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Abstract

The standard ΛCDM model has successfully described the content and the

evolution of the universe with predictions in impressive agreement with ob-

servations of the Cosmic Microwave Background (CMB). Yet recently major

tension has emerged between results from observations of early and late cos-

mological time. My research focuses on applying statistical tools to analyze

and quantify consistency between different data sets as well as different ex-

tension models to ΛCDM. This thesis begins with an overview of the ΛCDM

model and the physics of the CMB. In the following chapters, I will present

my work on examining the internal consistency of the Planck 2015 CMB tem-

perature anisotropy power spectrum. Then I will detail the procedure and

results from quantitative comparison between WMAP 9-year and Planck 2015

temperature power spectra over their common multipole range. I will also

highlight the importance of examining the correlations between additional

parameters when investigating extensions to the standard ΛCDM model and

describe how these correlations can be quantified with simulations and Monte

Carlo Markov Chain methods.
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Chapter 1

Introduction

Over the last two decades, substantial progress has been made on refining

our understanding of the universe to unprecedented precision. The standard

ΛCDM model has successfully described the content and the evolution of

the universe with predictions in impressive agreement with observations, e.g.

of the Cosmic Microwave Background (CMB) (Hinshaw et al., 2013; Planck

Collaboration, 2016; Planck Collaboration, 2018; Sievers et al., 2013; Story et al.,

2013), Baryon Acoustic Oscillation (BAO) (Eisenstein et al., 2005; Anderson

et al., 2012), and weak gravitational lensing (Erben et al., 2013; Hildebrandt et

al., 2017; Abbott et al., 2018). Yet increasingly precise measurements have also

revealed major tension between results from observations of early and late

cosmological time. The most notable one is the ∼ 5σ disagreement between

the Hubble constant measurements from direct distance ladder measurements

(Riess, 2019) and from the Planck CMB data (Planck Collaboration, 2018).

The measurement of H0 via strong lensing time delays (Wong et al., 2020) is

consistent with the SH0ES measurement (Riess et al., 2019) and in 5.3σ tension

with Planck. Addison et al., 2018 showed that the tension between early and
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late time universe measurements persists even without the inclusion of Planck

data, with BAO scale measurements.

Various avenues to reconcile this tension have been explored. Systematic

effects in measurements have been investigated, yet no obvious explanation

for the tension has been found (Efstathiou, 2014; Planck Collaboration, 2017;

Aylor et al., 2019). On the theory side, extensions or alternatives to the ΛCDM

model have been proposed to change our understanding of the physics of the

expansion history. For example, the effects of varying the effective number of

neutrino species (e.g., Riess et al., 2016) and the equation of state parameter

of dark energy (e.g., Joudaki et al., 2017) have been studied, though these

extensions have not been able to effectively relieve the tension without includ-

ing multiple turning points in the evolution of the dark energy equation of

state (Zhao et al., 2017). Early dark energy models have been suggested as a

possible solution (Poulin et al., 2019; Smith, Poulin, and Amin, 2020), yet they

do not provide a good fit to large-scale structure data (Hill et al., 2020; Ivanov

et al., 2020). In short, we have not yet seen a convincing explanation for the

departure from the standard ΛCDM as a solution to the Hubble tension.

However, before embarking on any of these avenues, one needs to first

understand how significant results from different cosmological probes agree

or disagree. With this in mind, my research has focused on applying statistical

tools to quantitatively study consistency both between different data sets and

internally within a data set. Moreover, to aid hypothesis testing for alternative

theories, I developed a method to quantify correlations between additional

parameters in ΛCDM extensions that are not fitted simultaneously.
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The outline of this thesis is as follows. In the rest of this chapter, I will lay

down the theoretical foundation of my research. Specifically I will give an

overview of the ΛCDM model and the physics of the CMB, followed by an

introduction to the computational tools I used in my work. In the following

chapters, I will present my work on quantifying consistency between results

from different observation and from different models. In chapter 2, I reproduce

Addison et al., 2016, which examines the internal consistency of the Planck

2015 CMB temperature anisotropy power spectrum. Chapter 3 is taken from

Huang et al., 2018. It details the procedure and results from quantitative

comparison between WMAP 9-year and Planck 2015 temperature power

spectra over their common multipole range. I find that their spectra are

consistent within 1σ. In Chapter 4 I describe my work in Huang, Addison, and

Bennett, 2019, which highlights the importance of examining the correlations

between additional parameters when investigating extensions to the standard

ΛCDM model and describes how these correlations can be quantified with

simulations and Monte Carlo Markov Chain methods.

1.1 The ΛCDM Universe

Our universe can be well described by ΛCDM, the standard model of cosmol-

ogy, which accounts for the presence of cold dark matter (CDM) and dark

energy (associated with the cosmological constant Λ) as well as radiation and

baryonic matter.

The ΛCDM model is based on the framework of general relativity and the

observation that the universe is largely isotropic and homogeneous. Assuming
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perfect homogeneity and isotropy, the Friedmann-Lemaître-Robertson-Walker

(FLRW) metric, which incorporates gravity into a curved space-time and the

expansion of the universe into the time-dependent scale factor a(t), is written

as

ds2 = gµνdxµdxν = −dt2 + a(t)2dΣ2 (1.1)

in units with the speed of light c = 1. Here Σ denotes a 3-dimensional space

that is either elliptic, Euclidean or hyperbolic. In the simplest ΛCDM model,

where space is approximately flat, the FLRW metric can be written as

ds2 = gµνdxµdxν = −dt2 + a(t)2δijdxidxj (1.2)

with x being the co-moving coordinates. For simplicity, we can also define the

conformal FLRW-metric as

ds2 = a(τ)2(−dτ2 + δijdxidxj) or gµν = a2ηµν, (1.3)

where the conformal time dτ is defined as

dτ =
dt

a(t)
. (1.4)

In the ΛCDM framework, the relationship between the space-time geome-

try and the energy of the matter in the universe is described by the Einstein

field equation with the cosmological constant Λ:

Rµν −
1
2

gµνR = 8πGTµν + Λgµν. (1.5)
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Here Rµν and R are the Ricci tensor and scalar respectively. They are deter-

mined by the metric gµν.

Λ, the cosmological constant, first proposed by Einstein in 1917 to make

the universe static and later abandoned, is invoked to account for the observed

acceleration of the expansion of the universe. It is the simplest realization of

dark energy, which is a strange form of energy that is gravitationally repulsive.

In 1.5, Tµν is the energy-momentum tensor. Assuming the matter in the

universe as an isotropic perfect fluid in the co-moving coordinates, it is given

by

Tµν =

⎛⎜⎜⎝
−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

⎞⎟⎟⎠ (1.6)

where ρ is the energy density and P is the pressure of the fluid.

Inserting the metric and the energy-momentum tensor into the Einstein

equation results in the Friedmann equations:(︃
ȧ
a

)︃2

=
8πGρ + Λ

3
(1.7)

and
ä
a
= −4πG

3
(ρ + 3P) +

Λ
3

. (1.8)

The Hubble parameter is defined as H ≡ ȧ
a , describing the expansion rate of

the universe.

In addition, the energy conservation law for the perfect fluid leads to

ρ̇ = −3H(ρ + P). (1.9)
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To solve 1.9 for a specific type of fluid, the relation between its energy

density and its pressure is written in a simple linear form:

P = ωρ (1.10)

where ω is the equation of state parameter. With 1.10, the fluid equation 1.9

implies how the energy density evolves in an expanding universe:

ρ

ρ0
=

(︃
a
a0

)︃−3(1+ω)

(1.11)

where the subscript 0 denotes values at present time.

For important cosmological mass-energy, ω is constant in time. For radi-

ation (photons and neutrinos), ω = 1/3. For non-relativistic matter, ω = 0.

The non-relativistic matter sector consists of baryons, which are massive ele-

mentary particles made up of three quarks, and cold dark matter, which does

not interact with the electromagnetic force. The only interactions of cold dark

matter with others are gravitational. Baryonic matter account for roughly 5%

of the total density in the universe today, while dark matter around 26%. The

remaining 70% of the universe is dark energy, acting as a cosmological con-

stant Λ with ω = −1, corresponding to a negative pressure. It is responsible

for the accelerated expansion of the universe.

1.2 Inflation

Though the ΛCDM model fits our observations of the universe very well,

it does not explain why the universe is so homogeneous and isotropic, that
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even regions which could not have been in causal contact share almost the

same temperature. Nor does it explain why the universe is remarkably flat

(Hinshaw et al., 2013; Planck Collaboration, 2016; Planck Collaboration, 2018),

without some extreme fine-tuning of early conditions.

The Inflation theory provides solutions to all these problems with an ex-

ponential expansion of space that occurred 10−36s after the Big Bang (Guth,

1981; Linde, 1982; Albrecht and Steinhardt, 1982). With the scale factor a(t) in-

creased by greater than e60 within approximately 10−32s, the distance between

particles that were once in causal contact expanded to be greater than the

horizon and the particles became causally disconnected. With the accelerating

expansion of space, initial inhomogeneities and anisotropies were smoothed

out, and spatial curvature was driven to near zero.

Inflation also expands microscopic quantum fluctuations in the early uni-

verse to cosmological scale, giving rise to structure formation in the universe.

Perturbations produced by quantum fluctuations result in modification of the

metric:

gµν = gµν¯ + δgµν = a2(ηµν + 2ζηµν + hµν), (1.12)

where ζ describes scalar density perturbations and hµν describes tensor per-

turbations.

The power spectrum Ps of the scalar perturbations can be parametrized by a

power law with amplitude As, spectral index ns and an arbitrary wavenumber

k∗:

Ps(k) = As(k∗)
(︃

k
k∗

)︃ns−1

. (1.13)
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An analogous expression applies for the tensor perturbations.

Both WMAP and Planck data support the theory of inflation, with the

observation of a slightly tilted spectrum of initial scalar fluctuations, ns =

0.965 ± 0.004 (Planck Collaboration, 2018).

1.3 The Cosmic Microwave Background

The CMB is an afterglow of the hot and dense infant universe. The primordial

universe was filled with a plasma of protons, electrons, and photons until it

cooled due to expansion at around 380,000 years after the Big Bang (corre-

sponding to redshift z ∼ 1100), allowing neutral hydrogen atoms to form and

photons to decouple. As the universe continued to expand and to cool, this

radiation was reshifted to longer wavelengths, ending up in the microwave

band today.

The CMB is an almost perfectly uniform and isotropic black-body spectrum

in space, with a temperature of ∼ 2.7 K (Fixsen, 2009) and anisotropies at the

level of one part in 105. The black-body spectrum is a strong indication of the

Big Bang model while slight imperfections provide information such as the

matter density fluctuations that seeded structure formation in the universe

(Hu, Sugiyama, and Silk, 1997).

Observations of the CMB are our most powerful probe of the physical condi-

tions in the early universe and provide precise and accurate determinations of

cosmological models and parameters.
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1.3.1 Acoustic Oscillation

Before the universe became neutral at recombination, protons and electrons

were tightly coupled to photons, forming a single photon-baryon plasma. The

baryons were interacting in a gravitational potential field set up by dark matter.

The photon-baryon plasma was not perfectly homogeneous but with density

perturbations that were seeded by random quantum fluctuations during

inflation. In the plasma, overdense regions became denser under gravity,

but the compression was opposed by radiation pressure, which resulted in

acoustic oscillations, with sound waves propagating through universe. The

distance the sound wave travelled by recombination is referred to as the sound

horizon. As the universe expanded, matter diffused and photons redshifted

to lower energy and decoupled from the baryons. The phases of the acoustic

oscillations were frozen in place at the epoch of recombination, leaving an

imprint on the CMB.

1.3.2 Reionization

The universe stayed neutral since recombination until z ∼ 6, when it became

ionized again from UV radiation from newly formed galaxies and quasers

(Becker et al., 2001; Fan et al., 2001). Reionization brought about 10% of the

CMB photons back in contact with electrons via Thomson scattering, leading

to an additional source of optical depth between us and the recombination

surface:

τ =
∫︂ zreion

0
ne(z)σT

dt
dz

dz (1.14)
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where ne(z) is the number density of free electrons and σT is the Thomson

cross-section.

Reionization erased some of the primary anisotropy imprinted on the CMB

at recombination on scales within the horizon.

1.3.3 CMB Power Spectrum

A basic observable of the CMB is its intensity as a function of direction on

the sky. We can denote the temperature anisotropy at in the direction n⃗ with

∆T(n). Since ∆T(n) is defined on the surface of the celestial sphere it is useful

to expand it in spherical harmonics:

∆T(n) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

aℓmYℓm(n) (1.15)

where

aℓm =
∫︂

dΩn∆T(n)Y∗
ℓm(n) (1.16)

≈ ∑
p

∆T(p)ΩPY∗
ℓm(p). (1.17)

The integral over the sky is approximated by a discrete sum over map pixels

p, with each pixel subtending a solid angle ΩP. The temperature anisotropy

we observe now evolves from the initial anisotropy that were produced by

quantum-mechanical fluctuations in the early universe during inflation. Since

those fluctuations can only be described probabilistically, we cannot predict

the exact values of aℓm, but we can study the distribution from which they

are drawn. With ∆T as the temperature perturbation, the aℓm has zero mean

but nonzero variance. We define the variance of aℓm to be Cℓ, the temperature

10



power spectrum by:

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cℓ. (1.18)

We can estimate the power spectrum by

Cℓ =
1

2ℓ+ 1

ℓ

∑
m=−ℓ

|aℓm|2. (1.19)

In general, Cℓ corresponds to the temperature fluctuations on the angular

scale ∼ 180◦/ℓ. When presenting the results of CMB observations, the power

spectrum is usually displayed as ℓ(ℓ+ 1)Cℓ/2π, in units of µK2.

The shape of the CMB power spectrum depends on cosmological parame-

ters.

Starting from low multipoles, where the corresponding angular scales are

larger than the horizon at recombination, things were only weakly processed

by gravity and pressure. So the power spectrum at low ℓ is still the primordial

power spectrum from right after inflation, which can be parametrized by a

power-law function, with As being the amplitude and ns the spectral index.

With ns very close to one, it is nearly scale invariant.

At ℓ > 200, the effect of baryon acoustic oscillation is manifest as peaks

and troughs in the power spectrum. The (2n − 1)th peaks corresponds to

the mode that just underwent n compressions by recombination and the 2nth

peaks correspond to n rarefactions by recombination. Because a non-negligible

fraction of matter in the universe is in the form of baryons, compressions are

stronger than rarefactions. Therefore compression peaks are higher than the

rarefaction peaks.

The high multipoles (ℓ ≳ 1000) correspond to very small physical scales
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which are smaller than the mean free path of photons, and the initial fluc-

tuations from inflation are washed out by photon diffusion. So the power

spectrum decays exponentially with ℓ. The precise damping rate depends

on all cosmological parameters. For example, higher baryon density leads to

shorter free path for photons which results in less diffusion (Hu and White,

1997), while high dark matter density causes the universe to reach recombi-

nation at later times (slower expansion rate), which results in more diffusion.

High multipole spectrum provides a consistency check on parameters.

1.4 Cosmological Parameters

The ΛCDM model can be summarized by six base parameters (Hinshaw et al.,

2013). They are Ωbh2, Ωch2, H0, τ, ns and As. Other cosmological parameters

can be derived from these six.

Ωbh2 and Ωch2 are the physical baryon density and the physical cold dark

matter density, respectively. H0 is the current rate of expansion of the universe,

usually given in kilometers per second per megaparsec, and h is defined so

that H0 = 100h km sec−1 Mpc−1.

In the simplest model, the universe is assumed to be flat, which is consistent

with the data (Hinshaw et al., 2013; Planck Collaboration, 2018). To maintain

flatness, the dark energy density in units of the critical density ΩΛ, is deter-

mined by the flatness constraint, Ωb + Ωc + ΩΛ = 1. The physical matter

density Ωmh2 (sum of Ωbh2 and Ωch2) and ΩΛ governs the expansion rate of

the universe and together with H0, determines the age of the universe. τ is

the reionization optical depth. ns the power-law spectral index of primordial
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density scalar perturbations, while As is the amplitude. These perturbations

in the photon-baryon fluid collapsed under gravity, but the compression was

opposed by radiation pressure, which resulted in acoustic oscillations. Be-

cause radiation only interacts with baryons, Ωbh2 governs the amplitude of

this oscillation. Knowledge of these six parameters allows us to predict the

power spectrum of the CMB. Conversely one can estimate the distributions of

the parameters from a power spectrum. When parameter fitting, one can also

vary θMC (in place of H0), which is the angular size of the sound horizon at

photon decoupling.

1.5 Cosmological Parameter Estimation

I use a publicly available software package called CAMB (Lewis, Challinor,

and Lasenby, 2000) to calculate the temperature power spectrum from input

cosmological parameters and CosmoMC (Lewis and Bridle, 2002) to perform

the Markov Chain Monte Carlo (MCMC) parameter fitting of data to CAMB-

computed models.

To compute the power spectrum, CAMB evolves the Boltzmann equations

that describe CMB anisotropies using a line of sight integration approach.

Instead of trying to solve the hierarchy of coupled differential equations (one

equation for each ℓ), CAMB integrates the Boltzmann equation, so that it can

be rewritten in terms of a source term and a geometric term. The former

only depends on multipole moments at ℓ < 4. The latter does not depend on

cosmological parameters and so can be computed in advance.
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Another public available software package, CosmoMC, estimates the cosmo-

logical parameters by sampling points sequentially according to the Metropolis-

Hastings Algorithm (Metropolis et al., 1953) and evaluating the likelihood at

each point, which is defined as the probability of getting the data given the

theory (Hobson and Maisinger, 2002):

L(p) ∝
1√︁

2π|Σ|
×

exp[−1
2
(D̂ − M(p))TΣ−1(D̂ − M(p)] (1.20)

where p stands for the set of parameters that give the model power spectrum

M(p). D̂ is the power spectrum which can be extracted from CMB observa-

tions or generated from simulations. Σ is its covariance matrix. By running

CosmoMC along with CAMB, marginalized distributions of parameters can

be obtained.
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Chapter 2

Quantifying Discordance in the
2015 Planck CMB spectrum

This chapter is a verbatim reprint from Addison & Huang et al 2016 (APJ

818, 132, p. 132), where we examine the internal consistency of the Planck

2015 cosmic microwave background (CMB) temperature anisotropy power

spectrum. In this work, I perform parameter fitting on low and high multipole

ranges of the Planck temperature power spectrum and quantitatively compare

results from these fits. We find tension exists between model parameters

inferred from different parts of the power spectrum. We find some parameter

tensions to be larger than previously reported because of inaccuracy in the

code used by the Planck Collaboration to generate model spectra. To further

investigate the tension, I repeat the parameter fitting with the optical depth

to reioniation and the phenomenological lensing amplitude set to different

values. We find that internal tension within Planck data persists. In addition,

the Planck ℓ ≥ 1000 constraints are also in tension with low-redshift data sets,

including Planck’s own measurement of the CMB lensing power spectrum

and the local distance ladder measurement.
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2.1 Introduction

Measurements of the power spectrum of CMB temperature fluctuations (here-

after ‘TT spectrum’) are a cornerstone of modern cosmology. The most precise

constraints are currently provided by the final 9-year Wilkinson Microwave

Anisotropy Probe (WMAP) analysis (Bennett et al., 2013; Hinshaw et al., 2013),

high-resolution ground-based instruments including the Atacama Cosmology

Telescope (ACT; Sievers et al., 2013) and the South Pole Telescope (SPT; Story

et al., 2013), and most recently Planck (Planck Collaboration XIII, 2016). Sig-

nificant improvements in both CMB polarization and low-redshift, late-time

observations are anticipated in the near future and will be used to measure

or tightly constrain key cosmological quantities including the total neutrino

mass, deviations of dark energy from a cosmological constant and the ampli-

tude of primordial gravitational waves (e.g., Abazajian et al., 2015a; Abazajian

et al., 2015b; Kim et al., 2015). Many of these future results will rely on having

precise and accurate TT constraints. Assessing consistency both between and

internally within each TT measurement is therefore extremely important.

While the Planck data from the first data release in 2013 (Planck Collabora-

tion XVI, 2014) were qualitatively in agreement with WMAP, supporting the

minimal ΛCDM model, there were small but highly significant quantitative

differences between the cosmological parameters inferred. For example, Lar-

son et al. (2015) found a ∼ 6σ overall parameter discrepancy after accounting

for the cosmic variance common to both experiments.

Several systematic effects were corrected in the Planck 2015 data release,

23



including issues relating to data calibration and map making (Planck Col-

laboration, 2016a), which led to a shift in the inferred TT power spectrum

amplitude by 3.5σ in units of the 2015 uncertainty (Table 1 of Planck Collabo-

ration XIII, 2016), and an artifact with a statistical significance of 2.4 − 3.1σ

near multipole ℓ ≃ 1800 in the 217 GHz temperature power spectrum (Planck

Collaboration, 2014). See also discussion in Spergel, Flauger, and Hložek

(2015).

The WMAP and Planck 2015 TT spectra appear to be in agreement over

their common multipole range (Fig. 46 of Planck Collaboration XI, 2016).

When the additional information in the high-order acoustic peaks and damp-

ing tail of the TT spectrum are included, however, the Planck parameters pull

away from WMAP (Section 4.1.6 of Planck Collaboration XI, 2016), leading to

tension between Planck and several low-redshift cosmological measurements

if ΛCDM is assumed, including a 2.5σ tension with the Riess et al. (2011)

determination of the Hubble constant, H0, 2 − 3σ tension with weak lensing

measurements of the CFHTLens survey (Heymans et al., 2012), and tension

with the abundance of massive galaxy clusters (e.g., Planck Collaboration,

2016b).

In this chapter we examine the internal consistency of the Planck TT spec-

trum. We show that tension exists between ΛCDM parameters inferred from

the Planck TT spectrum at the multipoles accessible to WMAP (ℓ ≲ 1000)

and at higher multipoles (ℓ ≳ 1000). The constraints from high multipoles

are, furthermore, in tension with many low-redshift cosmological measure-

ments, including Planck’s own lensing potential power spectrum measurement
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and baryon acoustic oscillation (BAO) from galaxy surveys, while the low-

multipole Planck TT, Planck lensing, WMAP, BAO, and distance ladder H0

data are all in reasonable agreement.

We describe the data sets used and parameter fitting methodology in

Section 2.2 and present results in Section 2.3. Discussions and conclusions

follow in Sections 2.4 and 2.5.

2.2 Data and Parameter Fitting

We use CAMB1 (Lewis, Challinor, and Lasenby, 2000) to calculate temperature

and lensing potential power spectra as a function of cosmological parameters

and CosmoMC2 (Lewis and Bridle, 2002) to perform Monte-Carlo Markov Chain

(MCMC) parameter fitting and obtain marginalized parameter distributions,

adopting the default Planck settings, including a neutrino mass of 0.06 eV

(Planck Collaboration XVI, 2014). We use the public temperature-only Planck

2015 lowl likelihood for 2 ≤ ℓ ≤ 29, the binned plik likelihood for 30 ≤
ℓ ≤ 2508, and, in some cases, the Planck 2015 lensing likelihood, which

includes multipoles of the lensing potential power spectrum Cϕϕ
L covering

40 ≤ L ≤ 400 (Planck Collaboration XI, 2016; Planck XV et al., 2015). We fit

for six ΛCDM parameters: the physical baryon and CDM densities, Ωbh2 and

Ωch2, the angular acoustic scale, parametrized by θMC, the optical depth, τ, the

primordial scalar fluctuation amplitude, As, and the scalar spectral index, ns.

1camb.info
2http://cosmologist.info/cosmomc/
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Other parameters, including H0, the total matter density, Ωm, and the present-

day mass fluctuation amplitude, σ8, are derived from these six. Additional

foreground and calibration parameters used in the fits are described by Planck

Collaboration XI (2016).

At of the completion of this work, the analysis of Planck’s polarization data

is only partially complete. At high multipoles, significant systematic errors

remain in the TE and EE spectra, putatively due to beam mismatch, which

leads to temperature-polarization leakage (Sec. 3.3.2 of Planck Collaboration

XIII, 2016). At low multipoles (ℓ < 30), the 100, 143 and 217 GHz polarization

data have significant residual systematic errors and are “not considered usable

for cosmological analyses”3. The LFI 70 GHz data, in conjunction with the

30 and 353 GHz maps as Galactic foreground tracers, are used to constrain

τ. Using the polarized 353 GHz map as a dust tracer results in a value of

τ lower than constraints from WMAP (0.066 ± 0.016 compared to 0.089 ±
0.014, Hinshaw et al., 2013; Planck Collaboration XIII, 2016). Given these

complexities and uncertainties, we have chosen to leave polarization data out

of the current analysis and focus on conclusions that can be drawn from the

TT data alone.

Without polarization data, τ is only weakly constrained, but it does couple

to other cosmological parameters. We considered two approaches for setting

priors on τ. First we adopted a Gaussian prior of τ = 0.07 ± 0.02 as in

Planck Collaboration XI (2016), which is consistent within 1σ with the range

of values inferred from WMAP and Planck data (Hinshaw et al., 2013; Planck

3According to the Planck 2015 Release Explanatory Supplement http://wiki.cosmos.esa.
int/planckpla2015/index.php/Frequency_Maps#Caveats_and_known_issues
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Collaboration XIII, 2016). Second, to gain more insight into exactly how τ does

or does not affect our conclusions about TT consistency, we also ran chains

with τ fixed to specific values: 0.06, 0.07, 0.08, and 0.09.

When assessing consistency between parameter constraints from two data

sets that can be considered independent we use the difference of mean pa-

rameter values, which we treat as multivariate Gaussian with zero mean and

covariance given by the sum of the covariance matrices from the individual

data sets. The mean and covariance for each data set are estimated from the

MCMC chains. We then quote equivalent Gaussian ‘sigma’ levels for the

significance of the parameter differences.

We also considered using the difference of best-fit parameters, rather than

difference of means, for these comparisons. For Gaussian posterior distribu-

tions this choice should make little difference. We find that this is generally

true, with significance levels for parameter differences changing only at the

0.1 − 0.2σ level. In a few cases, however, we found a significant shift, due to

an offset between the mean and best-fit parameters. In all cases the Gaussian

distribution specified by the mean and covariance matrix from the chains pro-

vided an excellent match to the distribution of the actual MCMC samples, and

for this reason we quote results based on the differences of the mean rather

than best-fit parameters. It is possible that the mismatches are caused by prob-

lems in the algorithm used to determine the best-fit parameters4. Note that

simply taking the maximum-likelihood parameters directly from the MCMC

chains is unreliable due to the large parameter volume sampled (typically

4See http://cosmologist.info/cosmomc/readme.html
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around 20 parameters, including nuisance parameters, e.g., for foregrounds).

The overall posterior distribution is well mapped out by a converged chain

but the tiny region of parameter space close to the likelihood peak is not.

2.3 Results

Figure 2.1 shows the two-dimensional ΛCDM parameter constraints for the

Planck 2015 TT spectra spanning 2 ≤ ℓ < 1000 and 1000 ≤ ℓ ≤ 2508, with

a τ = 0.07 ± 0.02 prior. Similar contours are shown in Figure 31 of Planck

Collaboration XI (2016) using the same prior on τ. Two differences in our fit act

to pull some of the low and high multipole parameter constraints away from

one another. Firstly, the constraints in the Planck figure only extend down to

ℓ = 30 because the intention was to test robustness of the plik likelihood only.

We use the full range 2 ≤ ℓ < 1000 with the intention of examining parameter

values. Secondly, the Planck fit uses the PICO5 (Fendt and Wandelt, 2007) code

rather than CAMB to generate TT spectra. We find that the PICO and CAMB

results are noticeably different for the 1000 ≤ ℓ ≤ 2508 fit. PICO requires

only a fraction of the computation time and provides a good approximation to

CAMB, but only within a limited volume of parameter space. Some parameter

combinations outside this volume are allowed by the 1000 ≤ ℓ ≤ 2508 data.

In these cases, the PICO output deviates from the CAMB spectrum and a

poor likelihood is returned, leading to artificial truncation of the contours,

particularly for Ωbh2 and ns.

From Figure 2.1 it is clear that some tension exists between parameters

5https://pypi.python.org/pypi/pypico
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Figure 2.1: Contours enclosing 68.3% and 95.5% of MCMC sample points from fits to
the Planck TT spectrum.

Results are shown for 2 ≤ ℓ < 1000, roughly the multipole range accessible
to WMAP, and higher multipoles, 1000 ≤ ℓ ≤ 2508. These constraints are
effectively independent and are in tension, for example Ωch2 differs by 2.5σ.
Results are also shown for the 1000 ≤ ℓ ≤ 2508 fit where the PICO code is
used to estimate the theoretical TT spectra instead of the more accurate CAMB.
Using PICO leads to an artificial truncation of the contours and diminishes
the discrepancy between the high and low multipole fits for some parameters.
We adopt a Gaussian prior of τ = 0.07 ± 0.02.
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inferred from the ℓ < 1000 and ℓ ≥ 1000 Planck TT spectra. Assuming the

two sets of constraints are independent, the values of Ωch2 differ by 2.5σ.

Independence is a valid assumption because even the bins on either side of

the ℓ = 1000 split point are only correlated at the 4% level and the degree of

correlation falls off with increasing bin separation. Taken together the five free

ΛCDM parameters differ by 1.8σ, however it should be noted that Ωch2 plays

a far more significant role in comparisons with low-redshift cosmological

constraints (Section 2.3.3) than, for example, θMC.

For fixed τ we find differences in Ωch2 of 3.0, 2.7, 2.9, and 2.1σ for τ values

of 0.06, 0.07, 0.08 and 0.09, respectively. Constraints on each parameter for

these cases are shown in Figure 2.2. Apart from the expected strong correlation

with As (the TT power spectrum amplitude scales as Ase−2τ) there is relatively

little variation with τ. Note that while increasing τ reduces the tension in

Ωch2, higher values of τ are mildly disfavored by Planck’s own polarization

analysis (Planck Collaboration XIII, 2016).

We investigated the effect of fixing the foreground parameters to the best-

fit values inferred from the fit to the whole Planck multipole range rather

than allowing them to vary separately in the ℓ < 1000 and ℓ ≥ 1000 fits.

This helps break degeneracies between foreground and ΛCDM parameters

and leads to small shifts in ΛCDM parameter agreement, with the tension in

Ωch2 decreasing to 2.3σ for τ = 0.07 ± 0.02, for example. The best-fit χ2 is,

however, worse by 3.1 and 4.8 for the ℓ < 1000 and ℓ ≥ 1000 fits, respectively,

reflecting the fact that the ℓ < 1000 and ℓ ≥ 1000 data mildly prefer different

foreground parameters. Overall the choice of foreground parameters does not
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Figure 2.2: Marginalized confidence ΛCDM parameter constraints from fits to the
ℓ < 1000 and ℓ ≥ 1000 Planck TT spectra.

Here we replace the prior on τ with fixed values of 0.06, 0.07, 0.08, and 0.09,
to more clearly assess the effect τ has on other parameters in these fits. Aside
from the strong correlation with As, which arises because the TT spectrum
amplitude scales as Ase−2τ, dependence on τ is fairly weak. Tension at the
> 2σ level is apparent in Ωch2 and derived parameters, including H0, Ωm,
and σ8.
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significantly impact our conclusions.

2.3.1 Comparing Temperature and Lensing Spectra

Planck Collaboration XIII (2016) found that allowing a non-physical enhance-

ment of the lensing effect in the TT power spectrum, parametrized by the

amplitude parameter AL (Calabrese et al., 2008), was effective at relieving

the tension between the low and high multipole Planck TT constraints. For

the range of scales covered by Planck, the main effect of increasing AL is to

slightly smooth out the acoustic peaks. If ΛCDM parameters are fixed, a 20%

change in AL suppresses the fourth and higher peaks by around 0.5% and

raises troughs by around 1%, for example.

In Figure 2.3 we show the effect of fixing AL to values other than the

physical value of unity on the ℓ < 1000 and ℓ ≥ 1000 parameter comparison,

for τ = 0.07 ± 0.02. For AL > 1 the parameters from ℓ ≥ 1000 shift toward the

ℓ < 1000 results, resulting in lower values of Ωch2 and higher values of H0.

Planck Collaboration XIII (2016) found AL = 1.22 ± 0.10 for plik combined

with the low-ℓ Planck joint temperature and polarization likelihood, although

note that this fit was performed using PICO rather than CAMB, which uses a

somewhat different AL definition.

Lensing also induces specific non-Gaussian signatures in CMB maps that

can be used to recover the lensing potential power spectrum (hereafter ‘ϕϕ

spectrum’). Planck XV et al. (2015) report a measurement of the ϕϕ spectrum

using temperature and polarization data with a combined significance of ∼
40σ. The ϕϕ spectrum constrains σ8Ω0.25

m = 0.591 ± 0.021, assuming priors of
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Figure 2.3: Marginalized parameter constraints from fits to TT spectra with different
values of AL

Here are marginalized 68.3% parameter constraints from fits to the ℓ < 1000
and ℓ ≥ 1000 Planck TT spectra with different values of the phenomenological
lensing amplitude parameter, AL, which has a physical value of unity (dashed
line). Increasing AL smooths out the high order acoustic peaks, which im-
proves agreement between the two multipole ranges. Note that a high value
of AL is not favored by the direct measurement of the ϕϕ lensing potential
power spectrum (see text).
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Ωbh2 = 0.0223 ± 0.0009, ns = 0.96 ± 0.02, and 0.4 < H0/100 km s−1 Mpc−1 <

1.0 (Planck XV et al., 2015). We computed constraints on this same parameter

combination from Planck TT data using a τ = 0.07 ± 0.02 prior:

σ8Ω0.25
m = 0.591 ± 0.021 (Planck 2015 ϕϕ),

= 0.583 ± 0.019 (Planck 2015 TT ℓ < 1000),

= 0.662 ± 0.020 (Planck 2015 TT ℓ ≥ 1000).

(2.1)

The ℓ < 1000 and ℓ ≥ 1000 TT values differ by 2.9σ, consistent with the

difference in Ωch2 discussed above. The ℓ ≥ 1000 and ϕϕ values are in tension

at the 2.4σ level (for fixed values of τ in the range 0.06 − 0.09 we find a

2.4 − 2.5σ difference). The ℓ < 1000 TT and ϕϕ values are consistent within

0.3σ.

It is worth noting that while allowing AL > 1 does relieve tension between

the low-ℓ and high-ℓ TT results, it does not alleviate the high-ℓ TT tension with

ϕϕ. For AL = 1.2 (by the CAMB definition) we find σ8Ω0.25
m = 0.612 ± 0.019

from ℓ ≤ 1000, while the ϕϕ spectrum requires σ8Ω0.25
m = 0.541 ± 0.019. This

is because the ϕϕ power roughly scales as AL(σ8Ω0.25
m )2, so, for fixed ϕϕ,

increasing AL by 20% requires a ∼ 10% decrease in σ8Ω0.25
m . As shown in

Figure 2.4, there is no value of AL that produces agreement between these

data.

The ϕϕ spectrum featured prominently in the Planck claim that the true

value of τ is lower than the value inferred by WMAP (Planck Collaboration

XIII, 2016). While a full investigation into τ is deferred to future work we

note here that the effect of the ϕϕ spectrum on τ is completely dependent
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spectrum.

Here shows constraints on σ8Ω0.25
m from fits to the ℓ < 1000 and ℓ ≥ 1000

Planck TT spectra, and to the Planck ϕϕ lensing spectrum. Results are shown
as a function of the phenomenological lensing amplitude parameter AL. The
ϕϕ measurement constrains the product AL(σ8Ω0.25

m )2. A similar trend is
apparent in the ℓ ≥ 1000 constraint, where lensing has a significant effect. For
ℓ < 1000 the lensing effect is small, resulting in almost no dependence on AL.
The ℓ < 1000 and ϕϕ constraints agree well for the physical value of AL = 1
(dashed line). Increasing AL helps reconcile the low-ℓ and high-ℓ constraints
but does not improve agreement between the high-ℓ and ϕϕ constraints.
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on the choice of temperature and polarization data. The shift to lower τ in

the joint Planck 2015 TT-ϕϕ fit is partly a reflection of the tension discussed

above. Adding the Planck ϕϕ spectrum to the WMAP9 data, in contrast, leads

to no measurable shift in τ at all, reflecting the fact that the ϕϕ spectrum and

WMAP temperature and polarization data (with τ = 0.089 ± 0.014) are in

excellent agreement. Figure 2.5 shows that, while some parameter constraints

are tightened by a factor of two over WMAP alone, the mean values shift by

< 0.25σ.

2.3.2 Comparison With SPT

Planck Collaboration XVI (2014) reported moderate to strong tension between

cosmological parameters from the SPT TT spectrum, derived from mapping

over 2500 square degrees of the sky and covering 650 ≤ ℓ ≤ 3000 (Story et al.,

2013), and the Planck TT spectrum. Planck Collaboration XIII (2016) comment

that this tension has worsened for the Planck 2015 data. A detailed comparison

of these data sets is beyond the scope of this work, however we note that

when we recalibrate the public SPT spectrum to the full-sky Planck 2015

spectrum following the method described by Story et al. (2013), using data

from 650 ≤ ℓ ≤ 1000 and correcting for foregrounds, we recover the original

SPT calibration to WMAP within 0.3σ. For the 143 GHz Planck spectrum, most

directly comparable to the 150 GHz SPT channel, the agreement is better than

0.1σ. The disagreement between SPT and Planck therefore cannot be resolved

by simply calibrating SPT to Planck rather than WMAP in this manner. We note

that the high-multipole ACT TT measurements are consistent with WMAP
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and SPT, as well as Planck 2013 if a recalibration is allowed (Calabrese et al.,

2013; Louis et al., 2014), and so do not currently help our understanding of

these tensions. More precise upcoming measurements from ACTPol will be

useful for future comparisons.

2.3.3 Comparison With BAO and Local H0 Measurements

Figure 2.6 shows a comparison of CMB ΛCDM constraints with the 1% BAO

scale measurement from the Baryon Oscillation Spectroscopic Survey (BOSS)

‘CMASS’ galaxy sample at an effective z = 0.57 (Anderson et al., 2014) and

the most precise local distance ladder constraint on the Hubble constant,

H0 = 73.0 ± 2.4 km s−1 Mpc−1 (Riess et al., 2011; Bennett et al., 2014). The

BAO scale is parametrized as the ratio of the combined radial and transverse

dilation scale, DV (Eisenstein et al., 2005), to the sound horizon at the drag

epoch, rd, which has a fiducial value rd,fid = 149.28 Mpc (Anderson et al.,

2014).

The BOSS BAO DV/rd constraint is at the higher end of the range preferred

by WMAP and Planck ℓ < 1000, though consistent within 1σ. The Planck

ℓ ≥ 1000 data predict higher values of DV/rd, and lower values of H0, than

the BOSS BAO and distance ladder measurements at the 2.5σ and 3.0σ level,

respectively, for τ = 0.07 ± 0.02. The difference between the Planck high-

multipole constraint and the Riess et al. H0 constraint is extremely unlikely to

be explained by statistical fluctuation alone. The SPT-only values provided by

Story et al. (2013)6 are also shown. The SPT predictions for DV/rd and H0 are

6http://pole.uchicago.edu/public/data/story12/chains/
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discrepant with those from Planck ℓ ≥ 1000 at the 2.6σ and 2.7σ levels. Note

that SPT used a WMAP-based τ prior but that τ couples very weakly to the

inferred BAO scale.

The consistency between the Planck and BAO constraints has been repeat-

edly highlighted (Planck Collaboration XVI, 2014; Planck Collaboration XIII,

2016). We find that this agreement arises more in spite of than because of the

high-multipole TT spectrum that WMAP did not measure. Figure 2.7 shows

constraints in the Ωm − H0 plane from combining BOSS CMASS with the

BOSS ‘LOWZ’ sample (Anderson et al., 2014), Sloan Digital Sky Survey Main

Galaxy Sample (Ross et al., 2015, SDSS MGS), and Six-degree-Field Galaxy

Survey (Beutler et al., 2011, 6dFGS) measurements. This is the same combina-

tion utilized in the Planck 2015 cosmological analysis. The BAO contours are

plotted assuming Ωbh2 = 0.02223, although the exact choice has little effect

(Addison, Hinshaw, and Halpern, 2013; Bennett et al., 2014). CMB constraints

are plotted for comparison. The > 2σ tension between the Planck ℓ ≥ 1000

and BOSS BAO constraints persists with the full BAO dataset.

Bennett et al. (2014) combined WMAP9, ACT, SPT, BAO, and distance

ladder measurements and found that these measurements are consistent and

together constrain H0 = 69.6 ± 0.7 km s−1 Mpc−1. This concordance value

differs from the Planck ℓ ≥ 1000 constraint of 64.1 ± 1.7 km s−1 Mpc−1 at 3.1σ

but agrees well with the Planck ℓ < 1000 constraint of 69.7± 1.7 km s−1 Mpc−1.
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Figure 2.6: BAO scale and local distance ladder H0 measurement from different data
sets

Here are BOSS BAO scale and local distance ladder H0 measurements (Riess et
al., 2011; Anderson et al., 2014; Bennett et al., 2014) with ΛCDM CMB 68.3 and
94.5% confidence contours overplotted. The Planck ℓ ≥ 1000 constraints are
discrepant with the BAO and distance ladder measurements at the 2.5σ and
3.0σ levels, respectively, while the WMAP9 and Planck ℓ < 1000 constraints
are consistent with both within 1σ. Constraints from SPT (covering 650 ≤
ℓ ≤ 3000) are also shown. Planck and SPT currently provide the most precise
measurements of the CMB damping tail and their predictions for the z = 0.57
BAO scale and H0 differ at the 2.6σ and 2.7σ level.
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Figure 2.7: Comparison of CMB, BAO, and distance ladder constraints in the Ωm − H0
plane

We show here the BAO constraints from combining the BOSS CMASS, BOSS
LOWZ, SDSS MGS, and 6dFGRS measurements, assuming Ωbh2 = 0.0223 (see
text). The tension between Planck ℓ ≥ 1000 and BOSS CMASS BAO (Fig. 6)
persists when comparing to the joint BAO constraint.
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2.3.4 Choice of Multipole Split

The choice of ℓ = 1000 as the split point for parameter comparisons matches

the tests described by Planck Collaboration XI (2016) and roughly corresponds

to the maximum multipoles accessible to WMAP, but the exact choice is

arbitrary. To test the robustness of our findings we also considered the effect

of splitting the Planck TT spectrum at ℓ = 800. This choice achieves an almost-

even division of the Planck TT spectrum constraining power as assessed by

the determinants of the ΛCDM parameter covariance matrices from fits to

2 ≤ ℓ ≤ 799 and 800 ≤ ℓ ≤ 2508, which differ by only a few per cent.

Adding the 800 ≤ ℓ < 1000 range, including the third acoustic peak, to

the high-multipole Planck fit has a significant effect on several parameters,

including ns and Ωbh2, tightening constraints on these parameters by factors

of four and two, respectively. Conversely, the uncertainty on θMC is increased

by 50% for ℓ ≤ 800 compared to ℓ ≤ 1000. Despite these changes, the

tensions discussed above for a split at ℓ = 1000 remain for a split at ℓ = 800,

with the 2.5σ tension in Ωch2 for the ℓ = 1000 split shifting to 2.7σ for the

ℓ = 800 case (assuming a τ = 0.07 ± 0.02 prior). From ℓ ≥ 800 we find

σ8Ω0.25
m = 0.657 ± 0.018, which is higher than the Planck ϕϕ constraint in

equation (1) by 2.4σ, the same difference as for ℓ ≥ 1000. We conclude that

the particular choice of ℓ = 1000 is not driving our results.

42



2.4 Discussion

We have found multiple similar tensions at the > 2σ level between the Planck

2015 high-multipole TT power spectrum and a range of other measurements.

In general such tensions could be due to: (i) statistical fluctuations, (ii) an

incorrect cosmological model, or (iii) systematic errors or underestimation of

statistical errors in the Planck spectrum. A combination of these factors is also

possible.

If the tensions were largely due to an unlikely statistical fluctuation, our re-

sults suggest that it is parameters from the high-multipole Planck TT spectrum

that have scattered unusually far from the underlying values, on the basis

that the low-multipole Planck TT, WMAP, Planck ϕϕ, BAO and distance ladder

H0 measurements are all in reasonable agreement with one another (see also

Bennett et al., 2014). One might argue that the ℓ < 1000 WMAP and Planck

constraints are pulled away from the true values by the multipoles at ℓ < 30.

However, all parameter constraints we have quoted include cosmic variance

uncertainty and thus account for this possibility (assuming Gaussian fluctua-

tions). Furthermore, an unusual statistical fluctuation in the ℓ < 1000 values

cannot explain the disagreement between the Planck ℓ ≥ 1000 constraints and

SPT, Planck ϕϕ, BAO, and the distance ladder measurements.

Cosmology beyond standard ΛCDM cannot be ruled out as the dominant

cause of tension. We do not favor this explanation because, firstly, none of

the physically motivated modifications investigated by Planck Collaboration

XIII (2016) were found to be significantly preferred in fits to the full Planck TT

spectrum, and, secondly, the most precise measurements of the CMB damping
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tail, from Planck and SPT, disagree, as discussed in Sections 2.3.2 and 2.3.3.

From 2013 to 2015 the Planck results were revised due to several significant

systematic effects. Without more detailed reanalysis of the Planck 2015 data

we are not in a position to comment on remaining sources of systematic error

in the Planck high-multipole spectrum. We do note that the TT covariance

matrices described in Planck Collaboration XIII (2016) were calculated analyti-

cally assuming that sky components are Gaussian. Both foregrounds and the

primary CMB have known non-Gaussian characteristics (in the latter case due

to lensing, see, e.g., Benoit-Lévy, Smith, and Hu, 2012) that would result in

this approximation underestimating the true TT spectrum uncertainties, par-

ticularly at high multipoles where the foreground power becomes comparable

to the CMB signal and the lensing effect is most important.

Finally, we emphasize that, irrespective of what is responsible for these

tensions, care must clearly be taken when interpreting joint fits including the

full range of Planck multipoles, particularly given Planck’s high precision and

ability to statistically dominate other measurements, regardless of accuracy.

2.5 Conclusions

We have discussed tensions between the Planck 2015 high-multipole TT spec-

trum (ℓ ≥ 1000, roughly the scales inaccessible to WMAP) and the cosmologi-

cal measurements:

• the Planck 2015 TT spectrum at ℓ < 1000, which prefers a value of Ωch2

2.5σ lower than the high-multipole fit,
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• the Planck 2015 ϕϕ lensing power spectrum, which has an amplitude

(parametrized by σ8Ω0.25
m ) 2.4σ lower than predicted from the ℓ ≥ 1000

TT spectrum,

• the SPT TT spectrum, covering 650 ≤ ℓ ≤ 3000, which predicts, for

example, a Hubble constant 2.7σ higher than Planck ℓ ≥ 1000,

• the most precise measurement of the BAO scale, from the BOSS CMASS

galaxy sample at effective redshift z = 0.57, which disagrees at the 2.5σ

level, and

• the most precise local distance ladder determination of H0, which is in

tension at the 3.0σ level.

These differences are quoted assuming τ = 0.07 ± 0.02. We found that some

tensions are reduced by allowing larger values of τ but note that this would

introduce new tension with Planck polarization data. Definitive conclusions

about τ will require a more detailed understanding of low-ℓ foreground

contamination. The Cosmology Large Angular Scale Surveyor (CLASS) is

expected to provide a cosmic variance limited measurement of τ (class:2014;

Watts et al., 2015).

Given these results and the previously reported tensions with some weak

lensing and cluster abundance data, we suggest that the parameter constraints

from the high-multipole Planck data appear anomalous due to either an un-

likely statistical fluctuation, remaining systematic errors, or both. Understand-

ing the origin of these discrepancies is important given the role Planck data
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might play in future cosmological advances.
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Chapter 3

Assessing Consistency Between
WMAP 9-year and Planck 2015
Temperature Power Spectra

This chapter is taken from Huang et al. 2018 (APJ 869, 38, p. 38), where we

perform a comparison of WMAP 9-year (WMAP9) and Planck 2015 cosmic

microwave background (CMB) temperature power spectra across multipoles

30 ≤ ℓ ≤ 1200. We generate simulations to estimate the correlation between

the two datasets due to cosmic variance from observing the same sky. We

find that their spectra are consistent within 1σ. We also show that changing

the fiducial power spectrum for simulations only impacts the comparison

at around 0.1σ level. The consistency shown in our analysis provides high

confidence in both the WMAP9 temperature power spectrum and the overlap-

ping multipole region of Planck 2015’s, virtually independent of any assumed

cosmological model. Our results indicate that cosmological model differences

between Planck and WMAP do not arise from measurement differences, but

from the high multipoles not measured by WMAP.
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3.1 Introduction

Observations of CMB temperature anisotropy and its power spectrum (here-

after TT spectrum) have provided great insight into early universe physics and

enabled precise constraints on cosmological parameters, within the context

of the Λ cold dark matter (ΛCDM) model (e.g., Bennett et al., 2013; Planck

Collaboration, 2016c; Sievers et al., 2013; Story et al., 2013). The importance of

the determination of cosmological parameters goes beyond studies involving

the CMB. The choice of which CMB data set to use can meaningfully impact

results from dark matter or hydrodynamic simulations, with implications for

constraints on neutrino mass and alternative gravity models (e.g., Hojjati et al.,

2015; McCarthy et al., 2018; Planck Collaboration, 2016d).

In recent years, tensions have been shown to exist between CMB and sev-

eral low-redshift, late time observations as well as within CMB measurements.

For example, the most recent constraint on the Hubble constant, H0, from Riess

et al., 2018 yielded a value 3.7σ higher than that from Planck 2015 (Planck Col-

laboration, 2016e). Moreover, a 2 − 3σ difference was shown between Planck

2015 and measurements of weak gravitational lensing (e.g., Joudaki et al., 2018;

Köhlinger et al., 2017), concerning the parameter combination S8
1, which de-

scribes the growth of cosmic structure. In addition, a 2.5σ discordance has

been reported between the Planck 2015 ℓ < 1000 and 1000 ≤ ℓ ≤ 2508 data

in Ωch2, the cold dark matter density, which is a parameter highly correlated

with those constrained by low-redshift measurement (Addison et al., 2016).

1S8 ≡ σ8(Ωm/0.3)0.5, where σ8 is the present day amplitude of the matter fluctuation
spectrum and Ωm is the present day matter density in units of the critical density.
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However, using simulated Planck-like TT power spectra, Planck Collabora-

tion, 2017 argued that these ℓ-range related shifts in parameters were not

statistically significant across the full ΛCDM model space.

Given the importance of CMB constraints for current and future cosmology,

and the existing tensions, it is crucial that CMB measurements are scrutinized.

The two latest full-sky CMB surveys, WMAP (Bennett et al., 2013) and Planck

(Planck Collaboration, 2016a), provide a valuable opportunity for consistency

checks.

The difference between the Planck 2015 and WMAP9 spectra is within the

WMAP9 uncertainties (Planck Collaboration, 2016b), and the value of each of

the ΛCDM parameters is consistent within 1.5 times the WMAP9 uncertainty

(Planck Collaboration, 2016a). However, we should note that the correlation

between the two experiments is not negligible as they measure the same

sky. Between the WMAP9 and the Planck 2013 release (Planck Collaboration,

2014b), Larson et al., 2015 found a ∼ 6σ parameter difference, with a minimal

ΛCDM model assumed and the correlation between the two experiments ac-

counted for. The Planck calibration was significantly revised in the 2015 release

(Planck Collaboration, 2016), and this motivates revisiting the comparison

with WMAP.

This chapter therefore investigates consistency between WMAP9 and

Planck 2015 TT spectra and estimates their correlation using simulations. We

examine the multipole range common to both experiments where power-

spectrum based likelihoods are employed (30 ≤ ℓ ≤ 1200). Only when their

correlation is quantified, can we quantify their agreement/disagreement in a
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meaningful sense. Unlike comparisons of parameters, comparisons of power

spectra are minimally dependent on the assumed model. We will show in

Section 3.4 that the choice of fiducial model used to generate simulated spectra

and estimate covariance between WMAP9 and Planck 2015 has a negligible ef-

fect on our results. Thus discrepancies that appear between the power spectra

would be an indication of experimental systematic errors, instead of evidence

for physics beyond the standard model of cosmology.

We exclude the ℓ < 30 region of the TT spectra from our analysis. Compar-

ison of ℓ < 30 spectra is complicated by the fact that the Planck 2015 results

included WMAP9 data in a multifrequency fit. A different (pixel-based) like-

lihood and treatment of foregrounds is also required for these scales. The

Planck 2015 and WMAP9 results for ℓ < 30 are shown in Figure 2 of Planck

Collaboration, 2016b and agree within a small fraction of the uncertainty for

most of the multipoles. Differences due to imperfect noise or foreground

modeling, or some other systematic error, could still exist. Given the size of

the cosmic variance uncertainty at ℓ < 30, however, it seems highly unlikely

that they could meaningfully impact cosmological results.

Following the completion of this work, the Planck team has released their

latest results (Planck Collaboration, 2018a). The 2015 and 2018 Planck TT spec-

tra are in good agreement, as described in Section 3.6 of Planck Collaboration,

2018b. We therefore expect the level of consistency between WMAP9 and

Planck 2018 to remain the same.

The outline of this paper is as follows. We describe our simulation pro-

cedures in Section 3.2 and test simulation fidelity in Section 3. We present
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results in Section 3.4, followed by conclusions in Section 3.5.

3.2 Simulating TT Spectra and Covariance

Our goal is to quantify the consistency between the TT power spectra observed

by WMAP9 and Planck 2015. Both teams provide estimates of their experi-

ment’s power spectrum Cℓ − Cℓ′ covariance matrices, however we also need

the WMAP9 × Planck 2015 cross-covariance due to common cosmic variance.

To estimate this we generated 4000 full-sky simulations of CMB temperature

fluctuations. The outline of the simulation procedure is as follows.

1. Generate a set of spherical harmonic coefficients aℓm using the sph-

tfunc.synalm routine in Healpy2 from a fiducial TT power spectrum

chosen to be the best-fit model from the ℓ ≥ 30 WMAP9 TT spectrum.

See Table 3.1 for the cosmological parameters in this model. Unless

otherwise noted, results shown come from this fiducial model. Table 3.1

also includes an alternative model, which is one from the ℓ ≥ 30 Planck

2015 TT spectrum. We will use the alternative model to test the stability

of our results against different input, see Section 3.2.3 and Section 3.4.

We also note that this is the only place where an assumed cosmological

model comes in.

2. Multiply the aℓm coefficients with the appropriate beam and pixel func-

tions, then convert them into a CMB map using the sphtfunc.alm2map

routine in Healpy.
2A Python implementation of Healpix (Górski et al., 2005), see https://healpy.

readthedocs.io/en/latest/.
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Parameter WMAP9 TT Planck 2015 TT

Fit ΛCDM parameters

Ωbh2 0.02230 0.02215

Ωch2 0.1158 0.1215

100θMC 1.0393 1.0405

τ 0.07 0.07

log As 3.059 3.078

ns 0.9615 0.9595

Derived parameters

H0[km s−1Mpc−1] 68.24 66.52

Ωm 0.2981 0.3261

σ8 0.8007 0.8288

Table 3.1: Fiducial models
Here are the cosmological parameters describing the fiducial models used in our
simulations. The second column shows the best-fit model from the 30 ≤ ℓ ≤ 1200
WMAP9 TT spectrum and the third that of the 30 ≤ ℓ ≤ 2508 Planck 2015 spectrum.
They are both results of running the best-fit finding algorithm in CosmoMC (Lewis
and Bridle, 2002) with τ fixed to be 0.07, together with the PICO code (Fendt and
Wandelt, 2007), which computes CMB power spectra given the model.
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3. Add to the map white noise with variance given by the experiments.

4. Apply sky masks and compute the TT spectrum from the masked maps

using PolSpice3 (Szapudi et al., 2001).

5. Compute analytically the power spectrum covariance (hereafter referred

to as the analytic covariance), following the prescriptions given by Ap-

pendix C1.1.1 of Planck Collaboration, 2016b. The analytic calculations

take into account the effects of masking, beam and pixel window func-

tions, and the instrumental noise (Efstathiou, 2004). We will refer to this

approach as “MASTER" (Hivon et al., 2002) to distinguish it from the

alternative “C−1" method used for WMAP9 (see Section 3.2.1).

6. Calculate the sample covariance of the simulated spectra (hereafter the

simulated covariance).

7. To reduce the random fluctuations in the simulated covariance and

the bias to its inverse matrix due to the finite number of simulations

(Sellentin and Heavens, 2016), we apply the same binning scheme to the

simulated spectra and covariance matrices (both the analytic and the

simulated) as was applied in the published Planck 2015 likelihood code4.

The number of bins that cover 30 ≤ ℓ ≤ 1200 is 136.

8. Calibrate the analytic covariance using the simulations, as described

in Section 3.2.3. The calibrated matrix is referred to as the corrected

analytic covariance, which we will be using for our final analysis. The

3http://www2.iap.fr/users/hivon/software/PolSpice/
4http://pla.esac.esa.int/pla/#cosmology
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Figure 3.1: Temperature analysis mask

Left: the KQ85y9 temperature analysis mask used in the WMAP9 analysis
(Bennett et al., 2013); right: the Planck 2015 T66 mask for 100 GHz (Planck
Collaboration, 2016b). As shown, not all the areas chosen to be masked are
the same. The unmasked fraction of the sky is 75% for WMAP9 and 66% for
Planck 100 GHz. While the WMAP9 mask only has weights of 0 and 1, the
Planck mask is apodized, with weights in between. The difference between
WMAP9 and Planck 2015 sky masks is the reason that the WMAP9 and the
Planck 2015 spectra are not fully correlated even at ℓ ≤ 300, where noise is
negligible compared to cosmic variance uncertainty. See Section 3.2.3.

analytic covariance matrix underestimates the true covariance by up to

10% for some multipoles (see Section 3.6), and the simulations are used

to correct for this.

9. With the binned corrected analytic covariance, we follow procedures de-

scribed in Section 3.4 to derive the covariance of the difference between

the observed WMAP9 and Planck 2015 TT spectra and test whether this

difference is consistent with zero.

More details of the procedure are provided in the following subsections.
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3.2.1 Simulating WMAP9 Spectra

The WMAP instrument was composed of 10 differencing assemblies (DAs)

spanning five frequencies from 23 to 94 GHz (Bennett et al., 2003). The three

lowest frequency bands are used as foreground monitors. Only the V band (∼
61 GHz) and the W band (∼ 94 GHz) are used to compute the TT spectrum

(Hinshaw et al., 2007). The beam widths for the V and the W band are 0.33◦

and 0.21◦ FWHM respectively. In the WMAP analysis, the aℓm coefficients

were computed from the Healpix Nside = 1024 (10 arcmin pixels) maps for

each single year and each single-DA (V1, V2, W1-W4). For low multipoles

(2 ≤ ℓ < 30) a pixel-based likelihood was used, while a power spectrum

based likelihood was used for 30 ≤ ℓ ≤ 1200. Until the nine-year release of

WMAP data, for ℓ ≤ 600 the coefficients were evaluated with uniform pixel

weighting, which is optimal in the signal-dominated region, while inverse-

noise weighting, optimal in the noise-dominated region, was used for ℓ > 600

(Larson et al., 2011). The TT cross-power spectra are computed from all

the pairs of independent maps. For WMAP95, a different power spectrum

estimator, the C−1 method, was used (Bennett et al., 2013). However, it

would be computationally challenging to implement C−1 on all our 4000

simulations. We will show in Section 3.4 that our results should not be affected

significantly by the change of Cℓ estimator. The WMAP9 analysis also took

into account the uncertainties from the beam functions and point sources, but

we exclude these because their effect is small (contributing about 0.06% of

the ℓ > 30 temperature log-likelihood) and is not expected to correlate with

5For the WMAP9 likelihood code, see https://lambda.gsfc.nasa.gov/product/map/
current/likelihood_get.cfm.
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Planck uncertainties.

Using the best-fit power spectrum of WMAP9 TT data with the reionization

optical depth τ fixed to be 0.07 (see Table 3.1 for the model parameters), we

generate 4000 realizations. At 30 ≤ ℓ ≤ 1200, τ is strongly degenerate with As,

the amplitude of primordial density fluctuations, as the TT spectrum is only

sensitive to the parameter combination Ase−2τ. Fixing τ breaks the degeneracy,

and the value 0.07 is also consistent with those inferred by WMAP9 and Planck

2015 data, being within 1.5σ of their constraints (see Table 1 of Weiland et al.,

2018, for recently published values of τ from different choices of data sets).

To simulate the maps observed by each DA, we multiply the simulated

spherical harmonics with the WMAP9 beam window function for that DA

and add Gaussian noise. We make one noise map for each DA by inverting

the sum of inverse variances from maps in different years. Then we apply

the KQ85y9 temperature analysis mask (Bennett et al., 2013), which masks

both galactic emission and bright point sources, leaving 75% of the sky to be

analyzed, see Figure 3.1. Next we compute cross spectra for the six realistic

maps with the appropriate pixel weighting applied to their corresponding

range of multipoles.

3.2.2 Simulating Planck 2015 Spectra

The Planck instrument consists of seventy-four detectors in nine frequency

bands between 30 and 857 GHz (Planck Collaboration, 2014a). Similarly to

WMAP9, a pixel-based likelihood is used at 2 ≤ ℓ < 30, and a power spectrum

based likelihood is used for 30 ≤ ℓ ≤ 2508. For ℓ ≥ 30, TT spectra are
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Figure 3.2: χ2 distribution of binned spectra of WMAP9 and Planck 2015

Here shows the χ2 distribution of 4000 simulated binned spectra of WMAP9
and Planck 2015, using different versions of binned covariance matrices. The
analytic covariance (green) produces a χ2 higher than expected, consistent
with the fact that it underestimates the true covariance of the simulated spectra
(see text and Section 3.6). The simulated covariance (blue) leads to a slightly
narrower histogram, as the finite number of simulations introduces a slight
bias into the inverse simulated covariance. The corrected analytic covariance
(black) recovers the expected χ2 probability density function (PDF), with 272
degrees of freedom (DOF). This indicates that the binned power spectrum is
well approximated by a Gaussian distribution with the mean and the covari-
ance matching the fiducial spectrum and the corrected analytic covariance
matrix, respectively. Thus, for the subsequent analysis, we use the corrected
analytic covariance matrix.
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computed as cross-spectra between the first half-mission and the second half-

mission maps of different detector combinations, in three frequency channels:

100 GHz, 143 GHz and 217 GHz. Their effective beam FWHM in arcmin

are 9.68, 7.30 and 5.02 respectively (Planck Collaboration, 2016b). Different

masks are applied to the half-mission maps for each frequency. The masks

applied are T66, T57 and T47 for 100 GHz, 143 GHz and 217 GHz, respectively.

See Figure 3.1 for the T66 mask of the 100 GHz temperature maps. The final

power spectrum is an optimal combination of the 100×100 GHz, 143×143

GHz, 217×217 GHz and 143×217 GHz spectra.

The procedure of simulating Planck 2015 spectra is very similar to that of

WMAP9, except we make use of the published Planck 2015 half-mission noise

maps and simulate six CMB signal maps for the three frequencies mentioned

above and their two half-missions. We include the effect of the published

beam window functions and work at Nside = 2048, corresponding to 5 arcmin

pixels. We ignore the noise correlation between pixels (Planck Collaboration,

2016b), since the Planck and WMAP noise are independent and only enter the

WMAP9 × Planck 2015 covariance matrix indirectly through the weighting of

power spectra. Then we apply the masks for each frequency and obtain the

cross spectra up to ℓ = 1200 for the same four frequency combinations used

in the experiment. We do not include Planck foregrounds in the simulations

because the dominant Galactic and extragalactic dust foregrounds in the Planck

channels are far smaller at the lower WMAP frequencies. We therefore do

not expect foreground uncertainties to contribute significantly to the WMAP-

Planck correlation.
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Figure 3.3: Correlation between WMAP9 (W) and Planck 2015 (P) binned TT power
spectra

The correlation between WMAP9 (W) and Planck 2015 (P) binned TT power
spectra, defined as the ratio of the diagonal elements of the corrected analytic
covariance between the combined spectra, to the square root of the product of
the experimental variances. The axis on the top shows the center multipole
of each bin. The spiky structure in the first 80 bins is due to calibrating the
analytic covariance using the simulations, which introduces small random
fluctuations. Left: Comparison of the correlation between WMAP9 and dif-
ferent Planck 2015 frequency channels, with the WMAP9 best-fit spectrum as
the fiducial spectrum. The WMAP mask uses 75% of the sky while the sky
fractions of the masks for Planck 100, 143, and 217 GHz are 66%, 57%, and
47%, respectively. The correlation falls off at smaller scales as WMAP variance
becomes dominated by noise. Planck masks with lower sky fraction produce
lower correlation with WMAP9. Right: We also compare the correlation be-
tween the combined spectra using different fiducial models for simulations,
the best-fit spectrum from WMAP9 ℓ ≥ 30 data, and Planck 2015 ℓ ≥ 30. In
Section 3.4, we show that the choice of fiducial spectra makes a negligible
difference.
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3.2.3 Calculating Power Spectrum Covariance

We follow the procedure in Appendix C.1.1 of Planck Collaboration, 2016b

applying the MASTER method (Efstathiou, 2004) to derive a full, analytic

covariance for both experiments accounting for the effect of noise, window

functions, masks and different map weighting schemes. The main idea of the

procedure is that first we calculate the power spectrum of a masked map, then

we perform mask deconvolution to recover an unbiased estimate of the true

underlying spectrum. Next we bin both the simulated spectra and analytic

covariance matrices, using the binning matrix B provided by the Planck 2015

likelihood code. The binned spectra and covariance are obtained from the

following expressions:

Cb = ∑
ℓ

BbℓCℓ, (3.1)

ΣXY,bb′ = ∑
ℓ,ℓ′

BbℓΣXY,ℓℓ′BT
ℓ′b′ (3.2)

where b runs over 136 bins and Σ is a covariance matrix. The subscripts X

and Y are either W or P, referring to WMAP9 and Planck 2015 respectively.

The measured/simulated Cℓs are only approximately χ2 distributed due to

masking. With the large number of modes being combined into each bin, the

Cbs can be well approximated as Gaussian (Planck Collaboration, 2016b).

We then co-add the spectra based on their inverse covariance to obtain

one combined spectrum for WMAP9 and one for Planck 2015, as well as the

covariance matrices for the combined spectra, following the steps in Appendix

C of Hinshaw et al., 2003 and in Appendix C.4 of Planck Collaboration, 2016b
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respectively.

As noted in Planck Collaboration, 2016b, the analytic covariance, though

not subject to random fluctuations in the simulations, does not fully capture

the covariance of the simulated power spectra. We believe the disagreement

arises from an assumption made in the analytic calculation that there is negli-

gible variation over a small range of multipoles in the power spectrum. This

leads to underestimation around ∼ 10% for signal dominated regions (see Sec-

tion 3.6). To correct for such discrepancies, first we break down the covariance

matrix Σ into 4 sub-blocks as

Σ =

(︃
ΣWW ΣWP
ΣPW ΣPP

)︃
(3.3)

where each term is a 136×136 matrix, and 136 is the number of bins for

30 ≤ ℓ ≤ 1200. The elements ΣANA
XY,ij in each sub-block of the analytic matrix

are rescaled by the factor r2
i = ΣSIM

XY,ii/ΣANA
XY,ii which compares the simulated

diagonal elements of one sub-block to the analytic. Then we rescale all the

elements so that ΣANA,corrected
XY,ij = ΣANA

XY,ijrirj. For the WMAP-Planck analytic

covariance, the correction is applied only to the first 80 of 136 bins. For bin

numbers over 80, the scatter in the simulated covariance due to the WMAP

noise is much larger in magnitude than the analytic estimation.

Figure 3.2 shows the χ2 distribution of 4000 simulated, binned and com-

bined spectra of WMAP9 and Planck 2015, with 272 degrees of freedom. Here

χ2 is defined as

χ2 =
272

∑
b,b′=1

(ĈSIM
b − Cfid

b )(Σ−1)bb′(Ĉ
SIM
b′ − Cfid

b′ ) (3.4)
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where Cfid consists of two copies of the binned fiducial spectra and ĈSIM
=

(ĈSIM
W , ĈSIM

P ) contains the simulated WMAP and Planck spectra. The different

lines in Figure 3.2 show results with different choices of Σ: the simulated, the

analytic, or the analytic with corrections. For the subsequent analysis, we use

the corrected analytic covariance matrix.

We show in Figure 3.3 the correlation between WMAP9 and Planck 2015 TT

spectra, defined as the ratio of the diagonal elements of covariance between the

two experiments, based on analytic calculation and calibrated by simulations,

to the square root of the product of the experimental variances of WMAP9 and

Planck 2015. The correlation falls from 0.8-0.9 at low multipoles, where both

experiments are cosmic variance limited, to close to zero at higher multipoles,

whereWMAP variance is increasingly dominated by noise. The right panel

of the figure shows that the correlation depends very weakly on the chosen

fiducial spectrum.

3.3 Comparing Simulations to Experiments

To test whether our simulations capture experimental properties, we com-

pare the corrected analytic variance of simulated power spectra to the ones

published by the WMAP and Planck teams. Since we are only using the sim-

ulations and analytic calculations to estimate the cross-covariance between

WMAP and Planck, the exact agreement for the W × W and the P × P covari-

ance is not required. For WMAP9, the variance provided by the published

likelihood code depends on the choice of the theory spectrum. We choose

to use the best-fit power spectrum of WMAP9 TT data with a fixed τ, so as
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Figure 3.4: Ratio of the corrected analytic binned TT variance to the experimental
variance

Here shows ratio of the corrected analytic binned TT variance to the exper-
imental variance for Planck 2015 (top) and WMAP7 (bottom). We show the
WMAP7 ratio instead of WMAP9 because both our simulations and WMAP7
use the MASTER power spectrum estimator, while WMAP9 uses the C−1

estimator. The deviations from unity are due to differences between our simu-
lations and the analysis process of the experiments. The simulated WMAP-
WMAP and Planck-Planck covariances are not used in our final consistency test.
See text and Section 3.4 for discussion of implications for the WMAP-Planck
covariance.
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to be consistent with our simulations. On the other hand, the Planck 2015

published variance is based on a fixed fiducial spectrum fit to ℓ ≥ 30 with

τ = 0.07± 0.02 (Section 3.3 of Planck Collaboration, 2016b). We therefore used

our simulations generated with the Planck ℓ ≥ 30 best-fit model with τ = 0.07

as input when comparing to the published variance. As mentioned earlier, the

exact choice of τ is not important for 30 ≤ ℓ ≤ 1200.

For Planck 2015, the variance used as reference is a binned matrix obtained

from co-adding the covariance of different cross spectra provided by the Planck

2015 released likelihood code, following procedures similar to co-adding the

spectra, as mentioned in Section 3.2.3. The simulated/experimental (S/E)

ratio, shown in the top panel of Figure 3.4, is on average slightly below 1.

We believe this is due the fact that our simulations do not exactly replicate

the Planck 2015 analysis process. We investigate the potential effect of this

underestimation on the WMAP-Planck covariance in Section 3.4.

For WMAP9 the situation is more complicated. In the analysis of the nine-

year data, the WMAP team replaced the MASTER power spectrum estimator

by an optimal C−1 estimator. This estimator uses all the two-point correlation

information in the unmasked pixels in the map, or, equivalently, the full covari-

ance structure in the harmonics of the masked map, ãℓm. Pseudo-Cℓ methods

like MASTER provide an unbiased estimate for the underlying power spec-

trum but only utilize products of ãℓm for the same ℓ and m (see Section 3.6),

causing some loss of information (e.g., Gruetjen and Shellard, 2014). The pub-

lished WMAP9 likelihood package does not include results analyzed using the

MASTER method, so we generate another set of 4000 simulations with WMAP
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seven-year (WMAP7) data properties and compare their spectrum variance

to the result from inverting the Fisher matrix in the WMAP7 likelihood code.

The bottom panel of Figure 3.4 shows the S/E ratio for WMAP7. Numerical

differences exist between our analytic calculation using the MASTER method

and the approximation used for the WMAP7 Fisher matrix, causing deviations

from unity in the S/E ratio. This difference is unlikely to have any significant

effect on our final results, because it is smaller than the difference between

using the MASTER method and using the C−1 method and even that does not

change our conclusion, as discussed below.

Going from MASTER method to C−1 reduces the power spectrum variance

by 7-17% as shown in Figure 31 of Bennett et al., 2013. This means our

simulations with MASTER overestimate the experimental variance of WMAP9.

Fortunately, this should not impact the WMAP-Planck covariance, which is

what we are using the simulations to obtain, because the Planck analysis used

MASTER. The additional information about the Cℓs gained from applying the

C−1 estimator to WMAP maps is therefore not present in the Planck 2015 power

spectra and should not lead to a reduction of the WMAP-Planck covariance.

In Section 3.4 we test this argument by investigating the effect of different

pixel weightings of the WMAP9 temperature maps on the WMAP-Planck

covariance. The different weighting schemes represent more extreme changes

in the WMAP9 TT uncertainties than changing from MASTER to C−1, but do

not lead to changes to our conclusion about the consistency of the experiments.
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Cfid
ℓ WMAP9 Pixel Weighting χ2

diff PTE

WMAP9 Hybrid 141.8 0.35

Planck 2015 Hybrid 139.6 0.40

WMAP9 Uniform 150.7 0.18

WMAP9 Inv Noise 139.4 0.40

Table 3.2: χ2
diff and PTE results for power spectrum differences

χ2
diff and PTE results for the observed power spectrum difference, with different

fiducial input power spectra for simulations, and different weighting schemes for
WMAP9 maps are shown here. The degree of freedom is 136. Three different weight-
ing schemes are applied to the simulated WMAP9 temperature maps. Uniform is
when all the pixels share the same weight. Inverse noise weighting weights the pixels
by their inverse noise variance. Hybrid is using uniform weighting for ℓ ≤ 600 and
inverse noise for ℓ > 600. We find no significant difference in the values of χ2

diff and
PTE, using different fiducial spectra or different weighting schemes. We conclude
that there is no significant difference between the observed WMAP9 and Planck 2015
TT spectra over their common multipole range.
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Figure 3.5: Power spectrum difference

Top: observed binned power spectrum difference between WMAP9 and Planck
2015, normalized by error bars estimated from simulations, which account
for the correlated CMB cosmic variance between the two experiments. Most
data points are within 2σ from zero. The first 13 bins are anti-correlated at ∼
13% with their immediate neighbors, while the rest are at ∼ 5%. Bottom: the
vector of differences is rotated so that its covariance is diagonalized and the
bins are uncorrelated. The rotated difference shows no statistically significant
deviation from zero, except for the 72nd bin. We do not consider it as a sign of
inconsistency, because the probability of at least 1 out of 136 bins deviating
more than 3σ from zero is 25%, for 136 independent Gaussian-distributed
random variables. We note that similar “clumping" of adjacent points also
appears in randomly generated sets of 136 Gaussian numbers.
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3.4 Quantifying Consistency

To compare results from WMAP9 and Planck 2015, we need the power spec-

trum difference array ∆Cb and its associated covariance ∆Σ. The latter is given

by

∆Σ = ΣWW + ΣPP − ΣWP − ΣPW (3.5)

and ∆Cb = COBS
W,b − COBS

P,b is the observed difference of binned power spectra in

the common range of ℓ, provided by the two experiments. Then we calculate

the χ2 of the difference defined by

χ2
diff =

136

∑
b,b′=1

∆CT
b ∆Σ−1

bb′ ∆Cb (3.6)

and its probability to exceed (PTE) for a χ2 distribution with 136 degrees

of freedom (the number of bins). Finally we convert the PTE values to an

equivalent number of Gaussian standard deviations.

For ΣPP, we bin and co-add the covariance matrices for the 4 frequency

combinations provided by the Planck 2015 likelihood code while ΣWW is from

inverting the Fisher matrix calculated from the WMAP9 likelihood code. For

ΣWP and ΣPW we use the corrected analytic W × P and P × W covariance

matrices described in Section 3.2.3.

The χ2
diff and PTE of the observed power spectrum difference are shown in

Table 3.2. Using different input fiducial spectra or different pixel weighting

schemes on simulated WMAP9 temperature maps does not change the values

of χ2
diff or PTE significantly. The cases closest to the actual experiments are

the ones using hybrid weighting for simulated WMAP9 maps. Using the
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WMAP9 best-fit TT spectrum as the fiducial gives PTE 0.35, which means the

Planck 2015 observed TT spectrum differs from WMAP9 at only 0.39σ, while

using Planck 2015 best-fit spectrum as fiducial gives PTE 0.40, corresponding

to a 0.26σ difference. This leads to the conclusion that there is no significant

difference between the observed WMAP9 and Planck 2015 TT spectra over

their common multipole range (30 ≤ ℓ ≤ 1200), regardless of the choice of

assumed models. Choosing a fiducial model with more drastically different

cosmological parameters could have a larger impact on the WMAP-Planck

consistency, however there is no motivation to consider such a model as it

would provide a poor fit to the actual WMAP or Planck TT measurements.

Using different weightings on simulated WMAP9 maps does not change

our conclusion. We test the extreme case of comparing results between us-

ing uniform weighting for all ℓ and using inverse noise weighting for all

ℓ. The PTE value shifts from 0.18 to 0.40, corresponding to 0.91σ and 0.25σ

respectively. The stability of our results against the change of map weighting

schemes implies that our conclusion about the consistency between WMAP9

and Planck 2015 TT spectra would not change even if we were to generate

simulations using the C−1 pipeline as the WMAP team did.

We test that the slight underestimation of experimental variances shown in

Figure 3.4 would make no significant difference to our results, even if this also

affects the WMAP-Planck covariance. Using the WMAP9 best-fit TT spectrum

as the fiducial input and hybrid pixel weightings on simulated WMAP maps,

rescaling the WMAP-Planck covariance by a factor of (1.011 × 1.024)0.5, which

approximately compensates the underestimation, produces χ2
diff = 144.3 and
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PTE 0.30, corresponding to a 0.53σ difference.

The top of Figure 3.5 illustrates the observed power spectrum differences

of binned power spectrum ∆Cb, with error bars given by ∆Σ accounting for

the correlated cosmic variance between WMAP9 and Planck 2015. To facilitate

visual comparison, we divide the differences by their uncertainties, so that

all the error bars are unity. As shown in this figure, the observed difference

is roughly consistent with zero. Small correlations between adjacent bins

(∼ −13% for the first 13 bins and ∼ −5% for the rest) are accounted for

when calculating χ2
diff but make visual assessment of ∆Cb more difficult. We

therefore apply a rotation to the vector of differences so that its covariance

is diagonalized and the bins are uncorrelated. The rotation matrix U is con-

structed from the eigenvectors of ∆Σ. The rotated vector of difference ∆CR

and its covariance ∆ΣR are given by the following:

∆CR = U−1∆C (3.7)

∆ΣR = U−1∆ΣU (3.8)

The resulting normalized difference is shown in the bottom of Figure

3.5, showing no statistically significant deviation from zero, except for the

72nd bin. Assuming all the uncorrelated bins are Gaussian distributed, the

probability of at least 1 out of 136 bins deviating more than 3σ from zero is

25%. Therefore we do not take this as a sign of inconsistency. Moreover, we

do not think the apparent “clumping” of data points is anything more than

statistical fluctuations. Human eyes are naturally drawn to patterns and thus

tend to discover “features". An example test for the occurrence of clumping
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is to ask whether the maximum number of consecutive points lying above

or below zero (8 for the bottom panel of Figure 3.5, see the 16th to 23rd bins)

is unusually high. We generated 10000 sets of 136 independent normally

distributed values and found that 23.1% included 8 or more consecutive

points lying above or below zero, indicating that the behavior in Figure 3.5 is

consistent with statistical fluctuations.

In addition to the full 30 ≤ ℓ ≤ 1200 range we also calculated the χ2 and

PTE from different subsets of multipoles, including varying the maximum

multipole. The PTE values from these tests were largely between 0.05 and

0.4, however we found that restricting the comparison to, for example, 30 ≤
ℓ ≤ 200 (up to bin 26), or 30 ≤ ℓ ≤ 300 (bin 37), produced lower PTE values

of 0.005 and 0.012. Of our 4000 simulated WMAP and Planck spectra, 400

(10.0%) produce PTE values less than 0.01 as the maximum multipole was

varied, and 491 (12.3%) produced values greater than 0.99. Restricting to the

373 realizations with PTE between 0.3 and 0.4 for 30 ≤ ℓ ≤ 1200, similar to the

data value of 0.35, the corresponding numbers are 26 (7.0%) for PTE values

less than 0.01 and 22 (5.9%) for greater than 0.99. The data therefore do not

appear particularly anomalous in this respect.

3.5 Conclusions

We quantify the consistency between the observed TT power spectra from

WMAP9 and Planck 2015 over their overlapping multipole range where power

spectrum based likelihoods were used. We generated simulations to account

for the cosmic variance common to both experiments. Their correlation is
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estimated to be as high as ∼ 90% in signal-dominated regions (roughly ℓ <

300), and drops below 10% roughly at ℓ > 850. Even taking into account

their correlation, we find that the spectra are consistent within 1σ. We also

note that with the common cosmic variance taken out of the covariance of

the power spectrum difference between the two experiments, the consistency

test presented in Section 3.4 is more sensitive to any unknown systematics

or underestimated WMAP noise, than any test that can be done with each

experiment alone.

We also tested our simulation fidelity in Section 3.2 and 3. We find that our

simulated power spectra are consistently Gaussian distributed, with the mean

being the input fiducial spectrum and the covariance properly estimated.

While we did not implement the optimal C−1 estimator on simulated

WMAP maps as in the WMAP9 analysis, we tested the impact of pixel weight-

ing on the WMAP-Planck covariance from adopting two extreme weighting

schemes. We found that using either uniform weighting at all multipoles,

or inverse-noise weighting at all multipoles, still resulted in agreement with

Planck within 0.91σ. The different weightings mainly affect the WMAP noise

contribution, which does not enter into the WMAP-Planck covariance. We also

demonstrated the stability of our results against the choice of fiducial spec-

trum used in the simulations. Using the best-fit spectrum of the Planck 2015

TT data instead of that of WMAP9 only impacts the comparison at around

0.1σ.

The consistency shown in our analysis provides high confidence in both the

WMAP9 temperature power spectrum and the overlapping multipole region
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of the Planck 2015 power spectrum, virtually independent of any assumed

cosmological model. The Planck 2018 TT spectrum is only minimally different

from the 2015 version (Planck Collaboration, 2018b), and we therefore expect

it to remain consistent with WMAP.

The difference between cosmological constraints from WMAP and Planck

TT spectra is driven by higher multipoles in Planck, which also drive the ten-

sions with some astrophysical data discussed earlier. An important check of

these Planck measurements will come from similar tests to those performed

in this work using temperature and polarization measurements from high-

resolution experiments (e.g., Louis et al., 2014; Hou et al., 2018).

3.6 Appendix: Underestimation of Variance Due
to Assumptions in Analytic Calculations

In this appendix, we discuss why the covariance obtained from analytic

calculations based on the MASTER method underestimates the simulated

one. This is also noted in Appendix C.1.4 of Planck Collaboration, 2016b. The

upper panel of Figure 3.6 shows an example of the ratio of the analytic to the

simulated variance, calculated from noise free simulations.

Limiting ourselves to the noiseless case, we look at a few key equations

in the MASTER method and point out when the approximation is made and

how it affects the result of the calculation. For a detailed description of the

method, see Efstathiou, 2004.

The spherical harmonic transform of a temperature map ∆Ti with mask wi
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Figure 3.6: Ratio of the analytic power spectrum variance to the simulated

Top: ratio of the analytic variance to the simulated, from noise free simulations.
The blue is the raw ratio and the red line is a smooth fit based on cubic splines.
Bottom: the logarithm of the fiducial spectrum. The vertical dotted lines show
that the minima in the ratio correspond to the multipoles where the drop of
the power spectrum reaches a temporary plateau. These are the multipoles
where the approximation that the spectrum does not vary over a small range
of neighboring ℓs is most unrealistic.
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is defined as

ãℓm = ∑
i

∆TiwiΩiYℓm(`i)

where Ωi is the area of pixel i. The pseudo-harmonic ãℓms are related to the

true aℓms on the unmasked sky via a coupling matrix K:

ãℓm = ∑
ℓ′m′

aℓ′m′Kℓmℓ′m′ .

The detailed expression of K is not important for this discussion, but we note

that K is close to 1 when ℓ = ℓ′, then drops off as ℓ′ shifts away from ℓ.

The pseudo-Cℓ estimator is constructed from the sum

C̃p
ℓ =

1
(2ℓ+ 1) ∑

m
|ãℓm|2

and its covariance is given by

⟨∆C̃p
ℓ∆C̃p

ℓ′⟩ =
2

(2ℓ+ 1)(2ℓ′ + 1) ∑
mm′

∑
ℓ1m1

∑
ℓ2m2

Cℓ1Cℓ2

× Kℓmℓ1m1K∗
ℓ′m′ℓ1m1

K∗
ℓmℓ2m2

Kℓ′m′ℓ2m2 .

To make the calculation above computationally feasible, the power spectrum is

approximated as unchanged over small range of multipoles where ∆ℓ is small

and K is not negligible. Then Cℓ1 and Cℓ2 can be taken out of the summation

and replaced by Cℓ and C′
ℓ. This will simplify the expression to the following:

⟨∆C̃p
ℓ∆C̃p

ℓ′⟩ = Ṽℓℓ′ ≈ 2CℓCℓ′Ξ(ℓ, ℓ′, W̃(2)
)
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where

Ξ(ℓ1, ℓ2, W̃(2)
) = ∑

ℓ3

(2ℓ3 + 1)
4π

W̃(2)
ℓ3

(︃
ℓ1 ℓ2 ℓ3
0 0 0

)︃2

and W̃(2)
ℓ is the power spectrum of the square of the mask wi,

W̃(2)
ℓ =

1
(2ℓ+ 1) ∑

m
|w̃(2)

ℓm |2, w̃(2)
ℓm = ∑

i
w2

i ΩiYℓm(θi).

The effect of this approximation on the covariance is minimal where the

power spectrum, Cℓ is declining or about to. Restricting to the simpler case

where ℓ = ℓ′, the reasoning is as follows.

When the spectrum is declining around a certain ℓ, using Cℓ to replace

its neighboring multipoles means that the calculation is underestimating the

contribution to the variance from ℓ1, ℓ2 < ℓ and overestimating from ℓ1, ℓ2 > ℓ.

So on average, the effect partly evens out.

At the high-ℓ end of plateaus, the central Cℓ is about the same as the

neighboring ones at smaller multipoles and larger than those at larger mul-

tipoles. The approximation means that we treat the neighboring Cℓ1 and

Cℓ2 at ℓ1, ℓ2 > ℓ to be as large as Cℓ. With the neighboring Ks being small,

we are overestimating the contributions from terms that are relatively small

compared to the “correct answer". The fractional difference is negligible.

However, when the spectrum is at the end of a slope and the start of

a plateau, we use a central Cℓ to approximate neighboring, larger Cℓ1 and

Cℓ2 at ℓ1, ℓ2 < ℓ. Unlike the case at the high-ℓ end of plateaus, we are now

underestimating terms that are not so small compared to the “correct answer",

even with the neighboring Ks being small. The fractional difference is more
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significant.

Figure 3.6 demonstrates the correspondence between the troughs of the

ratio of the analytic variance to the simulated and the locations in the log Cℓ

where the drop of power spectrum reaches a temporary plateau, supporting

our argument. We also note that at around ℓ = 400 where the drop is sharpest,

the disagreement between analytic and simulated variance is largest.

For a flat noise spectrum, the above approximation is exactly valid. There-

fore the analytic covariance is more accurate for simulated maps with white

noise, particularly at higher multipoles where the spectrum is noise-dominated.

This deviation of analytic covariance from the simulated covariance is why

we make corrections on the former based on the latter.
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Chapter 4

Accounting for Correlations When
Fitting Extra Cosmological
Parameters

This chapter is taken from Huang et al. 2019 (APJ 882.2, 124, p. 124), where we

highlight the importance of examining the correlations between additional

parameters when investigating extensions to the standard ΛCDM model.

Additional model parameters are typically varied one or two at a time, in a

series of separate tests. The correlations between additional parameters arise

when their effects on model predictions are similar, even if the parameters are

not varied simultaneously. We show how these correlations can be quantified

with simulations and Markov Chain Monte Carlo (MCMC) methods. As an

example, we assume that ΛCDM is the true underlying model, and calculate

the correlations expected between the phenomenological lensing amplitude

parameter, AL, the running of the spectral index, nrun, and the primordial

helium mass fraction, YP, when these parameters are varied one at a time

along with the ΛCDM parameters in fits to the Planck 2015 temperature power
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spectrum.

4.1 Introduction

Over the last decade, much progress has been made on putting precise con-

straints on cosmological parameters within the Λ cold dark matter (ΛCDM)

model, particularly from CMB experiments (e.g., Bennett et al., 2013; Planck

Collaboration XIII, 2016; Sievers et al., 2013; Story et al., 2013). In the most

recent release of Planck results (Planck Collaboration VI, 2018), determinations

of the standard ΛCDM parameters such as baryon density, Hubble constant

and matter density have reached the percent level or below.

Although currently there is no convincing evidence for deviations from the

standard ΛCDM model from any single experiment, tensions exist between

the values of some parameters inferred from different datasets. The most se-

vere one is the 4.4σ disagreement between the Hubble constant measurements

from the anchor-Cepheid-supernova distance ladder by the SH0ES collabora-

tion (Riess et al., 2019) and from the Planck CMB data (Planck Collaboration

VI, 2018). The measurement of H0 via strong lensing time delays (Bonvin

et al., 2017; Birrer et al., 2019) is consistent with the distance ladder and in 2.5σ

tension with Planck. Addison et al., 2018 showed that the tension between

early and late time universe measurements persists even without the inclusion

of Planck data, using baryon acoustic oscillation (BAO) scale measurements.

Extensions or alternatives to the ΛCDM model have been explored in an

attempt to resolve the Hubble tension. For example, the effects of varying the

effective number of neutrino species (e.g., Riess et al., 2016) and the equation
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of state parameter of dark energy (e.g., Joudaki et al., 2017) have been studied,

though these extensions have not been able to effectively relieve the tension

without including multiple turning points in the evolution of the dark energy

equation of state (Zhao et al., 2017). Recently, new ideas have been proposed

as more promising solutions, for example, with the introduction of early dark

energy (Poulin et al., 2019) or self-interacting massive neutrinos (Kreisch,

Cyr-Racine, and Doré, 2019).

If there is physics that is yet unaccounted for, consistency tests within the

ΛCDM model will eventually fail with sufficiently sensitive new data.

An example of a parameter used to test consistency is the lensing amplitude

AL. It was first introduced by Calabrese et al., 2008 as a phenomenological

way to quantify the effect of weak gravitational lensing in the CMB power

spectrum. By definition, AL = 1 is the physical value. However, the Planck

temperature power spectrum (TT) data have shown a persistent preference

for AL > 1 at 1.8-2.7σ depending on which datasets are included (Planck

Collaboration XVI, 2014; Planck Collaboration XIII, 2016; Planck Collaboration

VI, 2018). For discussion of the AL tension, see also Addison et al., 2016;

Motloch and Hu, 2018; Motloch and Hu, 2019a. The cause of the deviation of

AL from its physical value is unclear, however, varying AL is an example of

the sort of test that might ultimately shed light on the origin of the distance

ladder tension.

Typically results from fitting additional model parameters are presented

one or two at a time, a series of separate tests (for recent examples, see Heavens

et al., 2017; Joudaki et al., 2017; Planck Collaboration VI, 2018). In this chapter,
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we emphasize that constraints on some of these extension parameters may be

correlated. Information is lost when ignoring these correlations. For example,

when different parameters have similar effects on a theory prediction they

cannot be perfectly distinguished with some given set of data. Also, for

example, if specific types of correlations between a pair of parameters are

expected in a theory, that can be tested for and provide valuable additional

information.

As an illustration, the red point in Figure 4.1 shows the maximum like-

lihood (ML) values for two parameters, A and B, obtained from separate

ΛCDM+A and ΛCDM+B fits. The green contours show the expected distribu-

tion of A and B fitted separately (estimated from e.g. simulations) if ΛCDM,

with A = 0 and B = 0, is the true model. For this example we do not fit A and

B at the same time in a ΛCDM+A + B model.

Only looking at the ML values one at a time, as is usually done, would

lead to an incorrect conclusion of consistency, as the ML values of A and B

are each only 1 standard deviation away from their fiducial ΛCDM values. In

contrast, in the 2-D space the shift from the fiducial point is orthogonal to the

expected degeneracy direction and the ML point is actually outside the 99.7%

contour. This shows that there is a strong disagreement between the data

and the assumed ΛCDM model that was not revealed by treating ΛCDM+A

and ΛCDM+B as independent tests. We are not concerned here with the

cause of the disagreement (e.g., systematic errors, an incorrect model, etc.),

but only with the loss of information from sequential fits of one independent

parameter at a time. The point is that accounting for the correlation between
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the extension parameters can give additional information.

Therefore, to more carefully assess whether the standard ΛCDM model can

consistently describe data, the covariance of the set of extension parameters

should be quantified.

In this chapter, the goal is to answer the following questions:

1. How do we calculate the expected correlation between different exten-

sion parameters to the standard ΛCDM model when constrained by the

same data?

2. How do we incorporate these correlations into a more stringent test of

the ΛCDM model?

As an example, we use the Planck 2015 temperature power spectrum like-

lihood code (Planck Collaboration XI, 2016). The outline of this paper is as

follows. In Section 4.2 we present the theoretical basis of our work and two

different methods to achieve our goals. We show results in Section 4.3, fol-

lowed by a discussion in Section 4.4 of general recipes for similar analysis in

the future and conclusions in Section 4.5.

4.2 Methodology

4.2.1 Estimating Correlation between Extension Parameters
Using Simulations

In general it is not straightforward to infer the correlation between parameters

A and B directly from MCMC fits to the ΛCDM+A and ΛCDM+B models

that have already been performed by experimental collaborations like Planck.
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Figure 4.1: Illustration for correlations between additional model parameters
Accounting for correlations between additional model parameters can be
important. In this example, A and B are additional parameters to the stan-
dard ΛCDM model. The maximum likelihood (ML) values of A and B from
ΛCDM+A and ΛCDM+B fits to a particular dataset are shown in red. The
green contours show the expected distribution of ML values, calculated as-
suming ΛCDM, with A = 0 and B = 0, is the true model. The ML values of A
and B fitted from data appear consistent with their fiducial values in their 1-D
marginalized distributions, but they are actually outside the 99.7% contour in
their 2-D distribution.
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To make progress, we assume that the data likelihood is Gaussian, with a

covariance matrix C that does not depend on the cosmological parameters,

and that the posterior distribution for the cosmological parameters is also

Gaussian.

The assumption of Gaussianity of the likelihood is made widely across

different cosmological measurements, including CMB power spectra (e.g.,

Planck Collaboration XI, 2016; Louis et al., 2017; Henning et al., 2018), weak

lensing shear (e.g., Krause et al., 2017; Hikage et al., 2019; Wright et al., 2018),

galaxy clustering (e.g., Percival et al., 2014; Alam et al., 2017), supernovae

distance moduli (e.g., Scolnic et al., 2018; Abbott et al., 2019), and others. The

likelihood can almost always be made more Gaussian through compression

of the data, often with negligible loss of cosmological information (e.g., com-

bining CMB power spectra over a range of multipoles into bins). Neglecting

the cosmological parameter dependence in the covariance (e.g., assuming a

fixed fiducial model and set of parameters for computing the cosmic variance

contribution to the errors) has also been demonstrated to be a suitable ap-

proximation for Planck, and other current experiments (e.g., Hamimeche and

Lewis, 2008; Krause et al., 2017). The fiducial model as well as the covariance

are often estimated from some iterative process of fitting the actual data.

For the Planck data, cosmological parameter posterior distributions can be

well approximated as Gaussian for ΛCDM, as well as for many one- and two-

parameter extensions, although there are also cases (e.g., involving curvature

or varying the dark energy equation of state), where Planck alone does not

provide Gaussian posteriors. Other experiments only constrain a portion of
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the ΛCDM parameter space sufficiently well to produce Gaussian constraints

in one or two parameters. Many parameters are also physically required to be

positive, truncating the available parameter space and causing departure from

Gaussianity when the data do not constrain the parameter to significantly

differ from zero. This is the case for current cosmological constraints on the

neutrino mass, for example (see Figure 30 of Planck Collaboration XIII, 2016).

We return to the handling of non-Gaussian cases in Section 4.3.

In certain cases, the Bayesian posterior parameter distribution and the

distribution of the ML parameter values from many realizations of the data are

approximately equal. Specifically, P(θ|d), the Bayesian posterior distribution

of parameters θ sampled by MCMC given the experimental data, can well

approximate P(θML(dsim)|θfid). The latter is the distribution of frequentist

ML parameter estimation based on realizations of dsim from a fiducial model

θfid. The choice of θfid is usually physically motivated and is based on fits from

actual data. For a detailed discussion, see e.g., Chapter 4 and Appendix B of

Gelman et al., 2013.

We show in Section 4.6.2 that this correspondence is mathematically exact,

if we: (1) assume the Gaussianity of both the data likelihood and the posterior

distribution of parameters; (2) impose uninformative parameter priors that

are far less constraining than the likelihood; (3) in the MCMC computation, re-

place the experimental data d with µ(θfid), the theory prediction of the fiducial

model. In other words, P(θ|d = µ(θfid)) from MCMC and P(θML(dsim)|θfid)

from simulations are the same mathematically. In this work, the fiducial model

is from fitting the Planck TT data. We will show in Section 4.3.2 that the exact
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choice of θfid is not very important.

This correspondence allows us to estimate the correlation between exten-

sion parameters A and B using simulated data (i.e., frequentist sampling of

the likelihood) in the following steps:

1. Generate many simulated data sets (in our case simulated Planck-like

CMB power spectra) drawn from the likelihood in the form of a Gaussian

distribution N (µ(θfid),C) for some choice of fiducial ΛCDM model

parameters, θfid, and using the covariance matrix C provided by the

experiment collaboration.

2. Calculate the maximum-likelihood parameters θML for the ΛCDM+A

and ΛCDM+B models for each simulated data set, and

3. Estimate the covariance between A in the ΛCDM+A fit and B in the

ΛCDM+B fit using the sample covariance from the simulations.

4.2.2 Estimating Correlation between Extension Parameters
Using MCMC Chains

Alternatively, in the special case of Gaussian parameter posteriors, we can

run MCMC chains to estimate the correlation between extension parameters

directly. In Section 4.6.2 we show that all the information on the correlation

between extension parameters A and B can be estimated from three sets of

chains: ΛCDM+A, ΛCDM+B, and ΛCDM+A + B. Specifically, we found

that the correlation between A and B when they are fitted separately is equal

to minus one times the correlation between A and B when they are fitted

together. We refer to this property as Correlation Equivalence.
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A complication of estimating correlation between extension parameters

by performing MCMC on the real data in this way is that we clearly do

not have control over the ‘underlying’ cosmological model in the way we

do when generating simulations. It is also possible that the real data have

imperfections or systematic biases that are not correctly accounted for in the

likelihood. We therefore instead performed MCMC computations replacing

the real data vector with a theory prediction computed using the same θfid as

for the simulations.

4.2.3 An Example With Planck CMB Spectra

Here we provide a worked example using Planck data for both the simulation

and MCMC approaches discussed above. At the time of writing, the Planck

2018 likelihood code is not yet available. Therefore we perform a simple

three-parameter test using the Planck ℓ ≥ 30 2015 TT data from the plik_lite

likelihood1 (as described in Planck Collaboration XI, 2016). This simplified

likelihood includes only CMB information, marginalizing over foreground

template amplitudes and other nuisance parameters.

4.2.4 Fiducial Model and Extension Parameters

We assume the fiducial model to be the best-fit ΛCDM model of ℓ ≥ 30

Planck TT plik_lite data with the optical depth fixed at τ = 0.07, the Planck

calibration parameter calPlanck equal to 1 and other nuisance parameters

marginalized. The ℓ < 30 likelihood is pixel based rather than power spectrum

1Can be downloaded from http://pla.esac.esa.int/pla/#cosmology
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based. For simplicity we only include the power spectrum based likelihood

of the ℓ ≥ 30 data. Moreover, because the ℓ ≥ 30 TT spectrum only well

constrains the parameter combination Ase−2τ, τ is fixed to break the strong

degeneracy with As. As for the calibration parameter calPlanck, a Gaussian

prior with mean equal to 1 and standard deviation 0.0025 was originally

imposed on it. Its variation has minimal impact on other parameters. For

simplicity, calPlanck is fixed at 1.

For the standard ΛCDM parameters, we use

{Ωbh2, Ωch2, 100θMC, τ, log As, ns}fid =

{0.02216, 0.1211, 1.0407, 0.07, 3.0777, 0.9601}.

In addition, the three extension parameters of interest and their fiducial values

for this example are {AL, nrun, YP}fid = {1, 0, 0.2453}. As mentioned in Section

4.1, AL is a phenomenological parameter that artificially scales the lensing

power spectrum. It is worth investigating as Planck has a curious preference for

AL > 1. Running of the spectral index, nrun ≡ dns/d ln k, and the primordial

Helium mass fraction YP are an interesting pair of extension parameters to test

because of their high correlation (∼ 0.9), that is, they produce similar changes

in the power spectrum damping tail. Even a small deviation from their

degeneracy direction in their expected 2-D distribution would be noticeable.

In ΛCDM, YP is calculated from Ωbh2 and the CMB temperature through big-

bang nucleosynthesis (BBN) predictions (Planck Collaboration XIII, 2016). In

ΛCDM+YP, YP is independent of BBN and decouples from Ωbh2. We impose

flat priors on all model parameters with the default CosmoMC (Lewis and Bridle,
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2002) bounds.

The fiducial parameters from fitting the Planck data have uncertainties due

to cosmic variance and experimental noise. A slightly different set of fiducial

parameters, which are still consistent with the measured power spectrum,

may produce different results in the covariance of the extension parameters

as well as the significance of their deviations from the fiducial ΛCDM values.

We found this effect to be small for the Planck 2015 data. See Section 4.3.2 for

details.

4.2.5 Simulations

We run simulations to sample the distribution of the extension parameters.

We draw 1000 binned power spectrum samples with mean equal to the binned

power spectrum of the fiducial model and covariance equal to the plik_lite

CMB band power covariance. We use the same binning scheme as Planck 2015

to convert power spectra computed by CAMB2 to band powers. We replace the

data spectrum in the plik_lite likelihood with our samples, thus forming

the simulated likelihoods. Next, using the ML finding algorithm in CosmoMC,

setting τ = 0.07 and the Planck calibration parameter calPlanck = 1, we

maximize the simulated likelihoods to obtain the best-fit parameters of a

specific model for each realization. The models we explore are: the standard

ΛCDM, ΛCDM+AL, ΛCDM+nrun and ΛCDM+YP.

To quantify the overall shift between the values of the extension parameters

estimated from the actual data and their fiducial ΛCDM values, we calculate
2https://camb.info/
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the χ2 and its probability to exceed (PTE) for a χ2 distribution with degrees of

freedom equal to the number of extension parameters:

χ2 = (θML
dat − θfid)TΣ−1

ex (θ
ML
dat − θfid) (4.1)

where Σex is the covariance matrix for the extension parameters only, θfid is an

array of 3 elements equal to {AL, nrun, YP}fid and θML
dat = (1.1245, 0.00773, 0.2306)

is an array whose values are obtained from fitting models ΛCDM+AL, ΛCDM+nrun

and ΛCDM+YP respectively on the actual Planck plik_lite TT data with τ

fixed.

To verify that our priors on the parameters can be considered as uninfor-

mative and thus do not impact the degree of freedom for the χ2, we compute

the χ2 values and their PTE assuming 3 degrees of freedom using the best-fit

parameter values from all simulations. Then we compare the distribution of

PTE values to the expected one with 3 degrees of freedom and find that they

are consistent.

4.2.6 MCMC

As mentioned in Section 4.2.2, we can make use of Correlation Equivalence

to estimate the expected covariance Σex between extension parameters fitted

separately by running MCMC chains on the data likelihood, with the experi-

mental power spectrum replaced by the fiducial one. Again we set τ = 0.07

and the Planck calibration parameter calPlanck= 1.

The diagonal elements in Σex are estimated from the variances of the spe-

cific extension parameters from running the MCMC chains with the modified

103



Table 4.1: χ2 of one-parameter extension models

MCMC simulation

χ2 4.94 4.78

PTE 0.18 0.19

∆σ 0.9 0.9

The significance of the difference between the experimental ML values and the fiducial
of AL, nrun and YP, in terms of the χ2 difference (with 3 degree of freedom) , its PTE
and ∆σ, the level of consistency in terms of the number of σ.
Note. Implementing the MCMC method and running simulations give consistent
results, both implying that the shifts of the experimental extension parameters from
their ΛCDM fiducial values are statistically insignificant.

Planck plik_lite TT likelihood, on the model ΛCDM+AL, ΛCDM+nrun and

ΛCDM+YP.

For the off-diagonal elements, first we obtain the correlation between two

extension parameters (again, denoting them generically as A and B) from the

MCMC runs that vary both of them in the ΛCDM+A + B model with the

same dataset. Then we calculate the covariance between A and B, given their

variances as described in the last paragraph:

Cov(A, B)fitted separately = −corr(A, B)ΛCDM+A+B

×(Var(A)ΛCDM+A × Var(B)ΛCDM+B)
1
2 . (4.2)

This way, we are able to estimate all of the elements in Σex without running

simulations at all, and calculate the χ2 defined in Equation (4.1) and its PTE to

quantify the shifts of the extension parameters from their fiducial values.
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Figure 4.2: Triangle plot of AL, nrun and YP, from separate fits

To illustrate the information in correlations between additional parameters
fit beyond the standard ΛCDM, we examine the parameters AL, nrun and
YP. Shown in red are the ML values of AL, nrun and YP in ΛCDM+AL,
ΛCDM+nrun and ΛCDM+YP fitted from the Planck 2015 plik_lite TT data.
Note that all the base ΛCDM parameters have been marginalized over. The
contours show the 68.3% and 95.5% confidence levels of the estimated mul-
tivariate distribution of the three parameters from simulations (black) and
MCMC (green). In the black contours, there is numerical noise present due
to the limited number of simulations. Notice that the ML points lie along the
correlation directions, as expected from ΛCDM. Different extension param-
eters may have similar effects on the predicted power spectrum. Thus their
constraints from data are correlated even if they are not fitted simultaneously.
Taking their correlations into account, there is no significant deviation of all
three parameters from their fiducial values, which is expected if the standard
ΛCDM is the correct model.
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Table 4.2: Parameter uncertainty of one-parameter extensions

Parameter MCMC Simulations

parameter uncertainty

AL 0.084 0.081

nrun 0.0093 0.0093

YP 0.021 0.020

parameter correlation

AL v.s. nrun 0.31 0.32

AL v.s. YP -0.46 -0.47

nrun v.s. YP -0.93 -0.93

These are the parameter uncertainties and correlations for the extension pa-
rameters, estimated from the MCMC method and the simulations.Results from
the two methods are consistent to a few percents. The largest discrepancy is
in the uncertainty of YP, with 5% difference.

4.3 Results

4.3.1 Quantifying Significance of Deviations of Extension Pa-
rameters from Their Fiducial Values

In Table 4.1, we show the χ2 of the difference, as defined in Equation (4.1),

their corresponding PTE values and the level of consistency with the assumed

model in terms of the number of σ. Our results imply no significant discrep-

ancy (0.9σ) between the values of the three additional parameters estimated

from the actual data in one-parameter extensions and their fiducial ΛCDM

values. This is consistent with expectations if the standard ΛCDM is the

correct model.

Taking a closer look at elements in the estimated covariance, we show in
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Table 4.2 the estimated uncertainties of one-parameter extensions to the base

ΛCDM model, along with the estimated parameter correlations from the two

methods. These results are consistent up to at most 5%, in the YP uncertainty.

The differences between using the two methods are likely due to numerical

noise and have only a minimal impact on our main conclusion.

We also visualize the shifts of the ML extension parameters from their fidu-

cial values compared to their expected distributions in Figure 4.2. Notice in

the 2-D contour plots, how the ML points lie along the correlation/degeneracy

direction of the estimated distributions, as expected if the base ΛCDM is the

true model. Looking only at single extensions, the discrepancy between the

ML value of AL inferred by the plik_lite TT data and its fiducial value is only

significant at 1.8σ (from the MCMC method) or 1.9σ (from simulations), while

the deviations of nrun and YP from their fiducial values are only significant at

0.8σ and 0.7σ respectively, from both running MCMC and simulations.

We do not attempt to explain or de-emphasize the tension in AL. Rather we

note that there is no extra sign of discrepancy when we take into account its

correlation with nrun or YP. The significance of the χ2 of difference for the three

parameters is not only reduced by the very small deviations of YP and nrun,

but is also reduced because the Planck plik_lite TT data prefers the shifts in

the parameters along their expected degeneracy directions. Considering the

AL-nrun or the AL-YP pair for example, their correlations are non-negligible:

0.31 and -0.46 respectively. This information is not contained in the single

extension tests. Table 4.1 and Figure 4.2 together show that the correlation of

AL with nrun and YP are as expected if ΛCDM is the true model, even though
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AL deviates moderately with its fiducial value. Had we found inconsistency

between the ML parameters from the data and the expected ΛCDM joint

distribution, it could indicate the presence of systematic error or unknown

physical effects producing spurious parameter correlations.

In addition, numerical differences between the simulated contours and

those of MCMC are small in this figure, again providing confidence to both

methods.

4.3.2 Testing Stability of Results Against Uncertainties in Fidu-
cial Model

As mentioned in Section 4.2.4, the fiducial parameters are from fitting the

actual plik_lite data and therefore have uncertainties. So the standard

ΛCDM model we define is not just one point in the parameter space, but

an ensemble of points whose shape is described by the parameter posterior

distribution inferred from the data.

To assess the impact of different fiducial values on our results, we randomly

draw 1000 sets of parameters from the MCMC chains fitted to the plik_lite

data, with the base ΛCDM model, τ = 0.07 and calPlanck = 1. For each set of

parameters, we approximate the parameter covariance matrix by computing

the Cℓ derivatives and Fisher matrices (see Equation (4.14) in Section 4.6.2.1).

Then we use Correlation Equivalence to calculate the extension parameter

covariance Σex. We find that varying parameters causes less than 3% scatter

in the matrix elements.

We also plug Σex into Equation (4.1) and find that the resulting χ2 ranges
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from 4.2 to 5.1 and the PTE from 0.17 to 0.24, corresponding to consistency

within 0.7-1σ. These results show that the uncertainties in the fiducial model

have very minimal impact on results from our consistency test. The stability

of the results reflects the constraining power of the Planck data on the model

parameters in ΛCDM.

4.4 Discussion

In Sections 4.2 and 4.3 we have shown an example of quantifying the level

of consistency between extension parameters and their fiducial values given

a specific dataset. In this section, we outline and discuss steps to perform

this approach more comprehensively for the Planck 2018 and other cosmology

data sets.

4.4.1 MCMC Method

In the ideal case where all extension parameters of interest are Gaussian, we

can estimate their expected distribution from MCMC chains. We denote the

individual extension parameter as θex,i with i runs over 1 to nex, the total

number of extension parameters. The suggested recipe is as follows:

1. Define a fiducial model (e.g. a fit from existing data) and calculate its

theory prediction.

2. In the data likelihood of interest, substitute the experimental observables,

e.g. power spectra in the CMB case, by the fiducial prediction.

3. Explore parameter space around the fiducial point by running MCMC
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chains on the modified data likelihood(s), fitting models ΛCDM+θex,i

and ΛCDM+θex,i + θex,j ̸=i.

4. Calculate the variance of θex,i from the one-parameter extension, and the

correlation between θex,i and θex,j ̸=i from the two-parameter extension.

5. Using results from previous step, construct a covariance matrix Σex for

θex, with the signs of all the correlations flipped.

6. Calculate χ2 defined in Equation (4.1) and its PTE to quantify deviation

of experimental values to fiducial ones. Additionally, one can plot

confidence ellipses such as in Figure 4.2 to visualize the deviations.

7. Check validity of the input fiducial model, for example by using a Fisher

Forecast (e.g. Heavens, 2009) to approximate parameter covariance and

estimating the shifts in the χ2 when varying fiducial parameter values.

As an example, on a computer cluster with 12-core 2.5 GHz processors3,

one MCMC run with 8 parallel chains usually take ≲ 24 hours to converge

for the 2015 plik_lite likelihood. The CPU time for running one MCMC job

is at the order of 100 hours and the total computing time is ∼ 5 × 104 hours,

for running all one-parameter and two-parameter extension fits for nex = 11,

which is the number of extra parameters fitted in the publicly available 2015

Planck chains.
3Our computation was conducted on the computer cluster of the Maryland Advanced

Research Computing Center. See https://www.marcc.jhu.edu/cyberinfrastructure/
hardware/ for descriptions of its system architecture.
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4.4.2 Simulations

We can use simulations, as an alternative method to estimate the expected

distribution of additional parameters around the fiducial point. As described

in Section 4.2.1 and 4.2.5, one can perform the following procedure:

1. Generate simulated observables of the fiducial model using data covari-

ance.

2. For each simulation, estimate the best-fit ΛCDM+θex
i model for each

extension parameter.

3. Calculate the covariance of extension parameter Σex, the χ2 of difference

defined in Equation (4.1) and its PTE to quantify the significance of

difference. Confidence ellipses can also be plotted.

For a rough estimate of computing time for the simulation method, using

CosmoMC and the same computer cluster with 12 cores per CPU, we find that

the running time of the best-fit-finding algorithm is approximately 1 hour. For

nex = 11, nsim = 2000 and running 4 parallel best-fit-finding jobs for each

simulation (to reduce numerical noise and avoid obtaining results from local

minima), the total computing time is 9 × 104 hours.

4.4.3 In the Case of Non-Gaussianity

To discuss the case of non-Gaussianity, first we need to clarify what exactly

non-Gaussianity arises from. Recall that throughout this paper, we assume

a Gaussian data likelihood and priors that are uninformative. If the data
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constrains the parameters well enough, changes in the model predictions can

be treated as only linearly dependent on the parameters. This means the Taylor

expansion of the log likelihood around the maximum point is significant up to

quadratic terms of the parameters and therefore the parameters are Gaussian

(see Section 4.6.1).

In short, non-Gaussianity of parameters is a result of the data not being

constraining enough for fitting parameters. When this is the case, there may

not be a mathematical correspondence between the ML parameter distribu-

tion from the simulations and the posterior distribution of the MCMC chains,

since our argument in Section 4.6.1 depends on the assumption of Gaussianity.

Besides, since our proof of Correlation Equivalence in Section 4.6.2 also rests

upon approximations of the log likelihood to only the second order deriva-

tives, the property now becomes questionable. This means that we cannot

simply estimate the correlation between parameters fit separately from the

MCMC chains where they are fitted together. What is worse is that the means

and the covariance matrix no longer carry all information of the parameter

distributions and one might need to evaluate high order tensors (Sellentin,

Quartin, and Amendola, 2014). Additionally, the χ2 test is inappropriate for

non-Gaussian parameters and we need new ways (such as one proposed in

Appendix C of Motloch and Hu, 2019b) to quantify the significance of the

overall difference between the experimental parameters and their fiducial

values.

An example of non-Gaussian parameters are those with priors that are

more informative than the data, e.g. the neutrino mass ∑ mν and the tensor to
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scalar ratio r, physically defined as non-negative. Current CMB data are not

sufficiently constraining to pull these parameters away from lower bounds

(BICEP2 Collaboration et al., 2018; Planck Collaboration VI, 2018). Another

non-Gaussian parameter given just the TT data, is the curvature density Ωk.

Curvature can only be weakly constrained as allowing it to be free worsens

the existing degeneracy between the physical matter density Ωm and the

Hubble constant H0 (Zaldarriaga, Spergel, and Seljak, 1997; Percival et al.,

2002; Kable, Addison, and Bennett, 2019). In the MCMC method, a two-

parameter extension model with both AL and Ωk results in very wide and non-

Gaussian distributions, since they are highly correlated — a positive curvature

has similar effect as an increased lensing signal (Planck Collaboration XIII,

2016).

To reduce non-Gaussianity, one can always include more datasets if avail-

able to have greater constraining power on the parameter, e.g. include the

BAO data (Alam et al., 2017) in parameter fitting along with Planck. However,

when extensions are used as a means to test the internal consistency of one

dataset, adding extra data is not an option. Fortunately, there are existing

methods of transforming non-Gaussian parameters into Gaussian ones. One

such method is the Box-Cox transformation (Box and Cox, 1964). Joachimi

and Taylor, 2011 and Schuhmann, Joachimi, and Peiris, 2016 applied this bijec-

tive transformation to non-Gaussian cosmological parameters. Theoretically,

Correlation Equivalence still holds for the transformed Gaussian parameters.

Thus we may still apply the procedure outlined in Section 4.4.1 for trans-

formed parameters, obtain the expected distribution for transformed ones,
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and then transform them back to the model parameters. One thing to note

is that the Box-Cox transformation does not guarantee Gaussianity. So one

should check for the Gaussianity of transformed parameters, e.g. calculate

the skewness and kurtosis of the resulting distribution, and if needed, apply

a second transformation. For consistency, it is also a good idea to compare

the resulting distribution of model parameters to simulations, or compare

the covariance of the transformed parameters with predictions from Fisher

Forecast, keeping in mind that Fisher Forecast assumes Gaussianity.

Further understanding of non-Gaussian scenarios is left for future efforts.

4.5 Conclusions

In this paper, we have presented a method to help identify potential new

physics and/or systematic errors by calculating the correlations between

additional parameters and performing a ΛCDM consistency test accounting

for them.

Usually extension parameters are added to the model separately, one at

a time. However, different parameters may affect the theory prediction in a

similar way, which means their values from a given data set can be correlated,

even when they are fit separately. Examining the consistency of extension pa-

rameters with ΛCDM expectations, accounting for these correlations, provides

an additional test of the model beyond looking at the results from individual

one-parameter extensions.

Under the assumption of Gaussianity of both the likelihood and the pos-

terior distribution of the parameters, one can fit a series of one-parameter
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extension models to simulated data and obtain the multivariate distribution

of the extension parameters. With the base parameters marginalized over, the

χ2 of difference and its PTE can be calculated to quantify the significance of

deviations from ΛCDM.

A more computationally economic alternative is to run MCMC, fitting

the same series of one-parameter extension models and additionally two-

parameter extensions across all the possible pairs in the set of parameters

of interest. Using Correlation Equivalence as proven in Section 4.6.2, the

covariance matrix of the extension parameters fitted separately can be esti-

mated from the results of these MCMC runs and so the expected multivariate

Gaussian distribution can be obtained.

In an attempt to narrow down causes of the AL anomaly in the Planck

data and possibly shed light on tensions between cosmological measurements,

we looked at the example parameter combination {AL, nrun, YP}, fitted with

the Planck 2015 plik_lite ℓ ≥ 30 TT data, as we do not yet have access to

the Planck 2018 likelihood. Results from MCMC and simulations show that

the deviations of the three additional parameters from their fiducial ΛCDM

values are consistent with statistical fluctuations within 0.9σ when correlations

are accounted for.

Although the cause of the reported 1.8-2.7σ preference (depending on

the the specific combination of datasets) for AL > 1 by the Planck CMB data

is yet to be understood, we find no further evidence for discrepancy when

considering the correlations between AL, nrun and YP. This is not a trivial test,

as the correlations are significant: approximately 0.31 for AL-nrun, -0.46 for
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AL-YP, and -0.93 for nrun-YP. If the unphysical AL > 1 is a symptom of an

underlying systematic error or some real but unknown physical effect that also

produced spurious correlations with nrun or YP our test could have revealed

this.

We also tested the stability of results against the uncertainties in the pa-

rameters of the experimentally fitted fiducial model, and find that the change

of the fiducial model has no impact on our conclusions, only shifting the PTE

values from 0.17 to 0.24.

Furthermore, we discussed how our procedures depend on the assumption

of Gaussianity of parameters. If the assumption is not valid, MCMC runs

cannot simply be used to estimate correlations between parameter fitted sepa-

rately, nor may there be a mathematical correspondence between parameter

distributions from the simulations and the MCMC runs. Therefore, efforts

might attempt to include Gaussianization of non-Gaussian parameters, such

as using the Box-Cox transformation (Box and Cox, 1964).

The procedures developed in this paper can and should be applied to more

extensive lists of extension parameters, with existing and future cosmological

data, in order to provide a more stringent test and complete view of ΛCDM

consistency.
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4.6 Appendix

4.6.1 Mathematical Correspondence Between Frequentist Max-
imum likelihood Parameters and Bayesian Parameter
Posterior

In this section, we will show that there is a mathematical correspondence

between frequentist maximum likelihood (ML) parameters and Bayesian

parameter posterior, under conditions described below. In other words,

P(θML(dsim)|θfid), the distribution of ML parameters estimated from real-

izations of a fiducial model is mathematically the same as P(θ|d = µ(θfid)),

the Bayesian posterior distribution of parameters given a set of data that

matches the theory prediction of the same fiducial model.

Given a set of fiducial parameters θfid, we can calculate its theory pre-

diction µ(θfid). With C as the data covariance estimated experimentally, we

can then draw realizations of the data vector d from a multivariate Gaussian

distribution N (µ(θfid),C)

Up to some constants, the log probability density function of d is given by

log P(dsim|θfid) = −1
2
(dsim − µ(θfid))TC−1(dsim − µ(θfid)). (4.3)

For a given set of simulated data dsim, we can estimate the set of parameters

that best describe it by maximizing the log-likelihood

log L(θ) ≡ log P(dsim|θ). (4.4)

The ML parameter estimates, θML, are defined as the solutions to the
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simultaneous equations

∂ log P(dsim|θ)
∂θi

⃓⃓⃓⃓
θ=θML

= 0 (4.5)

where the index i runs over all parameters. Taylor expanding around θML

gives

logP(dsim|θ) = log P(dsim|θ)
⃓⃓
θ=θML

+
1
2 ∑

ij
(θi − θML

i )

[︄
∂2 log P(dsim|θ)

∂θi∂θj

]︄
θ=θML

(θj − θML
j )

+O(θ− θML)3.

(4.6)

If higher-order terms can be neglected, Equation (4.6) shows that given a set

of d, parameters around the ML point can be approximated by a Gaussian

distribution, with the covariance Σ given by

Σ(θML(dsim))ij =

[︄
−∂2 log P(dsim|θ)

∂θi∂θj

]︄−1

θ=θML
(4.7)

where the term inside the brackets is the Fisher matrix and θML is written as

θML(dsim) to emphasize its dependence on dsim.

Note that the negligibility of higher order terms in (A4) means that Σ is

approximately constant for different values of θML. For simplicity we can set

it to be Σ(θfid).

Furthermore, assuming that the zeroth order term log P(dsim|θ)
⃓⃓
θ=θML is

also approximately a constant for all θML, we can interchange the positions

of θ and θML in (A4) and set θ = θfid, which gives P(θML(dsim)|θfid), the

distribution of θML from all simulated data d. Up to some constants, the log
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of P(θML(dsim)|θfid) is:

log P(θML(dsim)|θfid) =

−1
2
(θML(dsim)− θfid)TΣ−1(θML(dsim)− θfid) (4.8)

From the Bayesian viewpoint, given a single set of data d, the posterior

parameter distribution is given by Bayes’ theorem,

P(θ|d) = P(d|θ)P(θ)

P(d)
∝ P(d|θ)P(θ), (4.9)

where P(θ) is the prior probability and P(d) is the evidence. If the posterior

is Gaussian we can write, again up to some constants,

log P(θ|d) = −1
2
(θ− θ̄)TΣ−1(θ− θ̄), (4.10)

where Σ is the parameter covariance matrix given by (A5). For flat priors

θ̄ = θML(d). If θfid mentioned above is close to θML(d), then (A6) and (A8) is

only different by a small offset. To make them exactly equal, we can choose to

replace d with a theory prediction computed using θfid so that θML becomes

equal to θfid and the Bayesian posterior now describes the distribution of

parameters around the fiducial value:

P(θ|d = µ(θfid)) = log P(θ|θfid)

= −1
2
(θ− θfid)TΣ−1(θ− θfid), (4.11)

which matches exactly the distribution of the frequentist ML parameter esti-

mates given in (A6). This is asymptotically true even for non-flat priors when
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the data are sufficiently constraining, and we do not discuss the exact choice

of priors further here. For more information we again direct the reader to, for

example, Chapter 4 of Gelman et al., 2013. We note that if the priors are infor-

mative this equivalence is broken and the method described in Section 4.2.2

would not be valid.

4.6.2 Correlation Equivalence

In this section, using the mathematical correspondence from Section 4.6.1,

we show that when using ML estimation, the correlation between two pa-

rameters varied separately (e.g. the correlation between parameters A and

B in model ΛCDM+A and ΛCDM+B) is the same but with an opposite sign

as the correlation between the same two parameters varying together (e.g.

ΛCDM+A + B).

4.6.2.1 Maximum Likelihood Estimation and Parameter Covariance

With L ≡ log L(θ), the log likelihood of parameters given a specific sample of

d can be written as

L = −1
2
(d − µ(θ))TC−1(d − µ(θ)) (4.12)

up to some constants. µ(θ) is the theory prediction of the data given some set

of parameters θ. For any d, the goal is to find the θ that maximize L.

As in Section 4.6.1, at maximum likelihood, the partial derivative of the

log likelihood with respect to (w.r.t.) θi is zero (i runs over n, the number of
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parameters). That is

∂L

∂θi

⃓⃓⃓⃓
ML

=
∂L

∂µT

⃓⃓⃓⃓
ML

∂µ

∂θi

⃓⃓⃓⃓
ML

= −∂µT

∂θi

⃓⃓⃓⃓
ML

C−1(d − µ(θ)) = 0. (4.13)

Close to the ML point in parameter space, we can Taylor expand the

log likelihood to the second order in ∆θi ≡ θi − θML
i as shown in Equation

(4.6), where θi is well described by a multivariate Gaussian distribution. The

parameter means are the values that maximize the likelihood.

The parameter covariance Σ can be calculated as the inverse of the Fisher

matrix F−1, with the Fisher matrix, estimated from MCMC chains or calcu-

lated analytically, defined as:

Fij = − ∂2L

∂θi∂θj

⃓⃓⃓⃓
ML

= µML,T
,i C−1µML

,j . (4.14)

From now on we use the comma notation to denote partial derivatives w.r.t. θ,

that is, µ,i ≡
∂µ
∂θi

.

In the following proof, we continue to work under the assumption of

Gaussianity for θ and expand µ only to the first order of θ, that is, assuming

the Gaussian linear model (Raveri and Hu, 2019), around a chosen fiducial

model θfid:

µ(θ) ≈ µfid +
n

∑
i=1

µfid
,i (θi − θfid

i ), (4.15)

where we define µfid = µ(θfid). In the Gaussian linear model, the Jacobian µ,i
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may be taken as constant over changes in θ and so µfid
,i is approximately equal

to µML
,i . For simplicity, from here on, we just drop all the superscripts for µ,i.

In practice, the fiducial model is usually based on to the ML model given by

the data and updated iteratively if necessary.

Next, we move on to calculate the elements in parameter covariance Σ:

Σij = (F−1)ij. (4.16)

Remember that for any invertible square matrix M, its inverse can be calcu-

lated as

(M−1)ij = (−1)i+j |M\j\i|
|M| (4.17)

where |M| is the determinant of M. We use the notation “M\j\i", to denote a

smaller matrix, corresponding to M with the jth row and the ith column re-

moved (the backslash symbol is borrowed from the notation for set difference

in set theory). Then |M\j\i| is a minor of M. And the determinant for an

n × n matrix M can be written as

|M| =
n

∑
i=1

(−1)i+jMij|M\i\j| (4.18)

for any 1 ≤ j ≤ n.

Therefore

Σij = (−1)i+j|F\j\i|/|F |. (4.19)

If we choose to fix the ith parameter, we can simply remove the ith row

and column from the Fisher matrix, and calculate a new parameter covariance

matrix from the revised Fisher matrix.
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4.6.2.2 Correlation Between Parameter A and B, Varying Together

When two parameters A and B are both variables, we can calculate their

covariance from the Fisher matrix that includes them along with the base

ΛCDM parameters. So their correlation is just

corr(A, B) =
ΣAB

(ΣAAΣBB)
1
2

. (4.20)

From here on, for clarity, we use A and B as subscripts for the rows and

columns in the matrix for the two parameters of interest.

Following from equation (B9), (B10) becomes

corr(A, B) =
−|F\A\B|

(|F\A\A||F\B\B|)
1
2

. (4.21)

The minus sign is from setting the index of B equal to that of A plus one.

4.6.2.3 Correlation Between Parameter A and B, Varying Separately

For a generic set of parameters, given the data array d (experimental or

simulated) and the Fisher matrix F , we can substitute (B5) into (B2) to obtain

a relationship between the ML parameters θML and the fiducial ones:

θML(d)− θfid = F−1µT
,iC

−1(d − µ). (4.22)

So we can express θML as:

θML(d) = F−1µT
,iC

−1d + θ̂, (4.23)

123



where we use the vector θ̂ to represent all the terms in (B11) that are indepen-

dent of data d:

θ̂ ≡ −F−1µT
,iC

−1µfid + θfid.

As we will show below, θ̂ does not contribute to the correlation between A

and B.

Again for clarity, we use A and B to index the rows and columns for

parameter A and B, respectively, while using the generic i and j to index n

base ΛCDM parameters. So A is the (n + 1)th parameter and B (n + 2)th.

When fixing B to its fiducial ΛCDM value Bfid, the expression for the best

estimate for other parameters is almost the same as equation (B12), except that

F → F\B\B and the elements associated with B in µT
,i , θML and θ̂ are deleted.

The expression for the rest of elements in θML is:⎛⎜⎜⎜⎜⎜⎝
θML

1
θML

2
...

θML
n

AML

⎞⎟⎟⎟⎟⎟⎠ = (F\B\B)
−1

⎛⎜⎜⎜⎜⎜⎜⎝
µT

,1C
−1d

µT
,2C

−1d
...

µT
,nC

−1d
µT

,AC
−1d

⎞⎟⎟⎟⎟⎟⎟⎠+ θ̂. (4.24)

The last row of (B14) gives

AML(d) = (4.25)[︃ n

∑
i=1

(F\B\B)
−1
Ai µT

,iC
−1 + (F\B\B)

−1
AAµT

,AC
−1

]︃
d + θ̂A.
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Similarly, fixing A and letting B vary leads to

BML(d) = (4.26)[︃ n

∑
i=1

(F\A\A)
−1
Bi µT

,iC
−1 + (F\A\A)

−1
BBµT

,BC
−1

]︃
d + θ̂B.

The variance of A and B can be obtained from the Fisher matrix (B3) and

its minors (B7), as follows:

Var(AML) = (F\B\B)
−1
AA =

⃓⃓⃓
F \B\B
\A\A

⃓⃓⃓
|F\B\B|

(4.27)

Var(BML) = (F\A\A)
−1
BB =

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓
|F\A\A|

. (4.28)

And the covariance between AML and BML is:

Cov(AML, BML) = ⟨(AML − ⟨AML⟩)(BML − ⟨BML⟩)⟩, (4.29)

with the brackets here representing the averaging over all realizations of the

data d .

Recall that the data covariance C is assumed to be fixed and with our

assumption of a Gaussian Linear Model, all partial derivatives w.r.t. the

parameters are also constant. Then in (B15) and (B16), only d is a variable.

Inserting (B15) and (B16) into (B19), we find that terms involving θ̂A and θ̂B

cancel. In addition, all constant terms can be taken out of the brackets, leaving
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only ⟨(d − ⟨d⟩)T(d − ⟨d⟩)⟩, which is just C. This simplifies to

Cov(AML, BML) =

n

∑
i,j=1

(F\B\B)
−1
Ai µT

,iC
−1µ,j(F\A\A)

−1
Bj

+
n

∑
i=1

(F\B\B)
−1
Ai µT

,iC
−1µ,B(F\A\A)

−1
BB

+
n

∑
i=1

(F\B\B)
−1
AAµT

,AC
−1µ,i(F\A\A)

−1
Bi

+(F\B\B)
−1
AAµT

,AC
−1µ,B(F\A\A)

−1
BB. (4.30)

Notice that terms like µT
,iC

−1µ,j are just elements of the Fisher matrix and

we can also use equation (B7) to express terms like (F\B\B)
−1
Ai in terms of
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determinants of minors of the Fisher matrix. Thus,

Cov(AML, BML) =
1

|F\B\B||F\A\A|
×

[︄
n

∑
i,j=1

(−1)i+n+1
⃓⃓⃓
F\B\B

\i\A

⃓⃓⃓
Fij(−1)j+n+1

⃓⃓⃓
F\A\A

\j\B

⃓⃓⃓
⏞ ⏟⏟ ⏞

[1]

+
n

∑
i=1

(−1)i+n+1
⃓⃓⃓
F\B\B

\i\A

⃓⃓⃓
FiB

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓
⏞ ⏟⏟ ⏞

[2]

+
n

∑
i=1

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓
FAi(−1)i+n+1

⃓⃓⃓
F\A\A

\i\B

⃓⃓⃓
⏞ ⏟⏟ ⏞

[3]

+
⃓⃓⃓
F \B\B
\A\A

⃓⃓⃓
FAB

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓
⏞ ⏟⏟ ⏞

[4]

]︄
. (4.31)
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To simplify (B21), first we combine term [1] and [2]:

[1] + [2]

=
n

∑
i=1

(−1)i+n+1
⃓⃓⃓
F\B\B

\i\A

⃓⃓⃓
×

[︄
n

∑
j=1

Fij(−1)j+n+1
⃓⃓⃓
F\A\A

\j\B

⃓⃓⃓
+FiB

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓]︄

=
n

∑
i=1

(−1)i+n+1
⃓⃓⃓
F\B\B

\i\A

⃓⃓⃓
×

[︄
n

∑
j=1

Fji(−1)(n+1)+j
⃓⃓⃓
F\A\A

\j\B

⃓⃓⃓
+FBi(−1)2×(n+1)

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓]︄

where we have used the property that the Fisher matrix is symmetric.

Compared to equation (B8), note that the terms inside the last bracket

above sum up to the determinant of an (n + 1)× (n + 1) matrix, which is the

same as F\A\A, except that its (n + 1)th column is replaced by its ith. So not

all of the columns for this matrix are linearly independent, resulting in its

determinant being zero. Thus [1] + [2] = 0.
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To simplify term [3] and [4], we have

[3] + [4]

=
⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓[︄ n

∑
i=1

FAi(−1)i+n+1
⃓⃓⃓
F\A\A

\i\B

⃓⃓⃓
+FAB

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓]︄

=
⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓[︄ n

∑
i=1

FiA(−1)i+n+1
⃓⃓⃓
F\A\B

\i\A

⃓⃓⃓
+FBA

⃓⃓⃓
F\A\B
\B\A

⃓⃓⃓]︄

=
⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓⃓⃓⃓
F\A\B

⃓⃓⃓
(4.32)

Insertng (4.32) into (4.31), we have

Cov(AML, BML) =

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓⃓⃓⃓
F\A\B

⃓⃓⃓
|F\B\B||F\A\A|

. (4.33)

Using Equation (4.27) and (4.28), the correlation between the best-fit values of

parameter A and B estimated separately can be written as

corr(AML, BML) =
Cov(AML, BML)

(Var(AML)× Var(BML))
1
2

=

⃓⃓⃓
F\A\A

\B\B

⃓⃓⃓⃓⃓⃓
F\A\B

⃓⃓⃓
|F\B\B||F\A\A|

(|F\B\B||F\A\A|)
1
2⃓⃓⃓

F\A\A
\B\B

⃓⃓⃓

=
|F\A\B|

(|F\A\A||F\B\B|)
1
2

, (4.34)

which is the same as equation (4.21) up to a minus sign, thus completing our
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proof.
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Chapter 5

Discussion and Conclusion

In the last two decades, advances in instruments and computations allow

cosmologists to place increasingly precise measurements on cosmological

parameters. Small differences between results from different data sets become

more and more pronounced. The most notable discrepancy in cosmology is

the ‘Hubble tension’, the disagreement between the Hubble constant from late

universe measurements using distance ladder or strong lensing time delays

and early universe CMB or BAO based measurements.

It is important to investigate the source of inconsistency between measure-

ments. It may be an artifact of systematic errors, or it may signal a failure in

the Standard Model of Cosmology. But before looking for sources, we need to

first assess whether the differences we see are statistically significant, which is

what my research has focused on.

This thesis summarized my work on applying statistical tools to analyze

and quantify consistency between different data sets as well as extensions to

the ΛCDM model. In Chapter 2, we have found tensions between cosmolog-

ical parameters obtained from the Planck 2015 high-multipole TT spectrum
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(ℓ ≥ 1000, roughly the scales inaccessible to WMAP) and its low-multiple coun-

terpart, as well as other cosmological measurements, including Planck 2015

ϕϕ lensing power spectrum and the local distance ladder measurement. In

Chapter 3, we took a closer look at the Planck 2015 TT spectrum by comparing

it to WMAP’s over their overlapping multipole range where power spectrum

based likelihoods were used. We quantified the significance of their difference

while accounting for the cosmic variance common to both experiments. We

found that the spectra are consistent within 1σ. The consistency shown in our

analysis provides high confidence in both the WMAP9 TT power spectrum

and the overlapping multipole region of the Planck 2015 power spectrum,

virtually independent of any assumed cosmological model. The Planck 2018

TT spectrum is only minimally different from the 2015 version (Planck Collab-

oration et al., 2018), and we therefore expect the ℓ ⪅ 1000 portion to remain

consistent with WMAP. As for the Planck high multipole TT spectrum, Planck

Collaboration, 2017 found that when accounting for the multi-dimensional

parameter space including correlations between parameters, the discrepancy

within Planck are at the 10 % level and hence not especially unusual. In

addition, the recent release of DR4 maps and cosmological parameter con-

straints from the Atacama Cosmology Telescope collaboration are in excellent

agreement with the results from Planck (Naess et al., 2020; Aiola et al., 2020),

suggesting the Planck results are unlikely to be affected by systematic errors.

Since 2014 when the Hubble tension first became apparent (Planck Collab-

oration, 2014), cosmologists have exerted great effort to improve precision and

accuracy in the measurement of the Hubble constant and have been ruling
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out systematic errors in both the late and the early universe observations. Yet

with lower uncertainties on both ends, the discrepancy has not shrunk and its

significance has only grown. See Riess, 2019; Efstathiou, 2020 for summary

and discussion of recent developments on the subject. It becomes more and

more clear that the Hubble tension is an indication of new physics beyond

the standard ΛCDM model. In this regard, my work in Chapter 4 was to aid

hypothesis testing for alternative theories. I developed a procedure to quantify

correlations between additional parameters in ΛCDM extensions that are not

fitted simultaneously, which can and should be applied to more extensive lists

of extension parameters, with existing and future cosmological data, in the

search for an alternative model as a resolution to the Hubble tension.
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