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ABSTRACT  

Prostate cancer is one of the most common cancers in men worldwide. 

Inflammation is commonly observed in prostatic tissues, and correlative studies 

suggest that the inflammatory cytokine interleukin-6 (IL-6) may contribute to prostate 

carcinogenesis. However, the source of IL-6 production in the prostate tumor 

microenvironment has yet to be determined.  

In this thesis project, the cellular origin of IL-6 in both primary and metastatic 

prostate cancer was examined by a novel chromogenic in situ hybridization (CISH) 

assay. These studies indicated that, contrary to previously published studies, neither 

primary nor metastatic prostate adenocarcinoma cells express IL-6 mRNA. In contrast, 

IL-6 expression was very heterogeneous, nearly exclusively restricted to the prostate 

stromal compartment, and enriched in areas of acute inflammation. In metastatic 

disease, tumor cells were negative in all lesions and IL-6 expression was restricted to 

endothelial cells within the vasculature of bone metastases.  

We further report initial evidence that IL-6 may be involved in prostate tumor 

growth as evidenced by a series of allograft studies in C57BL/6J wildtype and IL-6 

knockout (IL6-/-) mice. Compared to wildtype mice, IL6-/- mice had a significant 

reduction in take rate and tumor size of allografts of the TRAMP-C2 prostate tumor 

cell line. This trend was not observed for the colon MC38 cell line. Interestingly, IL-6 

ELISA analyses showed a significant increase in circulating IL-6 levels in mice with 

TRAMP-C2 tumors.  

We then turned to a mouse model to further study the role of IL-6 in inducing 

and/or sustaining long-term chronic inflammation in the mouse prostate, as 

accumulating evidence indicates that this may be an important factor in the early 
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development of prostate cancer. For these studies we aimed to use a clinically relevant 

human-derived strain of bacteria to induce inflammation in the mouse prostate. We 

cultured tissues from a series of radical prostatectomy specimens and found that the 

pro-inflammatory anaerobe Propionibacterium acnes (P. acnes) can be readily 

cultured from these tissues. Cultured P. acnes isolates were typed using multilocus 

sequence typing (MLST), the results of which suggested that prostatectomy-derived P. 

acnes isolates are not simply the result of contamination from skin flora. These data, 

along with studies in wildtype mice indicating that one of the strains of P. acnes (PA-2) 

can induce long-term prostatic inflammation, suggest that this is a clinically relevant 

species to study. We inoculated IL6-/- mice with the prostate derived PA-2 P. acnes 

and found that unlike wildtype mice that develop chronic inflammation that persists 

up to a year post-inoculation, mice with IL-6 depletion did not sustain chronic 

inflammation beyond a 2 month time point.  

In summary, in this thesis we aimed to examine the many possible roles of IL-6 

in prostate cancer development and progression. We determined that paracrine rather 

than autocrine IL-6 production is likely associated with any role for the cytokine in 

prostate cancer progression. Furthermore, we report that systemic IL-6 levels may 

play a role in prostate tumor growth and that IL-6 could also be involved in the 

development of long-term bacteria-induced chronic inflammation in the prostate.  
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I. INTRODUCTION  

1.1 Overview of Prostate Cancer  

Prostate cancer is the leading type of non-skin cancer diagnosed in American 

men, and about 220,800 men will be diagnosed in 2015 [1]. Though compared to 

2011, the total annual death number has decreased from 33,720 to 27,540, it is still 

estimated that 1 man in 38 will die from prostate cancer [2]. 

Screening for prostate cancer includes the prostate-specific antigen (PSA) blood 

test and digital rectal examination (DRE) [3]. Abnormal results from prostate cancer 

screening will prompt a follow-up diagnostic test such as trans-rectal ultrasound 

(TRUS) guided biopsy. The PSA blood test has been approved by the FDA since 1986 

as a prostate biomarker, and it has been widely used in men age 50 or more. Currently, 

patients who have more than 4 ng/mL PSA value are suggested to undergo prostate 

biopsy to confirm if tumor is present [4]. However, there are various factors in 

addition to prostate cancer that can affect circulating PSA levels. For example, men 

with benign prostatic hyperplasia (BPH), urinary tract infection, or prostatitis can also 

have an elevated PSA level. In fact, studies have suggested that PSA is not a good 

biomarker to evaluate prostate cancer development as many men with more than 4 

ng/ml PSA do not have prostate cancer, while some men with lower PSA still 

developed prostate cancer [5]. Elevated PSA values leading to the incidental finding 

of low grade cancer on prostate biopsy have been associated with overtreatment [4, 

6-8]. 

Once prostate cancer is diagnosed, there are several standard treatments currently 

in use. If the biopsy and other diagnostic tests show low grade (e.g. Gleason score 6 
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or less) early-stage (e.g. clinically localized to the prostate) prostate cancer, active 

surveillance may be suggested. This involves delaying treatment and carefully 

monitoring the patient until test results (PSA, and/or biopsy) show prostate cancer 

progression [6, 7]. The major treatments for clinically localized disease include 

surgery, including radical prostatectomy, or radiation, which can either be external 

beam radiation or brachytherapy (radioactive seed implantation). Some patients with 

more aggressive disease will undergo combined hormonal therapy and radiation. 

However, with the presence of prostate cancer metastasis, hormone therapy (e.g. 

androgen deprivation and/or antiandrogen treatment) is generally the treatment of 

choice [9-12].  

Prostate cancer metastasis 

The presence of prostate cancer metastasis is a crucial factor to determine 

prognosis since currently there is no cure for metastatic prostate cancer. A large scale 

study analyzed routine autopsies performed on 19,316 men between 1967 and 1995 

and reported that 8.2% (1589) of men older than 40 years had prostate cancer that was 

either previously known or was discovered at autopsy. Among the 1,589 patients who 

had prostate cancer, 556 patients had cancer metastasis and the major sites of 

metastatic disease were bone (90% of patients), lung (46%), liver (25%) , pleura 

(21%), and adrenals (13%) [13].  

In the US, annually about 350,000 patients die with bone metastases by 

numerous cancer types such as lung, renal carcinomas, melanoma, multiple myeloma, 

neuroblastoma, breast, and prostate cancer [14]. However, why bone and bone 

marrow are the most frequent prostate cancer metastasis site is not entirely understood. 

In previous studies, the inflammatory cytokine interleukin-6 (IL-6) has been reported 
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to potentially be associated with bone metastasis [15]. In fact, patients with bone 

metastasis tend to have elevated serum levels of IL-6 [15, 16]. IL-6 may also be 

produced by the bone marrow microenvironment to trigger bone remodeling and to 

promote osteolysis [14, 17].  

Once metastatic tumors develop, most patients are treated with hormone therapy. 

Since 1941, studies have shown the relationship between androgens and prostate 

tumor growth [18]. Therefore, androgen-deprivation therapy (castration or medical 

castration with LHRH analogues) alone or combined with other methods, including 

inhibiting androgen production and/or blocking androgen action, became the key 

treatment for metastatic prostate cancer [9, 11, 12, 19]. Even though patients typically 

initially respond to castration, the vast majority will progress to castration-insensitive 

disease at a variable rate [9, 11, 19, 20].  

1.2 Prostate Inflammation and Prostate Cancer  

Cancers associated with chronic inflammation 

In the first version of their landmark paper on “cancer hallmarks”, Dr. Hanahan 

and Dr. Weinberg proposed six characteristics that all cancer cells share: 

self-sufficiency in growth signals, insensitivity to anti-growth signals, evading 

apoptosis, limitless reproductive potential, sustained angiogenesis and tissue invasion 

and metastasis [21, 22]. A decade later, the same authors added to their list of cancer 

hallmarks the contributions of “tumor-promoting inflammation” on the tumor 

microenvironment [23].  

How is inflammation involved in the neoplastic process? Initiation of cancer is 

related to somatic changes. Some bacterial and/or viral infections can trigger DNA 



4 
 

alterations (such as viral integration and disruption of tumor suppressor genes) and 

cause irreversible DNA changes to initiate neoplastic states [24-26]. Next, 

inflammation, chemical irritants, hormones or chronic irritation can increase cellular 

proliferation, recruit pro-tumorigenic inflammatory cells, and create reactive oxygen 

species that can cause oxidative DNA damage. Eventually, host normal growth 

control is lost [26].   

In summary, inflammation can contribute to tumor development in the early 

neoplastic process by supplying bioactive molecules to the tumor microenvironment, 

facilitating genomic alterations and instability and promoting angiogenesis. In the 

later carcinogenic process, inflammation can also help neoplastic cells to spread and 

metastasize by facilitating extracellular matrix (ECM) remodeling that promotes 

invasion, and by evading host defense mechanisms [22, 23, 27-30].  

Two types of inflammation-related cytokines, pro-inflammatory and 

anti-inflammatory cytokines, are tightly controlled under normal inflammatory states. 

However, during chronic inflammation, inflammatory cytokines can act as initiating 

factors that contribute to the persistence of inflammation. The longer the 

inflammation persists, the higher the association with carcinogenesis [31, 32]. Acute 

inflammation, on the other hand, is not considered to be a risk factor for the 

development of neoplasia. In acute inflammation, the host immune response is 

transient, although many of the same molecular mediators are generated in both acute 

and chronic inflammation [31, 33].  

Chronic inflammation is caused by a variety of factors including infectious 

agents (bacterial, viral, and parasitic infections), chronic noninfectious inflammatory 

diseases (esophageal reflux, fecal bile acids), non-digestible agents (asbestos, coal, 
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and silica dust) and/or other environmental factors [31]. In the chronic inflammatory 

state, sustained tissue damage, damage-induced cellular proliferation, and tissue 

repairing can be observed [34]. The major cellular components in chronic 

inflammation are macrophages [26, 33], along with other inflammatory leukocytes 

(lymphocytes and monocytes). Macrophages and leukocytes can fight infections by 

generating high levels of reactive oxygen and nitrogen species [35]. In addition, these 

inflammatory cells can also work with transcription factors and various signaling 

molecules, which are essential in regulating cancer development and inflammation, to 

create a microenvironment niche for malignant progression [36].  

Multiple studies have reported that malignant diseases are initiated by infections 

[31, 37-39]. Epidemiological data suggests that up to 20% of all cancer cases, a global 

total of 1.2 million cases per year, are associated with chronic inflammation, chronic 

infection, or both [31, 37, 40]. One of the strongest association between infection, 

chronic inflammation, and malignancy is that of the Gram negative bacterium 

Helicobacter pylori as an etiological agent in gastric cancer development [31, 37] 

Strong experimental evidence shows that H. pylori infection can cause active chronic 

gastritis, which is followed by a high incidence of gastric adenocarcinoma. In fact, 

patients infected with Helicobacter pylori have at least a twofold increased risk in the 

development of gastric adenocarcinoma [41, 42]. Crohn’s disease and colon 

carcinogenesis is another example to illustrate the association between chronic 

inflammation and cancer. Patients with 8 years or more of prolonged chronic 

ulcerative colitis or Crohn’s disease have a five to seven fold increased risk of 

developing colon cancer [43]. Other infectious viral agents, such as human papilloma 

virus, hepatitis B virus (HBV), Hepatitis C virus (HCV) or Epstein-Barr virus (EBV) 

are also well known virus-associated malignancies and, interestingly, in addition to 
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the role of viral integration in the activation of oncogenes, chronic inflammation may 

play a role as a co-factor in many of these cancers [26, 44, 45].  

Prostate inflammation and prostate cancer 

As previously discussed, because prostate cancer is one of the most common 

cancers in men worldwide [1], it is critical to determine the etiological factors that 

contribute to prostate cancer development that may in turn shed new light on the 

development of better prevention and treatment strategies [2, 46].  

The pathogenesis of prostate cancer not only involves hereditary aspects, but also 

includes environmental components [40]. Family history, race, and advanced age are 

considered to be the well-recognized risk factors for prostate cancer progression. 

However, research has suggested that men with a “westernized” lifestyle have an 

increased risk to develop prostate cancer. Compared to the Western population, the 

incidence and mortality rates for prostate cancer are much lower in Asian countries 

(U.S. rates are 50 to 60 times higher than Chinese population) [47]. When men in 

Asian countries immigrate West, the incidence of prostate cancer increases rapidly 

within the first generation [48]. This supports the notion that environmental factors in 

addition to hereditary factors are involved in the pathogenesis of prostate cancer [40, 

46].  

Potential environmental exposures involved in prostate cancer pathogenesis 

include infectious agents, dietary carcinogens, and hormonal imbalances [40]. 

Histopathological and molecular histopathological studies suggest that most adult 

prostates contain some degree of either acute or chronic inflammation [40]. Chronic 

inflammation has gained recent attention in prostate cancer development because 

chronic inflammation is associated with a putative risk factor lesion called 
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proliferative inflammatory atrophy (PIA) [2, 40]. In PIA lesions, the prostatic luminal 

cells show a marked increase in the proliferative fraction and alterations in a number 

of key molecular pathways involved in prostate cancer can be found. For example, 

there is down regulation of tumor-suppressor genes: NKX3.1 [49], CDKN1B [50, 51] 

and upregulation of a number of stress response genes (e.g. GSTP1, GSTA1, Cox-2), 

[40].  

Chronic inflammation may be involved in prostate carcinogenesis by disrupting 

immune responses and altering the tumor microenvironment [52]. The cause of 

prostatic inflammation is often not known, but various potential etiological agents are 

considered for the initial inciting event, including urine reflux, hormonal changes, 

chemical and physical trauma, dietary factors, oestrogens, corpora amylacea and 

infection [46]. Infection-induced inflammation especially has drawn a lot of attention. 

As chronic inflammation is known to be an “enabling characteristic” of cancer, 

prostatitis due to prostatic infections may be related to prostate carcinogenesis or 

progression [21]. Many approaches such as epidemiology, rodent models, advanced 

molecular techniques and histopathological studies, have been used to study the 

association between inflammation and prostate cancer, and aim to provide insights 

into the cause of prostate inflammation and its relevance to prostate carcinogenesis 

[40].  

Prevalence of prostatic inflammation 

It is estimated that about 16% of men in US have / had symptomatic prostatitis in 

their lifetime [46, 53], although the link between histological evidence of prostatic 

inflammation and the clinical syndrome of “prostatitis” is not always clear. 

Furthermore, studies like the REDUCE (Reduction by Dutasteride of prostate Cancer 
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Events) trial that collected patient biopsies and analyzed them for inflammation levels, 

show that about 80% or more of adult prostate tissues have some degree of 

inflammation [53]. According to the National Institutes of Health (NIH) consensus 

classification system, prostatitis syndromes can be separated into four categories: 

acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis / CPPS 

(including inflammatory and non-inflammatory), and asymptomatic inflammatory 

prostatitis [46, 54].  

Asymptomatic prostatic inflammation accounts for a much higher percentage of 

prostatitis. There are several ways that men may be diagnosed with asymptomatic 

prostatic inflammation, such as testing for other genitourinary tract issues (infertility 

test), examining prostate biopsies when prostate specific antigen (PSA) is elevated, 

examining transurethral resections of benign prostatic hyperplasia (BPH), and 

removal of the prostate at surgery or at autopsy [46, 54]. Bacterial prostatitis accounts 

for only an estimated 5-10% of prostatitis cases. Interestingly, prostate cancer is often 

multifocal, and multifocal cancer has been suggested to be associated with infectious 

agents [55]. Escherichia coli and Enterococcus spp are considered to be the most 

common causative microorganisms in bacterial prostatitis [56]. Patients with bacterial 

prostatitis may have symptoms that include urinary frequency and dysuria as well as 

some other systemic disease.  

1.3 Bacterial Infection, a Possible Cause for Prostatic Inflammation  

Multiple studies have defined causal relationships between malignant diseases 

and infections [31, 39, 57]. As prostate cancer histologic specimens frequently show 

unexplained acute and chronic inflammation and inflammation-associated lesions, 

studies have attempted to identify possible infectious agents in the prostate of prostate 
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cancer patients [46]. The development of prostatic inflammation may be related to 

microbial infection, as previous studies have demonstrated the presence of multiple 

microbial species, such as the presence of bacterial, protozoal, and/or viral species, in 

the prostates of prostate cancer patients [46]. Yet, after so many years, we are still 

looking for infectious agents that are definitively linked to prostate cancer 

development [46].  

Accumulating evidence has demonstrated that infectious agents may induce 

potentially tumor-promoting prostatitis. In support of this, it has been reported that 

bacterial species such as E. coli and Pseudomonas spp. can be cultured from 

prostatectomy samples [58, 59]. As mentioned previously, E. coli and Enterococcus 

spp. are considered as the most common bacteria involved in bacterial prostatitis. By 

both culture-dependent and/or culture-independent methods, E. coli has been 

identified in both BPH and prostate cancer tissues [60, 61]. Sexually transmitted 

infection (STI)-related microorganisms have also been reported as prostatitis-related 

microbial species, including Trichomonas vaginalis, Chlamydia trachomatis, 

Treponema pallidum, Gonococcal spp. and Mycoplasma spp. [46]. In addition, other 

organisms such as Proteus mirabilis, Klebsiella spp. and Serratia spp. have also been 

reported as possible prostatitis infectious agents. Interestingly, many of the organisms 

identified are consistent with genera associated with inflammation-associated 

conditions including bacterial prostatitis and/or urinary tract infections [46, 60].  

Additional studies have attempted to demonstrate a causative association 

between prostatitis and prostate cancer development in human studies and in animal 

models. The uropathogenic strain of E. coli 1677 was transurethrally inoculated into 

C57BL/6J mice, and induced epithelial proliferation [62]. Other groups have shown 

that with E. coli inoculation, the mouse prostate had reactive dysplasia and oxidative 
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DNA damage. In addition, the prostate epithelium in the infected cohort showed a 

decrease in prostate cancer tumor suppressors such as NKX3.1 and PTEN, which 

corresponds to human prostate cancer development [63, 64]. Interestingly, in a study 

of virulence factors present in E. coli isolates from acute bacterial prostatitis, more 

than 70% (13 strains out of 18) were reported to contain at least one genotoxin. These 

genotoxins such as cytolethal distending toxin (CDT) and the newly described 

colibactin are suggested to potentially contribute to carcinogenesis due their ability to 

induce DNA damage such as DNA double strand breaks [65]. In summary, E. coli 

remains a potential infectious agent of interest in prostate cancer etiology [46].  

Other microorganisms have also been indicated to be involved in inducing 

prostatitis in humans and in animal models, such as C. trachomatis and 

Propionibacterium acnes (P. acnes). Both of these species can be cultured from 

prostate tissues. C. trachomatis, for example, can be found in prostatitis [66], BPH 

[67] and prostate cancer [68]. However, despite several molecular and 

epidemiological studies, there is no definitive evidence to support the correlation of C. 

trachomatis with prostate carcinogenesis [46, 69-71].  

An introduction to Propionibacterium acnes (P. acnes) 

Even though the human prostate is generally considered to be a bacterial 

flora-free organ in the non-infected state, accumulating studies have suggested that 

bacterial infection might act as an initiator to trigger chronic inflammation that may in 

turn contribute to prostate cancer development. Currently, a gram-positive bacterium, 

Propionibacterium acnes (P. acnes), is implicated as an additional causative agent 

associated with prostatic inflammation. P. acnes is a pro-inflammatory bacterium that 

is ubiquitously found on human skin and is the suspected etiological agent in the skin 
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disease acne vulgaris [55] [72]. Furthermore, P. acnes is also often implicated in 

association with other inflammatory conditions including endocarditis, sarcoidosis 

and post-surgical infections [73].   

P. acnes was first reported to be cultured from 35% of radical prostatectomy 

tissues by Cohen and colleagues in 2005, and the presence of P. acnes was associated 

with the presence of chronic inflammation in these specimens [74]. Although not all 

studies have shown a direct correlation, P. acnes has been shown to induce 

immunostimulatory activity when infecting prostate cell lines [75-77]. Moreover, 

mouse studies have shown that P. acnes infection of the prostate can trigger a 

long-term inflammatory response [78]. Other studies indicate that plasma antibodies 

to P. acnes are correlated to cancer risk [72, 79-81]. Along this line, we can 

hypothesize that P. acnes may act as a stimulator to trigger prostate inflammation. 

Other studies have also suggested that P. acnes-mediated inflammation is associated 

with prostate cancer development [60, 75, 82].  

Yet, any causal relationship between P. acnes and prostate cancer still remains 

controversial [83]. As a predominant bacterial flora of human skin, the presence of P. 

acnes in prostatectomy tissues is often considered to be a culture contaminant from the 

skin of medical staff and/or the patient instead of a true infection [73, 84-86]. One aim 

of this thesis project was to use culture-independent molecular methods such as 

multilocus sequence typing (MLST) analysis to determine if P. acnes fall within 

typical skin/acne clusters or if they are unique to the genitourinary tract. Moreover, 

we aimed to examine the role of P. acnes in the induction of chronic inflammation in 

the prostate of a mouse model, and further explored this in relation to IL-6 in a 

knockout mouse model.  
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1.4 Role of Interlukin-6 and Prostate Cancer 

Interleukin 6 (IL-6) is a pleiotropic cytokine that is produced by a panoply of cell 

types including macrophages, lymphocytes, fibroblasts, synovial cells, endothelial 

cells, glia cells and keratinocytes and mediates numerous physiological functions. As 

such, the presence of IL-6 in tissues is not abnormal; however, unrestrained 

production of IL-6 drives chronic inflammation related diseases such as inflammatory 

bowel disease, autoimmune disorders, arthritis, hepatitis, pancreatitis, and even cancer 

[87, 88].  

There are two types of IL-6 receptors: a membrane bound form (mbIL-6R), and a 

soluble form (sIL-6R). IL-6 binding with mbIL-6R can turn on classical IL-6 

signaling. Yet mbIL-6R is only expressed in certain type of cells, such as hepatocytes, 

neutrophils, monocytes/macrophages and some lymphocytes [89]. Compared to 

mbIL-6R, sIL-6R is secreted by many cell types. Upon IL-6/sIL-6R complex 

formation, IL-6 trans-signaling is activated, which is critical to transition of acute to 

chronic inflammation [90, 91]. Previous research has shown that binding of IL-6 to 

the IL-6-receptor (both sIL-6R and mbIL-6R) can recruit a common component 

gp130 to trigger three major signaling pathways: the Janus tyrosine family kinase 

(JAK)-signal transducer and activator of transcription (STAT) pathway, the 

extracellular signal-regulated kinase 1 and 2 (ERK1/2)-mitogen-activated protein 

kinase (MAPK) pathway, and the phosphoinositide 3-kinase (PI3-K) regulated 

phosphor-Akt pathway [6, 92].  

IL-6 and prostate cancer pathogenesis: paracrine or autocrine  

IL-6 is reportedly produced by a number of epithelial cancers including lung, 

breast, hepatocellular, colorectal and prostate [16]. Early evidence showed that 
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elevated serum levels of IL-6 are related to hormone refractory or metastatic prostate 

cancer and that patients with elevated systemic IL-6 levels have a poor prognosis [93]. 

Studies also suggest that serum IL-6 may serve as a marker of prostate cancer 

morbidity [15, 94-97]. These data indicate possible roles of IL-6 in prostate cancer 

development and progression [98, 99]. Yet, whether IL-6 acts in an autocrine or 

paracrine manner is still debatable in prostate cancer. Two androgen independent 

prostate cancer cell lines DU145 and PC3 were found to express IL-6, while the 

androgen-sensitive prostate cancer cell line LNCaP cells does not secrete IL-6 [100, 

101].  

Several studies have suggested that IL-6 serves as an autocrine growth factor in 

both primary and metastatic prostate cancer. For primary prostate cancer, 

enzyme-linked immunosorbent assay (ELISA) of protein extracts from frozen primary 

tumor and benign tissues showed that about 50% of tumor samples have elevated IL-6 

levels compared to benign tissues [101]. Other studies using immunohistochemistry 

(IHC) suggest that IL-6 can be expressed by both primary benign and malignant 

prostate epithelium [102, 103]. Another group utilized an IL-6 IHC assay to study 26 

metastatic prostate cancer cases, and they suggested that IL-6 is secreted primarily by 

prostate cancer bone metastases and to a lesser extent by soft tissue metastases [104]. 

In addition, during androgen deprivation therapy, IL-6 along with oncostatin M (OSM) 

were suggested to activate androgen receptor (AR) and contribute to recurrent 

prostate cancer [105]. Cumulatively, the data above suggest a possible role for 

autocrine signaling by IL-6 in prostate cancer development and progression [101, 102, 

106].  

On the other hand, IL-6 signaling has also been reported as a paracrine cytokine 

in prostate cancer development. Different cell types such as mesenchymal stem cells 



14 
 

and prostate stroma cells show up-regulation of IL-6 expression [107, 108]. In the 

same respect, when osteoblast-like cells were cultured with medium from prostate 

cancer cell lines, increased IL-6 expression from the osteoblast-like cells could 

enhance osteoclastogenesis [109]. Another recent study identified a role for paracrine 

signaling from IL-6 up-regulation in mesenchymal stem cells and promotion of 

adipogenesis and prostate cancer cell migration and invasion. Again, this study 

suggested that the prostate cancer microenvironment can regulate IL-6 production in 

promoting tumor progression [110]. In summary, elevated IL-6 may promote 

metastasis by remodeling the bone microenvironment in a paracrine fashion.  

In the context of this thesis, we aimed to comprehensively evaluate the 

expression and cellular origin of IL-6 in both primary and metastatic prostate cancer. 

We utilized a recently available chromogenic in situ hybridization (CISH) assay that 

we determined was far superior to IHC for the detected of secreted cytokines such as 

IL-6 [111]. As discussed in the coming chapters, we found that any role for IL-6 in 

prostate cancer development or progression must involve its action as a paracrine 

cytokine. Furthermore, we demonstrate that circulating levels of IL-6 may influence 

prostate tumor growth. Finally, we provide initial evidence that IL-6 may be required 

to sustain long-term chronic inflammation induced by bacterial infection in the 

prostate.  
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II. A PARACRINE ROLE FOR IL-6 IN PROSTATE CANCER 

PATIENTS: LACK OF PRODUCTION BY PRIMARY OR 

METASTATIC TUMOR CELLS  

2.1 Abstract 

Correlative human studies suggest that the pleiotropic cytokine interleukin-6 

(IL-6) contributes to the development and/or progression of prostate cancer. However, 

the source of IL-6 production in the prostate microenvironment in patients has yet to 

be determined. The cellular origin of IL-6 in primary and metastatic prostate cancer 

was examined in formalin-fixed, paraffin-embedded (FFPE) tissues using a highly 

sensitive and specific chromogenic in situ hybridization (CISH) assay that underwent 

extensive analytical validation.  

Quantitative RT-PCR (q-RT-PCR) showed that benign prostate tissues often had 

higher expression of IL-6 mRNA than matched tumor specimens. CISH analysis 

further indicated that both primary and metastatic prostate adenocarcinoma cells do 

not express IL-6 mRNA. IL-6 expression was highly heterogeneous across specimens 

and was nearly exclusively restricted to the prostate stromal compartment – including 

endothelial cells and macrophages among other cell types. The number of 

IL-6-expressing cells correlated positively with the presence of acute inflammation.  

In metastatic disease, tumor cells were negative in all lesions examined and IL-6 

expression was restricted to endothelial cells within the vasculature of bone 

metastases. Finally, IL-6 was not detected in any cells in soft tissue metastases. These 

data suggest that, in prostate cancer patients, paracrine rather than autocrine IL-6 

production is likely associated with any role for the cytokine in disease progression. 
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2.2 Introduction 

Interleukin 6 (IL-6) is a pleiotropic cytokine that can be produced by an array of 

cell types and affects diverse physiological processes including immune responses, 

hematopoiesis, and cellular proliferation and differentiation [112]. Under normal 

conditions IL-6 levels in cells are typically low, although a number of stimuli result in 

induction of IL-6 expression and secretion. For example, during acute inflammatory 

responses to infections, cellular production of IL-6 is essential to the induction of 

acute phase proteins. While the normal homeostatic response to inflammation is 

resolution and reversion of IL-6 production to normal low levels, unrestrained 

production of IL-6 drives chronic inflammation and increased systemic levels of IL-6 

have been associated with diseases such as autoimmune disorders, arthritis, hepatitis, 

inflammatory bowel disease, pancreatitis, and cancer [113]. 

Early evidence for a role for IL-6 in advanced prostate cancer came from studies 

examining serum levels of IL-6 in relation to metastatic or hormone refractory 

prostate cancer [98, 99, 114]. These data showed that serum levels of IL-6 are 

significantly elevated in prostate cancer patients with hormone refractory disease 

compared to normal controls or men with prostatitis, benign prostatic hyperplasia 

(BPH), and localized and recurrent disease [98]. Likewise, serum IL-6 levels were 

correlated to patients with clinically evident metastases [99] or with extent of bone 

metastasis [114]. Subsequent studies have consistently shown that elevated systemic 

IL-6 levels confer poor prognosis [115-117], and may also serve as a marker of 

prostate cancer morbidity, including cachexia [118, 119]. A key clinical question is 

precisely when during disease development and progression IL-6 is expressed and 

what precise cell types are responsible for its production (e.g., prostate tumor cells or 

another cellular source). A secondary question is whether the elevated systemic levels 
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of this cytokine actually drive disease progression, or whether elevated levels of IL-6 

are a surrogate for tumor burden. 

Along these lines, multiple studies showed that some prostate cancer cell lines 

can secrete IL-6 in vitro. The androgen-independent prostate cancer cell lines DU145 

and PC3 have been shown to secrete IL-6, whereas androgen-sensitive LNCaP cells 

do not [100, 101, 118]. In primary prostate cancer, protein extracts prepared from 

prostate cancer tissues showed elevated IL-6 levels compared to benign tissues in 

approximately 50% of cases when analyzed by enzyme-linked immunosorbent assay 

(ELISA) [101]. Furthermore, a number of studies using immunohistochemistry (IHC) 

to detect IL-6 in prostate tissues have reported IL-6 production by both benign and 

malignant prostate epithelium [102, 103]. An additional study utilizing IHC to detect 

IL-6 in a series of metastatic tissues from 26 prostate cancer patients reported that 

IL-6 is produced in the majority of prostate cancer bone metastases and to a lesser 

extent in prostate cancer soft tissue metastases [104]. Another series of studies 

proposed that IL-6 along with a related member of the IL-6 family of cytokines, 

oncostatin M (OSM), may activate androgen receptor (AR) in the absence of 

androgen, providing a potential mechanism whereby IL-6 contributes to recurrent 

prostate cancer growth following androgen deprivation therapy (reviewed in [106]). 

Moreover, Tawara et al. proposed that in the bone microenvironment, stromal cells 

can also produce IL-6 to facilitate tumor metastasis [17]. Cumulatively, these studies 

have led to the hypothesis that IL-6 serves as an autocrine growth factor in both 

primary and metastatic prostate cancer [101, 102, 106].  

Additional studies have suggested a role for paracrine IL-6 signaling in prostate 

cancer progression. Recent work using a human prostate dissociation and tissue 

recombination system identified a role for paracrine expression of IL-6 or OSM 
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specifically in the stromal compartment in concert with cell-autonomous oncogenic 

events, such as PTEN loss of function, in the promotion of an aggressive prostate 

cancer phenotype [120]. Another recent study identified a role for paracrine signaling 

from IL-6 up-regulation in mesenchymal stem cells and promotion of adipogenesis 

and prostate cancer cell migration and invasion [110]. Again, this study indicated a 

specific role for IL-6 production from the stromal compartment in facilitating prostate 

cancer progression [110].  

Cumulatively, the evidence to date indicates that IL-6 may act as a key mediator 

in several steps in prostate carcinogenesis including initiation, progression, metastases, 

and the development of castration resistance and/or resistance to chemotherapy. What 

is less well understood is what cell type(s) are responsible for production of the 

cytokine in the tumor microenvironment in patients, and by extension, whether IL-6 

in prostate cancer patients functions through autocrine or paracrine mechanisms. 

2.3 Materials and Methods 

Patient population and clinical samples.  

All specimens were acquired under Institutional Review Board (IRB) approved 

protocols at the respective institutions. RNA samples from matched tumor and benign 

tissues were obtained from 10 radical prostatectomy specimens using the standard 

operating procedure (SOP) protocols for the Prostate Cancer Biorepository Network 

(PCBN) as previously described in detail [121]. Each case consisted of fresh frozen 

tumor and benign tissues obtained at radical prostatectomy. For RNA isolation, tissues 

containing cancer were dissected such that they contained at least 70-90% tumor cells. 

Recently collected formalin-fixed paraffin-embedded (FFPE) primary clinical prostate 

cancer tissues (<1 year old) were obtained from 21 prostatectomy specimens in 
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addition to 12 biopsy or autopsy metastatic tissue samples from 9 cases at Johns 

Hopkins Hospital and 20 bone metastatic tissue samples from 10 cases at the 

University of Washington Medical Center for use in chromogenic in situ hybridization 

(CISH) assays. One block containing the highest grade/index cancer and adjacent 

benign was chosen for CISH analysis from each prostatectomy case. The clinical and 

pathological details of the patient samples are listed in Table 1. Tissue microarrays 

(TMAs) containing metastatic tissues (bone and soft tissue metastases) from 21 cases 

(University of Washington Medical Center) and 15 cases (Johns Hopkins Hospital) 

were used in IL-6 IHC experiments.  

Cell lines.  

LNCaP, VcaP and CWR22Rv1 were obtained from the American Type Culture 

Collection (ATCC). PC-3, DU-145, MCF7, and NCI-H460 cells were obtained from 

the NCI-Frederick. PrEC and PrSC cells were obtained from Lonza (Basel, 

Switzerland). LAPC4, RWPE-1, and C4-2B cells were obtained from J.T. Isaacs (Johns 

Hopkins University) and LNCaP-abl cells were obtained from Z. Culig (University of 

Innsbruck). All of the cell lines used were authenticated via short tandem repeat (STR) 

profiling of 9 genomic loci with the Powerplex 1.2 system (Promega) before use. 

Quantitative real-time reverse transcription PCR (q-RT-PCR).  

RNA was treated with Dnase I (Rnase-free, Ambion) followed by cDNA 

synthesis using the SuperScript First Strand Synthesis System for RT-PCR (Invitrogen) 

following the standard protocol for ‘First-Strand Synthesis Using Random Primers’. 

Quantitative PCR was performed with SYBR Green Supermix (Bio-Rad) and 0.4 M 

IL-6 primers (IL6-F 5’-GGTACATCCTCGACGGCATCT-3’ and IL-6-R 

5’-GTGCCTCTTTGCTGCTTTCAC-3’) or 1.0 M GAPDH primers (GAPDH-F  
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Table 1. Clinical Characteristics of Patient Samples Used in the Study 
 

qRT-PCR 
   

Patient # Age Tumor Grade pStage 
1 46 3+4=7 T3AN0MX 
2 61 4+3=7 T3AN0MX 
3 56 4+3=7 T3AN0MX 
4 61 4+4=8 T2N0MX 
5 49 3+3=6 T2N0MX 
6 51 4+4=8 T2N0MX 
7 53 3+4=7 T2N0MX 
8 65 5+5=10 T3BN0MX 
9 56 3+4=7 T2N0MX 
10 69 4+5=9 T3AN0MX 

    
CISH (radical prostatectomy) 

Patient # Age Tumor Grade pStage 
1 63 3+3=6 T2N0MX 
2 54 3+4=7 T2N0MX 
3 60 4+5=9 T2N0MX 
4 70 3+4=7 T2N0MX 
5 57 3+3=6 T2N0MX 
6 67 3+4=7, tertiary 5 T2N0MX 
7 65 3+3=6, tertiary 4 T2N0MX 
8 51 3+4=7 T2N0MX 
9 63 5+4=9 T2N0MX 
10 68 3+3=6, tertiary 4 T2N0MX 
11 65 3+4=7, tertiary 5 T2N0MX 
12 56 3+4=7 T2N0MX 
13 59 3+4=7 T3AN0MX 
14 68 3+4=7 T2N0MX 
15 61 3+3=6 T2N0MX 
16 58 3+4=7 T2N0MX 
17 65 3+3=6 T2N0MX 
18 68 4+3=7, tertiary 5 T3AN0MX 
19 62 3+4=7 T3AN0MX 
20 58 4+3=7 T3BN0MX 
21 60 3+4=7 T2N0MX 
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5’-CGCTCTCTGCTCCTCCTGTT-3’ and GAPDH-R 

5’-CCATGGTGTCTGAGCGATGT-3’) in a real-time detection system. PCR 

conditions were as follows: 2 min at 94 °C, 40 cycles of 30 sec at 94 °C, 30 sec at 60 °C, 

and 30 sec at 72 °C, followed by a melt curve analysis. GAPDH was used as a 

housekeeping gene for normalization. The fold differences in expression levels of IL-6 

in tumor samples were determined using the 2-ΔΔC
T method, relative to GAPDH and to 

the matched benign tissue. 

Chromogenic in situ hybridization (CISH).  

CISH was performed using the RNAscope® 2.0 FFPE Brown Reagent Kit or 

RNAscope® 2-plex assay kit (Advanced Cell Diagnostics, Inc.). Briefly, FFPE tissues 

were first baked at 60°C for 1 hr followed by deparaffinization in two changes of 

100% xylene for 5 min each and two changes of 100% alcohol for 3 min each. Next, 

the slides were treated with endogenous peroxidase blocking pretreatment reagent for 

10 min at room temperature. The slides were then added to boiling buffer for 30 min 

at 99-104°C in a water bath and then treated with protease digestion buffer for 30 min 

at 40°C. The slides were incubated with a custom RNAscope target probe designed 

against IL-6 mRNA (probe region 27-876, NCBI reference sequence Accession 

#NM_000600.3) or peptidyl prolyl isomerase B (PPIB), also known as cyclophilin B, 

as a positive control mRNA (probe region 139-989, NCBI reference sequence 

Accession #NM_000942.4) for 2 hr at 40°C, followed by signal amplification. DAB 

was used for colorimetric detection for 10 min at room temperature.  

Immunohistochemistry (IHC).  

IHC was performed using the Power Vision+ Poly-HRP IHC kit (Leica 

Biosystems). Slides were steamed for 45 min in antigen retrieval solution (Dako 
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#S1700) and incubated with rabbit polyclonal anti-IL-6 antibody (#6672; Abcam, lot 

#GR106735-5 at 1:1000 dilution) for 45 minutes at room temperature. 

Poly-HRP-conjugated anti-rabbit IgG antibody was used as secondary antibody. 

Staining was visualized using 3,3′-diaminobenzidine (Sigma), and slides were 

counterstained with hematoxylin. 

Western blot.  

Fresh frozen tumor and benign tissue samples were obtained from 3 patients 

using the standard operating procedure (SOP) protocols of PCBN [121] as described 

above. Tissues were lysed in radioimmunoprecipitation assay (RIPA) buffer 

containing protease inhibitors (Sigma) and phosphatase inhibitors (Cell Signaling). 

Lysates were then centrifuged at 14,000 X g for 10 min at 4°C. Proteins were 

electrophoresed and transferred to nitrocellulose membranes for immunoblotting. 

Membranes were probed with IL-6 antibody (#6672 1:500 dilution; Abcam, lot 

#GR106735-5) and beta-actin (13E5, 1:1000; Cell Signaling). The blots were 

visualized using the Odyssey Infrared Imaging System (LI-COR Biosciences). 

Recombinant mouse IL-6 (R&D Systems) was used as a positive control for Western 

blot. 

Controls for CISH, Western blot, and IHC.  

MCF7 (breast cancer cell line) cells were transfected with the IL-6 cDNA clone 

expression vector (Origene, SC125236) using lipofectamine (Life Technologies). 

NCI-H460 cells were treated with monensin (Golgi-Stop™, BD Biosciences) at a 

dilution of 1:1000 for 4 hrs. 
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2.4 Results 

Variable expression levels of IL-6 transcript are present in primary prostate 

adenocarcinoma when compared to matched benign tissues as assessed by 

q-RT-PCR.  

To determine if IL-6 expression levels in primary prostate cancer are associated 

with prognostic factors, we obtained a series of RNA samples from fresh-frozen 

cancer and matched benign tissues from 10 radical prostatectomy specimens. This 

series was enriched for cases of higher grade (Gleason ≥ 7) cancer (Table 1). 

Somewhat surprisingly, IL-6 message levels were not significantly elevated in tumors 

compared to matched benign tissues, as only 3 of 10 prostatectomy samples were 

observed to have higher expression of IL-6 in tumor compared to benign tissue 

(Figure 1). Conversely, there were more cases that showed higher levels of IL-6 in the 

benign regions than in those containing cancer (Figure 1). Based on this apparent 

discrepancy with published data [101, 102], we queried the Oncomine database [122] 

for datasets of prostate carcinoma vs. normal tissues and an analysis of 17 such 

datasets showed only one dataset with a greater than 2-fold increase in cancer versus 

benign tissues and a p-value ≤ 0.05 (Table 2). Due to our observation of a low 

frequency of IL-6 overexpression in tumor compared to benign tissues as well as the 

elevated IL-6 levels observed in benign tissues in our q-RT-PCR studies (Figure 1B) 

we next sought to determine the cellular origin of IL-6 in prostate specimens.  

Development of a highly sensitive and specific IL-6 chromogenic in situ 

hybridization (CISH) assay.  

For the development of an IL-6 CISH assay, we used the highly sensitive 

RNAscope® 2.0 assay from Advanced Cell Diagnostics (ACD). This assay consists of  
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Figure 1. IL-6 mRNA expression in benign and malignant prostate tissues as 

assessed by q-RT-PCR.  

RNA extracts were prepared from matched tumor and benign tissues from radical 

prostatectomy specimens. IL-6 mRNA expression was then determined by q-RT-PCR. 

(A) Log2 IL-6 mRNA expression in tumor relative to matched benign in 10 

prostatectomy specimens. IL-6 mRNA expression levels were normalized to GAPDH 

and then tumor was compared to benign using the 2-ΔΔC
T method followed by 

log2 transformation. (B) Log2 relative IL-6 mRNA expression in benign samples 

versus tumor samples. 
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Table 2. Results of Oncomine Database Query for IL-6 Expression 
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a hybridization probe set complimentary to a length of the protein coding region of 

IL-6 mRNA (see methods) in which the hybridization event is subjected to signal 

amplification and chromogenic detection. To establish the specificity of the CISH 

approach, we transfected MCF-7 cells (which do not express IL-6 mRNA) with an 

IL-6 cDNA clone expression vector (Origene, SC125236). As shown in Figure 2A, 

the transfected cells stained strongly positive using the CISH assay and thus served as 

a genetically defined positive control. To further verify the specificity of the probe set, 

we next quantified IL-6 mRNA levels in a panel of prostate cancer cell lines (LAPC4, 

CWR22Rv1, PC3, LNCaP, C4-2B, VcaP, DU145, and LNCaP-abl), benign prostate 

cell lines (PrSC, PrEC) and an HPV transformed prostate cell line (RWPE-1) via 

q-RT-PCR. Providing further evidence for the specificity of the CISH assay, we found 

that there was complete concordance between the two assays; i.e. all lines that were 

positive for IL-6 by q-RT-PCR were positive by CISH for IL-6 mRNA expression 

(Figure 2B, C). Of note, although previous studies reported that the PC3 cell line 

secretes IL-6 [100, 101, 118], we did not find the line to be positive for IL-6 mRNA 

expression in the present study (Figure 2B, C). We hypothesize that this could be due 

to differences in cell culture conditions for this highly inducible cytokine. While we 

did not establish the overall detection limit of the CISH assay, it has been reported to 

have a detection limit of a single mRNA molecule [123].  

Prostate adenocarcinoma cells in prostatectomy specimens do not express IL-6 

mRNA.  

We next utilized the IL-6 CISH mRNA assay on FFPE tissues from a series of 21 

radical prostatectomy specimens of varying Gleason grades and tumor stages (see 

Table 1). In each case, we examined full tissue sections containing the highest 

grade/index cancer and adjacent benign tissue. We verified the RNA integrity in the  



27 
 

 

Figure 2. Validation of IL-6 chromogenic in situ hybridization (CISH) assay.  

(A) IL-6 transfected (positive control) or non-transfected (negative control) FFPE 

MCF7 cells assayed by IL-6 CISH. (B) IL-6 q-RT-PCR on 11 prostate cell lines. IL-6 

mRNA expression levels were normalized to GAPDH and then to PrEC cell 

expression level using the 2-ΔΔC
T method. (C) IL-6 CISH was performed on the same 

11 prostate cell lines and representative examples are shown. Brown staining 

(arrowheads) represent positive IL-6 mRNA expression. Single dots in the nucleus of 

cells are interpreted as the genomic copy of the gene (PC3 cells, arrow). Both 

q-RT-PCR and CISH analyses indicated that three of the prostate cell lines (PrSC, 

RWPE-1, DU145) were positive for IL-6 mRNA, indicating complete concordance 

between the two assays.  
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tissue sections used in this study by using a positive control probe set against peptidyl 

prolyl isomerase B (PPIB) on adjacent sections. PPIB hybridization signals 

demonstrated expression in virtually all cells present on all slides that were used in 

this study (Figure 3A), showing that the RNA in these specimens was intact. 

Surprisingly, we did not detect positive IL-6 mRNA expression in tumor cells in any 

of the cases examined, regardless of tumor grade (Figure 3A, Table 3). Instead, IL-6 

mRNA expression in areas containing prostate cancer was restricted to cells within the 

stromal compartment of the tumor and primarily in tumor-associated endothelial cells 

(Figure 3B). The detection of IL-6 mRNA in stromal cells, in combination with 

positive control staining of transfected MCF-7 cells (Figure 2A) and prostate cell lines 

(Figure 2C), confirms that the IL-6 CISH probe was functioning as expected and that 

prostate adenocarcinoma cells in primary tumors do not express IL-6 mRNA. 

IL-6 mRNA expression is highly up-regulated in areas of acute inflammation and 

prostatic atrophy. 

As shown in Table 3, an assessment of the distribution of IL-6 mRNA expression 

in the prostatectomy tissues as analyzed by IL-6 CISH demonstrated that, overall, the 

expression was highly heterogeneous from case-to-case and by region within a given 

case. As shown in Figure 4A-B, the number of IL-6 positive cells was highly 

increased in the stroma in areas of acute inflammation (as evidenced by accumulation 

of neutrophils within glandular lumens), although the neutrophils themselves were not 

positive. The cases with the highest numbers of IL-6 mRNA expressing cells were 

those where acute inflammation was present (see Table 3). Increases in IL-6 positive 

cells were also seen in areas of proliferative inflammatory atrophy (PIA, Figure 

4C-D). Positive cells in areas of prostatic atrophy were generally confined to the 

stroma surrounding atrophy. In some instances, positive IL-6 mRNA expression was   
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Figure 3. IL-6 mRNA is not detected in prostate adenocarcinoma cells in primary 

tumors.  

Twenty one prostatectomy specimens were selected for IL-6 CISH (see Table 3). 

PPIB (housekeeping gene) is used as a positive control for the CISH assay. (A) 

Shown are representative examples of low grade (Gleason pattern 3) and higher grade 

(Gleason patterns 4 and 3) prostate cancer with positive staining for PPIB (positive 

control) and negative staining for IL-6. (B) IL-6 positive cells in endothelium (arrow) 

in an area of cancer.  
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Table 3. Assessment of Levels and Distribution of IL-6 mRNA Expression in 

Prostatectomy Tissues 

 

PATIENT IL-6 EPITHELIUM IL-6 STROMA Acute 
Inflammation 
Present? 

Patient 
# 

Gleason 
Score 

Clinical 
Stage 

Tumor Normal Atrophy Non-inflamed Inflamed 

1 3+3=6 T2N0MX - - ++ ++ ++++ Yes 

2 3+4=7 T2N0MX - - - - +++ Yes 

3 4+5=9 T2N0MX - - + - - No 

4 3+4=7 T2N0MX - - + - + No 

5 3+3=6 T2N0MX - - - - + No 

6 3+4=7** T2N0MX - - - - ++ No 

7 3+3=6* T2N0MX - - ++ - ++ No 

8 3+4=7 T2N0MX - - - - ++++ Yes 

9 5+4=9 T2N0MX - - - - ++ No 

10 3+3=6* T2N0MX - - - - - No 

11 3+4=7** T2N0MX  - - - - - No 

12 3+4=7 T2N0MX - - + - ++ No 

13 3+4=7 T3AN0MX - - - - - No 

14 3+4=7 T2N0MX - - ++ - ++ No 

15 3+3=6 T2N0MX - - + - ++ No 

16 3+4=7 T2N0MX - - +++ ++ ++++ Yes 

17 3+3=6 T2N0MX - - - - +++ Yes  

18 4+3=7** T3AN0MX  - - + - + No 

19 3+4=7 T3AN0MX - - - - - No 

20 4+3=7 T3BN0MX - - ++ - + No 

21 3+4=7** T2N0MX - - + - ++ No 
 

- no cells positive for IL-6 expression; + areas with 5-10 positive cells per 20X field; ++ 

areas with 11-25 positive cells per 20X field; +++ areas with 26-50 positive cells per 

20X field; ++++ areas of >50 positive cells per 20X field. * Tertiary pattern 4; ** Tertiary 

pattern 5. 
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Figure 4. IL-6 mRNA expression is nearly exclusively restricted to the prostate 

stromal compartment.  

(A,B) IL-6 mRNA expressing cells (brown staining) are highly enriched in the stroma 

in areas of acute inflammation as indicated by the presence of neutrophils in glandular 

lumens (red arrows). I IL-6 positive cells in the stroma (arrows) and endothelium 

(arrowheads) surrounding prostate atrophy. (D) Positive epithelial staining was rare 

and restricted to prostatic atrophy (arrowheads). 
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observed in scattered epithelial cells in atrophic glands (Table 3, Figure 4D). 

Morphologically these appeared to be epithelial cells; however we did not perform a 

double label with an epithelial cell marker. In a number of cases the IL-6 mRNA 

expressing cells could be identified as endothelial cells lining small blood vessels 

(presumably venules or lymphatics, Figure. 4C) as well as prostate smooth muscle 

cells. Other positive staining cells had an appearance consistent with macrophages. To 

more definitively identify IL-6 mRNA expressing cells, we performed co-staining 

(2-plex) for IL-6 and either CD68 (a macrophage marker) or CD31 (an endothelial 

cell marker). The results of this 2-plex staining clearly indicated that some of the IL-6 

positive cells are CD68-positive macrophages and some are CD31-positive 

endothelial cells (Figure. 5). Interestingly, the majority of the IL-6 positive cells in 

areas of acute inflammation did not co-stain for CD68 or CD31, suggesting that most 

of the IL-6 mRNA expressing cells in these areas are of a different stromal cell type, 

such as fibroblasts, smooth muscle cells, other types of inflammatory cells, etc.  

Prostate adenocarcinoma cells in metastatic lesions do not express IL-6 mRNA. 

Previous studies suggested that production of IL-6 by metastatic prostate cancer 

cells may facilitate invasion and metastasis to bone and/or promote resistance to 

prostate cancer therapies [104, 124]. Therefore, we next examined IL-6 mRNA 

expression in biopsy samples from patients with castration resistant metastatic 

prostate cancer (samples evaluated included 4 lymph node specimens and 3 liver 

biopsy samples) and 25 autopsy samples which included metastases to the liver, lung, 

bone, and lymph node (see Table 4). Consistent with the data from primary 

prostatectomy specimens, IL-6 mRNA expression was not observed in prostate cancer 

cells in any of the metastatic tissues examined. Also consistent with the primary 

prostatectomy specimens, the metastatic tissues all showed strong hybridization   
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Figure 5. IL-6 mRNA expression in macrophages and endothelial cells.  

RNAscope 2-plex assay for IL-6 (red) and CD68 (green) (A) or IL-6 (red) and CD31 

(green) (B) indicated that some IL-6 positive cells in the stroma are macrophages or 

endothelial cells, respectively (arrows).    
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signals with PPIB as a positive control (Figure 6A), confirming RNA integrity. 

Interestingly, IL-6 mRNA staining was observed in endothelial cells in blood vessels 

in 9 of 21 bone metastases (42.9%, Figure 6B, Figure 7, Table 4) but not in any of the 

11 soft tissue metastases analyzed (p = 0.013, Fisher’s exact test).  

IL-6 IHC only works when Golgi export is blocked.  
Finally, we performed a series of analyses to examine IL-6 protein production in 

cell lines and tissues using IHC. To perform these studies, we prepared FFPE blocks 

from a lung cancer cell line (NCI-H460) that was strongly positive for IL-6 mRNA as 

assessed by CISH (Figure 8A) and produces physiological levels (e.g., not 

transfection levels) of IL-6 protein as assessed by Western blot (Figure 9A). Of 

interest, there appears to be heterogeneity in the cells that are positive for IL-6 

expression (i.e., not all cultured cells appear to be positive) via CISH (Figure 8A) and 

this was consistent with what we observed for the IL-6 mRNA positive prostate cell 

lines as well (Figure 2C). IHC on the NCI-H460 cells using the polyclonal anti-IL-6 

antibody (#6672; Abcam, lot #GR106735-5) showed no detectable signal above 

background levels (as established by negative control cell lines, Figure 8 B,C). In one 

sense, those data are not particularly surprising, since IL-6 is a secreted protein and 

secreted proteins are generally only detectable by flow cytometry analysis when 

protein export from the Golgi apparatus is blocked using protein transport inhibitors 

such as brefeldin A or monensin [125]. As such, we next treated NCI-H460 cells with 

monensin prior to formalin fixation and preparation of FFPE blocks for use with IHC. 

IHC of “stopped” cell lines treated with monensin showed that NCI-H460 cells now 

stained positive for IL-6 protein (Figure 8D).  
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Figure 6. IL-6 mRNA is not detected in metastatic prostate cancer cells.  

In this study, metastatic prostate cancer in lymph node and liver biopsy samples and 

autopsy samples (liver, lung, bone, and lymph node) were assayed by IL-6 CISH. No 

IL-6 positive mRNA expression was observed in prostate cancer cells in any of the 

metastatic tissues. (A) Shown are representative examples of lymph node biopsy and 

autopsy liver, lung, and bone metastases with positive staining for PPIB (positive 

control) and negative staining for IL-6. (B) An example of IL-6 mRNA positive blood 

vessels (arrowheads) and negative tumor cells (arrows) in bone metastases.   
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Figure 7. IL-6 mRNA positive blood vessels in prostate cancer bone metastases.  

Example of IL-6 positive endothelial cells and IL-6 negative metastatic tumor cells in 

prostate cancer bone metastases. 
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Table 4. Assessment of Levels and Distribution of IL-6 mRNA Expression in 

Metastatic Tissue 
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Figure 8. A requirement for protein transport inhibition for IL-6 IHC.  

(A) IL-6 CISH performed on the IL-6 positive cell line NCI-H460. IL-6 IHC 

performed on (B) PC3 cells (IL-6 negative as assessed by q-RT-PCR and CISH) and 

(C) NCI-H460 cells. Marked difference in IHC results when NCI-H460 are treated 

with monensin prior to fixation (D). Arrows point to IL-6 positive cells. The same 

prostatectomy case containing acute inflammation assayed for IL-6 mRNA by CISH 

(E) and IHC (F).  Example of IL-6 IHC on primary prostate cancer (G) and prostate 

cancer bone metastasis (H). All tumor cells were negative in all samples analyzed. 

Positive staining observed in extracellular spaces (arrows in H) was considered to be 

non-specific.  
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Figure 9. IL-6 Western blot on NCI-H460 cells and selected prostatectomy 

samples.  

(A) Western blot on protein lysates from NCI-H460 cells grown without (lane 1) or 

with (lane 2) protein transport inhibition with monensin (Golgi-Stop™). 300 ng 

recombinant IL-6 applied to lane 3 as positive control. (B) Western blot on protein 

lysates from prostate tumor normal pairs (1-6), recombinant mouse IL-6 protein 

(+C1), and IL-6 transfected MCF7 cells (+C2). Actin was an internal control.   

B 

A 
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We then performed IL-6 IHC on a series of prostatectomy specimens including 

cases that were strongly positive in areas of acute inflammation with IL-6 CISH 

(Figure 8E, F). We did not detect IL-6 protein above background levels in the acutely 

inflamed areas, either in epithelial or stromal cells using IHC, and likewise we did not 

observe IL-6 protein in prostate tumor cells using IHC (Figure 8G). Similarly, we did 

not detect any IL-6 protein in tumor cells via IHC on metastatic lesions from standard 

slides from the cases used for CISH assays or in two separate metastatic prostate 

cancer TMAs, including in bone metastases (Figure 8H). The IHC signal in 

metastases was restricted to extracellular spaces between tumor cell nests (Figure 8H) 

and no specific signal was detectable above background levels in the tumor cells in 

any of the cases. The lack of positive signal for IL-6 protein using IHC in areas that 

were positive for IL-6 mRNA using CISH is likely not due to lack of IL-6 protein 

production by the IL-6 mRNA positive cells. Moreover, we selected the three patients 

with higher IL-6 mRNA expression in malignant prostate tissues than matched benign 

(patient 1, 2, 3. Fig 1A), and we were unable to detect any IL-6 via Western blot on 

protein lysates from prostate tumor and normal pairs (Figure 9B). Together, these 

results, coupled with our experiments using monensin in the NCI-H460 cell line, 

suggest that detection of this particular cytokine in tissue sections using IHC could be 

severely limited without being able to block protein export prior to fixation. 

2.5 Conclusions 

The cellular origin of IL-6 in prostate cancer: a focus on the stromal 

compartment. 

In the present study, we analytically validated and used a chromogenic in situ 

hybridization assay to detect IL-6 mRNA in tissue sections to sensitively and 
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specifically determine the cellular origin of IL-6 in the prostate primary and 

metastatic tumor microenvironment. The results of our studies indicate that prostatic 

adenocarcinoma cells do not express IL-6 mRNA. Rather, IL-6 mRNA expression is 

restricted nearly exclusively to the cells in the stromal compartment including 

endothelium, and is highly up-regulated in areas of acute inflammation and prostatic 

atrophy.   

Although prostate adenocarcinoma cells do not express IL-6 mRNA as 

evidenced by the results of our study, this does not eliminate a potential contributory 

role for IL-6 signaling in prostate cancer development and/or progression. IL-6 

production by cells in the stromal compartment may signal in a paracrine fashion 

through the transmembrane IL-6 receptor (IL-6R) mediated by glycoprotein 130 

(gp130) or via a soluble IL-6 receptor (sIL-6R) that signals through membrane-bound 

gp130. Therefore, IL-6 can potentially signal through any cell that produces IL-6R or 

gp130. In this respect, multiple studies have demonstrated the presence of IL-6R 

and/or gp130 in prostate cancer cells (reviewed in [126]). 

Interestingly, out of the 11 prostate cell lines derived from cancer or benign 

tissues that we examined for IL-6 mRNA expression levels in the present study, the 

cell line that was found to express the highest levels of IL-6 mRNA via qRT-PCR was 

PrSC cells (Figure 2B). PrSC cells are a prostate stromal cell line; therefore, the high 

levels of IL-6 mRNA expression in this cell line of stromal cell origin would correlate 

to our IL-6 CISH results in prostate tissue sections where we found that IL-6 mRNA 

expression was restricted almost exclusively to the stromal compartment. Whereas 

dual stains for IL-6 and CD68 or CD31 confirmed that some of the IL-6 mRNA 

expressing cells in the stromal compartment are prostate-infiltrating macrophages or 

endothelial cells, respectively (Figure 5), this represented the minority of IL-6 
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positive stromal cells in the highly positive areas surrounding acute inflammation 

(Figure 4A-B). We predict that additional cells in the stromal compartment that 

express IL-6 mRNA may include fibroblasts/myofibroblasts and smooth muscle cells. 

In this respect, Hobisch et al. detected IL-6 secretion into the supernatant of ex vivo 

cultured prostatic fibroblasts and smooth muscle cells, although no positive staining 

of these types of stromal cells was detected using IHC [103]. It should be noted that 

those data are quite consistent with the results of the present study. 

In areas of acute inflammation in some cases, a large proportion of the cells in 

the stroma were positive for IL-6 mRNA expression (Figure 4A-B), arguing that a 

number of cell types in these areas may express IL-6 mRNA in what may be part of a 

positive feedback loop as has been previously described [127]. The stimulus for acute 

inflammation that is frequently observed on radical prostatectomy specimens (albeit 

to a lesser degree than chronic inflammation) is unknown [128], but may be caused in 

part by bacterial infections [46, 128, 129]. A recent study also identified a role for 

IL-6 up-regulation by bone marrow-derived mesenchymal stem cells (MSCs) in 

promotion of adipogenesis and prostate cancer progression [110], and it is possible 

that some of the IL-6 positive cells identified in the present study may represent 

MSCs. This would be difficult to assess using the current CISH technologies that are 

limited to 1-2 markers per assay, as MSCs are typically identified using a number of 

surface markers such as CD105, CD166, CD44 and CD29 [110]. Future studies 

utilizing techniques such as flow cytometry may help to further verify this possibility. 

Another recent study using a human prostate dissociation and tissue recombination 

system identified a role for paracrine expression of IL-6 in the stromal compartment 

in concert with cell-autonomous oncogenic events in the promotion of an aggressive 

prostate cancer phenotype [120]. In all, these studies in parallel with the results of the 
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present study set the precedence for a potentially important role for paracrine IL-6 

signaling originating from the stromal compartment in the prostate tumor 

microenvironment. 

The role of IL-6 in metastatic disease.  

Studies have consistently shown that serum levels of IL-6 are elevated in 

metastatic prostate cancer patients [98, 99, 115-118, 130], and that these levels may 

correlate to tumor burden [99, 114, 131] and/or may serve as a surrogate marker for 

morbidity associated with advanced prostate cancer including cachexia [118, 119]. 

Interestingly, our studies of IL-6 CISH in a series of metastatic prostate cancer biopsy 

or autopsy samples indicated that metastatic prostate cancer cells do not express IL-6 

mRNA. While prostate tumor cells do not express IL-6, we did observe a significant 

difference between IL-6 positive blood vessels in bone metastases versus soft tissue 

metastases (Table 4). Our data strongly suggest that the increased systemic levels of 

IL-6 observed in advanced prostate cancer patients is not from production of the 

cytokine by metastatic tumor cells. Rather, elevated IL-6 levels may be due at least in 

part to increased IL-6 production by tumor vasculature. Since the presence of bone 

metastases is also associated with morbidity, it is plausible that the presence of IL-6 in 

vasculature in bone metastases could be a source of the elevated serum IL-6 in 

patients with a high metastatic burden. The lack of IL-6 mRNA expression by primary 

and metastatic prostate cancer cells observed in our study may help to explain why 

minimal to no clinical activity has been observed when a monoclonal antibody 

therapy targeting IL-6 (siltuximab) has been tested in clinical trials thus far [132, 

133].  
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IL-6 and IHC.  

IHC-based studies on IL-6 production in prostate tissue sections have reported 

varying degrees of basal cell staining in benign epithelium as well as more 

pronounced staining of tumor epithelium [102, 103] that increases in intensity with 

increasing pathological Gleason grade [102]. Likewise, a previous study using IHC to 

detect IL-6 production in prostate cancer metastases reported over twice as many bone 

metastases samples to be positive for IL-6 than soft tissue metastases, and with much 

stronger staining intensity [104]. Unfortunately, our data do not support those results. 

With a well-validated, positively controlled IL-6 CISH assay, we did not detect IL-6 

mRNA in any of the primary or metastatic prostate cancer cells in our study. We were 

able to detect IL-6 using IHC in positive control cell line specimens, but only when 

IL-6 accumulation was augmented by blocking Golgi export using a protein transport 

inhibitor.  

To help determine whether we could account for the discrepant results between a 

past study [104] and the present one, we compared by IHC the staining obtained with 

the polyclonal anti-IL-6 antibody batch (#6672; Abcam, lot # 385304) that was used 

previously to the currently commercially available batch (lot # GR169214-2). These 

analyses indicated that under identical conditions, the newer version of the antibody 

does not stain tumor cells in bone metastases, yet, the older antibody batch gave 

similar results to that reported previously [104] with strong tumor cell staining (C. 

Morrissey, unpublished data). Taken together with the present study, it would appear 

that prior results showing high level expression in tumor cells is related to antibody 

lot variability and no longer appears with the newer currently available antibody from 

the same vendor. It should also be noted that traditional decalcification/fixation 

methods used for bone can have a significant impact on RNA integrity; although 
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formic acid treatment as was used for the metastatic bone samples in the present study 

has been shown to result in improved nucleic acid recovery and quality over stronger 

acid treatment [134, 135]. We acknowledge this potential limitation to the present 

study, and addressed this concern by including the positive control (PPIB) CISH assay 

for each sample analyzed. Likewise, we detected IL-6 mRNA in the metastatic bone 

samples (albeit not in the tumor cells but in the blood vessels), indicating that there 

did not appear to be at least any generalized issues with detection of IL-6 mRNA in 

the decalcified bone samples.    

In conclusion, our results suggest that, in prostate cancer patients, paracrine 

rather than autocrine IL-6 expression is likely associated with any role for the 

cytokine in disease development and/or progression. 

According to previous studies, IL-6 may be involved in initiating prostate 

tumorigenesis by promoting cancer progression to a castration-resistant state and in 

promoting tumor metastasis [136]. Additional studies implicate IL-6 along with 

STAT3, which is major effector of IL-6, in prostate cancer initiation [17, 137-140]. In 

the next chapter, we provide some novel animal studies in C57BL/6J wildtype and 

IL-6 knockout (-/-) mice to determine whether IL-6 has a causative role in supporting 

prostate tumor growth.  
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III. A POTENTIAL PRO-TUMORIGENIC ROLE FOR 

INTERLEUKIN-6 IN PROSTATE TUMOR GROWTH  

3.1 Abstract  

Introduction: Emerging evidence suggests that chronic or recurrent prostate 

inflammation may initiate and promote prostate cancer development. IL-6 has been 

indicated as a mediator of inflammation that can facilitate prostate cancer progression. 

However, a causative role for IL-6 in prostate cancer growth has not been as well 

investigated. We now report a series of allograft studies that provide initial evidence 

that IL-6 may be involved in prostate tumor growth.  

Methods: Three mouse cancer cell lines were used in allograft studies with C57BL/6J 

wildtype and IL-6 knockout (IL6-/-) mice: the prostate cancer cell lines TRAMP-C2 

and 100RC2A (novel line derived from a cross of Hi-MYC mice to Tp53+/- 

heterozygous mice – C. Bethel, K. Sfanos, A.M. De Marzo unpublished data) and a 

colon cancer line MC38. Tumor sizes were measured at a 3-4 day interval and tumor 

volumes were calculated as length×width2×0.52. Serum, allograft tumors and other 

organs were collected for analysis by ELISA and a chromogenic in situ hybridization 

(CISH) assay.  

Results: There was a reduction in TRAMP-C2 and 100RC2A allograft take rates and 

growth rate in IL6-/- mice versus wildtype mice. This trend was not observed for the 

MC38 cell line. CISH analysis of the TRAMP-C2 allograft tumors indicated that the 

tumor cells were not producing IL-6 mRNA. Nevertheless, IL-6 ELISA analyses on 

the mouse serum showed a significant increase in the circulating levels of IL-6 in 

wildtype mice with TRAMP-C2 tumors.  
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Conclusion: Our results are consistent with previous studies in prostate cancer 

patients that demonstrate that high circulating levels of IL-6 tend to associate with a 

more aggressive clinical course of the disease. Additionally, our studies provide 

evidence that IL-6 may be required for prostate tumor growth. The results of our IL-6 

-/- animal studies indicate that elevated systemic IL-6 levels may be involved in 

tumor growth regulation in prostate cancer, and are not simply caused by or indicative 

of tumor burden. 

3.2 Introduction  

Emerging evidence suggests that chronic or recurrent prostate inflammation may 

initiate and/or promote prostate cancer development [40]. Thus, many studies focus 

on prostate pro-inflammatory and anti-inflammatory cytokines [141]. There are 

several cytokines involved in prostate cancer regulation, among them IL-6 is 

frequently investigated in prostate cancer models because of previous literature that 

reports that there is increased IL-6 expression at early stages of the disease [15, 16, 

142]. In the previous chapter, we demonstrated that IL-6 is present in the prostate 

cancer microenvironment, but must act in a paracrine manner rather than autocrine to 

support tumor development and/or progression, as it is not produced by prostate 

tumor cells. 

The first indication that IL-6 is involved in prostate cancer progression came 

from observations that the amount of circulating IL-6 is related to metastatic or 

hormone refractory prostate cancer. Subsequent studies have consistently shown that 

elevated systemic IL-6 levels confer poor prognosis, and may also serve as a marker 

of prostate cancer morbidity, including cachexia [15, 16, 142, 143].  

Moreover, IL-6 is considered as a key mediator involved in several steps of 
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prostate cancer development, including prostate tumor initiation, tumor growth 

regulation, transition to the aggressive prostate cancer phenotype, progression to the 

castration-resistant state, and promotion of tumor metastasis [136]. Some studies 

implicate IL-6 and its major effector STAT3 as pro-tumorigenic agents to initiate 

prostate cancer. Through the STAT3 pathway, IL-6 has been shown to trans-activate 

the androgen receptor in prostate cancer cells to facilitate androgen-independence [17, 

137-140].  

In this study, we introduce novel animal studies using three different mouse 

cancer cell lines in both wildtype and IL6-/- mice to further study the potential role of 

IL-6 in prostate tumor growth.  

3.3 Materials and Methods  

Animals  

Animals we used in this study were 8-10 week old C57BL/6J wildtype mice 

(Harlan), and Interleukin-6 knockout (IL-6 -/-, Jackson Lab, B6.129S2-Il6tm1Kopf/J) 

mice. Animals were housed in a pathogen-free environment with 12 hour light/dark 

cycle, and received enough sterile food and water. All procedures were performed 

under the guidelines of Johns Hopkins Animal Care and Use Committee (ACUC). 

Animals were sacrificed by CO2 asphyxiation, reference tissues along with serum and 

allograft tumors were dissected. 

Cell preparation  

There are three C57BL/6J derived cancer cell lines used in this study: 

TRAMP-C2, 100RC2A, and MC38. TRAMP-C2 and 100RC2A are prostate cancer 

cell lines, and MC38 is a colon adenocarcinoma cell line. TRAMP-C2 was purchased 
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from the American Type Culture Collection (ATCC, Manassas, VA, USA) and 

cultured in high glucose DMEM (4.5 g/L glucose, ATCC) with 5% heat inactivated 

FBS (Invitrogen), 5% Nu-Serum IV (Corning, Fisher Scientific), 5μg/ml insulin and 

10−8 M dihydrotestosterone (Corning, Fisher Scientific). Freezing media contained 

5% DMSO (Sigma-Aldrich) in culture medium. 100RC2A cells were initially 

cultured in our lab from a primary prostate tumor that arose in an animal from crosses 

between Hi-MYC mice (FVB background, [144]) and p53 knockout mice (C57BL/6J 

background) (C. Bethel, A.M. De Marzo, unpublished data). 100RC2A was cultured 

in OPTI-MEM (Invitrogen) with 0.5% heat inactivated FBS, EGF and 1 nM R1881. 

Murine C57BL/6J CRC tumor cells (MC38) were kindly provided by Dr. Charles 

Drake, and were cultured in DMEM media with 10% heat inactivated FBS.  

For TRAMP-C2, 100RC2A, and MC38, cells double about every 12 h and 

should be split 1:10 or 1:15 every 3–4 days. Cultured cells were harvested by trypsin 

and spun down at 1000 rpm for 5min, followed by PBS rinse twice and re-suspension 

in PBS for allograft injection. Cell numbers were determined by cellometer machine 

(Cellometer Cytometer, Nexcelom).  

Allograft procedure  

All procedures were performed under the guidelines of Johns Hopkins Animal 

Care and Use Committee (ACUC). Each experimental group consisted of 8 to 12 mice. 

A 1 ml tuberculin syringe was loaded with cells right before injection. 2 × 106 

TRAMP-C2 cells / 2 × 106 100RC2A cells with 20ul sterile PBS and 80ul Geltrex 

(Life Technology), or 1.5 × 106 MC38 cells with 200ul sterile PBS were loaded into a 

1ml syringe with attached 26 gauge ½ inch needle with care to eliminate air bubbles. 
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Anaesthetized 8-10 weeks old males were injected subcutaneously with tumor cells 

into the right side flank.  

Tumor sizes were measured at a 3-4 day interval using electronic calipers and 

tumor volumes were calculated as length×width2×0.52. Palpable primary tumors 

usually develop within four weeks for TRAMP-C2 and 100RC2A, and within a week 

and half for MC38. Mice were euthanized at 2-8 weeks post-inoculation when 

animals developed tumors over 2 cm in width or length. Serum, allograft tumor, liver, 

lung, and kidney were taken and fixed with 10% formalin for 48 hours followed by 

paraffin embedding. FFPE slides were stained with hematoxylin and eosin for further 

histological examination.  

Chromogenic in situ hybridization (CISH). 

CISH was performed using the RNAscope® 2.0 FFPE Brown Reagent. Briefly, 

FFPE tissues were first baked at 60°C for 1 hr followed by deparaffinization. Next, 

the slides were treated with endogenous peroxidase blocking pretreatment reagent for 

10 min at room temperature, and boiled slides for 15-30min with pretreatment 2 

solution provided by ACD Bio. The slides then were treated with protease digestion 

buffer for 30 min at 40°C. The slides were incubated with a custom RNAscope target 

probe designed against mouse IL-6 mRNA (probe region 300–31–1 - 30019968 at 

Chromosome 5, Gene ID: 16193) for 2 hr at 40°C, followed by signal amplification. 

DAB was used for colorimetric detection for 10 min at room temperature.  

Phospho-STAT3 cell plug  

80-90% confluent HeLa cells were treated with serum starvation overnight. Half 

of the cells were treating 100ng/ml interferon  (dissolved in PBS) at 37°C for 5min 

to induce phospho-STAT 3 expression while other half cells were only treated with the 
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same amount of PBS as negative control. Cells were formalin fixed and made into 

FFPE cell plugs.  

Immunohistochemistry (IHC) 

IHC was performed using the Power Vision+ Poly-HRP IHC kit (Leica 

Biosystems). Slides were steamed for 45 min in EDTA (Dako #S1700) and incubated 

with rabbit monoclonal anti-phospho-STAT3 antibody (#9145; Abcam, 1:50 dilution) 

for 4°C overnight. Poly-HRP-conjugated anti-rabbit IgG antibody was used as 

secondary antibody. Staining was visualized using 3,3′-diaminobenzidine (Sigma), 

and slides were counterstained with hematoxylin (Dako). 

Enzyme-Linked-Immunosorbent-Assay (ELISA)  

A high sensitivity mouse IL-6 ELISA kit (BMS603HS, eBioscience) was used to 

detect mouse serum IL-6 for both wildtype and IL-6 -/- mice. The procedures were 

done following the manufacturer’s instructions. Samples were diluted 1:3 with diluent 

buffer to 100 µl. Diluted samples along with 50 µl biotin-conjugated anti-mouse IL-6 

antibody were applied into ELISA strip coating mouse anti-IL-6 antibody, and then 

incubated at 4°C for overnight. Next, 100 µl Streptavidin-HRP was used for 

secondary incubation to amplify the signal, 100 µl Biotinyl-Tyramide for third 

incubation, and another 100 µl Streptavidin-HRP for fourth incubation. Finally, 100 µl 

HRP substrate was added to form colorimetric products. The reaction is terminated by 

the addition of phosphoric acid. ELISA color development can be monitored by any 

ELISA reader at 450 nm. Standard curve were transformed into a four parameter 

logistic (4-PL) curve (Figure 10). All samples were run in duplicate.  
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Figure 10. Standard curve derived from mouse IL-6 ELISA.  

By running high sensitivity mouse IL-6 ELISA (BMS603HS, eBioscience), we were 

able to detect mouse circulating IL-6 levels with 0.21 pg/ml sensitivity. Standards 

were converted into a four parameter logistic (4-PL) curve. The concentration 

equation derived out is , where y=O.D. value, x=concentration, a= 

2.9392101, b=-2.043341, c=34.0862324, and d=0.2035608. R2 value is 0.9982817. 

(Figure is adapted from ELISAanalysis.com; ELISA raw data is in Table 5)



53 
 

3.4 Results  

Allograft of three mouse cancer cell lines 

Three mouse cancer cells were used to perform allografts studies on C57BL/6J 

wildtype and IL-6 knockout (IL-6 -/-) mice. Two are prostate cancer cell lines: 

TRAMP-C2 and 100RC2A (a novel line derived from Hi-MYC mice crossed to 

Tp53+/- heterozygous mice), and one is a colon cancer cell line MC38. 

Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are a 

relatively rapid animal model to study prostate cancer that can spontaneously develop 

in a few weeks and mimics human prostate cancer progression [145, 146]. TRAMP 

mouse tumors are driven by SV40 large T antigen under the control of the prostate 

epithelial cell-specific probasin promoter, though the T antigen oncoprotein cannot be 

detected in the cell lines in vitro or in vivo. TRAMP mice develop high-grade prostatic 

intraepithelial neoplasia (PIN) by 8-12 weeks of age, adenocarcinoma by 18 weeks, 

and metastasis (mostly to lung and lymph nodes and rarely to bone) by 24-30 weeks 

[146].  

There are three cell lines derived from TRAMP mice: TRAMP-C1, TRAMP-C2, 

and TRAMP-C3. They all can express cytokeratin, E-cadherin, and androgen receptor 

by IHC analysis and p53 is undetectable. TRAMP-C1 and TRAMP-C2 were 

tumorigenic when grafted into C57BL/6J hosts, though TRAMP-C3 was not 

tumorigenic [145]. In this study, we chose to use the TRAMP-C2 cell line. 

The 100RC2A cell line was developed in our lab (C. Bethel, K. Sfanos, A.M. De 

Marzo, unpublished data). This cell line was derived from a cross between the 

HI-MYC transgenic mice (FVB background) and p53 heterozygous mice (C57BL/6J 
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background). The line was derived from a mouse that spontaneously developed 

primary prostate cancer as well as lung metastasis, and it maintained very high levels 

of MYC oncogene and had heterozygous +/- loss of the tumor suppressor p53. 

Primary tumor was collected from the prostate of the animal and ten prostate cancer 

cell lines were cultured. One of the cell lines, 100RC2A, was used in the present 

study.  

IHC of 100RC2A cells showed that MYC, AR, and Nkx3.1 were overexpressed 

in this cell line while Pten and p53 were negative (C. Bethel, D. Esopi, A.M. De 

Marzo, unpublished data). This result corresponds to the expression of these proteins 

in the original tumor.  

MC38 is a grade III colon adenocarcinoma cell line, which was chemically 

induced by Corbett et al. in a C57BL/6J female mouse in 1975. The standard way to 

evaluate cell tumorigenicity is by performing subcutaneous inoculation of 0.375 to 3 x 

106 cells with PBS. In the previous studies, MC38 was used as a model tumor to study 

immunotherapy [147] and chemo-immunotherapy, but not used to further study the 

function of IL-6 [148].  

100RC2A may be rejected by C57BL/6J mice 

In the 100RC2A cohort, ten wildtype and eight IL-6 -/- mice were used to 

perform allografts. 27 days after inoculation, only two wild type mice formed tumors, 

while all other mice (both wildtype and IL-6 -/-) did not develop tumors. No tumor 

growth was observed in any of the IL-6 -/- cohort (Figure 11). It is possible that since 

100RC2A was derived from mouse with mixed FVB and C57BL/6J genetic 

background, C57BL/6J mice may reject the 100RC2A cell line allografts.    
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Figure 11. 100RC2A allograft may be rejected in C57BL/6J mice.  

100RC2A is novel line derived from a cross of Hi-MYC mice to Tp53+/- 

heterozygous mice. In the 100RC2A cohort, ten wild type mice (blue) and eight IL-6 

-/- mice (green) were used to perform allografts. 27 days after inoculation, only two 

wild type mice out of ten developed tumors. No tumors were observed in the IL-6 -/- 

cohort.  
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IL-6 depletion delays tumor growth in the TRAMP-C2 model 

Unlike 100RC2A cells that only developed tumors in two wildtype animals, 

TRAMP-C2 cells could form tumors in both wildtype and IL-6 -/- mice. At day 25 

after subcutaneous injection, tumors became palpable in the wildtype group. 40 days 

post-injection, a significant tumor size difference was observed between wildtype and 

IL-6 -/- mice. Allograft tumor growth doubling time in wildtype mice was about 3 to 4 

days after 43 days; while IL-6 -/- animals required a relatively long time to develop 

allograft tumors (Figure 12A).  

Animals were sacrifice at Day 57 post injection, and when we compared tumor 

size at 57 days post-injection, as illustrated in Figure 12B, wildtype mice had 

significantly larger tumors than IL-6 -/- mice in general. The average tumor size of 

wildtype mice was 2263.99 mm3; while IL-6 -/- mice only had an average tumor size 

of 385.39 mm3 (p < 0.001).  

Systemic IL-6 levels are elevated in wildtype mice with TRAMP-C2 tumors  

The physiological circulating mouse IL-6 level is less than 10pg/ml [94, 149]. 

Unless animals are undergoing an infectious and/or inflammatory process, it is hard to 

detect mouse circulating IL-6. In this study, a high-sensitivity mouse IL-6 ELISA kit 

(eBioscience) was used, which provides a 2.1pg/ml sensitivity. Table 5 lists detailed 

information of all the animals we include in the ELISA assay with their tumor size 

and corresponding serum IL-6 amount. To make sure this ELISA kit did not provide 

false-positive data, we also tested a C57BL/6J mouse without any treatment as a 

negative control. All of the samples were run in duplicate. Standard curves were 

converted into a four parameter logistic (4-PL) curve (Figure 10).  
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Figure 12. IL-6 depletion may result in delayed tumor development in the 

TRAMP-C2 allograft model. 

(A) TRAMP-C2 cells (2 x 106) were subcutaneously injected into the flanks of both 

C57BL/6J wild type (blue) and IL-6 -/- animals (green). (B) After 57 days, 

TRAMP-C2 tumors grew in both groups, however, with a significant size difference 

between wild type and IL-6 -/- mice (P<0.001). Nine C57BL/6J wild type mice and 

seven IL-6 -/- animals were included in this study. Tumor volume was calculated as 

length×width2×0.52 and is reported as mm3.  
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In our ELISA study, we grouped all animals as wildtype and IL-6 -/- cohorts. 

Among wildtype animals, we observed that mice with TRAMP-C2 allografts had 

higher IL-6 serum levels (Figure 13, Table 5). Interestingly, the animals with 

100RC2A allografts did not have elevated IL-6 in their serum (Table 5, SHY47 and 

SHY49). 

Mouse IL-6 was not expressed by the allografted TRAMP-C2 cells  

 To determine if the circulating mouse IL-6 detected by ELISA came from the 

allografted tumor cells or from another source, CISH was applied to all of the 

allografted tumors. 5.8s rRNA and dihydrodipicolinate reductase gene (dapB, a 

bacterial gene) were chosen as positive and negative controls, respectively. Each 

sample was stained with a mouse IL-6 probe along with these positive and negative 

control probes. Positive signal was detected for 5.8s rRNA (Figure 14A) and dapB 

was negative (Figure 14B). Interestingly, some IL-6 positive cells could be detected 

within the tumor stroma (Figure 14D), however, allograft tumor cells did not express 

any mouse IL-6 mRNA (Figure 14C). This data corresponds to our human study in 

that prostate tumor cells were not found to express IL-6 mRNA (see Chapter 2).  

We have also applied the mouse IL-6 CISH assay to liver, kidney, and spleen, but 

none of the target organs were positive (data not shown). Therefore, the cellular 

origin(s) of the elevated circulating IL-6 in this model system remains unclear.  
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Figure 13. Serum IL-6 levels were elevated in wildtype mice with TRAMP-C2 

tumors.   

Mice were grouped as wildtype and IL-6 -/- cohorts, and serum was assayed for IL-6 

with ELISA. Interestingly, wildtype mice that grew TRAMP-C2 allografts had 

elevated serum IL-6 levels. Samples were run in duplicate. A subset of the nine 

C57BL/6J wildtype mice and seven IL-6 -/- mice that received allografts were 

included in this ELISA study (see Table 5).  
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Table 5. Mouse IL-6 ELISA.  

A high-sensitivity mouse IL-6 ELISA was performed (eBioscience). 

Animal 
Number 

Animal 
Genetic Type 

Allograft 
Tumor type 

Tumor size 
(mm3) 

Serum IL-6 
(pg/ml) 

SHY87 Wild type TRAMP-C2 2642.8 218.187 

SHY88 Wild type TRAMP-C2 1431.7 134.706 

SHY89 Wild type TRAMP-C2 2568.5 56.154 

SHY90 Wild type  TRAMP-C2 2062.7 61.929 

SHY91 Wild type TRAMP-C2 2513.2 53.766 

SHY92 Wild type TRAMP-C2 2532.1 347.907 

SHY93 Wild type TRAMP-C2 2096.9 58.878 

SHY94 IL-6 knockout TRAMP-C2 774.3 40.302 

SHY95 IL-6 knockout TRAMP-C2 685.9 0 

SHY96 IL-6 knockout TRAMP-C2 47.4 0 

SHY97 IL-6 knockout TRAMP-C2 133.5 0 

SHY98 IL-6 knockout TRAMP-C2 235.3 0 

SHY99 IL-6 knockout TRAMP-C2 171.6 9.567 

SHY100 IL-6 knockout TRAMP-C2 649.7 0 

SHY47 Wild type  100RC2A 4018.121 0 

SHY49 Wild type 100RC2A 0 0 

DBS41 Wild type  Negative control 0 0 
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Figure 14. Mouse IL-6 mRNA was not detected in TRAMP-C2 allograft tumors.  

Tumor specimens were selected for mouse IL-6 CISH (Advanced Cell Diagnostics). 

Shown are representative examples of allograft tumor section with (A) positive 

control staining for 5.8s rRNA (housekeeping gene, positive control), and (B) 

negative staining for dihydrodipicolinate reductase gene (a bacterial gene). (C) 

Allograft tumor cells do not express mouse IL-6 mRNA. (D) Cells expressing mouse 

IL-6 mRNA are detectable in the stromal compartment but are not TRAMP-C2 cells.  
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Phospho-STAT3 might not be the downstream target of IL-6 signaling pathway 

in TRAMP-C2 tumors   

There are three pathways: ERK-MAPK, PI3K-Akt, and JAK-STAT that are 

indicated as possible downstream elements of IL-6 signaling in prostate cancer. 

Previous research has suggested that STAT3 is the most crucial downstream target of 

IL-6 for maintenance of the tumor progenitor cell phenotype in prostate cancer 

development [92]. In order to determine if IL-6 is possibly signaling through 

phorpho-STAT3 (p-STAT3), we chose to assess p-STAT3 levels in our TRAMP-C2 

allograft studies. 

To optimize an IHC assay for p-STAT3, we transiently stimulated HeLa cells 

with interferon  to induce expression of p-STAT3 in these cells to use as a positive 

control (Figure 15 A, B). Unexpectedly, using this optimized p-STAT3 IHC assay, we 

did not observe any significant difference in p-STAT3 levels in TRAMP-C2 allografts 

grown in C57BL/6J wildtype versus IL-6 -/- mice (Figure 15 C, D). p-STAT3 

expression was detected in TRAMP-C2 tumors in mice from both genotypes. One 

possible reason is that, even though suppression of IL-6 signaling may inhibit 

permanent activation of STAT3, p-STAT3 may also have IL-6-independent effects that 

can be activated by other cytokines [150].  

MC38 tumor development is IL-6 independent  

1.5 x 106 MC38 colon adenocarcinoma cells were subcutaneously injected into 

ten C57BL/6J wildtype and thirteen IL-6 -/- mice. MC38 allograft tumors grow faster 

than 100RC2A and TRAMP-C2. At 7 days post injection, palpable allograft tumors 

could be measured in both groups. Unlike what was observed in the TRAMP-C2 

model where until 25 days post-injection, palpable tumors could only be observed in  
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Figure 15. Phospho-STAT3 activation was independent of the IL-6 signaling 

pathway in TRAMP-C2 tumors in IL-6 -/- mice.  

(A, B) p-STAT3 antibody (Tyr705, Cell Signaling, 9145) was used for IHC. 

Formalin-fixed, paraffin- embedded (FFPE) HeLa cells showed no detectable 

p-STAT3 on the untreated cells (A), but strong positive signals on IFN-alpha-treated 

cells at 100 ng/ml (B). (C, D) TRAMP-C2 allograft tumors from both wild type (C) 

and IL-6 -/- mice (D) were positive for pSTAT3 staining. Representative examples of 

allograft tumor sections are shown.  
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wildtype mice, MC38 allograft tumors had a tumor growth doubling time of about 3-4 

days around 7 days after injection in both genotypes of mice. In fact, mice had to be 

sacrificed at day 17 post-inoculation due to tumors that were doubling every other day 

and growing close to 2 cm in width or length at that point (Figure 16A).  

Interestingly, in the MC38 model, tumor development appears to be independent 

of IL-6. We did not observe any significant tumor growth difference between the two 

groups. Unlike the TRAMP-C2 allografts, MC38 allograft tumors did not grow larger 

in the wildtype mice. In fact, IL-6 -/- mice even developed a bit larger tumors (about 

17% larger, but with p=0.354) at day 17 post-injection (Figure 16B). 
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Figure 16. MC38 allograft tumor development is IL-6 independent.  

(A) MC38 colon adenocarcinoma cells (1.5 x 106) were injected into ten C57BL/6J 

wildtype (blue) and thirteen IL-6 -/- animals (green). Interestingly, in this model, 

tumor development appears to be independent of IL-6. (B) At day 17 post-inoculation, 

MC38 cells grew in both mouse genotypes with no significant size difference. The 

average tumor size of wildtype mice was 1961.695 mm3; while IL-6 -/- mice had an 

average tumor size of 2308.551 mm3, which is about 17% larger than wildtype mice. 

Tumor sizes were measured in 3-4 days periods, and tumor volumes were evaluated 

as length×width2×0.52 and are reported as mm3. 
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3.5 Conclusions 

TRAMP-C2 allograft as a novel model to study pro-tumorigenic role of IL-6  

In non-diseased states, mouse circulating IL-6 levels are less than 10 pg/mL. 

During infection and/or inflammatory processes, serum IL-6 levels will be elevated. 

In our ELISA study, the cohort of wildtype mice with TRAMP-C2 tumors had 

elevated serum IL-6 levels, which indicated that mouse circulating IL-6 levels were 

associated with tumor growth in the TRAMP-C2 allograft model (Figure 13). This 

result is consistent with previous studies in prostate cancer patients that high 

circulating levels of IL-6 tend to associate with a more aggressive clinical course of 

the disease, which suggests that this TRAMP-C2 allograft model might be valuable to 

study a pro-tumorigenic role for IL-6 [15, 16, 142].  

In addition, TRAMP-C2 allografts in IL-6 -/- animals resulted in delayed tumor 

growth (Figure 12). However, IL-6 depletion did not affect colon adenocarcinoma 

MC38 cell growth (Figure 16), which indicates this tumor line grows in an IL-6 

independent manner. In summary, our studies provided preliminary evidence that IL-6 

may be required for prostate tumor growth. The ELISA data further suggests that 

elevated systemic IL-6 levels as opposed to local IL-6 production in the tumor may be 

involved in prostate tumor growth regulation. Unfortunately, at this time there are no 

other prostate cancer cells lines from the appropriate mouse background strain to test 

in this model. Future efforts will involve testing other C57BL/6J-derived prostate 

cancer cell lines (if and when they become available), as well as other cancer types 

such as the breast cancer cell line EO771, in this model system.  
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Phospho-STAT3 may not be the downstream target of IL-6 signaling pathway in 

TRAMP-C2 allografts 

There are multiple downstream pathways that might be targeted by IL-6 and 

IL-6R. Previous research has shown that binding of IL-6 to the IL-6-receptor can 

activate three major signaling pathways: the Janus tyrosine family kinase 

(JAK)-signal transducer and activator of transcription (STAT) pathway, the 

extracellular signal-regulated kinase 1 and 2 (ERK1/2)-mitogen-activated protein 

kinase (MAPK) pathway, and the phosphoinositide 3-kinase (PI3-K) regulated 

phosphor-Akt pathway [92].  

Among these, phospho-STAT3 (p-STAT3) has been considered as one of the 

most important targets of IL-6. In fact, studies have shown that IL-6 along with 

p-STAT3 are important for prostate cancer development [17, 137-140]. In this study, 

we performed p-STAT3 IHC to determine if the IL-6 signaling pathway can directly 

recruit STAT3. However, in our study, p-STAT3 did not appear to be acting in an IL-6 

dependent pattern. Instead p-STAT3 was activated in both wildtype and IL-6 -/- 

animals (Figure 15).  

In future studies we aim to determine if there are other possible downstream 

factors involved in this IL-6 depletion model that contribute to prostate cancer 

development.  

IL-6 might be a therapeutic target to prevent prostate cancer growth  

Anti-interleukin-6 agents are a recent class of therapeutics that have been widely 

used to treat many diseases successfully including in patients with refractory 

cutaneous lupus and urticarial vasculitis, rheumatoid arthritis, B-lymphoproliferative 

disorder, plasma cell leukemia, lymphoma, and myeloma [52, 151-158]. The very first 
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approved antibody against IL-6R is tocilizumab (Actemra) which can directly act 

against the IL6-receptor [159, 160]. Since the 1990s, a mouse monoclonal antibody to 

IL-6 (murine mAbs BE-4 and BE-8) has been used to study blockade of IL-6 as a 

therapeutic target against prostate cancer in mice. More recently, a chimerised 

monoclonal antibody targeting IL-6 named CNTO 328 (Siltuximab) was developed to 

inhibit the binding of IL-6 to the IL-6-receptor [157]. Though IL-6 antagonists have 

been reported to prevent disease progression in some instances [52, 151-158], the 

effect of the antagonist in prostate cancer treatment is still questionable. CNTO 328 

used in advanced prostate cancer clinical studies did not show an improvement [143, 

161-163].   

In clinical trials, CNTO 328 has again shown disparate results. Some have 

reported that Siltuximab can significantly inhibit tumor growth, decrease serum PSA 

levels, and increase survival in hormone-dependent LuCaP prostate cancer xenografts 

[161]. However, other reports indicate that with CNTO 328 treatment, tumor volume 

was reduced although the difference did not reach statistical significance [143]. A 

phase II trial of CNTO 328 in 53 patients showed median progression-free and overall 

survival were 1.6 and 11.6 months, respectively, although the CNTO 328 cohort did 

not show an improvement compared to patients with chemotherapy in this study [162]. 

Another phase II trial reported that when combined with mitoxantrone/prednisone, 

CNTO 328 did not improve progression-free survival versus mitoxantrone/prednisone 

alone [163]. Further studies need to be conducted to improve IL-6 antagonist effects.  

In our study, we demonstrate that IL-6 depletion may delay TRAMP-C2 allograft 

tumor growth but not MC38 allograft tumor growth. Our data provided intriguing 

initial evidence that IL-6 may be involved specifically in prostate tumor growth as 

opposed to other cancer types, although more prostatic and other types of tumor cell 

http://en.wikipedia.org/wiki/Tocilizumab
http://en.wikipedia.org/w/index.php?title=IL6-receptor&action=edit&redlink=1
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lines would need to be examined before a definitive pattern can be determined. In 

addition, ELISA data suggested that serum IL-6 levels were associated with tumor 

growth in the TRAMP-C2 allograft model, which is consistent with previous studies 

that prostate cancer patients with higher serum IL-6 tend to associate with a more 

aggressive clinical course. Along this road, our TRAMP-C2 allograft model might be 

valuable to study a pro-tumorigenic role for IL-6 and/or to test effects of IL-6 

antagonists toward prostate cancer therapy. 
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IV. MULTILOCUS SEQUENCE TYPING (MLST) ANALYSIS OF 

PROPIONIBACTERIUM ACNES ISOLATES FROM RADICAL 

PROSTATECTOMY SPECIMENS 

4.1 Abstract 

Inflammation is commonly observed in radical prostatectomy specimens, and 

evidence suggests that inflammation may contribute to prostate carcinogenesis. 

Multiple microorganisms have been implicated in serving as a stimulus for prostatic 

inflammation. The pro-inflammatory anaerobe, Propionibacterium acnes, is 

ubiquitously found on human skin and is associated with the skin disease acne 

vulgaris. Recent studies have shown that P. acnes can be detected in prostatectomy 

specimens by bacterial culture or by culture-independent molecular techniques. 

Radical prostatectomy tissue samples were obtained from 30 prostate cancer 

patients and subject to both aerobic and anaerobic culture. Cultured species were 

identified by 16S rDNA gene sequencing. P. acnes isolates were typed using 

multilocus sequence typing (MLST).  

Our study confirmed that P. acnes can be readily cultured from prostatectomy 

tissues (7 of 30 cases, 23%). In some cases, multiple isolates of P. acnes were cultured 

as well as other Propionibacterium species, such as P. granulosum and P. avidum. 

Overall, 9 of 30 cases (30%) were positive for Propionibacterium spp. MLST 

analyses identified 8 different sequence types (STs) among prostate-derived P. acnes 

isolates. These STs belong to two clonal complexes, namely CC36 (type I-2) and 

CC53/60 (type II), or are CC53/60-related singletons.  

In conclusion, MLST typing results indicated that prostate-derived P. acnes 
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isolates do not fall within the typical skin/acne STs, but rather are characteristic of STs 

associated with opportunistic infections and/or urethral flora. The MLST typing 

results argue against the likelihood that prostatectomy-derived P. acnes isolates 

represent contamination from skin flora. 

4.2 Introduction 

In the previous chapters, we have illustrated potential functions of IL-6 as a 

paracrine cytokine that may support prostate tumor growth. In our next studies, we 

aimed to examine how IL-6 may be involved in sustaining long-term 

bacterial-induced chronic prostatic inflammation that may in turn contribute to 

prostate cancer development. To do this, we sought to develop a mouse model of 

bacteria-induced prostatitis using a clinically relevant strain of bacteria. In this chapter, 

we describe a series of studies aimed at typing strains of P. acnes isolated from 

radical prostatectomy specimens to be used for this specific purpose.   

Histologic specimens of prostate cancer tissue frequently exhibit unexplained 

acute and chronic inflammation and inflammation-associated lesions [40, 46, 129]. The 

development of prostatic inflammation may be related to microbial infection, as 

previous studies have demonstrated the presence of multiple microbial species in the 

prostates of prostate cancer patients [60, 74]. Interestingly, many of the organisms 

identified are consistent with genera associated with inflammation-associated 

conditions including bacterial prostatitis and/or urinary tract infections [60]. 

Propionibacterium acnes (P. acnes) is a bacterium of particular interest in relation to 

prostate cancer. P. acnes is a pro-inflammatory bacterium that is considered to be the 

etiological agent in the skin condition acne vulgaris, and has also been reported in 

association with other inflammatory conditions including endocarditis, sarcoidosis and 
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post-surgical infections [73]. P. acnes was first reported in association with prostate 

inflammation and cancer in 2005 [74]. Interestingly, this study reported that 

prostatectomy specimens from which P. acnes could be cultured were more likely to be 

inflamed, leading to the hypothesis that P. acnes-mediated inflammation may 

contribute to prostate carcinogenesis [74]. Several subsequent studies have also 

reported on the presence of P. acnes in prostate specimens [60, 75, 82]. Although not 

all studies have shown a positive association, the correlation between acne and/or 

plasma antibodies to P. acnes and prostate cancer incidence and outcomes has also 

been examined in multiple epidemiological studies [79-81]. In addition, in vitro studies 

have demonstrated that P. acnes is capable of inducing a strong inflammatory response 

in prostate cell lines [75-77]. 

Initially, sequencing of P. acnes tly and recA genes was used to categorize P. 

acnes strains into phylotypes I, II, and III [164, 165]. A more recent strategy for 

typing bacterial strains is called multilocus sequence typing, or MLST, which has 

dissolved the population structure of the species P. acnes. MLST generates “sequence 

types (STs)” based on DNA sequencing and the determination of different alleles of 

internal fragments of housekeeping genes [166, 167]. Related STs can form “clonal 

complexes” (CCs) based on their similarity to a central allelic profile. The MLST 

typing scheme for P. acnes again identified three divisions of P. acnes strains (I, II, 

and III) [166]. Division I was further subdivided into I-1a, I-1b, and I-2, and further 

into CCs. MLST analysis performed on 210 isolates of P. acnes from healthy 

individuals, patients with moderate to severe acne, and patients with various 

opportunistic infections (abscess, wounds, endocarditis, bursitis, hip prosthesis, etc.) 

demonstrated that severe acne isolates were predominantly classified into CCs 

belonging to group I-1a and I-1b strains, i.e. CC3, CC18, and CC31, whereas isolates 
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associated with opportunistic infections were predominantly classified into CCs 

belonging to group I-2, II and III strains, i.e. CC36, CC53/60 and CC43 [166].  

P. acnes is an ubiquitous skin bacterium and is also reported to be a common 

culture contaminant. It is therefore often difficult to determine if the presence of P. 

acnes in surgical specimens (including radical prostatectomy specimens) has arisen 

from contamination from the skin of the patient and/or the medical staff or whether it 

represents a true infection of clinical significance [73, 84-86]. The present study was 

undertaken to perform MLST analysis of P. acnes isolates from radical prostatectomy 

specimens in order to determine if the sequence types of these isolates are similar to 

the sequence types associated with healthy or diseased human skin or other anatomic 

locations and disease conditions. 

4.3 Materials and Methods 

Prostate tissue samples.  

All specimens were collected under a Johns Hopkins Internal Review Board (IRB) 

approved protocol. Post-prostatectomy tissue samples were obtained from 30 patients 

undergoing treatment for prostate cancer at the Johns Hopkins hospital. The clinical 

and pathological parameters of the patient samples are listed in Table 6. A total of 10 

tissue cores from peripheral prostate were collected into 2 ml of sterile PBS using a 

Bard Biotpy gun and needles as previously described [60].  

Bacterial culture.  

The prostate tissues were first minced using sterile razor blades. Minced tissues 

were then equally divided into 5 mL of culture broth in polystyrene tubes for aerobic 

and anaerobic culture (BD Biosciences). For aerobic culture, minced tissues were 
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Table 6. Clinical and Pathological Parameters of Patient Samples for Bacterial 

Culture 

 

Parameter Value 
Total number of patients 30 
Mean age (range) 57 (43-74) 
Gleason Score (number of patients)  
6 8 
3+4=7 11 
4+3=7 6 
8 2 
9 3 
TNM stage  
T2 14 
T3 16 
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cultured in Luria-Bertani (LB) broth (BD Biosciences) at 200 rpm at 37 oC in a shaking 

incubator for a minimum of 1 week. Most positive aerobic cultures were positive for 

growth within 24-48 hrs. For anaerobic culture, minced tissues were cultured in Brain 

Heart Infusion broth (BD Biosciences) in anaerobic pouches (GasPak EZ Anaerobe 

Gas System, BD Biosciences) at 37 oC for at least 2 weeks. Most positive anaerobic 

cultures had visible growth within 1 week. 

Strain identification.  

Bacteria from cultures positive for growth was harvested and gDNA was isolated 

using the modified protocol for Gram positive bacteria and the QIAamp DNA mini kit 

(Qiagen) or the MasterPure™ Gram Positive DNA Purification Kit (Epicentre). A 

universal primer set designed against the bacterial 16S rDNA gene, Ecoli9-F and 

Loop27-R was used for PCR as previously described [168]. The PCR cycling 

parameters were as follows: 94oC for 2 min, 35x cycle of 94oC for 30 s, 53oC for 30 s 

and 72oC for 1 min and 72oC for 5 min. Purified PCR products were sent for Sanger 

Sequencing at the DNA Analysis Facility at Johns Hopkins. Sequencing results were 

analyzed by Standard Nucleotide BLAST search against reference bacterial genomic 

sequences (NCBI).  

Multilocus sequence typing (MLST).  

For bacterial isolates that were identified as P. acnes, MLST was performed per 

the typing scheme described by Lomholt and Kilian in 2010 [166]. Nine housekeeping 

genes were amplified by PCR and used for sequence analysis (cel, coa, fba, gms, lac, 

oxc, pak, recA, and zno) [166]. In two P. acnes strains (from patients #20 and #22), we 

were unable to amplify the oxc allele and the zno allele. This was presumably due to 

mismatches in the primer sets for these strains using the Lomholt and Kilian MLST 
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scheme. In these cases, the following replacement primers were used: oxc2-F 

5’-AGGCGTGCTGCCGGAAAAG-3’, oxc2-R 5’-CACCACCGGCGTCAGGATT-3’, 

and zno2-R 5’-TCATATGCCGCGTCGACCTC-3’. The PCR cycling parameters for 

all housekeeping genes except for recA were as follows: 96oC for 40 s, 35x cycle of 

94oC for 35 s, 55oC for 40 s and 72oC for 40 s and 72oC for 7 min. The PCR cycling 

parameters for recA were as follows: 95oC for 3 min, 35x cycle of 95oC for 1 min, 55oC 

for 30 s and 72oC for 90 s and 72oC for 10 min. Purified PCR products were sent for 

Sanger Sequencing at the DNA Analysis Facility at Johns Hopkins or Genomic 

Services at Beckman Coulter Genomics. Sequence type (ST) of each isolate was 

determined using a publically available MLST database (http://pacnes.mlst.net) [166]. 

All sequences will be submitted to GenBank (Acession #’s TBD). 

The identification of clonal complexes (CCs) and their founders based on allele 

profiles was achieved by eBURST analysis at http://eburst.mlst.net/ using the eBURST 

version 2 clustering algorithm, which was developed and is hosted by Imperial College 

London and is based on principles originally described by Feil et al. [169].  

http://eburst.mlst.net/
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4.4 Results  

Bacterial culture. 

The results of bacterial culture from prostatectomy tissues are shown in Table 7. 

Half of the patient samples were negative for bacterial growth. As determined by 16S 

rDNA sequence analysis, in the remaining cases, P. acnes was the most frequently 

cultured species, isolated from 23% of patient samples. Other species cultured from 

prostatectomy tissues included P. avidum (7%), P. granulosum (3%), Staphylococcus 

epidermidis (17%), and Corynebacterium glucuronolyticum (7%). As shown in Table 8, 

in several cases either more than one species of bacteria or more than one strain of P. 

acnes was cultured. Interestingly, in two cases, P. acnes was isolated from an aerobic 

culture.  

There were no significant correlations between P. acnes culture status and patient 

age, Gleason score, or tumor stage. Interestingly, there was a significant correlation 

between tumor grade (pT2 vs. pT3) and cases that were positive for culture of S. 

epidermidis (Fisher’s exact test, p = 0.045, Table 9).  

MLST analysis of prostatectomy-derived P. acnes isolates.  

In all, 9 different strains of P. acnes from the present study were cultured and 

subject to MLST analyses (Table 8). In addition to these isolates, we also performed 

MLST typing on a prostatectomy-derived P. acnes isolate from a previous study [60]. 

The results of MLST analysis are shown in Table 10. We observed 8 different STs 

among the prostatectomy-derived P. acnes isolates (Table 10). In most cases (6 of the 8 

STs), the allelic profile of the P. acnes strains could not be matched completely with the 

known STs defined in the MLST database (differing at 1-2 alleles) [166]. We therefore 

assigned new STs (ST61 and ST79-83). An eBURST analysis revealed that   
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Table 7. Bacteria Isolated from Prostatic Tissue of 30 Unselected Patients with 

Prostate Cancer 

 
Organism No. Patients* (%) 
No bacterial growth 15 (50%) 
Corynebacterium glucuronolyticum 2 (7%) 
Propionibacterium acnes 7 (23%) 
Propionibacterium avidum 2 (7%) 
Propionibacterium granulosum 1 (3%) 
Staphylococcus epidermidis 5 (17%) 

* More than one species was cultured from two cases  
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Table 8. Prostate Tissue Samples Positive for Bacteria Growth and Species 

Identification by 16S rDNA Sequence Analysis 

 

* Closest match to GenBank reference genomic sequence (% similarity, Accession #). 
  

Patient 
# 

Gleason 
Grade 

Stage Aerobic Bacteria* Anaerobic bacteria* 

5 3+3=6 T2 P. acnes (99%, NC_017535) P. acnes (99%, NC_017535) 

8 3+4=7 T3A - S. epidermidis (100%, NC_004461) 

9 3+4=7 T2 - P. acnes (99%, NC_017535) 

10 3+4=7 T3B P. acnes (99%, NC_017535) 1) P. acnes (100%, NC_017535) 
2) P. avidum (99%, NZ_JH165055) 

11 3+4=7 T2 - P. granulosum (99%, NR_025276) 

15 4+4=8 T3A S. epidermidis (100%, NC_004461) P. acnes (99%, NC_017535) 

16 3+4=7 T3A - P. avidum (99%, NZ_JH165055) 

19 3+4=7 T2 - P. acnes (99%, NC_017535) 

20 3+3=6 T2 - P. acnes (100%, NC_017535) 

22 4+3=7 T3A - P. acnes (99%, NC_017535) 

23 4+3=7 T3A - C. glucuronolyticum 
(97%, NZ_GG667131) 

24 5+4=9 T3B,N1 S. epidermidis (99%, 
NZ_GG696777) 

 

25 4+5=9 T3A S. epidermidis (100%, NC_004461)  

26 4+3=7  T2  C. glucuronolyticum 
(100%, NZ_GG667131) 

27 4+3=7 T3A  S. epidermidis (100%, NC_004461) 
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Table 9. Association Between Prostate Cancer Pathological Stage and Bacterial 

Culture Status 

 

Stage No . 
cases P. 
acnes + 

No. 
cases P. 
acnes - 

p 
value* 

No. cases 

S. epidermidis 
+ 

No. cases 

S. epidermidis 
- 

p 
value* 

pT2 4 10  0 14  

pT3 3 13 0.6746 5 11 0.0447 

* As determined by Fisher’s exact test 
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Table 10. MLST Profiles of Prostate-Derived P. acnes Isolates  

 

 
Patient # MLST profile  

(cel-coa-fba-gms-lac-oxc-pac-recA-zno)  
ST+ CC++ Division+ 

5 (aerobic)  3-9-7-11-7-3-5-6-9  61 Singleton II  

5  3-13-8-11-7-3-11#-6-9  79 Singleton II 

9  5-9-3-3-4-3-5-2-9  36 36 I-2  

10 (aerobic) 3-13-7-11-7-7-5-6-9  80 53 II  

10-1  3-13-11#-11-7-3-5-6-9  81 Singleton II  

15  3-9-7-11-7-3-5-6-9 61 Singleton II  

19  5-9-3-3-2-3-5-2-9  38 36 I-2  

20  3-13-8-11-7-7-5-6-14  82 53 II  

22 3-13-7-11-7-7-5-6-14 83 53 II 

PA-2* 5-9-3-3-4-3-5-2-9  36 36 I-2  

 
+ Based on [166]  
++ As determined by eBURST analysis 

* P. acnes isolate from previous prostate cancer study [60] 
# Represents a new allele 
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prostatectomy tissue-derived P. acnes strains belong to two CCs: CC36, the 

representative CC of group I-2 strains, and CC53/60, a major CC of group II strains 

(Figure 17). The newly assigned STs (ST61 and ST79-83) are all type II strains; they 

are either part of or closely related to CC53/60.  

Comparison of prostatectomy-derived P. acnes CCs and STs to previously 

characterized strains.  

We compared the results of MLST analysis of prostatectomy tissue-derived P. 

acnes strains to previous MLST studies that have been conducted on 210 P. acnes 

isolates from human skin, severe acne, and opportunistic infections [166] and 75 

human skin and acne-associated isolates from a cohort in the Unites States included as 

part of the Human Microbiome Project (Figure 18) [170]. MLST analysis was 

previously performed on these strains [171]. Human skin isolates are distributed across 

the spectrum of CCs, and are most predominantly strains of group I-1a (CC3, CC18, 

and CC28). Strains isolated from opportunistic infections [166] most often belong to 

CC36 and CC53/60. Likewise, prostatectomy-derived P. acnes isolates were identified 

as CC36 and CC53/60 strains as well as CC53/60-related singletons. Interestingly, as 

shown in Figure 19, prostatectomy-derived P. acnes isolates do not overlap with CCs 

determined to be associated with isolates from severe acne [166].  

4.5 Discussion and Conclusions  

The association between P. acnes and disease conditions has been difficult to 

confirm largely because P. acnes is the most predominant species found on human skin 

and is reported to be a common culture contaminant. Even the strongest association 

between P. acnes and a disease condition - as a causative agent in acne vulgaris - 

remains controversial [83]. Although multiple studies have now reported on the ability   
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Figure 17. P. acnes ST distribution based on MLST allele profiles. 

Population snapshots of P. acnes generated by eBURST analysis based on the MLST 

allele profiles.      Prostatectomy-derived P. acnes strains are associated with these 

STs. 
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Figure 18. Comparison of prostatectomy-associated P. acnes strains.  

Compare prostatectomy-associated P. acnes strains to previously described strain 

collections of isolates from skin and opportunistic infections [166] and skin isolates 

from a Human Microbiome Project (HMP) skin cohort. Singletons ST61, ST79 and 

ST81 are related to CC53/60 and are grouped in this CC for the purpose of this figure.  
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to culture P. acnes from prostate cancer tissues [60, 74], the question still remains as to 

whether the presence of this species represents a true prostatic infection or 

contamination from patient skin, the medical team, or the surgical environment.  

The presence of bacteria in prostatectomy tissues  

There are few studies that have been performed to characterize the normal 

microbial constituents of the adult male urethral flora. Many of these studies have 

relied on urine culture and the most commonly recognized species thought to inhabit 

the male urethra include Staphylococcus sp., Corynebacterium sp., Enterococcus sp., 

and streptococci [172, 173]. Interestingly, in addition to Propionibacterium sp., two of 

these urethra flora-associated species were cultured from prostatectomy tissues in the 

present study (Staphylococcus sp. and Corynebacterium sp.). Studies that have utilized 

PCR-based molecular techniques have also identified P. acnes in the urine of adult 

males [174, 175]. In the study by Shannon et al. [174], urethral P. acnes isolates were 

found to be associated with phylogenetic clusters IB and II (analogous to I-2 and II in 

[166]). In all, the results of the present study indicate that the bacterial isolates obtained 

from prostatectomy specimens may reflect urethral flora as opposed to skin flora. This 

would support the theory that these bacterial strains may infect the prostate, as the 

proposed route that bacteria may infect the prostate is via the urethra. On the other hand, 

the presence of these species in prostatectomy tissues could also represent 

contamination of the prostatectomy specimen from urethral flora, and this remains a 

topic of future studies.   

Prostate-derived P. acnes isolates are unlikely from skin contamination 

In the present study, we aimed to begin to address this question by employing a 

newly established MLST scheme to compare the STs/CCs of prostatectomy 
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tissue-derived P. acnes isolates to previous collections of P. acnes isolates from healthy 

skin, severe acne, and opportunistic infections. The results of these analyses indicated 

that the prostatectomy-derived P. acnes isolates included in this study do not overlap 

with STs/CCs associated with severe acne, but instead overlap with CCs associated 

with opportunistic infections.  

Healthy skin-associated isolates are somewhat uniformly distributed among CCs 

(with the exception of ST18 strains that are thought to represent an “epidemic clone” 

of P. acnes that is frequently associated with severe acne and prevalent on human skin 

[166]), and prostatectomy tissue-derived P. acnes isolates did fall within the same CCs 

as some isolates from healthy skin. However, if the prostatectomy tissue-derived P. 

acnes isolates were simply reflective of normal skin flora, they would be expected to 

fall within a broad spectrum of CCs (and especially within the I-1a group) and not 

confined to distinct CCs in the I-2 and II groups. Instead, none of the prostatectomy 

tissue-derived P. acnes isolates belong to group I-1a. Moreover, some prostatectomy 

tissue-derived P. acnes isolates are unique and represent new STs within group II. 

Association between prostate cancer pathological stage and bacterial culture 

status 

We discovered an interesting significant correlation between the ability to culture 

S. epidermidis from prostatectomy tissues and advanced stage (T3) prostate cancer 

(Table 9). S. epidermidis has been previously associated with chronic bacterial 

prostatitis and is therefore implicated in the pathogenesis of prostatic inflammation 

[176, 177]. The isolation of S. epidermidis from prostatectomy tissues has also been 

previously reported [60, 74]. On the other hand, it is known that necrotic tumors can 

become infected with bacteria from endogenous sources, especially when they occur 



88 
 

next to a site where bacteria flora resides (such as the urethra) [178]. Additional studies 

must be conducted to determine if this association holds up in a larger sample size and 

whether the relationship is causal or consequent in regards to tumorigenesis. 

Since the MLST typing results indicated that prostate-derived P. acnes isolates do 

not fall within the typical skin/acne sequence types, but rather are characteristic of 

sequence types associated with opportunistic infections and phylogenetic clusters 

associated with urethral flora, we decided to use one of these prostatectomy-derived 

strains of P. acnes (called PA-2) to inoculate into IL-6 -/- mice and study its effect on 

the induction of bacterial prostatitis. 

This work was published in The Prostate (73(7): p. 770-7, 2013).   
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V. IL-6 MAY BE REQUIRED TO SUSTAIN BACTERIA-INDUCED 

LONG-TERM CHRONIC INFLAMMATION IN THE PROSTATE  

5.1 Abstract  

We have previously developed a mouse model of chronic prostatic inflammation 

using a human prostatectomy-derived strain Propioniobacterium acnes (PA-2) using 

wildtype C57BL/6J mice. In this model, we found that PA-2 infected animals 

developed acute and then chronic inflammation that was restricted to the mouse dorsal 

prostate lobe. Surprisingly, chronic inflammation in this model was found to persist 

up to at least a year post-inoculation.  

Interestingly, when we performed chromogenic in situ hybridization (CISH) on 

wildtype mouse dorsal prostate 2 weeks post-inoculation with P. acnes, we observed 

IL-6 mRNA expression in areas of acute inflammation. This was highly analogous to 

the IL-6 expression pattern in association with acute inflammation that we observed in 

the human prostate (see Chapter 2). These data indicated that IL-6 might be involved 

in the induction of bacterial prostatitis. Furthermore, as previously described in detail, 

we suspect that prostatic inflammation may contribute to the carcinogenic process. 

In this study, the same P. acnes strain (PA-2) was used to inoculate IL-6 -/- mice 

so that we could conduct a direct histopathological comparison to what we previously 

observed in wildtype mice. IL-6 -/- mice were inoculated with PA-2 and animals we 

sacrificed 2 weeks, 8 weeks, 6 montha, and 1 year post-inoculation. We found that the 

dorsal prostate of IL-6 -/- mice initially developed severe inflammation that subsided 

significantly by 2 months post-inoculation. Surprisingly, unlike wildtype animals, 

IL-6 -/- mice did not sustain chronic inflammation at 6 months or beyond. These data 
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would support the hypothesis that IL-6 may be required to sustain long-term chronic 

prostatic inflammation.  

5.2 Introduction 

P. acnes as a possible agent for tumor-promoting prostatitis. 

In a previous study, our team developed a mouse model of chronic prostatic 

inflammation using a human prostatectomy-derived strain of P. acnes (PA-2) [179]. 

Wildtype C57BL/6J mice were inoculated with PA-2 at 10 weeks of age and animals 

were sacrificed at 1, 2, and 8 weeks, 6 months, and 1 year post-infection. Acute and 

then chronic inflammation was observed specifically in the dorsal prostate in this 

model after PA2 inoculation. Unlike bacterial prostatitis caused by species such as E. 

coli that can induce an acute inflammatory response within 24 hours post-infection, P. 

acnes infection-induced inflammation is somewhat delayed, with no inflammation 

observed until 1 week post-inoculation. In this model, chronic inflammation can 

persist for at least a year post-inoculation in wildtype mice. To further confirm if P. 

acnes infection can induce cellular proliferation, Ki-67, a proliferation-associated 

marker, was assayed by IHC. An increased number of Ki-67 positive epithelial cells 

were present in inflamed areas of the dorsal prostate at 1 and 2 weeks post-inoculation, 

and even after inflammation had subsided somewhat at 8 weeks, increased numbers of 

Ki-67 positive epithelial cells could be observed [179]. This model is valuable 

because it may serve as an in vivo model to study additional inflammation-associated 

prostatic diseases [179]. Once again, the model suggested that P. acnes can infect the 

mouse dorsal prostate lobe and induce long-term chronic inflammation.  
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 IL-6 knockout mice as a model to study the possible role of IL-6 in chronic 

prostate inflammation. 

Uncontrolled IL-6 production has been implicated in many disease processes. In 

HIV patients, for example, an infected cohort had higher serum IL-6 levels compare 

to healthy individuals [180]. Yet, some animal studies also suggest that mice with IL-6 

depletion are more prone to infection [40]. IL-6 knockout (IL-6 -/-) mice have been 

utilized in multiple studies to determine how IL-6 plays a role in resistance to 

bacterial infections. One group showed that when IL-6 -/- mice were infected with C. 

albicans, the mice couldn’t initiate a Th1 immune response, and this resulted in more 

infection [181]. In another study, L. monocytogenes was introduced into wildtype and 

IL-6 -/- mice, and the knockout animals showed uncontrolled bacterial growth and 

also had a higher mortality rate at 1 week post-inoculation [182].  

Elevated systemic IL-6 levels have also been associated with prostate cancer 

[113]. Our studies described in Chapter 2 and Chapter 3 of this thesis demonstrate the 

possible paracrine role of IL-6 in prostate cancer development, and its potential 

pro-tumorigenic role in sustaining tumor growth. Yet, IL-6 may also be involved in 

other steps of prostate cancer development, such as sustaining chronic inflammation 

to transform cancer into an aggressive phenotype, or promoting cancer progression 

and tumor metastasis. Here, we aimed to inoculate PA-2, a human prostatectomy 

derived P. acnes strain, into IL-6 -/- mice to study the possible role of IL-6 in 

sustaining bacterial-induced chronic prostate inflammation [181]. 

 

 

 



92 
 

5.3 Materials and Methods 

Animals  

Animals used in this study were 8-10 week old C57BL/6J wildtype (Harlan) or 

Interleukin-6 knockout (IL-6 -/-, Jackson Lab, B6.129S2-Il6tm1Kopf/J) mice. 

Animals were housed in a pathogen-free environment with 12 hour light/dark cycle, 

and received enough sterile food and water. All procedures were performed under the 

guidelines of Johns Hopkins Animal Care and Use Committee (ACUC). Animals 

were sacrificed by CO2 asphyxiation and serum, reference tissues, and mouse prostate 

lobes were harvested.  

Prostatectomy isolated P. acnes strain: PA-2 

In this study, a human prostate derived P. acnes strain, PA-2 was used. This 

bacterium was isolated from minced prostatectomy tissue with anaerobic culture in 

Brain Heart Infusion broth (BD Biosciences) in anaerobic pouches (GasPak EZ 

Anaerobe Gas System, BD Biosciences) at 37 oC for at least 2 weeks.  

Inoculation of P. acnes via Transurethral Catheterization 

2.5 cm length sterile polyethylene catheters (BD Bioscience) were used to 

performed transurethral catheterization on mice anaesthetized with ketamine/xylazine. 

PA-2 was inoculated into IL-6 -/- mice at a dose of approximate of 107 colony 

forming units (CFU) suspended in 20 µl sterile phosphate buffered saline (PBS).  

Control animals were treated with an equal volume sterile PBS.  

Chromogenic in situ hybridization (CISH).  

CISH was performed using the RNAscope® 2.0 FFPE Brown Reagent Kit. 

Briefly, FFPE tissues were first baked at 60°C for 1 hr followed by deparaffinization 
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in two changes of 100% xylene for 5 min each and two changes of 100% alcohol for 3 

min each. Next, the slides were treated with endogenous peroxidase blocking 

pretreatment reagent for 10 min at room temperature. The slides were then added to 

boiling buffer for 30 min at 99-104°C in a water bath and then treated with protease 

digestion buffer for 30 min at 40°C. The slides were incubated with a custom 

RNAscope target probe designed against mouse IL-6 for 2 hr at 40°C, followed by 

DAB for colorimetric detection and hematoxylin staining.  

Prostate Histopathology and Inflammation Grading 

All prostate lobes were collected and separately fixed with 10% neutral 

phosphate buffered formalin for 48 hours and embedded in paraffin, followed by 

Hematoxylin and eosin (H&E) staining. At 1 year post-inoculation group, mouse 

dorsal prostates were fixed with PAXgene (765112, Qiagen) to prevent destructive 

nucleic acid and protein crosslinking and degradation to performed further RNA 

microarray study.  

Dorsal prostate was dissected with lateral lobe, but anterior, ventral lobes were 

dissected separately. For inflammation grading, we used the same method as previous 

described [179]. Prostate tissues were considered positive for mild inflammation if 

scattered neutrophilic or mononuclear inflammatory cells were present and involved 

multiple glands/foci. Prostate tissues were considered to be moderately inflamed if 

clusters (but not follicles) of lymphocytes and/or macrophages were present and 

involved multiple glands/foci. Prostate tissues were considered to be severely 

inflamed if dense nodules/follicles of inflammatory cells were present. 
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Microarray analysis  

RNA was extracted from OCT embedded frozen dorsal prostate using the 

RNeasy kit (Qiagen). Microarray analysis was performed at the SKCCC Microarray 

core facility using Illumina Mouse WG-6 arrays. All of the analysis was done using R 

software and different packages: GMD, RColorBrewer, gplots, preprocessCore, 

limma, and xslx. The data was filtered using filter criteria (if probe was not detected 

using a detection cutpoint of 0.05 in all samples then it was excluded from analysis). 

This filtering decreased number of probes from 45,281 probes to 26,562 probes. Then 

data was normalized using quantile normalization method. Using ANOVA models in 

limma package, all different comparisons were performed. Top 250 up and 

down-regulated genes were analyzed by DAVID Bioinformatics Resources (version 

6.7), and build up functional annotation charts. Functional charts were then 

transformed by KEGG system (Kyoto Encyclopedia of Genes and Genomes) into 

signaling pathways which may be involved in your input gene IDs. 
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5.4 Results 

P. acnes inoculation induces acute and chronic inflammation at early time points 

in the IL-6 -/- mouse dorsal prostate 

Interestingly, when we performed chromogenic in situ hybridization (CISH) on 

wildtype mouse dorsal prostate 2 weeks post-inoculation with P. acnes, we observed 

IL-6 mRNA expression in areas of acute inflammation (Figure 20). This was highly 

analogous to the IL-6 expression pattern in association with acute inflammation that 

we observed in the human prostate (see Chapter 2). This data indicated that IL-6 

might be involved in the induction of bacterial prostatitis. 

As mentioned, in our previous studies [179], wildtype mouse dorsal prostates 

became acutely and then chronically inflamed after PA-2 inoculation, and the chronic 

inflammation persisted for at least 1 year post-infection. In the present study IL-6 -/- 

mice between 8-10 weeks old were inoculated with either PBS or with 107 CFU PA-2. 

Mice were sacrificed 1 week, 2 weeks, 8 weeks, 6 months, and 1 year post-inoculation. 

At each time point we had 4 PBS controls and 5 PA-2 treated mice. All mice in the 

PBS control groups were not observed to have inflammation in their prostate lobes at 

any time point.  

Impaired long-term prostatic chronic inflammation in IL-6 -/- mice 

At 1 week post-infection with PA-2 P. acnes, IL-6 -/- animals had acute 

inflammation and to a lesser extent chronic inflammation in the dorsal prostate lobe 

(Figure 21). At 2 weeks post-inoculation, 100% of the animals developed severe to 

moderate chronic inflammation, (Figure 21 and Figure 22). At 8 weeks after PA-2 

inoculation, 60% of IL-6 -/- mice still sustained mild chronic inflammation (Figure 

22). Unlike our previous studies in wildtype animals, we did not observe any   
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Figure 20. IL- 6 mRNA expression in PA-2 infected mouse prostates.  

Wildtype mouse dorsal prostates were collected 2 weeks post-inoculation with PA-2, 

and fixed for 48 hours in formalin. (A) IL-6 mRNA CISH. IL-6 expressing cells 

(brown staining) were highly enriched in the areas of acute inflammation as indicated 

by the presence of neutrophils in glandular lumens (red arrows). (B) IL-6 positive 

cells can also be found in the stroma in areas of acute inflammation (arrows).  
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severely inflamed areas in IL-6 -/- animals 8 weeks after inoculation. Also unlike 

wildtype animals, at 6 months and 1 year, none of IL-6 -/- animals still sustained 

chronic inflammation in the dorsal lobe (Figure 22).  

Microarray analysis  

Mouse dorsal prostate from C57BL/6J wildtype and IL-6 -/- mice were collected 

at 2 weeks post PA-2 inoculation. RNA was extracted from OCT frozen tissues, and 

analyzed by microarray. R software and different packages were applied for data 

analysis. In Figure 23, preliminary analyses show a heatmap of hierarchical 

unsupervised clustering that illustrates differentially expressed genes. In this heatmap, 

we compared the top 2500 up-regulated and down-regulated genes in C57BL/6J 

wildtype and IL-6 knockout mice treated with PBS or with PA-2. We did observe 

significant differences among each group. Especially in the PA-2 inoculated IL-6 -/- 

group, this cohort had the most unique gene expression pattern compared to others.  
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post-inoculation and absent at 6 months and 1 year post-inoculation. Arrows indicate acute and/or chronic inflammation. (Inflammation 

data from wildtype mice are adapted from Shinohara et al. 2013)
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Figure 23. Hierarchical unsupervised clustered heatmap illustrating 

differentially expressed genes among wildtype and IL-6 -/- mice with different 

treatments.  

Top 2500 genes were chosen from each group among total 26,562 probes, including 

wildtype PBS control, wildtype with PA-2, IL-6 -/- PBS control, and IL-6-/- with 

PA-2. Down-regulated genes were labeled as red while up-regulated genes were 

labeled as blue. R and other package software were applied for data analysis. 
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Lack of long-term chronic inflammation with IL-6 depletion might potentially 

involve B-cell related genes 

In Figure 24, another heatmap was created by analyzing gene expression in 

C57BL/6J wildtype and IL-6 -/- mice upon PA-2 inoculation. In this preliminary 

analysis, the top 25 up-upregulated and down-regulated genes based on an adjusted p 

value of < 0.05 were listed. The data showed B cell related genes, such as 

immunoglobulin kappa chain complex and immunoglobulin heavy chain complex, 

had higher expression in PA-2 infected wildtype mice than in IL-6 -/- mice. 

Interestingly, we did not observe that any T-cell related genes that had differential 

expression in this list. IL-6 may act as a key factor in the transition from acute to 

chronic inflammation and to promote B cell differentiation [52, 91, 141]. Along this 

line, based on our microarray data, it might indicate that IL-6 might be involved in the 

recruitment of B cells instead of T cells in long-term chronic inflammation. This 

hypothesis would need to be followed up by, for example, staining for B cells by IHC 

and doing a quantitative analysis in the FFPE tissues from the PA-2 treated animals.  

In addition, we also noticed that one IL-18 related gene (erythroid differentiation 

regulator 1) had higher expression in wildtype mice. For IL-6 knockout animals, 

GSTP1, HSP90AB1, and some degradation related genes (lysozyme 1 and lipolysis 

stimulated lipoprotein receptor) were found to have higher expression levels 

compared to wildtype animals. 
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Figure 24. Heatmap of upregulated and downregulated genes in PA-2 treated 

C57BL/6J wildtype versus IL-6 -/- mice. 

Top 250 up-regulated and down-regulated genes were selected to perform this 

heatmap. Down-regulated genes were labeled as red while up-regulated genes were 

labeled as blue.  
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5.5 Conclusions 

The potential function of IL-6: to sustain long-term prostatic chronic 

inflammation 

IL-6 is produced at inflammation sites, and has been considered as an acute and 

chronic inflammation-related cytokine. In prostate cancer, IL-6 is also important since 

serum IL-6 levels are related to metastatic or castration-resistant prostate cancer 

(CRPC). IL-6 may also be involved in metastatic progression by regulating epithelial 

mesenchymal transition (EMT) [52]. IL-6 together with IL-1 and tumor necrosis 

factor  function as important inflammatory mediators. IL-6 in combination with its 

soluble receptor sIL-6R has been indicated in regulation through JAK-STAT, 

ERK-MAPK, and PISK-Akt signaling pathways to produce acute phase proteins, and 

to promote leucocyte infiltration, which is a key step in the transition from acute to 

chronic inflammation [91].  

IL-6 deficient mice have been used to determine the role of IL-6 in response to 

infection and/or inflammation [182, 183]. LPS and sterile turpentine were used to 

mimic systemic inflammation and local inflammation (subcutaneous injection) [183]. 

Interestingly, in this study, it was found that IL-6 was not required to induce 

inflammation in response to LPS. In addition, in IL-6 -/- mice, three times higher 

TNF- levels were detected, which indicated TNF- may have functional redundancy 

to compensate for IL-6 depletion [183]. Another parallel study utilized vaccinia virus 

and Listeria monocytogenes to infect animals. IL-6 -/- mice failed to control bacterial 

infection, and the T-cell-dependent antibody response also failed to clear vesicular 

stomatitis virus infection [182].  

However, how IL-6 depletion would affect prostate cancer-related inflammation 
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remains unclear. In our study, a novel bacterial-induced chronic prostatitis animal 

model was developed to study the potential role of IL-6 in prostatic infection / chronic 

inflammation. As shown in Figure 21F, initially IL-6 -/- animals develop acute 

inflammation at 1 week and 2 weeks post-inoculation with PA-2 P. acnes. In addition, 

chronic inflammation became dominant at 2 weeks post-inoculation in IL-6 -/- mice. 

In fact, 100% of mice developed chronic inflammation at this time point, with 80% of 

animals with severe prostatic inflammation and 20% of mice with moderate 

inflammation (Figure 22). Interestingly, at 8 weeks-post inoculation, only mild 

chronic inflammation was observed (Figure 21G). At 6 month and a year time points, 

no more prostatic chronic inflammation existed, which may indicate that in response 

to PA-2 induced inflammation, IL-6 may serve to sustain chronic inflammation rather 

than in the induction and initiation of acute inflammation.  

Impaired long-term prostatic chronic inflammation may be related to B cell 

dysfunctions  

As our studies indicate that IL-6 may be required to sustain bacterial induced 

chronic prostatitis, determining how IL-6 is affecting chronic inflammatory cells is a 

logical next step. IL-6 has been considered as one of the key factors in the transition 

from acute inflammation into chronic inflammation [91]. Previous research has 

indicated that IL-6 can affect B cells in profound ways, such as regulating B cell 

differentiation, promoting plasma cell differentiation, and increasing antibody 

production [52, 141]. In fact, when performing B-cell depletion by the monoclonal 

antibody rituximab in 9 patients with Systemic Scleroderma symptoms, their serum 

IL-6 concentration was decreased [184]. This early evidence may suggest a 

relationship between IL-6 and B cells. In fact, preliminary analysis of a gene 
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expression microarray performed on PA-2 treated wildtype versus IL-6-/- mice 

(Figure 24), indicated B cells associated genes (immunoglobulin kappa /heavy chain 

complex) but not any T-cell regulated genes were up-regulated only in the wildtype 

group, which suggests that IL-6 might be involved in B cell regulation in this mouse 

prostatitis model.  

IL-6 also has been implicated as a crucial neutrophil regulator. Upon stimulation 

by orchestrating chemokines and / or by leukocyte apoptosis, IL-6 can activate the 

STAT-3 pathway and trigger neutrophils trafficking [185]. Interestingly, when we 

compared the microarray data of wildtype and IL-6 -/- animals with PA-2 inoculation, 

the wildtype group had higher expression of leukocyte migration related genes, such 

as extracellular matrix, integrin-linked kinase, and B-cadherin genes (Figure 24), 

which indicated a possible role for IL-6 in bacterial induced chronic inflammation via 

regulating leukocyte migration to inflamed areas.  

Moreover, Figure 24 also indicates that the IL-6-/- mice had more GSTP1 and 

HSP90 gene expressions after PA-2 inoculation compared to wildtype mice. As a 

suspected tumor suppressor gene, GSTP1 promoter methylation is considered as a 

prognostic marker of prostate cancer [186].  

Taken together, IL-6 might regulate bacteria-induced prostatitis, perhaps by 

promoting B cell infiltration, and/or by recruiting more leukocyte migration to 

inflamed areas. This might explain why mice with IL-6 depletion exhibit a lack of 

long-term chronic inflammation upon bacterial infection. 
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VI. CONCLUSIONS AND PERSPECTIVES  

Elucidating the roles of IL-6 in prostate cancer development in both human and 

animal models 

Interleukin 6 (IL-6) is a pleiotropic cytokine that is produced by an array of cell 

types and exerts diverse physiological effects including immune responses, 

hematopoiesis, and cellular proliferation and differentiation. For example, IL-6 

production primarily by macrophages and monocytes is essential to the induction of 

acute phase proteins during acute inflammatory responses to infections [87, 88]. As 

such, the presence of IL-6 in tissues is tightly under control; however, unrestrained 

production of IL-6 drives chronic inflammation that is associated with diseases such 

as autoimmune disorders, arthritis, hepatitis, inflammatory bowel disease, pancreatitis, 

and cancer [113]. 

IL-6 signals through two receptor (membrane-bound and soluble) pathways via a 

common receptor and signal transducer: gp130. In the classical signaling pathway, 

IL-6 ligand targets the IL-6 membrane bound form of the receptor (mbIL-6R) to 

recruit downstream elements. In the trans-signaling pathway, IL-6 activates the targets 

cells by binding with soluble form (sIL-6R) [141]. IL-6 can act as both a 

pro-inflammatory and anti-inflammatory cytokine. It has been proposed that when the 

classic IL-6 signaling pathway is turned on, anti-inflammatory responses will be 

activated in target cells. On the other hand, the trans-signaling pathway can trigger 

target cells to develop pro-inflammatory activities [141].  

In different epithelial cancers such as lung, breast, hepatocellular, and colorectal, 

studies have reported that IL-6 widely functions as an autocrine cytokine [16]. For 
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example, in colon cancer, IL-6 has been reported to promote T-cell adherence on 

endothelial cells by increasing its adhesion molecule expression [187, 188]. In 

malignant ovarian cancer, endothelial cells also require IL-6 to reduce chemotherapy 

induced apoptosis and promote cellular survival [141, 189]. In prostate cancer, cell  

line models showed that IL-6 can transform cells in an AR ligand-independent 

pathway [190]. In addition, patients with advanced prostate cancer and/or metastatic 

or hormone refractory prostate cancer have been shown to have elevated IL-6 in their 

serum compared to control groups [98].  

Paracrine role of IL-6 in prostate cancer development  

Additional studies have suggested that IL-6 acts as a paracrine cytokine in 

prostate cancer progression. In the stromal compartment, IL-6 along with OSM can 

lead to cell-autonomous oncogenic events to promote aggressive prostate cancer [120]. 

Moreover, stromal cells in the bone metastatic tumor microenvironment have also 

been suggested to express IL-6 [17].  

In chapter 2 of this thesis, early evidence from IL-6 qPCR analysis showed only 

3 of 10 prostatectomy samples had more IL-6 expression in adenocarcinoma tissues 

compared to match benign tissues. We went on to conduct a comprehensive analysis 

of in situ IL-6 mRNA expression in 21 primary prostatectomy FFPE tissues, and 32 

metastatic tumor samples. Using a positively controlled assay and with IL-6 CISH we 

did not observe any positive IL-6 mRNA expression from adenocarcinoma cells in 

any of the primary cases examined regardless of Gleason scores. Instead, IL-6 

expression was restricted to areas with scattered peri-tumoral inflammatory cells 

and/or the stromal compartment of the tumor, which may include tumor-infiltrating 

inflammatory cells and tumor-associated endothelial cells. 
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Moreover, when we examined metastatic prostate cancer biopsy or autopsy 

samples (including lung, liver, lymph node, and bone), consistent with the primary 

prostate cancer data, no IL-6 mRNA positive expression was observed in metastatic 

cancer cells in any tissues. Interestingly, IL-6 mRNA expressing cells could be 

identified as endothelial cells lining small blood vessels surrounding metastatic tumor 

in 9 of 21 bone metastases (42.9%) but not in any other metastases types. As 

previously mentioned, serum IL-6 levels have been associated with metastatic or 

hormone refractory prostate cancer [98, 99, 114]. In this study, we conclude that 

circulating IL-6 is likely not produced by metastatic tumor cells, but may come from 

tumor vasculature.  

Finally, we went to great lengths to demonstrate that unless we first treated with 

Golgi inhibitor to block IL-6 secretion, we were not able to detect IL-6 protein by 

IHC or western blot in cell lines. Likewise, when we applied IL-6 IHC in the primary 

and metastatic prostate cancer samples, no IL-6 protein could be detected. We 

conclude that chromogenic in situ hybridization (CISH) is a better way to detect IL-6 

(and presumably other cytokines) in prostate and other tissues and that IHC can be a 

problematic method for detecting secreted proteins like IL-6 [111].  

Pro-tumorigenic role of IL-6 in prostate cancer development  

IL-6 is thought to be a critical mediator that may promote prostate cancer 

development in several ways, such as initiating prostate tumorigenesis, modulating 

tumor growth, promoting aggressive disease, and supporting tumor metastasis [136]. 

Emerging evidence indicated that IL-6 and its major effector STAT3 may act in a 

protumorigenic role to facilitate prostate cancer growth via trans-activating androgen 

receptor in prostate cancer cells [17, 137-140]. In chapter 3, we report on a series of 



110 
 

allograft studies aimed to determine if IL-6 may be critical to facilitate prostate cancer 

growth.  

Three mouse cancer cell lines were incorporated in allograft studies. Two 

prostate cancer cell lines (TRAMP-C2 and 100RC2A) and one colon cancer line 

(MC38) were injected into C57BL/6J wildtype and IL-6 -/- mice. TRAMP-C2 

allografts showed a reduction in tumor growth and lower tumor take rates with IL-6 

depletion; while in MC38 allografts, tumors grew in an IL-6 independent manner. 

Further efforts will be needed to examine other C57BL/6J-derived cancer cell lines, 

like the breast cancer cell line EO771 and additional prostate lines, to determine if the 

reduced tumor growth in IL-6-/- mice is specific to prostate tumor cells. 

Interestingly, in our TRAMP-C2 model, the wildtype mice that grew allografted 

tumors had elevated serum IL-6 levels. This result is consistent with human studies, 

which suggests this TRAMP-C2 allograft model might be valuable to study a 

pro-tumorigenic role for systemic levels of IL-6 [15, 16, 142]. 

Finally, we aimed to determine possible downstream elements involved in IL-6 

signaling to facilitate prostate tumor growth. Phospho-STAT3 (p-STAT3) was our first 

target, since p-STAT3 has been considered as one of the most important IL-6 

activating factors in prostate cancer. Surprisingly, p-STAT3 IHC showed very subtle 

differences between wildtype and IL-6 depleted animals. In future studies we aim to 

test other possible molecules, like IGF-1R, ErbB2, phospho-Akt, phosphor-ERK1/2, 

and phospho-Stat1. In fact, IGF-1R [191] and ErbB2 [192] have been suggested as 

possible IL-6 activating molecules. For example, IL-6 could trigger prostate 

tumorigenesis through IGF-1R [191].   

 



111 
 

Propionibacterium acnes (P. acnes) may act as an initial inciting factor to trigger 

prostate cancer-related inflammation  

Several factors have been suggested to initiate prostate inflammation such as 

urine reflux, hormonal changes, dietary factors, estrogens, corpora amylacea and 

pathogen infections [46]. Yet, the initial inciting factors to trigger prostate 

cancer-related inflammation remain unclear. In chapter 4, we studied a gram-positive 

bacterium Propionibacterium acnes (P. acnes), which is known as an ubiquitous 

human skin bacterium, and could be the initial factor to induce prostatitis.  

P. acnes can be ubiquitously found on human skin and is associated with the skin 

disease acne vulgaris [55] [72], endocarditis, sarcoidosis, post-surgical infections, and 

other inflammation related diseases [73]. In our study, we isolated eight P. acnes 

strains from 30 radical prostatectomy tissues. This result corresponded to the first 

reported which claimed P. acnes could be cultured from 35% of radical prostatectomy 

tissues [74]. Further, by performing MLST typing to cluster prostate derived P. acnes, 

it suggested that prostate-derived P. acnes were more associated with opportunistic 

infections and/or urethral flora and do not fall within typical skin/acne strains.  

Future efforts of this project will be to further elucidate a causal role for P. 

acnes in acute or chronic prostatitis [72]. As such, we have designed a P. 

acnes-specific 16s rRNA probe for CISH. We aim to apply this CISH assay to 

prostatectomy specimens with varying degrees of acute and chronic inflammation to 

determine if we can detect P. acnes in association with these or other prostate lesions 

(PIA, PIN, cancer, etc.). 

Role of IL-6 in bacteria-induced chronic prostatitis 

IL-6 also plays important physiological roles at mediating the transition from to 



112 
 

chronic inflammation by regulating T-cell and B-cell differentiation [52, 141]. As both 

an anti-inflammatory and pro-inflammatory cytokine, IL-6 may also be involved in 

prostate inflammation regulation.  

Our group previously developed a model of long term prostatic inflammation 

using a prostate-derived strain of P. acnes (PA-2) inoculated into C57BL/6J wildtype 

mice [179]. Wildtype mice develop primarily acute inflammation at 1 week 

post-inoculation that turns to primarily chronic inflammation that persists at 2 weeks, 

8 weeks, 6 months and even at least 1 year post-inoculation. In chapter 5, we used the 

same strain of P. acnes to infect the prostate of IL-6 -/- mice. Interestingly, with IL-6 

depletion, mice did not sustain any chronic inflammation after a 2 month time point.  

Dorsal prostates from treated wildtype and IL-6 -/- mice were collected for 

microarray at 2 weeks post-inoculation. Preliminary microarray results suggested that 

PA-2 treated wildtype animals had higher B-cell associated gene expression than IL-6 

-/- mice (Figure 24). In addition, functional annotation analysis suggested that 

leukocyte trans-endothelial migration and local adhesion related genes had higher 

expression in wildtype compared to IL-6 -/- mice.  

IL-6 might be critical for maintaining B cell functions in bacterial induced 

chronic prostatitis 

IL-6 has been suggested to play an essential role in the B cell differentiation by 

turning B cells into Ig-secreting cells [52, 141]. When analyzing the top 25 

up-regulated and down-regulated genes in PA2 treated mice by microarray, we found 

B-cell-associated genes (immunoglobulin kappa /heavy chain complex) but not any 

T-cell regulated genes were up-regulated only in the PA-2 treated wildtype group 

(Figure 24). These preliminary data raise the intriguing hypothesis that that IL-6 
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might be involved in B cell regulation in this mouse prostatitis model. Future studies 

will be needed to verify the findings and to test this hypothesis.  

IL-6 was initially introduced as human B-cell differentiation factor (BCDF) or B 

cell stimulation factor 2 (BSF-2), which can trigger B cell maturation to have more 

immunoglobulin secretion [193]. IL-6 has also been reported to play a role in B cell 

proliferation and isotype switching [194]. Unstrained IL-6 can trigger B-cell elevation 

and cause autoimmune, mucosal inflammation and other inflammation-related 

diseases [194, 195]. On the other hand, IL-6 -/- mice have been shown to fail to 

develop autoimmune encephalomyelitis [194]. IL-6 -/- cannot support proper 

lymphocyte differentiation and proliferation under myelin oligodendrocyte 

glycoprotein treatment, thus resulting central nervous system demyelination [194, 196, 

197]. Similarly, in our study we also found IL-6-/- animals failed to sustain long-term 

chronic prostatic inflammation after bacterial infection.  

Taken together, we suggest that IL-6 may play an important role in 

bacteria-induced prostatitis, perhaps by regulation of B cells, and that that IL6-/- mice 

have a worse ability to recruit leukocytes via transendothelial migration, and/or with 

lower efficiency of recruiting certain types leukocytes to inflamed areas. This could 

explain the lack of long-term chronic inflammation in our PA2 treated IL-6 -/- model. 

The problem of choice: current challenge and future prospects of IL-6 antagonist 

therapy 

As we have mentioned, IL-6 may act as a key mediator in several steps in 

prostate carcinogenesis, which makes it as a good therapeutic target. Current 

anti-interleukin-6 agents have been widely used to treat many diseases successfully, 

including: B-lymphoproliferative disorder, lymphoma, plasma cell leukemia, 
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myeloma refractory cutaneous lupus and urticarial vasculitis, and rheumatoid arthritis 

[52, 151-158, 198]. The very first approved antibody is an anti-IL-6R antibody called 

tocilizumab or Actemra [159, 160]. Later on, a chimerised monoclonal antibody 

CNTO 328 (Siltuximab) was developed, which acts by directly binding with IL-6. 

CNTO 328 can interfere the binding of IL-6 to the IL-6-receptor [157]. More recently, 

a soluble form IL-6R neutralizing monoclonal antibody was developed, which can 

block the sIL-6R pathway to inhibit local inflammatory responses [199].  

Even though IL-6 antagonists have been reported to improve some diseases [52, 

151-158], in prostate cancer the effects of IL-6 antagonists still remain unclear. For 

example, studies showed CNTO328 treatment can increase apoptosis and decrease 

pStat3 expression, yet no significant outcome has been observed in advanced prostate 

cancer clinical studies [143, 161-163, 198]. Based on these studies, it has been 

suggested that chemotherapy might be required in combination with IL-6 antagonist 

treatment to get better prostate cancer therapy efficiencies. [198] 

In conclusion, in our studies, we have found a lack of IL-6 mRNA expression by 

primary and metastatic prostate cancer cells, and this may help to explain why 

minimal to no clinical activity has been observed when a monoclonal antibody 

therapy targeting IL-6 (siltuximab) has been tested in clinical trials thus far [132, 133]. 

In addition, current IL-6 antagonist studies are based on theory that IL-6 signaling has 

a role in metastatic disease, but does not address a potential pro-tumorigenic role for 

IL-6 in facilitating cancer progression. Patients are treated with IL-antagonists only 

after diagnosis with advanced prostate cancer, rather than treating with IL-6 

antagonists earlier in the carcinogenic process. This may explain why the effect of the 

IL-6 antagonist therapy in prostate cancer treatment is still questionable.  
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Summary  

In this thesis, we examined several possible roles for IL-6 in prostate cancer 

including whether it function in an autocrine or paracrine manner in primary and 

metastatic cancer, its role in facilitating tumor growth, and a potential role in 

sustaining long-term chronic inflammation. As such, in chapter 2 we determined that 

paracrine rather than autocrine IL-6 signaling must account for any role that IL-6 

plays in both primary and metastatic prostate cancer. In addition, allograft studies also 

suggested the pro-tumorigenic role of IL-6 in facilitating prostate cancer growth 

(chapter 3). Moreover, by MLST analyses, we were able to cluster 8 prostate-derived 

P. acnes isolates and identify these isolates are more associated with opportunistic 

infections and/or urethral flora instead of being skin flora contamination by their ST 

characteristics (chapter 4). Finally, we utilized a clinically relevant human-derived 

strain of P. acnes to induce chronic prostatitis in IL-6 -/- mice. Unlike wildtype mice 

that develop chronic inflammation that persists up to a year post-inoculation, mice 

with IL-6 depletion did not sustain chronic inflammation beyond a 2 month time point. 

Our microarray data further indicated that IL-6 may play an important role in 

bacteria-induced prostatitis by influencing B cell differentiation and by facilitating 

leukocytes migration to inflamed areas. In summary, in this thesis we elucidated 

possible roles of IL-6 in prostate cancer development and progression.  
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