GSM1202241	
	In-vivo mouse E15.5 (pooled)	CSE40591	GSM1202244, GSM1202245	
	In-vivo mouse E18.5 (pooled)	GSE49581	GSM1202232, GSM1202233	
	In-vivo mouse P7 (pooled)		GSM1202249, GSM 1202250	
	In-vivo mouse P4 (pooled)		SRR1016207,SRR1016210,S RR1016215,SRR1016218,SR R1016221,SRR1016224	
5.2 Mouse brain development In-v	In-vivo mouse P6 (pooled)		SRR1016227,SRR1016230,S RR1016232,SRR1016234,SR R1016236,SRR1016238	
	In-vivo mouse P8 (pooled)	CDD021000	SRR1016245,SRR1016247,S RR1016258,SRR1016263,SR R1016268,SRR1016271	
	In-vivo mouse P10 (pooled)	567051888	SRR1016273,SRR1016341,S RR1016343,SRR1016345,SR R1016347,SRR1016355	
	In-vivo mouse P14 (poolded)		SRR1016362,SRR1016364,S RR1016366,SRR1016368,SR R1016370,SRR1016372	
	In-vivo mouse Adult (pooled)		SRR1016375,SRR1016380,S RR1016382,SRR1016384,SR R1016386,SRR1016388	
	In-vitro differentiation of hESC to cortical neuron	GSE56796	All	
	In-vitro differentiation of	PRJNA18530	A11	
5.3 Cellular	mESC to cortical neuron	5		
understandin	Mouse primary cortical neuron		SRR1993667	
g	Mouse primary cortical neuron	GSE65926	SRR1993668	
	Mouse primary cortical neuron		SRR1993669	

	culture day14		
	Mouse primary cortical neuron culture day21		SRR1993670
	Mouse primary cortical neuron culture day28		SRR1993671
5.5 Disease	Mouse model of acute spinal cord injury, CTRL (pooled)		SRR789190,SRR789191
	Mouse model of acute spinal cord injury, 2day (pooled) GSE45376		SRR789193,SRR789194,SR R789195
	Mouse model of acute spinal cord injury, 7day (pooled)		SRR789196,SRR789198,SR R922121

Table 5.9 Previous RNA-seq datasets. Section: section in the chapter 5; Description: summary

for previous samples; Reference and Accession: database identifier for accessibility.

Chapter 6

Conclusions

This study reveals systematic and dynamic aspects of RNA editing in human brain across development and in two disease states. Further studies of the molecular mechanisms underlying dynamic RNA editing will give new insights into the regulation of sequence diversity in the nervous system that is not genomically encoded.

The recent expansion of RNA sequencing datasets has led to the identification of a huge number of RNA editing sites (Ramaswami & Li 2014). Among the emergent questions that have arisen from this identification are which of these sites are functional and how are they regulated. Constructing a spatiotemporal atlas of RNA editing is instrumental to answering such questions (Li & Church 2013). This study explored the genome-wide landscape of RNA editing in human brain development to advance understanding of the function and regulation of A-to-I editing. The genome-wide approach discovered that there are different levels of RNA editing rates both at a given site across development and at a given state of cell differentiation across multiple genes, which shows the 'dynamic' nature of RNA editing.

The dynamic aspects of A-to-I editing were summarized by three distinct editing patterns: stable high, stable low and increasing across cortical development. Identification of these patterns helps us to appreciate how A-to-I editing is regulated and functionally-implicated in the development of the nervous system. Specifically, the temporal expression of ADAR enzymes and the secondary structures of RNA species, as potential *trans-* and *cis-* regulatory mechanisms respectively, likely account at least in part for the developmental A-to-I editing patterns. Interestingly, the increasing A-to-I editing pattern across brain development is associated temporally with the growth of cortical layers and neuronal maturation.

However, the biochemical meaning of the proposed mechanisms for dynamic A-to-I editing patterns remains to be explored. Specifically, although the suggested *cis*- regulatory mechanism - RNA secondary structure – is computationally quantified in this study, a molecular exploration has yet to be completed. Also, the mechanism behind stable high-editing pattern throughout brain development is still unclear as many sites with low degrees of double-stranded structure have high editing rates during fetal life despite relatively-low expression of ADAR enzymes. There might be cofactors to enhance A-to-I editing (Garncarz et al. 2013) or unknown facilitatory mechanisms associated with high-edited sites. For example, the distance between

editing sites and the hairpin structure may affect editing rates synergistically with the degree of double-stranded structure.

In addition, although this study showed the correlation of A-to-I editing changes with neuronal maturation in neurogenesis or pathological conditions in brain disorders, mechanistic understanding on how the A-to-I editing change mediates those cellular phenotypes is still very limited. Some possiblilities were investigated including amino acid changes in functional domains or perturbation of miRNA-binding potential, but further studies of molecular mechanisms are necessary to fully appreciate their functional importance.

Finally, it should be noted that an emphasis on human samples in this study identifies many developmentally-regulated editing sites in primate-specific regions of the genome, especially in Alu repeats. So far, many functional studies on RNA editing have focused on evolutionarily-conserved sites, which are relatively few (Pinto et al. 2014). However, considering that the number of RNA editing sites has expanded in primates, especially in brain tissues, it is important to identify which sites are functionally relevant. The increasing editing pattern might provide a clue to this question. For example, RNA editing sites showing developmentally-increasing editing patterns only in human-specific transcripts, such as one in found in PDZD7 (see section 5.2) can be candidates for molecular experiments. In addition, a comparison of Alucontaining transcripts with and without the increasing A-to-I editing pattern will promote the understanding of the A-to-I editing in Alu-containing transcripts, and more generally, the role of RNA editing in human-specific aspects of brain development.

References

Anders, S., Pyl, P.T. & Huber, W., 2014. HTSeq A Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), pp.166–169.

Athanasiadis, A., Rich, A. & Maas, S., 2004. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS biology, 2(12), e391.

Auwera, G.A. Van Der et al., 2013. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline A. Bateman et al., eds. Current Protocols in Bioinformatics, 43:11.10, pp.1–33.

Backus, J.W. & Smith, H.C., 1992. Three distinct RNA sequence elements are required for efficient apolipoprotein B (apoB) RNA editing in vitro. Nucleic acids research, 20(22), pp.6007–14.

Barbon, A. & Barlati, S., 2011. Glutamate receptor RNA editing in health and disease. Biochemistry. Biokhimiia, 76(8), pp.882–9.

Bass, B.L. & Weintraub, H., 1987. A developmentally regulated activity that unwinds RNA duplexes. Cell, 48(4), pp.607–613.

Bass, B.L. & Weintraub, H., 1988. An unwinding activity that covalently modifies its doublestranded RNA substrate. Cell, 55(6), pp.1089–1098.

Ben-Ari, Y., 2014. The GABA excitatory/inhibitory developmental sequence: A personal journey. Neuroscience, 279, pp.187–219.

Benne, R. et al., 1986. Major transcript of the frameshifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell, 46(6), pp.819–826.

Berger, M., Gray, J.A. & Roth, B.L., 2009. The expanded biology of serotonin. Annual Review of Medicine, 60, pp.355–366.

Bernstein, B.E. et al., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature, 489(7414), pp.57–74.

Bhalla, T. et al., 2004. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nature structural & molecular biology, 11(10), pp.950–6.

Bhogal, B. et al., 2011. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nature Neuroscience, 14(12), pp.1517–1524.

Birnbaum, R. et al., 2014. Prenatal expression patterns of genes associated with neuropsychiatric disorders. American Journal of Psychiatry, 171(7), pp.758–767.

Blanc, V. & Davidson, N.O., 2010. APOBEC-1-mediated RNA editing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2(5), pp.594–602.

Blow, M. et al., 2004. A survey of RNA editing in human brain. Genome research, 14(12), pp.2379–87.

Brusa, R. et al., 1985. Early-Onset Epilepsy and Postnatal Lethality Associated with an Editing-Deficient GluR-B Allele in Mice. Science, 270(5242), pp.1677–1680.

Burns, C.M. et al., 1997. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature, 387, pp.303–308.

Chen, K. et al., 2013. RNA-seq characterization of spinal cord injury transcriptome in acute/subacute phases: a resource for understanding the pathology at the systems level. PloS one, 8(8), p.e72567.

Choy, J.Y.H. et al., 2015. A resource of ribosomal RNA-depleted RNA-Seq data from different normal adult and fetal human tissues. Scientific data, 2, p.150063.

Daniel, C. et al., 2012. A distant cis acting intronic element induces site-selective RNA editing. Nucleic acids research, 40(19), pp.9876–86.

Daniel, C. et al., 2011. Adenosine-to-inosine RNA editing affects trafficking of the gammaaminobutyric acid type A (GABA(A)) receptor. The Journal of biological chemistry, 286(3), pp.2031–40.

Daniel, C. et al., 2014. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome biology, 15(2), p.R28.

Darmanis, S. et al., 2015. A survey of human brain transcriptome diversity at the single cell level. Proceedings of the National Academy of Sciences, 112(23), pp.7285–7290.

Davidson, N.O. & Shelness, G.S., 2000. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr, 20, pp.169–193.

DeCerbo, J. & Carmichael, G.G., 2005. Retention and repression: Fates of hyperedited RNAs in the nucleus. Current Opinion in Cell Biology, 17(3), pp.302–308.

DePristo, M. a et al., 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics, 43(5), pp.491–8.

Dillman, A.A. et al., 2013. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nature neuroscience, 16(4), pp.499–506.

Dobin, A. et al., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), pp.15–21.

Eggington, J.M., Greene, T. & Bass, B.L., 2011. Predicting sites of ADAR editing in doublestranded RNA. Nature communications, 2(May), p.319.

Enright, A.J. et al., 2003. MicroRNA targets in Drosophila. Genome Biology, 5(R1), pp.1–14.

Eran, A. et al., 2013. Comparative RNA editing in autistic and neurotypical cerebella. Molecular Psychiatry, 18(9), pp.1041–8.

Fertuzinhos, S. et al., 2014. Laminar and temporal expression dynamics of coding and noncoding RNAs in the mouse neocortex. Cell reports, 6(5), pp.938–50.

Gallo, A. & Locatelli, F., 2012. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biological reviews of the Cambridge Philosophical Society, 87(1), pp.95–110.

Garncarz, W. et al., 2013. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA biology, 10(2), pp.192–204.

Garrett, S. & Rosenthal, J.J.C., 2012. RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses. Science, 335(6070), pp.848–851.

Gommans, W.M., Mullen, S.P. & Maas, S., 2009. RNA editing: a driving force for adaptive evolution? BioEssays, 31(10), pp.1137–45.

Gray, M.W., 2012. Evolutionary origin of RNA editing. Biochemistry, 51(26), pp.5235-42.

Griffiths-Jones, S. et al., 2008. miRBase: Tools for microRNA genomics. Nucleic Acids Research, 36(SUPPL. 1), pp.154–158.

Han, L. et al., 2015. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell, 28(4), pp.515–528.

Hartner, J.C. et al., 2004. Liver Disintegration in the Mouse Embryo Caused by Deficiency in the RNA-editing Enzyme ADAR1. Journal of Biological Chemistry, 279(6), pp.4894–4902.

Higuchi, M. et al., 2000. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 406, pp.1998–2001.

Horsch, M. et al., 2011. Requirement of the RNA-editing enzyme ADAR2 for normal physiology in mice. The Journal of biological chemistry, 286(21), pp.18614–22.

Hubbard, K.S. et al., 2013. Longitudinal RNA sequencing of the deep transcriptome during neurogenesis of cortical glutamatergic neurons from murine ESCs. F1000Research, 2, p.35.

Hundley, H. a. & Bass, B.L., 2010. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends in Biochemical Sciences, 35(7), pp.377–383.

Jaffe, A.E. et al., 2015. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution. Nature Neuroscience, 18(1), pp.154–161.

Jaffe, A.E. et al., 2016. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nature Neuroscience, 19(19), pp.40–47.

Jan, L.Y. & Jan, Y.N., 2012. Voltage-gated potassium channels and the diversity of electrical signalling. The Journal of physiology, 590(Pt 11), pp.2591–9.

Kappler, M. et al., 2002. Control of kinetic properties of GluR2 flop AMPA-type channels : impact of R / G nuclear editing. European Journal of Neuroscience, 15, pp.51–62.

Kawahara, Y. & Kwak, S., 2004. RNA editing and death of motor neurons. Nature, 427, pp.801.

Kim, D.D.Y. et al., 2004. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome research, 14(9), pp.1719–25.

Kleinman, C.L. & Majewski, J., 2012. Comment on "Widespread RNA and DNA sequence differences in the human transcriptome". Science, 335(6074), p.1302.

Knisbacher, B. a. & Levanon, E.Y., 2015. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution. Annals of the New York Academy of Sciences, 1341(1), pp.115–125.

Kwon, H.-B. & Sabatini, B.L., 2011. Glutamate induces de novo growth of functional spines in developing cortex. Nature, 474(7349), pp.100–4.

van de Leemput, J. et al., 2014. CORTECON: A Temporal Transcriptome Analysis of In Vitro Human Cerebral Cortex Development from Human Embryonic Stem Cells. Neuron, 83(1), pp.51–68

Lev-Maor, G. et al., 2007. RNA-editing-mediated exon evolution. Genome biology, 8(2), p.R29.

Li, H. & Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), pp.1754–60.

Li, J.B. et al., 2009. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science, 324(5931), pp.1210–1213.

Li, J.B. & Church, G.M., 2013. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nature neuroscience, 16(11), pp.1518–22.

Li, M. et al., 2011. Widespread RNA and DNA sequence differences in the human transcriptome. Science, 333(6038), pp.53–8.

Li, Z. et al., 2013. Evolutionary and ontogenetic changes in RNA editing in human, chimpanzee, and macaque brains. RNA, 19(12), pp.1693–702.

Liang, H.A.N. & Landweber, L.F., 2007. Hypothesis : RNA editing of microRNA target sites in humans ? RNA, pp.463–467.

Lorenz, R. et al., 2011. ViennaRNA Package 2.0. Algorithms for molecular biology : AMB, 6, p.26.

Luhmann, H.J., Fukuda, A. & Kilb, W., 2015. Control of cortical neuronal migration by glutamate and GABA. Frontiers in Cellular Neuroscience, 9, pp.1–15.

Lyddon, R., Navarrett, S. & Dracheva, S., 2012. Ionotropic glutamate receptor mRNA editing in the prefrontal cortex: no alterations in schizophrenia or bipolar disorder. Journal of psychiatry & neuroscience : JPN, 37(4), pp.267–72.

Maas, S. et al., 2001. Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proceedings of the National Academy of Sciences of the United States of America, 98(25), pp.14687–92.

Maathuis, M. et al., 2000. A method and server for predicting damaging missense mutations. Ann. Stat. Cell Statist. Soc. Ser. B J. Roy. Statist. Soc. Ser. B Biol, 37(16), pp.3133–3164.

Nishikura, K., 2010. Functions and regulation of RNA editing by ADAR deaminases. Annual review of biochemistry, 79, pp.321–49.

Niswender, C.M. et al., 2001. RNA editing of the human serotonin 5-HT2C receptor: Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology, 24(5), pp.478–491.

O'Neil, R.T. & Emeson, R.B., 2012. Quantitative analysis of 5HT 2C receptor RNA editing patterns in psychiatric disorders. Neurobiology of Disease, 45(1), pp.8–13.

Pachernegg, S. et al., 2015. GluA2 is rapidly edited at the Q/R site during neural differentiation in vitro. Frontiers in cellular neuroscience, 9(March), p.69.

Palladino, M.J. et al., 2000. A-to-I Pre-mRNA Editing in Drosophila Is Primarily Involved in Adult Nervous System Function and Integrity. Cell, 102(4), pp.437–449.

Pandey, R. & Mukerji, M., 2011. From "JUNK" to just unexplored noncoding knowledge: The case of transcribed Alus. Briefings in Functional Genomics, 10(5), pp.294–311.

Park, E. et al., 2012. RNA editing in the human ENCODE RNA-seq data. Genome research, pp.1626–1633.

Paul, M.S. & Bass, B.L., 1998. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. The EMBO journal, 17(4), pp.1120–1127.

Pinto, Y., Cohen, H.Y. & Levanon, E.Y., 2014. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome biology, 15(1), p.R5.

Powell, L.M. et al., 1987. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell, 50(6), pp.831–840.

Prasanth, K. V et al., 2005. Regulating gene expression through RNA nuclear retention. Cell, 123(2), pp.249–63.

Pullirsch, D. & Jantsch, M.F., 2010. Proteome diversification by adenosine to inosine RNA editing. RNA biology, 7(2), pp.205–212.

Ramaswami, G. et al., 2013. Identifying RNA editing sites using RNA sequencing data alone. Nature methods, 10(2), pp.128–32.

Ramaswami, G. & Li, J.B., 2014. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic acids research, 42(Database issue), pp.D109–13.

Rebagliati, M.R. & Melton, D. a., 1987. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell, 48(4), pp.599–605.

Ripke, S. et al., 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, pp.421–427.

Rosenberg, B.R. et al., 2011. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3' UTRs. Nature Structural & Molecular Biology, 18(2), pp.230-236.

Rosenthal, J.J.C. & Seeburg, P.H., 2012. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron, 74(3), pp.432–9.

Roth, B.L. ed., 2006. The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics, Humana Press.

Rueter, S.M., Dawson, T.R. & Emeson, R.B., 1999. Regulation of alternative splicing by RNA editing. Nature, 399(May), pp.75–80.

Rula, E.Y. et al., 2008. Developmental modulation of GABA(A) receptor function by RNA editing. The Journal of neuroscience the official journal of the Society for Neuroscience, 28(24), pp.6196–201.

Rybak-Wolf, A. et al., 2015. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Molecular Cell, 58, pp.870–885.

Sakurai, M. et al., 2014. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome research, 24(3), pp.522–34.

Sansam, C.L. & Emerson, R.B., 2005. mRNA editing. Encyclopedia of Life Sciences, pp.1-9.

Sarkisian, M.R. & Guadiana, S.M., 2015. Influences of primary cilia on cortical morphogenesis and neuronal subtype maturation. The Neuroscientist, 21(2), pp.136–51.

Sauvageau, M. et al., 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife, 2, p.e01749.

Savva, Y.A., Rieder, L.E. & Reenan, R.A., 2012. The ADAR protein family. Genome Biology, 13(12), p.252.

Scadden, A. D.J., 2007. Inosine-Containing dsRNA Binds a Stress-Granule-like Complex and Downregulates Gene Expression In trans. Molecular Cell, 28(3), pp.491–500.

Scadden, A.D.J., 2005. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nature Structural & Molecular Biology, 12(6), pp.489–496.

Schoft, V.K., Schopoff, S. & Jantsch, M.F., 2007. Regulation of glutamate receptor B pre-mRNA splicing by RNA editing. Nucleic acids research, 35(11), pp.3723–32.

Sekine, S., Miura, M. & Chihara, T., 2009. Organelles in developing neurons: essential regulators of neuronal morphogenesis and function. The International journal of developmental biology, 53(1), pp.19–27.

Sherry, S.T. et al., 2001. dbSNP : the NCBI database of genetic variation. , 29(1), pp.308–311.

Slotkin, W. & Nishikura, K., 2013. Adenosine-to-inosine RNA editing and human disease. Genome medicine, 5(11), p.105.

Sodhi, M.S. et al., 2001. RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Molecular psychiatry, 6(4), pp.373–379.

Sommer, B. et al., 1991. RNA Editing in Brain Controls of Ion Flow in Glutamate-Gated a Determinant Channels. Cell, 67, pp.11–19.

Tonkin, L. a. et al., 2002. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO Journal, 21(22), pp.6025–6035.

Trapnell, C., Pachter, L. & Salzberg, S.L., 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9), pp.1105–11.

Valente, E.M. et al., 2013. Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology, 10(1), pp.27–36.

Vissel, B. et al., 2001. The Role of RNA Editing of Kainate Receptors in Synaptic Plasticity and Seizures. Neuron, 29(1), pp.217–227.

Vitali, P. & Scadden, A. D.J., 2010. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nature structural & molecular biology, 17(9), pp.1043–1050.

Wagnert, R.W. et al., 1989. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells. Proceedings of the National Academy of Sciences, 86, pp.2647–2651.

Wahlstedt, H. et al., 2009. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome research, pp.978–986.

Wahlstedt, H. & Öhman, M., 2011. Site-selective versus promiscuous A-to-I editing. Wiley Interdisciplinary Reviews: RNA, 2(6), pp.761–771.

Wang, I.X. et al., 2013. ADAR regulates RNA editing, transcript stability, and gene expression. Cell reports, 5(3), pp.849–60.

Wang, Q. et al., 2013. ADAR1 regulates ARHGAP26 gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA, 19(11), pp.1525–36.

Wang, Q. et al., 2004. Stress-induced Apoptosis Associated with Null Mutation of ADAR1 RNA Editing Deaminase Gene. Journal of Biological Chemistry, 279(6), pp.4952–4961.

Whitney, N.P. et al., 2008. Calcium-permeable AMPA receptors containing Q/R-unedited GluR2 direct human neural progenitor cell differentiation to neurons. FASEB, 22(8), pp.2888–900.

Yamaguchi, K. et al., 1999. The reversible change of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. Journal of cerebral blood flow and metabolism, 19(4), pp.370–5.

Zhang, Y. et al., 2014. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. The Journal of neuroscience, 34(36), pp.11929–47. Zhang, Z. & Carmichael, G.G., 2001. The fate of dsRNA in the Nucleus: A p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 106(4), pp.465–475.

CURRICULUM VIATE FOR Ph. D. CANDIDATES

The Johns Hopkins University School of Medicine

Taeyoung Hwang

3/22/2015

taeyoungh@gmail.com

Educational History

Ph. D. expected University School of I	2016 Medicine	Department of Biomedical Engineering, Johns Hopkins (Mentor: Daniel R. Weinberger, M.D.)
M.S. University, Korea	2009	Interdisciplinary program in Bioinformatics, Seoul National
B.S. Korea	2006	Department of Electrical Engineering, Seoul National University,

Other Professional Experience

Research rotation Johns Hopkins Unive	2011 ersity	Dr. Takanari Inoue's laboratory, Department of Cell Biology,
Research rotation Engineering, Johns H	2010 Iopkins Ui	Dr. Andre Levchenko's laboratory, Department of Biomedical niversity
Researcher	2010	Dr. Kwang-Hyun Cho's laboratory, KAIST, Korea
Researcher Korea	2009	Research Institute of Basic Science, Seoul National University,

Scholarships, fellowships or other external funding

SOM-APL Precision medicine award (PI: Daniel Weinberger and Christopher Bradurne), 11/20/2015, \$100,000 for 12 months: research support (participating as a lead researcher).

Academic and other honors at Hopkins and elsewhere

 9^{th} Genomics and Bioinformatics Symposium First prize in poster session 10/22/2015 hosted by Center for Computational Biology, Johns Hopkins University

10/6/2015 Reviewer's choice in poster presentation Society of Human Genetics (ASHG 2015).

Publications, peer reviewed

T. Hwang, C.-K. Park, A. K. L. Leung, Y. Gao, T. M Hyde, J. E Kleinman, A. Rajpurohit, R. Tao, J. H. Shin, D. R Weinberger, Dynamic regulation of RNA editing in human brain development and disease, *under review*.

D. Mathios*, **T. Hwang***, J. Phallen, A. P. See, P. Burger, K. L. Mcdonald, G. L. Gallia, M. Kai, H. Brem, D. Pardoll, P. Ha, V. E. Velculescu, C. Bettegowda, C.-K. Park, M. Lim, Genome-wide investigation of intragenic methylation identifies ZMIZ1 gene as a novel prognostic marker in cancer, *Submitted*. * equally contributed

T. Hwang, T. Park (2009) Identification of differentially expressed sub-networks based on multivariate ANOVA scoring method. BMC Bioinformatics 10:128.

Publications, chapters and other non-peer reviewed

T. Hwang, T. Park (2010) Multivariate analysis of microarray data: Application of Manova. In: Medical Biostatistics for Complex Diseases (Frank Emmert-Streib and Matthias Dehmer, eds), Wiley Online Library

Posters and presentations

T. Hwang, J. Shin, D. R. Weinberger (2016) Dynamic regulation of RNA-editing in human brain development and disease, *poster presentation*, Cold Spring Harbor conference on Systems Biology: Global Regulation of Gene Expression, Mar. 2016.

T. Hwang, J. Shin, D. R. Weinberger (2015) Dynamic regulation of RNA-editing in human brain development and disease, *oral presentation*, 2015 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM), Nov. 2015.

T. Hwang, J. Shin, D. R. Weinberger (2015) Dynamic regulation of RNA-editing in human brain development and disease, *poster presentation*, Annual meeting in American Society of Human Genetics (ASHG 2015), Oct. 2015.

T. Hwang, J. Shin, D. R. Weinberger (2014) A dynamic regulation of RNA-editing in human brain development, *poster presentation*, Gordon Research Conference, Jul. 2014.

A. P. See*, **T. Hwang***, D. Shin, J. Phallen, Y. Gao, M. Lim (2011) Genome-wide analysis of clinically significant CpG methylation sites in GBM, *poster presentation, Society for NeuroOncology Annual Meeting*, Nov. 2011. * equally contributed

Service and leadership

2014-15 Co-director of Professional Development, BME EDGE (BioMedical Engineering Extramural Development in Graduate Education)

BME EDGE was established to provide additional training opportunities for the biomedical engineering (BME) PhD students in Johns Hopkins University (JHU). As a part of BME EDGE executive team in 2014-15, I coordinated events called Speakers' series where speakers from inside/outside JHU gave a talk and interact with PhD students.

2013 Intersession Instructor, EN 580.102.12 Intro to Next Generation Sequencing

I organized the freshmen or sophomore-level course in Johns Hopkins University to introduce next generation sequencing (NGS) technologies and its application. This class presented various examples showing how NGS technologies are utilized to answer biomedical problems. Also, computational tools with real datasets were introduced to help understand the analyses of data generated by NGS technologies.