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ABSTRACT 

 

Solution-processed low-voltage organic field-effect transistors (OFETs) have attracted 

much attention due to their possible application in the fabrication of devices with 

large area, light weight, low cost and flexibility. This project includes the design and 

optimization of solution-processed low-voltage organic phototransistors (OPTs) and 

biosensors which respond to bovine serum albumin (BSA).  

 

The OPT device was based on triethylgermylethynyl-substituted anthradithiophene 

(diF-TEG ADT). Two kinds of dielectric materials were used: 80-nm-thick potassium 

alumina (PA) and 300-nm-thick thermally grown SiO2. To investigate application in a 

moist environment, the performance at different relative humidities (R.H.’s) was 

characterized. Results showed that the device was very stable in high humidity, and 

exhibited good performance even up to 85% R.H. A major change in drain current 

(𝐼𝐷𝑆) was observed when connecting or disconnecting the gate electrode to the device 

in the dark once the photocurrent was generated. This feature may motivate the 

application of diF-TEG ADT-based phototransistors as multistage photo-controlled 

memory devices.  

 

For the biosensor device, a sensitive (10 ng/mL) sensor platform for bovine serum 

albumin (BSA) detection using small molecule-polymer blend transistor was 

developed. Triethylsilylethynyl-substituted anthradithiophene (diF-TES ADT) was 
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used as the small molecule semiconductor. Blending poly(methyl methacrylate) 

(PMMA) with diF-TES ADT improved the environmental and electrical stability 

since they are reported to form a vertically phase-separated structure. The high 

stability in 0.05 PBS solution and small leakage current also contributed to the 

application of this device as a biosensor. Moreover, the solution rheology of polymers 

makes it easier to print them on large flexible substrates. 

 

Reader (Thesis advisor): Professor Howard E. Katz 
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Chapter 1  

Organic Phototransistors Based on diF-TEG ADT Molecular 

Solid 

1.1 Introduction 

Organic field-effect transistors (OFETs) have attracted much attention due to their 

possible application in the fabrication of devices with large area, light weight, 

flexibility, and low cost. The performance of OFETs depends on various parameters, 

the main ones being charge carrier mobility (μ) and threshold voltage (  ). In the last 

two decades, progress in organic semiconductors research has led especially to great 

increases in carrier mobility 
[1, 2, 3]

.  

 

An interesting alternative application of OFET technology is the organic 

phototransistor (OPT). Its current can be modulated by both light and electric fields. 

Charge transport phenomena, the ability to generate photo-induced charge, and 

mechanical flexibility are helpful for the application of OFETs to optoelectronic 

devices
[4]

. In addition to charge carrier mobility and threshold voltage, the key 

parameters for evaluating the performance of OPTs are photocurrent/dark-current 

ratio (P) and photoresponsivity (R), 

P  
   ,illu     ,dark

   ,dark
                                                                                                         (   ) 

R  
 ph

Pill
 
   ,illu     ,dark

PinA
                                                                                             (   ) 



2 
 

where 𝐼𝐷𝑆,𝑖𝑙𝑙𝑢 and 𝐼𝐷𝑆,𝑑𝑎𝑟𝑘 are the drain current under illumination and in the dark, 

A is the area of the active region of the transistor under illumination, and 𝑃𝑖𝑛 is the 

illumination intensity. High phototcurrent/dark-current ratio and photoresponsivity are 

desired for organic phototransistors. OPTs based on crystalline anthracene 

microplates
[5]

 exhibited a relatively high phtotocurrent/dark-current ratio (>   4 ×

  5 ,     4 μW cm2⁄ ) and photoresponsivity (    ×   4 A/W ). Kim et al.
[6]

 

fabricated OPTs based on crystalline microribbons with a high 

photocurrent/dark-current ratio (    ×   6 ,   5 6 μW cm2⁄ ). A large 

photoresponsivity of    ×   4 A/W  (3  μW cm2⁄ ) was obtained from OPTs based 

on 6-methyl-anthra[2,3-b]benzo[d]thiophene crystalline microribbons
[7]

. To date, the 

best photoresponsivity for OPTs was 4  8 ±   65 ×   5 A/W using single fibers 

from perylenebis (dicarboximide)s (PDI)
[8]

.  

 

Linear acenes have attracted much attention in electrical applications due to their 

carrier mobility and excellent intermolecular π-interactions. Pentacene is one of the 

original p-type organic semiconductors and is commercially available
[9]

. However, the 

costs associated with vacuum processes needed for pentacene-based thin films makes 

the application of pentacene as OPTs more expensive. In addition, the limited 

chemical stability and oxidation rates in air make pentacene less reliable. 

Functionalized pentacene organic semiconductors were reported to show a persistent 

photoconductivity effect
[10]

, but this effect has yet to be observed in functionalized 

heterocyclic analogs. Difluoro-triethylgermylethynyl-substituted anthradithiophene 
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(diF-TEG ADT)
[1]

 (Figure 1.1) is a new member of the linear acene family, kinetically 

protected and solubilized with triethylgermylethynyl groups in positions 6 and 13 of 

the ADT
[11]

. Moreover, the addition of two fluorine substituents not only enhances the 

stability of the organic material but also emphasized the two-dimensional π-stacked 

arrangement. Therefore, we introduced diF-TEG ADT-based materials for fabrication 

of crystalline thin films due to their highly solubility and high degree of 

intermolecular interactions. 

 

 

Figure 1.1 The molecule structure of diF-TEG ADT 

 

Low power consumption is of great importance for the application of optoelectronic 

devices, especially for phototransistor devices. The majority of reported organic 

devices operate at high voltages, typically from 10 to 100V. However, most targeted 

applications of OPTs, such as portable and battery-powered photosensors or digital 

imagers preferably operate at lower voltages
[12]

. Low-voltage operated and low-power 

ambipolar OPTs based on pentacene/PC61BM heterostructure had been investigated 

and a self-assembled monolayer (octadecylphosphonic acid) was used as the gate 
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dielectric. These transistors could operate below 3V or -3V
[12]

. However, the 

fabrication of pentacene again needs high vacuum deposition. A 7, 7, 8, 

8-tetracyanoquinodimethane (TCNQ)-based low-voltage OPT had also been 

reported
[13]

. It exhibited stable n-type characteristics with a photosensitivity >1 mA/W 

at an optical power of 5 98 mW cm2⁄ .  

 

To examine the stability of devices in moisture, we investigated the performance of 

diF-TEG ADT devices at various humidities. For portable and battery-powered 

photosensors and biosensors, the ability to withstand high humidity could be crucial. 

However, very few relevant studies have been published. In addition, the significant 

change in 𝐼𝐷𝑆 when disconnecting the gate probe motivated a new application of this 

device: four-stage photo-controlled memory.  

 

In this project, we describe a low-voltage solution-processed OPT which can operate 

at -3V, a voltage compatible with high humidity. The illumination intensity we used is 

    μW cm2⁄  and the maximum photosensitivity reached up to   35 A W⁄  for a 

PA-dielectric device under  𝐺    3  . Under illumination, the drain current was 

increased nearly 1.45 μA at  𝐷   3   ( 𝐺        ).  

 

1.2 Experimental Section 

1.2.1 Device fabrication 
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The diF-TEG ADT was synthesized as previously reported by Anthony
[1]

. The OPTs 

were fabricated with a bottom-gate, top-contact configuration. A heavily doped n-type 

Si wafer was used as a gate electrode. The wafer was cleaned with ultrasonication in 

piranha solution (DANGER!  Highly corrosive to skin!), acetone and isopropanol, 

and dried by forced nitrogen gas. Two kinds of dielectric layers were investigated: 

80-nm-thick potassium alumina (PA) and 300-nm-thick thermally grown SiO2. The 

semiconductor thin film was prepared by first drop-casting 0.4 mg/mL diF-TEG ADT 

solution in chlorobenzene onto the dielectric layer, followed by crystalizing in 

vacuum oven at 60℃ for 3h. Then the gold source and drain electrodes (50nm) were 

thermally evaporated through an interdigitated mask (as shown in Figure 1.2, channel 

width/length (24000μm/400μm)) at 0.3 Ȧ s−1. The deposition chamber pressure was 

<5×10
-6

 Torr.  

 

 

Figure 1.2 Device architecture of OPTs with the interdigitated electrode mask used for 

fabricating device 
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1.2.2 Preparation of the PA dielectric layer 

The PA dielectric layer was prepared by the sol-gel spin-coating method
[14]

. The 

ion-incorporated alumina precursor solution (0.5 M) was obtained by dissolving 

aluminum nitrate nonahydrate (Sigma Aldrich) and potassium metabisulfite (Alfa 

Aesar) (11:1 molar ratio) into 2-methoxyethanol solvent. Then 0.5 M acetylacetone 

was added into the solution as stabilizer. The mixed solution was then stirred at room 

temperature for 3 h. As-prepared precursor solution was kept for 24 h to promote 

hydrolysis and filtered through a 0.45 μm PTFE filter. The alumina precursor was 

spin-coated twice on the device at 3000 rpm for 30s. It was annealed at 200 ℃ for 30 

min after the first spin-coating and finally annealed at 500 ℃ for 1 h after the second 

spin-coating. 

 

1.2.3 Electrical and photoresponse characterization of the devices 

All the OPTs were characterized using an Agilent 4155C semiconductor analyzer. 

During phototransistor performance characterization,  𝐺   𝐷   3   (for 

PA-dielectric device) or  𝐺   𝐷        (for SiO2-dielectric device) were used. 

UV-Vis absorption measurements on diF-TEG ADT solution in chloroform and films 

drop-cast (chlorobenzene solution) on quartz were carried out using a Shimadzu 

UV-3100 spectrophotometer. To study the photoresponse, devices were characterized 
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under illumination using a UV light (λ = 365nm, illumination intensity = 

    μW cm2⁄ ). The illumination intensity was measured using an OPHIR meter. To 

obtain reproducible results under illumination, the devices were tested repeatedly in 

the dark until the electrical performance of the devices stabilized. To test the 

performance in moisture, the device and the semiconductor analyzer were placed in a 

dark box. A ULTRA-NEB100 (DEVILBISS) moisture generator was used to produce 

the moist environment and the humidity was displayed by a HS-2000 humidity meter. 

 

1.3 Results and Discussion 

1.3.1 Current voltage characteristics of OPTs 

Figures 1.3 and 1.4 summarize the electronic characteristics for diF-TEG ADT-based 

OPTs. The transfer curves of devices with two kinds of dielectric layers are given in 

Figure 1.3. The output curves of PA-dielectric devices in the dark (Figure 1.4 (a)) and 

under illumination (Figure 1.4 (b)) demonstrate that the photo-induced charges made 

it easier for the FETs to turn on. Although the “turn on” phenomenon for 

SiO2-dielectric device was not as obvious as for the PA-dielectric device (Figure 1.4 

(c) and (d)), the ratio of 𝐼𝐷𝑆,𝑖𝑙𝑙𝑢/𝐼𝐷𝑆,𝑑𝑎𝑟𝑘 reached    ×   2 at  𝐷       ,  𝐺  

  .  
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Figure 1.3 The transfer characteristics of OPTs with (a) PA dielectric layer and (b) SiO2 

dielectric layer in the dark and under illumination 

 

 

Figure 1.4 Output curves of OPTs with PA dielectric layer (a) in the dark and (b) under 

illumination. Output curves of OPTs with SiO2 dielectric layer (c) in the dark and (d) under 

illumination 

 



9 
 

The UV-Vis absorption spectra of solution (i) and film (ii) are shown in Figure 1.5. 

The absorption spectrum of the film was broadened and red-shifted, a sign of strong 

intermolecular interactions. The absorption peak in the ultra-violet region was at 

~300 nm for the solution sample. Based on the red-shift in the visible region, the peak 

wavelength for the film in the ultra-violet region should be larger than 300 nm. In this 

work, 365 nm-wavelength UV light source was used in measuring the photoresponse 

of diF-TEG ADT-based OPTs. Photons absorbed by the diF-TEG ADT create excitons 

which will dissociate into electron-hole pairs. The holes that do not undergo 

recombination should contribute to the photocurrent. Optimized performance would 

be obtained if the wavelength of the light source matched the peak wavelength of 

diF-TEG ADT UV-Vis spectrum
[15]

.  

 

200 300 400 500 600 700 800

0.0

0.2

0.4

0.6

0.8

1.0

(ii)

N
o

rm
a

li
z
e

d
 F

T
E

G
 a

b
s

o
rb

a
n

c
e

Wavelength (nm)

 Solution

 Film

(i)

 

Figure 1.5 Absorption spectra of solution (i) and film (ii) of diF-TEG ADT 

 

Two different effects typically occur in OPT channel layers as the result of 
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illumination: the photovoltaic and photoconductive effect. The photovoltaic effect 

occurs at the electrode/organic interface when the transistor operates in the on state 

(| 𝐺| > |  |,  𝐺 more negative than    for a p-type device), whereas when  𝐺 is 

more positive than   , the drain current increases proportionally to the optical power 

due to a photoconductive effect
[11, 16]

. As shown in Figure 1.6, the threshold voltage 

(  ) shifts toward the positive direction (becoming easier to turn on) under 

illumination in both cases. For the PA-dielectric device, the shift of    was about 

0.47 V and in the case of the SiO2-dielectric device, ∆   was about 7.6 V. There 

have been several explanations of the shift of    under light illumination. Some 

believe the increasing of photo-induced carriers makes the Fermi level move closer to 

the edge of the highest occupied molecular orbital (HOMO). The degree of the energy 

level bending will decrease which leads to a shift of    toward the positive direction. 

Another explanation is that once the device is illuminated, there would be 

photo-induced electrons and holes. While the holes moved as part of the total current, 

the electrons were trapped in the positively charged trap states. Thus the    was 

positively shifted
[17]

. Wasapinyokul et al.
[18]

 demonstrated that the apparent shift of 

the    of the device under illumination is entirely due to the photo-induced current 

and the intrinsic    remains constant both under illumination and in the dark.  
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Figure 1.6 Shift in threshold voltage (𝑽𝑻) for OPTs with (a) PA dielectric layer and (b) SiO2 

dielectric layer 

 

1.3.2 Effect of different dielectric layers on OPT performance 

When a gate voltage ( 𝐺) is applied, the charge carriers will accumulate near the 

dielectric/organic interface. A conductive channel will be formed and the injected 

carriers from the source electrode will be transported through the channel. The 

conductive channel is located in just a few organic layers near the dielectric/organic 

interface. Therefore, the dielectric/organic interface influences both the performance 

and the functionality of OFETs. First, the trap density of the dielectric layer will affect 

the performance of the device. Second, the dielectric layer can be modified and this 

will change the surface energy which can influence the aggregation of the organic 

semiconductor. Third, the morphology of the organic semiconductor layer will be 

influenced by the roughness of the dielectric layer
[19]

. In addition, the thickness and 

capacitance of the dielectric layer can also affect the device performance 

dramatically
[20]

. In this project, we employed two kinds of dielectric layer: the 
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80-nm-thick potassium alumina (PA) layer and 300-nm-thick SiO2 layer.  

 

Figure 1.7 shows the increase of the drain current in the 𝐼𝐷   𝐷  curves upon 

irradiation (365 nm-wavelength UV light, 𝑃𝑖𝑛      μW cm2⁄ ) of OPTs with two 

kinds of dielectric layer. The devices were stored in the dark for 3 hours and then 

tested to ensure that the current was at a minimum. Then, the devices were 

illuminated and tested at 30 second intervals until the maximum current was reached. 

In the case of PA-dielectric device (Figure 1.7 (a) and (c)), the maximum increase 

between photocurrent and dark current was 1.45 μA ( 𝐷   3  ,  𝐺        ) and 

the photoresponsivity (R) was   35 A W⁄ , which was much larger than the 

performance of previous reported low-voltage OPTs (>   mA W⁄ )
[13]

. For the 

SiO2-dielectric device, while the absolute current was lower, the ratio of the 

photocurrent to the dark current ( 𝐼𝐷𝑆,𝑖𝑙𝑙𝑢 𝐼𝐷𝑆,𝑑𝑎𝑟𝑘⁄ ) reached    ×   2  at  𝐷  

     . 
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Figure 1.7 𝑰𝑫  𝑽𝑫 curves of OPTs at 𝑽𝑮  𝟎 𝑽 with (a) PA dielectric layer and (b) SiO2 

dielectric layer in the dark and under illumination. (c) 𝑰𝑫  𝑽𝑫 curve of OPT with PA 

dielectric layer at 𝑽𝑮   𝟐 𝟏 𝑽 in the dark and under illumination 

 

 

Figure 1.8 Photoswitching cycles of the OPTs with (a) PA dielectric layer and (b) SiO2 

dielectric layer illuminated by UV light ( 𝑽𝑮  𝟎 𝑽) 
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More rapid photoswitching cycles are shown in Figure 1.8. The dynamic photocurrent 

was measured as a function of time at  𝐷   3  ,  𝐺      for a PA-dielectric 

device and  𝐷       ,  𝐺      for a SiO2-dielectric device. As shown in Figure 

1.8, due to the slow-relaxation processes involved in absorbing photons and 

detrapping localized electrons, the 𝐼𝐷𝑆  persists even after the illumination is 

removed
[21]

 in both cases. The drain current increased immediately after the 

illumination, while decreased slowly after turning off the light. This observation 

demonstrated a different mechanism of photoresponse for this anthradithiophene 

device from the functionalized pentacene devices. For the primary mechanism of 

photo-induced conductivity in functionalized pentacenes, Tokumoto et al.
[4]

 found that 

the photoresponse was temperature dependent and wavelength dependent. They 

believed that the light energy was absorbed, heating the sample locally in the region 

where the current density was greatest between the electrical contacts. Brooks et al.
[10]

 

reported the time and temperature dependent measurements of functionalized, single 

crystalline organic materials and demonstrated that carriers associated with the 

photo-excited states are thermally activated at low temperatures, with an energy less 

than both the intrinsic band-gap and the trap energy. For the diF-TEG ADT molecule, 

which exhibits intense solid-state fluorescence, the absorbed photons are not 

thermalized, they are re-emitted. The excited molecules under bias serve to provide 

more charge carriers; any that are not swept away will simply re-combine and emit. 

The slow-relaxation process also motivated the application of diF-TEG ADT-based 

device as photo-controlled memory. In addition, the plots clearly illustrated that the 
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switch-on current (𝐼𝐷𝑆) was very stable under ambient conditions. Moreover, it seems 

like 𝐼𝐷𝑆 gradually increased with cycling in both cases. 

 

1.3.3 The performance of OPTs in high humidity 

With appropriate electrical and optical properties, a key limitation for the application 

of an OPT is the stability in air and moisture. The stability of OPTs in air has been 

investigated by many groups
[3, 22]

, especially the n-type OPTs
[13, 23]

. As far as 

moisture-stable organic phototransistors are concerned, very few studies have been 

published. As show in Figure 1.9 (a), 𝐼𝐷𝑆 was stable at high relative humidity (R.H.) 

up to 85%. However, with R.H. above 85%, a huge drop of 𝐼/𝐼𝑜 was observed. The 

photoswitching cycle of OPTs at 75% R.H is shown in Figure 1.9 (b) ( 𝐷   𝐺  

     ). SiO2 was used as the dielectric layer and the wavelength of UV light was 365 

nm. 𝐼𝐷𝑆  increased from   3 μA to   8 μA during 35 s irradiation. Unlike many 

other organic small molecule semiconmductors, diF-TEG ADT molecule is very 

stable in air and moisture.  
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Figure 1.9 (a) 𝑰𝑫𝑺 at various relative humidities (R.H); (b) Photoswitching cycles of the 

OPTs illuminated by UV light at 75% R.H (𝑽𝑮  𝑽𝑮   𝟐𝟎 𝑽) 

 

1.3.4 Effect of Connecting or disconnecting the gate electrode on OPT 

performance 

An additional interesting observation is that the drain current ( 𝐼𝐷𝑆 ) changes 

significantly when connecting or disconnecting the grounded gate electrode to the 

device in the dark while VD was -3 V. Figure 1.10 shows the photoswitching cycle of 

the device with multiple stable and reproducible states. Four stages can be obtained at 

 𝐺      via turning on/off light and connecting/disconnecting the gate electrode to 

the device: (1) light off + grounded gate ( 𝐺     ), (2) light off + floating gate, (3) 

light on + grounded gate ( 𝐺     ), (4) light on + floating gate. 𝐼𝐷𝑆 increased after 

removing the gate electrode when all other conditions were kept the same, as though 

the floating gate condition were somewhat “on”. The photo-induced holes may have 

been accumulated at the dielectric/organic interface due to an effectively negative  𝐺. 

After reconnecting the gate probe to the device ( 𝐺     ) after a light-on-light-off 
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cycle, the gate voltage was again fixed at 0 V. The photo-induced currents decreased 

rapidly when the light was turned off and the gate reconnected. Note that the 

photo-induced current cycle would have been that of Figure 1.8 (a) if the gate was not 

disconnected. Some previous literature reported that ID could be adjusted by 

manipulating the negative gate voltage ( 𝐺) during the light-off condition 
[5, 22]

, which 

was similar to what we found. This finding will encourage the application of diF-TEG 

ADT in multistage photo-controlled memory since it had multiple states under fixed 

illumination intensity, all seemingly without supplying any power to the gate. 
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Figure 1.10 Drain current of photo-controlled memory operation at (1) light off + grounded 

gate (VG = 0 V, VD = -3 V), (2) light off + floating gate, (3) light on + grounded gate (VG = 0 V, 

VD = -3 V), (4) light on + floating gate 

 

1.4 Conclusion 
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In summary, we demonstrated that highly soluble ADT-based material diF-TEG ADT 

can be used to fabricate low-voltage operated (-3 V) organic phototransistors. Thin 

film transistors were obtained using low-cost drop-casting process. Our results 

represent a step forward toward the possible use of these devices as battery-powered 

photosensors, for which it is preferred to achieve stable operation at lower voltages. 

The measured maximum photoresponsivity was   35 A W⁄  at     μW cm2⁄  

illumination intensity with PA dielectric layer, which is much higher than the 

performance of previous low-voltage OPT (>   mA W⁄ )
[13]

. Meanwhile, the device 

with SiO2 dielectric layer showed a photocurrent/dark-current ratio of    ×   2. 

Performance in moist environments was promising; no sharp drop in drain current 

was observed until R.H reached 85%. Interestingly, a dramatic change in drain current 

was observed connecting or disconnecting the gate probe, motivating the possible 

application of diF-TEG ADT-based devices as a multistage photo-controlled memory.  
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Chapter 2  

Biosensor Based on diF-TES ADT Molecular Solid 

2.1 Introduction 

Organic thin film transistors (OTFTs) based on solution-processed organic 

semiconductors have been investigated over the last decade for their potential 

application in sensor platforms because of their ability to make flexible and large-area 

electronics. Among the solution-processed organic semiconductors, small molecules 

have attracted much attention since they provide high field-effect mobility
[1]

. 

However, the morphology anisotropies lead to device-to-device variation and make it 

more difficult to print small molecule semiconductors on large substrates. 

 

Polymer-small molecule blend organic transistors attracted much attention because 

polymers demonstrate excellent device uniformity
[24]

. Moreover, the solution 

rheology of polymers makes it possible to print organic semiconductors onto flexible 

substrates, which leads to a promising application for OFETs as low-cost, portable 

devices. 

 

In this project, we blended small molecule diF-TES ADT (as show in Figure 2.1) with 

poly(methyl methacrylate) (PMMA). The phase-separated interface of diF-TES ADT 

and PMMA provided greater stability for the bottom gate - top contact transistor. A 

previous report demonstrated that the polymer-small molecule blend transistor 
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displayed higher field-effect mobility and greater stability than a homo diF-TES ADT 

film because the phase-separated interface provides an efficient pathway for charge 

transport
[25]

. 

 

 

Figure 2.1 The molecular structure of diF-TES ADT 

 

We investigated the transistor response to antibody using anti-bovine serum albumin 

(BSA) as the target antibody since BSA shares many similarities with human serum 

albumin (HSA) in bio-function and bio-chemical properties, making it a good model 

for a clinical interferent
[26]

. Both BSA and rabbit anti-BSA are negatively charged 

when immersed in solution (pH 7.4)
[27]

. 

 

2.2 Experimental Section 

2.2.1 Materials and device fabrication 

The diF-TES ADT was synthesized as previously reported by Anthony
[28]

. The OTFTs 
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were fabricated with a bottom-gate, top-contact configuration. A heavily doped n-type 

Si wafer was used as the gate electrode. The wafer was cleaned with ultrasonication in 

piranha solution (DANGER!  Highly corrosive to skin!), acetone and isopropanol, 

and dried by forced nitrogen gas. 70-nm-thick thermally grown SiO2 was used as the 

dielectric layer. The semiconductor thin film was prepared by first spin-coating 

diF-TES ADT/PMMA (1:1 w/w) blend solution (20 mg/mL) in chlorobenzene onto 

the dielectric layer at a speed of 1500 rpm for 60 seconds, followed by moving the 

sample into a vacuum oven at room temperature and leaving it overnight to remove 

the residual solvent. Then the gold source and drain electrodes (50 nm) were 

thermally evaporated through an interdigitated mask (as shown in Figure 2.2, channel 

width/length (77 000μm/250μm)) at 0.3 Ȧ s−1. The deposition chamber pressure was 

<5×10
-6

 Torr. 

 

  

Figure 2.2 The interdigitated electrode mask used for fabricating devices (the distance 

between two neighboring electrodes is 0.25 mm, indicated as short white line)
[26]

 

 

The structure of the biosensor based on the diF-TES ADT/PMMA blend transistor is 
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shown in Figure 2.3. 25 nm tetratetracontane (C44) was then thermally evaporated on 

Au electrodes to protect electrodes against any trace amount of buffer solution that 

may penetrate through the CYTOP layer. CYTOP (9% weight, Bellex International 

Corporation) was spin-coated on the device surface (6000 rpm, 90 s) and another 

layer of C44 (50 nm) was thermally evaporated onto the CYTOP layer to fill any 

residual pinholes in the CYTOP layer. Then an N-hydroxysuccinimide (NHS) treated 

PS-block-PAA ((poly(styrene)-block-poly(acrylic acid)) layer was spin-coated on the 

C44 layer at a speed of 3000 rpm for 90 seconds. The carboxylic acid groups of 

PS-block-PAA were activated as previous work demonstrated
[26]

. Finally, the device 

was dipped into DI water several times to remove excess NHS and other residuals, 

and dried with nitrogen flow.  

 

Figure 2.3 Device architecture of biosensor based on diF-TES ADT/PMMA blend transistor 

 

BSA was covalently attached to the activated PS-block- PAA surface from a 10 

mg/mL BSA solution for more than 8 hours at room temperature, and then gently 

rinsed with DI water to remove any non-covalently bound materials. 

 

For the device which was used as a pH sensor, the thermally evaporated C44 (50 nm) 
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layer was the last step and no PS-block-PAA layer was used.  

 

2.2.2 Electrical and anti-BSA response characterization of the devices 

All the OTFTs were characterized using an Agilent 4155C semiconductor analyzer. 

During the characterization of responses to pH,  𝐷       was used, while 

 𝐷   3   was fixed when measuring responses to anti-BSA. Various concentrations 

of anti-BSA solution were introduced onto devices as     μL via micropipette. In 

order to prevent water evaporation, the measurements were conducted in a water- 

vapor-saturated environment. 

 

2.3 Results and Discussion 

2.3.1 pH sensor based on diF-TES ADT: PMMA blend transistor 

Figure 2.4 shows the transfer curve (a) and output curve (b) of the small 

molecule-polymer blend organic transistor. As shown in the figure, the drain current 

reached 140 nA at  𝐺 = -2 V ( 𝐷      ).  
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Figure 2.4 The transfer (a) and output (b) curves of diF-TES ADT/PMMA blend TFT 

 

As shown in Figure 2.5, the pH sensor performances of the polymer-small molecule 

blend TFT devices were determined by measuring drain current changes on exposure 

to varying pH solution. Two couples of pH solutions were used: pH 4 & pH 10 and 

pH 2 & pH 12. The drain currents at  𝐺        in both acid and base solutions 

were used to compare the response to different pH. The change of drain current was 

9.2 % for the pH 4 & pH 10 couple (Figure 2.5 (a)), while it was 6.4 % for the pH 2 & 

pH 12 couple (Figure 2.5 (a)). At lower voltages, the current changes were more 

similar. 

 

 

Figure 2.5 The ID-VG curves of pH sensor based on diF-TES ADT/PMMA blend TFT   
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Moreover, the stability of the small molecule-polymer blend TFT in air improved 

significantly compared to the homo diF-TES ADT film. As shown in Figure 2.6, the 

mobility of the TFT device increased in the first 10 days because of the O2 doping. 

Then the mobility decreased because of the degradation of diF-TES ADT in air. 

However, the homo diF-TES ADT thin film transistor cannot operate after storage for 

more than two weeks in air.  

 

Figure 2.6 The stability of diF-TES ADT/PMMA blend TFT in air 

2.3.2 Biosensor based on diF-TES ADT: PMMA blend transistor 

Figure 2.7 shows the current changes of a BSA-coated transistor by switching 

between 0.05 PBS and anti-BSA solutions. When switching between 0.05 PBS 

solutions, the drain current always drifted to the higher value. Drain current increased 

due to ion or H3O
+
 doping. After adding anti-BSA solution on the device, the drifting 

of drain current slowed down (Figure 2.7). To make it more clear, a simple linear 

regression was used to fit a straight line (red line in the figure, the equation was 
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shown in equation 2.1) through the set of these points and made the sum of squared 

residuals as small as possible.  

 

y   4 4  ×   −10 x    878 ×   −7                                                                      (   ) 

 

After calibrating (compensate the effect of ion doping), the drain current actually 

decreased in the presence of anti-BSA. The drain current drifting direction in 

anti-BSA solution was opposite to that in pure 0.05 PBS solution, as shown in Figure 

2.8. The drain current change demonstrated that attaching negatively charged species 

induces lower conductance in p-channel transistors. One possible mechanism is that 

negatively charged BSA pulls charge carriers (holes) away from the channel region 

for a p type transistor as suggested in previous literature
[26, 29]

.   Another explanation 

is that the anti-BSA binding rearranges dipole moments to create a local field that 

decreases the hole density of the semiconductor.  Distinguishing between such 

mechanisms is the subject of ongoing research. 
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Figure 2.7 Current changes by switching between 0.05pbs and anti-BSA 0.05pbs solutions 

with linear fitting line 

 

Figure 2.8 Extracted data after calibrating by linear fitting line 
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The “0 value” of ∆IDS was set to be the current when adding the addition of anti-BSA 

(10ng/mL anti BSA) was begun, and a “0 value line” across Figure 2.8 is the 

horizontal projection of this point. The dots above “0 value line” represent drain 

current decrease, while the dots below this line represent drain current increase. As 

shown in Figure 2.8, after exposure to anti-BSA solution, drain current always 

decreases. Moreover, after each exposure cycle to anti-BSA, rinsing the surface with 

0.05 PBS cannot bring the current value back to the “0 value line” completely, 

indicating irreversible and specific binding between BSA and anti-BSA on the device 

surface. 

 

There are several reasons for the lower response (several nA) of this biosensor than 

our previous system
[26]

. First, 50 nm C44 instead of 16 nm C44 was applied to 

increase device stability in 0.05 PBS solution. Thicker C44 led to a longer distance for 

the capacitive coupling to holes in the vertical direction. Secondly, the anti-BSA size 

is large, which may lead to some part of bonded anti-BSA molecules located outside 

of the electrical double layer above the device. Further device optimization is 

possible. 

2.4 Conclusion 

The polymer-small molecule blend thin film transistor has a promising application in 

the sensor field. We have developed a sensitive (10 ng/mL) sensor platform for 

anti-bovine serum albumin (anti-BSA) detection using small molecule-polymer blend 
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transistors. The advantages of this particular material combination include printability, 

higher stability in 0.05 PBS solution and less leakage current caused by ion doping. 

The change of drain current for the pH 4 & pH 10 couple, and for the pH 2 & pH 12 

couple are similar up to  𝑔       . Although the response to anti-BSA was smaller 

than the response to pH, the drain current displays a change even at the switching of 

0.05 PBS solution and 10 ng/mL anti-BSA solution. 

 

Chapter 3  

Conclusions and Perspectives 

3.1 Conclusions 

This thesis discusses the application of solution-processed low-voltage organic 

field-effect transistors based on anthradithiophene molecular solids, including organic 

phototransistors (OPTs) that response to UV light, and sensors that response to pH 

and antibody.  

 

We demonstrated that highly soluble ADT-based material diF-TEG ADT can be used 

to fabricate low-voltage operated (-3 V) organic phototransistors. The results 

represent a step forward toward the possible use of these devices as battery-powered 

photosensors, for which it is preferred to achieve stable operation at lower voltages. 

The measured maximum photoresponsivity was   35 A W⁄  at     μW cm2⁄  

illumination intensity with PA dielectric layer. Performance in moist environment was 
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promising; no sharp drop in drain current was observed until R.H reached 85%. A 

dramatic change in drain current was observed connecting or disconnecting the gate 

probe, which motivates the possible application of diF-TEG ADT-based devices as a 

multistage photo-controlled memory. 

 

Another promising application for the ADT-based material is the thin film transistor 

(TFT). We have developed a sensitive (10 ng/mL) sensor platform for bovine serum 

albumin (BSA) detection using small molecule-polymer blend transistors. Blending 

PMMA with diF-TES ADT improved the environmental and electrical stability 

because of its reported vertically phase-separated structure. Moreover, after blending 

with polymer, diF-TES ADT became easier to print on large flexible substrates.  

3.2 Future perspectives 

In the study of organic phototransistors, the mechanism for the current change when 

connecting or disconnecting the gate probe is still uncertain. More research needs to 

be done to obtain a convincing explanation for this phenomenon. Also, the large 

leakage current was the primary cause of the low photocurrent/dark-current ratio. In 

future works, the dielectric layer should be modified to decrease the leakage current. 

A solution-processed, low-temperature annealed dielectric layer can be applied in this 

system to develop low-cost, large-area flexible organic phototransistors. 

 

Sensors with higher sensitivity and faster response speed are highly desired in the 
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medical device field. Several strategies can be employed to improve the performance 

of small molecule-polymer blend TFT sensor. First, the thickness of C44 layer 

deposited on the CYTOP layer can be adjust to ensure the stability as well as get 

higher sensitivity. Second, different kinds of dielectric layers should be tried to get 

higher drain current. Last, an extended-gate top-contact structure can be used to 

simplify the structure of the sensor. The covalent attachment of anti-BSA to the BSA 

can be formed on the surface of the extended gate, which means no C44 and CYTOP 

layer are needed on the organic semiconductor layer. 
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