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Abstract

This thesis attempts to solve a novel problem originally posted on a

question-and-answer website. In a counting-out game, there are n people

in a line at positions 1, 2, . . . , n. For each round, we randomly select a

person at position k, where k is odd, to leave the line, and shift the people

at each position i such that i > k to position i − 1. We continue to select

people until there is only one person left, who then becomes the winner.

We are interested in two questions: which initial position has the greatest

chance to win and which has the longest expected time to stay in the line.

To answer the two questions above, we use a recursive approach to

solve for exact values of the winning probabilities and the expected sur-

vival time, prove the exact formula for the winning probabilities and de-

rive the asymptotic behaviors of the expected survival time for some loca-

tions. We have also considered a variation of the problem, where people

are grouped into triples, quadruples, etc., and the first person in each
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ABSTRACT

group is at the risk of being selected. Recursive equations are constructed

for this generalized case, and a proof of the exact formula for the winning

probabilities is provided as well. Finally, we present other possible exten-

sions and discuss future research directions concerning this problem.

Primary Reader and Advisor: John Wierman
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Chapter 1

Introduction

This thesis addresses a problem originally posted by ChengYiYi [2] on

the Chinese Question-and-Answer website Zhihu. There are n people in

a line at positions 1, 2, . . . , n. For each round, we randomly select a person

at position k, where k is odd, to leave the line, and shift the person at each

position i such that i > k to position i − 1. We continue to select people

until there is only one person left, who then becomes the winner. The

question is, which initial position is the most favorable? In this thesis,

we will answer the question from two different perspectives. The solution

can be based on the probability to survive all rounds of elimination and

win the game eventually, which we refer to as winning probability, or the

expected number of turns to stay in the line before being selected and
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CHAPTER 1. INTRODUCTION

forced to quit the game, which we refer to as expected survival time. Of

course, the initial position that has the largest winning probability or the

longest expected survival time would be the most favorable compared to

other positions.

The problem studied in this thesis resembles the famous Josephus

Problem [1]. In the Josephus problem, some players stand in a circle and

one is chosen randomly to be the starting point. For each round, in a spec-

ified direction, we skip a certain number of people and execute the next.

The procedure is repeated until only one person remains, who is then

freed. Mathematicians and computer scientists studying the Josephus

problem are interested in which position in the initial circle can avoid

execution, given the total number of players, the direction, the starting

point and the number of people to skip in each round. Both the Josephus

problem and our problem are variations of counting-out games, in which

players are eliminated one-by-one until there is only one person left. How-

ever, our problem is different in that people stand in a line instead of a

circle, and because the elimination process is probabilistic rather than

deterministic.

As mentioned previously, this problem was originally posted on the

Chinese Question-and-Answer website Zhihu. The original problem was
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CHAPTER 1. INTRODUCTION

only concerned with the special case where the total number of people in

the line initially is 600. Viewed more than 600,000 times and followed

by more than 3,000 users on the website, the question has drawn a great

deal of attention during the past two years. There are more than a hun-

dred answers to the question, but most of them are completely based on

computer simulations and include work only about the winning probabil-

ity rather than the expected survival time of each person. XieZhuoFan [3]

has given the exact values of the winning probability and the expected

survival time when n = 600 using recursive calculation methods, but no

analytical solution is provided. The problem is also posted on Quora [4],

receiving answers based on either simulations or recursive calculations.

In this thesis, we will assume the total number of people in the line ini-

tially is n, an arbitrary positive integer, and present our results obtained

numerically as well as analytically. In addition to the original problem

where we select a person at an odd position k such that k ≡ 1 (mod 2)

each time, we will also study a generalized version of the problem, which

we will refer to as the mod m case: a person at a position k such that

k ≡ 1 (mod m) is selected in each round, where m ∈ N, m ≥ 2. Note that

by definition, the original problem is the mod 2 case. Unless noted other-

wise, the thesis will be addressing the mod 2 case. Results of the mod m
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CHAPTER 1. INTRODUCTION

general case are presented in Chapter 7.

For notational convenience, the person initially standing at the k-th

position is referred to as “Person k,” 1 ≤ k ≤ n. If Person k gets shifted,

we still refer to this person as Person k, but at the (k − 1)-th position.

The thesis is structured as follows:

In Chapter 2, recursive equations are constructed, then the exact val-

ues of the winning probabilities and the expected survival time for each

person are determined recursively for n up to 9.

In Chapter 3, the exact formula of the winning probability for each

person is provided and proved by induction.

Chapter 4 gives the exact expected survival time formula of Person 1.

Lower bounds and upper bounds for the expected survival time of Per-

son 2 are provided in Chapter 5. An asymptotic approach is introduced in

this chapter as well.

The expected survival time of Person 3 and Person 4 are calculated

asymptotically in Chapter 6. The method explained in this chapter may

be used to calculate the asymptotic survival time for other persons (Per-

son 5, 6 and so on) as well.

Chapter 7 gives the exact expected survival time formula of Person n

(the last person). The formula is proved by induction.
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CHAPTER 1. INTRODUCTION

Chapter 8 is dedicated to the discussion of the generalized mod m

case. The formula of the winning probabilities in the generalized case

is proved by induction.

Chapter 9 is a brief summary of our results. We conclude the thesis

with Chapter 10, which mentions future directions of this research and

some open questions.

5



Chapter 2

Recursive Methods and

Calculations

We will first introduce some notation used in this chapter. Let pn(k)

denote the probability that Person k wins the game and En(k) denote the

expected survival time of Person k with n people in the line initially. In

this thesis, we define “survival time” to be the number of rounds a person

survives in the game, excluding the first round. That is to say, if Person

k gets eliminated in the first round, then the survival time is 0. If s/he

becomes the winner, then the survival time is n− 1.
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CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

2.1 Winning Probability

We will use a bottom-up recursion to solve for exact values of the win-

ning probabilities numerically. To start with, we first consider the base

cases when n is small.

If n = 1, Person 1 wins the game in the first round automatically.

Therefore, p1(1) = 1.

If n = 2, Person 1 will be eliminated in the first round because s/he is

the only odd-indexed person, so p2(1) = 0. Person 2 will be the only person

in the second round and win the game. Thus, p2(2) = 1.

If n = 3, let us consider Person 1 first. Since 1 is the smallest index,

Person 1’s position remains the same until s/he is selected and eliminated.

Thus, Person 1 will never win the game. Therefore, we have pn(1) = 0, for

all n. This implies that p3(1) = 0.

Then let us consider Person 2. In the first round, this person is even-

positioned so s/he will not get eliminated. Consider the result of the first

round: P (Person 1 selected) = P (Person 3 selected) = 1
2

, i.e. Person 2 has

equal probabilities to shift to the first position (if Person 1 is eliminated at

first) or remain at the second position (if Person 3 is eliminated at first). If

Person 2 is shifted to the first position, then s/he has probability p2(1) = 0

to win. If Person 2 keeps the second position, then s/he has probability
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CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

p2(2) = 1 to win. Thus, we use a first-step decomposition and condition on

the result of the first round:

p3(2) = P (shifted to position 1) · P (win | shifted)

+ P (remain at position 2) · P (win | remain)

=
1

2
· p2(1) +

1

2
· p2(2)

=
1

2
· 0 + 1

2
· 1

=
1

2
.

Finally, we consider Person 3. Although we can simply compute 1 −

p3(1)−p3(2), we will still do a first-step decomposition here, since we want

to generalize the formula for the winning probability using the decompo-

sition later. Person 3 is either eliminated in the first round or shifted to

the second position. If the person is shifted to the second position , s/he

has probability p2(2) to win. Thus we have:

p3(3) = P (shifted to position 2) · P (win | shifted)

=
1

2
· p2(2)

=
1

2
.
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CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

With the base cases shown above, we see that each calculation depends

only on its very first step. After the first step is taken, the cases break into

situations we have already calculated. We use this bottom-up recursive

approach to calculate the exact value for any winning probability pn(k).

pn(k) = P (shifted to position (k − 1)) · P (win | shifted to position (k − 1))

+ P (remain at position (k − 1)) · P (win | remain at position (k − 1))

= P (shifted to position (k − 1)) · pn−1(k − 1)

+ P (remain at position (k − 1)) · pn−1(k).

The two probabilities in the recursion can be expressed as a function

of n and k. Given that there are n people in the line, ⌈n
2
⌉ people are odd-

indexed. Also, ⌈k−1
2
⌉ odd-indexed people stand in front of Person k. If

Person k is shifted, then an odd-indexed person in front must be selected,

thus:

P (shifted to position (k − 1)) =
⌈k−1

2
⌉

⌈n
2
⌉
.

Similarly, if Person k remains at the same position in the next round,

then an odd-indexed person standing behind Person k must be selected
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in this round. There are ⌈k
2
⌉ odd-indexed people among the first k peo-

ple. Therefore, there are
(︁
⌈n
2
⌉ − ⌈k

2
⌉
)︁

odd-indexed people standing behind

Person k. Thus, we have:

P (remain at position k) =
⌈n
2
⌉ − ⌈k

2
⌉

⌈n
2
⌉

= 1−
⌈k
2
⌉

⌈n
2
⌉
.

Using the above formulae of probabilities, the general recursive rela-

tion for the winning probabilities becomes:

pn(k) = P (shifted to position (k − 1)) · P (win | shifted to position (k − 1))

+ P (remain at position (k − 1)) · P (win | remain at position (k − 1))

= P (shifted to position (k − 1)) · pn−1(k − 1)

+ P (remain at position (k − 1)) · pn−1(k)

=
⌈k−1

2
⌉

⌈n
2
⌉
pn−1(k − 1) +

(︄
1−

⌈k
2
⌉

⌈n
2
⌉

)︄
pn−1(k).

Since we have computed the winning probabilities for n = 1, 2, 3, we

can compute the winning probabilities for n ≥ 4 using the above recursion.

Up to n = 9, using the recursion method, we have obtained the following

results in Table 2.1. Note that Person k is abbreviated as Pk in the table,
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CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

and we have used a common denominator for all probabilities within the

same row.

n P1 P2 P3 P4 P5 P6 P7 P8 P9

1 1
2 0 1
3 0 1/2 1/2
4 0 1/4 1/4 2/4
5 0 1/6 1/6 2/6 2/6
6 0 1/9 1/9 2/9 2/9 3/9
7 0 1/12 1/12 2/12 2/12 3/12 3/12
8 0 1/16 1/16 2/16 2/16 3/16 3/16 4/16
9 0 1/20 1/20 2/20 2/20 3/20 3/20 4/20 4/20

Table 2.1: Winning probabilities of each person for n = 1, ..., 9.

From Table 2.1, we see the winning probability increases approxi-

mately linearly as index k increases. Also, we can see a clear pattern

in the winning probabilities within each level (row). We will prove the

exact formula of winning probabilities in Chapter 3 and the generalized

formula in Chapter 7.

2.2 Expected Survival Time

The idea of recursion for the expected survival time is very similar to

that for the winning probabilities. Again, we first solve the base cases

when n is small.

11



CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

If n = 1, we only have one person in the line initially, so s/he wins the

game in the first round. Therefore, E1(1) = 0.

If n = 2, Person 1 will be eliminated in the first round because s/he is

the only odd-indexed person, so E2(1) = 0. Person 2 will be the only person

in the second round, and the game terminates. Thus, E2(2) = 1.

If n = 3, we can clearly see that Person 1 will never be shifted. There-

fore, if Person 1 survives the first round of selection, then it must be the

case that Person 3 is selected in the first round with probability 1
2

and

that Person 1 remains at the first position in the next round. Starting

from the second round, Person 1 will be a new “Person 1” in the 2-people

game, and is expected to survive for E2(1) = 0 rounds in the new game.

Thus, the expected survival time of Person 1 when n = 3 can be calculated

as follows:

E3(1) = P (remain at position 1) · (1 + E2(1))

=
1

2
· (1 + 0)

=
1

2
.

We now consider Person 2 when n = 3. If Person 1 is selected in the

first round (with probability 1
2
), then Person 2 will be shifted and become
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“Person 1” in the new game of 2 people. If Person 3 is selected in the first

round (with probability 1
2
), then Person 2 will remain at the same position

and still be “Person 2” in the new game of 2 people. Thus, E3(2) can be

calculated as follows:

E3(2) = P (shifted to position 1) · (1 + E2(1))

+ P (remain at position 2) · (1 + E2(2))

=
1

2
· (1 + 0) +

1

2
· (1 + 1)

=
3

2
.

If not selected, Person 3 will be shifted (with probability 1
2
) and become

“Person 2” in the reduced 2-people game because s/he is already the last

person in the line. S/he will never remain at the same position. Then, we

have the following:

E3(3) = P (shifted to position 2) · (1 + E2(2))

=
1

2
· (1 + 1)

= 1.

With the base cases solved above, we can use recursion to calculate
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more results. Assume that a person survives the first round of the game,

then in the next round this person either gets shifted to the previous po-

sition (if someone in front of this person gets selected) or remains at the

same position (if someone behind this person gets selected). If the person

is selected in the first round, then the survival time is 0 by our definition,

and will not contribute to the calculation of the expected survival time. In

the next round, the game of n people reduces to a smaller game with n− 1

people initially. Using this recursive idea, we can construct the following

recursive equation based on the first-step decomposition:

En(k) = P (shifted to position (k − 1)) · E(survival time | shifted)

+ P (remain at position k) · E(survival time | remain)

= P (shifted to position (k − 1)) · (1 + En−1(k − 1))

+ P (remain at position k) · (1 + En−1(k)).

Recall that we have obtained these two formulae in the previous section:

P (shifted to position (k − 1)) =
⌈k−1

2
⌉

⌈n
2
⌉
.

P (remain at position k) =
⌈n
2
⌉ − ⌈k

2
⌉

⌈n
2
⌉

= 1−
⌈k
2
⌉

⌈n
2
⌉
.

14



CHAPTER 2. RECURSIVE METHODS AND CALCULATIONS

Using the above formulae of probabilities, the general recursive relation

for the expected survival time becomes:

En(k) = P (shifted to position (k − 1)) · (1 + En−1(k − 1))+

P (remain at position k) · (1 + En−1(k))

=
⌈k−1

2
⌉

⌈n
2
⌉
(1 + En−1(k − 1)) +

(︄
1−

⌈k
2
⌉

⌈n
2
⌉

)︄
(1 + En−1(k)).

Up to n = 9, using the recursion method, we have obtained the follow-

ing table of results. Person k is abbreviated as Pk, and the numbers are

rounded to two decimal places.

n P1 P2 P3 P4 P5 P6 P7 P8 P9

1 0
2 0 1.00
3 0.50 1.50 1.00
4 0.75 2.00 1.25 2.00
5 1.17 2.58 1.75 2.50 2.00
6 1.44 3.11 2.11 3.00 2.33 3.00
7 1.83 3.69 2.58 3.56 2.83 3.50 3.00
8 2.13 4.23 2.97 4.07 3.24 4.00 3.38 4.00
9 2.50 4.81 3.43 4.63 3.72 4.54 3.88 4.50 4.00

Table 2.2: Expected survival time of each person for n = 1, ..., 9.

It is instructive to plot the expected survival time versus the initial

position index for different n. Figure 2.1 shows a plot when n varies from 2

(the bottom line) to 20 (the top line). XieZhuoFan [3] on Zhihu claims that
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Figure 2.1: Expected survival time of each person for n = 2, ..., 20. For
odd-indexed positions, the expected survival time increases. For even-
indexed positions, the expected survival time decreases. The peak occurs
at position 2.

the expected survival time is increasing with respect to the initial position

index for odd-indexed people and decreasing with respect to the initial

position index for even-indexed people. He also believes that Person 1 has

the shortest expected survival time, approximately 1
3
n and that Person

2 has the longest expected survival time, approximately 5
9
n, although no

proof is provided.

We will prove that En(1) = 1
3
n and En(2) = 5

9
n asymptotically when

n is sufficiently large in Chapter 4 and Chapter 5. Based on our recur-

sive calculations and plots, XieZhuoFan’s first claim also appears to be

true. In Chapter 6, we will introduce a method to calculate the asymp-

totic expected survival time of any person, which may be used to prove

XieZhuoFan’s first claim.
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Chapter 3

Winning Probabilities

We can express the winning probability of each person as a function

of k and n, where k is the initial position index and n is the total num-

ber of people in the game. From observation of the values in Table 2.1,

we claim that the winning probability grows linearly with respect to the

initial position index k and that the formula is ⌊ k
2
⌋

⌊n
2
⌋⌊n+1

2
⌋ . A natural idea to

prove the formula is to use induction and break into four cases based on

the parity of k and n. The initial proof was excessively long, and it could

not be adapted to prove the generalized mod m case since there are too

many cases (m2 cases) to consider. We provide a refined proof that does

not rely on cases and could be generalized to prove the mod m case.

Theorem: The winning probability for the person at initial position k

17



CHAPTER 3. WINNING PROBABILITIES

(i.e. Person k) among n people initially is:

pn(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if n = 1

⌊ k
2
⌋

⌊n
2
⌋⌊n+1

2
⌋ , otherwise.

Proof: We will use induction to prove the result. Note that we have

shown Person 1 always loses the game unless s/he is the only player, i.e.

n = 1.

Base cases:

Let n = 1. This formula is trivially true.

Let n = 2. Person 1 is selected in the first round. Therefore, Person 1

never wins, and Person 2 wins with probability one. When k = 1, we have

p2(1) =
⌊ 1
2
⌋

⌊ 2
2
⌋⌊ 2+1

2
⌋ =

0
1·1 = 0. When k = 2, we have p2(2) =

⌊ 2
2
⌋

⌊ 2
2
⌋⌊ 2+1

2
⌋ =

1
1·1 = 1.

Let n = 3. If Person 1 gets picked (with probability 1
2
) in the first round,

then Person 2 becomes the new Person 1 and can never win, so Person 3

is the winner. If Person 3 gets picked (with probability 1
2
), then Person 2

is the winner because the Person 1 would be eliminated. We then verify

the formula for all possible k. When k = 1, p3(1) =
⌊ 1
2
⌋

⌊ 3
2
⌋⌊ 3+1

2
⌋ =

0
1·2 = 0. When

k = 2, p3(2) =
⌊ 2
2
⌋

⌊ 3
2
⌋⌊ 3+1

2
⌋ =

1
1·2 = 1

2
. When k = 3, p3(3) =

⌊ 3
2
⌋

⌊ 3
2
⌋⌊ 3+1

2
⌋ =

1
1·2 = 1

2
.

Induction Hypothesis: We assume our formula is correct for all pos-

sible k, k = 1, 2, 3, ..., n in level n, i.e. the game where there are n people

18
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initially.

Inductive Step: We prove the correctness of our formula for level

n+ 1.

Let Sk be the event that Person k gets shifted to the previous position

(k−1) in the next round when there are (n+1) people, Rk be the event that

Person k remains at the same position k when there are (n+ 1) people.

If Person k is shifted, we must have an odd-indexed person selected

standing in front of him/her. There are ⌊k
2
⌋ odd-indexed people among Per-

son 1, 2, ..., k − 1, and there are a total of ⌊n+2
2
⌋ odd-indexed people among

(n+ 1) people. Thus, we have P (Sk) =
⌊ k
2
⌋

⌊n+2
2

⌋ .

If Person k remains at the same position, we must have an odd-indexed

person selected standing behind him/her. That is to say, Person 1, 2, ..., k

must NOT be chosen in that particular round. There are ⌊k+1
2
⌋ odd-

indexed people among Person 1, 2, ..., k, and there are a total of ⌊n+2
2
⌋ odd-

indexed people among (n+ 1) people. Thus, we have P (Rk) = 1− ⌊ k+1
2

⌋
⌊n+2

2
⌋ .

Now let’s consider the recursion. Since we know pn(k − 1) and pn(k)

by the induction hypothesis, we can plug these values into the recursive

relation and obtain pn+1(k). In the following calculations, in the step from

(3.3) to (3.4), we multiply the middle term by ⌊n+2
2

⌋
⌊n+2

2
⌋ so that all the terms

share a common denominator. In the step from (3.5) to (3.6), notice that:
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CHAPTER 3. WINNING PROBABILITIES

⌊k−1
2
⌋ − ⌊k+1

2
⌋ = ⌊k−1

2
⌋ −

(︁
⌊k−1

2
⌋+ 1

)︁
= −1. We have:

pn+1(k) = P (Sk)pn(k − 1) + P (Rk)pn(k) (3.1)

=

(︄
⌊k
2
⌋

⌊n+2
2
⌋

)︄(︄
⌊k−1

2
⌋

⌊n
2
⌋⌊n+1

2
⌋

)︄
+

(︄
1−

⌊k+1
2
⌋

⌊n+2
2
⌋

)︄(︄
⌊k
2
⌋

⌊n
2
⌋⌊n+1

2
⌋

)︄
(3.2)

=
⌊k−1

2
⌋⌊k

2
⌋

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋
+

⌊k
2
⌋

⌊n
2
⌋⌊n+1

2
⌋
−

⌊k
2
⌋⌊k+1

2
⌋

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.3)

=
⌊k−1

2
⌋⌊k

2
⌋+ ⌊k

2
⌋⌊n+2

2
⌋ − ⌊k

2
⌋⌊k+1

2
⌋

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.4)

=
⌊k
2
⌋⌊n+2

2
⌋+ ⌊k

2
⌋
(︁
⌊k−1

2
⌋ − ⌊k+1

2
⌋
)︁

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.5)

=
⌊k
2
⌋⌊n+2

2
⌋+ ⌊k

2
⌋ {−1}

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.6)

=
⌊k
2
⌋
{︁
⌊n+2

2
⌋ − 1

}︁
⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.7)

=
⌊k
2
⌋
{︁
⌊n
2
⌋
}︁

⌊n
2
⌋⌊n+1

2
⌋⌊n+2

2
⌋

(3.8)

=
⌊k
2
⌋

⌊n+1
2
⌋⌊n+2

2
⌋
. (3.9)

Thus the theorem is correct by mathematical induction.
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Chapter 4

Expected Survival Time of

Person 1

Although we can determine the expected survival time numerically

from the bottom-up recursion, it would be useful to obtain a solution ana-

lytically without calculating all the expectations for each Person k and for

each n.

If n is odd, then the expected survival time can be calculated exactly

for Person 1. Let n be the initial number of people in the line and m be

the initial number of odd-indexed people, so we have m = ⌈n
2
⌉ = n+1

2
and

n = 2m−1. Let T be the survival time of Person 1. Our goal is to calculate

E[T ], which is the same as En(1) defined in Chapter 2. To obtain the
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CHAPTER 4. EXPECTED SURVIVAL TIME OF PERSON 1

expected survival time, we will calculate the probability mass function of

T .

If there are n people, ⌈n
2
⌉ of them are at odd-indexed positions. If T = 0,

Person 1 should be selected out of the ⌈n
2
⌉ people in the first round. Then,

P (T = 0) = P (Person 1 selected in the 1st round) =
1

⌈n
2
⌉
=

1

m
.

If the survival time is t where t > 0, then Person 1 should have sur-

vived the first t rounds but get selected in the (t + 1)-th round. The prob-

abilities of T being 1, 2 and 3 are calculated respectively as follows:

P (T = 1) = P (selected in the 2nd round, survive the 1st round)

=
1

⌈n−1
2
⌉

(︃
1− 1

⌈n
2
⌉

)︃

=
1

m− 1

(︃
m− 1

m

)︃

=
1

m
.
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P (T = 2) = P (selected in the 3nd round, survive the first 2 rounds)

=
1

⌈n−2
2
⌉

(︃
1− 1

⌈n
2
⌉

)︃(︃
1− 1

⌈n−1
2
⌉

)︃

=
1

m− 1

(︃
m− 1

m

)︃(︃
m− 2

m− 1

)︃

=
1

m

(︃
m− 2

m− 1

)︃
.

P (T = 3) = P (selected in the 4th round, survive the first 3 rounds)

=
1

⌈n−3
2
⌉

(︃
1− 1

⌈n
2
⌉

)︃(︃
1− 1

⌈n−1
2
⌉

)︃(︃
1− 1

⌈n−2
2
⌉

)︃

=
1

m− 2

(︃
m− 1

m

)︃(︃
m− 2

m− 1

)︃(︃
m− 2

m− 1

)︃

=
1

m

(︃
m− 2

m− 1

)︃
.

Having recognized the pattern of cancellation of factors in the calcu-

lations, we can generalize the formula of the probability mass function of

even T (T = 2i) and odd T (T = 2i+ 1).
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For even values,

P (T = 2i) = P (selected in the (2i+ 1)th round, not the first (2i) rounds)

=
1

⌈n−2i
2

⌉

(︃
1− 1

⌈n
2
⌉

)︃(︃
1− 1

⌈n−1
2
⌉

)︃
. . .

(︄
1− 1

⌈n−(2i−1)
2

⌉

)︄

=
1

m− i

(︃
m− 1

m

)︃(︃
m− 2

m− 1

)︃(︃
m− 2

m− 1

)︃
. . .

(︃
m− i

m− (i− 1)

)︃(︃
m− i

m− (i− 1)

)︃(︃
m− (i+ 1)

m− i

)︃

=
(m− 1)(m− i)2[m− (i+ 1)]

(m− i)(m)(m− 1)2(m− i)

=
1

m

(︃
m− 1− i

m− 1

)︃
.

For odd values,

P (T = 2i+ 1) = P (selected in (2i+ 2)th round, not in first (2i+ 1) rounds)

=
1

⌈n−(2i+1)
2

⌉

(︃
1− 1

⌈n
2
⌉

)︃
. . .

(︃
1− 1

⌈n−2i
2

⌉

)︃

=
1

m− i− 1

(︃
m− 1

m

)︃(︃
m− 2

m− 1

)︃(︃
m− 2

m− 1

)︃
. . .

(︃
m− (i+ 1)

m− i

)︃(︃
m− (i+ 1)

m− i

)︃

=
1

m

(︃
m− 1− i

m− 1

)︃
.
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Using the probability mass function, we can compute E[T ], the ex-

pected survival time of Person 1:

E[T ] =
n∑︂

t=0

t · P (T = t)

=
m−1∑︂
i=0

2i · P (T = 2i) +
m−1∑︂
i=0

(2i+ 1) · P (T = 2i+ 1)

=
m−1∑︂
i=0

2i ·
(︃

1

m
· m− 1− i

m− 1

)︃
+

m−1∑︂
i=0

(2i+ 1) ·
(︃

1

m
· m− 1− i

m− 1

)︃

=
1

m

m−1∑︂
i=0

(2i+ 2i+ 1)
m− 1− i

m− 1

=
1

m

m−1∑︂
i=0

(4i+ 1)

(︃
1− i

m− 1

)︃

=
1

m

m−1∑︂
i=0

(︃
4i+ 1− 4i2

m− 1
− i

m− 1

)︃

=
1

m

[︄
4
m−1∑︂
i=0

i+m− 4

m− 1

m−1∑︂
i=0

i2 − 1

m− 1

m−1∑︂
i=0

i

]︄

=
1

m

[︃
2m(m− 1) +m− 4

m− 1

(m− 1)(m)(2m− 1)

6
− m

2

]︃

= 2(m− 1) + 1− 2

3
(2m− 1)− 1

2

=
2

3
m− 5

6
.
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We then replace m by n+1
2

, because n = 2m−1 by assumption, to obtain

En(1) = E[T ] =
2

3

(︃
n+ 1

2

)︃
− 5

6
=

1

3
n− 1

2
, if n is odd.

We do not need to re-do all the calculations above if we want to com-

pute the expected survival time when n is even. Instead, we use the re-

cursive equation we constructed in Chapter 2 as well as the formula of

the odd case to solve for the expected survival time:

En(1) = P (remain at position 1) · (En−1(1) + 1)

=

(︃
1− 1

n/2

)︃(︃
1

3
(n− 1)− 1

2
+ 1

)︃

=
1

3
(n− 1) +

1

2
− 2

n

(︃
1

3
(n− 1) +

1

2

)︃

=
1

3
n+

1

6
−
(︃
2

3
− 2

3n
+

1

n

)︃

=
1

3
n− 1

2
− 1

3n
, if n is even.

When n is sufficiently large, the term 1
3n

is negligible. What’s more,

the two lower-order terms 1
2

and 1
3n

together are O(1), while the leading

term is O(n). Therefore, the expected survival time is approximately 1
3
n if

n is sufficiently large.
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Chapter 5

Expected Survival Time of

Person 2

5.1 Lower and Upper Bounds

In Chapter 4, we calculated the expected survival time of Person 1.

For odd n, En(1) =
1
3
n − 1

2
, and for even n, En(1) =

1
3
n − 1

2
− 1

3n
. Then, we

have the inequality that 1
3
n − 1 ≤ En(1) ≤ 1

3
n for all n. We will use this

inequality, which gives an upper bound and a lower bound for En(1), to

calculate the bounds for the expected survival time of Person 2.

We first calculate the upper bound for En(2). We break into cases based

on the round in which Person 2 gets shifted. The probability that Person
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2 gets shifted in round k is the same as the probability that Person 1 gets

eliminated in round k. This is also equal to the probability that Person 1

survives for time t = k − 1.

Because Person 2 is standing at an even position, s/he will not be elim-

inated in the game until shifting to the first position. If Person 2 gets

shifted to the first position in round k, then s/he will become the new

“Person 1” in the reduced game of n− k people. Thus, we have:

En(2) =
n−1∑︂
k=1

P (Person 2 shifted in round k) · (En−k(1) + k)

=
n−1∑︂
k=1

P (Person 1 eliminated in round k) · (En−k(1) + k)

=
n−2∑︂
t=0

P (T = t) · [En−(t+1)(1) + (t+ 1)]

=
n−2∑︂
t=0

P (T = t) · En−t−1(1) +
n−2∑︂
t=0

P (T = t) · t+
n−2∑︂
t=0

P (T = t).

The expression for En(2) includes three terms. The second term is the

expected survival time of Person 1. If we apply the upper bound, then the

term
∑︁n−2

t=0 P (T = t) · t = En(1) ≤ 1
3
n. The third term is the summation of

the probabilities for all of the possible T values in the support, so the term

equals 1. Finally, in order to compute the first term, we replace En−t−1(1)

by the upper bound, 1
3
(n− t− 1).
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In the calculations below, we have −1
3

∑︁n−2
t=0 P (T = t) · t = −1

3
En(1), and

because of the minus sign, we will need to apply a lower bound instead of

the upper bound for En(1), Therefore, we have

n−2∑︂
t=0

P (T = t) · En−t−1(1)

≤
n−2∑︂
t=0

P (T = t) · 1
3
(n− t− 1)

=
1

3
n

n−2∑︂
t=0

P (T = t)− 1

3

n−2∑︂
t=0

P (T = t) · t− 1

3

n−2∑︂
t=0

P (T = t)

≤ 1

3
n− 1

3

(︃
1

3
n− 1

)︃
− 1

3

=
2

9
n.

Adding all three terms, we get:

En(2) =
n−2∑︂
t=0

P (T = t) · En−t−1(1) +
n−2∑︂
t=0

P (T = t) · t+
n−2∑︂
t=0

P (T = t)

≤ 2

9
n+

1

3
n+ 1

=
5

9
n+ 1.

Thus, we obtain (5
9
n+ 1) as an upper bound for En(2).
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In a similar fashion, we may calculate a lower bound for En(2).

En(2) =
n−1∑︂
k=1

P (Person 1 eliminated in round k) · (En−k(1) + k)

=
n−2∑︂
t=0

P (T = t) · (En−(t+1)(1) + (t+ 1))

=
n−2∑︂
t=0

P (T = t) · En−t−1(1) +
n−2∑︂
t=0

P (T = t) · t+
n−2∑︂
t=0

P (T = t)

≥
n−2∑︂
t=0

P (T = t) ·
(︃
1

3
(n− t− 1)− 1

)︃
+

(︃
1

3
n− 1

)︃
+ 1

=
1

3
n

n−2∑︂
t=0

P (T = t)− 1

3

n−2∑︂
t=0

P (T = t) · t− 1

3

n−2∑︂
t=0

P (T = t)− 1 +
1

3
n

≥ 1

3
n− 1

3

(︃
1

3
n

)︃
− 1

3
− 1 +

1

3
n

=
5

9
n− 4

3
.

Thus, we obtain (5
9
n− 4

3
) as a lower bound for En(2).

5.2 Asymptotic Approach

If n is sufficiently large, then the exact value of the lower-order terms

in En(1) is unimportant. The lower-order terms are O(1), so Person 1 is

expected to survive for time E[T ] = 1
3
n+O(1).
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Let the survival time of Person 2 be denoted by T2 and T denote the

survival time of Person 1 again. We apply the law of total expectation,

conditioning on the time when Person 2 gets shifted (denoted by Tshift) to

compute E[T2]. Shifting Person 2 is equivalent to selecting Person 1, so

we have Tshift = T and E[Tshift] = E[T ] = 1
3
n+O(1).

If Tshift is known, then after Person 2 is shifted and becomes “Person

1,” the game will be reduced to a smaller game with (n − Tshift) people.

In the reduced game, Person 2, who moves to the first position, will be

expected to survive for time 1
3
(n− Tshift) +O(1). Thus,

E[T2] = E[E(T2|Tshift)]

= E[Tshift +
1

3
(n− Tshift) +O(1)]

= E[Tshift] +
1

3
n− 1

3
E[Tshift] +O(1)

=
2

3
E[Tshift] +

1

3
n+O(1)

=
2

3

(︃
1

3
n+O(1)

)︃
+

1

3
n+O(1)

=
5

9
n+O(1).

Therefore, the expected survival time of Person 2 is approximately 5
9
n

from an asymptotic perspective.
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Chapter 6

Expected Survival Time of

Person 3 and Person 4

In this chapter, we will discuss the method to compute the asymptotic

expected survival time of Persons 3 and 4. In principle, the method can

be generalized and applied to compute the asymptotic expected survival

time of an arbitrary person as well.

Person 3

We consider the third person first. Instead of conditioning on the shift

time as we did for Person 2, we condition on the time until Person 3 is

shifted or selected. We denote this time by Tss. Also, we define I to be the
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indicator such that:

I =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Person 3 is shifted first,

0, if Person 3 is selected first.

We denote the survival time of Person 3 by T3. If Tss is known, the

survival time before Person 3 gets shifted or selected is of course Tss. If

Person 3 is shifted, then s/he will become “Person 2” in the new game of

(n−Tss) people and is expected to survive for time approximately 5
9
(n−Tss)

after the shift. If Person 3 is selected, then s/he will leave the queue

and the survival time after the selection is 0. Thus, using the indicator

notation, Person 3 can survive for time I · 5
9
(n − Tss) on average after the

shift or selection. Then the expected survival time of Person 3 is:

En(3) = E[T3]

= E[E(T3|Tss)]

≈ E[Tss + I · 5
9
(n− Tss)].

However, I is independent of Tss. Knowing the time it takes until Per-

son 3 is shifted or selected does not provide us with any information about

whether the person is indeed shifted first or selected first. Besides, Tss is
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just the time until Person 1 or 3 gets selected, because Person 3 will shift

if and only if Person 1 gets selected.

In each round, the probability that Person 1 is selected is the same as

the probability that Person 3 is selected, both being the reciprocal of the

number of odd-indexed people in that round. Therefore, given that Person

3 is either shifted or selected, with probability 1
2

s/he is shifted first (and

Person 1 being selected first), and with probability 1
2

s/he is selected first.

Then, the expected value of I is

E[I] =
1

2
· 1 + 1

2
· 0 =

1

2
.

Because of the independence,

En(3) = E[Tss + I · 5
9
(n− Tss)]

= E[Tss] +
5

9
E[I]E[n− Tss]

= E[Tss] +
5

18
(n− E[Tss])

=
5

18
n+

13

18
E[Tss].

We now are interested in E[Tss], the expected time until Person 1 or 3

gets selected. To start with, assume n is odd, and n = 2m− 1, so that m is
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the number of odd-indexed people initially. We calculate the probability

mass function of Tss using the same approach as in Chapter 4. In order to

recognize the pattern, we perform more calculations, but for the sake of

brevity, only the first few example calculations are included:

P (Tss = 0) = P (either Person 1 or 3 selected in the 1st round)

=
2

⌈n
2
⌉

=
2

m
.

P (Tss = 1) = P (Person 1 or 3 eliminated in the 2nd round,

both survive the 1st round)

=
2

⌈n−1
2
⌉

(︃
1− 2

⌈n
2
⌉

)︃

=
2

m− 1

(︃
m− 2

m

)︃

=
2(m− 2)

(m− 1)m
.
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P (Tss = 2) = P (Person 1 or 3 eliminated in the 3rd round,

both survive the first 2 rounds)

=
2

⌈n−2
2
⌉

(︃
1− 2

⌈n−1
2
⌉

)︃(︃
1− 2

⌈n
2
⌉

)︃

=
2

m− 1

(︃
m− 3

m− 1

)︃(︃
m− 2

m

)︃

=
2(m− 3)(m− 2)

(m− 1)(m− 1)m
.

P (Tss = 3) = P (Person 1 or 3 eliminated in the 4th round,

both survive the first 3 rounds)

=
2

⌈n−3
2
⌉

(︃
1− 2

⌈n−2
2
⌉

)︃(︃
1− 2

⌈n−1
2
⌉

)︃(︃
1− 2

⌈n
2
⌉

)︃

=
2

m− 2

(︃
m− 3

m− 1

)︃(︃
m− 3

m− 1

)︃(︃
m− 2

m

)︃

=
2(m− 3)(m− 3)

(m− 1)(m− 1)m
.
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P (Tss = 4) = P (Person 1 or 3 eliminated in the 5th round,

both survive the first 4 rounds)

=
2

⌈n−4
2
⌉

(︃
1− 2

⌈n−3
2
⌉

)︃(︃
1− 2

⌈n−2
2
⌉

)︃(︃
1− 2

⌈n−1
2
⌉

)︃(︃
1− 2

⌈n
2
⌉

)︃

=
2

m− 2

(︃
m− 4

m− 2

)︃(︃
m− 3

m− 1

)︃(︃
m− 3

m− 1

)︃(︃
m− 2

m

)︃

=
2(m− 4)(m− 3)(m− 3)

(m− 2)(m− 1)(m− 1)m
.

After simplification, the generalized formulae of the probability mass

functions of even T (T = 2i) and odd T (T = 2i+ 1) for i = 0, 1, 2, 3... are

P (Tss = 2i) = P (Person 1 or 3 eliminated in the (2i+1)th round,

both survive the first 2i rounds)

=
2(m− (i+ 2))(m− (i+ 1))(m− (i+ 1))

(m− 2)(m− 1)(m− 1)m

=
2(m− i− 2)(m− i− 1)(m− i− 1)

(m− 2)(m− 1)(m− 1)m

=
2(m− i− 2)(m− i− 1)2

(m− 2)(m− 1)2m
.
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P (Tss = 2i+ 1) = P (Person 1 or 3 eliminated in the (2i+2)th round,

both survive the first (2i+1) rounds)

=
2(m− (i+ 2))(m− (i+ 2))(m− (i+ 1))

(m− 2)(m− 1)(m− 1)m

=
2(m− i− 2)(m− i− 2)(m− i− 1)

(m− 2)(m− 1)(m− 1)m

=
2(m− i− 2)2(m− i− 1)

(m− 2)(m− 1)2m
.

Using the probability mass function above, we can compute the ex-

pected time until Person 1 or 3 gets selected. Note that m = n+1
2

. We used

Wolfram Alpha to compute the sum of powers, i.e.
∑︁m−1

i=0 4i · (m− i−2)(m−

i− 1)2 and
∑︁m−1

i=0 4i · (m− i− 2)2(m− i− 1).

E[Tss] =
n∑︂

t=0

t · P (Tss = t)

=
m−1∑︂
i=0

2i · P (Tss = 2i) +
m−1∑︂
i=0

(2i+ 1) · P (Tss = 2i+ 1)

=
m−1∑︂
i=0

2i ·
(︃
2(m− i− 2)(m− i− 1)2

(m− 2)(m− 1)(m− 1)m

)︃

+
m−1∑︂
i=0

(2i+ 1) ·
(︃
2(m− i− 2)2(m− i− 1)

(m− 2)(m− 1)(m− 1)m

)︃

=

∑︁m−1
i=0 4i · (m− i− 2)(m− i− 1)2

(m− 2)(m− 1)2m
+

∑︁m−1
i=0 4i · (m− i− 2)2(m− i− 1)

(m− 2)(m− 1)2m
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=
1

(m− 2)(m− 1)2m
·
(︃
1

5
m5 − 4

3
m4 + 3m3 − 8

3
m2 +

4

5
m

)︃

+
1

(m− 2)(m− 1)2m
·
(︃
1

5
m5 − 7

6
m4 +

8

3
m3 − 17

6
m2 +

17

15
m

)︃

=
1

(m− 2)(m− 1)2m

(︃
2

5
m5 − 5

2
m4 +

17

3
m3 − 11

2
m2 +

29

15
m

)︃
.

If we ignore the lower order terms, and do not distinguish between

m− 1 and m, then the expected time until Person 1 or 3 gets selected will

be asymptotically 1
m4 · 2

5
m5 = 2

5
m. Since m = n+1

2
≈ n

2
, the expected time

E[Tss] ≈ 1
5
n when n is sufficiently large. Using this result, we can compute

the asymptotic expected survival time of Person 3:

En(3) =
5

18
n+

13

18
E[Tss]

≈ 5

18
n+

13

18

(︃
1

5
n

)︃

=
19

45
n.

Person 4

The case of Person 4 is similar to the case of Person 2. We condition

on the shift time Tshift of Person 4 again because s/he will not be selected

until being shifted to the third position. However, Tshift of Person 4 is the
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time until Person 1 or 3 gets eliminated. Thus,

Tshift = Tss,

E[Tshift] = E[Tss] ≈
1

5
n.

Let T4 denote the survival time of Person 4, we have

En(4) = E[T4]

= E[E(T4|Tshift)]

≈ E[Tshift +
19

45
(n− Tshift)]

=
19

45
n+

26

45
E[Tshift]

≈ 19

45
n+

26

45

(︃
1

5
n

)︃

=
121

225
n.

Other Persons

The calculation methods explained above can be adapted to compute

the expected survival time of Person 5, 6, 7, ....

For odd-indexed persons, as we have seen in the case of Person 3,

the asymptotic expectation of survival time only depends on the expected

40



CHAPTER 6. EXPECTED SURVIVAL TIME OF PERSON 3 AND
PERSON 4

value of the indicator I and the expected time until the person gets shifted

or selected. The expected value of the indicator is the probability that the

indicator takes the value of 1, which is the same as the probability that

the person is shifted (i.e. any person in front is selected) before selected.

For Person k, where k is odd, there are k−1
2

odd-indexed people in front

of Person k. Therefore, the probability that Person k is shifted before se-

lected is
k−1
2

k−1
2

+1
= k−1

k+1
. Thus, E[I] = k−1

k+1
. The expected time until Person

k gets shifted or selected may be calculated by computing the probability

mass function. In the previous part of this chapter and Chapter 4, we

have used the probability mass function to obtain the result that when

k = 1, the expected time is approximately 1
3
n, and that when k = 3, the

expected time is approximately 1
5
n. Additionally, we have made a con-

jecture that the expected time until Person k is shifted before selected is

approximately 1
3
n, 1

5
n, 1

7
n, 1

9
n when k = 1, 3, 5, 7, ...

For even-index persons, such as Person 2 or 4, we only need to calculate

the expected time until the person gets shifted to obtain the expected

survival time. The expected time until Person k shifts, where k is even,

is the same as the the expected time until Person (k − 1) gets shifted

or selected. As mentioned above, the expected time until Person (k − 1)

gets shifted or selected, where k − 1 is odd, may be calculated using the
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probability mass function.

Although we have only computed the expected survival time for Person

1, 2, 3, 4 (respectively 1
3
n, 5

9
n, 19

45
n and 121

225
n), we can still observe a zig-zag

pattern in the numbers: 5
9
> 19

45
> 1

3
, and 19

45
< 121

225
< 5

9
. If we use the

method mentioned above and compute the expected survival time of more

people (Persons 5, 6, 7,...), we may be able to observe the zig-zag pattern

more clearly, or even prove it.
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Expected Survival Time of

Person nnn

From Table 2.2 in Chapter 2, we observe that the expected survival

time of the last person (Person n) is: 0, 1, 1, 2, 2, 3, 3, etc. Based on

this observation, we claim that En(n) = ⌊n
2
⌋. A proof using mathematical

induction follows.

Lemma: The expected survival time of Person n is:

En(n) = ⌊n
2
⌋.

Proof: We prove the formula above by induction.

Base Cases: By Table 2.2 in Chapter 2, we have E1(1) = ⌊1
2
⌋ = 0,
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E2(2) = ⌊2
2
⌋ = 1, and E3(3) = ⌊3

2
⌋ = 1. Thus the formula is correct for the

base cases.

Induction Hypothesis: We assume that the formula is correct for 1, 2, ..., n.

Inductive Step: Now we show that the formula is correct for n + 1.

There are two cases: n is odd, n+1 is even; or n is even, n+1 is odd. From

Chapter 2, we know the recursive equation below holds:

En+1(k) = P (shifted to position k − 1) · (En(k − 1) + 1).

We will use the above equation when k = n+ 1. That is,

En+1(n+ 1) = P (shifted to position n) · (En(n) + 1).

Case (1): If n is odd, n + 1 is even, then Person (n + 1) will shift to

position n with probability one because s/he is even-indexed in the first

round and thus safe. By hypothesis, En(n) = ⌊n
2
⌋, so

En+1(n+ 1) = P (shifted to position n) · (En(n) + 1)

= En(n) + 1
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= ⌊n
2
⌋+ 1

=
n− 1

2
+ 1

= ⌊n+ 1

2
⌋.

Case (2): If n is even, n + 1 is odd, so Person (n + 1) will be selected

in the first round with probability 1
⌈n+1

2
⌉ , because s/he is one of the ⌈n+1

2
⌉

odd-indexed people in the line. Thus, s/he will shift to position n in the

next round with probability
(︂
1− 1

⌈n+1
2

⌉

)︂
. We have

En+1(n+ 1) = P (shifted to position n) · (En(n) + 1)

=

(︃
1− 1

⌈n+1
2
⌉

)︃(︂
⌊n
2
⌋+ 1

)︂
by hypothesis

=

(︃
1− 2

n+ 2

)︃
n+ 2

2

=
n

2

= ⌊n+ 1

2
⌋.

In either case, the claim holds true for n+ 1.

Therefore, by mathematical induction, the formula En(n) = ⌊n
2
⌋ is cor-

rect for any positive integer n. □
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Generalization: the mod mmod mmod m case

Now we discuss a generalized version of the problem. In the original

problem, we select one person who stands at position k such that k ≡ 1

(mod 2) to leave the line in each round. In the generalized mod m prob-

lem, we still eliminate one person per round, but now people standing at

position k such that k ≡ 1 (mod m) for some constant m ≥ 2 are vulner-

able. We have derived the formula of the winning probabilities in this

generalized case.

Theorem: In the mod m case (where m ≥ 2), the winning probability

for the person at position k among n people initially is:

46



CHAPTER 8. GENERALIZATION: THE MOD MMOD MMOD M CASE

pn(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if k = n ≤ m

0, if k < n ≤ m

∏︁m−2
i=0 ⌊ k+i

m
⌋∏︁m−1

j=0 ⌊n+j
m

⌋ , if n > m, 0 ≤ k ≤ n

Proof:

Base cases: Consider the base case where n = 3. We will show that

our formula is correct for all possible k = 1, 2, 3.

When n ≤ m, this game is simply eliminating whoever stands in the

first position in each round. Therefore, the last person, Person n always

wins, and all other people will lose. Therefore, we have pn(k) = 1 when

k = n and pn(k) = 0 when k < n.

When n = 3 > m, the only feasible value for m is 2. Then this is our

mod 2 case which has been proved before. Thus the formula is correct

when n = 3 for all possible k.

Induction Hypothesis: We assume our formula is correct for all pos-

sible k, k = 1, 2, 3, ..., n in level n.

Inductive Step: We prove the correctness of our formula for level

n+ 1.
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First, among a total of x people, there are ⌊x+m−1
m

⌋ people who are vul-

nerable. This can be verified by considering all m possible remainders

when n is divided by m.

Let S be the event that Person k gets shifted to the previous position

(k− 1) in the next round when there are (n+1) people, and R be the event

that Person k remains at the same position k when there are (n+1) people.

If Person k is shifted, a person standing in front of him/her must be se-

lected. There are ⌊k−1+m−1
m

⌋ = ⌊k+m−2
m

⌋ vulnerable people among Persons

1, 2, ..., k − 1, and there are a total of ⌊n+1+m−1
m

⌋ = ⌊n+m
m

⌋ vulnerable people

among (n+ 1) people. Thus, we have P (S) =
⌊ k+m−2

m
⌋

⌊n+m
m

⌋ .

If Person k remains at the same position, we must have a person se-

lected standing behind him/her. That is to say, Persons 1, 2, ..., k must not

be chosen in that particular round. There are ⌊k+m−1
m

⌋ vulnerable people

among Persons 1, 2, ..., k, and there are a total of ⌊n+m
m

⌋ vulnerable people

among (n+ 1) people. Thus, we have P (R) = 1− ⌊ k+m−1
m

⌋
⌊n+m

m
⌋ .

Since we know the value of pn(k−1) and pn(k) by the induction hypoth-

esis, we have the following equation hold for every k = 1, 2, ..., n+1. In the

step from (8.2) to (8.3) we simply expand the equation. In the step from

(8.3) to (8.4), we turn the product of
∏︁m−1

j=0 ⌊
n+j
m

⌋ and ⌊n+m
m

⌋ in the denomi-

nators into a common factor,
∏︁m

j=0⌊
n+j
m

⌋. In the step from (8.8) to (8.9), we
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cancel the j = 0 factor in the denominator. We re-index and change the

range of the index in the final step.

pn+1(k) = P (S)pn(k − 1) + P (R)pn(k) (8.1)

=

(︄
⌊k+m−2

m
⌋

⌊n+m
m

⌋

)︄(︄∏︁m−2
i=0 ⌊k−1+i

m
⌋∏︁m−1

j=0 ⌊
n+j
m

⌋

)︄
(8.2)

+

(︄
1−

⌊k+m−1
m

⌋
⌊n+m

m
⌋

)︄(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m−1

j=0 ⌊
n+j
m

⌋

)︄
(8.3)

=

(︄
⌊k−1

m
⌋

⌊n+m
m

⌋

)︄(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m−1

j=0 ⌊
n+j
m

⌋

)︄
+

(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m−1

j=0 ⌊
n+j
m

⌋

)︄(︃⌊n+m
m

⌋
⌊n+m

m
⌋

)︃
(8.4)

−

(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m−1

j=0 ⌊
n+j
m

⌋

)︄(︄
⌊k+m−1

m
⌋

⌊n+m
m

⌋

)︄
(8.5)

=

(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m

j=0⌊
n+j
m

⌋

)︄(︃⌊︃
k − 1

m

⌋︃
+

⌊︃
n+m

m

⌋︃
−
⌊︃
k +m− 1

m

⌋︃)︃
(8.6)

=

(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m

j=0⌊
n+j
m

⌋

)︄(︃⌊︃
k − 1

m

⌋︃
+

⌊︃
n+m

m

⌋︃
−
⌊︃
k − 1

m

⌋︃
− 1

)︃
(8.7)

=

(︄∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m

j=0

⌊︁
n+j
m

⌋︁)︄⌊︂ n
m

⌋︂
(8.8)

=

∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m

j=1⌊
n+j
m

⌋
(8.9)

=

∏︁m−2
i=0 ⌊k+i

m
⌋∏︁m−1

j=0 ⌊
n+1+j

m
⌋

(8.10)
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Conclusion

In summary, this thesis has introduced a recursive approach to solve

for exact values of the winning probabilities and the expected survival

time, and proved the exact formula of the winning probabilities and the

expected survival time of Person 1 and Person n. Additionally, we have

shown that the asymptotic expected survival time of Person 1, 2, 3 and

4 are 1
3
n, 5

9
n, 19

45
n and 121

225
n respectively. The method in Chapter 6 may be

adapted to calculate the expected survival time of the other persons as

well. Finally, we have also generalized the original problem and proved

the exact formula of the winning probabilities in the generalized case.
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Future Research

As mentioned in Chapter 6, the expected survival time can be solved

asymptotically if we can compute the expected time until Person k gets

shifted or selected for all k. This quantity is just the expected time until

Person 1, 3, ..., k gets selected if k is odd, and is the expected time until Per-

son 1, 3, ..., (k − 1) gets selected if k is even. In previous chapters, we used

the probability mass function to obtain the expected time until Person 1

is selected (≈ 1
3
n) and the expected time until Person 1 or 3 is selected

(≈ 1
5
n). However, the computational difficulty greatly increases if we con-

sider the expected time until more people get shifted. By observing the

exact values of expectation obtained by recursion, we made the conjec-

ture that the expected time until selection is 1
7
n for Person 1, 3 and 5, and
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1
9
n for Person 1, 3, 5 and 7, etc. In the future, we will try to prove this

conjecture without the cumbersome calculations.

Another future direction is to work on the expected survival time of

the generalized case. Although we have already proved the formula of

the winning probabilities, we have not done any work on the expected

survival time yet.

Finally, note that the generalized pattern of elimination in the mod

m case is still very restricted. In the mod m case, in every group of m

people, only the first person is vulnerable. It would be an interesting open

problem if we consider the even more generalized case, where more people

are vulnerable in addition to the first one in each group of m people. For

example, when m = 5, in every group of 5 people, we can assume that

the first and the third are vulnerable (“XOXOO”), or that the first and the

fourth are vulnerable (“XOOXO”).
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