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Abstract 

Rationale 

Critical care utilization and costs are a vast part of our healthcare system and continue to grow. 

One opportunity for increasing the quality and efficiency of critical care is reducing intensive 

care unit (ICU) re-admissions, which are associated with higher costs and poor patient 

outcomes. Predictive models for ICU readmissions have been built in the past, but generally do 

not perform well, and rarely use complex features derived from high-frequency physiological 

time series data.  

Objectives 

This thesis aims to enhance the efficacy of prediction of ICU readmission and post-discharge 

mortality by training machine learning classifiers using features derived from physiological data 

signals, including oxygen saturation, heart rate, respiratory rate, and blood pressure, which are 

captured at high frequency during routine intensive care.  

Methods 

Predictive features from the entire ICU stay were extracted from a publicly available, multi-

center database. These were used in various combinations, using logistic regression, random 

forest, and gradient boosting algorithms to predict a composite outcome, of ICU readmission or 

post-discharge mortality within 72 hours of ICU discharge. Model performance was analyzed 

using area under the receiver operator curve (AUROC), obtained using nested cross-validation 

and randomized hyper-parameter searching. The features with highest predictive value were 
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selected using random forest feature importance and used to construct models with reduced 

complexity.  

Results 

The predictive model achieved a mean area under the receiver operator curve (AUROC) of 

0.680 (95% confidence interval: [0.647, 0.713]) from the outer loop of nested cross-validation, 

and 0.656 from the test set. The highest performing feature space was a mixed feature space, 

that used both low and high frequency variables for feature extraction. The top features 

included high and low frequency variables. High frequency features included linear regression 

intercepts and Fourier transform coefficients. Low frequency variable features included age, 

sodium, glucose, weight change, and APACHE IV scores.  

Conclusion 

Newly developed models do not currently outperform previously constructed models in the 

literature nor clinician prediction. Complex features derived from high frequency physiological 

time series data did not outperform more conventional variables such as labs or demographics. 

Further investigation with different features, data, and modeling algorithms is warranted.  
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Introduction 

Consequences of ICU Readmissions 

The deployment, utilization, and cost of critical care has been continually increasing for many 

years. For example, the number of critical care beds has been continually increasing, relative to 

population growth, and costs associated with critical care nearly doubled between 2000 and 

2010, with the proportion of those costs to the gross domestic product increasing by 32.1% [1]. 

Critical illness is associated with increased medical resource utilization, even after survival and 

hospital discharge [2]. As such, intensive care unit (ICU) readmissions contribute significantly to 

resource utilization. ICU readmissions are also linked to negative patient outcomes. Patients 

who are readmitted to ICUs tend to have higher risk for mortality, longer ICU stays, and overall 

longer hospital stays, although these differences may be accounted for by severity of illness [3]. 

Difficulty of ICU Discharge Planning 

The high resource and health costs of readmissions make prevention of ICU readmissions an 

area of significant interest. Effective discharge planning is generally considered to be an 

important aspect of preventing ICU readmissions [4], however, determining which patients are 

ready for ICU discharge is difficult. For one, ICU readmission rates vary widely in different 

settings, by country, hospital, or even individual unit, with rates as low as 0.89% (in an 

American surgical ICU), or as high as 19.0% (in an American liver transplant ICU), likely because 

there are a vast number of factors that can impact risk for ICU readmission [5, 6]. Unintended 

delays in ICU discharge have been shown to reduce the likelihood of mortality in high-risk 

patients, indicating that longer ICU stays in some instances can be beneficial [6]. However, 
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longer stays in the ICU have financial and logistical costs, meaning that holding patients too 

long also has significant downsides. When the predictive performance of clinicians was directly 

measured, performance was only modest, achieving area under the receiver operating curve 

(AUROC) of about 0.70 on average [7].  

Known Risk Factors for Readmission 

Numerous studies have been conducted examining known risk factors or predictive features of 

ICU readmissions or death, which point to many factors being predictive. Admission sources, 

chronic health conditions, measures of severity, time of day at ICU discharge, age, sex, 

socioeconomic status, and numerous other physiological factors have been indicated as 

predictive in past studies [5, 3, 8, 9].  

Existing Predictive Models 

In recent years, machine learning approaches have also been applied to the problem, 

attempting to leverage high resolution data to better identify patterns and predict ICU 

readmissions in ways that were not previously possible. Despite numerous attempts using 

various machine learning methods such as regression, tree-based methods, and even neural 

networks, performance generally has been modest, approximately matching clinician 

prediction. Performance of various studies ranged from about 0.6 to 0.8 AUROC, with various 

populations and time frames of readmissions prediction [10, 11, 9, 12, 13, 14, 15]. None of the 

found studies included complex features derived from high-frequency physiological time series 

data, instead opting for simplistic features on high frequency data such as means, minimums, or 

maximums, or variances [13, 16, 14, 12, 15]. 
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Study Aims 

We hypothesize that complex features constructed from high frequency time series data will 

provide significant predictive power beyond that of traditional low-frequency variables. The aim 

of this study is to create a model for predicting the probability of ICU readmissions or post-

discharge mortality within 72 hours of ICU discharge, by leveraging complex physiological time 

series data and known clinical risk factors from a large multi-center database.  
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Methods 

We used retrospective data to create a high-performing predictive model with the goal of 

predicting ICU readmission or death within 72 hours after discharge from the ICU in surgical 

patients. All code will be made publicly available on GitHub at 

https://github.com/supatuffpinkpuff/icu-readmissions.  

Database 

Data were from the eICU Collaborative Research Database. The eICU Collaborative Research 

Database [17] is a multi-center database containing highly granular data on 200,859 admissions 

to ICUs from between 2014 and 2015 at 208 hospitals located in the United States. 

Inclusion/Exclusion 

ICU stays were included in the study if they were the index surgical ICU stays (that patient’s first 

ICU stay with a surgical diagnosis), had no errors in data regarding their ICU stays and 

readmission times, and had a length of stay of at least 2 hours. ICU stays were excluded if the 

patient died in the ICU, was transferred to another ICU, was receiving comfort measures only, 

or that were discharged with do not resuscitate orders and died after discharge. To ensure 

signal quality, ICU stays were excluded if physiological time series data (PTS) for SaO2, 

respiratory rate, heart rate, and blood pressure were not available for more than 50% of the 

ICU stay and 50% of the last 24 hours of the ICU stay. These criteria are illustrated in Figure 1. 

https://github.com/supatuffpinkpuff/icu-readmissions
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Figure 1: Flow diagram of the study ICU stay selection process.  

High Frequency Signal Pre-Processing 

High frequency variables provided in the eICU database are available at rates up to every 5 

minutes, but with non-negligible amounts of erroneous or missing data. To enable the 

calculation of complex features from these signals, some pre-processing was done. To begin, 
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physiologically implausible values were removed entirely from the data, based on clinician 

adjudication. The criteria used are available in Supplemental Table 3. Such implausible values 

represented less than 1% of data points for each signal’s data. On occasion, there would be 

multiple data points with the same time stamp, in which case the data would be averaged so 

that each time stamp had only one data point. Then, for oxygen saturation, respiratory rate, 

and heart rate, any gaps shorter than 1 hour in the signal were linearly interpolated. For blood 

pressure data, non-invasive and invasive data signals were overlaid, since most ICU patients 

have one or the other, but rarely both. If both were present, then invasive data was presumed 

to be correct, based on earlier analysis which showed that less than 0.1% of the invasive blood 

pressure data was likely to be erroneous. Then any 2 hour or less gaps within the invasive/non-

invasive blood pressure data, or between invasive and non-invasive data were linearly 

interpolated.  

Feature Generation 

Potentially useful signals and variables were identified with dataset exploration, clinician 

guidance, and searching existing literature. Conventional, low frequency variables extracted 

from data included demographics, medical history, labs, medications, medical scores, 

comorbidities, dialysis, etc., which we refer to as the low frequency feature space. Common 

statistics such as means, medians, and maximums, were used, but also some clinician-designed 

features were created, such as the distance of the last measurement from a normal value, or 

whether the data was trending towards a pre-defined normal value.  



7 
 

For especially frequent (up to every 5 minutes) respiratory rate, heart rate, blood pressure, or 

oxygen saturation data, more complex feature transformations such as Fourier transform 

coefficients or entropy were extracted using the tsfresh Python package. The tsfresh package 

will automatically extract complex physiological features when given cleaned time series data. 

These high frequency features were generated in several ways, with different methods of 

temporally segmenting the physiological signal data. In the first method the last 12 hours of 

data before discharge by splitting it into 1-hour long intervals and extracting features from 

those, as seen in Figure 2, which could yield predictive information based on how those 

features evolve from hour to hour. This was done for each high-frequency signal individually, 

including oxygen saturation, respiratory rate, heart rate, and systolic/diastolic/mean blood 

pressure, yielding six different high frequency feature spaces. The second method was to 

extract features from all signals during longer, variable duration intervals of time at the end of 

the ICU stay, which could yield information from the entire time period analyzed, shown in 

Figure 3. This yielded an additional six high frequency feature spaces from each different 

interval length.  

For all features, missing values were imputed using several different approaches. Mean 

imputation and median imputation were explored, with median imputation being used in the 

final model. A full list of all variables (low and high frequency) explored can be found in 

Supplemental Table 1. 
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Figure 2: Complex features were extracted using the high-frequency data of each ICU stay, from 
1-hour long chunks of time (labeled a through l) at the end of the ICU stay. These were then 

aggregated into one feature space. 

 

 

Figure 3: Complex features were extracted using the high-frequency data of each ICU stay, from 
varying chunks of time (labeled a through e) at the end of the ICU stay. 

Modeling Approaches 

Three machine learning algorithms were used to construct the predictive model, namely logistic 

regression, random forest [18], and gradient boosting [19], chosen for their ease of use and 

high predictive performance in other complex problems. These were used to construct models 

that could, at time of discharge, predict a composite outcome, of whether a surgical ICU patient 
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would be re-admitted or die within 72 hours of ICU discharge, or if neither of those negative 

outcomes would occur, as shown in Figure 4. Initially, numerous exploratory feature spaces 

were used to generate models and then based on feature importance as determined using 

random forest, some features were pruned from each feature space to reduce the complexity 

as much as possible while maintaining or improving model performance. Low frequency 

features derived from variables such as labs and features from high frequency variables such as 

blood pressure, heart rate, or respiratory rate were studied separately, and then the best 

performing features were combined into a mixed frequency features space using variables with 

both low and high frequency. These final features are listed in Supplemental Table 2. Top 20 

feature importance was also regularly analyzed by clinicians during development using logistic 

regression coefficients, random forest feature importance, or Shapley Additive Explanation 

(SHAP) values [20]. All logistic regression and random forests were implemented using the 

Scikit-Learn package, and gradient boosting was implemented using the XGBoost package. 

Hyper-parameter tuning for each model was done using randomized parameter searching, with 

25 different randomly selected parameter spaces.  

 

Figure 4: The predictive model uses any data available during the ICU stay and aims to predict 
ICU re-admission or post-discharge death within 72 hours after ICU discharge.  
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Evaluation of Model Performance   

The model performance was primarily evaluated using the area under the receiver operating 

curve (AUROC), a general metric of predictive performance, as well as a 95% confidence 

interval of that performance. First a training set was created using 80% of the data, leaving the 

remaining 20% as a held-out test set. Models were developed and evaluated on the training set 

using nested cross validation, with 3 inner folds and 5 outer folds. The best performing 

hyperparameters and features obtained from the cross validation were then used to make 

predictions on the test set and obtain AUROC. Different feature spaces were compared to 

evaluate the effectiveness of different groups of variables.  
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Results 

Study selection resulted in 24,177 ICU stays total, with 23,367 labeled as no readmission and 

survived, and 810 with a readmission or death within 72 hours of ICU discharge, representing a 

3.35% readmission or post-discharge mortality rate, as seen in Figure 1. Various characteristics 

of ICU stays used in the model can be found in Table 1. Characteristics of the hospitals these 

ICU stays originated from can be found in Table 2. 

Table 1: Characteristics of ICU Stays, split by label and with p-values of comparisons between 
the cases and controls using Mann-Whitney for numeric variables or chi-squared testing for 

categorical variables.  

 No Readmit/Death Readmit/Death Total p-Value 

Patient Characteristics 
Gender 0.842 

   Male 13298 (56.91%) 469 (57.9%) 13767 (56.94%)  

   Female 10069 (43.09%) 341 (42.1%) 10410 (43.06%)  

Median Age [IQR] (Years) 66.0 [56.0-75.0] 69.0 [59.0-77.0] 66.0 [56.0-75.0] < 0.001 

Ethnicity 0.990 
   Caucasian 18461 (80.29%) 647 (80.37%) 19108 (80.29%)  

   African American 1864 (8.11%) 59 (7.33%) 1923 (8.08%)  

   Other/Unknown 1149 (5.0%) 34 (4.22%) 1183 (4.97%)  

   Hispanic 924 (4.02%) 40 (4.97%) 964 (4.05%)  

   Asian 458 (1.99%) 20 (2.48%) 478 (2.01%)  

   Native American 138 (0.6%) 5 (0.62%) 143 (0.6%)  

Median First 24 Hour APACHE IV 
Score [IQR] 

47.0 [36.0-61.0] 55.0 [42.75-73.0] 48.0 [36.0-62.0] < 0.001 

Admission Source 0.999 

   Operating Room 16276 (69.72%) 567 (70.0%) 16843 (69.73%)  

   Recovery Room/PACU 5929 (25.40%) 197 (24.32%) 6126 (25.36%)  

   Floor 421 (1.8%) 18 (2.22%) 439 (1.82%)  

   Emergency Department 349 (1.49%) 14 (1.73%) 363 (1.5%)  

   Other 371 (1.54%) 14 (1.73%) 385 (1.59%)  

Primary Diagnostic Groupings (Per eICU Database) 0.484 
   Cardiovascular 11141 (47.68%) 324 (40.0%) 11465 (47.42%)  

   Gastrointestinal 3678 (15.74%) 205 (25.31%) 3883 (16.06%)  

   Neurologic 3663 (15.68%) 108 (13.33%) 3771 (15.6%)  

   Respiratory 1780 (7.62%) 72 (8.89%) 1852 (7.66%)  

   Genitourinary 969 (4.15%) 26 (3.21%) 995 (4.12%)  



12 
 

   Musculoskeletal/Skin 967 (4.14%) 32 (3.95%) 999 (4.13%)  

   Trauma 853 (3.65%) 32 (3.95%) 885 (3.66%)  

   Transplant 181 (0.77%) 10 (1.23%) 191 (0.79%)  

   Metabolic/Endocrine 126 (0.54%) 1 (0.12%) 127 (0.53%)  

   Hematology 9 (0.04%) 0 (0%) 9 (0.04%)  

Outcomes 

Median ICU LOS [IQR] (Hours) 32.98 [22.69-65.31] 43.25 [24.1-87.35] 33.48 [22.75-65.7] < 0.001 

Hospital Mortality < 0.001 
   Alive 23091 (99.38%) 692 (86.39%) 23783 (98.95%)  

   Expired 144 (0.62%) 109 (13.61%) 253 (1.05%)  

 

 

Table 2: Characteristics of the 185 hospitals from which ICU stays in this study were drawn.  

Hospital Trait Number of Hospitals (Proportion) 

Size  

<100 Beds 35 (23.2%) 

100 – 249 Beds 59 (39.1%) 

250 – 499 Beds 34 (22.5%) 

>= 500 Beds 23 (15.2%) 

Region  

Midwest 61 (37.7%) 

South 50 (30.9%) 

West 39 (24.1%) 

Northeast 12 (7.4%) 

Teaching Status  

Non-Teaching Hospital 166 (89.7%) 

Teaching Hospital 19 (10.3%) 
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Traditional vs. High Frequency Physiological Signals 

The predictive performance of many different feature spaces with different feature importance 

thresholds was compared, using AUROCs from both the outer loop of the nested cross 

validation (i.e., training), and a test set never seen by the model during training. In the training 

results the mixed feature space that uses both low and high frequency variables (AUROC = 

0.680, 95% CI = [0.647, 0.713]) performed similarly to the low frequency variable feature space 

(mean AUROC = 0.671, 95% CI = [0.636, 0.706]) alone. The various feature spaces constructed 

from high frequency variables did not perform as well, which can be seen in Figure 5. With 

regards to the test set, the mixed feature space performed best (AUROC = 0.656) by several 

hundredths, as opposed to the low frequency variables alone (AUROC = 0.607) or the best high-

frequency feature space (AUROC = 0.647).  
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Figure 5: Performance of predictive models using random forest, with different feature spaces 
and optimized feature importance thresholds for each feature space. High frequency feature 

spaces were extracted as described in Figure 2 and Figure 3. 

Comparison of Machine Learning Algorithms 

Three machine learning algorithms were used for modeling in this study: logistic regression, 

random forest, and XGBoost. Random forest and XGboost performed essentially equivalently, 

with random forest performing slightly better, but within one standard deviation of XGBoost’s 

performance, as seen when using a mixed frequency feature space in Table 3. Logistic 

regression performance was particularly poor, even achieving AUROCs below 0.5. 
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Table 3: Predictive performance of different algorithms on the full mixed frequency feature 
space.  

Algorithm Mean Outer Loop 
AUROC 

Outer Loop 
AUROC Standard 
Deviation 

Test Set AUROC 

Logistic Regression 0.480 0.012 0.500 

Random Forest 0.676 0.025 0.649 

XGBoost 0.668 0.018 0.646 

 

Effects of Model Pruning 

To reduce the size of the feature space used in the models and therefore increase calculation 

speed, the feature importance metric provided by the Scikit-Learn package’s random forest 

model was used. In each feature space, low importance features were iteratively pruned from 

the model using higher and higher importance thresholds. Across many exploratory feature 

spaces, the predictive performance would generally decrease slightly with low importance 

thresholds, match or even slightly outperform the full feature space at medium thresholds, and 

then finally decrease again at high thresholds, as seen in Figure 6. Other features space, 

including the highest-performing mixed frequency features space, simply saw continual 

performance improvements as more features were cut, down to 10% of features being kept.  
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Figure 6: Effects on performance of feature importance thresholding. Each line represents the 
performance of a predictive model created with different feature spaces, generally showing 

there is a threshold in the middle that yields the highest performance. 

 

 

Feature Importance Analysis 

The most important features of models were analyzed using random forest feature importance 

values to identify the top 20 most predictive features. When using the highest performing 

mixed feature space, the top 20 features included both low and high frequency variables, as 

seen in Figure 7. The top features derived from high-frequency variables included measures of 

non-linearity, anomaly detection, linear regression intercepts, and Fourier Transform attributes. 

Most of these came from heart rate and respiratory rate data, although SaO2 did yield one 

highly important feature. Blood pressure features did not appear in the top 20 most important 

features at all. Important features derived from low-frequency variables include several 
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measures of sodium level in the blood, change between the last two glucose measurements, 

APACHE IV score, and ICU length of stay. 

 

Figure 7: Feature importance as determined by the sklearn package’s random forest algorithm 
of the top 20 features for the mixed feature space model.  

 

Top features were also analyzed using Shapley Additive Explanations (SHAP) values, calculated 

using the shap package. This enables some interpretability analysis in addition to analyzing 

which features were most important. This analysis yielded a very different top 20 features, still 

including labs like glucose and sodium, as well as numerous high frequency features based on 

heart rate, respiratory rate, and oxygen saturation. Of note, age, paCO2, weight change, and 

administrations of anticholinergic bronchodilators and anticoagulants were deemed highly 

important by SHAP values in the XGBoost model, none of which appeared in the random forest 

analysis. More detailed information regarding the relationships between the top features and 

model output can be seen in Figure 8. 
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Figure 8: SHAP summary plot of the top 20 features for the mixed frequency features XGBoost 
model. Each dot represents the SHAP value of one sample for that feature. A feature’s SHAP 

value represents the association of that feature to the risk score, with positive values indicating 
an association with a higher risk of ICU readmission or post-discharge death, and negative 

values indicating an association with a lower risk. The location of the dot on the x-axis 
represents its SHAP value, while its color represents the feature’s actual value. 
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Discussion 

Main Findings 

Thus far, the predictive performance of the models constructed in this study is comparable to 

clinician prediction and existing models, excluding one unusually high-performing model from a 

single hospital in Brazil, as seen in Table 4. We hypothesized that leveraging a large dataset, 

high frequency variables, and complex features would achieve higher performance. The 

inability to confirm this could be due in part to the highly heterogeneous nature of this dataset, 

or perhaps because we studied surgical ICU patients specifically, which differs from previous 

approaches. The usage of features from high frequency variables does marginally increase 

performance in comparison to using only traditional low frequency variables, but only on the 

test set, and not during cross-validation. With the features currently being used, this seems to 

indicate the features derived from high frequency signals are capturing some information 

useful for predicting ICU readmissions and post-discharge mortality, but it is likely not different 

information from that obtained via traditional low-frequency variables.  

Table 4: Analysis of recent studies on high performing prediction methods for ICU readmissions. 

Prediction Method Year Sample 
Size 

Patient 
Description 

Best 
AUROC 

Hospitals in 
Study 

Re-admission 
Rate 

Logistic Regression, 
Random Forest, 
XGBoost [this study] 

2021 24,177 Index Surgical 
ICU Stay 

0.680 185 3.35% 

Clinician Prediction 
[7] 

2020 2,833 Medical ICU 
Patients 

0.70 1 4% 

Logistic Regression 
[13] 

2012 704,963 Adult ICU 
Patients 

0.71 219 2.5% 
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Fuzzy Models [16] 2012 1,028 Adult ICU 
Patients 

0.72 1 13% 

XGBoost [11] 2018 24,885 Adult ICU 
Patients 

0.76 1 11% 

Bayesian 
algorithms, decision 
trees, rule-based, 
ensemble methods 
[21] 

2020 9,926 Adult ICU 
Patients 

0.91 1 6.6% 

 

Analysis of our Models 

High Frequency Time Series Features 

This study sought to explore the usefulness of complex features derived from high frequency 

physiological data and did find that on the test set, including some of these features improved 

the performance of our model when compared to predictive models built using just low 

frequency variables only, as seen in Figure 5. However, performance obtained using cross 

validation did not increase beyond a 95% confidence interval, indicating this difference is not 

statistically significant. Further study to identify why the test set performance differs so much is 

warranted. Numerous complex features did appear to be the most predictive when analyzed 

using random forest feature importance values, as indicated in Figure 7, and when using SHAP 

values, as seen in Figure 8. This could mean that these complex features do have some use in 

predicting ICU readmissions or post discharge mortality, but that it is likely not capturing much 

novel information compared to the low-frequency features.  
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Large and Heterogeneous Dataset 

Our study uses data from the Philips eICU database, which is large and includes many hospitals 

across the United States. We extracted 24,177 ICU stays from 185 hospitals across the United 

States dataset for training, testing, and validating our model. This is more ICU stays than the 

datasets used by most previous models and is likely to have far more heterogeneity than the 

data used in previous studies, many of which examined data from only a single hospital. This 

heterogeneity likely makes our findings more broadly applicable, especially in the United States 

where all the data was obtained.  

Feature Interpretability and Analysis 

The top feature analysis conducted using random forest (Figure 7) is not able to examine the 

relationships between features and model output but does still indicate which features were 

considered most important to prediction by the model. The most important features seem 

plausibly correlated with readmission or mortality. The top features derived from high-

frequency variables included measures of non-linearity, anomaly detection, linear regression 

intercepts, and Fourier Transform attributes, which are likely indicators of trends and stability 

in those physiological signals. Blood pressure features did not appear in the top 20 most 

important features at all, indicating perhaps that blood pressure data are less useful or that 

relevant features for blood pressure were not utilized in this study. Other top features include 

several measures of sodium level in the blood and recent changes in glucose, which are likely 

associated with illnesses that increase medical risk such as kidney problems, diabetes, or 

trauma. Unsurprisingly, APACHE IV score and ICU length of stay also were top features based on 

the random forest analysis, likely as indicators of overall illness severity. 
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Using SHAP value analysis, it is possible to examine the relationships between specific features 

and model output, which can be seen in Figure 8. Many of the relationships among the top 20 

features seem physiologically plausible. For example, high weight gain during the ICU stay was 

associated with higher risk of readmission or mortality, likely a proxy for circulatory volume 

overload or over-resuscitation seen in critically ill patients with conditions like decompensated 

heart failure or septic shock. Likewise, administrations of anticholinergic bronchodilators and 

anticoagulants were associated with higher risks, possibly because the underlying reason for 

which those drugs were administered (difficulty breathing for bronchodilators, or 

cardiovascular problems for anticoagulants). The numerous complex features on heart rate, 

blood pressure, respiratory rate, or oxygen saturation data could have many clinical 

interpretations. Some of these capture directional trends in the data, or variability, both of 

which might indicate a lack of physiological stability. Other relationships between features and 

model output were less clear-cut and require further analysis. SHAP values can also be used to 

examine interactions between features, although no feature interactions of interest were found 

thus far.  

Limitations of our Models 

Data Quality 

One significant limitation of our data was the amount of missing data. Since this is a publicly 

available database compiled in the past, we had no control over the actual collection process of 

the data, and little insight into exactly why certain data were missing or erroneous. We were 

able to guess to some degree why data might be missing and accordingly made decisions about 

inclusion and pre-processing, but such hypotheses cannot be verified. Certain ICU stays in our 
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dataset were excluded due to data quality issues, such as missing certain important 

physiological time series features. The eICU database is also built from data collected during 

routine care, and as such is missing potentially valuable data. For example, time series data is at 

best measured every 5 minutes, while data sampled at a higher frequency, or waveform data, 

might contain more predictive information. There is also little data about social determinants of 

health or provider/hospital traits.  

Correlational Relationships Between Variables and Labels 

Although feature ranking and analyses such as Shapley summary plots can help to show some 

of the relationships between features and the outcome label, it is difficult to exactly interpret 

how complex machine learning models are making predictions. It is not currently feasible to 

display information about all of the complexity of model outputs, such as interactions and 

feature effects on output simultaneously. In addition, the constructed predictive models are 

largely based on statistical correlation: they are not capable of identifying causal relationships, 

meaning that model features may only be proxies for actual causal variables.  

United States Hospitals  

All the hospitals in the eICU database are in the United States. This means all the data used to 

train and test our models are from United States hospitals, potentially limiting generalizability 

of our results in other countries. This is especially likely given that ICU readmissions are 

impacted by non-physiological factors, which may vary heavily between countries with different 

medical practices and health system operational paradigms.  
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Conclusion 

Our newly developed models do not currently outperform previously constructed models in the 

literature nor clinician prediction. The use of complex features derived from high frequency 

physiological time series does slightly improve performance on the test set, but not beyond a 

95% confidence interval on the outer loop results. Features derived from high frequency 

physiological time series data do not currently appear to be useful in predicting ICU 

readmissions or post-discharge mortality, although clearly further investigation is warranted. 

Expansion Possibilities 

There are many ways we could build upon the current predictive model. While thus far 

simplistic methods for imputation such as median or mean imputation were used, many 

variables would likely benefit from multiple imputation, based on patient characteristics such 

gender, age, or weight. Additional predictive features could also be added to improve 

performance, either based on entirely different variables, or perhaps using other complex 

features derived from high frequency data. It is possible that other types of features besides 

those extracted by the tsfresh package could be useful, or perhaps that other frameworks to 

extract features would yield better performance, such as different interval lengths or 

combinations of interval features than used in this study (Figure 2, Figure 3). Those additional 

features might require entirely different datasets, such as more frequent time series data, 

socioeconomic factors, genetic analysis, or more hospital characteristics. Further analysis of 

feature relationships and interactions could also be done, especially with clinician and 

mathematician collaboration to fully understand both the mathematical and physiological 

meaning of complex time series features. Finally, there was significant class imbalance in the 
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dataset, which could potentially be addressed with over or under sampling, or methods such as 

Synthetic Minority Over-sampling Technique (SMOTE) [22]. If these methods improve model 

performance, it would then be worthwhile to explore additional model metrics such as model 

calibration, externally validate these results to increase confidence that the model is universally 

applicable, and after that potentially conduct prospective studies of model performance.  
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Supplements 

Supplemental Table 1: All signals or variables extracted in the study. Categorical values were 
one-hot encoded, and variables with multiple numerical values were handled in numerous 

ways, such as means, medians, etc. 

Demographics 

Age Gender 

Ethnicity  

Admission Information 

Admission Diagnosis ICU type 

Height Unit admit time 

Weight Unit admit source 

Urgent admission  

Physiological Scoring 

APACHE IV SOFA (and subscores) 

Q-SOFA (and subscores) GCS (total, verbal, motor, eyes) 

RASS Elixhauser Comorbidity Index (and 
components) 

Medical History 

AICD Angina 

Arrythmia CHF 

CABG Hypertension 

Myocardial Infarction Pacemaker 

PVD PCI 

Pulmonary Embolism Valve Disease 

Venous Thrombosis Cushing’s Disease 

Hypercalcemia Hyper/hypothyroid disease 

Diabetes Steroid Use 

Cirrhosis Hypersplenism 

PUD Liver Transplant 

Aplastic anemia Chemotherapy 

Radiation Therapy Cancer 

Clotting Disorder Hemolytic Anemia 

Hypercoagulable condition Myeloproliferative Disease 

Sickle Cell Disease Dementia 

Intracranial Mass Immune Suppression 

Neuromuscular Disease Seizures 

Stroke TIA 

Asthma COPD 

Respiratory Failure Restrictive Disease 

Lung Transplant Sarcoidosis 

Stone Disease Neurogenic bladder 

Renal Failure/Insufficiency RTA 
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Renal Transplant Rheumatic Disease 

Labs 

Albumin Alkaline Phosphate 

ALT (SGPT) Anion gap 

AST (SGOT) Glucose 

BUN Calcium 

Chloride Creatinine 

Hct Hgb 

Lactate Lymphs 

Magnesium MCH 

MCHC MCV 

Monos MPV 

O2 Saturation paCO2 

paO2 pH 

Phosphate Platelets 

Polys Potassium 

PT PT – INR 

RBC RDW 

Sodium Total bilirubin 

Total protein WBC 

Bicarbonate  

Medications 

Acetaminophen Adrenergic Bronchodilators 

Aminoglycosides Anticholinergic Bronchodilators 

Anticholinergics Anticoagulants 

Antidiarrheals Antiemetics 

Antihistamines Barbiturates 

Benzodiazepines Beta Blockers 

Calcium Channel Blockers Carbapenems 

Cephalosporins Class  V Antiarrhythmics 

Colloid fluids Crystalloid fluids 

Diuretics General Anesthetics 

Glucocorticoids Glucose Elevating Drugs 

Glycopeptides H2 Receptor Blockers 

Haloperidol Insulin 

Laxatives Lincomycins 

Macrolides MAOI Antidepressants 

Methylxanthines Other antidepressants 

Potassium Channel Blockers Precedex 

Proton Pump Inhibitor Quinolones 

SNRI Antidepressants Sodium Channel Blockers 

Somatostatin SSRI Antidepressants 

Sulfonamides Tetracyclic Antidepressants 

Tetracyclines Thrombolytics 

Tricyclic Antidepressants Vasodilators 
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Vasopressors  

Physiological Measurements 

Temperature Blood pressure 

SaO2 Respiratory Rate 

Heart rate Urine output 

Treatments 

Dialysis Mechanical Ventilation 

Blood product transfusions (RBC, 
plasma, platelets, other) 

Surgery 

Miscellaneous 

Infection Sepsis 

Acute kidney injury Current LOS/Time of Day 

Signals used with tsfresh package. Full list of features at: 
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html 

SaO2 Blood pressure (systolic, diastolic, mean) 

Respiratory Rate Heart Rate 

 

  

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Supplemental Table 2: All signals or variables included in the best performing mixed features 
model, totaling 53 features. Categorical values were one-hot encoded, and variables with 
multiple numerical values were handled in numerous ways, such as means, medians, etc. 

Admission Information 

Unit admit source Unit admit time 

Weight  

Urgent admission  

Physiological Scoring 

APACHE IV  

Labs 

ALT (SGPT) Anion gap 

Creatinine Glucose 

Chloride MCHC 

O2 Saturation paCO2 

Phosphate pH 

Potassium Sodium 

WBC  

Miscellaneous 

Current LOS Time of Day 

Signals used with tsfresh package. Full list of features at: 
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html 
SaO2 Blood pressure (systolic, diastolic, mean) 

Respiratory Rate Heart Rate 

 

  

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
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Supplemental Table 3: Physiological ranges used to determine plausibility of high frequency 
data. 

Variable Lower Bound Upper Bound 

SaO2 50% 100% 

Heart Rate 20 bpm 220 bpm 

Respiratory Rate 5 bpm 50 bpm 

Systolic Blood Pressure 20 mmHg 300 mmHg 

Diastolic Blood Pressure 5 mmHg 225 mmHg 

Mean Blood Pressure 10 mmHg 250 mmHg 

Pulse Pressure 5 mmHg 200 mmHg 

Systolic – Mean Blood Pressure 3 mmHg N/A 

 

 


