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ABSTRACT 
 

Functional MRI (fMRI) is commonly performed using the blood-oxygenation-

level-dependent (BOLD) approach, which is sensitive to ensemble changes in cerebral 

blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen 

(CMRO2). In order to understand and quantify the BOLD fMRI signal, it is essential to 

design multi-modal fMRI approaches that are sensitized to these individual hemodynamic 

parameters, and to further determine the oxygen metabolism. This dissertation aims to 

develop and improve current quantitative fMRI techniques to detect relaxation times T2*, 

cerebral blood volume (CBV), cerebral blood flow (CBF), blood oxygenation level 

hemodynamics, oxygen extraction fraction (OEF), and CMRO2 during neuronal 

activation in a time efficient manner.  

Total and extravascular R2
* values in the parenchyma in human visual cortex are 

measured by combining multi-echo BOLD and vascular-space-occupancy (VASO) fMRI 

with visual stimulation at 7T. The VASO method is expected to suppress the 

intravascular signals in the microvessels. Both the absolute parenchymal extravascular 

R2
* and R2

* changes (ΔR2
*) upon activation are determined, and the ratio of extravascular 

ΔR2
* to total ΔR2

* is calculated, confirming a predominant contribution from the 

extravascular component of the BOLD effect at 7T. Parenchymal OEF during stimulation 

is also estimated based on these measurements, the value of which is consistent with 

those reported at lower field strengths.  

While normally in most of the quantitative fMRI approaches, BOLD, CBV, and 

CBF measurements are separately performed to estimate CMRO2 dynamics, the ability to 

acquire these physiological parameters simultaneously would be very useful to improve 
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image acquisition efficiency, and more importantly reduce the sensitivity to temporal 

variations due to factors such as subject head motion, task performance, and physiologic 

fluctuations between the fMRI experiments. A large portion of this dissertation is devoted 

to design single-scan approaches to detect changes in the multi-modal hemodynamic 

signals. First, a novel 3D whole-brain MRI pulse sequence, dubbed 3D VASO-FAIR, is 

proposed to detect CBV and CBF responses in a single scan. Second, a new 3D 

acquisition strategy that extends VASO-FAIR and incorporates a 3D T2-preparation 

gradient-echo (GRE) BOLD method is implemented to simultaneously measure BOLD, 

CBV, and CBF reactivity during functional stimulation. Compared to individually 

performed multi-modal fMRI scans, similar image quality, activation patterns, relative 

signal changes (ΔS/S), tSNRs and CNRs can be achieved using the proposed combined 

sequences. Finally, based on the BOLD, CBV, and CBF responses obtained from the 

combined sequence, the oxygen metabolism alterations (OEF and CMRO2) are 

quantified. 
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Chapter 1: Introduction and Motivations 

 

1.1. Basic Principles of Magnetic Resonance Imaging  

Unlike CT and PET which rely on ionizing radiation, MRI uses non-ionizing 

radiofrequency (RF) pulses for generating image contrast, making it a much safer 

alternative. The true utility of MRI, however, is its flexibility. CT and PET are generally 

limited in their capacity to generating images and studying basic metabolism. 

Conversely, MRI is derived from the manipulation of proton spins by RF pulses and can 

be achieved in incredibly diverse ways. Different combinations of pulses can sensitize 

MR contrast to a variety of different physiological processes.  

The first successful nuclear magnetic resonance experiment was independently 

performed by Purcell (Purcell et al. 1946) at Harvard and Bloch (Bloch et al. 1946) at 

Stanford in 1946, respectively, in which they measured the resonance of nuclei in bulk 

matter. The experiments of Bloch and Purcell laid the groundwork for the field of NMR 

as a method for probing the structure of chemical compounds. They received the Nobel 

prize in 1952. Paul Lauterbur demonstrated how to localize regions of interest within the 

NMR sample by using a weak magnetic field combined with a magnetic field gradient to 

induce a spatially varying resonant frequency. He generated the first MR images using a 

projection reconstruction technique (Lauterbur 1973) similar to current CT image 

reconstruction methods. Richard Ernst developed spatially encoding mechanisms for the 

NMR signal and applied Fourier transform to interpret the frequency data (Nagayama et 

al. 1977; Ernst 1987). Peter Mansfield similarly formulated mathematical approaches for 

generating images from detectable MR frequencies and also developed a fast imaging 
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technique called echo planar imaging (EPI) (Mansfield et al. 1978). Over the past few 

decades, MRI has become a primary non-invasive imaging modality to probe the 

anatomical and functional information of the human body. In 2003, Lauterbur and 

Mansfield were awarded the Nobel Prize for the invention of MRI. 

 

Classical description of NMR 

 At thermal equilibrium, when there is no external magnetic field applied, no net 

magnetic field exists around an object. When the object sample is placed in a strong 

external magnetic field ( ), it will be polarized such that its bulk magnetization will 

align with the direction of the external magnetic field. The external  field is usually 

defined to be along the z-axis, so at equilibrium the net magnetization vector points 

along the positive direction of the z-axis, and its magnitude is 

              [1.1] 

where γ is the gyromagnetic ratio for certain nucleus, is the Planck’s constant h divided 

by 2π, Ns is the total number of spins in the sample, K is the Boltzmann constant, Ts is the 

absolute temperature of the sample. Equation [1.1] indicates that the magnitude of is 

directly proportional to the external magnetic field strength B0. Thus, the net 

magnetization increases as the strength of  increases. For most clinical MRI systems, 

 ranges from 0.5 to 3 T.  

 If in some way the net magnetization  is perturbed away from , it will 

experience a torque. The motion of can be described by the following equation:  
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             0 B0            [1.2] 

If  is along z-axis, the magnetization vector will precess about the z-axis with the 

angular frequency of 0 B0 , which is also called the Larmor frequency. Therefore, in 

the presence of a magnetic field, the net magnetization vector will precess at an angular 

frequency proportional to the gyromagnetic ratio of the nuclei in the sample and the 

strength of the external magnetic field.  

 A detectable MR signal is achieved by applying an additional time varying 

magnetic field  perpendicular to the static magnetic field  to perturb the 

magnetization. In contrast to the primary magnetic field , the external field is much 

weaker (e.g., B1 = 50 mT while B0 = 1.5 T). Moreover,  is oscillating at the Larmor 

frequency 0 of the proton sample (resonant with ). According to Eq. [1.2], the net 

magnetization vector  will simultaneously precess about  at ω0 and  at 1 B1. 

It is often conceptually simpler to think in terms of the frame of reference of  that is 

rotating at the Larmor frequency 0 of the sample. In this rotating frame, the 

magnetization is simply tipped away from z-axis by . If the duration of the  

excitation pulse is t, the magnetization vector will rotate by a flip angle (FA) of 

1t . When an appropriate  excitation is applied, the magnetization vector can be 

tipped by 90° to lie entirely in the transverse plane, where its evolution can then be 

detected.   

When  is removed, the magnetization vector will gradually return to the 

equilibrium state. This process is characterized by a precession of  about the  field, 
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called free precession; a recovery of the longitudinal magnetization Mz, called 

longitudinal relaxation; and the destruction of the transverse magnetization Mxy, called 

transverse relaxation, the latter two are different, independent processes. Longitudinal 

relaxation is an exponential process characterized by the time constant T1 and is caused 

by the interaction of the excited spins with surrounding randomly fluctuating magnetic 

fields of spins in the lattice. Thus T1 relaxation is often called spin-lattice relaxation and 

increase with field strength.  

The transverse relaxation is also an exponential process, and is characterized by 

the time constant T2. It occurs since the fluctuating spins in the sample each generate a 

slightly different magnetic field that changes the phase of the spins of interest. Therefore 

T2 is also called spin-spin relaxation time. To detect the transverse magnetization is 

difficult as the spins in the transverse plane will see slightly different local fields thus 

different frequencies of precession, leading to a loss of phase coherence of the transverse 

component and ultimately a decay of the detectable MRI signal. This T2 relaxation is an 

irreversible process as it is caused by random fluctuations of the magnetic fields of spins 

in the sample.  

It is worth mentioning that certain mechanisms that cause phase dispersion can be 

reversed. B0 field inhomogeneity will cause spins in different locations to accumulate 

phase relative to each other, leading to an exponential decay of signal described by the 

time constant T2’. The combined effect of T2 and T2’ is described by the effective 

transverse relaxation time T2* ( 1
T2

*

1
T2

1
T2

'
). It has been shown that dephasing in static 

inhomogeneous magnetic fields can be reversed by applying a 180° RF pulse to invert the 

phase of the spins following the initial evolution after excitation. In this so-called spin 
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echo experiment, the time between the excitation and when the spins are again in phase is 

the echo time (TE), and the 180° RF pulse is applied at time TE/2. Spin echo experiments 

therefore effectively correct for T2’ decay, allowing for more signal to be present at the 

time of acquisition, and in turn the possibility for longer signal acquisition times.  

The time-dependent behavior of the magnetization vector  can be described 

quantitatively by the empirical Bloch equation, named after Felix Bloch: 

         [1.3]      

where B is the applied, external magnetic field, Mz is the longitudinal magnetization and 

M is the transverse (x,y) magnetization. The Bloch equation can be separated into 

transverse and longitudinal components: 

                 

dM x

dt 0My
Mx

T2

dM y

dt 0M x

M y

T2

dMz

dt
(M0 Mz )

T1

          [1.4] 

the general solutions are, 

                     

M x e t/T2 (Mx (0)cos 0t M y (0)sin 0t)

M y e t/T2 (M y (0)cos 0t M x (0)sin 0t)

Mz Mz (0)e t /T1 M0 (1 e t/T1 )                           [1.5]

 

Note that in the above equations, the transverse (T2) and longitudinal (T1) relaxation 

times are completely independent of one another.  

 

Spatial encoding and imaging  
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Finally, MR imaging is achieved through application of spatially varying 

magnetic fields (gradients) in addition to the  and  fields. There are generally three 

separate gradient coils that produce linear variations in the magnetic field along the x, y 

and z direction, so-called field gradients (Gx, Gy, and Gz). Therefore, the gradient field, in 

combination with the  field, can be used to create a region of spins with a distinct 

resonant frequency at a specific location; then spatially selective excitation can be 

achieved by tuning  to this frequency.  

The strength of the magnetic field at any given position can be written as 

   
B B0 Gxrx Gyry Gzrz                                   [1.6]     

where Gx, Gy, and Gz denote the gradient strengths and rx, ry and rz describe the 

corresponding location. In the absence of the gradient fields, having denoted the number 

of spins at a particular location (x,y,z) with the spin density (x, y, z) , the signal from the 

sample can be written as 

    
s dx dydz (x, y, z)

                     [1.7]

     
 

However, when the spatially varying gradients exist, protons at different locations 

will have non-equal phases. Therefore, an additional term to account for the different 

phases produced by the gradients must be introduced, 

  
s(kx, ky, kz ) dx dy dz (x, y, z)e 2 i(kxx kyy kzz) F[ (x, y, z)]

          [1.8]                   
 

where, 
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kx (t)
2

Gx (t ' )dt '

0

t

ky (t)
2

Gy (t ' )dt '

0

t

kz (t) 2
Gz (t

' )dt '

0

t

        [1.9]

 

The above formula suggests that there is a Fourier relationship between the 

detected MR signal and spin density of the sample being imaged, and the signal is 

described with a spatial frequency parameter given by . Therefore, if 

spatial frequency information is sampled, an image of (x, y, z)  can be generated by 

taking the inverse Fourier transform of all of the spatial frequency-space or so called k-

space.  

There are different ways that have been developed for sampling k-space. In 

general the idea is to detect the frequency of the imaging sample during a time course of 

gradient applications. The resolution of the image depends on the extent of k-space that is 

sampled. Sampling schemes with different k-space trajectories include Cartesian 

sampling, radial sampling, and spiral sampling.  

 

Image contrast and pulse sequence 

An MRI pulse sequence is a programmed set of RF pulses and magnetic field 

gradients with careful choice of timings. The contrast in an MR image is strongly 

dependent upon the pulse sequence. It is possible to highlight different components in the 

object being imaged, based on properties such as water (spin) density, T1, and T2 

relaxation time.  
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The basis of MR image contrast is the spin density throughout the object. There 

will be no NMR signal at all if there are no spins present in a region. The majority of 

MRI scans utilize the hydrogen nuclei (i.e., protons) as the signal sources, which are 

found in abundance in the human body in water molecules. Therefore proton spin 

densities depend on water content, and vary in different human tissues. When such 

difference in tissues is small, additional contrast mechanisms must be employed. These 

are generated based on the variation in T1 and T2 values for different tissues.  

T1 weighted images are usually generated using a so-called inversion recovery 

(IR) pulse sequence, in which a RF pulse with flip angle of 180° that inverts the 

magnetization is followed by a 90° RF pulse that flips the residual longitudinal 

magnetization into the transverse plane where it can be detected by an RF coil. After the 

180° inversion pulse, the longitudinal magnetization Mz will recover for a period of time, 

namely the inversion time (TI), before acquiring the images. The amount of signal 

available by the time of signal detection will depend on the T1 relaxation time of the 

sample. If the sample has spins with several different T1, it is possible to choose a 

suitable TI such that the signal from spins with one recovery rate is nulled, while giving a 

good contrast among spins with other recovery rates. In order to calculate the values of T1 

to create a T1 map, it is necessary to acquire several points along the magnetization 

recovery curve and then fit the points to the inversion recovery equation derived from the 

Bloch equation for Mz:  

    Mz (TI ) M (0) (1 2e TI /T1 e TR/T1 )       [1.10] 

The most straightforward way is to repeat the inversion recovery sequence for a number 

of values of TI. 
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As briefly mentioned earlier, a spin echo (SE) sequence can be used to obtain 

images with dominant T2 contrast. A spin echo is formed by applying a 180° pulse to 

invert the phase of the spins following the initial evolution after excitation. The time 

between the excitation and when the spins are again in phase is the echo time (TE), and 

the 180° RF pulse is applied at time TE/2. This has the effect of reversing the dephasing 

of the transverse magnetization of spins in the presence of field inhomogeneity. Since the 

spin-spin relaxation cannot be refocused in the spin echo, the contrast in the image is 

dependent on T2. The echo time (TE) is the main timing parameter that can be adjusted to 

generate different T2 weighted contrast. Similarly T2 maps can be made from multi-echo 

images by using a series of 180° pulses and multiple imaging modules at each 

consecutive TE, and fitting to the T2 decay equation derived from the Bloch equations: 

       S(TE) S(0) e TE /T2
                                [1.11] 

  The other type of echo, called gradient echo, can be generated by dephasing and 

rephasing the spins with a pair of oppositely polarized gradients. In a gradient echo pulse 

sequence, if the spins in a single voxel experience different magnetic fields, the loss of 

phase coherence from field inhomogeneity cannot be not reversed, which reduce the 

transverse magnetization magnitude in the same way as spin-spin relaxation does. As 

briefly mentioned earlier, the total effect of spin-spin relaxation and field inhomogeneity 

is characterized by T2*. The signal evolution is governed by an equation of exponential 

decay similar to Eqn. [1.11] with T2 replaced by T2*. Similarly, maps of T2* values can 

be obtained by taking several images with different TEs and fitting to this equation. 

 

Functional magnetic resonance imaging  
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Ever since its invention, MRI has been largely used in clinics as an anatomical 

imaging modality to non-invasively visualize the structure of human body. Nowadays it 

can also be used to probe functional and physiological information in various organs in 

the body, most commonly, in the brain. Functional MRI (fMRI) measures signal changes 

in the brain arising from hemodynamic responses upon neuronal activity, and is widely 

used for mapping spatial and temporal patterns of brain activity. The most common fMRI 

measurement is based on the blood oxygenation level dependent (BOLD) effect, which 

results from changes in local deoxyhemoglobin content (Ogawa et al., 1993). 

Deoxyhemoglobin serves as a paramagnetic agent that creates magnetic field distortions 

within and around blood vessels, thereby attenuating the MR signal by affecting the 

transverse relaxation times T2 and T2*. A very important observation during brain 

activation is that the brain will have excess glucose and oxygen delivery compared to 

demand (Mintun et al., 2001; Powers et al., 1996) as the cerebral blood flow (CBF) 

increases more than the cerebral metabolic rate of oxygen (CMRO2). Such 

overcompensation decreases the concentration of red blood cells carrying 

deoxyhemoglobin in the post-arterial vasculature (capillaries, venules and veins), 

resulting an increased value of proton T2 and T2* relative to baseline, thus MR signals 

will increase during increased neuronal activity and this is the mechanism underlying 

BOLD fMRI contrast.  

While BOLD fMRI is most commonly employed nowadays as a mapping tool for 

neuroscience studies, to interpret BOLD signal change in terms of neuronal activity is 

difficult because the BOLD effect is sensitive to ensemble changes in several 

physiological parameters including cerebral blood volume (CBV), cerebral blood flow 
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(CBF), and the cerebral metabolic rate of oxygen (CMRO2). Although this creates some 

difficulty in interpreting the signal, it also offers the possibility of estimating changes in 

oxygen metabolism when BOLD, CBF, and CBF measurements are combined.  

 

1.2. Relationship between deoxyhemoglobin concentration and BOLD fMRI 

parameters 

As briefly mentioned earlier, BOLD signal changes are related to changes in the 

concentration of deoxyhemoglobin, which acts as a paramagnetic contrast agent in 

capillary and venous blood. When the blood oxygenation fraction (Y) is changed, the 

concentration of deoxyhemoglobin changes, which affects the T2 and T2* values of spins 

inside the vasculature, as well as those of extravascular spins around capillaries and veins 

draining from activated cortex. Therefore BOLD fMRI will have both intravascular and 

extravascular contributions. The relative concentration of paramagnetic 

deoxyhemoglobin ([Hb]) to total hemoglobin ([Hbtot]) in venous blood is (van Zijl et al., 

1998): 

[Hb] / [Hbtot ] 1 Yv 1 Ya OEF Ya          [1.12] 

Yv and Ya are the venous and arterial oxygen saturation fractions, respectively. 

OEF is the oxygen extraction fraction, describing the ratio between oxygen consumption 

and delivery: 

OEF CMRO2

Ca CBF
CMRO2

[Hbtot ] Ya CBF
          [1.13] 

The above equation reflects the so-called “coupling” between CMRO2 and CBF, 

and the BOLD effect is sensitive to arterial oxygen saturation fraction, Ya, and the total 

hemoglobin concentration, [Hbtot], which is directly related to the hematocrit fraction 
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(Hct). In most of the current fMRI literature, Hct and arterial oxygenation are assumed 

constant, and the approximation 

1 Yv OEF constant CMRO2 / CBF        [1.14]  

is used. When looking at changes in Yv or OEF under these conditions, we have: 

1 CMRO2

CMRO2

1 CBF
CBF

1 OEF
OEF

1 CBF
CBF

1 Yv

(1 Yv )
   [1.15]  

This equation indicates that relative changes in CMRO2 can be simply determined by 

measuring the relative changes in blood flow and venous blood oxygenation. Although 

BOLD fMRI signals only directly reflect changes in transverse relaxation time, the 

transverse relaxation time is a function of venous oxygenation level Yv. The dependence 

of Yv and intravascular R2 = 1/T2 and R2* = 1/T2* can be calibrated using experiments on 

isolated blood phantoms under well-controlled physiological circumstances (Wright et 

al., 1991). The simple hyperbolic equation commonly used for intravascular BOLD is 

(Silvennoinen et al., 2003; Uludag et al., 2009; Zhao et al., 2007):  

R2
(*) A(*) C(*) (1 Yv )2                         [1.16] 

in which (*) indicates either gradient echo or spin echo and A(*) and C(*) are diamagnetic 

and paramagnetic rate constants that are dependent on the magnetic field strength, the 

hematocrit, and the particular pulse sequence and echo spacing used. Values for these 

constants at various filed strengths have been published.  

Expressions for the extravascular BOLD effect, on the other hand, is based on the 

dephasing of water in large field gradients caused by deoxyhemoglobin (Ogawa et al., 

1993; Weisskoff et al., 1994; Yablonskiy and Haacke, 1994). Approximating a blood 
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vessel by a long cylinder, gradients around a randomly oriented vessel network of such 

cylinders can cause a frequency shift ( ): 

B0
4
3 deoxy Hct (1 Yv )         [1.17] 

in which  is the gyromagnetic ratio, B0 the static magnetic field, and deoxy  the 

magnetic susceptibility difference between oxygenated and fully deoxygenated blood 

(~0.2-0.3ppm). The estimated hematocrit (Hct) in the microvasculature is about 85% of 

that in the large vessels.  

In the most optimum situation where signals from CSF and some parts of larger 

vessels especially draining veins, are minimal, an imaging voxel would contain only 

parenchyma, i.e. gray matter and microvessels (arterioles, venules, and capillaries). For 

larger microvessels in which dephasing of water spins due to the presence of static 

magnetic field gradients around the vessels is much larger than the diffusional dephasing 

of the spins, using the so-called static dephasing regime theory proposed by (Yablonskiy 

and Haacke, 1994), the extravascular BOLD effect based on a gradient-echo (GRE) 

acquisition (T2*-weighted) can be analytically described as: 

R'
2t,Hb xv B0

4
3 deoxy Hct CBV (1 Yv )         [1.18] 

where t denotes extravascular tissue, and xv = 0.7 is the venous fraction in CBV when 

assuming a two-compartment microvascular model (arteriolar/venular) in which 

capillaries are included in the venular compartment.  

For spin-echo (SE) acquisitions however, the extravascular BOLD effect is 

intrinsically different from the static dephasing regime, as the SE-BOLD contrast is 

dominated by intra- and extravascular diffusion-induced dynamic averaging rather than 
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static dephasing that is induced by the static magnetic field inhomogeneity. Therefore in 

larger vessels, SE-BOLD effect will be very small as the diffusion effect of water 

molecules or so-called dynamic averaging regime is negligible and the static dephasing is 

refocused by the refocusing pulses, whereas in smaller microvessels especially in 

capillaries, there will be enhanced water diffusion, leading to more pronounced 

extravascular BOLD effect in the parenchyma (Jochimsen et al., 2004).  

 

1.3. Cerebral Blood Volume Imaging Using Vascular-Space-Occupancy 

Cerebral blood volume (CBV), commonly expressed in mL of blood per 100 mL 

of brain tissue, is a vital physiological parameter. As discussed in Chapter 1.2, to measure 

local changes in CBV is essential for understanding the BOLD fMRI signal mechanism 

and CBV can serve as an important contrast for functional brain mapping. During 

increased neuronal activity, it is primarily the arteries and arterioles equipped with 

smooth muscle that are capable of actively dilating, as suggested by a large body of 

literature in neurovascular coupling. There is also evidence showing that pericytes may 

be responsible for the dilatation and constriction of the capillaries, as capillaries do not 

contain smooth muscle themselves (Peppiatt et al., 2006).  

CBV-weighted MR images are generally acquired in humans by injecting a non-

diffusible tracer such as Gd-DTPA and tracking its progression through the vasculature. 

However, this involves the injection of contrast agents, and is based on the assumption 

that the contrast agent only occupies the intravascular space and does not penetrate the 

blood-brain-barrier, which may not be the case in diseases such as brain tumor. For 

dynamic imaging of CBV changes, Mandeville and colleagues have used long blood half-
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life contrast agent, monocrystalline iron oxide nanoparticle (MION) (Mandeville et al., 

1998), the sensitivity of which was found to be higher than that of the BOLD technique.  

However in this approach, it is assumed that tissue T2* (or T2) change induced by the 

contrast agent is mainly extravascular thus approximately proportional to CBV, 

neglecting the intravascular effects. This assumption may not hold for tissue around 

microvessels and large vessels. In 2003, Lu et al. (Lu et al., 2003) proposed an inversion 

recovery based MRI method called “vascular-space-occupancy (VASO)”, which exploits 

the T1 difference between blood and brain tissue and acquire the images when the blood 

signal is nulled, thereby obtaining MR signals sensitized to microvascular CBV changes 

non-invasively. Figure 1.1 illustrates the VASO pulse sequence. In the original VASO 

technique, a spatially nonselective (i.e. global) inversion pulse is applied, after which 

both blood and tissue longitudinal magnetizations will recover at the their T1 relaxation 

rates, respectively. Since blood has a longer T1 than tissue (both gray and white matter), 

by the time the blood magnetization crosses zero, tissue signal will be positive. The zero-

crossing inversion time (TI) for blood can be determined by the following equation,  

         Mblood (TR,TI ) 1 2 e TI /T1,blood e TR/T1,blood 0       [1.19] 

and the residual extravascular tissue signal in a VASO spin echo experiment can be 

expressed as: 

         S ~ (Cpar CBV Cb ) Mtissue(TR,TI) e TE /T2,tissue

      [1.20] 

where Cpar ~0.89 mL water/mL parenchyma and is the water density of parenchyma, 

Cb~0.87 mL water/mL blood and is the water density of blood, Mtissue(TR,TI) is the 

longitudinal magnetization of the extravascular tissue water. Notice that during increased 

neuronal activity, CBV will increase due to the vasodilatation of the arterioles and 
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capillaries, thus tissue signal will decrease. Therefore, in a VASO fMRI experiment, the 

detected VASO signal change will be negative upon functional stimulation. 
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Fig. 1.1. Illustration of the VASO pulse sequence (top) and the inversion recovery 

process for tissue and blood magnetization (bottom). “RF” and “GR” represent RF pulse 

and gradient, respectively. “ex” indicates the excitation pulse after which the image is 

acquired. A spatially non-selective inversion pulse is applied and images are acquired at 

the blood nulling time when the tissue signal is positive.  
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Since activation-induced vasodilation is specific to small vessels rather than large 

sympathetically regulated vessels, VASO fMRI can spatially localize changes in the 

microvascular CBV, which is essential for localizing regions of neuronal activity and for 

performing functional brain mapping. Several imaging studies have also suggested an 

improved spatial specificity for VASO fMRI compared to BOLD fMRI. For example, a 

cat brain study conducted at high spatial resolution (Jin and Kim, 2008) convincingly 

showed that, across cortical layers, the peak VASO activation signal was observed in 

layer IV of the cortex where synapses are most abundant, showing a signal profile 

comparable to the MION CBV method used in the same animals, but distinctive from 

that of BOLD. BOLD activation patterns, on the other hand, covered broader areas of 

cortical layers and larger vessel regions, and did not manifest layer specificity. In human 

studies, the question of whether the VASO-activated voxels are predominantly located in 

brain parenchyma or large vessels can be probed by examining the T1 properties of the 

voxel, because blood has a longer T1 value than parenchyma tissue. It was found that T1 

of VASO-activated voxels was 1031±20 ms (at 1.5 T), which is close to the tissue T1 (Lu 

et al., 2003). However, the T1 of BOLD-activated voxels were significantly (p < 0.03) 

longer (1103±23 ms), suggesting an increased partial volume effect from blood or CSF. 

When VASO fMRI is performed at higher spatial resolution, the localization of the 

activated voxels becomes more apparent. Donahue et al. (Donahue et al., 2006a) 

performed VASO fMRI at resolution of 0.78x0.78x3mm3 and demonstrated that the 

activated voxels are mainly localized in the gray matter layer, with few voxels in the sulci 

between cortical banks (where the vessels are located). Huber et al. (Huber et al., 2015) 

performed a sub-millimeter resolution fMRI (0.78x0.78mm2) study in human brain at 7 
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T, in which they reported that the highest BOLD activity is found at or outside the 

cortical surface, whereas VASO signal change has its peak 1-2 voxels (0.80-1.6 mm) 

deeper within GM, corresponding to the upper or middle cortical lamina.  

Since a global inversion is applied in VASO MRI experiment, brain tissue signal 

will also be affected. Tissue T1 is only slightly shorter than blood T1, and depending on 

the repetition time (TR) used, only 10-20% of tissue signal is recovered after such 

nonselective inversion pulse at 3 Tesla. At higher magnetic fields, the residual tissue 

signal will be even lower since their T1 values converge. Therefore, the signal-to-noise 

ratio (SNR) and contrast-to-noise ratio (CNR) of VASO is a lot lower when compared to 

BOLD, regardless of which field strength they are performed. To alleviate this problem, 

Hua et al. (Hua et al., 2009a) developed the magnetization transfer (MT)-enhanced 

VASO (MT-VASO) method, where a MT pre-pulse was applied immediately before or 

after the inversion pulses in the VASO sequence to prepare a smaller tissue 

magnetization or to speed up the tissue longitudinal magnetization recovery, respectively, 

thus achieving a higher residual tissue signal at the inversion time TI, and enhancing the 

inherently low SNR and CNR values for VASO MRI. When using moderate irradiation 

power (≤3uT) and durations (≤500ms), and a frequency offset sufficiently far away from 

water resonance (≥40ppm), the MT prepulse has been shown to have negligible effect on 

blood signal so that same blood nulling TI can be used for VASO. It has been shown that 

the same magnitude of relative signal changes in MT-VASO were achieved as in VASO 

fMRI, meaning that the CBV sensitivity was preserved, while the SNR and CNR was 

enhanced by approximately 40% at 3 T. For this dissertation, all the VASO experiments 

we performed at 3 T were based on the MT-VASO approach.  
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One of the limitations of VASO MRI is the lower temporal resolution if pure 

CBV effects need to be studied. Donahue et al. showed that a CBF contribution will 

cause large negative VASO signal changes at short TR (≤3 s); using a TR of 5s or longer 

will considerably reduce the perfusion contribution. Also, the proton exchange between 

the tissue and the capillary compartment may alter the blood relaxation times, thus the 

nulling of blood spins in the capillary and initial part of venules may not be perfect. In the 

original VASO paper (Lu et al., 2003), the authors showed that such water exchange has 

negligible effects (about 0.02%) on the overall VASO signal by constructing a 

parenchymal model consisting of four pools (spins in blood and in tissue, spins 

exchanging from blood to tissue and from tissue to blood). Another confound comes from 

the actual inflow effects during the experiments. The VASO theory described above is 

based on the assumption that all blood spins within the imaging volume have reached the 

inversion steady state of approximately nulled signal before image acquisition. This 

assumption is only valid when the coverage of the RF transmission includes the entire 

body of the subject. However, even using a body coil for transmission, the effective 

inversion volume produced usually can only cover the lower neck and upper chest region. 

As a consequence, some fast-flowing blood spins may not have seen a sufficient number 

of inversion pulses to reach a steady state at the time of signal acquisition. Based on the 

time at which they enter the transmit coil, the non-steady-state inflowing blood spins can 

be categorized into three types: (I) spins flowing in before the end of readout of the 

previous TR; (II) spins flowing between the readout of the previous TR and the inversion 

pulse of the current TR; (III) spins flowing after the inversion pulse of the current TR. Lu 

(Lu, 2008) developed a ‘magnetization reset’ technique to eliminate type I non-steady-
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state blood spins, where a spatially nonselective saturation module is applied immediately 

after each readout, and establishing a steady state for all blood spins entering the transmit 

coil after the first repetition time (TR). But this approach was found to only partially 

correct for the inflow effect. Fortunately, this effect is small when using body coils for 

RF transmission (Donahue et al., 2009b); More recently, Hua et al. (Hua et al., 2013a) 

proposed the use of motion-sensitized crushing gradients to suppress type II and III non-

steady-state spins, where a spatially nonselective Carr-Purcell-Meiboom-Gill-based T2 

preparation module with inserted motion-sensitized crushing gradients are applied 

immediately before the readout. When these additional sequence components are not 

available, a TR of 5s or longer at 3 T (to minimize type I and II effects) and a large 

volume inversion (to minimize the type III effect) are recommended for predominant 

CBV contrast. 

Since VASO MRI method is based on blood nulling, and theoretically there is 

only one nulling point during longitudinal relaxation, it appears that only one excitation 

pulse can be applied during each TR. Therefore, VASO fMRI was typically acquired in 

single-slice mode when it was first introduced (Lu et al., 2003). It is now possible to 

acquire multi-slice or three-dimensional (3D) volumes following one RF pulse. Multiple-

Acquisition-with-Global-Inversion-Cycling (MAGIC) was proposed and further extended 

(Lu et al., 2004c; Scouten and Constable, 2007, 2008) to provide a multi-slice version of 

VASO. Single shot 3D gradient- and spin-echo (GRASE) acquisition scheme have been 

used for VASO acquisition (Poser and Norris, 2011). More recently, the fast 3D low-

angle shot (FLASH) or fast gradient echo (GRE) acquisition (Cheng et al., 2014; Hua et 

al., 2013a) sequence was applied for VASO imaging both at 3T and 7T, where all k lines 
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of an imaging volume are sequentially acquired with short TR, short TE and low flip 

angle excitation pulses (<10°) following a single inversion. Such imaging scheme has 

been commonly used in high-resolution anatomical scans such as the Magnetization 

Prepared RApid Gradient Echo (MPRAGE) sequence (Hua et al., 2014; Mugler and 

Brookeman, 1990). A low-high (also known as “centric”) phase encoding scheme was 

often used which is important for blood nulling in VASO. When compared to other 

commonly applied imaging sequences such as EPI, turbo SE and GRASE, the 3D fast 

GRE readout module can minimize BOLD contamination (short TE, 1.8ms) to the VASO 

contrast and reduce image distortion (susceptibility artifacts or spatial smoothing induced 

by the very long echo train) and power deposition.  

 

1.4. Cerebral Blood Flow Imaging Using Arterial Spin Labeling 

 Cerebral blood flow (CBF) studies using 15O-labeled water as the contrast agent 

have been used extensively for functional mapping with positron emission tomography 

(PET). To measure cerebral perfusion with MRI, there are two major approaches. The 

first is the application of an exogenous, intravascular, non-diffusible, and usually a 

gadolinium-based contrast agent, that emphasizes either the susceptibility effects on the 

signal, namely first-pass dynamic susceptibility contrast-enhanced (DSC) MR perfusion 

or the relaxivity effects on the signal, namely dynamic contrast-enhanced (DCE) MR 

perfusion. The second is using magnetically labeled arterial blood water as an 

endogenous, diffusible tracer that is capable of moving across the blood-brain barrier, 

applied in spin labeling (ASL) MR perfusion techniques (Essig et al., 2013).  
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ASL techniques involve the subtraction of two separately acquired images. First, 

the label acquisition is performed such that blood water spins outside the image slice are 

magnetically labeled by inverting their longitudinal magnetization relative to M0. When 

these labeled blood water spins flow into the imaging slice and reach the capillary bed, 

they will exchange with extravascular tissue water and attenuate the tissue signal. In the 

second, control acquisition, the same slice is acquired with no preparatory inversion 

applied. A subtraction (control - label) will yield a difference image with intensity 

directly proportional to CBF. The inversion is done either adiabatically as the blood 

moves through a gradient field during a continuous or pseudo-continuous RF pulse in a 

continuous ASL (CASL) experiment, or by using a short RF pulse to invert a larger slab 

of blood water spins in a pulsed ASL (PASL) experiment. The labeling plane for CASL 

is typically at about the same location as the distal end of the labeling slab in PASL 

(Alsop et al., 2014). 

One particular PASL method that we will be using in this dissertation is the flow-

sensitive alternating recovery or FAIR technique (Kim, 1995; Kwong et al., 1995). It 

employs a frequency-selective inversion pulse with and without an accompanying slice-

selection gradient to produce the tagged and the control images, respectively (Figure 1.2). 

When the inversion pulse is played with the slab-selective gradient, it inverts the spins 

within the imaging slab while leaving spins elsewhere virtually unaffected. When the 

gradient is either played with zero amplitude or played at a different time away from the 

inversion pulse, the inversion pulse inverts spins in the entire volume of the RF transmit 

coil. Therefore in the difference image the static tissue signals will be subtracted out, 

leaving the signals from the inflowing blood.  
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Fig. 1.2. Illustration of the FAIR-ASL experiment. A FAIR-ASL experiment consists of a 

tagged acquisition (left) in which only the water spins in the spatially-selective inversion 

slab (red), which includes the imaging slab (green), is inverted, followed by a control 

acquisition (right) where all the water spins in the transmit coil are inverted after the non-

selective inversion pulses. When the control image is subtracted from the tagged image, 

we will get the so-called perfusion map, the image intensity of which is directly 

proportional to CBF value.  
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ASL perfusion MRI can be used to quantify the baseline CBF by solving a flow-

modified Bloch equation, as well as to detect activation-dependent changes in CBF in a 

manner similar to BOLD fMRI. While the BOLD contrast primarily detects T2 or T2* 

changes that indirectly reflect changes in CBF, ASL perfusion contrast is based on 

changes in T1 induced directly by regional blood flow alterations. When compared to 

conventional BOLD fMRI, the perfusion signal is localized in parenchyma rather than 

draining veins, since most of the water molecules delivered to the capillary beds are 

extracted, and the inflow time in a typical ASL experiment is short, thus few if any of the 

tagged spins reach the venous side of the vasculature. Nevertheless, the greater spatial 

specificity of functional ASL is offset by its lower sensitivity due to the paired 

subtraction (Wong et al., 1997). Over longer timescales however, functional ASL has 

improved sensitivity as compared with BOLD fMRI since the low-frequency noise is 

eliminated by the paired subtraction (Detre et al., 2009).  

 

1.5. Measurement of oxygen metabolism using multi-modal fMRI 

In order to understand and quantify the BOLD fMRI signal, it is essential to 

design MRI approaches that are sensitized to the contributions from individual 

hemodynamic parameters such as CBV and CBF that have better spatial correspondence 

with the underlying neural activity, and to combine information from multi-modality 

fMRI experiments for determining oxygen metabolism especially in the brain 

parenchyma area.  

By using a multi-compartment model for the parenchyma, one can combine CBF 

(ASL), CBV (VASO), and BOLD imaging to estimate alterations in CMRO2 during a 
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physiological challenge or brain activation (Donahue et al., 2009a; Griffeth and Buxton, 

2011; Hua et al., 2011c; Lu et al., 2004b; Uludag et al., 2009; van Zijl et al., 1998). When 

selecting only the subset of voxels that are activated in all methods, and because the 

VASO method is based on microvascular changes during challenges, it was concluded 

that this is the true parenchymal BOLD signal change (Lu et al., 2004b). A quantitative 

fMRI model for parenchyma needs to include arteriolar (a), capillary (c), venular (v), and 

tissue (t) compartments: 

S ~ xi
i

Mi e R*
2 iTE         

 [1.21] 

in which Mi describes the well-known dependence on repetition (TR) and flip angle (FA), 

and xi is the water fraction, that relates exactly to blood volume and tissue fractions via 

the water density. Using the static dephasing equations for the tissue relaxation (Eq. 1.18) 

and the intravascular calibration (Eq. 1.16) for intravascular BOLD, one can determine 

OEF and CMRO2 changes upon simple assumption of baseline CBV, Yv, and deoxy .  

The above-described quantitative BOLD approach normally needs separately 

performed BOLD, CBV, and CBF measurements during neuronal tasks in order to 

estimate CMRO2 dynamic. The ability to acquire these physiological parameters 

simultaneously would be potentially useful to improve image acquisition efficiency, and 

more importantly reduce the sensitivity to temporal variations due to factors such as 

subject head motion, task performance, and physiologic changes between the fMRI scans.  

In this dissertation, we aim to design novel MRI methods to measure relaxation 

times T2*, cerebral blood volume (CBV), blood flow (CBF), blood oxygenation level 

hemodynamics, OEF and CMRO2 during neuronal activation in a time efficient manner. 
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In Chapter 2, multi-echo VASO and BOLD fMRI are exploited at 7T, which is able to 

quantify parenchymal total and extravascular T2* relaxation rates and estimate the 

extravascular fraction of the BOLD effect. In Chapter 3, a new MRI pulse sequence, 

dubbed as “VASO-FAIR”, is proposed, which allows for three-dimensional whole-brain 

measurement of CBV and CBF dynamics in a single scan. In Chapter 4, an acquisition 

strategy that extends the 3D VASO-FAIR method and incorporates a T2-preparation 

module to induce the spin-echo BOLD contrast is presented, enabling the detection of 

CBV, CBF, and blood oxygenation-weighted signal changes in a single scan. Oxygen 

metabolism related parameters including oxygen extraction fraction (OEF) and cerebral 

metabolic rate of oxygen (CMRO2) are also estimated based on the measured BOLD, 

CBV, and CBF reactivity from the combined sequence.  
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Chapter 2: Measurement of Parenchymal Extravascular R2* and 

Tissue Oxygen Extraction Fraction Using Multi-echo VASO MRI at 7 

Tesla 

 

2.1. Introduction  

Parenchymal extravascular R2
* is an important parameter for quantitative blood-

oxygenation-level-dependent (BOLD) studies. It is well known that the BOLD effect 

increases with field strength, and the BOLD signal from extravascular tissue becomes 

more dominant at higher field, as the intravascular BOLD signal contribution is 

significantly reduced due to the faster R2
* decay of venous blood (Duong et al., 2003; 

Gati et al., 1997; Ogawa et al., 1993; Song et al., 1996; Ugurbil et al., 1999; Ugurbil et 

al., 2003; Uludag et al., 2009; van der Zwaag et al., 2009; Yacoub et al., 2001). The 

relative contribution of the extravascular BOLD effect can be estimated using the ratio of 

extravascular and total R2
* changes during neuronal activation. Furthermore, R2

* changes 

can also be used to estimate changes in physiological parameters such as venous 

oxygenation (Yv) and tissue oxygen extraction fraction (OEF) during brain activation.  

Total and intravascular R2
* values at various field strengths have been reported in 

a number of studies in animals and humans (Chen et al., 2004; Chien et al., 1994; 

Deistung et al., 2008; Donahue et al., 2011; Gati et al., 1997; Lee et al., 1999; Li et al., 

1998; Li et al., 2006; Lu and van Zijl, 2005; Silvennoinen et al., 2003; Uludag et al., 

2009; van der Zwaag et al., 2009; Wright et al., 1991; Yacoub et al., 2001; Yacoub et al., 

2005; Zhao et al., 2004; Zhao et al., 2007). However, reports on extravascular R2
* values 

remain scarce in the literature (Table 2.1), as it is not trivial to measure mainly due to the 
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difficulty to separate out the extravascular and intravascular signals in parenchyma. 

Duong et al. (Duong et al., 2003) used diffusion gradients to suppress the intravascular 

BOLD signal in order to investigate the microvascular contribution in the BOLD effects 

at 4T and 7T. Van der Zwaag et al. (van der Zwaag et al., 2009) excluded the 

intravascular BOLD effects in large veins using high resolution anatomical scans and 

reported R2
* values in human motor cortex at 1.5, 3 and 7T at a spatial resolution of 

1x1x3mm3. In the vascular-space-occupancy (VASO) approach, a spatially non-selective 

inversion pulse is applied”, and the image is acquired at the inversion time (TI) when the 

longitudinal magnetization of blood is expected to be zero, while that of tissue is slightly 

positive based on different T1 relaxation times of blood and tissue (Lu et al., 2003). Lu et 

al. (Lu and van Zijl, 2005) determined parenchymal extravascular R2
* values at 1.5T and 

3T using multi-echo VASO MRI, which eliminates the intravascular signal and is 

expected to isolate the extravascular tissue compartment in BOLD experiments. Donahue 

et al. (Donahue et al., 2011) employed bipolar crushing gradients to suppress fast flowing 

blood signal (intravascular), and measured extravascular R2
* change (ΔR2

*) during visual 

stimulation in human brain at 1.5T, 3T and 7T. To date, however, the combined 

BOLD/VASO method for determination of parenchymal extravascular R2
* values (Lu 

and van Zijl, 2005) has not yet been used in human brain at 7T.  
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Table 2.1. Comparison of extravascular and total parenchymal R2
* values at 1.5T, 3T and 

7T. 

 

mean ± standard error (SEM) 

a ΔR2
* = R2,act

*  - R2,rest
*. 

b Extravas. ΔR2
* fraction = 100 x (Extravas. ΔR2

* / Total ΔR2
*) %. 

 

  Resolution 

(mm3) 

Extravas. 

R2,rest
*

 (s-1) 

Extravas. 

ΔR2
* (s-1)a 

Total 

R2,rest
* (s-1) 

Total 

ΔR2
* (s-1) 

Extravas. ΔR2
* 

fraction (%)b  

1.5 T 

Ref. (Lu and van 

Zijl, 2005) 

Ref. (Donahue et 

al., 2011) 

Ref. (van der 

Zwaag et al., 2009) 

2x2x2 

 

3.5x3.5x3.5 

 

1x1x3 

16.14±0.64 

       

       --- 

 

--- 

-0.25±0.02 

 

-0.28±0.07 

 

--- 

16.78±0.65 

 

--- 

 

11.6±0.3 

-0.57±0.10 

 

-0.61±0.10 

 

-0.51±0.06 

47±7 

 

45±13 

 

--- 

3.0 T 

Ref. (Lu and van 

Zijl, 2005) 

Ref. (Donahue et 

al., 2011) 

Ref. (van der 

Zwaag et al., 2009) 

2x2x2 

 

3.5x3.5x3.5 

 

1x1x3 

21.15±0.66 

 

--- 

 

--- 

-0.38±0.05 

 

-0.52±0.07 

 

--- 

22.06±0.84 

 

--- 

 

18.1±0.4 

-0.58±0.09 

 

-0.74±0.05 

 

-0.98±0.08 

67±6 

 

70±11 

 

--- 

7.0 T 

Ref. (Donahue et 

al., 2011) 

Ref. (van der 

Zwaag et al., 2009) 

3.5x3.5x3.5 

 

1x1x3 

--- 

 

--- 

-1.25±0.11 

 

--- 

--- 

 

30.8±1.0 

-1.37±0.34 

 

-2.55±0.22 

91±11 

 

--- 

This study 2.5x2.5x2.5 44.66±1.55 -1.27±0.14 45.05±1.34 -1.40±0.16 91±3 
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In this chapter, we applied multi-echo BOLD and VASO fMRI with visual 

stimulation to measure total and extravascular R2
* values in the visual cortex in human 

brain at 7T. By comparing total and extravascular ΔR2
* during visual stimulation, the 

intra- and extravascular parenchymal contributions to the BOLD signal at 7T could be 

assessed. Yv and OEF changes during activation were estimated from the R2
* 

measurements.  

 

2.2. Methods 

The protocol was approved by the Internal Review Board of the Johns Hopkins 

University. Seven healthy subjects gave informed written consent before participating 

this study. From these, only six were included in the final report due to the fact that the 

relative extravascular ΔR2
* from subject 7 was more than two standard deviations larger 

than the averaged value from the other six subjects. Experiments were performed on a 7T 

human MRI scanner (Philips Healthcare, Best, The Netherlands), using a quadrature 

transmit head coil (10 inch or 25.4 cm in foot-head coverage) and a 32-channel phased 

array receive coil (Nova Medical, Wilmington, MA, USA). A single slice was carefully 

placed to cover the calcarine fissure. Three pseudo-randomized fMRI scans including two 

VASO (repetition time or TR = 4 s, inversion time or TI = 1293 ms) and one BOLD (TR 

= 2 s) scans were performed on each participant with visual stimulation (yellow/blue 

flashing checkerboard, 40s off 24s on, 4 blocks, 1 extra off period in the end). The blood 

nulling TI in VASO was calculated using blood T1 = 2212 ms, measured from bovine 

blood with 79% oxygenation and Hematocrit (Hct) = 0.43 at 7T (Dobre et al., 2007). The 

spatially nonselective inversion pulse in VASO was optimized for 7T in previous work 
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(hyperbolic secant adiabatic pulse, duration = 20 ms, peak B1 = 15 μT, bandwidth = 

1050Hz, >95% inversion at half of the maximum B1 in phantom and brain) (Hua et al., 

2013a; Visser et al., 2010). A magnetization reset module (90° RF pulse followed by 

spoiler gradients) (Lu, 2008) was applied immediately after the readout in both VASO 

and BOLD scans to suppress inflow effects from non-inverted spins. For both BOLD and 

VASO fMRI, single-shot gradient echo (GE) echo-planar-imaging (EPI) readout was 

used with four echoes acquired at TE = 9, 27, 45 and 63 ms. Common imaging 

parameters included: flip angle (FA) = 67° (Ernst angle for BOLD scan based on a grey 

matter T1 of 2132 ms (Rooney et al., 2007)), field of view (FOV) = 192x192mm2, spatial 

resolution = 2.5x2.5x2.5 mm3, parallel imaging (SENSE) acceleration factor = 4, partial 

Fourier fraction = 0.6.  Second-order shimming was applied in both BOLD and VASO 

scans, for which a water line width of <60Hz was achieved in all scans. 

All fMRI images were corrected for motion and baseline drift using Statistical 

Parametric Mapping (SPM8, University College London, UK) and Matlab R2009b 

(Mathworks, Natick, MA, USA). BOLD and VASO images at different TEs were co-

registered. The two VASO scans were averaged to improve signal-to-noise ratio (SNR) 

(Lu and van Zijl, 2005). VASO images from all four echoes were used to extrapolate to 

an effective TE of 0 ms to minimize BOLD contamination. A general linear model (GLM) 

was used to detect activated voxels in VASO (TE = 0 ms) and BOLD (TE = 27 ms, 

second echo) scans. Temporal SNR (tSNR) was calculated as the voxel-wised average 

signal divided by standard deviation along the time course during the rest periods 

(excluding the data acquired during 20 s at the start of each rest period). The criteria for 

activation were t-score > 1.5 (BOLD), t-score > 1 (VASO), adjusted p-value < 0.05, 
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cluster size > 4 and tSNR > 20 (Donahue et al., 2006a). Only voxels activated in both 

modalities were used for R2
* calculation so that voxels containing large vessels are 

excluded and signals are predominantly localized in the parenchyma (Donahue et al., 

2006a; Jin and Kim, 2008; Lu et al., 2003). Signal intensities (S) at the four echo times 

were numerically fitted as a function of TE (S = S0·exp(-TE·R2
*)) to obtain S0 and R2

* 

values on a voxel-wise basis.  

Using the calculated R2
* values, Yv and parenchymal OEF can be quantified using 

the equations for the static dephasing regime described in (Lu and van Zijl, 2005; 

Yablonskiy et al., 2000; Yablonskiy and Haacke, 1994): 

R*
2t xv 0

4
3 deoxy Hct {CBV act (1 Yv

act ) CBV rest (1 Yv
rest )}      [2.1]  

where ∆R2t
* = R2t

*
,act - R2t

*
,rest (t denotes extravascular tissue), xv = 0.7 is the venous 

fraction of cerebral blood volume (CBV) including capillaries (Lu and van Zijl, 2005), 

“act” and “rest” denote values during activation and rest, respectively. The reported 

susceptibility difference between fully oxygenated and deoxygenated blood (Δχdeoxy) 

varies from 0.18 ppm to more than 0.3ppm in the literature (Golay et al., 2001; Jain et al., 

2012; Spees et al., 2001; Weisskoff and Kiihne, 1992; Yablonskiy and Haacke, 1994). 

Here, we adopted a value of 0.27 ppm from most recent studies (Jain et al., 2012; Spees 

et al., 2001). Other parameters assumed were: microvascular hematocrit (Hct) = 0.356 

(Kuhl et al., 1980) which is 85% of that in the large vessels, and CBVrest = 0.052ml 

blood/ml tissue (Donahue et al., 2006a). CBVact can be calculated from the VASO signal 

change (Lu et al., 2003). By assuming Yv
rest = 0.61, Yv

act can be calculated from Eq. [1], 

and OEF can be quantified using (van Zijl et al., 1998): 

                        [2.2]   1 Yv 1 Ya OEF Ya
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where the arterial oxygenation (Ya) was taken to be 0.98, corresponding to a resting state 

OEF  of 0.38. 

 

2.3. Results 

Figs. 2.1a-b show representative activation maps (thresholded) superimposed on 

BOLD and VASO images from one subject. The VASO signal changes displayed are 

those found when extrapolating to TE = 0 ms. Figs. 2.1c-d show the corresponding t-

score maps. Note that the t-scores for activated voxels in VASO (negative signal change 

upon activation) were positive as well, because the contrast itself was reversed when 

performing GLM analysis. The peak activated voxels were well localized in the visual 

cortex. For the purpose of this study, activations that were clearly outside the visual 

regions were excluded in the analysis. Figs. 2.1e-f show the time courses of fractional 

signal changes averaged over activated voxels in the BOLD and VASO scans, 

respectively. As expected, negative signal changes in VASO were observed upon 

neuronal activation because the concomitant vasodilatation results in tissue signal 

reduction at TE = 0ms (Lu et al., 2003).  
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Fig. 2.1. Representative BOLD (TE = 27 ms) and VASO (extrapolated TE = 0 ms) fMRI 

results from one subject. a-b: Activation maps (thresholded) superimposed on BOLD and 

VASO images. c-d: Corresponding t-score maps. As the contrast in VASO and BOLD 

scans were reversed when performing GLM analysis, the t-scores for activated voxels in 

both scans were positive. e-f: Corresponding time courses of fractional signal changes 
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from BOLD and VASO activation maps. The horizontal bars indicate the periods of 

visual stimulation. The blue and red points were used to calculate signals during rest and 

activation, respectively. Error bars show standard error over the included voxels within 

this subject. Reproduced with permission from NMR in Biomedicine.  
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Typical BOLD and VASO images at all four echo times are shown in Figs. 2.2a-b. 

As second order shimming was applied, and a single slice was acquired in the occipital 

lobe (which has a relatively homogeneous B0 field), the distortion found in these images 

was small. In addition, images at different TEs were co-registered before further analysis. 

The average tSNR (n = 6) of images at the longest echo time (TE = 63ms) were 16.0±1.9 

and 12.8±1.7 for BOLD and VASO, respectively, which is considered sufficient for 

robust R2
* fitting. (Please note that the tSNR threshold of 20 mentioned in Methods was 

only applied on the extrapolated (TE = 0 ms) VASO images and BOLD images at the 

second echo time during functional analysis. Here, the tSNR of images at the longest TE 

shows that it is sufficient for R2* fitting.) Figs. 2.2c-d show the averaged result (n = 6) of 

TE-dependence curves of relative and absolute signal changes for both BOLD and VASO 

fMRI. Only the commonly activated voxels in both modalities were selected. The 

absolute BOLD signal change (Fig. 2.2d) was the largest at the second echo time (TE = 

27 ms), consistent with the notion that the optimal TE for BOLD contrast should be 

around tissue T2
* (Ugurbil et al., 1993). The well-known linear relationship between ∆S/S 

and TE in BOLD and VASO was fitted (Fig. 2.2c). The VASO signal change is negative 

for very short TE, but reverses sign at longer TEs. This is expected as the extravascular 

BOLD effects (positive) become quite large at longer TE, which counteract the negative 

VASO signals. This also stresses the importance of extrapolating to TE = 0 or using a 

readout with very short TE (Hua et al., 2013a) for VASO fMRI at 7T.  
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Fig. 2.2. Typical BOLD (a) and VASO (b) images at all four echoes (same scale). Group 

averaged (n = 6) relative (c, ∆S/S) and absolute (d, arbitrary unit) fMRI signal changes 

versus TE in voxels that are both activated in BOLD (TE=27ms) and VASO (TE=0) 

methods. Error bars represent inter-subject variation. Lines in (c): results from linear 

fitting. Reproduced with permission from NMR in Biomedicine. 
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The fitted total and extravascular R2* values during rest and activation in six 

subjects are summarized in Table 2.2. Only the voxels that were activated in both BOLD 

and VASO scans were included. The ratio of extravascular ΔR2* to total ΔR2* was 91 ± 

3% (n = 6, mean ± SEM). Figs. 2.3a-b show the R2* time courses from one subject.  
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Table 2.2. Extravascular and total BOLD effects measured in gray matter parenchyma at 

7T. 

 

 

SEM: inter-subject standard error. 
a ΔR2

* = R2,act
*  - R2,rest

*. 

b Extravas. ΔR2
* fraction = 100 x (Extravas. ΔR2

* / Total ΔR2
*) %. 

 

 

 

 

 

 

 Extravas

R2,rest
*

     

(s-1) 

Extravas.

R2,act
*     

(s-1) 

Extravas.

ΔR2
*      

(s-1)a 

Total

R2,rest
* 

(s-1) 

Total

R2,act
* 

(s-1) 

Total

ΔR2
* 

(s-1) 

Extravas.    

ΔR2
* fraction 

(%)b 

Subject 1 40.38 39.08 -1.30 42.68 41.10 -1.57 83 

Subject 2 46.61 45.16 -1.37 47.16 45.78 -1.45 95 

Subject 3 40.46 39.73 -0.74 40.56 39.75 -0.81 91 

Subject 4 45.18 43.89 -1.29 44.72 43.21 -1.51 86 

Subject 5 45.02 43.26 -1.77 45.22 43.26 -1.96 90 

Subject 6 50.34 49.17 -1.17 49.94 48.81 -1.13 103 

Mean 44.66 43.38 -1.27 45.05 43.65 -1.40 91 

SEM 1.55 1.51 0.14 1.34 1.33 0.16 3 
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Fig. 2.3. Representative time courses of total (a) and extravascular (b) parenchymal R2
* 

averaged over voxels activated in both BOLD (TE=27ms) and VASO (TE=0) scans from 

one subject. R2
* values were fitted from data acquired at all four TEs. The horizontal bars 

indicate the periods of visual stimulation. Error bars show inter-voxel standard errors 

within the subject. The dash-dot lines depict average R2
* values at baseline. Reproduced 

with permission from NMR in Biomedicine. 
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CBV increased by 35.8 ± 3.2% (n = 6, mean ± SEM) during visual stimulation, 

calculated from a -1.94 ± 0.17% (n = 6, mean ± SEM) VASO signal change using the 

extrapolated VASO images at TE = 0 ms and assuming a baseline CBV value of 0.052ml 

blood/ml tissue(Donahue et al., 2006a). Using Eqs. 2.1, 2.2, Yv
act and OEF during 

activation were quantified to be 0.75 ± 0.01 and 0.24 ± 0.01 (n = 6, mean ± SEM), 

respectively, indicating an approximately 37% OEF decrease during visual stimulation.  

 

2.4. Discussion 

In this study, we applied multi-echo VASO fMRI to remove the intravascular 

signal and measured the extravascular (tissue) R2
* values in human visual cortex at 7T. 

Table 1 compares these data with the total and extravascular parenchymal R2
* values 

reported at various field strengths (1.5T, 3T and 7T) in the literature. The R2
* values 

measured here are in good agreement with the Donahue study (Donahue et al., 2011), but 

differ considerably from the ones reported in the van der Zwaag study (van der Zwaag et 

al., 2009). One plausible explanation may be that both the Donahue and current studies 

were conducted in the visual cortex with comparable spatial resolution, whereas the van 

der Zwaag study measured R2
* values in the motor cortex with a much finer spatial 

resolution (1x1x3 mm3). As expected, both total and extravascular R2
* increase with field 

strength. The absolute and relative R2
* changes (ΔR2

* and ΔR2
*/R2

*) during activation 

also increase with the field, indicating better sensitivity for BOLD fMRI as predicted. 

Extravascular ΔR2
* shows a linear trend with field strength (ΔR2

* = -0.196·B0+0.114, 

correlation coefficient = 0.99, p-value = 0.09), consistent with the theoretical calculations 

for extravascular BOLD effects in the static dephasing regime model proposed by 
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Yablonskiy and Haacke (Yablonskiy and Haacke, 1994). The relative contribution from 

the extravascular component in the total BOLD contrast becomes larger at higher field, as 

indicated by the larger ratio of extravascular ΔR2
* to total ΔR2

*. Our results showed that 

the BOLD effect is dominated by the extravascular component (91%) at 7T, in line with 

the results from Duong et al. (Duong et al., 2003) and Donahue et al. (Donahue et al., 

2011) that used crushing gradients to suppress the intravascular signal. These 

experimental results are consistent with the theoretical calculations that the intravascular 

BOLD signal will be significantly reduced relative to the extravascular signal at higher 

field due to the faster R2
* decay of venous blood (Duong et al., 2003; Gati et al., 1997; 

Ogawa et al., 1993; Song et al., 1996; Ugurbil et al., 1999; Ugurbil et al., 2003; Uludag et 

al., 2009; van der Zwaag et al., 2009; Yacoub et al., 2001). It is important to mention that 

the intravascular effects are actually larger than extravascular at short TE (Silvennoinen 

et al., 2003; Uludag et al., 2009; Zhao et al., 2007). However, when using typical TEs for 

BOLD fMRI (which are usually comparable to GM T2*), the relative contribution from 

the intravascular venous compartment to the overall parenchymal effect is small. 

When assuming resting OEF and CBV values from the literature, multi-echo 

VASO fMRI also allows the measurement of changes in physiological parameters such as 

Yv and OEF in the parenchyma during neuronal activation. OEF reduction upon visual 

stimulation measured here at 7T agrees reasonably well with previously reported values: 

33% (Haacke et al., 1997; Oja et al., 1999), 39% (Lu and van Zijl, 2005), 53% (Golay et 

al., 2001) at 1.5T and 45% (Lu and van Zijl, 2005) at 3T. A number of neurophysiology 

studies suggest that the vasodilation during functional stimulation occurs predominantly 

in arterioles and capillaries that are very close to the active neural tissue (Koehler et al., 
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2009), indicating an improved spatial specificity for CBV weighted VASO fMRI, as 

demonstrated by several animal and human fMRI studies (Donahue et al., 2006a; Jin and 

Kim, 2008; Lu et al., 2003). Therefore the OEF changes measured here were expected to 

be predominantly localized in the parenchyma by taking overlapping voxels activated in 

both BOLD and VASO scans, while some previous measurements were made mainly in 

the draining veins (Golay et al., 2001; Haacke et al., 1997; Lu and Ge, 2008; Lu et al., 

2012; Oja et al., 1999; Qin et al., 2011; Xu et al., 2009).  

In this 7T study, a blood T1 of 2212 ms was used to calculate the blood nulling 

time (TI) in VASO fMRI, which was measured from 79% oxygenation bovine blood (Hct 

= 0.43) at 7T(Dobre et al., 2007). Although this is within typical physiological range in 

normal human brains, it is known that blood T1 is sensitive to hematocrit and, to a lesser 

extent, to oxygenation (Blockley et al., 2008; Grgac et al., 2013; Lu et al., 2004a). This 

may affect the quantification of extravascular R2
* values and relative CBV changes 

during functional activation. The oxygenation level of 79% corresponds mostly to an 

estimated average of the blood in capillaries and venules (Sharan et al., 1989; van Zijl et 

al., 1998). As only voxels activated from both the BOLD and VASO scans were used in 

the calculations, blood signals in veins should be largely excluded (if blood in veins is not 

completely nulled in VASO scans, it would reduce or cancel out the negative VASO 

changes during activation, thus be excluded in the voxel selection). Therefore, only 

incompletely nulled blood in arteries and arterioles is most likely to affect the 

extravascular R2
* quantification. However, since the R2

* values are comparable in arterial 

blood (about 40 s-1, unpublished data, experimental setup same as in (Grgac et al., 2013)) 

and in extravascular tissue (Table 2.2) at 7T, this should not result in major biases in the 
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extravascular R2
* estimation. Gu et al.(Gu et al., 2006) showed that the VASO signal 

change (ΔS/S, thus ΔCBV) during visual stimulation plateaus over a range of about 150 

ms around the theoretical blood nulling TI. Donahue et al.(Donahue et al., 2009d) also 

demonstrated that at typical spatial resolution for fMRI (around 3mm) and at relatively 

long TRs (>4s), the variation of blood T1 over a range of 100 ms has very limited 

influence on VASO signal change and ΔCBV estimation. It is therefore reasonable to 

expect that the blood T1 variation over typical physiological ranges in normal human 

brains should not have substantial effects on the ΔCBV estimation here. Moreover, the 

relative difference of T1 values decreases with field strength(Jin and Kim, 2008; Rooney 

et al., 2007), which should further reduce the potential biases in R2
* and ΔCBV 

estimation resulted from blood T1 variations. 

The contribution from physiological noises in fMRI signals has been shown to 

increase with field strength and voxel size (Triantafyllou et al., 2005). In order to check 

this for our study, we measured the coefficients of variation for the R2* values (Total 

R2*: 0.073; Extravascular R2*: 0.085), which were found to be comparable to those 

reported at 3T (Total R2*: 0.076; Extravascular R2*: 0.063) and 1.5T (Total R2*: 0.077; 

Extravascular R2*: 0.079) in a previous study adopting similar methodology (Lu and van 

Zijl, 2005). However, a larger voxel size was used in that study (2x2x5=20mm3 versus 

2.5x2.5x2.5=15.625mm3 here). From this we conclude that the noise contribution in the 

R2* measurements at 7T would be larger than 3T and 1.5T if the same voxel size were 

used. We also noticed that the total R2* values measured in subjects 4 and 6 were slightly 

lower than the corresponding extravascular R2* values (total R2* is expected to be 

higher than extravascular R2* due to additional blood contributions), although the 
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difference was within noise range. This also occurred for one subject reported in previous 

3T data but not 1.5T (Lu and van Zijl, 2005). We attribute this to the many possible 

contributions to R2*, making it difficult to measure this parameter with great accuracy. 

More repeats and averaging may be necessary for robust R2* measurement on a single-

subject level. 

A potential source of errors when estimating Yv
act and OEF using Eqns. 1 and 2 

comes from the literature values assumed for the model parameters. While this has been 

investigated in previous works (Donahue et al., 2009a; Hua et al., 2011c; Lu et al., 

2004b), here again we performed an error analysis by estimating OEF using parameter 

values (assumed in Methods) over the normal physiological range: baseline CBV from 

0.045 to 0.055 ml/ml, microvascular Hct from 0.38 to 0.46 and Δχdeoxy from 0.20 to 0.27 

ppm. Less than 8% estimated OEF differences were found between the two ends of both 

Hct and Δχdeoxy ranges, whereas about 14% difference were observed when varying 

baseline CBV values. The assumed CBVrest value of 0.052ml/ml in this study is 

approximated (Donahue et al., 2006a) based on the reported 0.048 - 0.055 ml/ml range in 

the literature (Brooks et al., 1985; Grandin et al., 2005; Leenders et al., 1990; Lu et al., 

2005a; Rostrup et al., 2005). Although this error analysis shows that the estimated OEF 

values in this study are only moderately affected by these assumptions, the measurement 

of these physiological parameters in each participant would certainly improve the 

accuracy for OEF quantification.  

 

2.5. Conclusions 

Total and extravascular R2
* values in the parenchyma in human visual cortex were 



47 
 

measured using multi-echo VASO and BOLD fMRI with visual stimulation at 7T. The 

parenchymal extravascular R2
* value was 44.66 ± 1.55 s-1 at rest, and the ratio of 

extravascular ΔR2
* to total ΔR2

* was 91 ± 3% at 7T, confirming a predominant 

contribution from the extravascular component of the BOLD effect. A 37% decrease in 

parenchymal OEF during stimulation was estimated based on these measurements, 

consistent with values reported at lower field strengths.  
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Chapter 3: Three-dimensional Acquisition of Cerebral Blood Volume 

And Blood Flow Responses During Functional Stimulation In a Single 

Scan 

 

3.1. Introduction  

Cerebral blood volume (CBV) and cerebral blood flow (CBF) are two 

fundamental parameters in brain physiology.  For instance, CBV and CBF responses 

during functional stimulation are required to quantify cerebral metabolic rate of oxygen 

(CMRO2) dynamics in most quantitative blood-oxygenation-level-dependent (BOLD) 

approaches, such as the calibrated BOLD approach (Blockley et al., 2013; Davis et al., 

1998; Hoge et al., 1999; Lin et al., 2008, 2009; Lin et al., 2011) and other models 

(Donahue et al., 2009a; Hua et al., 2011c; Huber et al., 2013; Lin et al., 2008, 2009; Lin 

et al., 2011; Lu et al., 2004b; Uh et al., 2011). In the calibrated BOLD method using the 

Davis’s model, CMRO2 change is estimated from BOLD and CBF changes measured 

during separate vascular and neuronal tasks, where the vascular stimulation is used as the 

calibration condition for BOLD signals. The extravascular BOLD effect of magnetic field 

gradients around the vessel network is approximated by a coefficient β determined from 

earlier simulations or measurement: 

BOLD S
S

M 1 CMRO2
act

CMRO2

CBF act

CBF
        [3.1] 

where M is a constant, related to baseline physiolocial, vascular, and imaging parameters. 

Value for B of 1.5 is commonly assumed. A different BOLD model proposed by Lu and 

van Zijl (Lu et al., 2004b), and later used and refined by others, uses both intravascular 
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and extravascular compartments, and estimates CMRO2 change from separately 

measured BOLD, CBF and CBV responses during neuronal tasks (no vascular task is 

involved in this model). Accurate information about CBF and CBV dynamics is critical 

in both models. In the calibrated BOLD method, the CBV change is often derived from 

the measured CBF change using Grubb’s equation with the constant exponent α (Grubb 

et al., 1974), which is commonly assumed to be identical in vascular and neuronal tasks: 

CBV1 CBV2 (CBF1 / CBF2 )           [3.2] 

However, recent studies have shown that this power-law relationship between CBF and 

CBV can vary substantially under different conditions (Blockley et al., 2009; Chen and 

Pike, 2009; Donahue et al., 2009e; Hua et al., 2010; Hua et al., 2011c; Ito et al., 2001; 

Lin et al., 2008; Rostrup et al., 2005). (Lin et al., 2008) demonstrated that using dynamic 

CBV measurements improves the accuracy for estimating CMRO2 changes during 

functional stimulations, as compared with calculating CBV changes from CBF 

measurements and the Grubb’s equation with an assumed constant. Therefore, it is 

important to measure both CBV and CBF dynamics to capture microvascular status 

alterations during functional stimulations.  

The ability to detect CBV and CBF responses in one single scan is desirable as it 

will not only shorten total scan duration, but also reduce temporal variation due to factors 

such as subject motion, task performance, and physiologic changes between scans. The 

arterial spin labeling (ASL) technique can be used to measure CBF and CBV changes in 

the same scan by acquiring images at multiple post-labeling delays(Alsop et al., 2014; 

Brookes et al., 2007; Donahue et al., 2006b; Francis et al., 2008). However, the scan time 

of this method is relatively long compared to the typical temporal resolution in functional 
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studies. A number of MRI methods have been developed to measure CBV or CBF 

separately. For instance, CBV and CBF changes can be separately measured with 

vascular-space-occupancy (VASO) MRI (Lu et al., 2003) and flow-sensitive alternating 

inversion recovery (FAIR) arterial spin labeling (ASL) MRI (Kim, 1995; Kwong et al., 

1995), respectively. Based on the T1 difference between blood and brain tissue, VASO 

MRI employs a spatially nonselective inversion pulse to invert both blood and tissue 

signals and acquires MR images at the time when blood signal recovers to zero (nulled), 

which can be used to calculate CBV changes (Lu et al., 2003). In FAIR ASL, an 

inversion pulse with and without spatially selective gradient is applied to produce the 

tagged and control images, respectively, from which CBF maps can be deduced (Kim, 

1995; Kwong et al., 1995). Thus, a common feature in the pulse sequences of both 

methods is that an inversion pulse is exploited to perturb the blood water spins before 

image acquisition. The major difference, on the other hand, is that VASO images are 

always acquired at the blood nulling inversion time (TI), while FAIR ASL images need 

to be acquired at a much longer post-labeling delay (TI≈1.5-2s) (Alsop and Detre, 1996; 

Donahue et al., 2006a; Silva et al., 1997; Ye et al., 1997) to allow water exchange in the 

capillary bed to take place. Therefore, it is possible to combine VASO and FAIR MRI to 

share the same inversion pulse and acquire CBV and CBF weighted images at two 

different TIs in a single scan. Based on this principle, (Yang et al., 2004) previously 

devised an elegant technique for concurrent measurement of CBV, CBF and BOLD 

responses during functional stimulation. This method has recently been implemented on a 

7T human MRI scanner by (Krieger et al., 2013). Another method for simultaneous 

measurement of CBV and CBF is the double-echo FAIR (DEFAIR) approach proposed 
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by (Thomas et al., 2001), in which CBF is measured with FAIR ASL and CBV is 

determined based on the different T2 values calculated from the double echoes in the 

intra- and extravascular compartments. Both techniques were implemented in two-

dimensional (2D) mode to acquire a single slice (Lin et al., 2008, 2009; Lin et al., 2011; 

Yang et al., 2004) or three slices (Gu et al., 2005) in one repetition time (TR).  

Here, we propose a 3D MRI approach to measure CBV and CBF responses during 

functional stimulation in one single scan. It exploits the same principle as (Yang et al., 

2004), which combines VASO and FAIR MRI with a common inversion pulse. A single-

shot 3D fast gradient echo (GRE, also known as turbo field echo, TFE or TurboFLASH) 

sequence was used for image acquisition at two TIs. In addition, the magnetization 

pathways were simulated. The 3D VASO-FAIR sequence was implemented on a 3T 

human MRI scanner, and functional experiments with visual stimulation were performed 

on healthy volunteers to compare the data of the combined sequence and original separate 

scans in order to validate accuracy of the combined scan.   

 

3.2. Materials and Methods 

Pulse Sequence and Simulations 

Figure 3.1 illustrates the combined 3D VASO-FAIR pulse sequence. Similar to the FAIR 

sequence, interleaving slab-selective (SS) and non-selective (NS) inversion preparation 

were employed. In each of the SS and NS scans, two image acquisition modules are 

deployed after the inversion at different TIs: TI1 (blood nulling) and TI2. CBV-weighted 

VASO images are obtained at TI1 after NS inversion when the blood signal is nulled, and 

FAIR images are collected at a later time TI2 in both SS and NS scans. These two FAIR 
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components are combined later to obtain the CBF-weighted signals. A single-shot 3D fast 

GRE sequence with centric (low-high) phase encoding profile was employed in all 

imaging modules. This readout has recently been used in VASO MRI, which showed 

minimal geometrical distortion and signal dropouts, low power deposition due to small 

flip angles, and negligible T2
* contamination in VASO fMRI because of the very short 

echo time (TE) used (Hua et al., 2013a). 
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Fig. 3.1. Pulse sequence of the combined 3D VASO-FAIR approach. A pair of 

interleaving slice-selective (SS) and nonselective (NS) scans are shown. A magnetization 

transfer (MT) prepulse is added before the adiabatic FOCI inversion pulses. The imaging 

module used here is a 3D fast GRE readout for both VASO and FAIR ASL images, in 

which VASO signal is acquired at blood nulling time TI1 and ASL signal at time TI2. A 

post-saturation module comprising of a non-selective 90° saturation pulse and spoiler 

gradients is applied immediately after the FAIR ASL readout. Reproduced with 

permission from NeuroImage. 
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 A magnetization transfer (MT) prepulse was applied immediately before the 

inversion pulses to prepare a smaller tissue magnetization, thus expediting the inversion 

recovery process so that the detectable tissue signals, and thus their signal-to-noise ratios 

(SNRs) are enhanced (Hua et al., 2009a; Hua et al., 2013a). When using moderate 

irradiation power and durations, and a frequency offset sufficiently far away from water 

resonance (40ppm or more), the MT prepulse has been shown to have negligible effect on 

blood signal so that the same blood nulling TI can be used for VASO(Balaban et al., 1991; 

Hua et al., 2009a; Hua et al., 2013a; Wolff and Balaban, 1989). 

A spatially nonselective saturation (90° RF pulse followed by spoiler gradients) 

was deployed immediately after the second imaging module to set all residual 

magnetization (blood and tissue) to zero. The purpose for this post-saturation module is 

two-fold. First, it suppresses the inflow effect due to non-steady-state blood spins in 

VASO MRI by establishing a steady state for all blood spins entering the RF transmit coil 

after the first repetition time (TR) (Hua et al., 2013a; Lu, 2008; Wu et al., 2007a). Second, 

it ensures that blood spins in and outside the inversion slab applied in the SS scan will 

have the same steady-state blood nulling condition in the following NS scan. This is 

illustrated with Bloch simulations in Figure 2. Signal evolution during the 3D fast GRE 

readout was calculated using the same imaging parameters described in Experiments. 

Typical T1 and T2 values for blood, gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF) in healthy human brain at 3T were used: T1,blood = 1624ms (Lu 

et al., 2004a), T1,GM = 1122ms (Lu et al., 2005b), T1,WM = 758ms (Lu et al., 2005b), T1, 

CSF = 3817ms (Lu et al., 2005b), T2,GM = 80ms (Lu et al., 2005b), T2,WM = 80ms (Lu et al., 

2005b), T2,blood = 55ms (Zhao et al., 2007), T2,CSF = 1442ms (Donahue et al., 2006a). The 
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establishment of a steady state after the first TR with the post-saturation module applied 

immediately after the second readout, is illustrated in Figure 3.2a. For VASO, after the 

first pair of NS and SS scans, both blood in and outside the SS inversion slab will always 

have the same blood nulling time in the following NS scans, so that potential 

complications from inflowing blood are eliminated. For FAIR ASL, in-slab blood signals 

are identical at TI2 in both NS and SS scans, which minimizes its contamination to the 

CBF measurement. On the other hand, signal from blood outside the inversion slab is 

higher at TI2 in the SS scans, which is used to deduce CBF information upon subtraction 

of the NS and SS scans. Without the post-saturation module (Figure 3.2b), a steady state 

is not reached until the fourth TR in the simulations. Furthermore, even when this steady 

state is reached, the out-of-slab blood signal in VASO is still not properly nulled at TI1 

(Figure 3.2b inset), because the blood nulling times are different for in-slab and out-of-

slab blood without the post-saturation module (effective TR is different). In-slab blood 

signals in the FAIR scans are still identical at TI2 in both NS and SS scans during steady 

state.  
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Fig. 3.2 Bloch simulations of the signal evolution for blood in (blue) and outside (red) the 

inversion slab applied in the slice-selective (SS) scan with (a) and without (b) the post-

saturation module. The solid vertical black lines indicate the inversion pulses (labeled as 

“inv”) in the interleaving slice-selective (SS) and non-selective (NS) scans. The short 

dashed vertical lines represent the first excitation pulses (labeled as “ex”) in each image 

acquisition module, the durations of which are labeled in light shade. The MT period 

before the inversion pulse is labeled in dark shade. Steady state blood nulling time for 

VASO is marked as TI1 (solid vertical green lines) and the post-labeling delay for FAIR 

as TI2. (a) With the post-saturation module (labeled as “post-sat”) applied immediately 

after the second readout, a steady state is built after the first TR, at which both blood in 

and outside the SS inversion slab is nulled at TI1 in the NS scan. (b) When the post-

saturation module is not applied, it takes three TRs for both in-slab and out-of-slab blood 

to reach steady state (for the experimental parameters used) and the out-of-slab blood is 
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not properly nulled even at steady state (zoomed inlet). Reproduced with permission from 

NeuroImage. 
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The same simulations were used to estimate blood nulling TIs in VASO scans and 

to evaluate GM and CSF signals. A 20% signal drop after the MT saturation pulse were 

assumed for GM (typical values under similar saturation schemes (Hua et al., 2009a)), 

and no MT effect for CSF. The steady state GM signals from the simulations were 23% 

(of the equilibrium signal) (separate) and 20% (combined) in the VASO scans, and 59% 

(separate) and 57% (combined) in the FAIR scans.  The steady state CSF signals were -9% 

(separate) and -4% (combined) in the VASO scans, and 15% (separate) and 19% 

(combined) in the FAIR scans. Assuming a 30% increase of CBV upon activation, the 

relative VASO signal change from the simulations is -1.87% in a pure GM voxel for both 

separate and combined VASO scans, and is -1.90% (VASO in combined scan) and -1.92% 

(separate VASO scan) in a voxel with 5% CSF and 95% GM in volume. 

 

Experiments  

The protocol was approved by the Johns Hopkins Medicine Institutional Review Board. 

Subjects gave written informed consent before participating. Experiments were 

performed on a 3T human MRI scanner (Philips Healthcare, Best, The Netherlands), 

using a body coil for RF transmission and a 32-channel head coil for reception. Six 

healthy volunteers were scanned for this study. Three fMRI experiments with visual 

stimulation (yellow/blue flashing checkerboard, 24s visual stimulation interleaved with 

42s cross-hair fixation, repeated 4 times) were performed on each participant: (a) 3D 

VASO-FAIR (TR/TI1/TI2=3/0.552/1.552s). A 400ms 2.5μT block-shaped MT prepulse 

with a frequency offset at -40 ppm (Hua et al., 2013a) was applied immediately before 

the inversion pulses in both NS and SS scans. (b) VASO (TR/TI = 3/0.743s).  The same 
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MT prepulse and post-saturation module as in 3D VASO-FAIR were applied. (c) FAIR 

(TR/TI = 3/1.552s). The order of the experiments was counterbalanced across 

participants. Bloch simulations (described above) were performed to estimate steady state 

blood nulling times for VASO scans in order to account for the influence from the 3D 

fast GRE readout and the post-saturation module. Note that TI1 in the combined 3D 

VASO-FAIR sequence is different from TI in VASO because of the different numbers of 

readouts, corresponding to different recovery times after the post-saturation module 

(before next inversion) in the two sequences (thus different steady states). Although this 

leads to different inflow times (TI) for VASO, it should not have a major influence on the 

VASO signals if the inflow effect (see Discussion) is largely suppressed by the post-

saturation module. Frequency offset corrected inversion (FOCI) pulses (Ordidge et al., 

1996) were used for inversion in all scans, which are expected to produce sharper edges 

for spatially selective inversion than hyperbolic secant (HS) pulses (Hua et al., 2011a; 

Hua et al., 2011b). Common imaging parameters: voxel size = 5mm isotropic, 16 slices, 

field of view (FOV) = 192x192 mm2, TRGRE (TR between two consecutive echoes in 3D 

GRE)/TE = 3.6/1.6ms, flip angle = 7°, turbo direction = radial, parallel imaging (SENSE) 

acceleration factor = 3x2 (APxFH), no partial Fourier sampling, readout duration for one 

image volume = 391 ms. Based on the thickness of the imaging volume (80mm), the 

thickness of the SS inversion slab was chosen to be 100 mm. 

 

Data Processing  

The Statistical Parametric Mapping (SPM 8, University College London, UK) software 

package and several in-house Matlab R2012a (Mathworks, Natick, MA, USA) routines 
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were used for data analysis. All fMRI images were corrected for motion and baseline 

drift. CBF-weighted images were obtained using a surround subtraction method, in which 

the SS/NS FAIR ASL images are subtracted with linear interpolation between the 

surrounding NS/SS images, respectively (Lu et al., 2006). A general linear model (GLM) 

was used to detect activated voxels (P < 0.01, t-score ≤ -1.5 for VASO and t-score ≥ 1.5 

for FAIR). A SNR threshold of 20 for VASO images was used(Donahue et al., 2006b). 

Due to the low SNR in the subtracted FAIR ASL images, a SNR threshold of 1 was used. 

The relative signal change (ΔS/S) in each voxel was quantified as the difference between 

average signals during the baseline and activation periods normalized by the average 

baseline signal. In order to avoid the transitional periods when calculating average 

signals, images acquired during the first 18s and 6s during the baseline and activation 

periods, respectively, were excluded. Temporal SNR (tSNR) was calculated as the voxel-

wise average baseline signal divided by the standard deviation along the time course 

during the baseline period. Contrast-to-noise ratio (CNR) per scan was defined as the 

product of absolute value of relative signal change (ΔS/S) and tSNR. CNR per unit time 

was taken as the product of CNR per scan and square root of number of image volumes 

acquired during the entire scan. In FAIR ASL, tSNR and CNR were calculated from the 

subtracted CBF-weighted images.  

 

3.3. Results  

Representative CBV-weighted and CBF-weighted (after surround subtraction) 

images from 3D VASO-FAIR are shown in Figures 3.3a,b, respectively. Figures 3.3c,d 

show the corresponding images from separate VASO and FAIR-ASL scans with the same 
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scales. The quality and contrast of the images are comparable between combined and 

separate scans.  
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Fig. 3.3. Representative images from one subject. (a) Typical VASO images (3D fast 

GRE readout, 16 slices) from the 3D VASO-FAIR sequence. (b) Typical FAIR ASL 

difference maps (perfusion weighted images) in 3D VASO-FAIR. (c) Corresponding 

VASO images in the separate VASO scan. (d) Corresponding perfusion weighted images 

in the separate FAIR ASL scan. Images in (a) and (c), and (b) and (d) are on the same 

scales, respectively. Reproduced with permission from NeuroImage. 

 

The fMRI results from the combined 3D VASO-FAIR scans and separate VASO 

and FAIR scans are compared further in Figure 3.4 and Table 3.1. The voxels meeting 
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activation criteria (highlighted with their t-scores) are mostly localized in the visual 

cortex (representative images for VASO in Figures 3.4a,b and for FAIR in Figures 

3.4d,e; 16 slices acquired, 4 slices shown), and the spatial patterns of activation are 

similar between the combined and separate VASO and FAIR scans. A few spurious 

activations outside the visual regions were observed in some of the subjects, but these 

were excluded from further analysis as the focus of this study is to compare the separate 

and combined scans in the visual cortex. In the subsequent quantitative comparisons, only 

voxels that are activated in both separate and combined scans were used.  

The time courses averaged over all slices and all subjects matched well between 

the separate and combined scans for both VASO (Figure 3.4c) and FAIR (Figure 3.4f). 

The relative signal changes (ΔS/S), tSNR and CNR per scan were all statistically 

comparable (P>0.1) between combined and separate scans for VASO and FAIR, 

respectively. CNR per unit time for VASO was higher in the separate scan (P<0.01) than 

in the 3D VASO-FAIR scan, as only half of VASO scans were acquired in the combined 

scan. CNR per unit time for FAIR was comparable (P>0.1) between separate and 

combined scans.  
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Fig. 3.4. Comparison of functional MRI results between the combined and separate scans. 

Representative activation maps from one subject for (a) separate VASO scan, (b) VASO 

in the combined 3D VASO-FAIR method; (d) separate FAIR ASL scan, and (e) FAIR 

ASL in the 3D VASO-FAIR scan are shown. The activated voxels are highlighted with 

their t-scores. Time courses averaged over common voxels activated in both separate 

(black circle) and combined (red triangle) scans (averaged over subjects, n = 6) for 

VASO and FAIR are shown in (c) and (f), respectively. Error bars represent inter-subject 

variations. The vertical dotted lines indicate the start and end of visual stimulation. Four 

blocks of baseline and stimulation periods were averaged to one block. Reproduced with 

permission from NeuroImage. 
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Table 3.1.  Summary of quantitative fMRI results from all subjects (n = 6). 

 

Mean values ± standard deviation over all subjects. ΔS/S, tSNR and CNR were calculated 

as defined in Methods. Only common voxels activated in both separate and combined 

VASO or FAIR scans were included. All FAIR ASL results were calculated from the 

subtracted images (difference maps or perfusion weighted images). 

 

 

 

 

 

 

 

 

 

 

 

 Separate 
VASO 

VASO in 
combined VASO-

FAIR scan 

Separate 
FAIR 

FAIR in 
combined VASO-

FAIR scan 

ΔS/S (%) -1.98±0.36 -1.86±0.45 38.6±6.1 42.7±8.3 

tSNR  63.7±8.0 61.9±7.0 5.8±0.3 5.2±0.3 

CNR per scan 1.26±0.20 1.14±0.21 2.24±0.27 2.23±0.39 

CNR per unit 
time 

12.8±2.1 8.2±1.5 22.6±2.7 22.5±3.9 
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Relative CBV and CBF changes upon visual stimulation were quantified based on 

the measured VASO and FAIR ΔS/S, respectively.  Using the theory and parameters 

from (Donahue et al., 2006a; Hua et al., 2011c; Lu et al., 2003), the relative CBV change 

was calculated as 37.1%±3.9% (separate scan) and 34.8%±6.3% (combined scan), 

whereas the relative CBF change was 38.6%±6.1% (separate scan) and 42.7% ± 8.3% 

(combined scan).  

 

3.4. Discussion 

We developed a 3D whole-brain imaging technique to simultaneously detect CBV 

and CBF responses upon functional stimulation in a single MRI scan. This is expected to 

be useful especially for the quantitative BOLD approaches in which concurrent CBV and 

CBF measurements are desired. Compared to sequentially obtaining CBV and CBF 

measurements using individual scans, this technique will not only improve the acquisition 

efficiency, but also reduce potential confounding effects resulting from head motion, task 

performance variation and physiologic fluctuations between MRI scans. Compared with 

the original separate VASO and FAIR scans, the proposed approach demonstrated similar 

image quality, activation patterns and relative signal changes (ΔS/S) during functional 

stimulation, as well as comparable tSNR and CNR values per scan. The fact that ΔS/S in 

the separate and combined scans are consistent indicates that they are measuring the same 

contrast (CBV and CBF changes for VASO and FAIR, respectively). Bloch simulations 

demonstrated that the GM signals in the VASO and FAIR scans in the combined method 

are both slightly lower than those in the corresponding separate scans (VASO: 20% vs. 

23%; FAIR: 57% vs. 59%). Nevertheless, tSNR and CNR per scan were all comparable 
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between the corresponding separate and combined scans in our data (Table 1). This can 

be explained by the fact that physiological noise is dominant in fMRI, thus a slight loss in 

MR signal might not lead to a decrease in tSNR (Gonzalez-Castillo et al., 2011; Kruger 

and Glover, 2001; Kruger et al., 2001; Triantafyllou et al., 2005). Indeed, we found that 

the noise levels (calculated as the standard deviation along the time course during the 

baseline period) were lower in the combined scans from all six subjects.  

In the proposed approach, we adopted a 3D fast GRE imaging sequence, which 

has much less geometric distortion and fewer signal dropouts than the traditional GRE 

echo-planar-imaging (EPI) sequence and is commonly used in high-resolution anatomical 

scans such as the Magnetization Prepared RApid Gradient Echo (MPRAGE) sequence 

(Hua et al., 2013b; Mugler and Brookeman, 1990; Qin et al., 2014). For VASO fMRI, 

this readout minimizes the BOLD contamination by allowing a very short TE (< 2ms) to 

be used (Hua et al., 2013a). For CBF measurement, a 3D readout can eliminate the 

artifactual inter-slice variation of perfusion signals originating from slice-dependent post-

labeling delay times in 2D acquisition methods (Gai et al., 2011; Gunther et al., 2005). A 

low-high (also known as “centric”) phase encoding scheme was used in the 3D GRE 

readout. This means that the center of k-space (kz=ky=0 for 3D), which determines the 

gross signal intensity in the image, was acquired at the first echo. This is important for 

blood nulling in VASO (Hua et al., 2013a) and CBF quantification in ASL. Nevertheless, 

while the signal intensity in MRI images is dictated by the center of k-space, the 

evolution of magnetizations during the rest of the readout train when outer k-space lines 

are acquired would lead to a distorted point spread function (PSF), which causes blurring 

artifacts in the images (Epstein et al., 1996; Hua et al., 2013a; Lin and Bernstein, 2008). 
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For static spins (tissue), such artifacts are shown to be minimal when a low FA (<20º) is 

used in 3D fast GRE with short TR (Epstein et al., 1996). For inflowing spins (blood), a 

recent study using a similar 3D readout demonstrates that the blurring effects are small 

with vascular transit times ranging from 1.1 to 2.3 s (Nielsen and Hernandez-Garcia, 

2013). The PSF for the sequence used in this study was calculated, which was only 

slightly distorted with maximum amplitude of the side lobes less than 5% of the main 

peak. This indicates that such blurring artifacts are minimal in our sequence with a FA of 

7º and a short TR of 3.6 ms.  

In this proof-of-concept study, we chose a spatial resolution of 5mm isotropic to 

boost the sensitivity (SNR) of the measurements, and to demonstrate the principles of the 

3D VASO-FAIR method. This may lead to significant partial-volume effects from WM 

in the GM signals. WM is known to have much smaller CBV and CBF values, and a 

longer arterial transit time than GM, the change of which during a typical flashing 

checker board visual stimulation is known to be quite small (Leenders et al., 1990; van 

Gelderen et al., 2008; van Osch et al., 2009). This may bring down the overall perfusion 

signal changes in the large voxels measured in our data. Although this partial volume 

effect should not undermine the comparison between the separate and combined 

approaches here, for future quantitative physiological studies, finer spatial resolution, 

which can be achieved by adapting the readout pulse sequence and utilizing fast imaging 

techniques such as parallel imaging and partial Fourier sampling, may be used to alleviate 

this problem. Besides, a high resolution anatomical scan may be acquired for each subject 

in order to correct for such effects in the perfusion measurements.  

In gray matter, CSF occupies about 10-15% of the voxel volume. The T1 value of 
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CSF is long (~4300ms at 3T) as CSF contains few macromolecules. Consequently CSF 

magnetization is negative at the blood-nulling TI, which is opposite in sign to the 

gray/white matter magnetization. CSF partial volume effects can affect VASO fMRI by 

altering the baseline VASO signal, and thus CBV quantification. Some investigators have 

also suggested that the CSF volume fraction may change during brain activation, which 

could have further implications in VASO fMRI. As shown in several studies (Donahue et 

al., 2006a; Jin and Kim, 2010; Piechnik et al., 2009; Scouten and Constable, 2007, 2008) 

CSF contributions may influence the interpretation of VASO fMRI in two ways: impact 

on baseline VASO signal and impact on activation-induced signal change. First, the 

presence of CSF will lower the baseline VASO signal, as its magnetization is negative 

and will offset some of the positive tissue signals. Even in the absence of CSF volume 

changes upon activation, this effect may cause an over-estimation of relative CBV 

change. From the Bloch simulations (see Methods), the steady state CSF signals in the 

combined scan are less negative (-4% of the equilibrium signal) in VASO and more 

positive (19%) in FAIR ASL than the respective separate scans (VASO -9%, FAIR ASL 

15%). Simulations also indicate that the CSF contamination in the VASO signal change 

is slightly smaller in the combined scan due to the less negative CSF signal, which may at 

least partially explain the less negative (albeit not statistically significant) ΔS/S in the 

combined VASO scan (Table 3.1). For FAIR ASL, as it is generally reasonable to assume 

comparable CSF signals in both label and control scans, this partial volume effect should 

not affect the difference signal (perfusion). Moreover, several studies have suggested that 

CSF volume may show a decrease upon activation (Donahue et al., 2006a; Jin and Kim, 

2010; Piechnik et al., 2009; Scouten and Constable, 2007, 2008), which tends to cause a 
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signal increase in VASO fMRI, potentially overriding the VASO effect. There are also 

studies reporting an increase in CSF volume during hypercapnia (Scouten and Constable, 

2008). The situation where CSF volume changes during activation was not simulated in 

this study, as it seems unclear so far whether and how much the CSF volume alters, 

which may need further investigation. Several techniques, such as VASO-FLAIR 

(Donahue et al., 2006a) and VASO ACDC (Scouten and Constable, 2007, 2008) may 

possibly be incorporated to suppress the CSF contamination in the VASO signals with 

careful design of the timing of pulse sequence.  

The inflow effect in VASO MRI is suppressed by a post-saturation module in the 

3D VASO-FAIR sequence. As shown in previous work (Hua et al., 2013a), the inflowing 

blood spins in VASO can be categorized into three different types depending on their 

times entering the transmit coil: I) spins flowing in before the end of readout of the 

previous TR; II) spins flowing in between the readout of previous TR and the inversion 

pulse of current TR; III) spins flowing after the inversion pulse of current TR. The post-

saturation method only eliminates type I inflowing spins. Type II and III spins can be 

suppressed by the motion-sensitized driven equilibrium (MSDE) technique. In the current 

study, we did not apply MSDE in both the separate and combined scans for the following 

reasons: 1) The inflow effects from type II and III spins are relatively small when a body 

coil is used for RF transmit at 3T with a relatively long TR (Donahue et al., 2009b; 

Donahue et al., 2006a; Lu, 2008); 2) The main goal of this study is to compare the 

separate and combined scans with the same imaging parameters. However, this may 

result in larger VASO signal changes in our data due to residual type II and III spins, and 

the MSDE module (Hua et al., 2013a) should be applied in future quantitative studies.  



71 
 

Another confounding effect for CBF and CBV quantification comes from the 

alteration in vascular transit times upon functional stimulation. In VASO, a spatially non-

selective inversion is used and the inflow effect, which is more prominent at short TR, is 

largely suppressed by the post-saturation module. Therefore, we expect that transit time 

changes upon stimulation have minor influence on the VASO signal changes with a 

relatively long TR used in this study. For FAIR ASL, it is well known that scans with a 

single post-labeling delay (TI) are more sensitive to bolus transit time changes, which is 

especially problematic for short TIs. With a relatively long TI used here for FAIR ASL, it 

has been shown that this confounding effect is quite small for typical transit time changes 

during functional stimulation in human brain (Alsop et al., 2014; Donahue et al., 2006b). 

In addition, the first readout pulse train in the 3D VASO-FAIR sequence may saturate 

some of the inflowing blood spins that will eventually contribute to the FAIR ASL 

signals acquired in the second readout. This would not affect the relative signal change in 

FAIR ASL if the vascular transit time does not change between baseline and activation. 

To evaluate the situation when the transit time does change, Bloch simulations were 

performed in which the signals from blood spins that reach the imaging volume after each 

excitation pulse in the first readout were calculated individually (because they see 

different numbers of excitation pulses), and the weighted sum of these blood signals 

(depending on transit times) was taken as the total blood signal when the FAIR ASL 

images are acquired in the second readout. The same imaging parameters described in 

Methods were used, and a baseline bolus arrival time of 400 ms with a 15% decrease 

upon visual stimulation (Hua et al., 2011a) was assumed. The results from simulation 

indicate that such a transit time effect will only increase the relative signal change in 
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FAIR ASL with <5% as compared to a pure CBF increase. To correct for these 

confounding effects in CBF quantification, methods such as QUIPPS II (Luh et al., 1999; 

Wong et al., 1998) and/or multiple post-labeling delays can be employed (Dai et al., 2012) 

in future studies, especially in certain physiological conditions where transit time changes 

drastically.  

Taking these confounding effects together, the relative changes in FAIR ASL 

signals and CBF during visual stimulation in our data are relatively low compared to 

typical literature values. We attribute this mainly to a substantial partial volume effect 

from WM. On the other hand, the VASO signal changes and estimated CBV changes are 

comparable to literature values, which may be explained by the fact that counteracting 

confounding effects (partial volume effects from WM decreases the VASO signal 

changes; but CSF contamination and residual inflow effect increase the VASO signal 

changes) cancel out with each other on the final VASO signal change. Note that the 

proposed method is designed for functional studies where relative changes in CBF and 

CBV are of interest. The traditional VASO approach alone cannot measure absolute 

baseline CBV. For ASL, while it yields signals that are linearly proportional to CBF, 

absolute quantification of CBF requires careful evaluation of potential confounds which 

we feel is beyond the scope of the current study. 

Power deposition does not seem to be a major limiting factor in the combined 

pulse sequence used here, mainly due to the low FA in the 3D GRE readout and the 

relatively long TR and readout duration. The specific absorption rate (SAR) is about 1.0 

W/kg (<30% of the FDA limit for head exposure) for the proposed 3D VASO-FAIR 

sequence with the parameters used in this study. If the MT pre-pulse is turned off (with 
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other parameters identical), SAR will decrease to about 0.3 W/kg (<9% of the FDA limit). 

Note that the 400 ms 2.5 μT block-shaped MT prepulse can also be replaced by a pulse 

train to further lower the SAR level. With the same imaging parameters used here, the 3D 

VASO-FAIR sequence can acquire up to 30 slices with a SAR level less than 1.1 W/kg 

(<34% of the FDA limit) at 3T. In this case, the actual bottleneck is the long readout 

pulse train for one image volume and TR, instead of power deposition. 

In this first study, we chose to use the original forms of pulse sequences for FAIR 

ASL and VASO. Over the past decade, many improvements have been developed for 

these methods, including vascular crushing gradients, QUIPSS (QUIPSS II and Q2TIPS), 

multiple post-labeling delays, background suppression, pseudo-continuous labeling for 

ASL (Alsop et al., 2014), and the inflow-based VASO (iVASO) approach (Donahue et al., 

2009c; Donahue et al., 2010; Hua et al., 2009b, 2011a; Hua et al., 2009c, 2011b) for 

VASO. We are currently working to incorporate some of these improvements into the 

proposed approach. For instance, crusher gradients (Le Bihan et al., 1988) or the motion-

sensitized driven equilibrium (MSDE) preparation (Balu et al., 2011; Hua et al., 2013a; 

Wang et al., 2007; Wang et al., 2010) can be added to suppress macro-vascular signal 

contaminations in ASL. The combined sequence can also be adapted with the QUIPSS 

modifications (Luh et al., 1999; Wong et al., 1998) to control the labeling bolus width. 

Scans at multiple post-labeling delays (TI) (Buxton et al., 1998; Dai et al., 2012; Francis 

et al., 2008; Gonzalez-At et al., 2000; Gunther et al., 2001; Petersen et al., 2006; Wang et 

al., 2013) can be achieved by deploying multiple readout modules within one scan (TR) 

or using separate scans for each TI, in order to obtain direct information on vascular 

transit times and to reduce errors in CBF quantification due to transit time variations. 
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However, similar to other ASL methods, this is certainly limited by factors such as TR, 

readout length, power deposition and total scan time. Although theoretically feasible, 

careful design of the timing and number of saturation and inversion pulses is needed to 

incorporate background suppression (Dai et al., 2008; Dixon et al., 1991; Garcia et al., 

2005; Maleki et al., 2012; Ye et al., 2000) into the proposed method. FAIR ASL is a 

pulsed ASL (PASL) scheme. Therefore, pseudo-continuous labeling (Dai et al., 2008; 

Wong, 2007; Wu et al., 2007b), which generally has higher SNR than PASL, cannot be 

used here, which may be one of the disadvantages for the proposed method. The 

inversion schemes in iVASO (Donahue et al., 2009c; Donahue et al., 2010; Hua et al., 

2009b, 2011a; Hua et al., 2009c, 2011b)can also be used here, which should result in 

enhanced SNR, and a CBV contrast dominated by the arterial compartment. Proper single 

TI or multiple TIs should be used to mitigate arterial transit time effects in the iVASO 

contrast (Donahue et al., 2009c; Donahue et al., 2010; Hua et al., 2009b, 2011a; Hua et 

al., 2009c, 2011b).  

 One drawback of the proposed 3D VASO-FAIR sequence is that the temporal 

resolution for the VASO scans are halved compared to the separate VASO approach, as 

VASO images can only be acquired at TI1 in each NS scan but not in the SS scans where 

no global inversion is applied and out-of-slab blood is not properly nulled. Hence, CNR 

per unit time for VASO was lower in the combined method compared to the separate 

VASO scan (Table 1). On the other hand, since the out-of-slab blood signal is higher 

during the SS scans in the combined scans as compared to the blood signals in separate 

VASO scans, it acts as a suppressor for the CBF contamination in the VASO contrast. As 

a post-saturation module is already applied here to suppress the flow related artifacts in 
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VASO, this extra suppression effect is not obvious in the data. However, VASO �S/S in 

the combined scans appeared slightly lower (albeit not statistically significant) than in 

separate scans (Table 1), which may indicate some residual CBF contamination at TR of 

3s being suppressed. This suppression effect should be more useful for VASO scans with 

shorter TRs in which the flow related contamination is more prominent (Donahue et al., 

2009b; Lu et al., 2013).  

 

3.5. Conclusions 

A 3D perfusion imaging approach was demonstrated that combines the VASO 

and FAIR-ASL MRI techniques, allowing the measurement of CBV and CBF dynamics 

during functional stimulation in a single scan. Using a flashing checker board visual 

stimulation paradigm, activation patterns with signal changes (�S/S), tSNR and CNR per 

scan comparable to the original individual methods were detected. This approach is 

expected to provide a more efficient and equally sensitive alternative when both CBV 

and CBF responses need to be monitored during a functional task, such as needed for the 

quantitative BOLD fMRI studies where information about oxygen metabolism alterations 

can be extracted from the BOLD and hemodynamic measures.  
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Chapter 4: A Three-dimensional Single-scan Approach for the 

Measurement of Changes in Cerebral Blood Volume, Blood Flow, and 

Blood Oxygenation-weighted Signals during Functional Stimulation  

  

4.1. Introduction  

Functional magnetic resonance imaging (fMRI) techniques based on blood-

oxygenation-level-dependent (BOLD) contrast have been used extensively for mapping 

functional neuroanatomy. The origin of the BOLD effect reflects the changes in the 

concentration of deoxygenated hemoglobin, which acts as an intrinsic paramagnetic 

contrast agent and reduces the local MR signal by creating microscopic field gradients in 

and around the blood vessels. Therefore during neuronal activation, other than the site of 

activation, large draining veins further downstream can also show large BOLD signal 

changes. As a result, the major drawback of BOLD contrast is its poor spatial specificity. 

In fact, the BOLD effect in tissue is very complicated and reflect ensemble changes in 

physiological parameters such as cerebral blood volume (CBV), blood flow (CBF), and 

cerebral metabolic rate of oxygen (CMRO2).  

A number of alternative MRI techniques that use single physiological quantities 

as a neuronal activity marker have been developed to measure cerebral blood flow and 

blood volume separately. Arterial spin labeling (ASL) method uses magnetically labeled 

(inverted) blood water as an endogenous tracer, and can measure both baseline CBF, as 

well as activation-dependent changes in CBF with strong arteriolar and capillary signal-

weighting thus improving spatial specificity and providing a useful complement to 

standard BOLD functional imaging. The vascular-space-occupancy (VASO) MRI (Lu et 
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al., 2003) has been used to measure functionally induced changes in CBV. Based on the 

T1 difference between blood and brain tissue, VASO MRI employs a spatially 

nonselective inversion pulse to invert both blood and tissue signals and acquires MR 

images at the time when blood signal recovers to zero (nulled), which can be used to 

calculate CBV changes.  

 Quantitative BOLD approaches have been developed to estimate CMRO2 

dynamics from BOLD, CBF and CBV responses, normally using separate scans. 

Calibrated BOLD methods use Davis’s model and estimate CMRO2 changes from BOLD 

and CBF measurements during separate vascular and neuronal tasks, where the vascular 

stimulation is used as the calibration condition for BOLD signals (Blockley et al., 2013; 

Davis et al., 1998; Hoge et al., 1999; Lin et al., 2008, 2009; Lin et al., 2011). However, 

the measurement of CBV is usually inferred from the CBF measurement using Grubb’s 

equation with a constant exponent (Grubb et al., 1974), which is commonly assumed to 

be identical in vascular and neuronal tasks. Recent studies have shown that this power-

law relationship can vary substantially under different conditions (Blockley et al., 2009; 

Chen and Pike, 2009; Donahue et al., 2009e; Hua et al., 2010; Hua et al., 2011c; Ito et al., 

2001; Lin et al., 2008; Rostrup et al., 2005), and calibrated BOLD studies are expected to 

benefit from using dynamic CBV measurements and can overcome uncertainties related 

to the flow-volume coupling coefficient (Lin et al., 2008). A different BOLD model 

proposed by Lu and van Zijl (Lu et al., 2004b), and later used and refined by others, 

considers both intravascular and extravascular signal contribution to the BOLD effect, 

and estimates CMRO2 changes from separately measured BOLD, CBF and CBV 

responses during neuronal tasks (no vascular task is involved in this model) (Donahue et 
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al., 2009a; Hua et al., 2011c; Huber et al., 2013; Lin et al., 2008, 2009; Lin et al., 2011; 

Lu et al., 2004b; Uh et al., 2011).  

It is important to measure BOLD, CBV and CBF hemodynamics to capture 

microvascular status changes and further estimate oxygen metabolism alterations during 

functional stimulations. The ability to measure these parameters in a single scan would be 

potentially useful to improve image acquisition efficiency, and more importantly reduce 

the sensitivity to temporal variations due to factors such as subject head motion, task 

performance, and physiologic changes among the scans. (Yang et al., 2004) previously 

introduced an MRI technique to simultaneously map BOLD-, CBF-, and CBV-weighted 

MRI signals at 3 Tesla. Several technical development and applications have followed 

the original proposal(Gu et al., 2005). More recently, (Krieger et al., 2013) modified and 

implemented a similar sequence at 7 Tesla. Those studies were implemented in two-

dimensional (2D) mode to acquire a single slice or at most three slices in one repetition 

time (TR) thus with very limited brain coverage. Simultaneous multi-slice BOLD and 

CBF measurement are mostly applied in the calibrated BOLD studies using either dual-

echo or dual excitation ASL (Ances et al., 2011; Bulte et al., 2009; Chen and Parrish, 

2009; Chiarelli et al., 2007; Gauthier et al., 2011; Hoge et al., 1999; Leontiev et al., 2007; 

Mark et al., 2011; Mohtasib et al., 2012; Perthen et al., 2008; Schmithorst et al., 2014) 

with gradient echo (GRE) echo-planar-imaging (EPI) readout where a short echo time 

(TE) provides predominately flow-weighted contrast, whereas a longer TE centered on 

tissue water T2* provides BOLD contrast. However, there is no additional information 

about CBV changes in those studies as the measurement of CBV is directly inferred from 
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the CBF measurement using Grubb’s equation with a constant exponent (Grubb et al., 

1974).  

As shown in Chapter 3, we proposed a 3D whole-brain MRI “VASO-FAIR” 

approach, the work of which has been recently published (Cheng et al., 2014). It exploits 

the same principle as (Yang et al.), and can measure CBV and CBF responses in one 

single scan. It combines the vascular-space-occupancy (VASO) (Lu et al., 2003) and 

flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) 

techniques (Kim, 1995; Kwong et al., 1995) with a common inversion pulse. A single-

shot 3D fast gradient echo (GRE, also known as turbo field echo, TFE or TurboFLASH) 

sequence was used for image acquisition at two TIs, which consists of low flip angle 

pulse trains and has much less geometric distortion as well as fewer signal dropouts than 

the traditional GRE echo-planar-imaging (EPI) sequence. For VASO fMRI, this readout 

minimizes the BOLD contamination by allowing a very short TE (< 2ms) to be used. For 

CBF measurement, it eliminates the artifactual inter-slice perfusion signals variation due 

to the different post-labeling delay time that are slice-dependent in 2D acquisition 

sequences. When compared with the original separately performed VASO and FAIR-

ASL scans, the proposed approach has been demonstrated to achieve similar image 

quality, activation patterns and relative signal changes (ΔS/S) during functional 

stimulation, as well as comparable tSNR and CNR values per scan, thus providing a more 

efficient and equally sensitive alternative when both CBV and CBF responses need to be 

monitored during a functional task (Cheng et al., 2014).  

A three-dimensional T2-weighted spin-echo (SE) BOLD fMRI pulse sequence 

(dubbed as “3D T2prep-GRE”) was previously proposed by (Hua et al., 2013b) at 7T, 
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where the SE BOLD contrast was induced using a T2 preparation scheme. Compared 

with the conventional 2D multi-slice SE EPI BOLD method, the 3D T2prep-GRE BOLD 

sequence permits parallel imaging in two phase encoding direction, has lower specific 

absorption rate (SAR) which allows larger spatial coverage with greater acquisition 

efficiency, and is less sensitive to susceptibility artifacts across the whole brain. Such 

concept of using T2 preparation to generate BOLD contrast can be combined with many 

other sequences and is transferable to other filed strengths. 

Here, we propose an acquisition strategy, dubbed three-dimensional Triple-

acquisition after Inversion Preparation or 3D-TRIP, that can incorporate these two 3D 

whole-brain methods for measuring CBV, CBF, and BOLD signal changes in a single 

scan. The T2 preparation module was placed immediately before a third acquisition 

module to induce the SE BOLD contrast. We will validate the proposed method using 

visual functional experiments in normal human brains on a 3 Tesla MRI scanner by 

comparing functional results from the combined sequence and the respective individual 

scans.  

 

4.2. Materials and Methods 

Pulse Sequence and Simulations 

Figure 4.1 illustrates the combined 3D-TRIP pulse sequence. It adopts the same 

framework as the VASO-FAIR sequence (Cheng et al., 2014), which consists of 

interleaving slab-selective (SS) and non-selective (NS) inversion prepared scans where 

CBV-weighted VASO images are obtained at the blood-nulling time TI1 after NS 

inversion, and FAIR images are collected at a later time TI2 in both SS and NS scans. 
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CBF-weighted signals are then computed from pairs of FAIR images. As in the VASO-

FAIR sequence, we applied the same magnetization transfer (MT) module before the 

inversion pulses to boost the tissue signal-to-noise ratios (SNRs) and contrast-to-noise 

ratios (CNRs) (Cheng et al., 2014; Hua et al., 2009a; Hua et al., 2013a). Here, a T2-

preparation pre-pulse train immediately followed by a third imaging module was added 

after the FAIR acquisitions at TI3 in both SS and NS scans, in which T2-weighted SE 

BOLD images are acquired. Two refocusing pulses were used in T2-preparation to 

compensate phase variations and to suppress inflow effects (Hua et al., 2013b). A spoiler 

gradient was applied at the end of the T2-preparation pre-pulses to dephase residual 

transverse magnetization (Hua et al., 2013b). Same as the VASO-FAIR and T2prep 

BOLD sequences, a single-shot 3D fast gradient echo (GRE, also known as turbo field 

echo, TFE or TurboFLASH) readout with centric (low-high) phase encoding profile was 

employed in all three imaging modules. As the MR signal acquired at the center of k-

space (kz = ky = 0 for 3D) determines the gross signal intensity in the image, the centric 

(low-high) phase encoding scheme ensures that k-space center will be acquired at the first 

echo, which is set at the blood nulling TI for VASO, and has the ideal T2-weighted 

contrast following T2-preparation for SE BOLD.  
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Fig. 4.1. Pulse sequence of the combined 3D-TRIP approach. A pair of interleaving slice-

selective (SS) and nonselective (NS) scans are shown. A magnetization transfer (MT) 

prepulse is added before the adiabatic FOCI inversion pulses. The imaging module used 

here is a 3D fast GRE readout for VASO, FAIR ASL, and BOLD images, in which 

VASO signal is acquired at blood nulling time TI1, ASL signal at time TI2, and BOLD 

signal at time TI3. A T2 preparation module (90°x–180°y–180°y–90°-x) is applied 

immediately before the BOLD readout to induce the T2 weighting in the BOLD signal. A 

post-saturation module comprising of a non-selective 90° saturation pulse and spoiler 

gradients is applied immediately after the FAIR ASL readout. 
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A spatially nonselective saturation (90° RF pulse followed by spoiler gradients) 

module was deployed immediately after the third readout to set all residual magnetization 

(blood and tissue) to zero. Similar to what has been shown in the VASO-FAIR sequence 

(Cheng et al., 2014), the purpose for this post-saturation module is to both suppress the 

inflow effect and to ensure that blood spins in and outside the inversion slab applied in 

the SS scan will have the same steady-state blood nulling condition in the following NS 

scan. Bloch simulation was performed using the same imaging parameters described in 

Experiments to estimate blood-nulling TIs in VASO images both in separate and 

combined scans. The same simulations were used to evaluate steady state GM and CSF 

signals. A 20% signal drop after the MT saturation pulse was assumed for GM (typical 

values under similar saturation schemes (Hua et al., 2009a)), and we assume there is no 

MT effect for CSF. Steady-state magnetization values for GM, CSF and blood are 

summarized in Table 4.1. In FAIR ASL, the magnetization values were simulated from 

raw data before the surround subtraction. The table only shows the out-of-slab blood 

magnetization at SS and NS scans for FAIR-ASL and BOLD, as both in- and out-of-slab 

blood signals are expected to be nulled at VASO scans, and in-slab blood signals are 

identical for SS and NS scans in the combined sequence and will have the same 

magnetization as the out-of-slab blood in NS scans. For BOLD acquisition at TI3, since 

the intravascular signals (sum of in-slab and out-of-slab blood signal) will be different in 

SS and NS scans as expected from simulations, we will only use BOLD images obtained 

from the SS scans instead of using both scans consecutively for the combined sequence.  

 

 



84 
 

Table 4.1.  Summary of steady-state signals for different tissue types from Bloch 

simulation (percentage of the equilibrium magnetization). 

 

Typical T1 and T2 values for blood, gray matter (GM) and cerebrospinal fluid (CSF) in 

healthy human brain at 3T were used: T1,blood = 1624ms (Lu et al., 2004a), T1,GM = 

1122ms (Lu et al., 2005b), T1, CSF = 3817ms (Lu et al., 2005b), T2,GM = 80ms (Lu et al., 

2005b), T2,blood = 55ms (Zhao et al., 2007), T2,CSF = 1442ms (Donahue et al., 2006a). 

 

 

 

 

 

 

 

 

 

 

 

 

 VASO 
GM 

VASO 
CSF 

FAIR Blood, 
SS/ NS 

FAIR 
GM 

FAIR 
CSF 

BOLD Blood, 
SS/NS 

BOLD 
GM 

BOLD 
CSF 

Separate 
scans 

24.0 -17.9 92.04/34.55  51.2 2.4 30.8 45.9 71.4 

Combined 
scans 

19.7 -6.6 54.47/37.7  53.4 16.0 17.3/15.9 28.4 23.9 
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Experiments 

The protocol was approved by the Johns Hopkins Medicine Institutional Review 

Board. Subjects gave written informed consent before participating. Experiments were 

performed on a 3T human MRI scanner (Philips Healthcare, Best, The Netherlands), 

using a body coil for RF transmission and a 32-channel head coil for reception. Six 

healthy volunteers were scanned for this study. Four fMRI experiments with visual 

stimulation (yellow/blue flashing checkerboard, 32s visual stimulation interleaved with 

56s cross-hair fixation, repeated 4 times) were performed on each participant: (a) 3D-

TRIP (TR/TI1/TI2/TI3=4.0/0.6/1.5/2.4s, effective TE for BOLD = 60ms). A 400ms 2.5μT 

block-shaped MT prepulse with a frequency offset at -40 ppm (Hua et al., 2013a) was 

applied immediately before the inversion pulses in both NS and SS scans. (b) VASO 

(TR/TI = 4.0/0.88s).  The same MT prepulse and post-saturation module as in 3D-TRIP 

were applied. (c) FAIR (TR/TI = 4.0/1.5s). d) 3D T2prep BOLD (TR = 4.0s, effective TE 

= 60ms). In both the combined and separate T2prep BOLD sequence, same T2 

preparation module (nonselective 90°x–180°y–180°y–90°-x, hard pulses, duration or 

effective TE = 60ms) was applied immediately before the BOLD readout to induce T2-

weighted BOLD contrast. A spoiler gradient was applied at the end of the T2prep module 

on the slab-selective gradient axis. The order of the experiments was randomized across 

participants. Optimal blood-nulling times were calculated for both 3D-TRIP (TI1) and the 

separate VASO scan (TI) based on the Bloch simulations (described above) in order to 

account for the influence from the 3D fast GRE readout and the post-saturation module. 

Note that due to the different numbers of readout modules thus different recovery times 

after the post-saturation module (before next inversion) in the two sequences (thus 
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different steady states), TI1 in the combined 3D-TRIP sequence is different from TI in 

VASO, which leads to different inflow times (TI) for VASO. This should not have a 

major influence on the VASO signals since the inflow effect should be largely suppressed 

by the post-saturation module when a body coil is used for RF transmit with a relatively 

long TR (Cheng et al., 2014; Hua et al., 2013a). Frequency offset corrected inversion 

(FOCI) pulses (Ordidge et al., 1996) were used for inversion in all scans, which are 

expected to produce sharper edges for spatially selective inversion than hyperbolic secant 

(HS) pulses (Hua et al., 2011a; Hua et al., 2011b). Common imaging parameters: voxel 

size = 5mm isotropic, 16 slices, field of view (FOV) = 192x192 mm2, TRGRE (TR 

between two consecutive echoes in 3D GRE)/TE = 3.6/1.6ms, flip angle = 7°, turbo 

direction = radial, parallel imaging (SENSE) acceleration factor = 3x2 (APxFH), no 

partial Fourier sampling, readout duration for one image volume = 391 ms. Based on the 

thickness of the imaging volume (80mm), the thickness of the SS inversion slab was 

chosen to be 100 mm. A whole-brain 3D magnetization prepared rapid acquisition 

gradient echo (MPRAGE) scan (voxel size = 0.65mm isotropic, 231 slices) was also 

performed for anatomical reference.  

 

Data Processing  

The Statistical Parametric Mapping (SPM 12, University College London, UK) software 

package and several in-house Matlab R2012a (Mathworks, Natick, MA, USA) routines 

were used for data analysis. All fMRI images were corrected for motion and baseline 

drift. Gray matter, white matter, and CSF masks for each subject were generated using 

the MPRAGE images and SPM 12, and then coregistered with the fMRI images. CBF-
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weighted images were obtained using a surround subtraction method, in which the SS/NS 

FAIR ASL images are subtracted with linear interpolation between the surrounding 

NS/SS images, respectively (Lu et al., 2006). A general linear model (GLM) was used to 

detect activated voxels (P < 0.01, t-score ≤ -1.5 for VASO, t-score ≥ 1.5 for FAIR and 

BOLD). A SNR threshold of 20 for VASO (Donahue et al., 2006b) and BOLD images 

was used. Due to the low SNR in the subtracted FAIR ASL images, a SNR threshold of 1 

was used. The relative signal change (ΔS/S) in each voxel was quantified as the 

difference between average signals during the baseline and activation periods normalized 

by the average baseline signal. In order to avoid the transitional periods when calculating 

average signals, images acquired during the first 24s and 8s during the baseline and 

activation periods, respectively, were excluded. Statistical t-score was calculated as the 

voxel-wise average value from the voxels in the visual cortex that are both activated in 

the separate and combined scans. Temporal SNR (tSNR) was calculated as the voxel-

wise average baseline signal divided by the standard deviation along the time course 

during the baseline period. When comparing the tSNR values between separate and 

combined approach, since the temporal resolution for VASO and BOLD scans are halved 

in the combined sequence (we only use VASO images acquired in NS scans at TI1 and 

BOLD images acquired in SS scans at TI3), the VASO and BOLD images obtained from 

the individually performed scans were under-sampled by a factor of 2. Contrast-to-noise 

ratio (CNR) per unit time was taken as the product of absolute value of relative signal 

change (ΔS/S), tSNR, and square root of number of image volumes acquired during the 

entire scan. In FAIR ASL, tSNR and CNR were calculated from CBF-weighted perfusion 

images after the surround subtraction.  
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4.3. Results  

The fMRI results of VASO, FAIR and BOLD scan from the combined 3D-TRIP 

sequence are shown in Figure 4.2 and compared further with the respective separate scans 

as listed in Table 4.2. Representative activation maps from these three modalities are all 

overlaid onto the same anatomical images. The voxels meeting activation criteria 

(highlighted with their t-scores) are mostly localized in the visual cortex (representative 

images for VASO in Figures 4.2a, for FAIR in Figures 4.2b, and for BOLD in Figures 

4.2c; 16 slices acquired, 4 slices shown). BOLD-weighted signals showed larger areas of 

significant functional activation than CBF- and CBV-weighted signals. A few spurious 

activations outside the visual regions were observed in some of the subjects, but these 

were excluded from further analysis as the focus of this study is to compare the separate 

and combined scans in the visual cortex. In the subsequent quantitative comparisons, only 

voxels that are activated in both separate and combined scans were used.  

The time courses averaged over all slices and all subjects matched well between 

the separate and combined scans for VASO (Figure 4.2d), FAIR (Figure 4.2e), and 

BOLD images (Figure 4.3f). Note that VASO relative signal change is negative during 

neuronal activation due to the concomitant vasodilation that results in tissue signal 

reduction. The well known BOLD undershoot after stimulus cessation is evident in both 

the combined and separate scans. When compared with separate VASO, FAIR, and 

BOLD scan, the relative signal changes (ΔS/S) and t-scores were both statistically 

comparable (P>0.1). For VASO images, tSNR was significantly higher (P<0.05) in the 

combined scans. However, CNR per unit time was comparable (P>0.1), as only half of 

VASO scans were acquired in the combined scan. For BOLD images, tSNR in combined 
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BOLD scan was slightly higher (P<0.05). CNR per unit time was not significantly 

different (P>0.1). For perfusion images, tSNR and CNR were comparable (P>0.1) 

between separate and combined scans.  
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Fig. 4.2. Comparison of functional MRI results between the combined and separate scans. 

Representative activation maps overlaid on common anatomical images from the 

combined sequence (a) VASO scan, (b) FAIR ASL scan, and (c) BOLD scan are shown. 

The activated voxels are highlighted with their t-scores. Time courses averaged over 

common voxels activated in both separate (black circle) and combined (red triangle) 

scans (averaged over subjects, n = 6) for VASO, FAIR, and BOLD are shown in (d), (e), 

and (f), respectively. Error bars represent inter-subject variations. The vertical dotted 

lines indicate the start and end of visual stimulation. Four blocks of baseline and 

stimulation periods were averaged to one block.  
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Table 4.2.  Summary of quantitative fMRI results from all subjects (n = 6). 

 

Mean values ± standard deviation over all subjects. ΔS/S, t-score, tSNR and CNR were 

calculated as defined in Methods. Only common voxels activated in both separate and 

combined VASO or FAIR or BOLD scans were included. All FAIR ASL results were 

calculated from the subtracted images (difference maps or perfusion weighted images), 

and the ΔS/S are corrected for partial volume effects. When comparing the tSNR values, 

the VASO and BOLD images obtained from the separate scans were under-sampled by a 

factor of 2. 

 

 

 

 

 

 

 

 

 

    VASO in 
combined scan  

Separate 
VASO 

FAIR in 
combined scan 

Separate 
FAIR 

BOLD in 
combined scan 

Separate 
BOLD 

ΔS/S(%)   -1.84±0.22 -1.61±0.39 41.8±5.2 41.4±6.1 1.26±0.23 1.18±0.19 

t-score 3.1±0.4 3.7±0.8 2.2±1.3 2.3±1.7 5.2±1.3 5.5±1.4 

tSNR 58.0±6.6 47.5±5.3 1.34±0.13 1.83±0.49 97.5±5.3 86.5±8.6 

CNR per 
unit time 

7.68±1.40 7.57±1.23 5.95±1.35 7.30±1.77 8.8±1.9 10.3±2.2 
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 Relative CBV and CBF changes upon visual stimulation were quantified based on 

the measured VASO and FAIR ΔS/S, respectively.  Using the theory and parameters 

from (Donahue et al., 2006a; Hua et al., 2011c; Lu et al., 2003), the relative CBV change 

was calculated as 30.0%±7.3% (separate scan, mean ± standard deviation) and 

34.4%±4.2% (combined scan), whereas the relative CBF change was 41.4%±6.1% 

(separate scan) and 41.8% ± 5.2% (combined scan). We corrected the partial-volume 

effects from WM and CSF in the relative CBF changes using the generated GM, WM, 

and CSF probability maps after segmentation. We found a voxel composition of 

approximately 75% GM, 20% WM, and 5% CSF for voxels in the visual cortex area. 

Therefore by assuming 1/3 of the baseline GM CBF value in the WM, the relative CBF 

change after correction was 50.7%±7.5% (separate scan) and 51.2% ± 6.4% (combined 

scan). OEF and CMRO2 changes were calculated from BOLD, CBV, and CBF data using 

the theory described previously (Lu et al. 2004b). Note that as T2-prep BOLD fMRI 

measures T2-weighted SE BOLD signals, the GRE BOLD signal changes in the 

quantitative BOLD model were approximated by three times of the measured SE BOLD 

signal changes. (Boxerman et al., 1995; Donahue 2006a; Yablonskiy and Haccke, 1994). 

If assuming a baseline CBV of 0.054 ml/ml tissue, resting arterial and venous 

oxygenation Ya,rest = 0.98 and Yv,rest = 0.61, respectively, which corresponds to a baseline 

oxygen extraction fraction (OEF) of 0.38, the estimated OEF value during activation is 

0.27±0.01, indicating a 28.5% decrease upon activation, and the relative increase in 

cerebral metabolic rate of oxygen (CMRO2) is 12.6±6.7%. 

 

4.4. Discussion 
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We developed a 3D whole-brain imaging technique to simultaneously measure 

signal changes related to cerebral blood volume, blood flow, and blood oxygenation upon 

functional stimulation in a single MRI scan. This combined sequence is expected to 

provide a more efficient and equally sensitive approach for the quantitative BOLD 

studies where information about oxygen metabolism alterations can be extracted from 

these complementary hemodynamic signals associated with CBV, CBF, and blood 

oxygenation. Compared to sequentially obtaining CBV, CBF, and BOLD measurements 

using individual scans, this technique will not only improve the acquisition efficiency, 

but also reduce potential confounding effects resulting from head motion, task 

performance variation and physiologic fluctuations between MRI scans. Compared with 

the original separate VASO, FAIR, and BOLD scans, the proposed approach 

demonstrated similar activation patterns, t-scores, and relative signal changes (ΔS/S) 

during functional stimulation. The fact that ΔS/S in the separate and combined scans are 

consistent indicates that they are measuring the same contrast (CBV-, CBF- and 

oxygenation-weighted signal changes for VASO, FAIR, and BOLD, respectively). Bloch 

simulation demonstrated that the GM signals in the VASO and BOLD scans in the 

combined method are both lower than those in the corresponding separate scans (Table 

4.1), however tSNRs were significantly higher in the combined scans from the 

experimental data (Table 4.2), this could be explained by the fact that physiological noise 

is dominant in fMRI, thus a slight loss in MR signal may not lead to a decrease in tSNR 

(Cheng et al., 2014; Gonzalez-Castillo et al., 2011; Kruger and Glover, 2001; Kruger et 

al., 2001; Triantafyllou et al., 2005). Also, as can be seen from the Bloch simulation 

(Table 4.1), both VASO and BOLD in the combined method have less CSF 
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contamination due to the smaller CSF signal amplitude, which may further lower the 

noise levels. Indeed, we found that the noise levels (calculated as the standard deviation 

along the time course during the baseline period) in VASO and BOLD images were 

lower in the combined scans from all six subjects. The steady state FAIR-ASL GM 

signals are similar between the combined and separate scans from Bloch simulation 

(Table 4.1), and tSNR and CNR of the perfusion images are comparable from our data 

(Table 4.2).  

Simultaneous BOLD and CBF measurement are mostly applied in the calibrated 

BOLD studies using either dual-echo or dual excitation ASL with multi-slice gradient-

echo (GRE) echo-planar-imaging (EPI) readout where a short echo time (TE) provides 

predominately flow-weighted contrast, whereas a longer TE centered on tissue water T2* 

provides BOLD contrast (Ances et al., 2011; Bulte et al., 2009; Chen and Parrish, 2009; 

Chiarelli et al., 2007; Gauthier et al., 2011; Hoge et al., 1999; Leontiev et al., 2007; Mark 

et al., 2011; Mohtasib et al., 2012; Perthen et al., 2008; Schmithorst et al., 2014). This is 

also the case for the MRI technique previously introduced by (Yang et al., 2004)and later 

modified by (Krieger et al., 2013) to simultaneous acquire BOLD, CBV-, and CBF-

weighted MRI signals. However, there may still be resultant BOLD effects in the CBV- 

and CBF- weighted images. Multiple EPI readouts will be needed to extrapolate both 

VASO and ASL images to TE = 0 ms and correct for BOLD signal contaminations 

(Krieger et al., 2013; Schulte et al., 2001; Yang et al., 2004). In our combined VASO-

FAIR-BOLD approach, we adopted a 3D fast GRE imaging sequence, which minimizes 

the BOLD contamination to both VASO and ASL perfusion signals by allowing a very 

short TE (< 2ms) to be used (Cheng et al., 2014; Hua et al., 2013a), and has less 
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geometric distortion and fewer signal loss than the GRE-EPI sequence. Furthermore, T2-

weighted BOLD contrast in the combined sequence is generated by the T2 preparation 

module immediately before the readout sequence, which eliminates the “dead time” and 

substantially improves acquisition efficiency (Hua et al., 2013b). In this proof-of-concept 

study, we used an effective TE = 60 ms in the T2 preparation module for BOLD images 

in both the separate and combined scans. However an effective TE of 80 ms that are 

closer to the tissue T2 value at 3T is expected to generate the optimal BOLD contrast at 

such field strength (Lu et al., 2005b; Ugurbil et al., 1993). Moreover, the equivalent TE 

to induce the same ΔS/S in a double echo CPMG sequence is expected to be longer than 

that in a sequence with only one refocusing pulse (Ogawa et al., 1993). This means that 

an echo time even longer than 80 ms may be necessary for optimizing ΔS/S in the 

acquired BOLD images using the T2-preparation.   

The statistical activation maps of the fMRI results from the combined 3D 

sequence show different spatial patterns, where BOLD-weighted signals exhibited larger 

areas of significant functional activation than CBF- and CBV-weighted signals. VASO 

and ASL signal changes have a strong arteriolar and capillary signal weighting because 

the highest fractional changes in CBV and CBF occur in these compartments. In contrast, 

BOLD signal changes also occur in downstream venules and veins other than the actual 

site of neuronal activity. The spin-echo induced T2-weighted BOLD contrast, when 

compared with standard T2*-weighted GRE technique, is expected to show better 

functional localization to the capillary bed, due to the fact that the susceptibility-induced 

static dephasing effects of the extravascular spins around larger vessels are refocused by 

the 180° pulses in SE BOLD, but around capillaries where water diffusion is a random 
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process and is not negligible, the 180° pulses do not fully refocus the signal thus creating 

the extravascular SE BOLD contrast that is weighted toward the microvasculature 

(Boxerman et al., 1995; Kennan et al., 1994). However at field strengths such as 3T, 

blood signal from large veins is still significant, and the SE BOLD effect may still be 

dominated by intravascular contribution (Norris, 2012; Uludag et al., 2009) which may 

explain the large activation region observed from our BOLD experiments. Partial volume 

effects due to the relatively low spatial resolution (5mm isotropic) used in this study may 

also partially contribute. In fact, the superior spatial specificity of SE BOLD has turned 

out to be effective only at high field (≥7T) (Duong et al., 2003; Fujita, 2001; Harel et al., 

2006; Lee et al., 1999; Stables et al., 1998; Uludag et al., 2009; Yacoub et al., 2003; 

Yacoub et al., 2007; Zhao et al., 2006), where relative contribution from the extravascular 

compartment will be come dominant (Cheng et al., 2015; Donahue et al., 2011; Duong et 

al., 2003; van der Zwaag et al., 2009) and large draining veins will have minimal BOLD 

effect due the dramatic shortening of blood T2, but signals in the arteriolar and capillary 

compartment still persist, thus providing specificity advantages over conventional GRE-

EPI. Thus, our proposed combined sequence might be even more helpful at ultra high 

field, where the T2prep module induces SE BOLD contrast with improved specificity, 

while simultaneously monitoring CBV and CBF reactivity with higher SNR and lower 

SAR which allows larger spatial coverage with fewer signal dropouts across the whole 

brain. 

In this proof-of-concept study, we chose a spatial resolution of 5mm isotropic to 

boost the sensitivity (SNR) of the measurements, and to demonstrate the principles of the 

3D-TRIP method with a reasonable temporal resolution for the functional experiments. 
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Similar to what has been shown previously in the “VASO-FAIR” method (Cheng et al., 

2014), this may lead to significant partial-volume effects from WM and CSF in the GM 

signals. Partial volume effect from WM may bring down the overall FAIR ASL perfusion 

and VASO signal changes measured in our data. On the other hand, the residual inflow 

and partial volume effect from CSF usually result in more negative VASO signal changes 

(Donahue et al., 2006a; Scouten and Constable, 2007, 2008), thus making the VASO 

signal changes and estimated CBV changes comparable to literature values (Cheng et al., 

2014). From the Bloch simulations (see Table 4.1), the steady state CSF signals in the 

combined scan are less negative in VASO, more positive in FAIR ASL, and less positive 

in BOLD than the respective separate scans. For FAIR ASL, the partial volume effect 

from CSF should not affect the difference signal (perfusion) as CSF signals in label and 

control scans should be comparable. For BOLD signal, this may at least partially explain 

the smaller (albeit not statistically significant) ΔS/S in the separate BOLD scan (Table 

4.2). For CSF influences on the VASO signal change, simulations indicate that the CSF 

contamination in the VASO signal change is slightly smaller in the combined scan due to 

the less negative CSF signal if assuming no fractional change in the CSF volume: 

assuming a 30% increase of CBV upon activation, the relative VASO signal change from 

the simulations is -1.70% in a pure GM voxel for both separate and combined VASO 

scans, and is -1.74% (VASO in combined scan) and  -1.79% (separate VASO scan) in a 

voxel with 5% CSF and 95% GM in volume. However, as it is not entirely clear whether 

and how much the local CSF volume alters occur in the cortex during neuronal activation, 

and different values have been reported from several studies: no significant change, 5-6% 

decrease, increase of 2%, and decrease of 2.45% (Hua et al., 2011a), We therefore 
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simulated the other three cases (+2%, -2% and -6%) to get an impression of the partial 

volume effect from CSF. If CSF volume increases 2%, the VASO relative signal change 

from simulation is -2.00% (separate) and  -1.89% (combined); if CSF volume decreases 

2%, the ΔS/S is -1.58% (separate VASO scan) and -1.59%( VASO in combined scan); if 

CSF volume decreases 6%, the ΔS/S is -1.16% (separate VASO scan) and -1.29% 

(VASO in combined scan). Although this partial volume effect should not undermine the 

comparison between the separate and combined approaches here, for future quantitative 

physiological studies, finer spatial resolution, which can be achieved by adapting the 

readout pulse sequence and utilizing fast imaging techniques such as parallel imaging and 

partial Fourier sampling, may be used to alleviate this problem.  

While most of the quantitative BOLD approaches normally perform separate 

scans to estimate CMRO2 dynamics from BOLD, CBF and CBV responses, the proposed 

3D combined approach can detect changes in these hemodynamic signals in a single scan, 

which would not only shorten the total scan time but more importantly reduce the 

sensitivity to temporal variations among the fMRI experiments. Based on the measured 

BOLD, CBV, and CBF relative changes from the combined sequence, we quantified the 

oxygen extraction fraction (OEF) value during activation to be 0.27±0.01 (N = 6, mean ± 

STD), indicating a 28.5% decrease upon visual stimulation, and changes in cerebral 

metabolic rate of oxygen (CMRO2) to be 12.6±6.7%, after correcting for the partial-

volume effects in the CBF response. Since the BOLD signal acquired from the 3D 

combined sequence has T2 weighting, and as the primary goal of the current study is to 

show the feasibility of the proposed combined sequence, we simply assume that the 

gradient-echo (GRE) based extravascular BOLD effect is approximately three times of 
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the spin-echo (SE) BOLD effect (extravascular ΔR2* ≈ 3 ΔR2) as shown in previous 

literature (Boxerman et al., 1995; Donahue et al., 2006a). This is obviously a 

simplification of the phenomenon that the T2-weighted BOLD contrast is created by the 

water diffusion, and the static dephasing regime of the extravascular water spins will be 

refocused in a SE-BOLD experiment. For future studies, careful modeling of 

extravascular SE BOLD effect is needed for a more accurate quantification of oxygen 

metabolism using the proposed combined sequence.  

Power deposition does not seem to be a major limiting factor in the combined 

pulse sequence used here, mainly due to the low FA in the 3D GRE readout and the 

relatively long TR and readout duration. The specific absorption rate (SAR) is about 

0.78W/kg (<26% of the FDA limit for head exposure) for the proposed 3D VASO-FAIR-

BOLD sequence with the parameters used in this study. If the MT pre-pulse is turned off 

only (with other parameters identical), SAR will decrease to about 0.48 W/kg (<16% of 

the FDA limit). If the T2 preparation module is turned off only (with other parameters 

identical), SAR will decrease to about 0.5 W/kg (<17% of the FDA limit). Note that the 

400 ms 2.5 μT block-shaped MT prepulse can be replaced by a pulse train to lower the 

SAR level. The block-shaped refocusing pulses in the T2 preparation module can be 

replaced by adiabatic pulses to further lower the SAR level. With the same imaging 

parameters used here, the 3D-TRIP sequence can acquire up to 30 slices with a SAR level 

less than 0.93 W/kg (<31% of the FDA limit) at 3T. In this case, the actual bottleneck is 

the long readout pulse train for one image volume and TR, instead of power deposition. 

One drawback of the proposed 3D-TRIP sequence is that the temporal resolution 

for the VASO and BOLD scans are halved compared to the separate VASO and BOLD 
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approach, as VASO images can only be acquired at TI1 in each non-selective (NS) 

inversion prepared scan but not in the slab-selective (SS) scan where no global inversion 

is applied and out-of-slab blood is not properly nulled, and we only use BOLD images 

obtained at TI3 in the SS scans from the combined sequence, as simulation (see Table 4.1) 

shows that  the intravascular signals (sum of in-slab and out-of-slab blood signal) at TI3 

will be different in SS and NS scans, which could complicate the interpretation of the 

functional results of the combined scan. One possible way to alleviate this is to adopt a 

motion-sensitized-driven-equilibrium (MSDE) module instead of the T2 preparation, 

with motion-sensitized crushing gradients inserted. For future studies, this could be 

beneficial for two reasons: 1. Destroy the flowing blood signals before acquiring the 

BOLD images, thus reduce the signal variations between the interleaving SS and NS 

scans, and may use both imaging volumes acquired; 2. Improve the spatial specificity of 

BOLD signal changes since the intravascular blood signal are destroyed thus leaving 

BOLD contribution mostly from the extravascular compartment, which could be 

especially useful for quantitative BOLD modeling.  

 

4.5. Conclusions 

A 3D perfusion imaging approach was demonstrated that combines the VASO, 

FAIR-ASL and SE-BOLD MRI techniques, allowing the measurement of CBV, CBF, 

and blood-oxygenation dynamics during functional stimulation in a single scan. Using a 

flashing checkerboard visual stimulation paradigm, activation patterns with signal 

changes (�S/S), tSNR and CNR per scan comparable to the original individual methods 

was detected. This approach is expected to provide a more efficient and equally sensitive 
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alternative for the quantitative BOLD fMRI studies where information about oxygen 

metabolism alterations can be extracted from these complementary hemodynamic signals 

associated with CBV, CBF, and blood oxygenation.  
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Chapter 5: Conclusions and Future Work 

In this chapter, we summarize the major findings and conclusions in this 

dissertation. Future work for further improvement of the proposed techniques and 

potential applications is discussed.  

 

5.1. R2* Measurement Using Multi-echo VASO MRI at 7 Tesla 

In Chapter 2, we applied multi-echo VASO fMRI to remove the intravascular 

signal and by combining with multi-echo BOLD fMRI, we measured the absolute total 

and extravascular (tissue) R2
* values as well as ∆R2

* in the parenchyma in human visual 

cortex at 7T. The main conclusions are: 

1. Since the intravascular signals is supposed to be nulled in the VASO method, 

and the CBV effect occurs predominantly in the microvasculature, by using a 

multi-echo VASO acquisition, we should be measuring the relaxation times of the 

parenchymal extravascular tissue compartment. OEF changes measured in this 

study were also expected to be predominantly localized in the parenchyma by 

taking overlapping voxels activated in both BOLD and VASO scans. 

2. The parenchymal extravascular R2
* value was 44.66 ± 1.55 s-1 at rest, and the 

ratio of extravascular ΔR2
* to total ΔR2

* was 91 ± 3% at 7T, confirming a 

predominant contribution from the extravascular component of the BOLD effect. 

3. Multi-echo VASO images need to be extrapolated to TE = 0 ms or using a 

readout with very short TE for a purer CBV effect especially at 7T, since the 

extravascular BOLD effects (positive) become quite large at longer TE, which 
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counteract the negative VASO signals. This is also confirmed from our data, as 

the VASO ∆S/S is negative for very short TE, but reverses sign at longer TEs. 

4. CBV increased by 35.8 ± 3.2% (n = 6, mean ± SEM) during visual stimulation, 

calculated from a -1.94 ± 0.17% (n = 6, mean ± SEM) VASO signal change using 

the extrapolated VASO images at TE = 0 ms and assuming a baseline CBV value 

of 0.052ml blood/ml tissue. 

5. Based on the static dephasing regime theory, Yv
act and OEF during activation 

were quantified to be 0.75 ± 0.01 and 0.24 ± 0.01 (n = 6, mean ± SEM), 

respectively, indicating an approximately 37% OEF decrease during visual 

stimulation, consistent with values reported at lower field strengths.  

 

When compared with total and extravascular parenchymal R2
* values reported at 

various field strengths (1.5T, 3T and 7T) in the literature, The R2
* values measured here 

are in good agreement with the Donahue study, but differ considerably from the ones 

reported in the van der Zwaag study. One plausible explanation may be that both the 

Donahue and current studies were conducted in the visual cortex with comparable spatial 

resolution, whereas the van der Zwaag study measured R2
* values in the motor cortex 

with a much finer spatial resolution (1x1x3 mm3). Our results also showed that the 

BOLD effect is dominated by the extravascular component (91%) at 7T, in line with 

previous literatures. The experimental results are consistent with the theoretical 

calculations that the intravascular BOLD signal will be significantly reduced relative to 

the extravascular signal at higher field due to the faster R2
* decay of venous blood. 
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The contribution from physiological noises in fMRI signals has been shown to 

increase with field strength and voxel size. In order to check this for our study, we 

measured the coefficients of variation for the R2* values, which were found to be 

comparable to those reported at 3T and 1.5T in a previous study adopting similar 

methodology. However, a larger voxel size was used in that study. From this we conclude 

that the noise contribution in the R2* measurements at 7T would be larger than 3T and 

1.5T if the same voxel size were used. We also noticed that the total R2* values measured 

in subjects 4 and 6 were slightly lower than the corresponding extravascular R2* values 

(total R2* is expected to be higher than extravascular R2* due to additional blood 

contributions), although the difference was within noise range. This also occurred for one 

subject reported in previous 3T data but not 1.5T. We attribute this partly to the many 

possible contributions to R2*, making it difficult to measure this parameter with great 

accuracy, and partly to the possible insufficient nulling of intravascular blood signals. In 

this 7T study, even though we applied a hyperbolic secant adiabatic pulse for the spatially 

nonselective inversion in VASO, there could still be some imperfectness in terms of the 

inversion efficiency of the 180° pulse. More repeats and averaging may be necessary for 

robust R2* measurement on a single-subject level, and careful optimization of the 

inversion pulses at 7T may also be beneficial. 

A potential source of errors in this study when estimating Yv
act and OEF using the 

static dephasing regime comes from the literature values assumed for the model 

parameters. We performed an error analysis by estimating OEF using parameter values 

over the normal physiological range for baseline CBV, microvascular Hct, and Δχdeoxy. 

Although this error analysis showed that the estimated OEF values in this study are only 
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moderately affected by these assumptions, further measurement of these physiological 

parameters in each participant would certainly improve the accuracy for OEF 

quantification.  

 

5.2. Three-dimensional Single-scan Approaches for the Measurement of CBV, CBF, 

and BOLD Responses  

In Chapter 3, we proposed a 3D whole-brain MRI pulse sequence (dubbed “3D 

VASO-FAIR”) to simultaneously detect CBV and CBF responses upon functional 

stimulation in a single MRI scan. In Chapter 4, an acquisition strategy (dubbed “3D-

TRIP”) that incorporates the VASO-FAIR sequence and the 3D T2-prep GRE BOLD 

method was implemented, allowing for the measurement of CBV, CBF, and BOLD 

signal changes in a single scan. The main conclusions are: 

1. A new fMRI approach, dubbed 3D VASO-FAIR, was proposed that can detect 

CBV and CBF responses in a single scan. VASO-FAIR uses an interleaving slab-

selective (SS) and non-selective (NS) scans where the CBV-weighted VASO 

images are acquired at the blood nulling time TI in the NS scans, and CBF-

weighted perfusion images are acquired at a longer TI2 in both SS and NS scans.  

2. A single-shot 3D fast gradient-echo (GRE) readout with centric (low-high) 

phase encoding profile was employed in all imaging modules. This readout has 

been showed previously with minimal geometrical distortion and signal dropouts, 

low power deposition due to small flip angles, and negligible T2
* contamination in 

VASO fMRI because of the very short echo time (TE) used. 

3. The MT module was applied before the inversion pulses in the VASO-FAIR 
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sequence to prepare a smaller magnetization values for tissue so as to boost the 

SNR and CNR of the VASO images. 

4. The post-saturation module was employed immediately after the FAIR-ASL 

readout to build a steady-state after the first TR, and to ensure that blood spins in 

and outside the inversion slab applied in the SS scan will have the same steady-

state blood nulling condition in the following NS scan. 

5. The 3D VASO-FAIR sequence was implemented on a 3T human MRI scanner, 

and functional experiments with visual stimulation were performed to compare 

the combined sequence and original separate scans in order to validate accuracy 

of the combined scan.   

6. The spatial patterns of activation are similar between the combined and 

separate VASO and FAIR scans. The time courses averaged over all slices and all 

subjects matched well between the separate and combined scans for both VASO 

and FAIR. The relative signal changes (ΔS/S), tSNR and CNR per scan were all 

statistically comparable (P>0.1). CNR per unit time for VASO was higher in the 

separate scan (P<0.01) than in the 3D VASO-FAIR scan, as only half of VASO 

scans were acquired in the combined scan. CNR per unit time for FAIR was 

comparable (P>0.1) between separate and combined scans.  

7. Relative CBV and CBF changes upon visual stimulation were quantified based 

on the measured VASO and FAIR ΔS/S, respectively. The relative CBV change 

was calculated as 37.1%±3.9% (separate scan) and 34.8%±6.3% (combined scan), 

whereas the relative CBF change was 38.6%±6.1% (separate scan) and 42.7% ± 

8.3% (combined scan), which were statistically comparable. 
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8. A new 3D acquisition strategy, dubbed “3D-TRIP”, was implemented that 

extends the VASO-FAIR sequence and incorporate a 3D T2-prep GRE BOLD 

method to simultaneously measure BOLD, CBV, and CBF reactivity during 

functional stimulation. Similar to VASO-FAIR, it uses an interleaving SS and NS 

scans where the CBV-weighted VASO images are acquired at the blood nulling 

time TI in the SS scans, CBF-weighted perfusion images are acquired at a longer 

TI2 in both SS and NS scans, oxygenation-weighted BOLD images are acquired at 

TI3 in the SS scans.  

9. Since the same single-shot 3D fast GRE imaging scheme was used in which the 

echo time (TEGRE) during readout was very short, a T2 preparation module 

(nonselective 90°x–180°y–180°y–90°-x, hard pulses, duration or effective TE = 

60ms) was placed immediately before the third acquisition module to induce the 

T2-weighted BOLD contrast in the proposed combined sequence.  

10. Similarly, MT module was applied before the inversion pulses to boost the 

SNR and CNR of the VASO images, and the post-saturation module was 

employed to suppress the inflow effect and to ensure that blood spins in and 

outside the inversion slab applied in the SS scan will have the same steady-state 

blood nulling condition in the following NS scan. 

11. For BOLD acquisition at TI3, since the intravascular signals (sum of in-slab 

and out-of-slab blood signal) will be different in SS and NS scans as expected 

from simulations, we will only use BOLD images obtained from the SS scans 

instead of using both scans consecutively for the combined sequence.  
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12. The time courses averaged over all slices and all subjects matched well 

between the separate and combined scans for VASO, FAIR, and BOLD images. 

When compared with separate VASO, FAIR, and BOLD scan, the relative signal 

changes (ΔS/S) and t-scores were both statistically comparable (P>0.1). For 

VASO images, tSNR was significantly higher (P<0.05) in the combined scans. 

However, CNR per unit time was comparable (P>0.1), as only half of VASO 

scans were acquired in the combined scan. For BOLD images, tSNR in combined 

BOLD scan was slightly higher (P<0.05). CNR per unit time was not significantly 

different (P>0.1). For perfusion images, tSNR and CNR were comparable (P>0.1) 

between separate and combined scans.  

13. The relative CBV changes were calculated as 30.0%±7.3% (separate scan, 

mean ± standard deviation) and 34.4%±4.2% (combined scan), whereas the 

relative CBF changes were 41.4%±6.1% (separate scan) and 41.8% ± 5.2% 

(combined scan). The BOLD relative changes were 1.18%±0.19% (separate scan) 

and 1.26%±0.23% (combined scan). 

14. We corrected the partial-volume effects from WM and CSF in the relative 

CBF changes using the GM, WM, and CSF probability maps after segmentation. 

We found a voxel composition of approximately 75% GM, 20% WM, and 5% 

CSF for voxels in the visual cortex area. Therefore by assuming 1/3 of the 

baseline GM CBF value in the WM, the relative CBF change was 50.7%±7.5% 

(separate scan) and 51.2% ± 6.4% (combined scan) after correction.  

15. Based on the BOLD, CBV, and CBF responses measured from the combined 

sequence, we also quantified the oxygen metabolism alterations using the 
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approximation that the gradient-echo (GRE) based extravascular BOLD effect is 

about three times of the spin-echo (SE) BOLD effect (extravascular ΔR2* ≈ 3 

ΔR2) at 3T. The estimated oxygen extraction fraction (OEF) value during 

activation is 0.27±0.01, indicating a 28.5% decrease upon activation based on the 

assumed baseline OEF of 0.38, and the relative increase in cerebral metabolic rate 

of oxygen (CMRO2) is 12.6±6.7%. 

 

We developed two 3D whole-brain single-scan imaging techniques to 

simultaneously detect CBV, CBF, and BOLD reactivity upon functional stimulation. 

Compared to sequentially obtaining these hemodynamic responses using individual scans, 

these techniques will not only improve the acquisition efficiency, but also reduce 

potential confounding effects resulting from head motion, task performance variation and 

physiologic fluctuations between MRI scans. We demonstrated that for both proposed 

sequences, similar image quality, activation patterns, relative signal changes (ΔS/S), 

tSNRs and CNRs were achieved when compared to separately acquired scans. These 

single-scan approaches are expected to be useful especially for the quantitative BOLD 

methods in which concurrent BOLD, CBV, and CBF measurements are desired to further 

estimate oxygen metabolism alterations during functional stimulations. 

One drawback for both proposed 3D single-scan sequences is that the temporal 

resolution for VASO is halved compared to the separate VASO approach, as VASO 

images can only be acquired at TI1 in each non-selective (NS) inversion prepared scan 

but not in the slab-selective (SS) scan where no global inversion is applied and out-of-

slab blood is not properly nulled. For the combined sequence proposed in Chapter 4, we 
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only used BOLD images obtained in the SS scans thereby halving the temporal resolution 

for BOLD. One possible way to alleviate this is to adopt a motion-sensitized-driven-

equilibrium (MSDE) module instead of the T2 preparation, with motion-sensitized 

crushing gradients inserted to destroy the flowing intravascular blood signals before 

acquiring the BOLD images, thus reduce the variations between SS and NS scans while 

reserving the T2-weighted contrast.  

We chose a spatial resolution of 5mm isotropic to boost the sensitivity (SNR) of 

the measurements, and to demonstrate the principles of the 3D combined methods with a 

reasonable temporal resolution for the functional experiments. This may lead to 

significant partial-volume effects from WM and CSF in the GM signals. Partial volume 

effect from WM may bring down the overall FAIR ASL perfusion, BOLD and VASO 

signal changes measured in our data. On the other hand, the residual inflow and partial 

volume effect from CSF usually result in more negative VASO signal changes, thus 

making the VASO signal changes and estimated CBV changes comparable to literature 

values. For FAIR ASL, the partial volume effect from CSF should not affect the 

difference signal (perfusion) as CSF signals in label and control scans should be 

comparable. For BOLD signal, this may reduce the ΔS/S in the BOLD scan. To evaluate 

the CSF influences on the VASO signal change can be difficult, as it is not entirely clear 

whether and how much the local CSF volume alters occur in the cortex during neuronal 

activation. Although this partial volume effect should not undermine the comparison 

between the separate and combined approaches here, for future quantitative physiological 

studies, finer spatial resolution, which can be achieved by adapting the readout pulse 

sequence and utilizing fast imaging techniques such as parallel imaging and partial 
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Fourier sampling, may be used to alleviate this problem.  

Power deposition does not seem to be a major limiting factor in the combined 

pulse sequences used here, mainly due to the low FA in the 3D GRE readout and the 

relatively long TR and readout duration. Moreover, the block-shaped MT prepulse can be 

replaced by a pulse train to lower the SAR level, and the block-shaped refocusing pulses 

in the T2 preparation module can be replaced by adiabatic pulses to further lower the 

SAR. The actual bottleneck here is rather the long readout pulse train for one 3D image 

volume and TR in a single-shot acquisition scheme. For future studies, fast reconstruction 

methods such as compressed sensing could be used to reduce the readout pulse train 

lengths.  

We chose to use the original forms of pulse sequences for FAIR ASL and VASO. 

Over the past decade, many improvements have been developed for these methods, 

including vascular crushing gradients, QUIPSS (QUIPSS II and Q2TIPS), background 

suppression, pseudo-continuous labeling for ASL, and the inflow-based VASO (iVASO) 

approach for VASO. We are currently working to incorporate some of these 

improvements into the proposed approach. For instance, crusher gradients or the motion-

sensitized driven equilibrium (MSDE) preparation can be added to suppress macro-

vascular signal contaminations in ASL. The combined sequences can also be adapted 

with the QUIPSS modifications to control the labeling bolus width. Although 

theoretically feasible, careful design of the timing and number of saturation and inversion 

pulses is needed to incorporate background suppression into the proposed method. FAIR 

ASL is a pulsed ASL (PASL) scheme. Therefore, pseudo-continuous labeling, which 

generally has higher SNR than PASL, cannot be used here. This may be one of the 
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disadvantages for the proposed methods. The inversion schemes in iVASO can also be 

used here, which should result in enhanced SNR, and a CBV contrast dominated by the 

arterial compartment.  

When estimating the CMRO2 value from the 3D combined sequence, since the 

BOLD signal has T2 weighting instead of T2*, and as the primary goal of the current 

study is to show the feasibility of the proposed combined sequence, we simply assume 

that the gradient-echo (GRE) based extravascular BOLD effect is approximately three 

times of the spin-echo (GRE) BOLD effect (extravascular ΔR2* ≈ 3ΔR2) as shown in 

previous literature. This is obviously a simplification of the phenomenon that the T2-

weighted BOLD contrast is created by the water diffusion, and the static dephasing 

regime of the extravascular water spins will be refocused in a SE-BOLD experiment. For 

future studies, careful modeling of extravascular SE BOLD effect is necessary for a more 

accurate quantification of oxygen metabolism using the proposed combined sequence.  

While most of the quantitative BOLD approaches normally perform separate 

scans to estimate CMRO2 dynamics from BOLD, CBF and CBV responses, the proposed 

3D combined approaches can detect changes in these hemodynamic signals in a single 

scan, which would not only shorten the total scan time but more importantly reduce the 

sensitivity to temporal variations among the fMRI experiments. An important clinical 

application of such single-scan approaches is to probe cerebral pathophysiology in 

patients with brain tumors and carotid artery disease, where the ability to detect multiple 

physiological parameters within a reasonable imaging time is desirable. Another potential 

application is to detect intrinsic brain activities in the resting-state fMRI, since measuring 

spontaneous CBV and CBF fluctuations would not be possible if using individually 
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performed fMRI scans due to the potential changes in physiological and mental states 

between the scans, therefore such single-scan approaches with 3D whole-brain 

acquisitions will be strongly desired where BOLD-, CBV-, and CBF-based resting-state 

brain networks can be derived and correlated.  

In summary, the work outlined in this dissertation demonstrates promising 

potential. We believe that the quantified parenchymal extravascular R2
* values at 7T will 

provide complementary information to the existing BOLD fMRI literatures, and that the 

proposed 3D single-scan approaches can improve conventional individually performed 

fMRI methods to capture microvascular status changes in the brain in a time efficient 

manner and establishes a fast, non-invasive protocol that could open a new area of 

research for both tasked-based and resting-state functional brain physiology and clinical 

pathology studies.  
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