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Abstract 
 

 Most state-of-the-art tactile sensing arrays are not scalable to large numbers of 

sensing units due to their raster-scanned readout. This readout scheme results in a high 

degree of wiring complexity and a tradeoff between spatial and temporal resolution. In 

this thesis I present the use of spatial frequency encoding to develop asynchronous tactile 

sensor arrays with single-wire sensor transduction, no per-taxel electronics, and no 

scanning latency. I demonstrate this through two prototype devices, Neuroskin 1, which 

is developed using fabric-based e-textile materials, and Neuroskin 2, which is developed 

using fPCB. Like human skin, Neuroskin has a temporal resolution of 1 kHz and innate 

data compression where tactile data from an MxN Neuroskin is compressed into M+N 

values. Neuroskin 2 requires only four interface wires (regardless of its number of 

sensors) and can be easily scaled up through its development as an fPCB. To demonstrate 

the utility of the prototypes, Neuroskin was mounted onto a biomimetic robotic finger to 

palpate different textures and perform a texture discrimination task. Neuroskin 1 and 2 

achieved 87% and 76% classification accuracy respectively in the texture discrimination 

task. Overall, the method of spatial-frequency encoding is theoretically scalable to 

support sensor arrays with thousands of sensing elements without latency, and the 
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resolution of a Neuroskin array is only limited by the ADC sampling rate. Future tactile 

sensing systems can utilize the spatial frequency encoding architecture presented here to 

be dense, numerous, and flexible while retaining excellent temporal resolution. 
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Motivation 
 

Research in tactile sensing has enabled many advances in robotics and prosthetics. 

This is largely because tactile sensors have granted a 'sense of touch' to robotic devices. 

For upper limb prosthetics, tactile sensors have been developed to cover the fingertips, 

palm, or other parts of the prosthetic limb to measure pressure and force for sensory 

feedback. For lower limb prosthetics, they have been used to cover foot soles to help with 

sensory feedback for gate improvement. Overall, the incorporation of tactile sensors into 

prosthetic limbs has been shown to greatly help prosthesis users handle everyday objects 

and navigate their environments.  

In addition to prosthetic devices, tactile sensors have had a significant impact on 

other fields of robotics, such as in manufacturing/assembly, autonomous navigation, 

humanoid robotics, and bio-inspired robots. For example, the first artificial tactile sensing 

array was developed for industrial parts handling equipment. Since then, tactile sensors 

have been used for robotic systems involved in grasping and manipulation to provide 

force feedback. This is particularly useful for applications where delicate grasping is 

desired. These sensors 'close the loop' for grasping robots and enable the development of 

precise control systems.  

Despite these great applications, current tactile sensing systems are not scalable to 

support a large number of sensing elements. This is a major limitation for developing 
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full-body tactile sensing 'skins', or for the development of very high-density tactile 

sensing arrays.  

The goal of this work is to overcome this limitation by developing a new, scalable 

tactile sensing system that can support the next generation of smart robotic devices. 
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Foreword on touch 
 

The sense of touch is ubiquitous throughout biology [1]. All organisms use a form 

of touch to sense their environment, and to help inform them on how to best interact with 

the world [1]. Humans and other mammals have especially sophisticated touch, with 

many distributed mechanoreceptors and various adaptation mechanisms [2]; but even 

unicellular organisms such as the Paramecium will respond to mechanical perturbations 

of its outer membrane [3]. 

For single cell organisms such as this Paramecium, touch is sensed through 

microscopic hairs called cilia [3]. These cilia cover the entire body of the Paramecium 

and beat in a periodic way to induce thrust and motion through the organism’s 

environment (Figure 0.1). When pressure is applied to the cilia, ion currents are induced 

in the cell, triggering the beating of the cilia, and directing the Paramecium away from 

the stimulus [3]. 

 
Figure 0.1: Phase contrast photomicrographs of a Paramecium caudatum. (Main) 
Anterior tip of the organism, showing hundreds of cilia (hair-like appendages) sprouting 
from its surface. Scale bar: 10μm. (Inset) Lower magnification view showing the whole 
organism. Scale bar: 25μm. Reprinted from [4]. 
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These cilia are the most primitive, and most general, structures used to sense 

mechanical stimuli throughout biology. Multicellular organisms, such as sponges, are one 

of the earliest evolving phyla after the unicellular organisms and have an array of cilia 

[5]. When arrays of cilia are formed, they enable organisms to obtain spatiotemporal 

information about mechanical stimuli. For example, these cilia arrays give sponges a 

sense of flow direction [5]. 

As life evolved and became more sophisticated, and multicellular, these sensing 

arrays evolved as well. Plant life evolved after multicellular organisms, and although we 

may not think of plants as sensitive to touch, plants use mechanosensation to guide how 

they mature, grow, and change with time [6]. In modern plants, there are two classes of 

mechanical responses which can be described as rapidly moving and slowly moving [6].  

The slowly moving class is responsible for life-long, developmental shaping and 

structuring of the plant. This class enables vines to grow around poles and branches, and 

complex root systems to grow through cracks in the sidewalk or asphalt. Humans often 

exploit this adaptation when designing bonsai trees or landscaping. The rapidly moving 

class is responsible for extremely rapid movements in response to touch – this is observed 

in the snapping trap of the Venus flytrap (Dionaea muscipula) or the rapid folding of fern 

Mimosa pudica [6]. In the case of the venus fly trap, when insects bump into the ‘trigger’ 

hairs on the ventral leaf surface, intercellular electrical signals are generated (ion 

currents), triggering differential enlargement of lobe cells and closing of the trap [6]. As 

different receptors are triggered in the trap, dynamic changes in cell expansion are 

triggered evoking the different stages of the trap [6]. This adaptation allows small insects 
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to escape before the trap is fully closed (not worth the plant's energy), but signals for full 

trap closure when the insects are large (Figure 0.2). 

 

Figure 0.2: A sketch of the three trap states of the Venus flytrap, inspired by Darwin. 
Reprinted from [7]. 

These two classes of plant mechanosensation may remind neuroscientists of the 

two main types of mechanoreceptors in mammalian skin, the rapidly adapting (RA) and 

the slowly adapting (SA) [2]. In mammals these two classes of mechanoreceptors are 

distributed across the entire skin and can be further classified as either Type 1 or Type 2, 

respectively denoting either a small or large receptive field. In human tactile sensing, the 

four main types of mechanoreceptors are the Meissner’s corpuscle (RA & Type 1), the 

Merkel cells (SA & Type 1), the Pacinian corpuscle (RA & Type 2), and the Ruffini 

endings (SA & Type 2) [2]. Like other mechanosensitive receptors, these 

mechanoreceptors encode their pressure information through neural spiking patterns [8]. 

RA receptors respond to dynamic stimuli, evoking spikes only during transitions or 

changes in pressure; contrarily, SA receptors respond to static stimuli, and proportionally 

change their firing rate with change in stimulus intensity [8] (Figure 0.3). 
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Figure 0.3: Spike trains in response to a tactile stimulus from the different types of 
mechanoreceptors. Reprinted from [8]. 

Due to their dynamic nature, RA receptors are important for large mammals, with 

large skins, because of their natural compression of tactile data [9]. By only responding to 

changes in pressure, RA receptors drastically compress static data into just two events – 

the beginning of the stimulus and the end. Because of this highly dynamic response, these 

RA receptors are essential for the discrimination of complex textures with dense spatial 

features [10]. When the human fingers palpate (move/slide) over textured surfaces, RA 

mechanoreceptors may be activated at rates up to 1000 Hz [11].  This fast dynamic 

response, coupled with the high-density of mechanoreceptors in the human fingertips 

(241 units/cm2), enables humans to have remarkable texture discrimination capabilities 

[12]. For example, the human fingertips have been shown to discriminate textures with 

13nm features [13] and have also been shown to be sensitive enough to distinguish 

surfaces that differ by only a single layer of molecules [14].  

Replicating these sensing capabilities artificially is a major goal of biomedical 

engineering and sensor design. And although achieving human-like sensing remains 

elusive, in the past 40 years researchers have developed a variety of tactile sensing arrays 

that can record pressure, force, and vibration across large areas like the skin. These tactile 
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sensing arrays have been developed through many different architectures and are 

reviewed in chapter 1. 

The rest of the thesis is organized into four additional chapters and aims to 

demonstrate how frequency multiplexing may be used to improve on the state of the art 

of current tactile sensor arrays and bring us closer to achieving human-like sensing. Thus, 

Chapter 2 reviews and discusses the use of frequency multiplexing in the context of 

increasing the scalability of current tactile sensor arrays. Chapter 3 builds off the 

foundations of chapter 2 and describes the design and testing of a frequency multiplexed 

tactile sensor array prototype. Chapter 4 describes the design and testing of a polished 

and scalable redesign of the frequency multiplexed sensor array using flex PCB. And 

lastly chapter 5 concludes the thesis with ongoing and future works.  
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Chapter 1  

1 Introduction 
 

1.1 Artificial Tactile Sensing Arrays 

Artificial tactile sensing arrays (TSAs) are used to provide robotic devices with a 

‘sense of touch’ [15]. These sensor arrays are critical in many industrial and clinical 

applications. For example, tactile sensor arrays have been used to develop electronic 

skins (e-skins) that help provide sensory feedback to amputees [16]. This chapter 

discusses state-of-the-art-tactile sensor arrays, how they are readout, and what their 

limitations are. 

1.1.1 Review 

TSAs have been in research since 1983, when they were developed for industrial 

parts handling [17]. Since then, TSAs have been developed using all sensing principles 

(capacitive, piezoresistive, optical, etc.). These different sensing principles and how they 

have been applied to develop tactile sensor arrays are reviewed in the Appendix. 
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For readout, TSAs typically adopt a row-column multiplexed readout scheme to 

reduce the number of necessary wires [18]. Row-column multiplexing requires an 𝑚 + 𝑛 

number of wires, where m and n represent the number of rows and columns respectively. 

This readout scheme is commonly known as time-division multiple access (TDMA) or 

raster scanning [19].  

However, the literature shows that few raster-scanned tactile sensor arrays have 

many sensing elements as well as high spatiotemporal resolution. This points to the 

tradeoff between spatial and temporal resolution in raster-scanned systems. Because the 

scanning speed is fixed, as the number of sensing elements increases (spatial resolution 

increases), the necessary scanning time increases as well. This increase in scanning time 

lowers the temporal resolution. 

Despite this tradeoff, some reported tactile sensor arrays have been large, dense, 

and fast. One example is the kilohertz kilotaxel sensor array developed by Lee et al [20]. 

This sensor array uses event-based encoding and a series of timers to achieve a 5.2 kHz 

sampling rate with 4096 sensing elements. Moreover, kilohertz spatiotemporal resolution 

has been shown to be critical for the discrimination of complex texture [11]. For example, 

the response from a population of mechanoreceptors in the skin has patterns with 

temporal precision of up to 0.8 msec [21]. This precision provides a rich representation of 

contact forces, and enables the rapid approximation of features like magnitude, curvature, 

and direction [21]. 
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1.1.2 Readout 

Almost all tactile sensing arrays (regardless of their sensing principle) are 

interfaced using time-divisional multiple access (TDMA) [22]. TDMA, or raster 

scanning, involves individually addressing each tactile sensing ‘pixel’, or taxel, in the 

sensing matrix one at a time before moving on to the next taxel [19]. A typical readout 

circuit diagram for TDMA-based TSA is shown below in Figure 1.1. 

 

Figure 1.1: Sensor readout circuit diagram. Each row in the sensor matrix is an analog 
readout trace, and each column is a digital input trace. The diagonal connections 
represent piezoresistive material. To readout the array, digital inputs are incrementally set 
to 5V and the voltage values at the different analog readout traces are readout. Reprinted 
from [19].  

The sensor readout procedure is typically accomplished using the following 

algorithm: 

1:   for each digital input pin: 
2:       set digital input to HIGH 
3:       for each analog readout pin: 
4:           read voltage at analog pin 
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5:       end 
6:       set all digital pins to LOW 
7:   end 

1.1.3 Limitations 

Larger sensing arrays utilizing a TDMA approach necessitate longer readout 

times to sample all the sensors in the array. This poses a significant problem to the 

scalability of state-of-the-art sensing arrays. 

Due to this limitation, current tactile sensing arrays cannot be used for large area 

sensing with high temporal and spatial resolution. This is evident when considering 

attempts made to sensorize the entire hand [23], or other large areas like the entire body 

[24]. In the sensorized glove (STAG) developed by Sundaram et al [23], 548 sensors are 

used to collect pressure data across the palmar side of the hand with a sampling rate of ~7 

Hz (Figure 1.2). However, while the STAG has a high spatial resolution due to its high 

density of sensors, its low sampling rate leads to poor temporal resolution. 

 

Figure 1.2: a, The STAG consists of a sensor array with 548 elements covering the entire 
hand, attached to a custom knit glove. An electrical readout circuit is used to acquire the 
normal force recorded by each sensor at approximately 7.3 fps. b, The design of the 
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STAG architecture shows the individual locations of the 548 sensors. Reprinted from 
[23]. 

Another disadvantage of TDMA and raster scanning is the large number of wires 

necessary for interfacing with all the sensors in the array [19]. State of the art tactile 

sensors that use row-column multiplexing to simplify wiring have a minimum of 𝑚 + 𝑛 

wires [19]. Even this relatively small number of wires can become unmanageable as 

tactile sensing arrays become large or dense with many elements. 

For these reasons, an alternative to TDMA is highly desired. Particularly, an 

asynchronous communication method over a single wire. 

1.2 Asynchronous tactile sensing e-skins 

Due to the poor temporal resolution and the many wires necessary for TDMA, 

some groups have explored asynchronous transmission over a single wire/conductor 

[25,26,27]. Unlike synchronous protocols that require a clock to synchronize sensor 

communication, asynchronous protocols allow for sensors to communicate independently 

of a local clock signal [28]. This allows sensors to communicate precisely at the time of 

their sensing events and leads to improved temporal resolution.  

Asynchronous tactile sensing schemes are also inherently biomimetic as the human 

skin employs asynchronous transmission natively through its mechanoreceptors [29]. 

This can be seen through the independent spiking behavior of each mechanoreceptor and 

the encoding of information through spatiotemporal patterns [29]. A discussion of three 

notable asynchronous tactile sensing systems is conducted below. 
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1.2.1 ACES 

Lee et al demonstrated a novel tactile sensing system that utilizes asynchronous 

coding to build an artificial peripheral nervous system [27]. Their asynchronously coded 

electronic skin (ACES) consists of a large number of artificial mechanoreceptors that 

transmit asynchronously with a constant latency of 1 msec. Moreover, due to the 

asynchronous mode of transmission, the ACES skin has an excellent temporal resolution 

of just 60 ns. Additionally, due to the integrated latency, multiple signals can be 

combined over a single wire. This allows ACES to be highly robust to damage and highly 

flexible in design. The robustness to damage comes from the use of a single common 

conductor to transmit the artificial mechanoreceptor events. Because each sensor is 

independent of the others, damage to a single sensing unit allows the other sensors to 

maintain their functionality. This is analogous to the human body because when certain 

parts of the skin are bruised or damaged, the remaining mechanoreceptors are not 

affected and can continue their signal transduction. 

 To achieve these characteristics, Lee et al incorporate a microcontroller into each 

tactile sensing unit (taxel). This microcontroller is used to transmit a specific pulse 

signature that is unique to each taxel. To encode the pressure signal, Lee et al use the 

biomimetic approach of spike timing (Figure 1.3). Therefore, for high pressure signals, 

the event frequency increases, and for low pressure signals, the event frequency 

decreases. A downside of using this encoding scheme is that a single event is not 

sufficient to determine the amplitude of a pressure signal, and multiple events must occur 
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before the signal can be accurately reconstructed. Likewise, this encoding scheme results 

in light touches taking longer to register than heavier touches. 

 

Figure 1.3: (A) ACES receptors generate tactile events with spatiotemporal structures 
(dashed lines) that encode the stimulation sequence. (B) Pulse signatures are combined 
and propagated via a single conductor. (C) Decoders match pulses in time. Reprinted 
from [27]. 

To encode pressure through event timing, each receptor incorporates a 

piezoresistive sensing element and some electronic components for signal conditioning. 

A summing op amp circuit is then used to combine all the receptor signals together from 

the single conductor (Figure 1.4). A notable disadvantage of this tactile sensing scheme is 

the complexity of each receptor, and the complexity of the algorithms used for decoding 

the tactile signatures presented by each receptor. 
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Figure 1.4: Multiple ACES receptors (blue blocks) are connected to a decoder (orange 
block) via a single electrical conductor. The red variable resistor represents the resistive 
sensors used in the current prototype. Reprinted from [27]. 

1.2.2 CellulARSkin 

The CellulARSkin developed by Mittendorfer et al demonstrates an approach to 

realize whole-body tactile interactions using a network of multi-modal artificial skin 

‘cells’ [25]. Each ‘cell’ makes up a patch of the whole CellulARSkin and patches 

communicate with a central reader using an event-driven state machine to transmit new 

data packets when sensor values deviate from sensor noise and recently transmitted 

samples.  Each cell has an individual area of ~7cm2, and can sense temperature, pressure, 

proximity to objects, and acceleration (Figure 1.5).  
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Figure 1.5: Electronics board of the modular artificial skin cell, featuring multiple sensor 
modalities on the front side, and local infrastructure on the back side. Reprinted from 
[25].  

 The event-driven state machine communicates with round robin packet routing, 

which is like raster scanning. Therefore, the CellulARSkin is not capable of supporting 

more than 80 simultaneous responding sensors at a refresh rate of 250 Hz [25]. Thus, to 

achieve human skin-like transmission speeds of 1 kHz, CellulARSkin could support a 

maximum of 20 simultaneously responding sensors.  

 A unique benefit of CellulARSkin is its capability to automatically organize itself 

on the fly. This allows sensors of the CellulARSkin to obtain unique IDs using a self-

organized tree structure (Figure 1.6). Consequently, CellulARSkin is extremely flexible 

in deployment and highly reconfigurable, allowing cells to be arranged in arbitrary 

shapes with a dynamic method of assigning sensor IDs to each cell. 
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Figure 1.6: Example of the network organization in CellulARSkin. Reprinted from [25]. 

1.2.3 RFID Hand 

Our group has also attempted to mitigate the limitations of TDMA using wireless, 

asynchronous methods [30]. Instead of using a single wire for signal transmission, we 

have proposed the use of a wireless system using RFID to transmit unique receptor IDs 

(analogous to the ACES pulse signature). Unlike the ACES scheme, our asynchronous 

RFID transmits binary pressure rather than analog, although a similar analog transmission 

scheme could be adopted using event timing modulation. 

To transmit binary pressure data in an event-based manner, an air gap was utilized 

to modulate the responses of different RFID tags. By separating an RFID chip from its 

antenna, the RFID tag is transformed into an event-based binary pressure sensor. This 

was implemented by implanting the RFID chip and antenna in a silicone elastomer with a 

specific air gap between the antenna and chip. Because the silicone elastomer is elastic, 

pressure on an RFID taxel deformed the material and allowed for contact between the 
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RFID chip and its antenna – causing the RFID tag to transmit its ID number, and 

therefore the location of the pressure event (Figure 1.7). 

 

Figure 1.7: Overall system setup to power and read pressure data from the RFID Hand. 
An Arduino UNO is used to interface a computer with the RFID reader. A computer 
program records and displays which RFID taxels respond to different pressure inputs. 
The pressure location can be realized due to a one-to-one mapping between each tag’s ID 
and its location in the RFID Hand. Reprinted from [30]. 

 This RFID-based solution, which we called the RFID Hand, served as a proof of 

concept for how to build flexible tactile sensing arrays that are scalable to large amounts 

of sensors. A potential downside of the RFID Hand is that as the number of 

simultaneously responding taxels increases, the readout time increases as well. This is 

due to the anti-collision protocols that RFID readers employ when communicating with 

groups of RFID tags. Because the RFID reader is only capable of reading a single RFID 

tag at a time, when multiple tags respond they form a queue. Moreover, the queue 

completion time is not linear and large queues take longer to process than a linear 
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relationship would suggest.  Still, the RFID Hand is, to the best of our knowledge, the 

only developed asynchronous, event-based tactile sensing scheme that can be powered 

and readout completely wirelessly. This makes RFID-based tactile sensors a good 

candidate for complex, intricate sensor designs where wiring can introduce problems. For 

example, RFID-based sensors can be good candidates for developing multi-layer, 

distributed tactile sensors. With a variety of tactile sensing elements throughout various 

layers, a wireless approach is desirable for facile implementation. 

1.2.4 Limitations 

Despite the advantages of the ACES skin, CellulARSkin, and the RFID hand, all 

three systems are non-optimal, and have their own unique sets of problems.  

For example, the ACES architecture results in a high degree of computational 

complexity in the receiver, and it is also impossible for the receiver to know if a loss of a 

sensing event occurs [27]. Additionally, because each taxel must transmit a complex and 

unique pulse signature, each taxel requires a dedicated microcontroller. This is 

problematic for developing dense tactile sensor arrays. The smallest commercially 

available microcontrollers are on the order of 2mm in size [31], constraining individual 

taxels to be at least that large. Emulating human-like sensing will require a higher density 

of tactile sensors as the human fingertips have a mechanoreceptor density of 241 

units/cm2 [12]. Moreover, the ACES architecture encodes pressure data through firing 

rate modulation. Therefore, multiple pulse signatures must be read before realizing the 

sensor measurement. Likewise, the CellulARSkin also requires complex electronics 

inside each ‘cell’ of the skin and therefore is limited in density like the ACES receptors. 
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Additionally, the number of simultaneously responding sensors is relatively low because 

of the round-robin communication scheme. Although most human tactile interactions 

contain sparse tactile signals, the maximum of 20 simultaneously responding sensors is 

limiting for creating large sensor arrays. This also excludes the CellulARSkin from 

utilization in applications where simultaneous touch scenarios are common.   

Unlike the ACES architecture or the CellulARSkin, the RFID Hand does not 

suffer from the same scalability limitations. This is because RFID research has focused 

on developing extremely small tags, with the smallest tags having a 0.05 x 0.05 

millimeters footprint [32]. Such a small footprint could theoretically allow for a tactile 

sensing array with a sensor density of 400 units/cm2. However, despite the scalability of 

the RFID Hand, the RFID Hand has poor sensor resolution and is only designed to 

transmit binary values. Another limitation of the RFID Hand is that as the number of 

simultaneously responding taxels increases, the readout time increases as well. This 

limitation is common in both the RFID Hand and the CellulARSkin. When multiple tags 

respond concurrently, the RFID tags are put into a queue and handled one at a time. 

Moreover, the queue is non-linear and longer queues take much longer to resolve. Lastly 

the RFID Hand has a relatively complex readout antenna. This complex design is 

constructed to promote efficient communication with all the tags. However, the authors 

argue that it is possible to reduce the complexity of the antenna.  
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Chapter 2  

2 Spatial frequency encoding for scalable 

e-skins 
 

Spatial frequency encoding is a type of frequency multiplexing that encodes 

different spatial locations as different frequencies sinusoids [33]. This encoding is 

particularly useful for applications requiring single conductor or single wire signal 

transmission due to the orthogonality of different frequencies [34]. Due to this 

orthogonality multiple signals can be combined over one conductor without destructive 

interference. Thus, frequency encoding is most used in wireless communication [35]. For 

example, in radio communication different radio signals are confined to specific 

frequencies and all the signals simultaneously transmit through the air. Tones/pitches in 

music are also frequency encoded, with higher frequency sounds having a higher pitch. 

Historically, spatial frequency encoding has been used in magnetic resonance 

imaging (MRI) and nuclear magnetic resonance (NMR) imaging to encode spatial 
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position as specific frequencies (Figure 2.1) [36]. For brain imaging, spatial frequency 

encoding allows for non-invasive 3-dimensional imaging. By representing different 

slices/depths as a different frequency, the entire brain can be imaged, and all the slices 

can be resolved through spectral analysis [36]. 

 

Figure 2.1: A linearly increasing frequency-encoding gradient (Gf) applied along the 
horizontal (x-) axis. Pixels A, B, and C all resonate at the same lower frequency; D, E 
and F at the same higher frequency. Reprinted from [37]. 

2.1 Theory 

 From a telecommunications perspective, spatial frequency encoding is a form of 

frequency division multiplexing (FDMA) [35]. FDMA has been used in wireless 

communication since 1983 and was used in the first-generation of cell phones [38]. 

FDMA divides the available channel bandwidth into many unique frequency channels 

[35]. Each transmitter has a dedicated channel and thus all users can communicate 

simultaneously. 

 The simultaneous communication capability of FDMA can be understood by 

examining the combinations of different frequency signals in simulation. For example, 

the plot below shows how signals with different frequencies are added together, and how 
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the resulting waveform can be resolved into its constituent components using a Fourier 

transform. 

 

Figure 2.2: Orthogonal frequency combination and spectral analysis. 

An important aspect of frequency encoding is the use of guard bands to separate 

frequencies [35]. Because the FFT algorithm uses frequency bins rather than a continuum 

of frequencies [39], and the sampling time is fixed, it is important to ensure adequate 

band spacing between different frequencies. This is achieved by using guard bands 

between signal carrying bands/frequencies [35]. These bands do not carry any signal and 

are used to ensure accurate peak detection in the frequency analysis. 

Because of the substantial bandwidth of the radio frequency band (kHz to THz+), 

spatial frequency encoding is useful for applications involving many sensing elements. 

The total number of possible frequencies that can be used for encoding depends on the 

desired sampling rate of the tactile sensor array and the sampling rate of the ADC used to 

readout the sensor array. By Nyquist’s theorem, to accurately measure a signal it must be 

sampled over twice as fast as its maximum frequency component [40]. This implies that 

the maximum encoding frequency is 𝐴𝐷𝐶𝑓𝑟𝑒𝑞

2
. The minimum encoding frequency is 
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determined by the desired sampling rate for the tactile sensor array. For robust FFT 

detection, the minimum frequency separation should equal the sampling rate. Thus, the 

channel number is determined by the following formula: 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 =

𝐴𝐷𝐶𝑓

2 − 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒
 

For example, a tactile sensing system with a 1kHz sampling rate and a 1 GHz 

ADC will have: (500MHz - 1kHz)/1kHz = 499.999 MHz / 1kHz = 499.999 k = 499,999 

possible channels. Moreover, this total channel number is a lower bound as the frequency 

spacing can be decreased. For example, it has been demonstrated that the minimum 

frequency separation can be 1/2T rather than 1/T [41]. This doubles the possible channel 

count to almost 1 million.  

When calculating the FFT it is important to use frequency bins at least twice as fast 

as the specified channel spacing [41]. This ensures that there is at least one guard band 

for each transmission band. By allocating guard bands in the FFT, the peaks in the 

spectrograph can be reliably detected/discriminated. 

The implementation of spatial frequency encoding systems is carried out in four 

steps: carrier wave generations, wave modulation, signal integration, and decoding. These 

steps are reviewed in the Appendix. 

2.2 Dual-Tone Multi-Frequency Encoding 

Rather than using a single-tone frequency encoding as described above, in this 

work dual-tone multi-frequency encoding (DTMF) is used. Instead of assigning a single 
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frequency to each sensing element, each row and column of the sensor array are assigned 

a unique frequency [42]. Thus, the intersection of a row and column create a tuple of 

frequencies, like an x-y coordinate system. Historically, DTMF has been commonly used 

in telephone keypads (Figure 2.3) and the activated dual tones are audible when pressing 

a button on a phone [42]. Although these touch-tone keypads are binary touch sensors, 

piezoresistive materials can be used to convert the binary touch sensor into an analog 

tactile sensor array. 

 

Figure 2.3: DTMF touch-tone number pad. Reprinted from [43]. 

DTMF has two primary advantages over conventional single tone encoding 

systems for the development of sensor arrays: innate data compression, and the enabling 

of electronics-free taxels. 

Because each row and column of a DTMF sensor array is assigned a unique 

frequency, the number of frequencies for a 𝑀 ∗ 𝑁 sensor array is 𝑀 + 𝑁. For small tactile 
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sensor arrays this scaling is not significant, but as the sensor array grows this relationship 

significantly reduces the number of frequencies required for analysis. For example, to 

readout a 1000 ∗ 1000 sensor array with 1,000,000 sensing units only 2,000 frequencies 

need to be analyzed. This makes DTMF very promising for real-time sensing applications 

in large sensor arrays with many sensors. 

Electronics-free taxels are also enabled by the dual-tone design. Because a taxel is 

defined as an intersection of a row and column in a DTMF sensor array, each taxel does 

not require any frequency generating circuitry. This is especially attractive for the 

development of tactile sensor arrays because it allows for a high-density design, high 

flexibility, and the utilization of materials not standard in conventional circuit design. For 

example, fabric-based e-textile materials can be used to replace the rows/columns of a 

sensor array to develop a soft, flexible, and stretchable sensor array. 

A single tone system could also be designed to not require any frequency 

generating circuitry per taxel; however, it would require significantly more wires to 

interface with each taxel as the number of wires would scale with the number of sensors 

rather than the number of rows/columns. 
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Chapter 3  

3 Neuroskin 1 
 

 The following chapter was presented at the 10th International IEEE/EMBS 

Conference on Neural Engineering (NER) and was published in the conference 

proceedings [44].  

Neuroskin 1 is a fabric-based prototype of a 3x3 spatial frequency encoded tactile 

sensor array. The fabric-based e-textile materials allowed the sensor to be highly flexible 

and conformable. To test the performance of Neuroskin 1, a texture discrimination task1 

was performed by mounting Neuroskin 1 onto the fingertip of a soft robotic finger.  The 

sensorized soft robotic finger was then attached to a UR5 robotic arm and a library of 

 
 

1 Texture was chosen as a model task because of the complex spatiotemporal nature of texture palpation. 
Because applied pressures change spatially and temporally during texture palpation, accurate texture 
discrimination requires a tactile sensor with both a high spatial resolution and a high temporal resolution. 
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different texture plates were palpated. Across the different texture plates, Neuroskin 1 

achieved an overall texture discrimination accuracy of ~87%. An overview of the texture 

discrimination task is shown below in Figure 3.1.  

 

Figure 3.1: Diagram showing the overview of the texture discrimination. Reprinted from 
[44]. 

Neuroskin 1 comprises two proof-of-concept prototypes that were developed using 

fabric-based e-textile materials with amplitude modulated sinusoidal carrier waves. The 

prototype devices used DTMF encoding to simplify fabrication and allow for a denser 

sensor array with fewer wires. Rather than assigning a unique frequency to each sensor, 

the DTMF encoding assigned a unique frequency to each row and column of the sensor 

array. Thus, each taxel of the sensor array was represented as a combination of two 

frequencies, like an x-y coordinate system (Figure 3.2). A piezoresistive layer was used 
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to amplitude modulate which coordinates are transmitted to the receiver; and spectral 

analysis is used on the receiving side to decode which locations were activated on the 

sensing matrix with what pressure.  

 

Figure 3.2: Diagram showing tactile dual-tone multi-frequency encoding. A single taxel 
is associated with 2 carrier frequencies, and a piezoresistive layer amplitude modulates 
these carrier waves to combine onto a single conductor. Frequency analysis is performed 
on the combined signal to reconstruct the applied pressure. 

Because of the simultaneous and asynchronous behavior of the DTMF-based tactile 

sensing system, Neuroskin 1 mimics how mechanoreceptors transduce pressure signals in 

the skin (Figure 3.3). 
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Figure 3.3: Schematic describing neuromimetic approach of spatial frequency encoding. 
The top row represents the biological pathway of tactile sensation, and the bottom row 
describes the investigated neuromimetic approach. Reprinted from [44]. 

3.1 Sensor array fabrication 

 The tactile sensor array was fabricated using e-textile materials to be flexible and 

conformable. This approach has been demonstrated before in our group’s previous papers 

[45,46]. However, to achieve spatial frequency encoding, the typical fabrication structure 

was slightly altered. An overview of the fabrication of both prototypes is described in 

Figure 3.4. The primary difference between the new fabrication structure is the 

introduction of a large piece of conductive fabric to transmit the different frequency 

signals across a single common wire. Figure 3.3b shows a second fabricated design that 

operates over two conductors rather than one. Because the design presented here uses 

DTMF, it is possible to read out the coordinates over two separate conductors (for x and 

y). 
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Figure 3.4: Fabrication schematic of the two spatial frequency encoded prototype 
devices. Green represents piezoresistive fabric (Stretchy Piezo LTT-SLPA-150k, 
Eeonyx), blue represents conductive fabric (Silver plated mesh, LessEMF), and gray also 
represents conductive fabric. Transparency in the colors represents overlapped elements 
with darker elements appearing on top of lighter ones. a. Utilizes a single common 
conductive layer, and b. utilizes two common conductive layers (one for row frequencies 
and one for column frequencies). 

3.2 Sensor readout and spectral analysis 

 Spectral analysis is used to resolve which frequencies are present in the measured 

signal and with what amplitude they are present. A Fourier transform is used to convert 

the signal from the time domain into the frequency domain. The peaks present in the 

transformed signal are then analyzed to resolve the amplitudes of the different frequency 

signals. The general encoding and decoding scheme are demonstrated below in Figure 

3.5. As different spatial locations in the sensor matrix are activated, different frequency 

sinusoids are amplitude modulated and summed into a combined voltage. The spectrum 
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of this combined voltage is then analyzed to resolve the frequencies, and their 

corresponding amplitudes, to determine the pressure signal applied on the sensor array. 

 

Figure 3.5: Flow chart showing spatial frequency encoding and decoding for a 
coordinate-based spatial frequency encoded tactile sensing matrix. (a) shows applied 
pressure to the taxel (f2, f6), (b) shows the different frequency voltage responses to be 
summed on the single conductor. (c) shows the combined voltage, and (d) shows the 
resolved frequencies in the FFT. Reprinted from [44]. 

We demonstrate the use of the spatial frequency encoded sensor in a texture 

discrimination task. Thus, we calculate the short-time Fourier transform (STFT) in 

windows of length 1500 (~100msec). This number was picked empirically by trying 

different window values and measuring the relative power of the spectrum. An example 

STFT plot for the fabricated sensor is shown below (Figure 3.6). This plot represents an 

STFT calculated after sequentially indenting the nine different taxels of the tactile sensor 

array. Notably, the plot shows how an indentation of each taxel results in two dominant 
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frequencies in the STFT. This combination of frequencies is used to resolve the location 

of the applied pressure. 

 

Figure 3.6: Generated STFT plot of frequency vs time vs amplitude in response to 
sequentially indenting the nine different taxels of the tactile sensor array. As time 
increases, pressure is applied to different taxels and is represented in the STFT as a peak 
at two different frequencies. Reprinted from [44]. 

To convert the spectral data into different taxel values, the following algorithm was 

used. In the algorithm, ‘amp’ refers to the amplitude of the frequencies (f1, …, f6) 

measured by the STFT. 

𝑇𝑎𝑥𝑒𝑙 1 = 𝑎𝑚𝑝(𝑓1) ∗ 𝑎𝑚𝑝(𝑓4) 

𝑇𝑎𝑥𝑒𝑙 2 = 𝑎𝑚𝑝(𝑓1) ∗ 𝑎𝑚𝑝(𝑓5) 

… 

𝑇𝑎𝑥𝑒𝑙 9 = 𝑎𝑚𝑝(𝑓3) ∗ 𝑎𝑚𝑝(𝑓6) 

Following this algorithm, nine taxel values were calculated for each window in the 

STFT based on the amplitudes of the six carrier frequencies present in that time window.  
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3.3 Experimental procedure 

To test the spatial frequency encoded sensor, a texture discrimination task was 

performed using an experimental procedure from a previous study [47]. The sensor was 

attached to a soft biomimetic fingertip, which was mounted on a UR5 Robot arm 

(Universal Robotics). The pneumatically actuated soft biomimetic finger had an input 

pressure of 15 psi, which resulted in a 30° angle of flexion. The finger then palpated 

across a library of 10 3D printed textured plates (Figure 3.7), for a total of 38 trials per 

texture. The signal was measured on the single common conductor and saved for offline 

analysis. After obtaining the data, the spectral content was examined as described in 

section 3.2, and the taxel values were resolved. To further emulate the firing pattern of 

biological mechanoreceptors, taxel values from each taxel were converted into 

neuromorphic spike trains using the Izhikevich neuron model [48]. This neuromorphic 

encoding allows for the extraction of temporal spike-based features such as inter-spike-

interval (ISI) that reduce the dimensionality of the data and add robustness against trial-

to-trial time misalignments These spike-based features were then classified using a 

support vector machine (SVM). 

 

Figure 3.7: 3D printed textured plates used in texture discrimination task. Reprinted from 
[44]. 
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As a comparison, the texture discrimination task was also performed on a 3x3 

TDMA sensor constructed from the same materials as the spatial frequency encoded 

sensor. In the TDMA sensor, there are 3 input wires and 3 common wires, and a sampling 

rate of 100 Hz. 

3.4 Results 

The sensor had a spatial resolution of 4 mm2, based on the width of the conductive 

fabric, and a temporal resolution of 1.75 kHz, which was limited by the minimum carrier 

wave frequency and the ADC sampling rate. For reliable FFT detection, at least one 

period is required to be present in a sampling window; thus, the minimum frequency 

carrier wave determines the sampling window size and limits the temporal resolution. 

However, for reliability in the texture discrimination experiment, ~100msec STFT time 

windows were used rather than the theoretical minimum of 0.6 msec. 

In the texture discrimination task, the spatial frequency encoded sensor achieved an 

accuracy of 86.58%. The TDMA tactile sensor achieved an accuracy of 98.95% over the 

same texture library. The classifier metrics of the texture discrimination task with a 

comparison between the spatial frequency sensor and the TDMA sensor are presented in 

Table 3.1 below. 
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Table 3.1: Texture discrimination classifier metrics. 

 

An example spectrogram for one of the samples used in the texture discrimination 

task is shown below in Figure 3.8. As evident from the graph, only certain frequencies 

have strong responses for this texture sample. Over time as the finger palpates over the 

texture, the amplitudes corresponding to different frequencies vary, suggesting changes in 

pressure on the sensor array analogous to the texture’s profile. 

 

Figure 3.8: Generated STFT plot of frequency vs time vs amplitude in response to 
sequentially indenting the nine different taxels of the tactile sensor array presented in 
Figure 3.4a. As time increases, pressure is applied to different taxels and is represented in 
the STFT as a peak at two different frequencies. Reprinted from [44]. 
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3.5 Discussion 

In the texture palpation experiment, the spatial frequency encoded sensor array had 

comparable performance to the TDMA sensor array, but with slightly lower accuracy. 

However, because this is the first presentation of spatial frequency encoding in the 

application of tactile sensor arrays, it is possible that the decoding algorithms (i.e., STFT) 

can be further optimized to increase classification accuracy. 

Overall, the neuromimetic spatial frequency encoded tactile sensor system 

presented here had many advantages over the current raster-scanned state-of-the-art. 

Notably, these advantages include single-wire signal transduction and asynchronous 

sensor responses. Thus, the only potential latency in the sensing system is introduced by 

the sampling rate of the ADC. The prototype sensor developed here had 6 wires coming 

into the device because the phase shift oscillator circuits were built on an off-the-sensor 

circuit board. In future works, these circuits can be miniaturized to fit on the perimeter of 

the tactile sensor array through fPCB development (see chapter 4). By placing the 

oscillators on the perimeter of the sensor, only three total wires could be necessary: one 

for power/Vcc, one for ground, and one for signal transmission. This is a significant 

reduction since TDMA sensor arrays require 𝑚 + 𝑛 number of wires. 

The matrix design and DTMF encoding strategy minimized the necessary 

oscillators to 𝑚 + 𝑛 rather than 𝑚 ∗ 𝑛 but had some inherent limitations as well. For 

example, because there are only six frequencies present, and nine possible taxels to be 

activated, if multiple taxels are activated along the same row or column simultaneously, 

there is some averaging in the response. This can be understood because of the additive 
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model where the amplitude of a frequency depends on the total pressure applied to a 

certain row or column. To mitigate this issue, 𝑚 ∗ 𝑛 carrier frequencies can be used. This 

would ensure that each taxel has its own independent frequency and eliminate the 

averaging issue. However, this approach requires integrating an oscillator into each taxel 

of the sensor array and can pose limitations for creating sensor arrays with a very high 

density. 

Ultimately, the bandwidth of a spatial frequency encoded system is limited by the 

ADC and the desired resolution of the application. For reliable FFT detection, it is 

generally required that at least one period of a signal is present in the time window 

investigated. This implies that depending on the desired resolution of the system, the 

lowest possible frequency used for encoding must equal the desired resolution. The 

maximum frequency that can be used for encoding is limited by the ADC frequency and 

Nyquist sampling. Furthermore, the minimum channel spacing is equal to the desired 

resolution. 

3.6 Conclusion 

The developed neuromimetic spatial frequency encoded tactile sensor array 

achieved a texture classification accuracy of 86.58% and had comparable performance to 

the state-of-the-art TDMA-based tactile sensor array. Moreover, the developed prototype 

had a higher sampling rate than the TDMA-based tactile sensor array and transduced 

sensor data over a single wire rather than a multitude of wires. The method of spatial 

frequency encoding enables no latency between sensor responses and is promising for 

discriminating textures with a high degree of spatiotemporal complexity. Overall, the 
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developed neuromimetic spatial frequency encoded system demonstrates how future 

tactile sensing systems and e-skins can be fabricated to be numerous and dense, while 

retaining excellent temporal resolution and signal transduction over a single wire.  



40 
 

 

Chapter 4  

4 Neuroskin 2 
 

 Neuroskin 2 builds directly on Neuroskin 1 by utilizing a flexible-PCB to create a 

highly scalable design. Neuroskin 2 significantly simplifies the wiring of its predecessor 

by compacting the carrier wave generating circuitry to the perimeter of the sensor array. 

Neuroskin 2 requires only 4 connection wires, 3 for power and 1 for signal, regardless of 

the number of sensing elements. Like Neuroskin 1, the ability of Neuroskin 2 is 

demonstrated through a texture discrimination task where Neuroskin 2 achieved an 

average discrimination accuracy of 76% on a library of 3D printed textures. Neuroskin 2 

is also briefly characterized by analyzing the force response of the sensing elements. 

4.1 Design and Fabrication 

Neuroskin 2 is developed as a 3x3 sensor array using DTMF, with 6 carrier 

frequencies for 9 sensing taxels (Figure 4.1). Op amp-based phase shift oscillator circuits 

are used to generate the different carrier waves of the sensor array and 0805 size resistors 

and capacitors are used in the design. A summing amplifier is used to combine the 
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mixed-frequency signal onto a single wire without taxel-to-taxel interference. The sensor 

is developed on a fPCB and was designed in KiCAD [49] and produced by PCBWay 

[50]. All fPCB circuit components were soldered by hand at JHU. 

 

Figure 4.1: Drawing of the sensor principle of Neuroskin 2. Each row and column are 
assigned a unique frequency and a piezoresistive fabric amplitude modulates tuples of 
frequencies at the location of pressure. The transmitted frequencies are amplified by a 
summing amplifier onto a single wire that goes to a microcontroller for analysis. 

The phase shift oscillator circuit was arranged in a compact design as shown 

below (Figure 4.2). Resistor and capacitor values were chosen by following the formula:  

𝑓𝑜𝑠𝑐 =
1

2𝜋𝑅𝐶√6
 

The temporal resolution of the sensor array was designed to be 1 msec to mimic the 

temporal resolution of human mechanoreceptors. Thus, the resistors and capacitor values 

were chosen accordingly to create 6 different frequencies, starting at a minimum of 1 kHz 

with a minimum spacing of 1 kHz. This was done to ensure that spectral analysis could 

accurately detect any of the carrier frequencies in a 1 msec time window, and that in that 
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time window all frequencies had a difference of at least 1 period. The resulting 

frequencies used in the sensor array were calculated to be: 1.9 kHz, 3.3 kHz, 5 kHz, 7.14 

kHz, 8.3 kHz, and 10 kHz. 

 

Figure 4.2: PCB layout of the phase shift oscillator circuits present at each row and 
column. Left shows schematic organization from KiCAD, and right shows the organized 
components for PCB population. 

 The sensor array was developed in a 5-layer design (Figure 4.5), with 3 fPCB 

boards in each sensor. The top fPCB contained the row elements, the bottom fPCB 

contained the column elements, and a middle fPCB contained a large copper square that 

allowed all the signals to combine to a single conductor. All row traces and column traces 

were designed as bare copper to ensure high conductivity. The front and back of the top 

layer is shown below in Figure 4.3 in a 3D view. The bottom layer is identical to the top 

layer but with a 90-degree rotation and an inversion of the traces on front side and 

components on the back side. 
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Figure 4.3: 3D view of Neuroskin 2 top layer. 3D view shows rigid PCB, although 
prototype is developed with a polyimide substrate. Left image shows the front of the 
sensor with arranged phase shift oscillator circuits and centralized power lines. Right 
image shows the back side of the sensor with conductive traces that serve as the 
conductive rows in the sensor array. 

 The produced fPCB boards are shown below in Figure 4.4. They are fabricated 

with a polyimide substrate and are highly flexible. The fPCB boards measure 36.195mm 

x 34.29mm with a sensing area of 4cm2. The fPCB is designed so all four connections are 

routed to one corner of the board. This allows for a compact soldering of four thin wires 

(like ribbon cable) to the sensor array. After stacking the 3 layers on top of each other, 

solder is used to connect the layers electrically through the 4 through holes on the corner 

of the board. 

 

Figure 4.4: Images of the produced fPCB boards. Left image shows top layer containing 
the conductive row elements, middle image shows the summation layer where 
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frequencies are combined, and the right image shows bottom layer containing the 
conductive column elements. 

 The layers are then populated and sandwiched together with two layers of 

piezoresistive fabric (Eeonyx) to form a 5-layer sensor (Figure 4.5). The piezoresistive 

fabric is secured in place with a small amount of Kapton tape.  

 

Figure 4.5: Drawing of the 5-layer design of Neuroskin and the overlap of the different 
layers. 

 The completed sensor array is shown below in Figure 4.6. Although the soldered 

components restricted the flexibility of the fPCB, the boards could still flex between 

sensor rows and columns due to the gap designed between oscillator circuits. 

 

Figure 4.6: Images of the completed sensor array. Left image shows front of sensor 
array, and right image shows back of sensor array. 
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4.2 Sensor Characterization 

To characterize the sensor the separability of the carrier waves was analyzed by 

Fourier transform and force-voltage response curves were obtained for each taxel. 

The sensor was readout using a Teensy 4.1 [51] by taking 10-bit analog read 

measurements at a sampling frequency of 35 kHz. The carrier waves had high 

separability in a 1024-point FFT (Figure 4.7), and good separability in a 32-point FFT 

(Figure 4.8). 

 

Figure 4.7: 1024-point FFT of the six carrier waves present in the sensor array. Plot 
shows a high separability in the different frequencies. The 1024-point FFT corresponds to 
~30 msec of time. 
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Figure 4.8: 32-point FFT of the six carrier waves present in the sensor array. Plot shows 
a high separability in the different frequencies. The 32-point FFT corresponds to 1 msec 
of time. 

 The 32-point FFT was used because the 32-point FFT corresponded to 

approximately 1 msec of time, which was the desired temporal resolution of the sensor, 

and still had a high degree of separability. 

 The force-voltage response was measured by applying different weights to each 

taxel of the sensor array and recording the outputted peak-to-peak voltage. A 3D printed 

tool was used to ensure consistent pressure on the sensor array, and weights ranging from 

3.5 grams to 200 grams were used. The recorded responses are shown below in Figure 

4.9. From the plot we can see that taxel 9 is less sensitive than the other taxels, but other 
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taxels generally behave similarly. Taxel 9 is likely less sensitive because it is physically 

closest to the perimeter circuitry, and therefore requires a larger weight to compress the 

piezoresistive fabric equivalently. 

 

Figure 4.9: Taxel voltage response vs. applied weight. Plot shows response from 3.5g to 
200g. 

4.3 Texture Discrimination 

Leveraging the high-speed and simultaneous sensing of Neuroskin 2, a texture 

discrimination task was performed.  

To perform the texture discrimination task, the same methodology used in the 

Neuroskin 1 texture discrimination experiments was followed. This consisted of attaching 

the sensor array to a soft robotic biomimetic finger, attaching the sensorized finger to a 
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UR5 robotic arm, and palpating a library of 11 textures. Each texture was palpated 60 

times leading to a total of 660 palpation trials. The same library of textures was used as 

the texture discrimination experiments of Neuroskin 1 (Figure 3.7). Frequency analysis 

was performed to reconstruct the pressure on the sensor array, and neuromorphic spike-

based encoding was then used to reduce the dimensionality of the data and add robustness 

against trial-to-trial time misalignments.  

After recording the voltage over time for all palpations of a specific texture, a 

cumulative sum metric was used to automatically divide each trial for classification 

(Figure 4.10). The cumulative sum curve was relatively smooth and had distinct peaks 

that lined up with the start of each palpation trial. A short time shift was also introduced 

into the cumulative sum curve, so each palpation was accurately captured without cutting 

off any of the data. 

 

Figure 4.10: Normalized measured voltage (blue) and cumulative voltage sum (red) over 
time for three palpations. Peaks of the cumulative sum curve line up well with the start of 
each palpation. This alignment allows for automatic trial segmentation. 
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The cumulative sum metric separated the palpations well, and all trials can be 

visually inspected in the overlapped plot below (Figure 4.11). As seen in the plot, all 

textures created a unique voltage pattern that is visually distinguishable even prior to 

frequency analysis of the different carrier waves. This visual trend suggests that it may be 

possible to discriminate textures without doing frequency analysis, and by only analyzing 

the combined voltage waveform over time. This could be useful in online discrimination 

tasks where high-speed classification is necessary.  

 

Figure 4.11: 60 overlapped palpations for each texture. General shapes of each texture 
can be inferred from the voltage profiles. 

After segmenting all the trials, the frequency content of each palpation was 

analyzed to reconstruct the pressure profiles on the sensor array. The frequency analysis 

was done by computing a 32-point FFT and extracting the amplitudes of the six pertinent 
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frequencies over time (Figure 4.12). The 32-point FFT was computed with full overlap, 

and each consecutive time window differed by 1 sample. Thus, the total number of time 

windows was equal to the length of the palpation vector minus 32 (65,677 ≈ 1.88 

seconds).   

 

Figure 4.12: Frequency analysis of a palpation for each texture. The amplitudes of the 
six pertinent carrier frequencies are shown in each subplot over time. 

After performing the frequency analysis, the dominant shape of the textures is 

visually clear. For example, a zoomed in section of a palpation of 3 circular ridges is 

highlighted below (Figure 4.13). As seen in the left plot, the profile of the 3 circular 

ridges texture can be seen in the 3 large bumps present in the dominant frequencies. The 

right figure shows the derivative of the left figure, further highlighting the texture profile. 
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Figure 4.13: Zoomed in section of a palpation of the ‘3 circular ridges’ texture. The 
pertinent frequencies are shown as different color curves, and the profile of the texture 
can be inferred from the relative amplitude changes over time. Left plot shows the 
amplitudes calculated from the FFTs, and the right plot shows the derivative of the plot. 

 The amplitudes of the six carrier frequencies are used to calculate the profile of 

each taxel on the sensor array, and the taxel values are then fed into an Izhikevich neuron 

model [48] to extract spike-based metrics for classification. The equations and effect of 

parameters is shown below in Figure 4.14. A rapidly adapting neuron model was utilized, 

and the corresponding parameters are shown below in Table 4.1. K is an added scaling 

factor for input current ‘I’, and tau is an added temporal scaling factor for v’ and u’. 

Table 4.1: Izhikevich parameters for a rapidly adapting neuron model. 

Rapidly Adapting Neuron Model Parameters 

a b c d tau K 

0.02 0.25 -55 0.05 0.97 9 
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Figure 4.14: Differential equations for the Izhikevich model, and the effect of each 
parameter on the shape of the spike output. Reprinted from [48]. 

A kNN algorithm was used to classify the different textures (k=1). For each trial 

the mean inter-spike-interval (ISI), and ISI variance were obtained from the spike-

encoded palpations and were then used as features for classification. Each palpation was 

plotted in this feature-space to visually show the separability of different textures. The 

plot is shown below in Figure 4.15 for taxel 1. 

 

Figure 4.15: 2D feature-space plot of each palpation using the two spike-based metrics, 
mean ISI and ISI variance. Different colors represent the different labels of each 
palpation. The 3D renderings of the textures are found in Figure 3.7. 
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Because there are 9 taxels on the sensor and 2 spike-based features per taxel, each 

palpation was associated with 18 total features that were used in the classification 

algorithm. The KNN classification algorithm classified each palpation in this 18-

dimensional space and calculated the assigned class labels based on Euclidean distance. 

 Overall, the sensor achieved high accuracy in discrimination, and had an average 

accuracy of 76.36%. K-fold cross validation was used to validate the result with a K 

value of 5, and the resulting confusion matrix is shown below in Figure 4.16. 

 

Figure 4.16: Confusion matrix for texture discrimination. Class numbers 1-11 
correspond to textures: '2 triangular ridges', '3 circular ridges', '3 sinusoids', '3 triangular 
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ridges', '3x3 bumps', '4 circular ridges', '4x4 circular bumps', '6 circular ridges', '6 
sinusoids', '6 triangular ridges', and 'flat' respectively. 

4.4 Discussion and Conclusion 

Neuroskin 2 provides a scalable platform for creating large area tactile sensor 

arrays with many sensing elements and a simple wiring scheme. Because Neuroskin 2 is 

developed in fPCB, it can readily be adopted by the community to scale up the design 

and enable sensorization of a variety of robotic devices. 

Through compression of sensor data into row and column sums, the DTMF sensor 

not only simplifies wiring and allows for simultaneous sensor transmission but also 

allows for faster sensing than TDMA arrays of the same size. For example, a sensor array 

with 𝑀 ∗ 𝑁 taxels requires 𝑀 ∗ 𝑁 analog reads for a TDMA sensor (ignoring additional 

digital write time for row/column switching), but the equivalent DTMF readout only 

requires (𝑀 + 𝑁) ∗ 2 analog reads (and no digital writes). This is a consequence of 

Nyquist sampling as we must sample the signal at least twice as fast as the fastest 

frequency. Thus, for all sensor arrays larger than 4x4, the DTMF readout is strictly faster 

than the TDMA readout. Furthermore, the reduction of wiring complexity makes the 

design of large arrays more feasible. 

In this work, frequency analysis was done offline; however, an online- 

implementation could be realized using Goertzel algorithms that calculate the discrete 

Fourier transforms of specific frequencies as tactile data comes in [52]. Because of the 

DTMF-based design, the number of frequencies to analyze scales well with the number 
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of sensors making Neuroskin 2 quite promising for sensor arrays with numerous 

elements. 

In the texture discrimination experiments, Neuroskin 2 performed slightly worse 

than Neuroskin 1. This can be attributed to the use of less flexible materials, a different 

machine learning algorithm, and the use of smaller decoding windows. Neuroskin 1 

decoded the present frequencies in windows of ~100 msec, but Neuroskin 2 decoded in 

windows of 1 msec. While this made Neuroskin 2 have a higher temporal resolution, it 

also made it more susceptible to noise and other unexpected variations. Additionally, 

only two spike-features were used in classification (mean ISI and ISI variance) and 

increasing the number of features could also potentially increase the accuracy. 

Because of the DTMF architecture, Neuroskin performs best when the inputs are 

sparse. Although the texture discrimination experiments conducted in this work did not 

have sparse inputs, real-world tactile stimuli are largely sparse [9], so Neuroskin could 

excel in deployment in prosthetic limbs or humanoid robots. Furthermore, because of the 

multi-layer design of Neuroskin, it could be possible to extract a multi-layer pressure 

response from the sensor array. This is possible due to the use of 2 piezoresistive layers 

in the design. This could enrich the tactile information captured by the sensor and could 

mimic the behavior of Type 1 and Type 2 mechanoreceptors in the human skin [2]. 

Additionally, Neuroskin 2 is a promising foundation for the development of sensor 

arrays for other sensing modalities past tactile. Thus, an interesting application would be 

to develop Neuroskin-like sensor arrays for the recording of neural activity from large 

areas populations of neurons or other sparse signals. 
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Overall Neuroskin is a scalable tactile sensor array that achieves millisecond 

temporal resolution, and simultaneous single-wire sensor transmission without the 

incorporation of electronics inside each taxel. Neuroskin is highly flexible and 

reproducible, allowing others to readily reproduce the device and scale it up to cover 

next-generation robotic devices with sophisticated tactile sensing skins.  
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Chapter 5  

5 Continuing Work and Future Directions 
 

 This chapter summarizes the continuing work and future directions in which this 

work could potentially be taken forward. 

5.1 Fabric-fPCB Hybrid Sensor 

In addition to the fPCB-based sensor, Neuroskin 2, it is possible to develop a 

DTMF sensor array that is fully flexible, stretchable, made from fabric-based e-textile 

materials, and also uses fPCB to simplify wiring. Because the DTMF sensor array has no 

electronics inside each taxel, the copper traces in Neuroskin 2 can be replaced with 

conductive thread or fabric. This would enable the sensor to be designed to conform to 

almost any shape. 

Therefore, a variant of the Neuroskin 2 fPCB was developed that lacked the middle 

sensing layer and the conductive row/column traces. This variant enables the same 
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scalable 4 wire design but allows the conductive traces to be replaced with e-textile fabric 

materials (Figure 5.1). 

  

Figure 5.1: Fabric-fPCB hybrid sensor. Left shows drawing of an assembled sensor. 
Right shows produced fPCBs to be used in the perimeter of a fabric-fPCB hybrid sensor. 

For example, a continuing work is creating a fabric-fPCB hybrid sensor that fully 

wraps around the soft robotic biomimetic finger. An example drawing of the prototype is 

shown below in Figure 5.2. Conductive thread or fabric is used to connect the power 

between one fPCB to another. By using this fPCB design, multiple fPCBs can be chained 

together to create arbitrarily shaped sensor arrays for a variety of applications. 
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Figure 5.2: Drawing of fabric-fPCB hybrid sensor that can be completely wrapped 
around a prosthetic finger. Piezoresistive layer is not shown. 

The drawing in Figure 5.2 was fabricated using spandex fabric and the e-textile 

materials used in Neuroskin 1. This fabric-fPCB hybrid design can be easily wrapped 

around a soft finger or other surface as shown below in Figure 5.3. Additionally, because 

all the power one fPCB to another is connected internally, the hybrid sensor still requires 

only one set of connection wires. 

  

Figure 5.3: Image of hybrid sensor wrapped around a soft robotic biomimetic finger. 
Left image shows the sensor flat, and right image shows the sensor wrapped around the 
soft prosthetic finger. 
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5.2 Simultaneous multi-touch and error correction 

A downside of using a DTMF-sensor array is that the sensor has ambiguity in 

multi-touch scenarios due to the under-deterministic nature of having more sensors than 

frequencies. To address this issue, a MATLAB simulation was conducted to investigate 

algorithms that could be used to correct multi-touch ambiguity as sensor readings were 

streamed. A 10x10 sensor was simulated in MATLAB and random pressures were 

applied to the different taxels in the sensor array with some random time delay between 

pressures. The pressures on each sensor were sustained over the course of the simulation 

to create multi-touch scenarios. Because different pressures started at different times, the 

simulation could decompose multi-touch scenarios into sequential single-touch scenarios. 

Without any algorithmic correction, readout of the sensor results in ambiguous readings 

and the detection of ‘ghost’ taxels that appear activated but did not have applied pressure. 

This ambiguity is seen below in Figure 5.4.  

 

Figure 5.4: MATLAB simulation showing the application of 3 consecutive touches and 
the reconstructed pressures using a row/column reconstruction method. Left image shows 
applied pressure, and right image shows reconstructed image using row/column sums 
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(DTMF-based decoding). Notably the right image shows several ‘ghost’ taxels which 
appear activated but were not in reality. Red stars in the right image show the true 
locations of pressure. 

As evident from the graph, although only 3 touches were made, the decoding 

algorithm identified 9 touches in total. This can be understood because the 3 touches 

resulted in 6 pertinent amplitude values. Then, using the current algorithm without error-

correction, the pressure at each (row, column) intersection of the sensor array would be 

calculated by multiplying the amplitudes of the respective row and column. Thus, in the 

presented example where 3 row amplitudes and 3 column amplitudes are given, 9 taxel 

values are calculated. 

 To correct for this ambiguity, the decoding algorithm can leverage the high-speed 

of the DTMF sensor array and look at multi-touch problems as consecutive instances of 

single touches and store which sites are ‘active’. The current multi-touch solution uses 

the following pseudocode algorithm and a saved matrix of ‘active sites’ to address the 

multi-touch limitations:  

1:   Calculate the difference in each row/column sum 

2: The current ‘active site’ is the (row, col) taxel 

with the highest difference 

3:  Place the taxel into the active site matrix 

4: for each active site: 

5:  calculate the pressure using the row/col sum 

6:  if the pressure is below a threshold: 

7:   remove active site and set to zero 

8:  end 

9: end 

 

This algorithm resolves multi-touch problems and allows for accurate 

reconstruction without ‘ghost’ taxels (Figure 5.5). 
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Figure 5.5: MATLAB simulation showing the application of 3 consecutive touches and 
the reconstructed pressures using a multi-touch error correction algorithm. Notably, the 
algorithm allows for correct reconstruction of the applied pressure. 

 However, this solution does not apply for true simultaneous multi-touch 

scenarios, and only works well if new touches are not registered at the same exact time. 

 Another current work is to correct the issue of true simultaneous multi-touch by 

reading each column independently. However, because this would increase wiring 

complexity and introduce latency, a single-wire strategy is desired. Therefore, ACES or 

other encoding algorithms can be used. For example, each row can be assigned a unique 

carrier frequency, and at the base of each column a microcontroller or digital signal 

processor can read the combined voltages from the column during touch interactions. 

Because each column is read individually, the number of frequencies is equivalent to the 

number of sensors, so there is no ambiguity for the identification of pressure locations. 

Then each column microcontroller can be designed to calculate the amplitudes of the 

different frequencies and output a spike code like the ACES receptors, or different 

sinusoids to sum onto a single wire. Then a decoder would read the combined signals and 
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reconstruct the applied pressures to the entire sensor array without any ambiguity. 

However, a trade-off in this solution is that it does not have innate data compression like 

the DTMF system and requires the number of spike codes to equal the number of sensors. 

Therefore, it is more computationally intensive than the DTMF-based encoding used in 

the current Neuroskin. 

5.3 Sensorized prosthetic hand 

Because Neuroskin 2 is theoretically more scalable than the conventional TDMA 

based sensor arrays, an ongoing work is to scale up Neuroskin to cover the surface of a 

prosthetic hand. Current work is focused on partnering with Infinite Biomedical 

Technologies to scale up the current fingertip sensors to cover the surface of a Taska 

prosthetic hand. 

 A preliminary fPCB design is shown below that allows for 170 sensing elements 

(Figure 5.6). However, this number can be greatly increased if smaller components are 

chosen. The 170-sensor design is using hand-solderable component sizes (0805). 
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Figure 5.6: fPCB layout of a 170-sensor DTMF sensor array designed to cover the 
ventral side of the Taska prosthetic hand. 

5.4 Real-time texture discrimination with SNN 

The high-speed of Neuroskin can also be leveraged to perform a real-time texture 

discrimination task. Literature shows that spiking neural networks (SNN) are the most 

promising variety of neural networks for classifying dynamic temporal data [53] and 

most closely resemble the biological neural networks of our brain. Additionally, because 

SNNs classify data temporally, the network outputs spikes in the output layer 

immediately once input data is processed [53]. This makes SNNs classify objects quicker 

than CNNs and other artificial neural networks [54]. Furthermore, SNNs can be 

implemented in low power hardware to classify inputs in real-time. This makes SNNs 
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promising for real time texture discrimination. Preliminary work has focused on creating 

an offline SNN prior to converting it to an online network. A flow chart of the offline 

SNN discrimination is shown below (Figure 5.7). 

 

Figure 5.7: Flow chart of a spiking neural network texture classifier. 

Our preliminary work on this goal has successfully developed an SNN to 

discriminate texture using a conventional TDMA based sensor. The Nengo SNN library 

[55] is implemented in python, and the network is constructed with 3 hidden layers of 

256, 128, and 12 neurons. The activation functions for the first two layers are reLu and 

the final layer has a sigmoidal activation function. The current algorithm has achieved an 

accuracy of 99% on the preliminary dataset using a conventional TDMA tactile sensor 

(Figure 5.8). Current work focuses on converting the offline system to an online system 
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through hardware implementation on an FPGA where spectral analysis and texture 

discrimination will both be performed in real-time. 

 

Figure 5.8: SNN accuracy for epoch number from the classification of a preliminary 
dataset using from a TDMA sensor. 

5.5 Discussion and Conclusion 

Spatial frequency encoded tactile sensor arrays have many promising future 

directions and ongoing works.  

The use of e-textile materials demonstrates that the spatial frequency encoding 

architecture can support the use of flexible and unconventional materials. With further 

development this can be leveraged to create ultra-thin, conformal sensor arrays with other 

materials such as self-healing polymers. This directly improves on current asynchronous 

tactile sensor arrays that rely on the integration of electronics inside each taxel and 

therefore are not compatible with such materials.  
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The sensorization of the Taska prosthetic hand presents a useful application of the 

scalable sensing technology. Through the spatial frequency encoded sensor array, the 

sensorized prosthetic hand will have hundreds of sensors while retaining kilohertz 

temporal resolution, and simple wiring and readout. This technology can potentially be 

used to provide tactile feedback to amputees who lack tactile sensation in their prosthetic 

hand. 

SNN is well suited to classify interactions with the spatial frequency encoded 

sensor due its high temporal resolution. Because SNNs perform well with dynamic time 

course data, they are useful for classifying real-world tactile interactions. Moreover, due 

to their fast classification, they can leverage the high speed of the tactile sensor to make 

accurate classifications in real-time. This would be particularly useful in the development 

of humanoid robots, as the spatial frequency encoded sensor can act as an artificial ‘skin’ 

and an SNN can act as an artificial ‘brain’ to make decisions based on tactile interactions. 

Addressing the issue of multi-touch ambiguity is the most important step in proving 

the scalability of the spatial frequency encoded sensor. Therefore, the promising 

preliminary results of simultaneous multi-touch error-correction are significant for the 

development of larger sensors such as the sensor array designed for the sensorization of 

the Taska hand. Because the algorithm leverages the high speed of the sensor to 

decompose multi-touch scenarios into consecutive instances of single touch, the 

algorithm will perform better as the speed of the sensor is increased. Additionally, if 

event-based sensors are used that respond to changes in pressure rather than static 
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pressure (such as piezoelectric sensors), this would further simplify the error correction 

algorithm as fewer time instances will have many simultaneously responding sensors. 

Overall, the results presented in this thesis demonstrate that the spatial frequency 

encoding sensing scheme is promising for the development of scalable tactile sensing 

systems. Through DTMF, the developed sensing scheme allows for simultaneous single-

wire sensor transmission, the elimination of wiring complexity, the utilization of flexible 

materials, innate data compression, and does not require taxel-integrated electronics. 

Future tactile sensing systems may utilize the spatial frequency encoding architecture 

presented here to be dense, numerous, and flexible while retaining excellent temporal 

resolution. 
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6 Appendix 
 

Review of sensing principles in tactile sensor arrays 

TSAs have been developed using almost all modes of transduction [56]. This 

appendix section discusses the most common modes: piezoresistive, capacitive, optical, 

and piezoelectric. 

Piezoresistive 

Piezoresistive tactile sensors use piezoresistive materials that change their 

electrical resistance when pressures are applied [57]. These piezoresistive sensors are the 

most common type of sensor used in tactile sensing because of their wide scale 

availability, low cost, and high flexibility [58].  

Over the years, a variety of piezoresistive tactile sensing arrays (TSA) have been 

developed; with many sensing arrays using row-column multiplexing to reduce wiring 

complexity [20]. By addressing each unit of the TSA by row/column indexing, the 

number of wires for a 𝑚 ∗ 𝑛 TSA is 𝑚 + 𝑛 [59]. This is superior to non-multiplexed 

systems that require 𝑚 ∗ 𝑛 or 𝑚 ∗ 𝑛 + 1 wires [60]. 
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A potential downside of piezoresistive TSAs is that they suffer from non-linearity 

and have relatively high-power consumption because they are resistive sensors [61].  

Piezoresistive sensors may also change their responses with temperature making them 

undesirable for certain applications [62]. Despite these downsides, piezoresistive sensors 

are robust against noise, and are good candidates for measuring static pressure [63]. 

Moreover, piezoresistive sensors have a very simple readout (voltage divider) [64]. These 

qualities make piezoresistive materials a good candidate for developing large sensing 

arrays. 

Capacitive 

Capacitive TSAs use capacitive materials that change their capacitance in 

response to pressure [65]. Typically, this is a consequence of mechanical forces that 

change the geometry of the capacitor [66]. For example, for a parallel plate capacitor, the 

capacitance is proportional to the plate area divided by the plate separation distance; and 

by adjusting either of these parameters the capacitance is affected [67].  

Capacitive sensing arrays are widely used in robotics because they are sensitive 

and can be made very dense [67]. Capacitive TSAs are also not dependent on temperature 

like piezoresistive TSAs [65]. These qualities make them good candidates for developing 

high-density TSAs. However, making arrays with many elements is challenging due to 

parasitic capacitance from the wiring and other components [68]. 

An additional advantage of capacitive TSAs is their simple readout mechanism. 

To readout a capacitive TSA, the sensing elements are raster scanned and the capacitance 
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of each element is measured with a charge amplifier circuit [69]. Capacitive tactile 

sensors also have a wide dynamic range and have simple fabrication methods [70]. 

Optical 

Optical sensors are among the most accurate tactile sensors due to their high 

resolution and have been shown to resolve surface roughness with 100nm resolution [71]. 

Optical sensors are generally constructed with deformable materials that conform to 

change the reflection/scattering of light onto a photodetector [72]. 

Optical sensors also enable the estimation of 3D force vectors and 3D 

displacement [73]. This is done using four quadrant photodiodes (and a pinhole) [73]. 

Measuring 3D force vectors is important in detecting incipient slip events as 3D forces 

can provide an estimate of the static friction coefficient [73]. 

These optical sensors generally have a more complicated readout mechanism 

because they rely on combinations of LEDs and photodetectors to transform the pressure 

signal to an electric signal. However, because the pressure signal is transduced optically 

the optical sensors are immune to electronic noise [73]. 

Piezoelectric 

Piezoelectric sensors use piezoelectric materials that generate charge in response 

to applied pressure [74]. These sensors are great candidates for measuring dynamic 

pressures because they generate charge only during changes in pressure [75].  
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Recently piezoelectric nanowires have been developed with 100µm resolution 

[76]. These nanowires have enabled the production of extremely high-density tactile 

sensor arrays up to 8464 taxels per cm2 [76]. 

Because piezoelectric sensors respond to dynamic pressure, they are good 

candidates for large sensing arrays with many elements. This is because of the inherent 

tactile data compression that dynamic sensors provide. This allows for tactile data over a 

large area to be represented by a sparse signal of on/off events. 

Piezoelectric nanofibers have also been developed into yarns and other textile 

materials [77]. This allows for the integration of high-density tactile sensors into flexible 

textiles. This could be a good candidate for wearable tactile sensing skins made from 

fabric. Moreover, the readout mechanism for piezoelectric sensors is simple and consists 

of a charge amplifier like the capacitive sensors [78]. 

Summary 

Table A.1: Summary of tactile sensing principles and their attributes and read out 
systems. Modified from Zou et al [63]. 
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Implementation of Spatial Frequency Encoding 

 Spatial frequency encoding is implemented in four steps: carrier wave generation, 

wave modulation, signal integration, and decoding. 

Carrier wave generation 

 To implement spatial frequency encoding, a large number of carrier waves must 

be generated at different frequencies. Electrically, carrier wave generation is 

accomplished through use of an electrical oscillator. These oscillator circuits can be built 

in a variety of ways.  

 The most popular sinusoidal oscillator circuits are the Wein bridge oscillator, the 

Colpitts crystal oscillator, and the phase shift oscillator [79]. These oscillators all use the 

concept of RC phase shift and an amplifier to generate a sinusoidal output. Three 

example circuits are shown below in Figure A.1. 

   

Figure A.1: Different sinusoidal oscillator circuits 

In addition to electrical oscillator circuits, there are a variety of other methods to 

generate sinusoidal carrier waves electronically. One method is to use a square wave and 

filter the output [80]. Because square waves are composed of an infinite series of high 
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frequency sine waves, by low pass filtering the square wave we can recover a sinusoid. 

However, to achieve a sine wave with a high purity, a high order filter should be used. 

For example, a 5th order filtered square wave produces a sine wave with small error [81]. 

Another method is to use pulse combinations and low pass filtering [81]. For example, a 

PWM output can be low pass filtered to produce a sine wave [81].  

 The oscillators above are continuous, non-decaying oscillators. However, it is also 

possible to build oscillator circuits that produce decaying oscillations. While these 

circuits are not typically useful for telecommunications, they do hold promise for 

developing event-based tactile sensors. By incorporating exponential decay into the 

carrier wave, a static signal can be compressed into two events (onset and offset). This 

type of oscillator can be built using an LC tank circuit [81]. The LC tank circuit, or 

resonant/tuned circuit, produces an oscillating voltage due to the competing time 

constants of the parallel inductor and capacitor (Figure A.2). When the charged capacitor 

discharges across the inductor, a magnetic field is generated at the inductor. This 

magnetic field then dissipates into an induced voltage in the inductor. This recharges the 

capacitor, and the oscillations continue. 

 

Figure A.2: Tank circuit and damped oscillations. 
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Non-electronic carrier waves can be generated as well. These carrier waves are 

either optical or acoustic. Light is inherently frequency encoded as different colors or 

wavelengths of light all have unique frequencies. Thus, a particular frequency of light can 

be used as a carrier wave for spatial frequency encoding. Likewise, acoustic waves are 

also inherently frequency encoded as different pitches have unique frequencies. Thus, a 

particular frequency of acoustic vibration can be used as a carrier wave for spatial 

frequency encoding. 

Modulation 

 After a carrier wave is generated, it must be modulated to encode the sensor 

signal. This can be done through a variety of techniques; however, the most popular 

techniques are amplitude modulation (AM), frequency modulation (FM), and phase 

modulation (PM) [82] (Figure A.3). 

 Amplitude modulation is the simplest form of modulation and consists of simply 

changing the amplitude of the carrier wave to denote analog or digital data. This can be 

achieved through a variety of circuits including transistor circuits, voltage divider 

circuits, and more. Frequency modulation is another popular modulation variant. Rather 

than changing the signal amplitude to encode data, the carrier wave’s frequency is 

adjusted to encode data. This method reduces the bandwidth of the network because the 

channel spacing between carrier waves must be increased to compensate for the 

frequency modulation spread. Frequency modulation is typically implemented in the 

carrier wave generator circuit, where the frequency of the signal is varied as the carrier 

wave is being generated. Phase modulation is another modulation variant used in WiFi 
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and wireless internet communication [83]. However, phase modulation and demodulation 

circuits are significantly more complicated and expensive than AM or FM circuits [84]. 

Moreover, PM is less robust than AM or FM, and is not used for long-range 

communication or in instances of emergency. 

 

Figure A.3: Signal modulation methods. Reprinted from [82]. 

Integration 

 Because the sensors in spatial frequency encoding systems respond 

asynchronously, their signals must be combined into a single channel signal for analysis 

and decoding. To achieve this combination, a summing or mixing circuit is used [85]. 

 Mixing circuits are typically built using operational amplifiers (op-amps) using 

the concept of virtual ground. By grounding the non-inverting input of the op-amp and 

completing the feedback loop between the op-amp output and the inverting input, the 

output of the op-amp follows the summation of the input signals present at the inverting 

terminal. The virtual ground is essential to ensure orthogonality between the different 

frequency signals. A derivation of this relationship can be seen below in Figure A.4. 
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Figure A.4: Op-amp summation circuit and derivation. 

To achieve accurate summing of signals, it is important for the op amp to respond 

at least twice as fast as the fastest frequency component being summed (Nyquist 

sampling). This speed parameter is referred to as the op-amps slew rate and represents the 

maximum rate of change of the op-amps output [86]. The gain bandwidth product (GBW) 

is also important if the op-amp is configured to have more than unity gain. Thus, in 

addition to having a high slew-rate the op amp must also have a GBW greater than the 

maximum frequency divided by the gain factor [87]. 

 To integrate optical or acoustic the signals broadband receivers must be used. It is 

important to use a broadband receiver to ensure little biasing in the receiver, and ensure 

that all frequencies present are equally integrated by the receiver. For optical 

applications, these receivers are commonly used in spectroscopy to measure the presence 

of different frequencies in a sample of light [88]. For acoustic transduction, the 

integration is achieved by a broadband microphone [89]. These acoustic sensors capture 

the different frequencies present in the acoustic signal with equal weight for each 

frequency in the band of the microphone. 
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Decoding and analysis 

To decode the integrated signal, mathematical techniques such as the Fourier 

transform can be employed [90]. This transform is used to decompose a function into its 

constituent frequencies. For spatial frequency encoding for tactile sensing systems, a real-

time version of the Fourier transform should be used to realize the component 

frequencies in real time as they respond in the system. To achieve this, algorithms such as 

the real-time Fourier transform (RTFT) [91], or the fast Fourier transform (FFT) can be 

used [92]. A short time Fourier transform (STFT) that calculates the FFT in a sliding time 

window is shown below in Figure A.5. 

 

Figure A.5: Example of an STFT that calculates the frequency components over time 
using a sliding time window. Reprinted from [93]. 

To realize the FT in real time, these algorithms use windowing to calculate the 

discrete FT over a short time frame, with rates exceeding 1 kHz [94]. This time frame is 

limited by the computational speed of the algorithm and can be reduced by using fast 

graphical processing units (GPUs) or other fast computational tools such as FPGAs to 

achieve even faster processing rates [95]. 
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The Fourier transform relies on the assumption that the input signal is a 

composition of a variety of sinusoidal signals with different frequencies and phases. If the 

signal is not composed of sinusoids, then other algorithms can be used for processing. For 

example, if spike rates are used to represent different sensor IDs biomimetically, then 

different mathematical methods can be more effective. Lee et al demonstrate this through 

their ACES architecture and use a neural network to accurately determine which sensors 

are responding [27].  

Another method to realize the responding signals can be found in modern cellular 

communication. Modern cell phones use CDMA to allow for multiple users to 

communicate over the air simultaneously [95]. This method essentially uses the same 

assumption of combining orthogonal IDs, but rather the IDs are not sinusoids but specific 

bit sequences [95]. Then to decompose the signal into its constituent parts, a dot product 

is performed over a window of the signal with all the constituent IDs [95]. The ID with 

the highest dot product is assigned to that window. To resolve the issue of potential 

interference between simultaneously responding users, anti-collision protocols such as 

Aloha are used [96]. Aloha, or its improved version - slotted Aloha, incorporates a 

handshake between the sending user and the host to check to see if the message was 

received; and if the message failed due to collision it tries to send again until the packet 

has been received. A downside of this method is the user needs to be sophisticated 

enough to not only send packets but also receive packets (to determine whether a packet 

was sent). This is a potential complication for tactile sensing systems as it would require 

the integration of a signal processing unit into each taxel of the sensing system. 
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Otherwise, a central processing unit can distribute the different responses, but this would 

increase the wiring complexity. 

Independent component analysis (ICA) is another attractive method for decoding 

[97]. ICA is similar to the FT but can use a variety of bases and is not limited to 

sinusoids. ICA functions under the assumption that the measured signal is composed of a 

linear sum of independent signals. A particularly useful variant of ICA is non-negative 

ICA (nnICA) [98]. nnICA has the added constraint that all the independent components 

are strictly added in the measured signal. This is particularly useful for real-world 

applications such as sound and voice separation, and particularly for spatial frequency 

encoding systems, because there is no subtractive process due to the orthogonality of the 

different responders. Real time ICA algorithms have been developed allowing for signal 

decoding with frequencies greater than 1kHz [99]. Like the FFT, these rates can be 

further improved through faster processing units or advanced GPUs [100].  
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