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ABSTRACT 

Background. Drug resistance is a major limiting factor in the success of targeted cancer 

therapies resulting in failure of treatment. A molecular understanding of the underlying 

mechanisms is essential to predict, prevent and overcome drug resistance. Though 

many pathways have been studied, key factors driving these pathways have not been 

largely identified.  

Methods. Using a tiling array of all four HOX clusters, we identified HOXC10 as being 

among the highly overexpressed genes in breast cancer. Then using a panel of cell lines 

that either stably overexpress exogenous HOXC10 or cell lines with stably 

downregulated endogenous HOXC10 (mediated by shRNA), we investigated the role of 

HOXC10 in proliferation, response to chemotherapy treatment and repair of DNA 

damage. Mechanistically, we studied the consequence of HOXC10 binding to CDK7 

during response to chemotherapy. Finally, we investigated the importance of HOXC10 

as a prognostic marker in breast cancer. 

Results. HOXC10 is frequently overexpressed both in primary breast tumors and distant 

metastatic tissues. HOXC10 promotes continuous growth by facilitating G1/S 

progression and replication resumption with higher E2F1 activity. Higher levels of 

HOXC10 expression is also associated with worse relapse-free survival, and overall 

survival in chemotherapy treated patients. In fact, HOXC10 is upregulated in 

chemoresistant MCF7 cell lines, and MDA-MB-231 and SUM-159 xenografts.  When 

cells are exposed to DNA damaging agents, HOXC10 suppresses apoptosis, enhances 

DNA damage repair and NF-κβ activity, reducing susceptibility to drug treatment. Further 

investigation to HOXC10 binding partners after chemotherapy treatment led to the 

finding that HOXC10 binds to and stimulates the kinase activity of CDK7 towards its 
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substrate, RNA polymerase II, and the association of CDK7 with XPD. This allows 

HOXC10 to supports the resumption of transcription and the recovery of cells after DNA 

damage. Consequently, inhibiting CDK7 pharmacologically or reducing its levels using 

siRNA reduced the protective effect of HOXC10 on drug treated cells.   

Conclusions. These data suggest that HOXC10 plays a key role during progression 

and recurrence of breast cancers through modulating different survival pathways. 

Therefore, decreasing the levels or function of HOXC10 in breast cancers might be a 

promising strategy to reduce chemotherapy resistance. 
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CHAPTER 1 

Introduction  

1.1 Breast cancer prevalence, treatment and chemoresistance 

According to the National Cancer Institute, 1 in 8 U.S. women will develop invasive 

breast cancer during the course of her lifetime, and breast cancer is the most commonly 

diagnosed cancer among women (30% of all cancers). Besides lung cancer, breast 

cancer death rates are higher than those for any other cancer (1). 

Breast cancer usually develops in the cells of the ducts (the milk passages from the 

glands to the nipple) or of the lobules (the milk-producing glands), and less commonly in 

the stromal tissues. Like many cancers, breast cancer progresses through identifiable 

stages of development from hyperplasia to atypical hyperplasia (the precancerous 

stages) to carcinoma in situ and finally to invasive carcinoma when the cancer cells 

break through the basement membrane and spread to the lymph nodes or to other 

organs (Figure 1.1). Only 5% of breast cancers are familial in origin, with BRCA1 or 

BRCA2 mutations being the most common inherited susceptibility genes; however, the 

majority develops through spontaneous, non-inherited genetic and epigenetic 

modifications. 

With the advance of microarray-based gene expression profiling, it became obvious that 

breast cancer encompasses a heterogeneous group of diseases with distinct molecular 

features. At least 4 different subtypes were identified: Luminal A (Estrogen receptor (ER) 

and/or progesterone receptor (PR)-positive; human epidermal growth factor receptor 2 

(HER2)-negative), Luminal B (ER and/or PR-positive; HER2-negative or HER2 over-

expressed/amplified), HER2-enriched (HER2 over-expressed or amplified; ER and PR 
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negative) and Basal-like (triple-negative: ER, PR and HER2 negative) (2). These 

molecular subtypes exhibit differences in prognosis and treatment sensitivity, with the 

Luminal A having the best outcome and the basal-like having the worst prognosis.  

 

Figure 1.1. Stages of breast cancer progression. Adopted from  

http://www.breastcancer.org/symptoms/types/dcis/diagnosis.jsp 

Accessed date: 08/14/2013 

 

 

http://www.breastcancer.org/symptoms/types/dcis/diagnosis.jsp
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Although the death rates have been decreasing due to the advances in treatment, the 

earlier detection through screening and the increase of awareness, the decline is still not 

significant due to the high resistance and recurrence rate. This drove efforts to develop 

prognostic and predictive biomarkers within each subtype that can effectively guide 

targeted therapies as well as distinguish patients who are undertreated from those who 

are overtreated. Some of the single emerging biomarkers are Ki67, Cyclin D1 and Cyclin 

E, TOP2A, uPA, circulating and disseminated tumor cells and tumor-derived cell-free 

circulating DNA and microRNA (3). Currently, multigene assays are commercially 

available to guide some treatment options, and are regarded as more objective, 

reproducible and precise compared to the histopathology assessment. Some of these 

tests are: Oncotype Dx, Adjuvant! Online, MammaPrint, PAM50 and molecular grade 

index (Theros MGI). However, these assays are expensive, and their clinical utility is still 

not clear.  More decision impact studies are definitely needed. 

Different treatment options exist for patients with breast cancer, the choice of which 

depends on both histological and molecular characteristics of the tumor (tumour size, 

nodal status, histological grade, and cancer subtype (ER, PR and HER2 status)). The 

standard therapies are surgery, radiation, and chemotherapy, hormonal or targeted 

therapies. New types of treatment options are currently undergoing clinical trial testing, 

including immunotherapies, nanotherapy, gene therapy and stem cells transplantation. 

The current chemotherapy drugs used include: anthracyclins (i.e. doxorubicin), taxanes 

(anti-microtubules, i.e. paclitaxel and docetaxel), antimetabolites (i.e. 5FU, gemcitabine), 

alkylating agents and platinum compounds (i.e. cyclophosphamide, cisplatin, 

carboplatin) (4).  

It is estimated that drug resistance contributes to treatment failure in most patients with 

metastasis (5). This resistance may be intrinsic or acquired during the course of 
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treatment, the latter leading sometimes to cross-resistance, even to structurally and 

mechanistically unrelated chemotherapeutics. In breast cancer, chemotherapies are 

initially active in 90% of primary breast cancers and 50% of metastases.  However 

despite initial tumor response, approximately 30% of treated patients develop a systemic 

recurrence (4). This elevated rate of recurrence most probably reflects the presence of 

micometastatic disease in 10% to 30% of lymph node-negative and in 35% to 90% of 

lymph node-positive patients at the time of diagnosis. For these cancer cells to 

continuously overcome the toxic effects of chemotherapeutic drugs, they have to 

develop a multidimensional response, which include alterations in the drug target; 

decrease in drug accumulation; drug inactivation; processing of the drug-induced 

damage; and evasion of apoptosis (6).  There is therefore a need to develop therapies to 

block these mechanisms as well as to develop better prognostic and predictive markers 

for drug response. 

The common use of the immunohistochemically determined proliferation marker Ki67 to 

assess the aggressiveness of breast cancers has emphasized the importance of 

proliferation in prognosticating tumor behavior. With the current ability to assess the 

expression of thousands of gene loci in tumors by microarray analysis, expression 

patterns of groups of genes have emerged that help predict tumor behavior.  In 

particular, the proliferation signature (7) has been linked to poor outcome in breast 

cancer patients (8-11). Although the identity of genes in this signature between tumors 

or studies is variable, they invariably include genes involved in the fundamental 

processes of cell cycle and proliferation, such as STK6, PLK1, AURKA, E2F1, TOP2A, 

FOXM1, MKI67 and the MCM genes (12). Specifically, high E2F1 expression and its 

signature have been associated with tumors of high-grade, resistance to chemotherapy 

and poor patient survival in different cancers (13-16). Although E2F1 induces apoptosis 
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in response to DNA damage, it can also promote drug resistance through triggering the 

autoregulatory circuit of E2F1-p73/DNp73-miR-205 (17, 18). 

Many chemotherapy treatments induce DNA damage, which trigger cancer cells to 

activate their repair machinery. When the damage is extensive and remains unrepaired, 

cells undergo apoptosis (19). There are several pathways involved in DNA repair.  

Nucleotide excision repair (NER) is one of the major mechanisms involved in the repair 

of DNA adducts, specifically inter- or intra-strand cross links and pyrimidine dimers, the 

kind of damage that results in cells from the use of alkylating or platinum-derived agents. 

One of the rate limiting factors in NER is ERCC1, and its expression is linked to poor 

response to platinum-based chemotherapy in ovarian, gastric, non-small cell lung 

cancers and colorectal cancers (20-24). The NER pathway is a complex process 

involving at least 17 different proteins, and 2 sub-pathways: global genome repair (GGR) 

and the transcription-coupled repair (TCR) pathway. Interestingly, many components of 

the TFIIH complex- which is involved in transcription- are also important in promoting the 

NER pathway, through mediating the sensing of damaged DNA, the recruitment of NER 

components and the preparation of DNA for repair (25). 

1.2 Role of HOX genes: Beyond normal development to key involvement in 

oncogenesis 

The HOX genes belongs to the evolutionarily conserved homeobox superfamily, 

characterized by the 61-amino acid DNA binding domain (homeodomain). First identified 

in Drosophila melanogaster as the genes responsible for their correct spatial body 

development, homologs of these genes were soon after found throughout the kingdom 

Animalia, with varying roles and numbers within each species and its anatomic 

complexity. In humans, there are 39 HOX genes organized into four paralogous clusters, 
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HOX-A to –D (26). Well known as transcription factors, they can function either as 

monomer or as heterodimers with members of the three amino-acid-loop extension 

(TALE) cofactors.  

During embryonic development and maintenance of adult homeostasis, their expression 

follows a strict spatio-temporal pattern, which reflects their order in the cluster, according 

to 3 principles (Figure 1.2):  

1) Spatial colinearity: A HOX gene position from 3’ to 5’ within the cluster corresponds 

to its expression within the animal along the A-P axis 

2) Posterior prevalence:  HOX genes that lie more 5’ within the cluster will have a 

dominant phenotype to those more 3’ 

3) Temporal colinearity: A HOX gene position from 3’ to 5’ corresponds to its order of 

expression during the time of development. 

However these principles are more complicated in mammals, given the presence of 4 

HOX clusters that arose by duplication, and paralleling the high complexity of their organ 

systems. Not surprising then, is that there is functional redundancy among the HOX 

genes, especially among the paralogs.  

Beyond development, aberrant expression of the HOX genes has been associated with 

a variety of diseases including cancers. Abate-Shen theorized 3 basic modes of HOX 

deregulation during oncogenesis: a) expression of HOX genes within a tissue in a 

pattern temporo-spatially different from normal, mature tissue; b) expression of HOX 

genes within a tissue that are normally never expressed within that tissue type (gene 

dominance); and c) downregulation or silencing of HOX genes in a tissue when they 

should be normally expressed (mainly epigenetic regulation). 

Extensive recent research has demonstrated that the HOX genes can regulate many 

important processes such as differentiation, apoptosis, motility, receptor signaling, 
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wound healing and angiogenesis. In breast cancer, HOXB7 and HOXB13 are 

upregulated and drive tamoxifen resistance through distinct mechanisms (27, 28). On 

the other hand, loss of expression of HOXA5 and HOXA10 is observed in high-grade 

breast tumors and leads to decrease in apoptosis and p53 expression (29-31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.2. Mammalian Hox clusters arrangement and expression. Adopted from Ref 

(32).  
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Extensive recent research has demonstrated that the HOX genes can regulate many 

important processes such as differentiation, apoptosis, motility, receptor signaling, 

wound healing and angiogenesis. In breast cancer, HOXB7 and HOXB13 are 

upregulated and drive tamoxifen resistance through distinct mechanisms (27, 28). On 

the other hand, loss of expression of HOXA5 and HOXA10 is observed in high-grade 

breast tumors and leads to decrease in apoptosis and p53 expression (29-31). 

HOXC10 is unique among the HOX genes in that it has 2 D-boxes required for efficient 

ubiquitylation and protein destruction by anaphase promoting complex (APC) (33). 

Therefore, HOXC10 protein- and not the mRNA- oscillates during the cell cycle and 

regulates mitotic progression and proliferation. HOXC10 has also been shown to bind to 

(34), and participate in the function of DNA replication origins in human cells (35) and is 

important in tissue regeneration (36). In cancer, high HOXC10 expression is observed in 

invasive cervical cancers (37) and in lymph node-positive breast carcinomas (38). 

Recently, HOXC10 was shown to be up regulated by estrogen, myeloid/lymphoid or 

mixed-lineage leukemia MLL3 and MLL4 in breast cancer cell lines (39). 

We have previously reported that HOXC10 is one of the highly overexpressed genes in 

a panel of primary breast tumors and distant metastasis (40). Here, we demonstrate that 

in unstressed conditions, HOXC10 drives cell proliferation by facilitating transition from 

G1 to S phase and by enhancing E2F1 activity. However, upon DNA damage, HOXC10 

protects cells from apoptosis by binding to CDK7 and enhancing DNA repair, mainly 

through the NER pathway. This eventually leads to decrease in susceptibility to 

chemotherapy. In line with this finding, chemotherapy-resistant cell lines and xenografts 

have higher expression of HOXC10. Lastly, high HOXC10 expression in breast cancer 

predicts a poorer outcome in patients undergoing chemotherapy. 
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CHAPTER 2 

Materials and Methods 

Cell Lines, Constructs, and Reagents. All cell lines were purchased from ATCC. 

MCF10A-Ras was established through stable transfection of LXSN-K-Ras vector into 

MCF10A. MCF7 wt and resistant sublines were a kind gift of Dr Parissenti (41). 

Doxorubicin was purchased from Sigma, paclitaxel and gemcitabine from Tocris 

Bioscience and carboplatin, BS-181 and SNS-032 from Selleckchem. All other reagents 

were from Sigma. Human HOXC10 cDNA was purchased from Thermo Scientific and 

cloned into the EcoRI and ClaI sites of pLPCX for retroviral production. TRC lentiviral 

Human HOXC10 shRNA (set of 4 clones) were purchased from Thermo Scientific. 

FlexiTube siRNA for HOXC10 (SI04296621), E2F1 (SI00300083) or CDK7 

(SI02664795) were purchased from Qiagen. For transient knockdown, cells were seeded 

at low density and transfected for 48h with the indicated siRNA using Lipofectamine 

reagent. Retrovirus and lentivirus were produced in HEK 293T cells, collected and used 

for cell infection with DEAE-dextran. Stable pools of overexpression or knockdown of 

HOXC10 in cell lines were selected by puromycin. For the generation of deletion 

constructs, full length myc-tagged HOXC10 was cloned in pCDNA3.1-Neo at EcoRI and 

XbaI sites. Four deletion constructs were created by PCR-directed mutagenesis: Δ N-

term (AA 1-15), Δ Phosph (AA 182-229), Δ Homeodomain (AA 268-327) and Δ 3rd helix 

(AA 309-325). 

Human Tissue Samples. Normal breast organoids, fresh frozen primary breast tumors 

and metastatic breast carcinoma tissues were obtained following approval from the 

Johns Hopkins Institutional Review Board (IRB) and processed as previously described 

(28). Samples were lysed with Trizol (Invitrogen) and total RNA was extracted. 
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Real-time Quantitative PCR (RT-qPCR) Analysis. Cells were seeded in 6 well plates 

and harvest at equal density or after treatment with TRIzol. 2ug of RNA was reversed 

transcribed using M-MLV (Promega). Primers were designed using the Universal Probe 

Library Software (42) to span an intron. qRT-PCR was then conducted using the Maxima 

SYBR Green/ROX Master Mix (Fermentas) per manufacturer protocol. Gene expression 

was analyzed by the ΔΔCt method, with GAPDH expression used for normalization. 

Soft Agar Colony Formation Assay and Matrigel Invasion Assay. For anchorage 

independent growth, six-well plates were first covered with a 0.6% agar layer. 3x103 cells 

were then cultured in complete media within a 0.3% agar layer. Medium was added as 

the top layer. The plates were incubated for 7 days, after which the colonies were 

counted and photographed.  

The BD BioCoat Matrigel Invasion Chamber assay system was used to study the in-vitro 

invasion ability of cells according to the manufacturer’s instructions. In brief, 10x103 cells 

in serum free medium were added to the insert and allowed to invade the matrigel 

migrating towards a FBS-rich medium. After 20h, noninvading cells were removed by 

scrubbing with a cotton-tipped swab. The membrane was collected, fixed and stained 

with 1.25% crystal violet. The number of invading cells was counted under a light 

microscope. Both these experiments were carried out in triplicate. 

Tumor Xenograft Studies. 3- to 4-wk-old BALB/c nu/nu athymic mice (Sprague–

Dawley; Harlan, Madison, WI) were used, and study approved by Johns Hopkins 

Institutional Animal Care and Use Committee (IACUC). A total of 3 × 106 cells were 

were suspended in 100 μL PBS/Matrigel (1:1) and injected subcutaneously into both 

flanks of each mouse. Xenografts were measured once per week. In experiments with 

drug treatment, when the average tumor size reached 100 mm3, doxorubicin was 
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injected intravenously at a dosage of 4 mg/kg body weight, once per week, for 3 

consecutive weeks. At necropsy, primary tumors were collected and lysed with TRIzol 

for RNA extraction. 

Growth Assay. Cells were seeded in triplicate in 12 well plates (2000 cells/well). At the 

indicated time, cells were fixed with formalin and stained with crystal violet. The plates 

were then photographed. For quantification, the dye was solubilized by 10% acetic acid, 

and absorbance was measured at 560nM. 

Flow Cytometry Analysis. For propidium iodide staining, cells at 70-80% confluency or 

after double thymidine synchronization were collected and permeabilized overnight with 

cold 70% ethanol at −200C.  Cells were then pelleted and resuspended in an isotonic 

buffered PI-staining solution containing RNase A (0.1 mg/ml) and propidium iodide (20 

μg/mL). Samples were run on the BD FACSCalibur system (Becton Dickinson), and data 

analyzed using WinMDI 2.9 software.  

For BrdU incorporation assay, cells were incubated with 10 μM BrdU (Invitrogen) for 1h. 

Labeled cells were harvested and fixed in 70% ethanol. Cellular DNA was denatured 

using 2N HCl with 0.5% Triton X-100, neutralized with 0.1 M sodium tetraborate 

(Na2B4O7 •10H2O, pH 8.5), and BrdU was detected using the Alexa Fluor® 488 

conjugated anti-BrdU (Millipore). After staining for 1h, cells were suspended in 1 ml of 

the PI-staining solution, and run on the BD FACSCalibur flow cytometer to determine 

BrdU incorporation and DNA content. 

DNA Fiber Assay. Exponentially growing cells were labeled for sites of ongoing 

replication with IdU (50 μM) for 20 min, followed by exposure to HU (4mM). HU was 

removed by washing cells four times with PBS before labeling with media containing 

CIdU (50 μM) to mark the sites of replication recovery. After trypsinization, cells were 
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washed with cold PBS, resuspended in lysis buffer (0.5%SDS, 50mM EDTA, and 

200mM Tris·HCl), and spread on tilted glass slides, facilitating the spread of genomic 

DNA into single-molecule DNA fibers by gravity. Next, the slides were fixed in acetic acid 

and methanol (1:3 ratio). DNA was then denatured by treating fibers with 2.5MHCl, 

neutralized, washed first with 1× PBS (pH 8.0), and subsequently washed three times 

with 1× PBS (pH 7.4). This was followed by blocking with 10% bovine serum and 

0.1%Triton-X in PBS (60 min) and incubation with primary antibodies against IdU (BD 

Biosciences) and CIdU (Novus Biologicals), followed by incubation with secondary 

antibodies for 1 h each. Fibers were analyzed using ImageJ software. 

Luciferase Assay. 1x105 cells were seeded in 12-well cell culture plates, and 

transfected with a total of 1.6 μg of plasmids including reporter, expression and pCMV-β-

galactosidase plasmids using Lipofectamine 2000. After 48 h, cells were lysed and 

luciferase activity was measured using a microplate reader (BMG LABTECH). β -

galactosidase activity was measured using the reporter assay system (Promega) 

according to the manufacturer’s instructions, and used to normalize luciferase activity. 

The responsive reporter plasmids 2xE2F-dhfr (wt or mut), E2F-DNA polymerase α and 

NF-κB-luc (Igκ2-IFN-luc wt or mut) were a kind gift of Dr. Miguel R. Campanero (43), Dr. 

William G. Kaelin, Jr. (44) and Dr. Joel L. Pomerantz (45) respectively. TOPFlash 

plasmid was purchased from Addgene (46). 

Clonogenic Cell Survival Assay. Exponentially growing cells were treated with 

different chemotherapy drugs or with ultraviolet (41) light. After 24h, drug was washed 

out and cells were reseeded in triplicate at low density in 6 well plates (1000-2000 

cells/well) to allow damage repair and the recovery and growth of resistant cells. After 1-

2 weeks, viable colonies were fixed, stained with crystal violet and counted.  
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MTT assay. 2.5x103 cells/well were plated in 96-well plates in triplicate and treated with 

the indicated drug concentrations, alone or in combination. After 48h, MTT solution (5 

μg/ml) was added, cells incubated for 3h, dissolved in DMSO and absorbance at 560 nm 

was measured, with background at 670 nm subtracted. Values are expressed as percent 

survival of the vehicle-treated control (given as 100%). In CDK7 knockdown 

experiments, cells were seeded at low density in 96 well plates, transfected with 

scramble or siCDK7. After 24h, cells were treated with drugs at the indicated 

concentrations. 

Caspase 3/7 Activity. Caspase-3 and -7 activities were measured with the Caspase-

Glo® assay kit (Promega) according to the manufacturer's instructions. Briefly, cells were 

seeded in 96 well plates and treated with doxorubicin (1 μM), gemcitabine (1 μM), taxol 

(0.5 μM), docetaxel (0.5 μM) or carboplatin (100 μM). After 24h, the drug was removed 

and fresh media containing Caspase-Glo reagent was added to each well. The plate was 

incubated at room temperature for 1 hour, and luminescence was measured in the 

microplate reader. Values are expressed as percent activity of the vehicle-treated 

control. 

Western Blot Analysis. Cells were seeded in 6 well plates and treated with the 

appropriate drug. At the indicated time, they were lysed with RIPA buffer. 25 μg of 

extracted protein were vertically electrophoresed on 4-12% Bis-Tris NuPage Novex Gel 

in MOPS SDS running buffer (Invitrogen), then transferred to Hybond C Extra membrane 

(GE Healthcare). Membranes were stained with Ponceau stain to confirm protein 

transfer, then blocked with 5% powdered milk in PBS with 0.2% Tween-20 (PBST) for 

one hour. Membranes were probed with primary antibody in 5% milk/PBST at 4oC 

overnight, rinsed with PBST, then probed with secondary antibody ( (GE Healthcare) at 

1:2000 dilution in 5% milk/PBST for 1h. After rinsing with PBST, membranes were 
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treated with ECL Plus Detection Reagent (GE Healthcare) for 1 minute, and exposed to 

Hyblot CL autoradiography film to determine protein expression. Antibodies to CDK7 and 

XPD were purchased from Santa Cruz; BCL-xL and BIRC3 from Abcam. All other 

antibodies were from Cell Signaling.  

Cellular Retention of drugs. Doxorubicin (dox) is fluorescent which allows easy 

monitoring of its intracellular accumulation quantitatively by flow cytometry. Cells were 

treated with the 200 nM of dox for 4h to detect dox accumulation. It was then wash out, 

and cells were left for another 4h to measure dox retention in them. Cells were collected 

in PBS and the fluorescence intensity (FL2-H) was measured on FACSCalibur flow 

cytometer. 

Host-Cell Reactivation Assay. To induce the formation of DNA adducts, pGL3-basic 

(Promega) was irradiated with different doses of UV light in Stratalinker® UV Crosslinker 

1800 (Stratagene) or treated with 100 or 1000nM cisplatin. To form double strand 

breaks, the vector was digested with HindIII. 1 μg of the treated vector was transfected 

into cells along with pCMV-β-galactosidase. Luciferase and β -galactosidase activities 

were measured after 48h as above. 

Comet Assay. The alkaline Comet assay was carried out using a CometAssay Kit 

(Trevigen) according to the manufacturer’s protocol. Briefly, cells were treated with dox 

(200nM) or gemc (200nM) or irradiated with UV light. After 12-24h treatment, cells were 

collected, diluted to 2 × 105 cells/ml in PBS. Cells were then mixed with low melting point 

agarose (1:10), and then placed on a CometSlide (Trevigen). After the gel was solidified 

at 4°C, the slide was incubated with the lysis solution at 4°C for 1h, then transferred to 

an alkali solution at room temperature for another 20 min to allow DNA to unwind. After 

alkali electrophoresis, the slides were dipped in 70% ethanol for 5 min and air dried. The 
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DNA was stained with SYBR Green I and imaged with the Zeiss Axio Scope fluorescent 

microscope. Comet tail moments were measured and quantified using the CometScore 

software. At least 100 cells were measured per treatment. 

Immunofluorescence Detection of γ-H2AX Foci. Cells growing in chamber slides 

(Nunc® Lab-Tek® II) were treated with dox (200 nM) or gemc (50 nM) for 24h. Cells 

were then fixed in 4% paraformaldehyde for 30 min, permeabilized in 0.2% Triton X-100 

for 15 min, and then blocked overnight with 1% BSA at 40 C. Cells were probed with 

primary antibodies against phosphorylated H2AX Ser139 (Upstate Biotechnology), 

washed with PBS and probed with Alexa Fluor conjugated secondary antibodies 

(Molecular Probes). The cells were mounted with 10 μl of ProLong(R) Gold antifade 

reagent with DAPI (Invitrogen). H2AX foci were visualized under the Zeiss Axio Scope 

fluorescent microscope and were scored using the ImageJ software (v1.47, NIH). At 

least 100 cells were counted and graded depending on the number of foci per cell.  

Recovery Assays. Cells were seeded in 6 cm dish and DNA damage checkpoint was 

activated by treating cells with 200 nM doxorubicin for 24h. Doxorubicin was washed 

away and nocodazole was added immediately to the culture medium to prevent their exit 

from mitosis. Caffeine (5 mM) was also added to inhibit ATR and ATM checkpoint 

kinases in order to inactivate DNA damage signaling and allow mitotic re-entry. At 24h 

doxorubicin treatment, 4h and 24h caffeine exposure, cells were collected, fixed in 

formaldehyde and then stored in 70% ethanol at -20ºC overnight. Cells were then 

stained with phospho-H3 (FCMAB104A4, Millipore) and PI. Mitotic fraction was analyzed 

by FACS. 

Co-immunoprecipitation. 293T cells were transfected with the indicated HOXC10 

construct. After 24h, they were treated with doxorubicin or other drugs for an additional 
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24h. Cells were collected in the EBC lysis buffer (50 mmol/L Tris-HCl (pH 8.0), 120 

mmol/L NaCl, 0.5% NP40) supplemented with complete protease and PhosSTOP 

phosphatase inhibitors cocktails (42). 1 mg of protein lysates were precleared and 

subjected to immunoprecipitation overnight at 4°C with CDK7 antibody (C-19, Santa 

Cruz) or normal rabbit IgG control (sc-2027, Santa Cruz). The immune complexes were 

loaded onto 4% to 12% NuPAGE gels (Invitrogen) and immunoblotted with the following 

antibodies: Myc-Tag (9B11, Cell Signaling), RNA Polymerase II (CTD4H8, Millipore), 

and XPD (sc-101174, Santa Cruz). 

CDK7 Kinase Activity. Cells were treated with dox (100 nM) or gemc (100 nM) for 24h. 

Cells were collected in lysis buffer and 300 μg of protein extract was used for 

immunoprecipitation with CDK7 antibody. The Cdk7 immunoprecipitate was washed 

three times in lysis buffer, once in kinase buffer (50 mM, pH 7.5, 10 mM MgCl2, 250 μM 

EGTA, 10 mM β-glycerophosphate, 1 mM DTT) and resuspended in 40 μl of kinase 

buffer. Kinase reaction was performed by adding 10 μl of a mixture containing 50 nM 

ATP and 20 ng GST-CTD peptide (P4016, Proteinone) as the substrate. The reaction 

was incubated for 1h at 30°C and then an equal volume of kinase-GLO™ reagent 

(Promega) was added and incubated for another 15 min at room temperature. As 

control, kinase reaction was performed with the same samples in the absence of the 

CTD peptide substrate. Luminescence was recorded and expressed as relative RLU to 

the untreated control cells.   

Survival Analysis in Patients with Breast Cancer. Kaplan-Meier analysis was 

performed by employing an updated version of the online available KM-plotter using 

3,999 breast cancer patients http://kmplot.com/analysis (47). In brief, to assess the 

prognostic value of a gene, each percentile (of expression) between the lower and upper 

quartiles were computed and the best performing threshold was used as the final cutoff 

http://kmplot.com/analysis
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in a univariate Cox regression analysis. Kaplan-Meier survival plots and the hazard ratio 

with 95% confidence intervals and logrank P value were calculated and plotted in R 

using the Bioconductor package "survival". Statistical significance was set at p<0.01. 

Cox proportional hazard regression was performed to compare the association between 

HOXC10 expression, clinical variables and relapse-free survival using WinSTAT 2007 

for Microsoft Excel (Robert K. Fitch Software, Germany). 

Statistical Analysis. Results were expressed as mean ± SEM of at least 3 independent 

experiments. Paired t-test or ANOVA tests were performed for data analysis, and 

significant difference was defined as p<0.05. All statistical analyses were performed 

using GraphPad Prism version 4.03 (GraphPad Software, Inc.). 
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  CHAPTER 3 

HOXC10 is preferentially and functionally overexpressed in breast tumors 

3.1 HOXC10 mRNA is frequently overexpressed in breast cancer 

To obtain a global profile of HOX gene expression in breast cancer, we conducted a 

tiling array of the 39 genes in the HOX clusters using normal breast organoids (n=4), 

primary breast tumors (n=8) and breast cancer metastasis to the liver (n=6) (40). 

HOXC10 was among the top five overexpressed genes in the tumor samples (Figure 

3.1a). Mining the online database Oncomine, we found that HOXC10 was consistently 

among the top 1% of overexpressed genes in breast cancer compared to normal tissues 

(Figure 3.1b), which is also consistent with previous studies (38, 39). Interestingly, 

comparing different cancer types, HOXC10 overexpression was not a common feature 

among all carcinomas, suggesting a unique role of HOXC10 in breast cancer (Figure 

3.1c and http://cgap.nci.nih.gov ). We then validated the microarray data by performing 

qRT-PCR in a panel of normal breast, invasive carcinoma, and distant metastatic breast 

tissues (Figure 3.2a), as well as in 50 breast cancer cell lines (Figure 3.2b). We found 

that HOXC10 overexpression is common in breast cancer and is equally enriched in cell 

lines and breast cancer tissues regardless of their subtype, ER/PR, HER2 or p53 status. 

 

 

 

 

 

http://cgap.nci.nih.gov/
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Figure 3.1 Global expression analysis revealed that HOXC10 is commonly 
overexpressed in breast cancer. A. tiling array of the 4 HOX clusters conducted on 8 
breast cancer primary tumors and 6 liver metastasis tissues identify many mis-
expressed HOX genes, including HOXC10, and many ncRNAs. (Right panel) A 
histogram of the average expression of the HOX genes from the tiling array data shows 
HOXC10 among the highly overexpressed genes in the distant metastatic tissues. B. 
Data from the TCGA dataset showing that HOXC10 is significantly overexpressed in 
both ductal and lobular carcinomas of the breast compared to the normal breast tissues. 
C. Bittner multi-cancer dataset showed that HOXC10 is overexpressed in breast, 
cervical, sarcoma and kidney cancers, but not in many other carcinomas (p= 3.18 e-40; 
t-Test: 14.306; Fold change= 2.387). 
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Figure 3.2. Real-time PCR in tumors and cell lines validated HOXC10 
overexpression in breast cancer. A. qRT-PCR measurement of HOXC10 expression 
in a panel of normal breast organoids (n=12), invasive primary carcinoma (n=31) and 
distant metastatic breast tissues (n=49). Samples were collected through the JH rapid 
autopsy program. HOXC10 is 10-fold higher in 67% of invasive carcinomas and in 82% 
of distant metastatic samples. B. qRT-PCR measurement of HOXC10 in 50 breast cell 
lines divided by their subtypes. HOXC10 was overexpressed in almost 75% of cancer 
cell lines. 
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3.2 HOXC10 overexpression increases aggressiveness of cancer cells 

To investigate if overexpression of HOXC10 has functional consequences in breast 

cancer, we stably overexpressed HOXC10 (myc-tagged) in MCF10A-Ras and MDA-MB-

231 breast cells. Conversely, HOXC10 was depleted by using specific shRNAs in four 

cell lines (SUM159, SUM149, MCF7 and HCC1143). Both invasion through matrigel and 

anchorage-independent growth (number and size of colonies growing in soft agar) were 

reduced in cell lines with depleted HOXC10 levels (Figure 3.3a and 3.3b). When injected 

subcutaneously into nude mice, HOXC10 overexpressing MCF10A-Ras-C10 xenografts 

grew much faster than their vector transfected counterpart, MCF10A-Ras-v. Stable 

knockdown of HOXC10 in SUM149 and in SUM159 breast cancer cells very significantly 

suppressed the growth of the xenografts, and their vascularization, implying a 

dependence on HOXC10 for growth (Figure 3.3c and 3.3d). 
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Figure 3.3 High-levels of HOXC10 leads to more aggressive in-vitro and in-vivo 
phenotypes. A. Representative images of growth in soft agar as colonies (left) and their 
quantification (right). B. Average number of invading cells through a matrigel coated 
chambers. (C) MCF10A-Ras-C10 or MCF10A-Ras-vec; and (D) SUM149-shC10 and its 
control SUM149-scr were injected subcutaneously into nude mice. Size of the tumors 5 
weeks later is shown. Representative xenografts of SUM149-shC10 and SUM149-scr 
are presented on the right (* p<0.05; ** p<0.001; *** p<0.0001).  
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CHAPTER 4 

HOXC10 promotes proliferation by facilitating G1/S transition during cell 

cycle progression 

4.1 HOXC10 increases proliferation of cancer cells 

Studies in amphibians and HeLa cells have associated HOXC10 with cell cycle 

progression, with cell proliferation control and with tissue regeneration; however the 

underlying mechanism remains largely unknown. In agreement with these purported 

functions, transient or stable knockdown of HOXC10 in different breast cancer cell lines 

significantly reduced their proliferative rate by 30-50% (Figure 4.1a, p<0.0001). 

Conversely, stable overexpression of HOXC10 in MDA-MB-231 cells led to an increased 

proliferation by 51% (Figure 4.1b). No significant effect on proliferation was observed, 

however, upon stably modulating HOXC10 levels in SUM159 and MCF-10A-Ras under 

normal culture conditions. On the other hand, HOXC10 expression in these cells under 

non-optimal conditions (reduced serum and growth factor) led to a growth advantage, 

allowing the cells to continue cell division and growth (Figure 4.1c). A deletion construct 

of HOXC10 lacking the 3rd helix failed to induce increased proliferation in cells, or to 

recover it after HOXC10 knockdown (Figure 4.2). These data thus indicate that to 

enhance proliferation, the ability of HOXC10 to bind DNA was required to enhance. 

 

 

 

 



24 
 

A.                                        B.  

  

 

 

 

C.  

 

 

 

 

 

 

 

Figure 4.1 HOXC10 promotes the proliferation of cells under optimal and non-
optimal conditions. A. HOXC10 was transiently overexpressed in MCF10A-Ras, and 
transiently knocked-down in SUM159 and SUM149 with siRNA. Cell growth was 
monitored by crystal violet staining. B. Equal number of cells were seeded, stained with 
crystal violet after 6 days and quantified (** p,0.001; ***p<0.0001).  C. Stable 
modification of HOXC10 levels affected the growth of the cell lines under reduced serum 
conditions (0.5%). 
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Figure 4.2 HOXC10 DNA binding ability is required for promoting proliferation. 
MCF7 were treated with scr or siHOXC10. 24h later, the cells were transfected with an 
empty vector, wild-type HOXC10 or Δ3rd helix mutant. Proliferation was assessed  
following crystal violet staining. 
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4.2 HOXC10 facilitates G1/S transition 

To explore how HOXC10 drives proliferation, we first analyzed the cell cycle distribution. 

There was a modest increase in G1-phase cells and a decrease in G2-phase cells and 

polyploidy after HOXC10 knockdown (Figure 4.3a and Table 1). We next examined BrdU 

staining in unsynchronized cells and found that although the total number of BrdU-

positive cells was not affected, their distribution was different: 15-33% more BrDU 

positive cells accumulated at late G1/ early S phase upon HOXC10 knockdown (Figure 

4.3b). These results are consistent with role of HOXC10 in firing of new origins as single 

molecule analysis of replication dynamics by DNA fiber analysis (Figure 4.4 A-C) 

revealed that HOXC10 is required for the initiation of new origins- but not the 

accumulation of stalled forks after hydroxyurea (HU) treatment. These observations 

suggest that HOXC10 has a role in G1/S transition. To provide further confirmation, cells 

were synchronized at G1/S phase by double thymidine treatment. In MCF-7 cells, 

knockdown of HOXC10 delayed the progression of cells in the S phase by at least 2h 

(Figure 4.5). In sum, HOXC10 is involved in the early phases of G1/S transition, and is 

important for the optimal transition of breast cancer cells through the S phase. 
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Table 1. Cell cycle distribution. Data shows an enrichment in the G1 phase after 
stable knockdown of HOXC10 in different cell lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SUM159 HCC1143 SUM149 

scr shC10-1 shC10-2 scr shC10-1 shC10-2 scr shC10-1 

G1 36.9±2.7 51.6±2.1 51.57±0.8 53.1±2.9 59.5±3.3 69.4±3.1 43.5±3.8 50.9±4.4 

S 12.6±2.4 23.3±1.7 16.5±1.9 19.4±0.5 16.9±0.4 12.3±1.5 17.7±3.4 17.1±2.5 

G2/M 36.2±2.8 21.8±1.1 24.1±0.3 20.2±2.2 17.9±2 10.1±0.8 31.2±1.1 26.7±2.5 

>4N 14.1±1.5 2.9±0.4 7.6±0.7 2.4±0.5 3.0±1 2.4±1 6.7±0.5 3.9±0.3 
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Figure 4.3 Knock-down of HOXC10 arrested cells at late G1. A. Cell cycle profile 
revealed an arrest of cells at G1 upon HOXC10 knockdown. B. Enrichment at early S 
phase in HOXC10 knock-down cells as detected by BrDU staining suggests a defect in 
S phase progression. 

 

 

 



29 
 

A. 

 

 

B. 

 

 

 

 

C. 

 

 

 

 

 

Figure 4.4 Cells failed to start new origins efficiently. HOXC10 is required for the 
resolution of stalled replication forks as measured by the DNA fiber assay. A. Workflow 
of the DNA fiber assay. B. Representative images illustrating that most  DNA from the 
HOXC10 knockout cells are stained in green (failed to restart replication) as compared to 
the red staining DNA from HOXC10 overexpression cells. C. Quantification of the stalled 
forks and new origins in three replicates. 

* Reproduced in collaboration with Dr Tej Pandita, , Southwestern University, Dallas, TX 
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Figure 4.5. Cells exhibit a delayed G1/S transition. MCF7-scr and –shC10 were 
arrested at late G1 by double thymidine block. After release (0h), the progression of cells 
through the S phase was monitored by PI staining. The percentage of cells in S or G2 
phase is represented below the graphs 
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4.3 HOXC10 indirectly activates the E2F1 pathway to promote proliferation 

Since HOXC10 depletion results in the arrest of cells in G1/S transition and E2F1 is 

known to regulate the expression of genes involved in the control of the progression 

from G1 into S phase, we investigated whether HOXC10 regulates the transcriptional 

activity of E2F. Using a luciferase construct containing E2F-responsive elements cloned 

upstream of the luciferase reporter gene, we first looked at the effect of HOXC10 on 

E2F1 transcriptional activity. HOXC10 was able to activate 2 different constructs (DHFR 

and DNA Pol α promoters) in a concentration- dependent manner when transiently 

overexpressed in 293T cells (up to 5 fold increase in activity, Figure 4.6A). This effect 

was specific for E2F as it was not observed in the WNT-responsive construct 

(TOPFlash). We also observed the same trend in the stable cell line model: A 1.5 fold 

increase in E2F activity was measured in MCF10A-Ras-C10 versus the vector control, 

MCF 10A-Ras-v; and conversely, a 1.5 fold decrease was detected in SUM159-shC10 

compared to SUM159-scr (Figure 4.6B). We speculate that the difference in the extent of 

the fold increase observed between the two sets of cell lines in Figure 4.6A and 4.6B is 

mainly due to the difference in efficiency of transfection in these cell lines. HOXC10 

DNA-binding ability was required for this effect, since only the deletions in the 

homeodomain or in the 3rd helix failed to activate the E2F-responsive construct (Figure 

4.7). We surmise that E2F1 activation was indirect since there was no evidence of 

physical interaction between HOXC10 and E2F1 (data not shown). To confirm the 

luciferase data, we measured the expression of a panel of genes defined as the breast 

cancer “cell proliferation signature”, several of which are also known E2F1 targets. The 

gene list includes TTK, MCM7, CDC6, PLK1, BUBR1, MAD2, and CENPA. As predicted, 

there was a significant (25-40%) decrease in the overall expression of these genes upon 

the depletion of HOXC10 in SUM159-shC10 and HCC1143-shC10, and a 26% increase 
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in MCF10A-Ras-C10 cells stably overexpressing HOXC10 (Figure 4.8A). The effect was 

even more pronounced in tumors of the MCF10A-Ras cell lines grown as xenografts 

(Figure 4.8B). Finally, higher levels of the hyperphosphorylated (inactive) pRB, pCDK2 

(active), Cyclin A and Cyclin D confirmed the activation of the E2F pathway at the G1 

and S phases (Figure 4.9). Collectively, these data show that HOXC10 is important- 

though not through direct interaction- for the activation of E2F1 pathway, promoting 

continuous proliferation. 
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Figure 4.6. HOXC10 activates E2F1 transcriptional activity. A. 293T cells were 
transiently transfected with HOXC10 expression vector along with a luciferase construct 
with E2F-responsive element (DHFR promoter: RE-1; Pol IIα promoter: RE-2), or WNT 
responsive element (TOPFlash). Luciferase activity was measured 48h later. B. E2F 
activity is higher in the stably HOXC10-expressing cells. Cell lines were transfected with 
E2F wt or mutant responsive element (RE) construct, and luciferase activity was 
measured. 
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Figure 4.7. HOXC10 transcriptional ability is required for E2F1 activation. A. 293T 
were transfected with different HOXC10 deletion constructs (as depicted in the drawing) 
along with E2F-RE luciferase. B. Marked reduction of luciferase activity with delta 
homeodomain and delta 3rd helix constructs indicates that HOXC10 DNA-binding ability 
is necessary for E2F activation. 
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Figure 4.8. The cell proliferation signature genes are expressed at higher levels in 
the presence of high HOXC10. A. Many genes in the breast cancer cell proliferation 
signature were downregulated upon HOXC10 depletion (qRT-PCR measurement) ) in 
SUM 159 and HCC 1143 breast cancer cells. B. MCF10A-Ras-C10 xenografts had a 
higher cell proliferative signature than their empty vector counterparts. Pooled 
expression of all the genes is shown on the right. (*p<0.05; **p<0.001; ***p<0.0001). 
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Figure 4.9. Higher protein level or activity of cell cycle proteins validated the RT-
qPCR data. Western blot analysis of the levels of some proteins involved in the 
progression from G1 to S phase. 
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CHAPTER 5 

HOXC10 actively promotes chemotherapy resistance and its expression 

after treatment predicts poor prognosis  

 5.1 High levels of HOXC10 correlates with poor prognosis in treated patients

Given that the proliferation and E2F gene signatures (7-9, 13) and many HOX genes 

(27, 28, 48, 49) had been previously shown to be correlated with survival in breast 

cancer, we next studied if the expression HOXC10 has a prognostic value for assessing 

the future course of the disease. 

Interestingly, analysis of data downloaded from GEO or from the METABRIC cohort 

showed that HOXC10 expression is prognostic only not in all patients but only in patients 

treated with chemotherapy- for both relapse-free survival (RFS) and overall survival (OS) 

(Figure 5.1A, 5.1B). This becomes more substantial in ER/PR negative- treated patients. 

The significance is retained (p=0.00014) in Cox multivariate regression analysis 

including known clinical parameters (HOXC10, ER, HER2, lymph node status, grade, 

age and Ki67 expression). Of note, HOXC10 had the highest significance (p=0.00014) 

after the inclusion of all other parameters (Figure 5.1c). When using a ROC analysis, 

HOXC10 was predictive for response to anthracycline-taxane based chemotherapy 

regimens (n=974, p=4.7e-04, AUC=0.571). 
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C. Cox regression in chemotherapy treated patients  

 

 

 

 

Cox regression in all patients 

 

 

 

Figure 5.1. HOXC10 expression has negative prognostic value in chemotreated 
patients. A-B. High HOXC10 levels was significantly associated with worse relapse free 
survival (RFS) and OS in chemotherapy treated breast cancer patients, especially the 
ER-negative patients, but has no prognostic significance in all patients. C. Cox 
multivariate regression analysis was made for all patients and for chemotherapy treated 
patients for HOXC10, ER, HER2, lymph node status, grade, age and MKI67 expression.  

* Reproduced in collaboration with Dr. Balazs Gyorffy, Semmelweis University, 
Budapest, Hungary 
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5.2 HOXC10 is induced during chemotherapy resistance  

Given the clinical data indicating HOXC10 as a marker for poor prognosis in breast 

cancer, we next investigated how HOXC10 overexpression related to acquired 

resistance to chemotherapy. First, we measured HOXC10 expression in chemotherapy-

resistant MCF7 sublines (41). These sublines were established by a progressive 

exposure to a drug (epirubicin, paclitaxel or docetaxel), and display 815-, 535- and 251- 

fold increase in their resistance to each drug, respectively. HOXC10 expression was 2-6- 

fold higher in the resistant cells (Figure 5.2A). This increase is functional since reducing 

HOXC10 levels in the Tax-R cell lines restored their response to taxol treatment (Figure 

5.2B). Functional redundancy in HOX gene function is often invoked to minimize the 

effect of one HOX gene, often being studied in isolation. Interestingly, when we 

examined the expression of some of the other HOX genes in these sublines, we noticed 

that the expression of genes flanking HOXC10 (i.e. HOXC9 and HOXC11) was 

downregulated, other genes showed no change (HOXB7 and HOXB13), whereas its 

paralogs (HOXA10 and HOXD10) were also upregulated (Figure 5.2c). This argues 

against a redundant function of the HOX genes in general during chemotherapy 

response, and warrants further investigation of the promoter region of the HOX10 

paralogs. 

As in-vivo models are more relevant to human cancer therapeutics, we next measured 

the level of HOXC10 in de novo chemo-resistant xenografts. We therefore extracted 

RNA from MDA-MB-231 and SUM159 xenografts in animals treated with doxorubicin or 

carboplatin. These xenografts at the time of collection had shown regression temporarily, 

and then resumed their growth during continued exposure to the drugs. In line with the 

in-vitro model, HOXC10 level was at least 2-fold higher in the surviving MDA-MB-231 
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(Figure 5.3). Although there was a slight trend for an increase in HOXC10 expression in 

SUM159, it was not significant. Importantly, SUM159 already have high basal HOXC10 

expression levels. The fact that SUM159 xenografts responded poorly to chemotherapy 

provided additional evidence that HOXC10 could serve as a predictive marker for 

response. 

Finally, we investigated if HOXC10 expression was induced upon short-term 

chemotherapy treatment. Unfortunately, we could not find a good antibody to detect 

endogenous HOXC10 protein or its nuclear distribution in breast cancer cell lines, so we 

limited our work to measuring mRNA. After short-term treatment with different drugs, 

there was a progressive increase in HOXC10 mRNA levels over days of treatment 

(Figure 5.4). The induction was most prominent in MDA-MB-231 which has very low 

basal HOXC10 levels. Collectively, these results suggest that HOXC10 expression is 

correlated with long-term treatment failure and chemoresistance, and that the protein 

might be involved in the latter stages of survival in breast cancer.  
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Figure 5.2. HOXC10 expression is functionally induced in an in-vitro resistance 
system. A. MCF7 chemo-resistant cell lines were established by continuous exposure to 
epirubicin (Epi-R), taxol (Tax-R) or docetaxel (Txt-R) (31). HOXC10 expression was 
detected by qRT-PCR. B. HOXC10 was stably depleted in the Tax-R subline by 2 
different HOXC10 shRNA. The resensitization of these cells to taxol was measured by 
MTT. C. Different HOX gene expression was detected by qRT-PCR in the Tax-R and 
Txt-R MCF7 sublines and supports the notion that upregulation of HOXC10 during 
chemoresistance in not a common feature of all the HOX genes. 
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Figure 5.3. De novo induction during therapy or endogenous high HOXC10 
expression renders tumors resistant to chemotherapy. HOXC10 expression is 
significantly increased in MDA-MB-231 xenografts- and not in SUM159 xenografts- 
treated with doxorubicin or carboplatin. After 2-3 weeks of continuous treatment, 
surviving tumors were collected and RNA was extracted for qRT-PCR. Tumor growth 
over the course of treatment is shown on the right. 
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Figure 5.4. HOXC10 expression is induced after short-term treatment of cells in 
culture with chemotherapy. Induction of HOXC10 expression over days during 
exposure to chemotherapy in MDA-MB-231, SUM159 and SUM149.  
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5.3 HOXC10 overexpression decreases susceptibility to chemotherapy 

treatment.  

Given the above data on correlation of high HOXC10 with resistance to chemotherapy in 

several models, we next focused on investigating the molecular basis of HOXC10 

function in decreasing the susceptibility of breast cancer to chemotherapy treatment.  

Stable downregulation of HOXC10 in SUM159 (p53 mutant), MCF7 (p53 wt) or SUM149 

(BRCA1 mutant) increased susceptibility of these cell lines to different chemotherapeutic 

drugs, (doxorubicin, gemcitabine, taxol or carboplatin) as measured by colony survival 

(Figure 5.5) or by MTT (Figure 5.6A). Conversely, MCF10A-Ras-C10 showed a reduced 

response compared to MCF10A-Ras-v to most of the drugs tested (Figure 5.5, 5.6B). 

One explanation could be differences in the apoptotic response of the cells. Indeed, 

there was a slight yet consistent increase in Caspase3/7 activity and in the sub-G1 

population in the HOXC10 depleted cells (SUM159-shC10 and MCF10A-Ras-v) as 

compared to the HOXC10 expressing cells (SUM159-scr and MCF10A-Ras-C10) 

(Figure 5.7). Further, the expression of many anti- and pro-apoptotic genes was 

modulated at the protein level, RNA or both (Bid, BCL2, FLIP, BIRC2, BIRC3, HSP27 

and BCL-xL) upon chemotherapy treatment (Figure 5.8, 5.9). It is important to note that 

exogenously modulating HOXC10 levels in different breast cancer cell lines did not 

affect the baseline apoptotic activity or the expression of most of the apoptotic genes 

involved (Figure 5.9). The in-vivo data confirmed the above results: Initially, all MCF10A-

Ras xenograft tumors treated with doxorubicin stopped growing. By the 3rd weekly 

treatment, the control MCF10A-Ras-vector tumors reduced in size. On the other hand, 

MCF10A-Ras-C10 tumors stopped responding to treatment after the 2rd dose of the 

drug, and eventually resumed their growth. Notably, reflecting this resumption, the 

tumors showed efficient upregulation of expression of anti-apoptotic genes (Figure 5.10). 
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Given that the anti-apoptotic genes examined are known direct targets of the NF-κB 

pathway, we next measured the activity of NF-κB in the cells using the NF-κB-

responsive reporter Igκ2-IFN-LUC, with and without doxorubicin treatment. Not only the 

basal activity of NF-κB was higher in MCF10A-Ras-C10 (overexpression system) and 

SUM159-scr (KD system) compared to their counterparts, but also after treatment, the 

difference in luciferase activity was even more pronounced (Figure 5.11). This finding is 

in agreement with a recent report that the basal activity of NF-κB is much higher, and 

maintained as such in doxorubicin-resistant MCF7 cells (50). Of note, the increase in 

survival could not be attributed to differences in drug accumulation since doxorubicin 

uptake and retention was similar in the cell lines tested (Figure 5.12). Collectively these 

data indicate that HOXC10 activates NF-κB under stress conditions, thus allowing the 

cells to survive through upregulation of the anti-apoptotic pathway. The E2F pathway 

was not involved in the response to chemotherapy, as measured by luciferase activity 

(data not shown), indicating that HOXC10 might be modulating different pathways under 

normal and stress conditions to support growth and survival. 
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Figure 5.5. Loss of HOXC10 increases log-term drug susceptibility. Representative 
data (A) and quantification (B) of colony survival assay in cells after different drug 
treatments. 
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Figure 5.6. HOXC10 modulates short-term drug susceptibility.  MTT assay after 48h 
of chemotherapy treatment in SUM159 (A) and MCF10A-Ras (B) models. 
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Figure 5.7. HOXC10 decreases apoptosis. HOXC10 decreases apoptosis as 
measured by caspase 3/7 activity (A) and quantification of cells in sub-G1 (B). 
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Figure 5.8. HOXC10 decreases apoptosis as measured by levels of the proteins in 
this pathway. SUM159 cells were treated with different concentration of doxorubicin for 
24h. The levels of some pro- and anti-apoptotic proteins were analyzed by western blot. 
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Figure 5.9. HOXC10 decreases apoptosis as measured by levels of the genes in 
this pathway. SUM159 (A) and MCF10A-Ras (B) were treated with 0 or 200nM 
doxorubicin for 72h. The expression of some pro- and anti-apoptotic genes was 
measured by qRT-PCR. 
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Figure 5.10. HOXC10 protects cells from doxorubicin in-vivo. Xenografts of 
MCF10A-Ras vector control (n=6) or overexpressing HOXC10 (n=9) were established in 
nude mice, and mice were treated x3 with 4mg/Kg doxorubicin. Arrow indicates time of 
treatment. Tumor growth was monitored over weeks (A). Mice were then sacrificed and 
the expression of many anti-apoptotic genes was measured by qRT-PCR (B). 

 

 

 

 

 

 

Figure 5.11. HOXC10 increases baseline and induced NF-κβ activity. Cell lines were 
transfected with NF-κβ wild-type (wt) or mutant responsive element construct. 
Doxorubicin was added after 24h and luciferase activity was measured 24h later. 
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Figure 5.12. No difference in doxorubicin accumulation or retention is observed. 
Cells were treated with 200nM. After 4h, doxorubicin was washed away. Cells were 
collected either after 4h of dox treatment (+Dox) or after 4h of dox removal (-Dox) and 
run directly on flow cytometry. 
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5.4 HOXC10 stimulates DNA damage repair and checkpoint recovery to 

promote long-term survival 

Since a member of the HOX family proteins, HOXB7, was previously shown in our lab to 

interact with components of the NHEJ complex promoting DNA double-strand break 

repair (51), we investigated if HOXC10 could also modulate the DNA repair process. To 

test this concept, a host-cell reactivation assay was used. Here, the ability of the cells to 

in-vivo repair damaged luciferase constructs can be quantified by measuring luciferase 

activity (52). Upon knockdown of HOXC10, there is a significant decrease in repair of 

DNA crosslinks and adducts introduced to the construct by ultraviolet light or cisplatin 

pretreatment (Figure 5.13). There was no difference in repair of DNA double-strand 

breaks (generated by the restriction enzyme Hind III), suggesting that NHEJ pathway 

might not be affected by HOXC10. Given that the nucleotide excision repair (NER) 

pathway is mainly involved in repair of DNA crosslinks, and that the most dramatic effect 

on survival was with treatments with the platinum drugs and with UV light (Figure 5.14), 

we focused on measuring the activity of the NER pathway by the alkaline comet assay 

(53). As illustrated in Figure 5.15, upon HOXC10 knockdown, there was significantly 

more DNA damage after 24h of treatment, leading sometimes to cell death (compare 

both the shape and DNA content of the tail in the different cells, which are reflected by 

the tail moment quantification in the graphs below the figures). Further, time-course 

analysis after UV treatment showed that while DNA damage in SUM159-scr has 

returned to its baseline levels, it was still 4 fold higher in SUM159-shC10, revealing an 

inefficient DNA repair in these cells. Each of these findings was confirmed in the 

overexpression system, MCF10A-Ras-C10 cells (Fig 9).  

Phosphorylation of histone H2AX is a surrogate marker of DNA repair efficiency by NER 

(especially when the drug-induced damage does not involve primarily dsDNA breaks) 
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(54, 55). We therefore quantified the number of residual γH2AX foci after 24h of initial 

treatment. As shown in Figure 5.16, there was on average 20-30% more foci 

accumulating in SUM159-shC10 after chemotherapy treatment (left), and with almost 50-

60% more cells displaying at least 100 foci/nucleus (right). Interestingly, time-course 

analysis showed no differences in the initial induction of phospho-H2AX (10min-8h) after 

UV or chemotherapy (Figure 5.17). This is in accordance with reports showing that the 

residual γH2AX measured 24 h after treatment- and not the initial kinetics of γH2AX 

formation- was a better predictive of cell viability (56, 57). These results indicated 

HOXC10 might be involved at the DNA damage repair step and not in the checkpoint 

activation pathway. Examining the DNA damage sensors confirmed that: no major 

differences in the phosphorylation/activation of the key players in the ATR/ATM 

pathways were observed (Figure 5.18).  

Finally, we examined the possibility that HOXC10 was required for cell-cycle re-entry 

following DNA-damage-induced arrest. We therefore treated cells with doxorubicin for a 

short time, and then monitored the percentage of cells that re-entered mitosis after 

caffeine addition. As Figure 5.19 shows, in the absence of HOXC10, cells were defective 

in restoring their growth. This highlights the fact that HOXC10 is likely required for 

checkpoint recovery, besides its role in DNA repair.  
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Figure 5.13. HOXC10 activates DNA repair in response to DNA crosslinks. pGL3-
basic construct was pretreated with different doses of UV light or cisplatin, or digested 
with HindIII. Treated vector was transfected into cells and luciferase activity was 
measured 48h as an indicator of DNA repair. 

 

 

 

 

 

 

 

Figure 5.14.  HOXC10 effectively protects cells from UV exposure. Representative 
image of the colony survival assay and its quantification 7 days after initial UV exposure. 
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Figure 5.15.  Comet assay shows a a correlation between efficient DNA repair and 
expression of HOXC10. Representative images from the alkaline comet assay showing 
an increase in DNA damage in HOXC10 knockdown cells as illustrated by the length and 
shape of their DNA tail. Quantifications of the tail moment are depicted in the graphs 
below. 
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Figure 5.16. More residual DNA damage is observed in the absence of HOXC10 as 
measured by γH2Ax foci. Cells were treated with doxorubicin or gemcitabine for 24h. 
γH2Ax foci were stained and quantified using ImageJ software. Average number of foci 
in >150 nuclei is shown in the left graph. Percentage of cells with the noted numbers of 
γ-H2AX foci is presented on the right and shows that more cells with >150 foci 
accumulate in the HOXC10- knockdown cell line. 
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Figure 5.17. No difference in the kinetics of DNA damage induction is observed. 
SUM159-scr and –shC10 were treated with 200nM doxorubicin or with UV light. Protein 
was extracted at the indicated time, and the kinetics of H2Ax phosphorylation was 
monitored by western blot. 
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Figure 5.18. HOXC10 does not modulate initial DNA damage response. SUM159-scr 
and –shC10 were treated as indicated. The activation of proteins in the ATM/ATR 
pathways was detected by western blot.  
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Figure 5.19. HOXC10 is required for efficient checkpoint recovery. A. Schemae of 
the recovery-induced experimental setting. Cells were collected at the indicated time, 
and the amount of mitotic cells was determined by pH3 positivity by FACS (B). 
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CHAPTER 6 

HOXC10-CDK7 interaction: a new model and target for chemoresistance 

6.1 HOXC10 binds to CDK7 in vivo after chemotherapy treatment 

How does HOXC10 affect apoptosis, NF-kB activity and DNA-damage repair (mainly by 

the NER pathway)?  One key protein that links all three pathways is CDK7. In fact, using 

a yeast four-hybrid system to identify proteins which could bind to TFIIH, HOXC10 was 

previously reported to be the tightest protein to bind to the CAK complex (58). We 

therefore explored if HOXC10 binds to endogenous CDK7 in cell lines. HOXC10 weakly 

co-immunoprecipated with CDK7 (Figure 6.1). However, upon DNA damage with 

different chemotherapeutic drugs, the strength of the interaction increased dramatically. 

Interestingly, the use of different HOXC10-deleted constructs (Figure 6.2) revealed that, 

contrary to expectation, the homeodomain region of HOXC10 is not necessary to bind to 

CDK7. Similarly, treating the extracts with ethidium bromide to deplete DNA in the 

reaction did not affect HOXC10-CDK7 interaction, indicating a DNA-independent protein 

association between the two (Figure 6.2). These results are unique to HOXC10 as other 

HOX genes, which despite their non-transcriptional functions, still require the 

homeodomain region for their interactions (35, 51, 59). Intriguingly, when a predicted 

high phospho-rich region in HOXC10 was deleted, the binding to CDK7 was significantly 

reduced. 

CDK7 can phosphorylate different sets of proteins depending on whether it is free (i.e. 

CDK1, 2, 4, 6) or in complex with TFIIH (such as p53, RAR-α, ER, RNA PolII). We 

therefore investigated if HOXC10 binding to CDK7 affected its substrate preference.  

There was no significant difference in CDK1 or CDK2 phosphorylation (at Thr 161 and 

160 respectively), ruling out an effect of HOXC10 on free CDK7. Given that RNA PolII 
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has a direct role in DNA repair, we next examined if the association of the CAK to the 

core of the TFIIH complex is modulated by HOXC10. As shown in Figure 6.3, the 

association of CDK7 with RNA PolII is much stronger in the presence of HOXC10 after 

DNA damage, allowing transcription to proceed and cells to survive. Further, upon 

knocking down HOXC10, the kinase activity of CDK7 towards the CTD of RNA Pol II 

was reduced after DNA damage (with no change in the baseline activity, Figure 6.4).  

It has been shown previously that during efficient DNA repair, XPD associates tightly 

with TFIIH and recruits the CAK complex, which is necessary for resuming transcription 

of inducible genes, for phosphorylation of proteins involved in the DNA damage 

response and for preventing improper cell division (42, 60). We therefore examined if 

HOXC10 affects the composition of the TFIIH-XPD-CAK complex. No direct association 

between HOXC10 and XPD was detected, nor was a change observed in the binding of 

XPD to RNA Pol II in the presence or absence of HOXC10. However, as expected, the 

binding of XPD to CDK7 was reduced upon knockdown of HOXC10, and conversely, 

was higher following HOXC10 overexpression in the cell lines (Figure 6.5). This 

suggests that HOXC10 has an essential role in anchoring the CAK to XPD, therefore 

maintaining the integrity of the holo TFIIH during response to DNA damage. This is also 

in accordance with previous data showing that in repair-deficient cells, the association of 

CAK, and not XPD, to the damaged DNA was reduced (61).  
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Figure 6.1. HOXC10 binds to CDK7 during DNA damage response. 293T cells were 
transfected with HOXC10 vector and then treated with different drugs for 24h. Cell 
lysates were subjected to co-IP with CDK7 (D: Doxorubicin; CDK7-inh: SNS-032). 

 

 

 

 

 

 

 

Figure 6.2. HOXC10-CDK7 interaction is independent of HOXC10 DNA binding 
ability. Different HOXC10 deletion constructs were transfected into 293T, treated with 
doxorubicin or ethidium bromide (Eth Br) and then co-IP with CDK7 antibodies. 
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Figure 6.3. CDK7 binds TFIIH more efficiently in the presence of HOXC10. Stable 
cell lines were treated with dox or gemcitabine for 24h and cell lysates were subjected to 
IP with CDK7 antibodies. CDK7 association to TFIIH during DNA damage- as detected 
by RNA Pol II binding- is increased in the presence of HOXC10. 
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Figure 6.4. CDK7 activity towards RNA Pol II is reduced upon HOXC10 depletion. 
The kinase activity of CDK7 towards a recombinant GST-CTD substrate was assessed 
24h after treatment of SUM159 with 200nM dox or gemcitabine. CTD: C-terminal domain 
(CTD) of the RNA polymerase II large subunit 
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Figure 6.5. CDK7-XPD association is increased upon HOXC10 expression after 
treatment. XPD was co-immunoprecitated with CDK7 antibodies in MCF10A-Ras, 
SUM159 (stable systems) or 293T cells (transiently transfected with vector (v) or 
HOXC10 expression vectors) after drug treatment for 24h. Indicated proteins were 
detected by Western blotting. 
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6.2 Inhibiting CDK7 reverses chemoresistance developed by HOXC10 

overexpression 

During the last decade, many CDKs were found to be hyperactivated in different 

cancers, and have become the targets of new therapies, either as single agents or in 

combination with traditional cytotoxic chemotherapy (62). In particular, inhibiting CDK7 is 

of special interest as it can affect different signaling pathways, including proliferation, 

transcription, apoptosis and even ligand-dependent phosphorylation of ER-α in breast 

cancer (63). 

Since HOXC10 drives chemoresistance in part by activating CDK7, and since inhibiting 

CDK7 is of clinical importance, we next investigated if targeting CDK7 activity in breast 

cancer can reversed HOXC10’s protective effect on survival and therefore restore 

susceptibility to chemotherapy. First, using siRNA, we reduced CDK7 protein levels by 

60%-80%, and then treated cells with different drugs (Figure 6.6, 6.7). Decreasing CDK7 

levels in cells slowed down their growth and restored their response to drug treatment, 

suggesting that the protective effect of HOXC10 during response to chemotherapy was 

partially abrogated. 

Many CDK7 inhibitors have been recently developed, including the selective inhibitor 

BS-181 (64) and SNS-032 (65) - a drug being evaluated in Phase 1 studies for the 

treatment of some advanced B-lymphoid or solid malignancies (http://clinicaltrials.gov/). 

We therefore studied  the effect of co-treatment with chemotherapy and these 2 CDK7 

inhibitors. We used the inhibitors at a concentration that has minimal cytotoxic effect 

(~20%) as single agent. Adding CDK7 inhibitors to different chemotherapy drugs led to a 

better response in all cells studied (Figure 6.8). Interestingly, the level of response of 

SUM159-scr and MCF10A-Ras-C10 with the co-treatment was equal to that of SUM19-

http://clinicaltrials.gov/
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shC10 and MCF10A-Ras-v (respectively) when treated with chemotherapy alone. This 

result confirms that the activation of CDK7 is the major mechanism through which 

HOXC10 drives survival after chemotherapy treatment; and therefore, inhibiting CDK7 

would be a viable strategy to restore chemo-susceptibility. 

To confirm this, we treated Taxol-R and Epirubicin-R MCF7 sublines with BS-181 along 

with cytotoxic drugs. As shown by MTT and colony survival assays, this co-treatment 

restored chemo-susceptibility of the cells (Figure 6.9). 
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Figure 6.6. CDK7 depletion (approx. 60%) partially restored response to 
chemotherapy in SUM159. CDK7 was inhibited with siRNA in SUM159 cells. 24h later, 
cells were treated with doxorubicin, gemcitabine or carboplatin. MTT assay was 
performed after 48h. The western blot shows a decrease of at least 60% in the protein 
levels of CDK7 with the siRNA transfection.  
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Figure 6.7. CDK7 KD partially restored response to chemotherapy in MCF10A-Ras. 
CDK7 was inhibited with siRNA in MCF10A-Ras cells. 24h later, cells were treated with 
doxorubicin or gemcitabine. MTT assay was performed after 48h. The western blot 
shows a decrease of at least 80% in the protein levels of CDK7 with the siRNA 
transfection.  
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Figure 6.8. CDK7 inhibition by drugs partially restored response to chemotherapy. 
Cells were co-treated with chemotherapy and with 2 different CDK7 inhibitors, SNS-032 
(A) or BS-181 (B). MTT assay was performed after 48h. 
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Figure 6.9. CDK7 specific inhibition reduced acquired chemoresistance. A. Taxol or 
Epirubicin resistant MCF7 cells were treated with taxol or epirubicin respectively in 
combination with different doses of BS-181. MTT was conducted 48h later. B. Taxol or 
Epirubicin-resistant MCF7 cells were treated with 200 nM taxol or 500 uM epirubicin 
alone or in combination with 20uM BS-181. Cells were allowed to grow for 7 days, then 
surviving colonies were stained with crystal violet. 
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CHAPTER 7 

Discussion 

Molecular characteristics of the tumor, pharmaceutical properties of the chemotherapy 

agents, and the interaction between the cancer, the cancer environment and the drugs 

are some of the factors that determine the success of the treatment. To overcome the 

cytotoxic effect of chemotherapy, cancer cells have to continuously re-adapt, by 

strengthening existing pathways or developing new survival mechanisms. As a result, 

chemoresistance is almost always a multifactorial process, involving intrinsic and 

acquired adaptations within the heterogeneous tumor (4, 6). Therefore, in order of 

targeted or cytotoxic drugs to reach their full therapeutic potential, it is fundamental to 

have a thorough molecular understanding of resistance mechanisms, to develop 

solutions to overcome them and to discover reliable predictive and prognostic 

biomarkers.  

In this dissertation, we present evidence for the first time that the overexpression of 

HOXC10 in breast cancer is not only common and functional, but also prognostic for 

outcome following chemotherapy treatment. We have shown the following: 1) 

Chemotherapy resistant cancer cells (selected by continuous in-vivo or in-vitro drug 

treatment) have upregulated HOXC10 expression; 2) High HOXC10 is functional and 

important in cancer adaptation mechanisms since exogenously expressing a single 

gene, HOXC10, led to decrease in drug susceptibility; while decreasing HOXC10 levels 

by shRNA enhanced cytotoxic effects of chemotherapy. 3) Clinically, in patients treated 

with chemotherapy, there was a significant correlation between HOXC10 levels and 

both- poor relapse free survival and poor overall survival. 
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Mechanistically, HOXC10 is involved in activating different survival pathways. First, 

HOXC10 is important in driving checkpoint recovery after DNA damage, a key pathway 

that allow cancer cells to escape the damage response arrest and to continue 

proliferation after DNA damage.  In fact, many factors in this pathway- such as Plk1, 

Aurora A and Wip1- were found to be upregulated in many cancers and to correlate with 

aggressiveness, tumor recurrence and poor prognosis (66). We have shown that 

HOXC10 did not affect the immediate DNA damage response (since there was no 

difference in the activation of ATM/ATR pathway or in the kinetics of pH2Ax induction). 

On the other hand, HOXC10 activates DNA repair- mainly the NER pathway- and is 

required at later stages of DNA damage response (beyond 24h) to allow survival and 

recovery. Thus, arrested cells which express high levels of HOXC10 have repaired their 

DNA damage more efficiently and resumed transcription and growth; while their low-

HOXC10 expressing counterparts eventually commit to apoptosis. We further show that 

this can be partially explained by the association of HOXC10 to the CAK subcomplex of 

the holo TFIIH complex.  

The Cdk-activating kinase CAK is composed of the 3 subunits (Cdk7, cyclin H and 

MAT1), and along with TFIIH, can participate in diverse functions, including transcription, 

DNA repair (NER) and cell cycle regulation. CDK7 can phosphorylate different 

substrates: If free, it has preference for CDKs as substrate. Once it is bound to TFIIH, its 

substrate preference is switched to the C-terminal domain (CTD) of the RNA polymerase 

II large subunit (67, 68). Previously, in a yeast four-hybrid system, HOXC10 was 

reported as one among the proteins that bridge the CAK complex to the core TFIIH (58). 

Here, we have confirmed this interaction and then studied its functional consequence. 

Interestingly, we found that the homeodomain of HOXC10 is not required for binding to 

CDK7. To our knowledge, this is the first time that a function of a HOX gene independent 
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of its homeobox region has been identified. Even though other HOX proteins have been 

reported to function beyond being transcription factors (by binding to proteins in NHEJ 

DNA repair pathway (51) or in the DNA replication complex (35, 69), these interactions 

occurred mainly through the homeodomain motif. The second interesting and unique 

finding is the presence of a region 5’ of the homeodomain that is rich in potential 

phosphorylation sites and that is important for binding to CDK7. At least 3 of these sites 

have been reported by phosphoproteomics studies to be actually phosphorylated 

(www.phosphosite.org, (70)): S189 (during mitosis) and S204 and S206 (in response to 

UV treatment in HeLa cells; ATM/ATR potential substrates). Other sites have high 

stringency for CDK5 or CDK1 (T201, T208, S210, S226), or to DNA-PK (S210, S245) 

(http://scansite.mit.edu/, (71)). Though the thorough investigation of the significance of 

these phosphorylation sites is beyond the scope of this study, we hope this report 

engenders new interest in studying HOX phosphorylation and their consequence beyond 

their function as transcription factors. 

Functionally, HOXC10 binding to CDK7 increases its kinase activity towards the CTD 

domain of RNAPII after DNA damage, as revealed by an increase binding of CDK7 to 

RNAPII, increase CTD phosphorylation and no change in the CDK7-specific 

phosphorylation sites on CDK1 and CDK2. Previously, it was shown that CAK 

dissociates from TFIIH within 15 min of UV treatment, and that its kinase activity is 

neither required for the assembly of the NER machinery nor for repair of photolesions; 

Instead, its reassociation with the TFIIH within 4h to phosphorylate RNAPII and reinitiate 

transcription of some genes is essential for the survival and recovery of cells (61, 72, 

73). In fact, the failure of the CAK complex to bind to the core TFIIH after DNA damage 

is a key aberration in the development of the genetic disorder Xeroderma pigmentosum 

(XP) and of many cancers. We argue here that after DNA damage, HOXC10 plays a key 

http://www.phosphosite.org/
http://scansite.mit.edu/
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role in bridging the gap between these 2 complexes, enhancing the recovery process. 

Indeed, treatment of cells with SNS-032 and BS-181 (inhibitors of CDK7) or with siRNA 

specifically targeting CDK7, could partially reverse the decrease in susceptibility to 

chemotherapy treatment upon HOXC10 overexpression. 

The importance of our finding to breast cancer therapy stems from the fact that in tumor 

cells, many of the cell cycle modulators are either upregulated or hyperactivated, leading 

to uncontrolled cell growth, suggesting that these molecules are promising therapeutic 

targets. Pan-specific CDK inhibitors are already in clinical development, including 

flavonoids (alvocidib and P276-00) and purine-based compounds (SNS-032 and 

seliciclib) but have had limited clinical response as single agents. However, when 

combined with chemotherapy or targeted therapies, synergistic interactions between the 

effects of the drugs have been observed, both in vitro and in clinic, making it an 

attractive approach to overcome resistance (62, 63, 74). 

In particular, CDK7 arose as a promising therapeutic target, since it regulates the 

activities of all other CDKs, thus eliminating the functional compensation seen in 

targeting individual CDK. It also controls transcription (especially the short half-life 

transcripts, such as BCL2, Cyclin D, XIAP and MCL1) and the activity of many proteins 

(such as p53, ERα, RARα) (62, 68). Due to the synergistic interactions between the 

effects of CDK7 inhibitors and other chemotherapy drugs, targeting CDK7 became an 

attractive approach to overcome resistance (63, 75). 

The second survival pathway that is activated by HOXC10 is through tipping the balance 

between growth and apoptosis allowing continuous proliferation and survival under many 

conditions. We have shown here that HOXC10 facilitates the transition from G1 to S 

phase and then the progression through the S phase during the cell cycle. As a 
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consequence, cells with high HOXC10 levels had a growth advantage especially under 

non-ideal conditions, and were able to restart their replication and transcription to 

overcome the stressful and toxic conditions. At the same time, the increase in NF-κβ 

activity and the consequent increase in the levels of many anti-apoptotic proteins 

decrease the sensitivity of cells to many stressors. 

How HOXC10 affects proliferation is still not completely understood. A previous 

publication hinted a role for HOXC10 in mitotic progression through competing with 

Cyclin A for binding and degradation by APC in HeLa cells (33). In our breast cancer 

cells, we could not repeat this finding, nor a correlation between HOXC10 levels and 

Cyclin A1 protein levels or progression of the cells through G2/M was found. However, 

we observed that HOXC10 has a function at earlier phases of the cell cycle. This 

discrepancy is not uncommon, as many cell cycle modulators are known to regulate 

different checkpoints depending on the cell context (76-78). Recently, many HOX genes- 

including HOXC10- have been shown to be involved in DNA replication by binding 

through their homeodomain to the replication machinery complex (Reviewed in (69)). 

However, none of these studies have investigated the consequence of this binding on 

cancer progression or survival. 

Given the importance of the E2F pathway in G1/S progression and in breast cancer 

proliferation and prognosis (18), we investigated whether HOXC10 activates this 

pathway. Interestingly, we found that although E2F1 activity is higher when HOXC10 is 

overexpressed, some data suggests that this activation is indirect: First, no physical 

interaction between these two proteins was detected. Second, knockdown of expression 

of both genes exerted additive- not synergistic- effects on inhibiting proliferation. 

However, the functional redundancy in the E2F family members precluded detailed 

investigation, thereby limiting this conclusion. It will be interesting to determine if other 
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members of the E2F family interact directly with HOXC10. Also, the fact that the DNA 

binding ability of HOXC10 is necessary to observe increased proliferation suggests that 

HOXC10 might be binding in the promoter/enhancer region of these genes. A future step 

is therefore to investigate by ChIP-on-chip the overlaps in HOXC10 and E2F1 binding 

signatures.   

In sum, our model is the following (Figure 7): Under unstressed conditions (A), the major 

HOXC10 function is in breast cancer cell proliferation- by facilitating the progression of 

the cells in G1 and S phase. This is achieved through the upregulation of the expression 

of many proliferation promoting genes, the enhancement of E2F1 activity and the 

binding to the replication complex. HOXC10 can be bound to the CDK7, bridging the 

CAK complex to core TFIIH. However, this function is mainly accomplished by XPD. 

When the cells are exposed to cytotoxic treatment (B), cells arrest at G1 or G2, the CAK 

complex initially dissociates from RNA Pol II, and the NER factors or other DNA damage 

response proteins are recruited to recognize and initiate repair. In this situation, 

HOXC10 switches to a survival factor function: As DNA damage accumulates, it is 

upregulated, potentially phosphorylated, and more efficiently associated with CDK7 to 

redirect its kinase activity towards the CTD of RNAPII (C). The result is a better 

checkpoint recovery, an enhancement of DNA crosslink repair and a decrease in 

apoptosis, leading to chemotherapy and UV resistance. 

Because of its involvement in many survival and proliferation pathways, HOXC10 is an 

attractive target for breast cancer therapy, especially to reverse resistance. Future 

studies should be aimed at developing direct inhibitors of HOXC10 (such as 

microRNAs), or indirect modulators of its function (by targeting its downstream effectors, 

such as CDK7). 
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Figure 7. Model of HOXC10 function. 
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