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Abstract 

Heat and mass transfer analysis has its application in various fields including 

automobile, steam-electric power generation, energy systems, HVAC, electronic device 

cooling and in characterizing and diagnosing diseases. Here we have focused on applying 

the principles of heat and mass transfer to biological tissue and materials.  

In the first part we introduce a computational method to simultaneously estimate 

size, location and blood perfusion of model cancerous breast lesions from surface 

temperature data. A 2-dimensional computational phantom of axisymmetric tumorous 

breast with six tissue layers, epidermis, papillary dermis, reticular dermis, fat, gland, 

muscle layer and spherical tumor was used to generate surface temperature distributions 

and estimate tumor characteristics iteratively using an inverse algorithm based on the 

Levenberg-Marquardt method. However, similar steady state temperature profiles for 

different tumors are insufficient  to simultaneously estimate blood perfusion, size and 

location of tumor. This becomes possible when transient temperature data are used along 

with steady state data. Thus, in addition to the steady state temperature data, we modified 

and expanded the inverse algorithm to include transient data that can be captured by 

dynamic infrared imaging. Blood perfusion is an indicator of the growth rate of the tumor 

and therefore its evaluation can lead to assessment of tumor malignancy. 

In the second part we treat X-ray computed tomography (CT) perfusion. The goal 

was to reduce the total radiation exposure by reducing the number of scans without 

compromising information integrity. CT scan images obtained from a rabbit model of 

liver and tumors were processed using the maximum slope (MS) method to estimate 

blood perfusion in the liver. Limitations of MS method are also discussed. The MS 
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method makes use of key time points, forming the basis of the rationale to explore 

optimization strategies that utilize variable time intervals, rather than the more common 

approach of fixed time intervals. Results show that this leads to significant improvement, 

without compromising diagnostic information.  

In the last section we explore the magnetic shielding efficacy of superconducting 

materials and methods to mitigate the effect of necessary discontinuities in 

superconducting shield.  
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                                Chapter 1 

Introduction 

 

 

The present work deals with heat and mass transfer and its application to biological 

tissue. We begin by giving basic definitions of temperature, heat transfer and relevant 

laws (thermodynamic) governing energy transfer. 

            Matter consists of atoms and molecules which are in constant motion. This 

motion is in the form of random translational motion, internal vibrations and rotations. 

The energy associated with these motions is referred to as thermal energy or heat. The 

particles possess kinetic energy by virtue of their motion and temperature is a measure of 

average kinetic energy. When molecules with higher kinetic energy collide with 

molecules of lower energy a transfer of energy takes place. This leads to an increase in 

the kinetic energy of the molecules with lower energy. By definition higher kinetic 

energy represents a higher temperature and therefore energy is being transferred from 

higher temperature to lower temperature. This transfer of energy from higher temperature 

to lower temperature is known as heat transfer and is described in detail below. 

1.1. HEAT TRANSFER 

     In this section the basic concepts of heat transfer, relevant to the present work are 

explained. First the different modes of heat transfer are described followed by the 

concepts of thermodynamics (Incropera et.al.). 
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1.1.1 Modes of heat transfer 

Heat transfer occurs via conduction, convection and radiation. When heat transfer occurs 

within a stationary medium, whether a solid or fluid, it is known as conduction. 

Convection occurs when heat is transferred between a surface and a moving fluid. The 

third form of heat transfer, radiation, occurs when surfaces emit electromagnetic waves as 

thermal radiation.  

Conduction 

In order to explain conduction it is best to start by considering a gas which is 

devoid of any bulk, macroscopic motion and has a temperature gradient. Molecules at 

higher temperature have higher kinetic energy and when they collide with molecules of 

lower energy they transfer energy. In this way there is a net transfer of energy from 

higher temperature to lower temperatures. This is also known as diffusion of energy. The 

case can be easily extended to fluids, the only difference being that the molecules in a 

fluid are closer to each other than in gas and consequently stronger and more frequent 

molecular interactions occur.  

The case of solids is similar to that of gases and liquids but with important 

differences. In a solid, the atoms are arranged in fixed periodic spatial relation known as 

lattice. Here the microscopic motion which is responsible for thermal energy has two 

components. First, due to movements of free electrons and second due to the lattice 

vibrations also referred to as phonons when considering it as a particle like behavior. The 

contribution from electrons is dominant for the case of pure metals, whereas for the case 

of non-conductors and semiconductors it is the heat transfer through phonons which 



3 
 

dominates. A special case of conduction occurs in solids with very low electrical 

resistivity and is known as ballistic conduction. It is generally observed when the mean 

free path of electrons is much longer as compared to the dimensions of the material for 

example in metal nano wires.  

      When a metal rod is heated at one end the temperature of the other end also rises 

gradually. The heat transfers from one end to the other by conduction.  

The rate equation used for describing this is known as Fourier’s law and is given in one 

dimension as 

     
      

  

  
                                                                                                                                

where   
  is the heat flux (W/m

2
) or heat transferred per unit area, heat flux, in the x -

direction,   is the thermal conductivity and T is the temperature. 

Convection 

Convective heat transfer takes place when a surface comes into contact with a moving 

fluid and there is a temperature difference between the fluid and surface. Although 

convective heat transfer occurs at the boundary of the two materials, it is also important 

to understand the heat transfer within the fluid, away from the surface for a complete 

understanding of convection. We have seen in the previous section the heat transfer 

through random molecular motion, diffusion. In convection there is an additional 

component to this by the virtue of the motion of the fluid. Due to this bulk motion of the 

fluid, the random molecular motion is also transferred. Heat transfer by this mechanism is 

referred to as advection. Convective heat transfer occurs by both diffusion and advection. 
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So, in addition to the heat diffusing into the fluid at the solid liquid interface, there is also 

heat transfer taking place through advection due to upstream fluid, which has already 

come into contact with the surface and exchanged heat. 

Convection in single-phase fluids can be classified into three forms: 

1. Forced convection: This form of convection is driven by an external stimulus. An 

example of this is cooling of a microprocessor in a computer by a fan. The fan directs 

external air towards the microprocessor. The microprocessor transfers heat to the air 

and cools. The amount of heat transfer achieved can depend on various factors 

including, temperature difference between the incoming air and the microprocessor 

surface, velocity and density of air. 

2. Natural/free convection: Here the fluid flow is driven by buoyancy forces. An 

example of natural convection can be a heated vertical plate. The plate will heat the 

air in its vicinity, the heated air being less dense than the surrounding air will rise. 

The incoming cold air will again get heated up due to the plate and will rise, hence 

continuing the cycle.  

3. Mixed/combined convection: As the name suggests this form of convection is a 

mixture of forced and natural convection. If we have a heated vertical plate, which is 

an example of natural convection and if we add a fan at the bottom, blowing air along 

the walls, this will be the case of mixed convection.  

The rate equation which is used to describe convection is given by Newton’s law of 

cooling. 
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where    (W/m
2
) is the heat transfer from the ambient air to the surface,   (W/(m

2
K)) is 

the convective heat transfer coefficient,    (K) is the ambient temperature and    (K) is 

the surface temperature.  

Radiation 

The third form of heat transfer is radiation (thermal radiation). It requires no 

medium and energy is transferred in the form of electromagnetic waves, with 

wavelengths ranging from 0.1 to 100 µm approximately. Any surface which has a 

temperature above 0 K emits thermal radiation. It is the vibrations of the constituent 

molecules or electron transitions, sustained by its internal energy, which are responsible 

for these radiations. As the internal energy is related to temperature this form of radiation 

is associated with thermal energy of the matter. Thermal radiation comprises of infrared 

and visible radiation and a portion of ultraviolet. As high energy electrons transitions to a 

lower state an object emits radiation and a lower energy electron jumps to a higher state 

as it absorbs radiations. Similarly, changes in the vibrational energy of molecules are also 

associated with the absorption and emission of radiations although at much lower 

energies as compared to electron transition. An object emits and absorbs radiations 

continuously, if radiation emission equals absorption the temperature of the object 

remains constant. The temperature of the object increases if absorption dominates and it 

decreases when emission is dominant.  

An example of heat transfer through radiation is the heating of satellites orbiting 

the earth. There is no atmosphere present in space, so there is no possibility of heat 

transfer from conduction and convection. But when the satellite is between the earth and 

the sun, therefore outside the shadow of the sun, it receives radiation from the sun and 
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heats. In fact it is a challenging problem to remove this heat as there is no possibility of 

convection and conduction. Multilayer insulation material is employed for this purpose, it 

reflects most of the radiation.  

The maximum radiation which can be emitted by a surface is given by the Stefan-

Boltzmann law 

      
                                                                                                                                              

where   is the emissive power (W/m
2
),   (5.67 ×10

-8
 W/m

2
. K

4
) is the Stefan-Boltzmann 

constant,    is the surface temperature (K). This is an idealized case, where the surface is 

considered as a blackbody. Real surfaces emit less radiation than a blackbody at same 

temperature, depending on various factors, including material and surface. To incorporate 

this loss in emissive power, emissivity ( ) is defined, which ranges from 0 to 1. After 

including this the emissive power is given by 

      
                                                                                                                                             

where   is the surface emissivity. 

    The radiation incident on a surface is absorbed, and the extent of absorption is 

governed by the absorptivity, α, which ranges from 0 to 1. Surfaces with equal emissivity 

and absorptivity are known as grey surfaces. For grey surfaces the rate equation is given 

as 

    
        

      
                                                                                                                       

where     
  is heat transfer occurring from the surface to the surrounding,      is the 

ambient temperature (K). 
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1.1.2 Thermodynamics 

       In the last section (1.1.1) different modes of heat transfer were discussed. There is a 

need for additional set of laws, known as laws of thermodynamics, to conduct heat 

transfer analysis. 

     The first law of thermodynamics relates to the conservation of energy. It states that the 

change in the total amount of energy stored in a control volume is equal to the net energy 

input into the volume and the energy generated in the volume. This is given by the 

following equation 

                                                                                                                         

where          is the energy stored in the control volume,     is the energy entering the 

volume,      is the energy leaving the body and            is the energy generated in the 

body. 

Using the conduction rate equation (Eq. 1.1) and the first law of thermodynamics (Eq. 

1.6) on a control volume gives us the heat diffusion equation 

   
  

  
                                                                                                                                

 where   is the density (kg/m
3
),   is the specific heat capacity(J/(kg.K)),   is the thermal 

conductivity (W/(m. K)) and   is the heat generation rate (W/m
3
). 

       First law of thermodynamics (Eq. 1.6) along with the knowledge of different modes 

of heat transfer is sufficient for conducting heat transfer analysis on wide range of 
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engineering problems. Some of them are designing fan for cooling microprocessor, 

radiators in automobiles, dewar to store cryogenic liquids, HVAC and solar cookers.  

Second law of thermodynamics deals with the direction of heat transfer. It states that 

the entropy of an isolated system cannot decrease over time, where entropy, on a 

microscopic level, is a measure of disorder. Clausius gave mathematical form to change 

in entropy [J/K] 

      ⁄                                                                                                                                  

In a system with objects at two different temperatures, if the heat flows from the hot 

to the cold object the entropy increases, therefore this is the only plausible direction of 

heat flow. Thus the second law of thermodynamics makes it possible to know the 

direction of heat transfer. 

1.1.3 Finite element method 

         The principles discussed in this section can be applied to solve heat transfer related 

problems for simple geometries. However, in the real world, the problem domains are 

complex and have no simple analytical solutions for the underlying partial differential 

equations. Some examples of partial differential equation are heat diffusion equation for 

heat transfer analysis, Navier-Stokes equation for fluid dynamics analysis and bio-heat 

transfer equation for heat transfer analysis in biological tissue. 

To solve this problem finite element method (FEM) is employed, which is one of the 

numerical methods available based on Galerkin method. FEM divides the domain into 

smaller parts, referred as elements, which have common points referred to as nodal 
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points. A polynomial is used to interpolate values within the element. This leads to a set 

of simultaneous equations which can be solved to obtain unknown variables. FEM was 

used by commercial software COMSOL Multyphysics v 4.2 (2011) in the present work to 

solve for the temperature distribution. 

1.2. Bio Heat Transfer 

              Body tissue is a complex system with blood flow and metabolic activity. Apart 

from supplying nutrients the blood flow also affects the temperature of the body tissue. 

The metabolic activity also leads to heat generation, referred as metabolic heat generation 

rate. Understanding the contribution of these two factors in the heat transfer within body 

can be very useful in estimating the temperature distribution within the body. Several 

models have been suggested to describe bio heat transfer (Pennes 1998). Pennes bio heat 

transfer equation has been experimentally validated and used extensively in the literature 

(Pennes 1998). 

      Bio heat transfer as described in Pennes bio-heat equation is very similar to the 

standard heat transfer equation. The heat generation term has two components, metabolic 

heat generation rate and heat transfer through blood perfusion.   

   
  

  
                                                                                                          

where ρb [kg/m
3
], cb [J/kg.K], Tb [K] and ωb [m

3
/s/m

3
] represent density, specific heat of 

blood, arterial temperature and blood perfusion rate respectively.   [W/m
3
] is the 

metabolic heat generation rate. 
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           To solve the heat diffusion equation, analytically or numerically, domain boundary 

conditions and initial conditions need to be specified. In the present case boundary 

conditions are specified at the inner body and at the outer surface. The outer boundary is 

given a convection boundary condition, which will be explained in detail in the second 

section. The inner body surface is assumed to be at a core body temperature of 37⁰ C, 

which is maintained at this temperature due to thermoregulation.  

 Human body cannot function properly if the core temperature falls below 35⁰ C or 

goes above 42⁰ C. Temperatures beyond this range could lead to brain injury and is fatal. 

The function of thermoregulation in human body is performed by hypothalamus, which 

sends signals to the body to perform the appropriate function. If the body requires cooling 

it undergoes sweating and vasodilation. As the sweat evaporates it cools down the skin in 

the process and as the blood vessels become wider near the skin surface it leads cooling 

of the blood and thereby body. On the other hand if the body requires heating, it leads to 

vasoconstriction (narrowing of blood vessels) and shivering. Vasoconstriction decreases 

the blood flow to extremities and thereby reduces the heat flow from the extremities of 

the body to the surrounding. Shivering, on the other hand generates heat in the body 

because of the rapid movements of the muscles. All these process allows hypothalamus to 

control internal body temperature at 37⁰ C. 

  There are certain conditions which dysregulate temperature control, some of them 

are staying in cold or hot conditions, exercise and digestion. It can also be an indication 

of some abnormal functioning of the body, as fever, under functioning thyroid gland, 

inflammation and tumor can also lead to an increase or decrease of temperature. Tumor is 

dealt in more detail later. 
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         There are certain parameters which are more influential in the temperature 

distribution within the body, as compared to other parameters. Based on analysis 

conducted by Çetingül and Herman (Çetingül and Herman, (2010)) blood perfusion rate 

and metabolic heat generation rate were found to be the most dominant parameters 

affecting the heat transfer distribution within the tissue.  

1.3. Thermography 

       There are various instruments available to measure temperature, including 

thermocouples, thermistors, resistance thermal detectors and infrared cameras. Of these 

only infrared cameras (thermography) can provide a spatial temperature distribution and 

the rest can give temperatures only of a single point at a time. The knowledge of spatial 

variation is critical in a clinical setting while diagnosing a disease, based on surface 

temperature distribution. The basic concepts involved in thermography are described 

below.  

       A blackbody at any given temperature emits radiation across a wide range of 

wavelengths. The intensity of radiation at each wavelength is dependent on the 

temperature of the blackbody and can be obtained by the Stefan-Boltzman law. It is 

interesting to note that sun (5800 K) emits radiations of maximum intensity within the 

visible spectral region. Eyes of human beings have evolved to maximize the utilization of 

that part of the solar radiations which has maximum intensity. Similarly infrared cameras 

also utilize that part of the radiation which has maximum intensity. For human 

applications the working temperature range is around room temperature. At room 

temperature the intensity peaks around 10 μm, therefore the sensors in infrared camera 
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are designed to measure radiation around this wavelength. The images obtained from 

infrared cameras, showing the temperature distribution, are referred as thermograms.  

         Infrared cameras were first used around 1950s and have undergone tremendous 

improvements, from bulky units to hand held cameras. They have various applications 

including night vision cameras, which detects the heat signature left by humans and other 

animals to detect their activity during night, when visibility is low or absent. The earliest 

infrared cameras had spatial and temporal resolution of 5 mm and 0.3 - 1 K respectively. 

Over the years, with technological advancement, spatial and temporal resolution has 

improved to 0.003 mm and 5 mK, respectively. ( Cetingul M. P. 2010 )  

          Among other uses it can also be used on humans and other animals for diagnosing 

purposes. Abnormalities in the human tissue, caused by diseases, lead to local 

temperature variations (Barnes 1963). This is a common observation in the case of skin 

cancer (Herman 2012), breast cancer (Ng 2009), hemangioma (Saxena and Willital 2008)  

and deep tissue injury (Bhargava et al. 2014). Infrared cameras can be used to detect 

these temperature variations and therefore can aid in diagnosing diseases (Ng 2009).  

           A significant amount of work has been done in qualitative analysis of breast 

cancer infrared images (Ng, E. Y. -K., 2009). The asymmetry in temperature distribution 

is used as an indicator of abnormalities. Researchers have also shown interest in 

extracting quantitative thermograms. The heat transfer within the human tissue is 

modeled and then the surface temperature data are used to determine internal features. 

This aspect is dealt with in great detail in chapters 2, 3 and 4 of the present work. 
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           Other applications of thermography are in skin hemodynamics (Anbar et al. 1997), 

plaque (Bahtia et al. 2003), food allergies (Clark et al. 2007), Cataract (Corvi  et al. 

2006) and extracranial-intracranial bypass surgery (Okada Y. 2007). 

1.4. Tumors 

          Tumors can be categorized into cancerous, or ‘malignant’, and non-cancerous, or 

‘benign’. Malignant tumors are highly heterogeneous in nature and variations are found 

even within the same cancer types. Not all tumors are solid, sometimes they have cysts or 

liquid areas. Some regions of tumors are characterized by necrotic regions, which are 

deprived from blood supply. The periphery of the tumor is where all the activity is 

concentrated and is highly perfused.  

    Malignant tumors have a high growth rate and therefore a high metabolic rate due to 

which it generates more heat as compared to the normal tissue. Due to fast growth rate it 

also needs higher supply of nutrients, which leads to angiogenesis, and therefore these 

regions are highly perfused. Both these factor leads to elevated temperature in its vicinity 

( Lawson 1956, Kennedy et al. 2009 ) This elevated temperature can also be observed on 

the surface and can be recorded using infrared camera.  

         The severity of cancer can be seen from the fact that in 2012, the total number of 

new cancer cases, all over the world, was 14 million, and around 8 million deaths were 

reported (NIH-NCI). Within the US it is estimated that 1.7 million new cases and 0.8 

million deaths will be observed in 2016. According to an estimate, based on 2010-12 

data, around 40 % of men and women in US will develop some form of cancer in their 

lifetime. Breast cancer, lung and bronchus cancer and prostate cancer are the most 
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prevalent forms of cancer. Large amounts of money have been spent in US to fight 

cancer. $125 billion was spent in 2010 and an estimated $156 billion will be spent in 

2020. Still, there were 14.5 million people in 2014 that were not able to get cancer 

diagnosis.  

            In the present work the focus has been on the second most common forms of 

cancer in women, breast cancer and the cancer with one of the highest 5 year mortality 

rate, liver cancer. Based on breast cancer statistics, the lifetime probability of developing 

breast cancer is 12.3 % (1 in 8) for women in the U.S. (Siegel et al. 2016). In 2016, 

around 246,660 new cases and around 40,450 deaths are expected to be reported in the 

U.S. alone (National Cancer Institute, 2016).  Early detection of breast cancer is currently 

the most effective way to fight the disease.    

         The spread of tumor cells from the place of formation to another part of the body is 

known as metastasis. In this process tumor cells break away from primary tumor, travel 

through the blood and lymph system and form a new tumor in other organs or tissue of 

the body. Cancer diagnosis at an early stage can prevent metastatic growth of the tumor. 

It becomes extremely difficult to treat someone with tumor metastasis, therefore the role 

of early diagnosis becomes extremely important. Any progress in this direction can prove 

very fruitful in terms of saving lives. Therefore in the present we have focused on cancer 

diagnosis and tumor characterization.  

1.5. Inverse Heat Transfer   

          The problem of estimating the underlying parameters from the observable data is 

called “inverse problem”. It can be as simple as calculating gravity by measuring the rate 

of descent of a falling body and as complex as estimating tumor characteristics using 
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surface temperature distribution. Inverse problems are encountered in various fields of 

science and engineering, such as non-destructive testing, medicine, geology, archaeology, 

oceanography, material science and astrophysics. Inverse problems in heat transfer are 

referred to as inverse heat transfer (Ozisik M N and Orlande H 2000). An example of 

inverse heat transfer is to estimate the intensity of an internal heat source from the surface 

temperature distribution. 

           Inverse heat transfer has application in aerospace, mechanical, chemical and 

nuclear engineering. An example of its application in aerospace engineering is in 

designing the insulation tiles of the space shuttle. Due to extreme conditions it is 

impossible to measure the heat flux of the tiles directly. So the temperature within the tile 

is measured and from this the heat flux at the outer surface is estimated. It has also been 

applied in cancer diagnostics and characterization. 

              Different methods are used to solve the inverse problems, including genetic 

algorithm, neural networks, Levenberg-Marquardt method and various gradient descent 

algorithms. Inverse heat transfer problems are inherently ill-posed (Ozisik M N and 

Orlande H 2000), as a small change in the observed data can have significant effect on 

the estimation of underlying parameters. In order to tackle this problem regularization 

methods are used. One such widely used method is the Levenberg-Marquardt method. 

The Levenberg-Marquardt method is a common method for solving non-linear 

optimization problems. It is a combination of gradient descent method and Gauss Newton 

algorithm. The gradient descent part dominates when the solution is far and Gauss 

Newton approach dominates when the solution is close. An advantage of this method 

over other methods such as genetic algorithm and neural network, is that it does not 
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require test cases to run. This can prove helpful in clinical settings where test cases will 

be required for each and every case, while for LM method there will not be such 

requirement. 

1.6. Superconductivity 

Superconductivity is a phenomenon where the electrical conductivity of a material 

becomes zero below certain characteristic temperature known as critical temperature. 

Critical temperatures are generally below 100 K and therefore it is important to ensure 

proper insulation for the superconducting material (cables, wires). Without proper 

insulation, large temperature gradients develop which can lead to the heating of the 

system, which in turn can lead to temperature rise of superconducting material above its 

critical temperature and destroy it. Therefore heat transfer analysis is an important aspect 

for superconductivity applications. 

1.7. Overview 

        In the first part of this thesis (Chapter 2-4) heat transfer is modeled within the 

body to relate the tumor parameters, such as tumor size, depth and blood perfusion, with 

the surface temperature distribution. Chapter 2 starts with a description of diagnostic 

modalities for breast cancer, mammography and infrared thermography. It is followed by 

the computational model for breast cancer. This model is used in chapter 3 to analyze the 

effect of various geometrical and thermophysical properties on steady state temperature 

profile. This is followed by the analysis of the effect of application of cooling load on 

temperature distribution. With this background, Chapter 4 estimate tumor parameters, 

size, location and blood perfusion rate, based on the surface temperature distribution in 
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steady and transient state, which is easily available, thus providing a non-invasive method 

of tumor diagnosis and characterization.  

        Heat transfer within the body is very sensitive to blood flow (perfusion). Therefore it 

becomes important to study it in detail. The next part of this thesis deals with 

measurement of blood perfusion within the body tissue using computer tomography (CT) 

perfusion (Chapter 5-6). Different methods used in literature for CT perfusion are 

discussed here. CT perfusion in itself is a diagnostic tool for liver cancer. In liver the ratio 

of the portal vein and hepatic artery, two blood vessels supplying blood to the liver, is 

used to ascertain the possibility of a tumorous region. As an extension to the analysis of 

CT perfusion, an optimized protocol of CT perfusion is developed to reduce the radiation 

dose. A critique of a widely used method for CT perfusion is also included in that section.  

       Towards the end of this work, an application of heat transfer in the extreme 

environment of cryogenic temperatures, superconducting materials, is examined (Chapter 

7). Superconducting materials are capable of shielding magnetic fields. In this section the 

shielding efficacy of superconducting materials, under different circumstances, is tested.   

The use of superconducting materials is only possible when very low temperatures 

(below 100 K) can be obtained and maintained. There are commercially available 

cryogenic vessels, dewars, which are vacuum insulated and used for storing cryogenic 

liquids. Special materials are designed to sustain the fatigue of large temperature changes.  
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Chapter 2 

Breast Cancer: Diagnosis and Characterization 

 

2.1  INTRODUCTION 

Human breast comprises multiple tissue layers but the most common regions for 

the breast cancer are the mammary glands (ductal tissue), although it also sometimes 

occur in the stromal tissue. Ductal carcinoma, invasive and in situ, is the most common 

form of breast cancer. Tumors have abberant growth with higher metabolic activity and 

angiogenesis/neovascularization. Depending on biology, stage and growth it can be 

present with unusual and extensive necrotic regions. 

         Staging of the breast cancer is based on the size of the tumor, its presence in the 

lymph nodes, the extent of its spread in the breast and the rest of the body. Based on the 

stage and type of breast cancer the treatment path can be decided. Some of the treatments 

are lumpectomy, mastectomy, lymph node dissection, chemotherapy, radiation therapy, 

hormonal therapy, targeted therapies and complimentary medicine. With extensive 

treatment plans available it becomes important to detect and characterize tumors to give 

the best possible treatment at the right time. Further, tumors are geographicaly, 

etiologically and pathologically hetrogenous and therefore it becomes much more 

important to study it on a case by case basis before deciding on a treatment.  

                         Various test methods, such as X-ray mammography, biopsy, ultrasound, 

magnetic resonance imaging (MRI) and infrared (IR) thermography have been used in the 

past to detect breast cancer. Although X-ray mammography, ultrasound and MRI are 
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non-invasive and can accurately measure the location and size of the tumor, they provide 

insufficient information to determine whether a tumor is benign or malignant. In order to 

ascertain the diagnosis, a patient has to endure multiple screenings, which can take 

precious time and lead to further progression of the disease.  

Mammography 

                Among all modalities, X-ray mammography is considered to be the gold 

standard for breast cancer detection. Since the early 1960s, it has been the most widely 

used tool for breast cancer detection, but it has some significant limitations including 

radiation exposure, cost, patient discomfort, and more important, a high false positive rate 

( Sobti et al. 2005 ). Table 2.1 shows that the sensitivity (true positive rate) for this 

modality reduces with decreasing age, it is as high as 81 % for women older than 64 

years and it drops to 54 % for women younger than 40 years. Further the results are 

inaccurate for “dense glandular tissue (Osako et al. 2007, Jackson et al. 1993, Kennedy et 

al. 2009), implants, fibrocystic breasts or for those on hormone replacement therapy”  ( 

Harvey et al. 1997, Fletcher et al. 2003, Hoekstra 2001, Kennedy et al. 2009 ).  

It has also been reported that harmful effects of radiation exposure associated with 

mammography outweighs the benefits for women below a certain age (Berrington de 

Gonzalez 2005, Law 2007). Finally, due to pressure applied during mammography there 

are high chances of tumor rupture which may lead to the mixing of the malignant cells 

with the blood.  
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Table 2.1:  Sensitivity (true positive rate) of mammography (Rosenberg 1998, Bronzino 

2006) 

 Sensitivity 

Less than 40 years 54 % 

40-49 years 77 % 

50-64 years 78 % 

More than 64 years 81 % 

  

Women with dense breast 68 % 

Women on estrogen replacement therapy 74 % 

   

 As an alternative, it is also possible to detect cancerous lesions using 

thermal imaging (IR thermography), a technique which is non-invasive and more 

comfortable for patient. Thermography is based on the fact that malignant tumors 

generate excess heat because of increased metabolic heat generation and they also require 

an increased supply of blood to support growth of cancerous cells. The increased heat 

generation underneath the skin surface causes increased surface temperatures and 

characteristic thermal signatures, which can be visualized by IR thermography (Kennedy 

et al 2009, Lawson 1956). The technical details on IR thermography are covered in 

chapter 1 (Introduction). In 1957 Lawson was the first to use thermography for diagnosis 

of breast cancer (Lawson 1957, 1958, Lawson and Chughtai 1963, Cross ref. E. Y. -K. 

Ng 2009). During the past few decades, IR thermography has been increasingly used for 

breast cancer detection and has been proven to be a promising adjunct diagnostic tool (Ng 

2009, Kennedy et al 2009). It is non-invasive in nature and equipments are relatively less 
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expensive than some other diagnostic modalities, such as MRI. A comparative study of 

mammography and infrared imaging was done by Head et al. 1999 and is shown in Table 

2.2. 

   Table 2.2:  Comparison between mammography and infrared imaging (Head et al. 

1999) 

 Mammography Infrared imaging 

Sensitivity 86 % 86 % 

Specificity 79 % 89 % 

Positive predictive value 28 % 23 % 

Negative predictive value 92 % 99.4 % 

 

Thermography as an adjunct technique 

 Infrared thermography has been approved by FDA in 1982 as an adjunctive 

technique (Arora et al. 2008). In 1998 Keyserlingk et al. conducted a study to analyze the 

effectiveness of thermography as an adjunct technique. For ductal carcinoma detection, 

the sensitivity for clinical examination, mammography and infrared imaging was 61 %, 

66 % and 83 % respectively. When infrared imaging was added with suspicious and 

equivocal mammograms the sensitivity increased from 85 % to 95 %. This further 

increased to 98 % with an addition of clinical examination. They observed that 

thermography and mammography were unable to detect tumors of less than 12.8 mm and 

16.6 mm diameter respectively. When infrared imaging (thermography) was used with 
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clinical examination and mammography they together were able to identify 95 % of the 

cases (Jiang et al. 2005). Ng 2009 in his review of thermography for detection of breast 

cancer concluded that in last 15 years the thermographic tests on breast cancer have 

achieved specificity and sensitivity of 90 % on an average provided the tests are done by 

trained people and the tests are conducted according to the “strict standardized 

thermogram interpretation protocols”.  

Thermography: prognostic significance 

                    Thermography also has prognostic significance. “Thermography has the 

ability to detect breast cancer 10 years prior to mammography” (Dixon 1999). The 

prognostic significance is highlighted by a study performed by Handley in 1962 in which 

they discovered that patients with a 1-2ᵒ C rise had reduced chances of recurrent cancer 

than the patients with 3ᵒ C rise. (Keyserlingk et al. 2000). A longitudinal study conducted 

by Gautherie and Gros (1980) reported that thermography was able to detect cancer at an 

earlier stage, compared to other modalities, such as mammography (the gold standard), 

ultrasonography and biopsy. This study was conducted over 12 years on a group of 1245 

women with an abnormal thermogram. Their condition was initially diagnosed as normal 

or benign, based on conventional diagnostic modalities, including mammography, 

ultrasonography and biopsy. One-third of the women in this study developed breast 

cancer within next five years. These results suggest that thermography was better able to 

detect breast cancer at a very early stage of the disease, when conventional methods 

failed. Therefore, these researchers concluded that thermography, used in conjunction 

with other diagnostic modalities, can improve the early detection of breast cancer. (Isard 

1984, Bronzino 2006). Combined with other imaging modalities, details about size and 
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location of the tumor can be obtained in addition to the heat generation rates that IR 

thermography can address.  

                    “Recent advances in cancer research have determined that the biological 

activity of a neoplasm is far more significant an indicator of aggressiveness than the size 

of the tumor” (Bronzino 2006). The amount of heat generated is directly related to the 

degree of metabolic activity which is measurable in the form of surface temperature 

distribution. 

Dynamic thermography 

            “Nagasawa and Okada (1973) reported that in order to better differentiate breast 

cancer from benign breast disease, thermography should be done during thermal 

recovery,” Ohashi and Uchida 2000 used dynamic thermography to diagnose breast 

cancer. They reported considerable improvement in diagnostic accuracy (82% as 

compared to 54% in steady state thermography) but there was no improvement in the 

false positive rate they attributed this to the image processing system. 

 Quantitative Thermography 

                  As of now thermography practice is subjective and the diagnosis is based on 

asymmetry, hyperthermic patterns and “complex vascular features” (Kennedy et al. 

2009).  There is a need to quantify the whole process. Theoretically it is possible to 

determine the size and location of the tumor based on the surface temperature distribution 

and the current work examines these aspects of thermography. Further the impact of the 

thermophysical properties on the surface temperature distribution has been analyzed and 

it is possible to get a fair estimate of the thermophysical properties based on the surface 
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temperature distribution. It is important to note that all this information can be retrieved 

based on non-invasive technique thermography.  

In the past (Jiang et al. 2005, Ng and Fok 2003, Ng et al. 2001, Ng and Kee 2008) 

many computer aided tools have been used to assist doctors to make diagnostic decisions. 

These include artificial neural network (ANN), bayesian belief networks, linear 

discriminate analysis, fuzzy logic and fusion of fuzzy logic and ANN. Bayers rule 

analysis was used by (Ng et al. 2001). It had a low total accuracy of 59 % but as high as 

74% of the patients had a true positive test (positive predictive value of 74 %). In 2008 

Ng and Kee analyzed thermograms using ANN and bio-statistical methods. The method 

developed by them was able to achieve 80.95 % accuracy rate, 100% sensitivity and 70.6 

% specificity. 

            Gautherie (1980) also observed that the metabolic heat generation rate is higher 

for tumors with a faster growth rate, and established a relationship between metabolic 

heat generation and cancer growth rate. Further, he observed that tumors with a higher 

growth rate had a high probability of dissemination. Thus, estimation of the metabolic 

activity of the tumor from surface temperature measurements can provide a measure of 

the malignancy of the tumor. This can prove to be an added advantage of IR 

thermography over other diagnostic modalities. It should be noted that high 

vascularization necessary to support accelerated malignant cell growth can be quantified 

in terms of the local blood perfusion rate. Therefore both increased metabolic activity 

(heat generation) and increased blood perfusion can serve as markers of malignancy. 

Prior studies on melanoma (clinical and computational modeling: Pirtini Çetingül and 

Herman, 2010) and breast cancer (computational modeling: Chanmugam et al, 2012) 

http://proceedings.asmedigitalcollection.asme.org/searchresults.aspx?q=Arjun%20Chanmugam&p=1&s=19&c=0&t=


25 
 

suggest that the influence of blood perfusion on the thermal signature of the cancerous 

lesion is more pronounced than metabolic heat generation rate.  

Therefore, it can be said that till date, thermography has been a largely qualitative 

technique, and diagnosis was based on qualitative criteria such as asymmetry, 

hyperthermic patterns and abnormal vascular patterns (Kennedy et al 2009). Usually, the 

quantitative information extracted was the temperature increase at a location selected by 

the person interpreting the image, compared to the temperature of a nearby region 

unaffected by the lesion or the corresponding contralateral location. A need exists to add 

additional quantitative components to the interpretation of thermal images, so that vital 

information about the tumor, such as size, location, metabolic activity and, most 

importantly, stage can be extracted from the thermograms. The problem of extracting the 

model parameters (location, size, perfusion) from the observable surface temperature data 

is known as the ‘inverse problem’ and will be dealt with in chapter 3. In the next section 

The mathematical model used to model heat transfer within the breast tissue is described 

in the next section. 

2.2  MATHEMATICAL MODEL 

        The schematic of the investigated geometry is displayed in Figure 2.1. The breast 

shape can vary, and in this study it is modeled as a hemisphere. In clinical applications 

the actual shape can be measured by a 3D imager, such as the Kinect, motion sensing 

input devices. We consider a single tumor, which is spherical in shape and is located at 

the axis of the hemisphere. Other shapes, such as elliptical, can also be used, which 

would introduce additional unknowns to be determined in the inverse reconstruction. By 

selecting the axially symmetrical two-dimensional (2D) problem in this analysis, the 
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computational effort is kept reasonable in the initial testing stage of the reconstruction 

algorithm. Also, the interpretation of the results is more intuitive and algorithm progress 

is easier to track for the two dimensional case. Our previous study shows that the thermal 

signature of the tumor on the skin surface will be very similar for off axis locations 

(Chanmugam et al, 2012). The approach can easily be generalized to a three-dimensional 

(3D) problem, such as those discussed by Chanmugam et al. (2012), at a later stage and 

this would require improvements in the meshing of the direct problem. Further, it is 

assumed in the model that the thermophysical properties of the tissue and tumor are 

known.  

The overall goal of the inverse reconstruction is to non-invasively measure key 

tumor parameters, the depth and size of the tumor. Since the blood perfusion rate can be 

related to malignancy, we add blood perfusion as the third parameter in our analysis. The 

inverse problem is solved for two cases, the first deals with steady state analysis, while 

the second case deals with a transient situation. For steady state, we reconstruct two 

unknown tumor parameters, the depth of the tumor measured from the skin surface ( ) 

and the radius of the tumor ( ) (Figure 2.1). In transient analysis we reconstruct a third 

unknown, the blood perfusion rate     .  

Human breast tissue in this analysis comprised six layers: epidermis, papillary 

dermis, reticular dermis, fat, gland and muscle as well as the tumor, the seventh region, as 

indicated in Figure 2.1. The Pennes bioheat equation (Pennes (1948)) was used to model 

heat transfer in the layers of the breast and in the tumor as 

     
   

  
    

                                                                  

http://proceedings.asmedigitalcollection.asme.org/searchresults.aspx?q=Arjun%20Chanmugam&p=1&s=19&c=0&t=
http://proceedings.asmedigitalcollection.asme.org/searchresults.aspx?q=Arjun%20Chanmugam&p=1&s=19&c=0&t=


27 
 

In Equation (2.1)    [kg/m
3
],    [J/kg.K],   [K] and      [m

3
/s/m

3
] represent the density 

and specific heat of blood, the arterial blood temperature and the blood perfusion rate of 

the tissue layer  ,  respectively.     [kg/m
3
],    [J/kg.K],   [K],   [W/m.K] and 

  [W/m
3
], are the corresponding tissue properties: density, specific heat, temperature, 

thermal conductivity and metabolic heat generation. The thermophysical properties for 

the seven tissue types are summarized in Table 2.3 along with their thicknesses (thn), 

based on data reported by Pirtini Çetingül and Herman (2010), Ng and Sudharsan (2001), 

Amri et al. (2011) and Jiang et al. (2011).  Density (  ) and specific heat (  ) for blood 

were 1060 kg/m
3
 and 3770 J/(kg.K), respectively (Pirtini Çetingül and Herman (2010)). 

The radius of the hemi-spherical breast V was taken to be 72 mm (Ng and Sudharsan 

(2001)) (figure 2.1). Blood perfusion rate and metabolic heat generation rate were tumor 

specific and also depend on the stage of the tumor. One of the plausible set of values is 

given in Table 2.3.  

 

Figure 2.1: Schematic of the biophysical situation: breast cross section, tumor, tissue 

layers and the thermal boundary conditions.  
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Table 2.3: Thermophysical properties of the tissue layers in Equation (2.1) 

 

a
 Pirtini Çetingül and Her man (2011) 

b
 Ng and Sudharsan (2001) 

c
 Amri et al (2011) 

d
 Jiang et al (2011)  

The system of seven coupled partial differential equations described by Equation 

(2.1) is solved for the following set of thermal boundary conditions. 

  
Thickness 

 

Thermal 

conductivity 
Density 

Heat 

capacity 

Blood 

perfusion 

rate 

Metabolic 

heat 

generation 

  Th       ωb   

  Mm W/(m.K) kg/m
3
 J/(kg.K) 10

-4
 m

3
/s/m

3
 W/m

3
 

1 Epidermis 
a
 0.1 0.235 1200 3589 0 0 

2 Papillary 

dermis
a
 

0.7 0.445 1200 3300 2 368.1 

       

3 Reticular 

dermis
a
 

0.8 0.445 1200 3300 13 368.1 

       

4 Fat 5
b
 0.21 

b
 930 

c
 2674 

a
 1.8 

b,d 
400 

b
 

5 Gland 43.4
b
 0.48 

b,c
 1050 

c
 3770 

c
 5.4 

b,d
 700 

b
 

6 Muscle 15
b
 0.48 

b
 1100 

c
 3800 

a
 8.1 

b,d
 700 

b
 

7 Tumor --- 0.48 
b,c

 1050 
c
 3770 

c
 108 

b,d
 5000 

b
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Heat flux continuity and the temperature continuity at the interfaces of two tissue 

layers:  

  

   

  
     

      

  
                                                                                                    

                                                                                                                                     

  

   

  
     

      

  
                                                                                                                    

                                                                                                                                                 

where   is the direction perpendicular to the interface between the layers,     and      is 

the thermal conductivity and temperature of the tissue layer adjacent to the tumor. The 

inner portion of the muscle layer, the region of the breast which touches the chest wall, is 

assumed to be at the core body temperature  

                                                                                                                         

The skin surface is exposed to ambient air during the exam, which leads to loss of 

heat to the atmosphere, described by the convective boundary condition as  

   

   

  
  (       )                                                                                                               

where   = 10 Wm
-2

K
-1

,    = 0.235 Wm
-1

K
-1

,    = 21    

where   is the convective heat transfer coefficient    is the thermal conductivity of the 

epidermis, the outermost tissue layer, T1,s is the temperature of the epidermis at the skin 

surface in contact with air and   is the direction perpendicular to the skin surface. 
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         Dynamic IR imaging involves cooling of the skin surface and analysis of the 

transient thermal response to the excitation. Initially the skin surface is at steady state 

under ambient conditions. It is cooled by maintaining the surface at 14   for time   . 

This is modeled by using constant temperature boundary condition.  

                                                                                                                                 

         The cooling in our analysis is applied for the duration of     60 s (Cheng and 

Herman (2014)). It should be noted that here computational phantom is being used. 

Subsequently the surface is again exposed to the ambient conditions in the exam room 

and hence the convective boundary condition (equation (2.7)) is applied on the surface. 

This reheating process following the exposure to cooling is called the thermal recovery.  

Surface temperature data in this study are computed or recorded for 1000 s during the 

thermal recovery process.  

The system of seven partial differential equations (2.1) is solved, subject to 

boundary conditions (2 - 8) using the commercial software COMSOL Multiphysics v 4.3 

(2013). A MATLAB code was developed for solving the inverse problem. While solving 

the inverse problem in MATLAB, COMSOL was accessed to compute temperature 

distributions for a given set of input parameters updated by the inverse reconstruction 

algorithm. For the purpose of communication and control of COMSOL by means of 

MATLAB, the LiveLink for MATLAB was used. The PC computer system used to run 

the present model was equipped with an Intel core i-7 processor, with 3.4 GHz frequency 

and 32 GB RAM. A typical mesh generated for the computational domain contains 8,000 

elements (figure 2.2(a)). It takes about 6 seconds to solve the set of equations for steady 

state analysis and about 16 seconds for the transient analysis. Mesh sensitivity analysis 
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was carried out to ensure that the change in temperature, due to further refinement of the 

mesh, was less than 0.1 %. The choice of the time step was governed by two factors, 

computational speed and accuracy. A smaller time step increases the accuracy but it also 

leads to increase in computational time. For the present case a time step of 2 seconds was 

taken as the temperature change was less than 0.1% after decreasing the time step. The 

steady state temperature distribution in the cancerous breast for the conditions described 

by equations (2.1-2.8), obtained using COMSOL, is shown in figure 2.2 (b). 

This section is divided into two parts. In the first part (Chapter 3) cancerous breast 

model is analyzed, the effect of various parameters on the surface temperature is studied. 

Second part (Chapter 4) focuses on solving the inverse problem of detecting tumor 

parameters based on surface temperature distribution.  
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Figure 2.2: (a) Computational mesh, (b) computed temperature distribution in the cancerous 

breast and (c) coordinate system and surface data points used for the inverse reconstruction 
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Chapter 3 

Thermal Analysis of Cancerous Breast Model 

The complete authorship of this work should be read as Dr. Arjun Chanmugam, Rajeev 

Hatwar and Prof. Cila Herman. The development of computational model and the 

analysis was performed by Rajeev Hatwar under the guidance of Prof. Cila Herman and 

Dr. Arjun Chanmugam. This work was published in International Mechanical 

Engineering Congress Exposition 2012 (Chanmugam, Hatwar and Herman 2012). 

3.1  INTRODUCTION 

               Thermography (Infrared imaging) has been around since the late 1950s, but the 

mechanisms of heat transfer between diseased and native tissue and the differences 

between the two have yet to be well described. Previous studies indicate that tumors 

generate more heat than healthy tissue and this temperature difference can be identified 

by using steady state thermal imaging (Lawson 1956, Kennedy et al. 2009 ). Despite the 

technological advances made with infrared imaging, thermographic imaging largely 

remains qualitative in nature (Kennedy et al. 2009) which limits its utility. 

              Researchers have used computational modeling to relate the skin surface 

temperature distribution to tumor size and location for breast cancer (Osman and Afify 

1984, 1988 , Sudharsan et.al.1999, Sudharsan and Ng 2000, Ng and Sudharsan 2001, 

Jiang et al. 2011). Osman and Afify (1984, 1988) were one of the first using a 

hemispherical model with different tissue layers of uniform thickeness. Later Sudharsan 

and Ng (2000, 2001) used models which adequately depicted the breast anatomy. Jiang et 

al (2011) have incorporated elastic deformation in their modeling. 
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               Mital and Pidaparti 2008 and Mitra and Balaji 2010 used evolutionary 

alogrithms and neural networks respectively to predict tumor size and location using 

breast thermograms. In their analysis the metabolic heat generation rate was varied with 

tumor diameter, whereas the blood perfurion rate of the tumor was kept constant. 

               In this study, we present a quantitative analysis to provide a more accurate 

description of the thermal characteristics of breast cancer lesions including the 

dependance of the temperature distribution on size, shape, and depth of the lesion. 

Specifically we used a parametric analysis of the breast to obtain a set of features that can 

be used to predict the location and size of the breast cancer lesion from surface 

temperature measurements, which is essential in diagnostic applications. In order to 

improve thermal image acquistion procedure and ensure reproducibility and accuracy of 

the imaging procedure, a cooling load was applied in the analysis to enhance the thermal 

visibility and allow meaningful measurements of the physical and thermophysical 

characterisitics of the lesion. This work should allow clinicians a more accurate, 

noninvasive and cost effective tool in the early diagnosis of one of the most common and 

dangerous cancers.      

3.2  NUMERICAL MODELING 

         The dimensions of these layers are given in Table 3.1. In order to investigate early 

stage cancer, the tumor diameter has been kept under 20 mm (Hammer et al. 2008). The 

blood perfusion rate (ωb) for fat, gland, muscle and tumor is taken as 0.0006 sec
-1 

, 0.0009 

sec
-1

 and 0.012 sec
-1

 respectively. These values are close to the values used by Ng and 

Sudharsan (2001).  
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  The commercial software COMSOL Multiphysics v 4.2 (2011) was used to solve these 

equations, which uses FEM to solve the underlying equations. The mesh generated in 

COMSOL is displayed in figure 3.1 (b). The mesh is finer for thin layers (epidermis, 

papillary dermis and reticular dermis) compared to other layers. In order to ensure the 

mesh independence we tracked the temperature of a point on the axis located on the 

surface and the average surface temperature. The grid points were varied from 5000 to 

29000 and the temperature difference was less than 0.1 %. To ensure that the transient 

analysis is independent of the time step, the surface temperature at the axis was tracked. 

The variation in temperature was less than 0.1% when the time step was varied from 0.1 

seconds to 2 seconds. Hence a mesh with 7800 grid points and a time step of 1 s (the time 

step was 0.1 s for the initial 10 s) were used.  
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Figure 3.1: (a) Schematic of the breast used in the computational model. The various tissue 

layers are epidermis, papillary dermis, reticular dermis, fat, gland and muscle layers. It is 2D 

axisymmetric model and has a spherical tumor centered at the axis. (b) The domain is divided 

into numerous smaller regions comprising of elements. The computational mesh hence 

generated is shown here. 
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a
 Cetingul and Herman 2010 

b
 Sudharsan and Ng 2000 

c
 Ng and Sudharsan 2001 

d
 Amri et al. 2011 

e
 Jiang et al. 2011 

3.3  Results and discussion 

        In this section computational simulation results are presented and discussed. The 

analysis is divided into two parts, steady state and transient. In steady state analysis the 

Table 3.1: Thermophysical properties 

 

Epidermis 
a
 

Papillary 

Dermis 
a
 

Reticular 

Dermis 
a
 

h   (mm) 0.1 0.7 0.8 

k  (W/m.K) 0.235 0.445 0.445 

ρ   (kg/m
3
) 1200 1200 1200 

c  (J/kgK) 3589 3300 3300 

Q (W/m
3
) 0 368.1 368.1 

ωb    (m
3
/s/m

3
) 0 0.0002 0.0013 

    

 
Fat Gland Muscle Tumor 

h   (mm) 5.0
b
 43.4

b
 15 

b
 -- 

k  (W/mK) 0.21 
c
 0.48 

c
 0.48 

c
 0.48 

c
 

ρ   (kg/m
3
) 930 

d
 1050 

d
 1100 d 1050 

d
 

c  (J/kgK) 2770
[d]

 3770 
[d]

 3800 
a
 3852 

a
 

Q (W/m
3
) 400 

c
 700 

c
 700 

c
 5000 

e
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effect of tumor size and location on the surface temperature is studied. Based on this 

analysis two key features were identified, which can be used to predict the tumor 

characteristics. In addition, a parametric study is carried out to investigate the effect of 

blood perfusion rate and metabolic heat generation rate of the tumor on the surface 

temperature. The second part of this section focuses on the transient analysis and the 

propagation of the cooling effect into the tissue. The effect of cooling time and cooling 

temperature on the thermal contrast on the skin surface, obtained during recovery phase, 

is analyzed. 

 

3.3.1 Steady State Analysis 

      Figure 3.2 (a) shows the isotherms for the half cross section in a model of a normal 

breast during steady state. The temperature decreases through the tissue towards the skin 

surface. The isotherms for cancerous breast are shown in figure 3.2 (b). Near the tumor 

the isotherms become distorted and indicate that the tumor has higher temperature when 

(a) (b) 

Figure 3.2: (a) Isotherms for normal breast (b) isotherms for cancerous breast 
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compared to the normal tissue.  This increase in temperature is also visible on the skin 

surface.  

Effect of tumor size and depth  

 The surface temperature, T, along the circumference of the breast is displayed 

in figure 3.3(a). The surface temperature profiles for different sizes (r, tumor radius) and 

locations of the tumor (d, depth beneath the skin surface) are plotted along with the 

temperature profile for a normal case. The results suggest there is temperature increase in 

the range from 0.1°C to 0.8°C, and these increases can be accurately measured by 

modern infrared cameras, which have temperature and spatial resolution of 10 mK and 

0.05 mm respectively. The difference in temperature, ΔT, between the cancerous and 

normal (without lesion) case (bottom blue line in figure 3.3(a)) is plotted in figure 3.3 (b) 

to analyze the effect of tumor. As expected, for an axisymmetric tumor, the maximum 

temperature rise, ΔTmax, is detected at the axis. For a fixed tumor radius of 5 mm, the 

maximum temperature difference increased from 0.08 °C to 0.58 °C as the depth of 

tumor is decreased from 20 mm to 10 mm. Similarly, for a fixed depth of 15 mm, the 

maximum temperature difference increased from 0.03 °C to 0.50 °C as the radius of the 

tumor is increased from 2.5 mm to 7.5 mm. All other properties remained the same.  

           The dependence of the maximum temperature difference on tumor size and depth 

is shown in figure 3.4 (a). The result agrees with the observation made by Amri et al. 

2011 that the presence of tumor is always accompanied with an increase in surface 

temperature. The temperature rise might be very small but it is always present even for 

very a small tumor. It is clear from the figure 3.4 (a) that as the tumor size increases for 
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fixed depth and as the depth of the tumor decreases for fixed diameter, the maximum 

temperature difference increases.  

         According to a similar analysis done by Amri et al. 2011 and Jiang et al. 2011, they 

obtained negligible variation in maximum temperature difference with varying tumor 

size. In their analysis they used equation 

Q = C/(468.6 ln 200 r + 50)                                                                                         (3.1) 

to calculate metabolic heat generation from the diameter of the tumor. According to this 

expression, the metabolic heat generation rate decreases with increasing size. Due to this 

decrease, the effect of increasing size of tumor is countered by the decreasing metabolic 

heat generation rate, and therefore there is no significant change in maximum surface 

temperature as the size of the tumor varies. Therefore, the mismatch between the results 

obtained here and that given in literature is due to the variation in metabolic heat 

generation rate. In order to do a comprehensive analysis we assume that the metabolic 

heat generation rate is independent of the tumor diameter. We treat it as an independent 

parameter, which is more consistent with clinical observations both large and small 

tumors can be aggressive and have large metabolic heat generation rates, and vice versa.   

            While figure 3.4 (a) is helpful to understand the behavior of maximum 

temperature rise as the depth and size of the tumor are varied, this result alone cannot be 

used to estimate the location and size of the tumor. The analysis suggests that the same 

maximum temperature rise can be observed for different combinations of tumor depth 

and size. 
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             The results in figure 3.3 (b) indicate that the slope of the temperature difference 

curve increases (it becomes steeper) with decreasing tumor depth. Here ‘half temperature 

difference length’ (LT), is used as a measure of this slope. It is defined as the distance 

from the axis along the circumference at which the temperature difference drops to half 

its maximum value. As the slope of the temperature profile increases, the corresponding 

LT decreases. Figure 3.4 (b) shows the variation of the half temperature difference with 

size and depth of the tumor, and the results indicate that LT decreases with decreasing 

depth and radius. When LT is used along with maximum temperature difference, the 

location and size of the tumor can be estimated. Even though there are different 

combinations of radius and depth which gives same ΔTmax (figure 3.4 (a)), those 

particular set of combinations will not give the same LT (figure 3.4 (b)) as can be clearly 
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Figure 3.3: (a) Surface temperature along the circumference of the breast, starting from 

the axis, for tumors radius r and tumor depth d as parameters.(b) The rise in surface 

temperature due to the presence of tumor, ΔT, has been plotted here. It increases with 

increasing tumor radius for a fixed tumor depth of 15 mm and with decreasing tumor 

depth for a fixed tumor radius of 5 mm. 
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seen from figure 3.4. The size and depth of the tumor are the only variables in this 

analysis, and metabolic heat generation and blood perfusion rate were kept constant.       

 

Off-axis tumors 

In the foregoing analyses, we largely considered tumors that were symmetrical around 

the axis. In this section off-axis tumors are analyzed by varying the polar angle of the 

tumor. The computational model is three dimensional. The governing equations and 

boundary conditions are still given by equations 2.1-2.8. Even though the model has 

changed from 2D axisymmetric to three dimensional, the equations will remain the same 

as they are in general form and can be used for any dimensional space/coordinate system. 

Figure 3.5 shows the surface temperature distribution for tumors with polar angles of 0ᵒ, 

30ᵒ and 60ᵒ. It can be seen that the region with maximum temperature moves away from 

the center as the polar angle of the tumor increases. This can be seen more clearly in 

figure 3.6, which shows the temperature along the circumference for different positions 
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Figure 3.4: (a) Maximum temperature difference, ΔTmax,  as function of tumor size and 

depth (b) the half temperature difference length, LT, (a measure of the slope) as 

function of tumor size and depth. 
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of the tumor. The polar angle of the maximum temperature location is equal to that of the 

tumor.  

Parametric variation 

The effect of blood perfusion rate and metabolic heat generation on the surface 

temperature difference (increase in surface temperature due to the presence of tumor) has 

been analyzed in figure 3.7. With increasing blood perfusion rate and metabolic heat 

generation the temperature difference increases. When the blood perfusion rate is 

quadrupled, from 0.006 sec
-1

 to 0.024 sec
-1

,
 
the temperature difference at the axis 

increases from 0.4 °C to 0.8 °C. When the metabolic heat generation rate is quadrupled 

from 2500 W/m
3
 to 10000 W/m

3
 the temperature difference increases by 0.05 °C. It can 

be seen that blood perfusion rate has much more impact on the surface temperature 

distribution than the metabolic heat generation rate. It can also be concluded that the 

surface temperature is more sensitive to the variations of the blood perfusion rate than to 

the metabolic heat generation rate.  

 

 

 

(a) (b) 

Figure 3.5: Surface temperature distribution for tumors with polar angles: (a) 0ᵒ (b) 30ᵒ (c) 

60ᵒ.  

 

(c) 
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3.3.2 Transient State Analysis 

                    In this section the effect of the application of cooling load, also called 

thermostimulation, and the subsequent recovery phase (thermal response when the 

cooling load is removed), is analyzed. Factors affecting the magnitude of the thermal 

contrast during recovery phase are investigated.  
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Figure 3.6: Surface temperature along the circumference for off-axis tumors  

  

Figure 3.7: Variation in surface temperature distribution with varying blood perfusion 

rate and metabolic heat generation rate 
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Cooling Phase 

Figure 3.8 shows the axial temperature profile during the cooling phase. The 

constant temperature boundary condition is applied for cooling and due to this the 

temperature at the surface is at 14 °C during cooling. As time progresses the temperature 

below the surface decreases with increasing cooling time. To obtain an estimate of the 

extent of the cooling, the cooling penetration depth has been defined as the maximum 

distance from the surface for which the drop in temperature is more than 0.3 °C. Figure 

3.9 shows the variation in cooling penetration depth with time. As expected, the cooling 

depth increases with increasing cooling time. 

 

Thermal recovery phase 

Axial Temperature Profile: After the cooling load is removed, the temperature gradually 

increases and over time reaches the steady state condition. Figure 3.10 shows how the 

axial temperature changes after the cooling load is removed. It can be seen that, as time 

progresses, the temperature profile approaches the steady state condition (no cooling 

0 2 4 6 8 10

15

20

25

30

35

Depth,d [mm]

T
em

p
er

at
u

re
, 

T
d
 [

 
 C

 ]

 

 

ambient

t
cooling

=10 sec

t
cooling

=20 sec

t
cooling

=30 sec

t
cooling

=40 sec

t
cooling

=50 sec

t
cooling

=60 sec

Figure 3.8: Temperature profile along the surface during cooling 

  



45 
 

load).  The temperature of the tissue increases gradually after removing the cooling load. 

When the temperature profiles, just after removal of cooling and 50 seconds later, are 

compared, it is observed that the temperature of the region which is within 3 mm from 

the surface (towards the left of point (A)) experiences a decrease in temperature, whereas 

the deeper regions are still undergoing cooling. Similarly, when comparing temperature 

profiles at 50 seconds and 200 seconds, the region which is deeper than 6 mm is still 

undergoing cooling.  Therefore it can be concluded that there is a time lag between 

removal of cooling load and rising of the temperature in the tissue and thus the cooling 

depth keeps on increasing even after removing the cooling load.  

 

Recovery Profile: In figure 3.11 the surface temperature just above the tumor (on the 

axis) is plotted as a function of time during the thermal recovery phase for the normal and 

cancerous case. It should be noted that the plotted temperature is from the location which 

has the maximum temperature rise. The difference between the two profiles is indicated 

on the right axis. Constant temperature of 14 °C was applied during cooling, and 

therefore the recovery curve starts from 14 °C for both the cases. It can be seen that the 

difference between the two temperature profiles reaches a maximum of 0.9 °C after 10 
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minutes, and this time will be referred to as ‘peak time’(tp). The difference gradually 

stabilizes to 0.6 °C which is the steady state temperature difference. It can be seen that 

the temperature contrast increases by 0.3 °C due to the application of cooling load.  

 

 

Effect of cooling load: In this section the effect of cooling load on the thermal recovery 

profile is analyzed. Two cooling methods are considered: constant temperature cooling 

and convective cooling. When the cooling time, for constant temperature cooling, is 
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Figure 3.11: The effect of tumor on the temperature difference vs. time graph during 

recovery phase 
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recovery, Δ Tmax,recovery, increases from 0.7 °C to 0.9 °C (figure 3.12).  When the cooling 

temperature is reduced from 20 °C to 14 °C for the constant temperature cooling case the 

maximum temperature difference increases from 0.75 °C to 0.9 °C (figure 3.13). For the 

convective cooling situation the maximum temperature difference increased from 0.60 °C 

to 0.65 °C when cooling time was increased from 30 seconds to 120 seconds (figure 

3.12). When the cooling temperature is decreased from 20 °C to 14 °C for the convective 

cooling case the maximum temperature difference increases from 0.60 °C to 0.62 °C 

(figure 3.13). The increase in maximum temperature difference is more for constant 

temperature cooling as compared to convective cooling.  
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3.3.3 Key Features to predict size and location of the tumor 

As mentioned in section 3.3.1 there are two key features of the surface 

temperature profile relevant for predicting lesion properties: maximum temperature 

difference and half temperature difference length. By using these two features it is 

possible to estimate the location and size of the tumor. It should be noted that the blood 
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Figure 3.13: Effect of cooling temperature on the maximum temperature difference 
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perfusion rate and metabolic heat generation rate are known quantities in the analysis. 

Further, only axisymmetric case was considered.  

           It was also observed that for off-axis tumors the polar angle of the tumor can be 

determined using surface temperature profile. Using this observation and the above 

mentioned features, it is possible to extend this analysis for a general case of off-axis 

tumors.  

3.4  Conclusions 

          In the present work a 2D axisymmetric model of the breast was introduced and 

solved for temperature distribution under various conditions using FEM based 

commercial software COMSOL. The surface temperature distribution for various sizes 

and locations of axisymmetric tumors was analyzed. The behavior of off-axis tumors was 

analyzed next, and it was shown that the polar location of the tumor can be predicted 

using the surface temperature profile. The parametric analysis during steady state 

conditions predicts that the variation in surface temperature profile due to metabolic heat 

generation is negligible as compared to blood perfusion rate. 

           It is observed by means of transient analysis that the cooling depth increases even 

after removing the cooling load. The effect of cooling load on the recovery profile was 

analyzed and it was found that as the cooling time increases and cooling temperature 

decreases the highest temperature difference increases for both constant temperature 

cooling and convective cooling. Constant temperature cooling is far more effective than 

convective cooling.  

            Based on the steady state analysis two key features, maximum temperature 

difference and half temperature difference length were identified as data allowing to 
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estimate the location and size of the tumor from the surface temperature distribution. In 

this analysis metabolic heat generation and blood perfusion rate were assumed to be 

known quantities. Though the analysis was conducted for the axisymmetric case, it can 

be extended to off-axis tumors (section 3.3.1: ‘Off-axis tumors’) based on the observation 

that the polar angle of the tumor can be estimated using the surface temperature 

distribution. 
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Chapter 4 

Inverse method for quantitative characterization of 

breast tumors from  surface temperature data 

The complete authorship of this work should be read as Rajeev Hatwar and Cila Herman. 

This work was published in International Journal of Hyperthermia (Hatwar and Herman 

2017). 

 

4.1 INTRODUCTION 

Inverse problems are encountered in various fields of science and engineering, we 

will be dealing here with its application in bio-medicine. In the present study, tumor 

parameters are extracted from the surface temperature distribution, as the heat is 

generated within the body from the tumors and transported in all directions. In 

thermographic (Infrared) imaging a volume heat source (increased metabolic heat 

generation and blood perfusion in the malignant tumor is compared to normal heat 

generation in healthy tissue) is located within the body. We use the bioheat transfer 

equation here to model heat transfer processes inside human tissue, and compute surface 

temperature signatures which serve as input data for the inverse reconstruction algorithm. 

Then, based on the surface temperature profile, we estimated tumor parameters.   

During the past few years, several research teams (Mital and Pidaparti 2008, 

Mitra and Balaji 2010, Bezerra et al 2013, Das and Mishra, 2013 and 2014) attempted to 

solve the inverse problem for breast cancer. Mital and Pidaparti (2008) simultaneously 
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estimated size, location and metabolic heat generation, and used Artificial Neural 

Network (ANN) and Genetic Algorithm (GA) methods on a multilayer, 2D model. 

Bezerra et al (2013) estimated thermal conductivity and blood perfusion rate using the 

Sequential Quadratic Programming method. They used a 3D surrogate geometry based on 

external breast prosthesis. Both these researchers (Mitra and Balaji (2010) and Bezerra et 

al (2013)) used a correlation for their analysis that related the diameter of the tumor with 

the metabolic heat generation rate. According to this correlation, larger tumors have 

lower metabolic heat generation rate. However, Gautherie (1980) observed that the 

metabolic heat generation rate was cancer-specific and case-specific and it was constant 

during tumor evolution. Based on his work, it can be concluded that the metabolic heat 

generation rate might not always be entirely dependent on the size of the tumor. 

Therefore, there is a need to relax this assumption inherent in the correlation used by 

Mitra and Balaji (2010) and Bezerra et al (2013). 

Mitra and Balaji (2010) used the artificial neural network (ANN) method on a 

single tissue, 3D hemispherical model to simultaneously estimate size, location and 

metabolic heat generation of the lesion. It should be noted that they have used steady 

state data for their analysis. It will be shown in the present work that it is difficult to 

simultaneously estimate three tumor parameters (dimensions, location, metabolic heat 

generation rate or blood perfusion rate) with accuracy and uniquely, based on the steady 

state data alone. We will show that, for some situations, two different tumors can exhibit 

similar surface temperature signatures, and an inverse method based on steady state data 

alone can converge into incorrect solutions. The presence of noise and uncertainty 

coming from the clinical environment and during the acquisition of the surface 
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temperature can further add to the challenge. Therefore, inclusion of additional 

information in the form of transient response makes it possible to estimate the third 

parameter uniquely. The transient response is obtained after an application of cooling 

load to the surface and then recording the recovery profile. Das and Mishra (2013, 2014) 

estimated the size and location of tumor in a 2D rectangular domain, using the genetic 

algorithm and curve fitting method. They considered breast as a uniform tissue instead of 

a multilayer structure. In 2015, Das and Mishra extended their analysis to 3D 

hemispherical domain and used curve fitting method. All these researchers have based 

their analysis on steady state temperature data. 

 Based on the literature survey conducted, a need for an inverse reconstruction 

method exists that will allow us to simultaneously and uniquely estimate size, location 

and blood perfusion rate, a measure for the metabolic activity, of the tumor based on the 

surface temperature signature. In the present work we used, the Levenberg-Marquardt 

(LM) method (Ozisik and Orlande (2000)) to uniquely and simultaneously estimate the 

above mentioned parameters.  We found that for this inverse analysis the steady state 

surface temperature was not sufficient to yield a unique solution, therefore, we added the 

transient data set to our inverse reconstruction algorithm. Transient data were generated 

by applying a cooling load and then recording the temperature as the tissue recovered 

(Pirtini Çetingül and Herman (2011), Cheng and Herman (2014)). It should be noted here 

that transient analysis has been used before (Deng and Liu 2000, Liu et al 2002) for 

inverse analysis, however it was limited to the estimation of the blood perfusion rate 

only. Kleinman and Roemer (1983) also used the transient analysis on a one-dimensional 

model to estimate the temperature distribution and blood perfusion rate beneath the 
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surface based on surface temperature data. Further, transient analysis was also used by 

Bhowmik and Repaka (2016) to estimate the geometric and thermophysical properties for 

melanoma. Although similar to our work there are major dissimilarities, among other 

things we have given an explanation for the need of transient analysis, have used initial 

guesses far away from the exact parameters, used a different optimization algorithm and 

have reduced computational time. Blood perfusion rate is a potential indicator of the 

increased cell activity in the tissue, which can be potentially related to the stage of the 

tumor (Gautherie (1980)). There are many variables involved in the accurate staging of 

the tumor and blood perfusion rate at best can be used an adjunct technique. Thus the 

transient version of the inverse method has a potential to aid in the staging of the tumor 

by estimating blood perfusion from the surface temperature signature.  

           The novelty in the present model is the combination of a more complex geometry, 

(which includes all the tissue layers with their thermophysical properties), incorporation 

of transient data and estimation of blood perfusion along with depth and size of tumor. 

One of the major advantages of the present inverse method over previously reported 

methods is that it uses transient data in addition to steady state data for the estimation of 

parameters, which resolves some issues encountered with the uniqueness of 

reconstruction based on steady state data alone. This additional set of input data improves 

the accuracy of the solution and can reduce the effect of noise in the input data therefore 

improving the robustness of the solution. The need for the transient analysis will be 

further justified in sections 4.3.2 and 4.3.3. Unlike some of the inverse methods used 

earlier (Mital and Pidaparti 2008, Mitra and Balaji 2010), this method is not statistical, 

therefore, it is more simple and intuitive. The progression of the solution can be 
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monitored, which is useful while accessing the performance and progress of the 

algorithm. Furthermore, our inverse method does not require test cases to train the 

algorithm like the statistical methods, which can prove to be an important advantage 

while applying this technique in clinical setting. The goal of our study was to develop 

inverse reconstruction software to support our portable infrared imaging system, 

therefore special attention was devoted to keeping the computational effort reasonable. 

The objective is to run the image, acquisition, processing and inverse reconstruction 

algorithms on a portable PC or laptop.   

4.2 METHODOLOGY 

The inverse reconstruction of tumor parameters based on surface temperature data 

involves several steps. In this study we use a computational phantom of the breast with 

the tumor to generate the surface temperature data for the testing of the reconstruction 

algorithm. In a clinical implementation these surface temperature data would be acquired 

by infrared imaging. The advantage of using a computational phantom to test the inverse 

reconstruction method is that the exact parameters of the tumor are known and this allows 

easy testing of the inverse reconstruction accuracy. The computational phantom also 

allows the flexibility to vary tumor properties in parametric studies. Once the inverse 

reconstruction method is extensively tested and validated, measurement data are used. 

We describe the mathematical model used to generate the computational phantom, as 

well as to solve the direct problem in Section 4.2.1. The direct problem involves 

calculation of the surface temperature distribution for a given set of system parameters 

during the iterative inverse reconstruction process. For solving the direct problem, FEM 

based commercial software COMSOL Multiphysics v 4.3 (2013) was used. The 
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Levenberg-Marquardt (LM) method was used to estimate the unknown tumor parameters 

using successive iterations and it is described in Section 4.2.2.  

4.2.1 Mathematical model 

Table 4.1: Thermophysical properties of the tissue layers in Equation (2.1) 

 

a
 Pirtini Çetingül and Herman (2011) 

b
 Ng and Sudharsan (2001) 

c
 Amri et al (2011) 

d
 Jiang et al (2011)  

The system of seven partial differential equations (2.1.1) is solved, subject to 

boundary conditions (2.1.2 – 2.1.8) using the commercial software COMSOL 

Multiphysics v 4.3 (2013). A MATLAB code was developed for solving the inverse 
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problem. While solving the inverse problem in MATLAB, COMSOL was accessed to 

compute temperature distributions for a given set of input parameters updated by the 

inverse reconstruction algorithm. For the purpose of communication and control of 

COMSOL by means of MATLAB, the LiveLink for MATLAB was used. The PC 

computer system used to run the present model was equipped with an Intel core i-7 

processor, with 3.4 GHz frequency and 32 GB RAM. A typical mesh generated for the 

computational domain contains 8,000 elements (figure 4.1 (a)). It takes about 6 seconds 

to solve the set of equations for steady state analysis and about 16 seconds for the 

transient analysis. Mesh sensitivity analysis was carried out to ensure that the change in 

temperature, due to further refinement of the mesh, was less than 0.1 %. The choice of 

the time step was governed by two factors, computational speed and accuracy. A smaller 

time step increases the accuracy but it also leads to increase in computational time. For 

the present case a time step of 2 seconds was taken as the temperature change was less 

than 0.1% after decreasing the time step. The steady state temperature distribution in the 

cancerous breast for the conditions described by equations (2.1-2.8), obtained using 

COMSOL, is shown in figure 4.1 (b). 
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4.2.2 Input data for the inverse problem: computational phantom 

Input data for the inverse reconstruction algorithm are generated using the 

computational phantom in this study. In a clinical application computed surface 

temperature data (from the computational phantom) are replaced by measurement data 

obtained by means of infrared imaging. In the computational phantom, the tumor is 

Figure 4.1: (a) Computational mesh, (b) computed temperature distribution in the cancerous 

breast and (c) coordinate system and surface data points used for the inverse reconstruction 
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modeled in COMSOL for the exact set of tumor parameters   ,    and    
. The exact 

set of tumor parameters for the steady state analysis (figure 1) is stored in the vector  

    [
  

  
]     .                                                                                                             (4.1) 

The transient analysis accounts for an additional unknown parameter   , 

therefore the exact set of parameters for the transient case becomes 

    [

  

  

   

] .           (4.2) 

Computed surface temperature data, obtained solving the mathematical model 

described by equations (2.1-2.8) for tumor parameters from equations (4.1-4.2),  at I = 12 

points on the surface, corresponding to 12 angular locations (figure 4.1 (c)) 

                                                                                                                 (4.3) 

served as input values for the inverse reconstruction algorithm. Steady state temperature 

data  computed using the COMSOL model, were stored in the input vector     as  

                                  

     

[
 
 
 
 
        

 
          

 
          ]

 
 
 
 

                                                                                       (4.4) 

 

where            represents the surface temperature at the polar angle      (figure 4.1 

(c)). 
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 The number of input data points in equation (4.4) was kept low, as a large number 

of data points would significantly increase computational effort and require advanced 

computational resources. The selected number of data points was determined by trial and 

error, and was guided by the required accuracy for the selected application. If necessary, 

the number of data points in a particular application can be increased to improve 

reconstruction accuracy. Further, the data points were distributed in the region where the 

temperature increase caused by the presence of the tumor is most pronounced, 

corresponding to the strongest measurement signal in a clinical application. In this study 

they were not distributed throughout the entire circumference, rather they were 

concentrated within a limited region (0-22° angle) relative to the z axis (figure 4.1 (c)).  

For the transient analysis surface temperature data as a function of time was also 

collected during the thermal recovery phase at times    = 200s, 400s, 500s, 600s, 700s, 

800s, 1000s. Only one surface point is considered to describe the time dependence of 

temperature, in order to strike a balance between the computational cost and accuracy. 

The selected point is located on the skin surface directly above the tumor (       ), and 

this is the point that records the maximum temperature rise (Chanmugam et al, 2012).  In 

the present work only a single point is taken to record the transient temperature. This was 

sufficient to get convergence for the transient case. Adding additional data points was 

increasing the size of the matrix, for each data point the rank of the matrix was increasing 

by 7, and therefore this was taxing on the computational resources. Furthermore there 

were problems with convergence after adding additional data points so we avoided 

adding additional points. 

http://proceedings.asmedigitalcollection.asme.org/searchresults.aspx?q=Arjun%20Chanmugam&p=1&s=19&c=0&t=
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The vector containing the surface temperatures for the transient case consists of 

the Yss, as described by equation (4.4), followed by the transient data     

     [

   

        
 

        

]                                                                                                       (4.5) 

where  (     ) represents the temperature data during thermal recovery at time   . The 

dimension of      is 19 × 1.  

 In clinical applications the measured steady state or time dependent temperature 

will be acquired by static or dynamic infrared imaging of the breast surface temperature. 

Typical thermal signatures were analyzed computationally by Chanmugam et al. (2012). 

They showed that the temperature rise can be more than 1 ⁰C for shallow and large 

tumors. For smaller and deeper tumors the temperature rise is low, but for the majority of 

cases analyzed by the authors it was more than 0.1 ⁰C. These results suggest that modern, 

miniature, low-cost IR imagers are suitable for clinical diagnostic applications. The 

infrared imager can be combined with a 3D imager, such as the Microsoft Kinect. As 

shown by Cheng (2015), mapping 2D temperature data onto a 3D surface mesh generated 

by Kinect increases measurement accuracy and should be considered for clinical 

implementation. The geometry of the breast is not hemi-spherical and the COMSOL 

model can be adjusted to accommodate the exact shape when data are available.  

4.2.3 Inverse problem: overview 

In this section we provide a general overview and rationale of the inverse 

reconstruction method used in our study, whereas details of the mathematical 

formulations of the inverse reconstruction method are introduced in Section 4.2.4. As 
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mentioned Section 4.1, the problem of extracting the model parameters (tumor location, 

dimensions and tumor properties R, D and   ,           ) from the observable data 

(measured or computed temperature distributions,            in the present study) is 

known as the inverse problem, and its application in heat transfer is known as the inverse 

heat transfer problem (IHTP). The measured or computed surface temperature 

distributions            (equations 4.4 and 4.5) as well as the initial guesses of the model 

parameters R, D and     (their exact values are to be determined by inverse 

reconstruction) provide the input data.   

           IHTP problems are very sensitive to the changes in the input data to the model and 

therefore are classified as ill-posed problems (Ozisik and Orlande (2000)). To overcome 

the ill-posedness of the problem, regularization methods and other least square 

minimization methods are used. In the current work, the Levenberg-Marquardt (LM) 

method is implemented.  In the LM method, the difference between experimental and 

calculated data is expressed in the form of the sum of squares S. The geometrical and 

thermophysical characteristics of the tumor, such as size, location and blood perfusion 

rate, R, D and   , are adjusted iteratively, and the computed surface temperature 

response is compared to the measured or computed (using the phantom, Sections 4.2.1 

and 4.2.2) temperature data to minimize S. In order to counter the ill-posed nature of the 

problem, the LM method uses a damping factor.  

          The LM method iteratively solves for the tumor parameters R, D and    and 

computes surface temperature distributions for each iteration. The iterative process 

continues until the difference between measured and computed surface temperatures S 

falls below a certain value and satisfies the stopping criterion.  
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4.2.4 Inverse algorithm  

The algorithm used to solve the inverse problem is illustrated in figures 4.2 and 4.3. The 

flowchart of the general algorithm is displayed in figure 4.2, and details of the LM 

regularization portion of the algorithm are provided in figure 4.3. Each block of the 

algorithm is identified by a letter and the blocks are referred to by figure number and 

letter in the text. For example, figure 4.2 (a) refers to block (a) in figure 4.2.  It should be 

noted that the variables for steady state and transient state, though they have the same 

generic form, differ due to the presence of the additional parameter ωb and additional 

transient data. These differences are described in the text and steady state and transient 

variables are referred to by their generic form, whenever admissible. For example, in 

figures 4.2 and 4.3 only the generic forms of these variables are used.  

Input data, initial guesses and process variables                                                             

The algorithm begins with an initial guess for the set of unknown parameters R, D and 

   stored in the vector    (figure 4.2 (c)) as 

   
  [ 

 

  
]    for steady state (figure 4.2 (a)) and                                                    (4.6)                                                       

   
  [

  

  

  
 
]     for the transient analysis (figure 4.2(b)).                                        (4.7) 

The algorithm proceeds from the initial guesses to improved estimates of 

unknown parameters iteratively, using LM method. The set of unknown parameters at the 

m
th

 iteration is represented by the vector      as 

    
  [

  

  ]              for steady state and                                                                   (4.8) 
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(d) Measured surface 

temperature profile ( ) 

from the computational 

phantom Eqs.(4.4-5) 

(a) Case 1: Steady state analysis 

Unknowns:     

Size and location of tumor 

Initial guess:    [ 
 

  
]       Eq. (4.6) 

(b) Case 2: Transient analysis 

Unknowns:        

Size, location and blood perfusion of tumor 

Initial guess:     [
  

  

  
 
]       Eq. (4.7)  

        

(c) Initial guess (m=1) 
for tumor parameters 

(f)  Solve direct problem 

in COMSOL for     

(g) Surface temperature 

profile       

  

(k) New set of estimated 

tumor parameters   

     and       

(j) Find new set of 

parameters       and  

     using    and 

  as input data for 

inverse method  

(see figure 4)   

(l) Accept the 

estimated tumor 

parameters and EXIT 

 (  )     

(i) Stopping criterion 

  

Figure 4.2: Flowchart of the inverse reconstruction algorithm 

No 

Yes 

(e) Initial guess of 

damping factor,     

Input data 

(h) Calculate objective 

function             
(Eq. (4.12)) 
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(a) Input: Estimated tumor 

parameters    and damping 

factor    from figure 4.2 

(b) Calculate sensitivity 

matrix      , Eqs. (4.14, 4.17) 

(g) Solve direct problem in 

COMSOL  

  

(h) New surface temperature 

profile          

(c) Levenberg-Marquardt 

Method, Eq. (4.18) 

  

  

(k)         √  
 

 

(l) Accept the estimated tumor 

parameters      , damping 

factor     and go to step k in 

figure 4.2 

(i) Objective function 

less than in previous 

iteration

               

  

  

(j)    √  
 

     

Figure 4.3: Flowchart describing block (j) in figure 4.2 

Yes 

No 

(d) New set of tumor 

parameters,        

(e)          

(f)           

Yes 

No 
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  [

  

  

  
 
]            for transient analysis.                                                                 (4.9)                                                                                    

The surface temperatures corresponding to the set of parameters    for the 

steady state analysis are stored in the vector       as 

     
    

[
 
 
 
 
        

 
          

 
          ]

 
 
 
 

                                                                              (4.10) 

In transient analysis,       also contains surface temperature data obtained 

during the thermal recovery phase corresponding to      at different times tj (j = 1, 2, 

…. k ), similar to the vector Ytr  described in section 4.2.2.         is described as  

     
    [

     

        
 

        

] .                                                                                          (4.11) 

The measured temperature  , discussed in Section 4.2.2 (equations 4.4 and 4.5), is 

the second set of input data required by the algorithm (figure 4.2 (d)). The third input 

parameter used by the algorithm is the damping factor   (figure 4.2 (e)). The value of     

is taken to be   = 0.1 for the steady state analysis with two unknowns and the initial  

guess is   = 0.01 for transient analysis and the steady state analysis with three unknowns. 

The parameter    is used in the LM method and it is analogous to the relaxation factor. 

The role of    is explained in more detail in section 4.2.4.3. 
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The commercial finite element code COMSOL is used to solve the direct problem 

(figure 4.2 (f)) of evaluating the surface temperature profile       (figure 4.2 (g)) for 

each iteration m.  

Main algorithm 

The goal of the iterative procedure is to let     and therefore       To this end we 

define the objective function      (figure 4.2 (h)), the sum of squared errors, as (Ozisik 

and Orlande (2000))  

      [       ]  [       ]   .                                                                 (4.12) 

      is a measure of the difference between the measured/computed temperature  

profile   and the one obtained during the inverse reconstruction process based on 

iteratively defined tumor parameters,       (figure 4.2 (g)). The form of the vectors 

     and      is defined by equations (4.4), (4.8) and (4.10) for the steady state analysis 

and equations (4.5), (4.9) and (4.11) for the transient analysis. The set of tumor 

parameters    is accepted as the final estimate if the objective function,     , falls 

below a pre-defined value   as 

               .                                                                                               (4.13) 

Equation (4.13) is referred to as the stopping criterion (figure 4.2 (i)), and once it is met 

the algorithm stops (figure 4.2 (l)) with the accepted set of tumor parameters      . 

If the stopping criterion is not met, the set of parameters    is fed into the inverse 

method along with the current damping factor   (figures 4.2 (j) and 4.3 (a)) to find the 

next estimate of the unknown parameters      and damping factor       (figure 4.2 

(k)). The next estimate (m+1) is fed into the direct problem (figure 4.2 (k) and (f)). This 
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iterative cycle continues until the stopping criterion is met and the set of parameters 

hence obtained is accepted as the final estimate (figure 4.2 (l)). 

Improving the estimates: LM algorithm 

The details of the algorithm used in the “inverse method” part of figure 4.2 (j) are 

illustrated in figure 4.3. The objective of this part, the LM algorithm, is to take a set of 

tumor parameters    , either the initial guess or the improved values determined through 

the iterative process, as input (figure 4.3 (a)) and compute an improved estimate of tumor 

parameters      as the output (figure 4.3 (l)).  

Based on the input parameters     and      , the sensitivity matrix       is 

calculated first (figure 4.3 (b)). The sensitivity matrix accounts for the variation of 

surface temperature in response to the change of the tumor parameters  ,   and   .  For 

the steady state analysis the sensitivity matrix is defined as 

      
   [

       

  
]   

[
 
 
 
 
 
   

  

   

  
   

  

   

  

 
   

  

 
   

  ]
 
 
 
 
 

  ,                                                                      (4.14) 

where   is the total number of temperature measurements on the surface (12 in this 

study). In the sensitivity matrix an element located at i
th

 column and j
th

 row describes the 

variation of surface temperature at j
th

 location with respect to parameter Pi.      
   in 

equation (4.14) is a 12×2 matrix, as we have 2 unknown parameters, R and D, and 12 

measurement points.  

Individual elements of the sensitivity matrix are calculated using the approximation 
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(  (   )      )

   
    .                                                                             (4.15) 

 

The term     in equation (4.15) is defined as  

     
  [

    
 

]  and      
  [

 
    

]   

for the steady state analysis.   

    in equation (4.15) is a pre-defined, fixed increment for the tumor parameters 

R and D,    =  [0.2 mm, 0.2 mm ] .   The sensitivity matrix for the transient case is 

     
    [

     

        
 

        

] ,                                                                                          (4.16)       

where        

[
 
 
 
 
 
   

  

   

  

   

   

   

  

   

  

   

   

 
   

  

 
   

  

 
   

   ]
 
 
 
 
 

 and 

  

 (  )  [
       

  

       

  

       

   
] 

for  times    during thermal recovery t :{200s, 400s, 500s, 600s, 700s, 800s, 1000s }. 

Elements of the sensitivity matrix for the transient situation are also determined using 

equation (4.15).  For the transient case the term     in equation (4.15) is defined as 
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  [

    
 
  

]  ,      
  [

 
    

  

]  and      
  [

 
 

      

]   .               (4.17) 

The dimensions of the sensitivity matrix       
    are 3 × 19, larger than for steady state 

(equation (4.14)), because of the additional unknown parameter ωb and the difference in 

the  expressions for       (equations (4.10) and (4.12)). Since the increment vector    

for the transient case has an additional element accounting for ωb, it takes the form    = 

[0.2 mm, 0.2 mm, 0.0001 ml/sec/ml]. Different values of    were tried and tested. The 

value used in the present work where giving the best results, in terms of convergence and 

computational time, and therefore were chosen. 

After determining the sensitivity matrix, the LM  method (figure 4.3 (c)) is used 

to calculate the next set of parameters      is (figure 4.3 (d)) 

        ⌊             ⌋        [       ]                                    (4.18) 

where     diag ⌊         ⌋    .                                                                                               

In equation (4.18)   represents the current iteration step and    is the 

corresponding damping factor.  As the damping factor is increased, the algorithm 

becomes more stable at the expense of speed. The damping factor controls the difference 

between    and probable    ; the larger    is, the smaller will be the difference 

between tumor parameters in successive iterations, thereby making the algorithm slower. 

Furthermore, the term ‘diag’ in equation (4.18) refers to a diagonal matrix comprised of 

the diagonal elements of the corresponding matrix. 

The next set of parameters      hence obtained is checked (figure 4.3 (e)): if one 

of the parameters is negative, they are discarded and the LM method is used again 
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(figures 4.3 (c) and 4.3 (d)) after increasing damping factor    by a factor of √  
 

 (figure 

4.3 (f)). The resulting set of parameters is checked again (figure 4.3 (e)) and this cycle 

continues until the algorithm yields a set of realistic (positive) parameters. Based on the 

new set of parameters      the direct problem is solved (figure 4.3 (g, h)) and the 

corresponding objective function         (equation (4.14)) is calculated. This new 

parameter      is accepted only when the corresponding objective function         is 

less than the one associated with the previous input parameter set    (figure 4.3 (i)) 

              .                                                                                                  (4.19)       

If this condition is met, the damping factor is decreased by a factor of √  
 

 (figure 4.3 

(k)) and the new set of parameters      is accepted (figure 4.3 (l)). On the other hand if 

the objective function is larger, the set of parameters is discarded and the damping factor 

is increased by a factor of √  
 

 (figure 4.3 (j)). Then LM method is used again to obtain a 

new set of parameters (figure 4.3 (c)). This process continues until a set of parameters is 

obtained which is better than the set of parameters from the previous iteration, in terms of 

objective function (equation (4.12)). 

4.3 RESULTS AND DISCUSSION 

In Section 4.3.1 we introduce inverse reconstruction results for steady state analysis. We 

demonstrate that the steady state analysis has some inherent limitations, and we analyze 

these in Section 4.3.2. Finally, in Section 4.3.3, we show how to overcome these 

limitations by including transient temperature data in the inverse reconstruction 

algorithm.  
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           In the present study only those tumors were considered which were capable of 

giving a detectable temperature rise on the skin surface. Figure 4.4 shows the temperature 

rise, at skin surface directly above the tumor, for different combinations of radius R, 

depth D and blood perfusion   . The closer the tumor is to the surface and the larger its 

diameter is, the larger is the rise in the surface temperature.  

4.3.1  Steady state analysis with two unknowns (  and  ) 

Tumor size (R, radius) and location (D, depth) are the unknown parameters in the inverse 

reconstruction method based on steady state surface temperature data. The 

thermophysical properties, thermal conductivity, density, heat capacity, blood perfusion 

rate and metabolic heat generation rate of the tumor are assumed to be known, and values 

used in our calculations are summarized in Table 4.1. A    10 mm deep tumor of    5 

mm radius was modeled in FEM based commercial software COMSOL. Surface 

temperature distribution was computed using COMSOL and temperature data were then 

fed into the inverse reconstruction algorithm as measured temperatures    and along with 

the initial guesses    and    for  the unknown tumor parameters R and D and damping 

factor.  

To examine the performance of our method, the inverse reconstruction algorithm 

was employed for three initial guesses    
  (equation 4.6), labeled as cases 1, 2 and 3 in 

table 4.2. Figure 4.5 shows the progression of parameters R and D from the initial guesses 

to the exact values through the iteration process. The iterations shown in the abscissa of 

figure 4.5, represent the outer loop of the algorithm, displayed in figure 4.2. Each new 

iteration corresponds to a value of S smaller than in the previous iteration. Iterations 

corresponding to the inner loop of inverse method (figure 4.3), where the next best  
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parameter set      is estimated, are not shown. For example, for case 1, R and D started 

with an initial guess of 8 mm and 18 mm, respectively, and they converged to the exact 

values in 6 iterations (figures 4.5 (a) and (b)). The convergence trends are similar for 

cases 2 and 3. Case 1 took the least number of iterations to converge (7), while case 3 

(a

)  

(b

)  

(c)  (d

)  
Figure 4.4: Temperature rise    at a point directly above the tumor corresponding 

to       as a function of tumor radius R and depth D for blood perfusion values 

(a)     0.003 m
3

/s/m
3 

, (b)     0.006 m
3

/s/m
3

 , (c)     0.009 m
3

/s/m
3

 and (d) 

    0.012 m
3

/s/m
3

. 
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was the slowest to converge, within 13 iterations. Figure 4.5 (c) illustrates the variation of 

the objective function   during the iterative process for the three cases in table 4.2. The 

iterations stopped when the objective function reached a value that was less than the 

stopping criterion ε (10
-5

). It is evident from these results that the solution converged to 

exact values within a reasonable number of iterations for very different initial guesses. 

Therefore we can conclude that the selected inverse reconstruction method based on 

steady state data is suitable for the reconstruction of the two geometrical parameters of 

the tumor. 

4.3.2 Limitations of the steady state analysis 

In section 4.3.1 steady state data were used to reconstruct two unknown tumor parameters 

D and R.  In this section we add a third unknown parameter, the blood perfusion rate ωb, 

to the set of unknown tumor parameters, and evaluate the feasibility of simultaneously 

reconstructing all three parameters from steady state data. The exact values of the tumor 

parameters for the steady state analysis and the three initial guesses are shown in Table 

4.3. Figure 4.6 illustrates the progression of the parameters from the initial guess to the 

final solution. Final solutions along with the corresponding errors are shown in table 4.3. 

For all three cases, the iteratively computed solution progressed away from exact 

solution. Cases 1 and 2 exhibit large errors, especially for the estimates of ωb, 83.3% and 

40% respectively. For case 3 the error was smaller, with a maximum error of 7% for   . 

The smaller error for case 3 can be attributed to the initial guess being very close to the 

exact solution.  

 This behavior of the inverse reconstruction algorithm can be explained by 

considering the results in figure 4.7, which compares the surface temperature profiles of 
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the three tumors. The temperature plotted in figure 4.7 is the temperature rise due to the 

presence of tumor. The temperature difference calculated by subtracting the surface 

temperature of the healthy breast from the temperature of the cancerous breast. One of 

the three surface temperature profiles in figure 4.7 correspond to the exact set of 

parameters (†) given in table 4.3. The remaining two show the converged, but incorrect, 

solutions of cases 1 and 2 marked by * in table 4.3. In spite of the marked difference in 

the tumor parameter values D, R and ωb, the three tumors yield almost identical surface 

temperature profiles, close enough to satisfy the stopping criterion (equation 4.13). These 

results suggest that different combinations of D, R and ωb can yield nearly identical 

thermal signatures, i.e. the thermal signatures of the tumor are not unique.  Therefore, 

during the iterative revisions of the parameter set, the inverse algorithm converged to an 

incorrect solution. The reduction in surface temperature due to smaller tumor size for the 

final solution of case 1 is compensated by lower depth and a higher blood perfusion rate 

of the other tumors. 

Table 4.2: Exact tumor parameters D and R and three sets of initial guesses (cases 1, 2 

and 3) for the inverse problem with 2 unknowns (steady state analysis)  

 

Depth, 

  

[mm] 

Radius, 

  

[mm] 

Exact 10 5 

Case 1 18 8 

Case 2 21 11 

Case 3 15 2 
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(a)

  

(b

)  

(c)

  Figure 4.5: Evolution of (a) depth   and (b) radius   of the tumor and (c) error      

versus  the iteration number using steady state data for the three cases in table 4.2 
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Table 4.3: Exact parameter values and three sets of initial guesses for the inverse 

problem with 3 unknowns for steady state analysis. Temperature rise for sets of 

parameters marked by * is plotted in figure 4.7.  

  

Depth, 
  

[mm] 

Radius, 

  

[mm] 

Blood Perfusion rate, 

   

[m
3
/sec/m

3
] 

     

 Exact *† 11 7 0.003 

     

Case 1 Initial 9 5 0.001 

 Final * 10.15 5.8 0.0055 

 Error (%) 7.7 17.1 83.3 

     

Case 2 Initial 13 8 0.002 

 Final * 12 8.3 0.0018 

 Error (%) 9.1 18.6 40 

     

Case 3 Initial 11.5 6.5 0.0025 

 Final 10.9 6.8 0.0032 

 Error (%) 0.91 2.9 6.67 

 

           The analysis in section 4.3.1 demonstrates that, based on the steady state analysis, 

it was possible to estimate the location and the size of the tumor. However, the results in 

section 4.3.2 indicate that it is not possible to estimate the third parameter ωb. When the 

blood perfusion rate is included along with size and location as unknown, the inverse 
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problem based on steady state analysis converges to the wrong solutions. Since different 

tumors yield almost identical surface temperature distributions, the inverse reconstruction 

(a)

  

(b)

  

(c)

  

(d)

  Figure 4.6: Evolution of (a) depth D (b) radius R (c) blood perfusion rate ω
b
 of the 

tumor  and the (d) error      versus  the number of iterations using steady state 

data for the three cases in table 4.3.  
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algorithm is unable to distinguish between them. This implies that the solution for this 

inverse problem with three unknowns is not unique, even though the algorithm yields a 

unique solution for two unknowns. In clinical applications, the presence of noise, can 

further accentuate the problem.    

 

4.3.3 Solution: transient analysis 

To overcome the non-uniqueness problem and solve this inverse problem in a robust 

manner, we incorporated the transient response in the input data. The transient response 

has been used in prior studies by Pirtini and Herman (2011) for melanoma detection, 

Cheng and Herman (2014) for the analysis of near surface lesions and Bhargava et 

al.(2014) for deep tissue injury. The imaging technique employed in these studies is 

known as dynamic infrared imaging, and it is explained in section 4.2.1 (equation 2.8). In 

Figure 4.7: Surface temperature profiles for tumor parameters marked by * in 

table 2.3.3. 

  

Distance along the circumference,   [mm] 
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dynamic IR imaging a cooling load is applied on the surface for a certain amount of time. 

Then the cooling load is removed and the surface temperature is allowed to recover. The 

temperature measured during the thermal recovery process is used along with steady state 

temperature distribution to quantitatively assess lesions.  

          In order to compare surface temperatures generated by different tumors, first, the 

temperature of a cancerous breast was computed during the thermal recovery process, at a 

point located on the skin surface and on the axis, directly above the tumor. The reason for 

picking this particular point has been explained in section 4.2.2. Then the temperature of 

a healthy breast at the same location is subtracted from it, resulting in a temperature 

difference. In figure 4.8 this temperature difference is plotted against time, for the three 

tumors considered in the steady-state analysis. These are the same three tumors marked 

by “an asterisk” in table 4.3, which resulted in identical steady state surface temperature 

profiles (figure 4.7). It can be seen that the transient thermal recovery temperature profile 

is different for the three cases. Therefore the inverse reconstruction algorithm should not 

get trapped into incorrect solutions when transient data are included in the analysis. This 

approach makes it possible to estimate the blood perfusion rate along with the size and 

location of the tumor uniquely.   

4.3.3.1 Transient analysis with three unknowns 

         To illustrate the use of transient response in inverse reconstruction we considered 

the same set of exact parameters     (equation 4.2) and initial guesses     (equation 4.5) 

as for the steady state analysis (table 4.3) and added the transient data. A detailed 

description of the input parameters for the transient case is found in section 4.2.2. Figure 

4.9 illustrates the progression of the solution from the initial guess to the converged 
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solution for  ,   and   . The error for each iteration is shown in figure 4.9 (d). The 

solution converged to the correct solution for all three initial guesses, with negligible 

errors (Table 4.4). Case 1 took the highest number of iterations to converge (34) and case 

3 the least number of iterations (8). Since the blood perfusion rate is an indicator of the 

metabolic activity of the tumor, it can help estimate the stage of the tumor and therefore it 

is an important tumor parameter of interest in clinical applications. Further the use of 

additional set of input data improves the accuracy of the solution and can reduce the 

effect of noise in the input data therefore improving the robustness of the solution. In the 

transient analysis temperatures were recorded at intervals of more than 100 s and this 

makes sure that it is easily within the temporal resolution of IR cameras, which is less 

than a sec. 

 

Figure 4.8: Thermal recovery temperature profile of a point directly above the tumor 

corresponding to   . The tumors considered are the 3 tumors marked by * in table 4.3 

and are also discussed in figure 4.7. 
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Several other cases were tried with different set of exact parameters and are listed in 

table 4.4. Different initial guesses were tried, including those which were far away from 

the exact parameters. The test cases considered here have tumors ranging from 12 mm to 

30 mm in depth, 7 mm to 11 mm in radii and blood perfusion rate ranging from 0.003 1/s 

to 0.01 1/s. The error in the solution was low for near surface tumors and it increased 

with increasing depths. It was observed that tumors with 0.01 1/s blood perfusion rate and 

11 mm radii gave errors of less than 1 % when they are within 20 mm from the body 

surface. Even though shallower tumors in Table 4.5 have blood perfusion rates lower 

than 0.01 1/s and hence lower rise in surface temperature (figure 4.4), they were giving 

low errors. Errors in blood perfusion rate were particularly large for deeper tumors, this 

can be explained by the fact that surface temperature becomes increasingly insensitive to 

the blood perfusion rates for deeper tissue layers (Kleinman and Roemer 1983). Further 

smaller tumors will be giving lower temperature signals, but it is the larger tumors which 

have been associated with lower survival (Carter et al. 1989). Different initial guesses 

were tried, including those which were far away from the exact parameters. The test cases 

dealt in here had tumors and then an estimate for their parameters was obtained. In the 

case of no tumor, it is expected that the algorithm will converge to a solution indicating 

no tumor. The solution will start from the initial guess for tumors and will eventually 

converge to zero radii and/or maximum depth and/or blood perfusion rate equal to the 

surrounding healthy tissue. 

 The ability gained by this novel approach to estimate the blood perfusion 

rate is very critical. MRI, mammography and other non-invasive modalities can identify 

the location and size of the tumor, but it is difficult to ascertain the level of malignancy of 
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the tumor based on these tumor parameters. The diagnosis of cancer might require 

multiple visits to the clinic, before a biopsy (definitive test), for determination of tumor 

malignancy. On the other hand, an estimate of blood perfusion rate can give an 

unequivocal indication of tumor malignancy, as there is a direct correlation between 

tumor growth rate and tumor malignancy. Therefore, this approach has the potential to 

reduce the time, cost and effort involved in tumor detection.  

Even though this approach, in its present format, does not give accurate result for 

deeper tumors, it can be modified to give critical diagnostic and staging information. CT 

scans can be used to determine the location and size of the tumor and this information can 

then be potentially utilized to increase the accuracy of the blood perfusion rate 

estimation. Blood perfusion rate in turn can help in staging of the tumor, which is very 

critical in determining the cancer treatment strategy.  

It should be noted that MRI can also be used to estimate blood perfusion. MRI 

can give the blood perfusion distribution within the tissue and it can prove beneficial for 

diagnosing and characterizing tumors. Thermography has an edge over MRI as it is much 

more economical and completely non-invasive. An MRI system is very expensive and 

requires a dedicated room or hardware (or large trailers for mobile systems) and a highly 

trained operator. A thermographic imaging system costs orders of magnitude less, is 

orders of magnitude smaller and can operated by existing clinical staff after basic 

training. It is suitable for screening and telemedicine applications. Additionally for MRI 

perfusion measurements, contrast agent has to be injected into the subject’s body. 

Thermographic test can be 10 times cheaper and the equipment cost can be 100 times 

cheaper than MRI (Arora N et al. 2008). 
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(a)

  

(b)

  

(c)

  

(d)

  
Figure 4.9: Evolution of (a) depth D (b) radius R (c) blood perfusion rate    of the 

tumor and (d) error S(P) vs the number of iterations using transient data for the three 

cases summarized in table 4.3. 
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Table 4.4: Exact parameter values and three sets of initial guesses for the inverse 

problem with three unknowns for transient analysis.  

  

Depth, 
  

[mm] 

Radius, 

  
[mm] 

Blood Perfusion rate, 

   
[m

3
/sec/m

3
] 

     

 Exact 12 10 0.003 

Case 1 Initial 10 8 0.002 

 Final 12 10 0.003 

 Error (%) 0.053 0.05 0 

     

 Exact 13 10 0.004 

Case 1 Initial 12 9 0.003 

 Final 13 10 0.004 

 Error (%) 0 0.001 0 

Case 2 Initial 10 9 0.003 

 Final 13 10 0.004 

 Error (%) 0 0.009 0 

Case 3 Initial 12 7 0.003 

 Final 13 10 0.004 

 Error (%) 0 0.015 0 

Case 4 Initial 10 8 0.005 

 Final 13 10 0.004 

 Error (%) 0 0.008 0 

     

 Exact 14 10 0.0045 

Case 1 Initial 13 11 0.004 

 Final 14 10 0.0045 
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 Error (%) 0.03 0.068 0 

Case 2 Initial 12 9 0.003 

 Final 14 10 0.0045 

 Error (%) 0.022 0.082 0 

Case 3 Initial 11 8 0.0035 

 Final 14 10 0.0045 

 Error (%) 0.02 0.073 0 

Case 4 Initial 16 8 0.0025 

 Final 14 10 0.0045 

 Error (%) 0.014 0.055 0 

Case 5 Initial 10 7 0.002 

 Final 14 10 0.0045 

 Error (%) 0.014 0.055 0 

Case 6 Initial 8 4 0.001 

 Final 14 10 0.0045 

 Error (%) 0.021 0.074 0 

Case 7 Initial 21 6 0.003 

 Final 14 10 0.0045 

 Error (%) 0.03 0.097 0 

     

 Exact 16 11 0.0055 

Case 1 Initial 14 9 0.002 

 Final 16 11 0.0055 

 Error (%) 0.002 0.014 0 

Case 2 Initial 12 7 0.002 

 Final 16 11 0.0055 

 Error (%) 0.001 0.006 0 
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 Exact 15 11 0.01 

Case 1 Initial 13 9 0.008 

 Final 15 11 0.010 

 Error (%) 0.013 0.035 0 

Case 2 Initial 12 8 0.007 

 Final 15 11 0.01 

 Error (%) 0.001 0.006 0 

Case 3 Initial 18 8 0.005 

 Final 15 11 0.01 

 Error (%) 0.015 0.042 0 

     

 Exact 20 11 0.01 

Case 1 Initial 22 9 0.007 

 Final 20.02 10.90 0.0108 

 Error (%) 0.1 0.91 8 

     

 Exact 25 11 0.01 

Case 1 Initial 23 9 0.008 

 Final 25.07 10.53 0.015 

 Error (%) 0.28 4.27 50 

Case 2 Initial 20 9 0.007 

 Final 25.10 10.50 0.0157 

 Error (%) 0.4 4.54 57 

     

 Exact 30 11 0.01 

Case 1 Initial 28 9 0.008 
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 Final 29.71 10.15 0.0181 

 Error (%) 0.97 7.73 81 

Case 2 Initial 27 8 0.008 

 Final 29.96 9.8 0.0319 

 Error (%) 0.13 10.91 219 

Case 3 Initial 26 7 0.007 

 Final 29.59 9.51 0.0332 

 Error (%) 1.37 13.55 232 

Case 4 Initial 20 6 0.005 

 Final 30.23 9.44 0.0637 

 Error (%) 0.77 14.18 537 

  

4.3.3.2 Noise analysis 

The IR cameras available presently have temporal and spatial resolution of 10 mK 

and 0.05 mm respectively or better (Çetingül M P 2010), as mentioned in section 3.3.1. 

Although it should be noted that spatial resolution is not a property of the camera and for 

a certain sensor size it will depend on the distance of the camera from the object. The 

points on the body surface, at which the temperatures are measured (Figure 2.2 (c)), are at 

a distance of 5 mm from each other and the spatial resolution of the IR cameras, at 0.05 

mm, is well above this, so they can easily capture the spatio-temperature variation.  

For thermal resolution, an analysis has been done here to show the limitations 

when noise corresponding to 10 mK is present in temperature measurement. A random 

noise of 10 mK was generated in the temperature data using a MATLAB function. For 

the noise analysis the stopping criteria (equation 4.13) was relaxed by increasing   to 

      . This particular stopping criteria was chosen based on multiple runs for different 



89 
 

cases and selecting an   which will lead to convergence for maximum cases. The results 

hence generated have been tabulated in Table 4.5. The set of exact parameters have been 

taken from Table 4.4 and corresponding initial guesses are a subset of the cases 

investigated before in Table 4.4. It was made sure that the subset of the initial guesses 

had cases which were farther away from the exact set of parameters and therefore most 

challenging. As expected the errors associated with the final solution are larger here due 

to the presence of noise and a relaxed stopping criterion, as compared to the earlier case 

(Table 4.4). Here again the error increased with increasing depth of the tumor and the 

errors in blood perfusion estimates were particularly high for deep tumors. 

4.3.4 Computational time 

The time taken by this algorithm can vary from 10 min to 50 min depending on the 

number of iterations required for convergence. In general, the further the initial guess 

from the actual solution the larger the number of iterations will be as can be seen from 

figures 4.5 and 4.9.  It takes around 75 seconds for one iteration loop as shown in the 

flowchart corresponding to the outer loop (figure 4.2 ), if the next set of parameters 

(figure 4.3 , block (d)) obtained using equation 4.18 is realistic (figure 4.3 , block (e)) and 

is a better estimate than the previous one (figure 4.3 , block (i)). If the estimate is 

unrealistic (figure 4.3, block (e)) it takes a couple of seconds to correct it and if it needs 

to be improved (figure 4.3, block (i)) it takes an extra 20 seconds for each loop. 

4.3.5 Future work 

       Several improvements can be incorporated into the existing model in the future. 

First, the Levenberg-Marquardt algorithm can be modified to improve the robustness and 

speed. In the present work, only the last iteration parameters were saved and checked for  
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Table 4.5: Exact parameter values and three sets of initial guesses for the inverse 

problem with three unknowns for transient analysis. 10 mK noise, stopping criteria = 5e-

4 

  

Depth, 
  

[mm] 

Radius, 

  
[mm] 

Blood Perfusion rate, 

   
[m

3
/sec/m

3
] 

     

 Exact 11 7 0.003 

Case 2 Initial 13 8 0.002 

 Final 11.09 7.13 0.0029 

 Error (%) 0.82 1.86 3.33 

Case 3 Initial 11.5 6.5 0.0025 

 Final 11.02 7 0.003 

 Error (%) 0.18 0 0 

     

 Exact 12 10 0.003 

Case 1 Initial 10 8 0.002 

 Final 11.97 9.97 0.003 

 Error (%) 0.25 0.3 0 

     

 Exact 13 10 0.004 

Case 2 Initial 10 9 0.003 

 Final 13.02 10 0.004 

 Error (%) 0.15 0 0 

Case 4 Initial 10 8 0.005 

 Final 13 9.99 0.004 
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 Error (%) 0 0.1 0 

     

 Exact 14 10 0.0045 

Case 7 Initial 21 6 0.003 

 Final 13.89 9.88 0.0046 

 Error (%) 0.79 1.2 2.22 

     

 Exact 16 11 0.0055 

Case 1 Initial 14 9 0.002 

 Final 16.01 8.91 1.82 

 Error (%) 0.063 8.91 1.82 

     

 Exact 15 11 0.01 

Case 1 Initial 13 9 0.008 

 Final 15.01 10.98 0.0102 

 Error (%) 0.07 0.18 2 

Case 2 Initial 12 8 0.007 

 Final 14.99 10.98 0.0102 

 Error (%) 0.07 0.18 2 

Case 3 Initial 18 8 0.005 

 Final 15.06 11.06 0.0098 

 Error (%) 0.4 0.55 2 

     

 Exact 20 11 0.01 

Case 1 Initial 22 9 0.007 
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 Final 19.57 10.66 0.0101 

 Error (%) 2.15 3.09 1 

     

 Exact 25 11 0.01 

Case 1 Initial 23 9 0.008 

 Final 24.42 10 0.0155 

 Error (%) 2.32 9.09 55 

Case 2 Initial 20 9 0.007 

 Final 24.57 10.3 0.0132 

 Error (%) 1.72 6.37 32 

     

 Exact 30 11 0.01 

Case 1 Initial 28 9 0.008 

 Final 27.3 9.4 0.0104 

 Error (%) 9 14.55 4 

Case 2 Initial 27 8 0.008 

 Final 26.33 8.59 0.0116 

 Error (%) 12.23 21.91 16 

Case 3 Initial 26 7 0.007 

 Final 26.89 8.54 0.0176 

 Error (%) 10.37 22.36 76 

Case 4 Initial 20 6 0.005 

 Final 27.27 8.35 0.03 

 Error (%) 9.1 24.09 174 
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improvement in the solution. This can be increased to two or three previous iterations, 

this might lead to increase in robustness of the algorithm. Further the placement of the 

data points on the surface and the time points during recovery phase can be varied to 

reduce the computational time. Second, a 3D model of the breast can be used to include 

tumors which are not centered along the axis. With the current version of COMSOL 

Livelink with MATLAB, it was not possible to iteratively change the location and 

dimension of tumor for a 3D model. So there is a need to use different software or to 

develop an indigenous code. Third, the variation in thermophysical properties with 

temperature can be included in the model to make it more accurate. For example, blood 

perfusion rate is dependent on temperature and due to application of cooling load there is 

going to be variations in temperature within the body tissue. Finally, a sensitivity analysis 

can be done to quantify the effect of uncertainties of the parameters involved.   

4.4 CONCLUSIONS  

In the present work we used an inverse reconstruction method, based on the 

Levenberg-Marquardt algorithm, to characterize a tumor based on the skin surface 

temperature. This method was applied for two different cases. The first case relied on 

steady state surface temperature data as input. Tumor location and size were the unknown 

parameters, and the thermophysical properties of the tumor and healthy tissue were 

considered to be known. In the second case transient data served as input along with 

steady state data, and the blood perfusion rate of the tumor was added to the unknown 

parameters. A multilayered 2D model of the breast was considered for the present 

analysis.  
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         The first case, that uses the surface temperature profile at steady state, has some 

limitations. Though it can uniquely estimate size and location of the tumor based on 

steady state data, problem arises when an additional tumor parameter, blood perfusion 

rate, is added as an unknown. Noise in the input data can further accentuate the problem. 

In order to correctly and uniquely estimate the size, location and blood perfusion rate of 

the tumor simultaneously, we used transient analysis in the second case. For deeper 

tumors the solution seems to converge away from the exact set of parameters.  

To summarize, addition of transient data with steady state data allows simultaneous 

estimation of blood perfusion rate, size and location of tumor, which is not possible with 

steady state data alone. Although this has limitations, but when combined with other 

modalities it can help in staging and treatment planning for cancer. 
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Chapter 5  

CT Perfusion Imaging 

The complete authorship of this work should be read as Rajeev Hatwar, Prof. Eleni Liapi 

and Prof. Robert Ivkov. The experiments were performed by Prof. Eleni Liapi.  

 

5.1 INTRODUCTION 

In computed X-ray tomography (CT) imaging, multiple images are taken at different 

angles to produce cross sectional images of the scanned object. A variation of this 

technique, CT perfusion imaging, allows the user to analyze the hemodynamics within 

the region of interest (Miles and Griffiths 2003, Kim et al. 2014). In this technique a 

contrast agent, which is opaque to x-rays, is injected intravenously. This is followed by a 

series of scans to trace the movement of the contrast agent within the target tissue. 

Images from these scans are then processed to obtain the information related to the flow 

of the contrast agent and thereby blood flow. 

The knowledge of blood flow within a given tissue can prove beneficial for 

diagnostic purposes. Blood flow measurements can help in differentiating between 

normal and malignant tissue, further it can also give information about the necrotic 

regions present within a tumor (Miles et al. 2000, Miles 1999). The benefits of CT 

perfusion go beyond diagnosis as it can also be used for estimation of response to therapy 

and for treatment planning. Brain and liver are some of the most common applications of 

CT perfusion imaging. Interventional radiologists largely identify malignancy in a given 

liver tissue using the blood flow measurements of hepatic artery and portal vein, two 
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sources of blood supply for the liver (Pandharipande et al. 2005, Kim et al. 2014). 

Further, as seen in the previous section, blood perfusion is a dominant factor governing 

the temperature distribution within a tissue. Therefore, a precise knowledge of the blood 

perfusion distribution within a tissue is critical for modeling heat flow within the body 

tissue. All these factors make CT perfusion an important component for effective 

diagnosis and treatment planning. 

There are different variations of CT scanners available commercially, some of the 

widely used scanners are listed in table 5.1. 

Table 5.1 Commercially available CT scanners 

Scanner Name Manufacturer 

64- row multidetector 

CT scanner 

VCT GE Healthcare 

4-MDCT scanner Lightspeed Plus GE Healthcare 

16-MDCT scanner LightSpeed GE Healthcare 

16-detector row scanner Lightspeed 16 GE Medical Systems 

Multi-detector row 

CT scanner 

Sensation 16 Siemens medical solutions 

 

 X-ray CT enables non-invasive blood perfusion measurements, although imaging 

protocols and methods to calculate blood perfusion from acquired imaging data are still 

under development (Kim et al. 2014, Materne et al. 2000, Meier and Zierler 1954, Miles 

et al. 1991). The contrast concentration within a tissue increases as the blood brings the 

contrast material into the tissue. It subsequently decreases due to the removal of contrast 
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material from the tissue by venous outflow. Meier and Zierler have given a basic 

description of extracting blood perfusion and other perfusion parameters from the time 

varying contrast concentration in tissue (Meier and Zierler 1954). Over the time methods 

for calculating blood perfusion have evolved (Kim et al. 2014). Some of the most 

prevalent are the maximum slope method (Miles 1991, Miles et al.1991, Miles et 

al.1993), tracer kinetic method  (Tofts et al.1999, Sourbron and Buckley 2011, 2013, 

Swinton et al.1970) and de-convolution method (Axel 1980, Axel 1983, Cuenod et 

al.2001).  

     The field of estimation of blood flow, volume using dye injection, indicator-

dilution technique, started with Stewart (1897) and was further developed by Hamilton et 

al.(1932). During the later years there was confusion regarding this method and a detailed 

analysis of this was presented by Meier and Zierler (1954) and Zierler (1962).  

Earlier studies used radio-isotopes as indicators (Sapirstein 1958, Zierler 1965) for 

blood flow estimation. Mathematical analysis of the flow of injected dye/contrast 

material in capillary beds has also been performed (Leonard and Jorgensen 1974, 

Borovetz et al. 1982, Lincoff et al. 1983). Fleming et al. used radiocolloid for estimating 

arterial and portal blood supplies for liver (Fleming et al. 1983). Mullani and Gould 

proposed a simple model for blood flow measurement where there is no venous outflow 

for some period before the start of recirculation (Mulani and Gould 1983). Patlak plot 

(Patlak et al. 1983 and Patlak and Blasberg 1985) was later developed which did not 

required compartmental models but required that concentration agent concentration has 

reached equilibrium within the tissue and plasma. This model has the flexibility to be 

used with homogenous as well as heterogeneous tissue and was applied to cerebral blood 
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flow by Patlak et al.. Rumberger et al. (1987) reported the calculations of the myocardial 

perfusion using contrast agent concentration curves obtained from CT scans and 

compared it with measurements from radiolabelled microspheres. Canine myocardial 

blood flow measurements were reported by Wolfkiel et al. (1987) and Gould et al. (1988) 

using radio-labeled microspheres and CT perfusion. Canine cerebral blood flow 

experiments were performed by Gobbel et al. (1993). Hattori et al. (1994) measured 

blood flow for superficial tumors. Cenic et al. (1999, 2000) developed a method for 

cerebral blood flow measurement and validated it against results obtained using 

microspheres. A kinetic based model was developed by Materne et al. (2000) for hepatic 

perfusion calculation and was validated using radiolabelled microspheres. Cuenod et al. 

(2001, 2002) used deconvolution method to calculate hepatic perfusion in rats. 

Wintermark et al. (2001) estimated cerebral blood flow by CT scans, using methods 

based on central volume principle (Meier and Zierler (1954)) and validated it against 

stable Xenon CT. 

Peters at al. (1987) introduced a technique of measuring blood flow for an organ 

which was later extended by Miles (1991) to develop maximum slope method. Miles et 

al. (1994, 1995) applied this method for renal and pancreatic blood flow measurements. 

Miles et al. (1993) modified this technique to estimate blood flow in liver. Blomley et al. 

(1995) proposed a modification in maximum slope method for hepatic blood perfusion 

estimation. Maximum slope method was used by Bader et al. (1998) to assess the effect 

of liver transplantation on hepatic perfusion and by Koenig et al. (1998) for early 

detection of cerebral ischemic stroke. 
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The indicator-dilution technique has evolved into various methods which can be 

broadly classified as model-free and model based approaches. Maximum slope model is 

the widely used example of model-free approach. Tracer kinetic models, which come 

under deconvolution methods, are examples of model based approaches. These are 

described in the following sections.  

      In 1983 Axel developed a technique based on deconvolution to estimate blood 

flow related parameters (Axel 1983). In this technique the response to a quantum of 

injected dye contrast agent in the given tissue, response function, is defined with a set of 

unknown parameters. With the help of the characteristic of the contrast agent at the time 

of injection and the assumed response function, the concentration of the contrast agent in 

the tissue as a function of time is calculated and compared with actual experimental 

values. The unknown parameters in response function are selected on trial and error 

basis, until a close enough match is obtained. The hence obtained parameters are then 

used to obtain blood flow related parameters. 

      The method developed by Axel, deconvolution, is mathematically involved and 

require the users to have knowledge about the tissue structure to be able to make 

assumptions about the response function. The maximum slope method is relatively 

inexpensive computationally. It was developed by Miles in 1991, based on the work done 

by Peters et al.1987. Miles et al. were the first to apply the maximum slope method to the 

liver and validate it using dynamic colloid scintigraphy (Miles et al. 1993). This method 

assumes that contrast material is accumulating in the body tissue and there is no venous 

outflow in this period. It calculates the blood perfusion values using the maximum 

concentration values in arterial flow and maximum slope in the concentration of contrast 
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material in the tissue. This method was developed only for single blood supply organs, 

which was further extended to dual supply organ, liver, by Miles et. al. in 1993. Blomley 

et al. suggested modifications to the maximum slope method for liver in 1995.  

             Some of the other methods which had been employed by researchers are 

moments method, compartmental methods and Mullani-Gould formulation. Table 5.2 

shows studies which have validated some of these methods primarily using microspheres 

and stable xenon washout. 

Comparative study 

Materne et al. proposed a version of tracer kinetic method for the liver perfusion, 

which was also compared using microspheres (Materne et al. 2000). The de-convolution 

method was first applied to liver by Cuenod et al. (2001). Maximum slope and tracer 

kinetic model are both based on dual input single compartment model, but are different. 

There have been studies comparing these methods by Kanda et al. in 2012.  

Tracer kinetic models 

It can be said that deconvolution method eventually evolved into tracer kinetic 

models. In these models the response function is defined with help of physiological 

parameters such as blood flow, blood volume, tissue permeability and amount of contrast 

agent extracted from the blood into the tissue (extraction fraction). The type and number 

of these unknown parameters varies within models, depending on the complexity of the 

model. The approach is to start with simplest model and check if this model is able to 

simulate the response as shown by experimental data (Sourbron and Buckley 2012). If the 
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match is satisfactory the model and the respective parameter values are accepted, 

otherwise a higher model with greater number of unknowns is tested.  

Table 5.2 Validation studies for moments method, mullani-gould method, maximum 

slope method, deconvolution method and compartmental method. 

Method Validation  

   

Moments 

method 

Microsphere 

measurements of 

regional cerebral 

perfusion in dogs 

Gobbel  et al. 1991 Stroke 

Comparison: Xenon 

washout studies in 

humans 

Gobbel et al. 1993 Am J Neuroradiol 

   

Mullani-Gould 

Formulation 

Microspheres in canine 

myocardial studies 

Wolfkliel et al. 1987 Circulation 

Rumberger et al.1987 J Am Coll Cardiol 

Gould  et al.1988 Invest Radiol 

   

 

Maximum 

Slope method* 

 

Hepatic perfusion Miles et al. 1993 Radiol 

 Miles et al. 1994 Invest Radiol 

 Miles et al. 1995 Br J Radiol 

 Koenig et al. 1998 Radiol 

 Blomley et al. 1993 Invet. Radiol 

Hepatic perfusion
+
 

Blomley et al. 1995 J Comput Assist 

Tomgr 

   

Constrained 

Deconvolution 

method 

Microspheres, 

rabbit cerebral 

Stable Xenon CT, 

Human cerebral 

Cenic et al. 2000 Am J Neuroradiol 

Wintermark et al. 2001 Am J Neuroradiol 

Fluorescent 

microspheres, Canine 

cerebral 

Nabavi et al. 1999 J Comput Assist Tomogr 

 

Miscellaneous 

Compartmental 

methods 

 

Radiolabeled 

microspheres/ 

Canine myocardial flow 

Gould et al. 1988 Invest Radiol 

H2
15

O PET 

Human cerebral 
Gillard et.al. 2000 Neurol Res 
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Some of the widely used tracer kinetic models are distributed parameter model (DP), 

2-compartment exchange model (2CXM), tissue-homogenity model (TH)( Sawada et al. 

1989 ), adiabatic approximation to TH model (AATH) (Cenic et al. 2000 and Purdie et 

al. 2001), tissue uptake models (TU), compartmental uptake model (C-TU) ( Pradel et al. 

2003) and plug flow uptake model (P-TU) (St Lawrence et al 2000). An important factor 

to consider while choosing the model is the physiology of the tissue/organ. Certain 

models are suited for certain types of physiologies for example DP is widely used for 

liver (Petralia et al. 2011, Guyennon et al. 2010, Goresky et al. 1973), 2CXM for breast 

tumors (Cheong et al. 2004 and Brix et al. 2004). 

Figures 5.1 and 5.2 illustrates the application of DP and AATH tracer kinetic models, 

respectively. Experiments were performed on white New Zealand rabbits were performed 

by Eleni Liapi. Data of the tissue concentration from artery, portal vein, spleen and 

healthy liver was collected from these experiments. DP and AATH model was applied to 

these data sets and the final set of parameters which gave the least errors and hence were 

accepted are given in figures 5.1 and 5.2. 
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Figure 5.1: Set of parameters, plasma flow Fp, permeability PS, plasma volume vp, 

extracellular space volume ve, for hepatic artery and portal vein in distributed 

parameter model for subject 10. These set of parameters give the liver 

concentration curve that is closest to the experimentally obtained data. 
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Figure 5.2: Set of parameters, plasma flow Fp, permeability PS, plasma volume vp, 

extracellular space volume ve, for hepatic artery and portal vein in adiabatic 

approximation model for subject 10. These set of parameters give the liver 

concentration curve that is closest to the experimentally obtained data. 
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5.2 Maximum Slope Model Assumption Discrepancy and 

Implications for Diagnosis of Hypervascular Liver Tumors with 

CT Perfusion 

 

5.2.1 INTRODUCTION 

For diagnostic radiologic imaging purposes, quantification of the blood flow within the 

healthy and tumorous liver is crucial for differentiation of the tumorous tissue from the 

healthy tissue, as well as evaluation of tumor response to therapy (Kim et.al. 2014). The 

liver is an organ with unique flow dynamics, related to its dual vascular supply from the 

portal vein and the hepatic artery (Bradley et al. 1945, O’ Connor et al. 1988, Tygstrup et 

al.1962, Schenk et al. 1962) (figure 5.3). The hepatic artery supplies arterial blood to the 

liver, and accounts for approximately 25% of its blood flow, while the portal vein carries 

to the liver, venous blood drained from the spleen, gastrointestinal tract and its associated 

organs, supplying approximately 75% of its blood flow (Schenk et al. 1962). In contrast 

to liver, hypervascular primary and metastatic liver tumors are known to derive their 

vascular supply primarily from the hepatic artery, a well-known phenomenon and the 

basis of all intra-arterial therapies for these tumors (Liapi and Geschwind 2007, Cady and 

Oberfield 1974, Swinton et al. 1970). 

Hepatic artery supplies blood to the liver from the cardio-pulmonary circulation. 

Liver also gets blood supply from the portal vein, which is in turn fed by mesenteric and 

splenic vein coming from gut and spleen respectively (Fleming et al. 1983). Therefore 

the blood arriving to the liver from the main circulation comes through hepatic artery first 
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and then through the portal vein en route spleen and gut. This time lag in the blood 

coming through the portal vein is exploited in the maximum slope method, to 

differentiate between the arterial and portal blood flow in the liver tissue. 

      CT perfusion is used by interventional radiologist to analyze the blood flow 

within the liver for diagnosing cancer (Kim et.al. 2014). The ratio of the blood supplies 

coming from hepatic artery and portal vein can be obtained from CT perfusion and 

therefore it can be used to differentiate between malignant and normal tissue. In CT 

perfusion a contrast agent, which is opaque to the X-rays, is injected intravenously and a 

series of CT scans are performed to trace the contrast agent within the body tissue. The 

contrast agent reaches the tissue through the feeding artery and is eventually drained out 

through the venous outflow. CT scan images give the variation of contrast agent 

concentration with time. As mentioned earlier, analysis of the CT scan images is required 

in order to obtain blood perfusion values and the maximum slope method has been used 

here for the analysis.  

The maximum slope method assumes that the contrast material coming from the 

feeding artery accumulates inside the tissue, without any venous outflow. Therefore the 

slope of the tissue density curve (TDC), contrast agent concentration with time, gives the 

rate of intake of contrast material into the tissue. The TDC of the feeding artery gives the 

contrast concentration in the incoming blood flow to the tissue. By applying conservation 

of mass and equating the inflow of the contrast material to the rate of accumulation of 

contrast material in the tissue we get 

         
     

  
                                                          (5.1) 
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Figure 5.3. Illustration demonstrating blood circulation to the liver. Liver receives its 

blood supply from hepatic artery and portal vein. Blood arriving to the liver from the 

main circulation, first comes through the hepatic artery and after a time lag comes from 

the portal vein via the spleen and gut. 

where        is the concentration of contrast material in the blood supply feeding the 

tissue at time t, F is the flow rate of the blood supply,      is the concentration of the 

contrast material of the tissue at time t and V is the volume of the tissue. To calculate the 

blood flow rate per unit volume of the tissue, the maximum slope of the liver TDC is 

divided by the maximum concentration (enhancement) in the arterial TDC. For this it has 
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to be ensured that only that portion of the TDC is analyzed where the no-venous outflow 

assumption is valid. 

 

 

 

 

Figure 5.4 Typical tissue density curves (TDCs) for artery, portal vein, spleen and 

liver. The concentration of the contrast medium, enahancement, is given in terms of 

Hounsfield Units (H.U.). From the time of peak enhancement of the arterial, splenic 

and portal vein curves the sequence of the appearance of contrast material can be 

ascertained. These are representation of the TDCs and not actual data points. 
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Figure 5.5. TDCs for liver and spleen, illustrating the arterial and portal phase, separated 

by the time of peak splenic enhancement, and the corresponding maximum slopes. Only 

that portion of the TDC is considered in maximum slope method which is after the start 

phase (SP) and the end phase (EP), defined by maximum enhancement values. These are 

representation of the TDCs and not actual data points. 

 As the liver receives its blood supply from two sources, the hepatic artery and 

hepatic portal vein, the maximum slope method needs to be modified to account for the 

dual-input. The contrast material coming from the main circulation comes directly to the 

liver through the hepatic artery, but it has to go through the spleen/gut in order to come 

through the portal vein (Fig 5.3). Therefore maximum slope method assumes that prior to 

the time of the splenic peak there is no contrast from other organs or tissues feeding the 

portal vein, thus up until this time, the liver is considered to be supplied with only arterial 

contrast. The time of maximal enhancement of spleen indicates the start of the portal 
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phase and the time of maximum tissue enhancement indicated the end of the portal phase. 

The bolus injection should be kept fast and short to avoid mixing of the two phases.  

Figure 5.4 illustrates a typical TDC for liver tissue along with artery, portal vein 

and spleen. The TDC for liver is divided into two parts (Fig 5.5), first when the arterial 

supply dominates and the second when the portal blood supply dominates. The two parts 

are separated by the time of maximum splenic enhancement.        

For hypervascular tumors, the time of maximal liver tissue enhancement may 

occur prior to or after the splenic maximal arterial enhancement. In the first case, we may 

then observe that the downward slope of the TDC of a tumor may occur before the spleen 

reaches its maximal enhancement, affecting therefore portal perfusion measurements. 

This anomaly was observed for some of the cases of hypervascular tumor, which lead to 

unreliable estimates of portal perfusion, while using maximum slope method. Other 

methods, such as tracer kinetic models, use the entire curve for the perfusion calculation 

and therefore do not have these problems. The aim of the present work was to evaluate 

the dual-input maximum slope method in calculating the hepatic arterial and portal 

perfusion of tumor in the VX2 rabbit liver model. We studied the TDC for 11 subjects 

(rabbits) and applied the dual-input maximum slope method for calculating the perfusion 

values. We specifically sought to examine whether the dual-input maximum slope 

method is able to calculate hepatic portal perfusion in cases of hypervascular hepatic 

tumors.  
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Material and Methods
1
  

Adult New Zealand White rabbits were used in this study.  All (n=11) weighed 

3.5–4.2 kgs prior to imaging.  Rabbits were housed in an Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC)-accredited facility in compliance 

with the Guide for the Care and Use of Laboratory Animals (National Research Council 

1996) and procedures were approved by the Johns Hopkins Institutional Animal Care and 

Use Committee (IACUC). Male and female white New Zealand rabbits were selected for 

their relevance to intra-arterial procedures and liver tumor imaging as part of our ongoing 

studies on liver cancer therapy. At designated time points, individual animals were 

randomly selected for inclusion in study cohorts at which point they underwent 

implantation of rabbit VX2 tumor in the liver for subsequent CT perfusion imaging. 

These experiments were performed by E. Liapi .  

 

Animal Model And Tumor Implantation 
1
 

Each animal received tumor implantation in the left lobe of the liver as detailed in  

(Buijs et al. 2011, Lee et al. 2008). The tumors were allowed to grow in the rabbit livers 

for 13–15 days, after which time they were subsequently imaged (Yamamoto et al. 2006, 

Hong et al. 2005) 

 

 

 

                                                             
1
 The experiments were performed by E. Liapi and S. Mirpour 
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Wide-Array CT Perfusion Protocol 
2
 

For CT perfusion imaging, each rabbit was first sedated with intramuscular 

injection of ketamine and xylazine and subsequently scanned in a wide-array 320- 

clinical CT scanner (Aquillon ONE, Toshiba, Japan). The CT perfusion protocol included 

at least one non-contrast enhanced volume acquisition, followed by a series of contrast-

enhanced CT acquisitions. Iso-osmolar contrast iodixanol (1.5 ml/kg, 320 mg I/ml-

Visipaque, GE Healthcare Inc., Princeton, NJ) was injected intravenously at 1ml/sec via a 

21G butterfly needle inserted in a marginal ear vein, followed by a saline flush of 7 ml at 

the same rate. The CT perfusion scanning parameters were: FOV=22cm, KV=120, 

mA=80, slice thickness=0.5mm, scan delay=6 sec. Total intermittent scanning time for 

each rabbit scan was 77 seconds. Wide-array CT scans were obtained every 2 sec for the 

first 25 seconds, and every 3 seconds thereafter and for an additional 42 seconds. Each 

scan takes 0.5 sec (one volume acquisition equals a single gantry rotation at a speed of 

0.5 s per 360°rotation). A total of 27 acquisitions with 5,400 images were obtained during 

each CT perfusion study, which were subsequently transferred to a dedicated workstation 

for image reconstruction and analysis. 

 

 

 

 

 

 

                                                             
2
 The experiments were conducted by E. Liapi and S. Mirpour 
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Image reconstruction and analysis 

Following CT acquisition, images were reconstructed with adaptive iterative dose 

reduction 3D (AIDR 3D; Toshiba Medical Systems, Japan), which is the manufacturer’s 

commercial hybrid IR algorithm, combining reconstruction in the raw data and image 

space domains. The reconstruction filter (FC03), and the reconstructed section thickness 

(5 mm) were fixed for all studies. 

Data was then exported to a dedicated workstation for image registration, using 

the manufacturer’s commercial software program (Body Registration; Toshiba Medical 

System, Tochigi, Japan) that automatically corrects the spatially non-consistent position 

of each organ among the 27-image series of each study. The program adjusted the 

position of each organ three-dimensionally, i.e., proportionally along any axis and 

rotationally.  

Maximum Slope Theory and Models 

The maximum slope (MS) method has been used to calculate the arterial and 

portal perfusion. MS method assumes no-venous outflow in the tissue, therefore only that 

portion of the TDC is considered which is before the start of venous outflow (Fig. 5.5). In 

Aquilion ONE (Toshiba) the point of maximum enhancement is chosen as the point of 

the start of the venous outflow and defined as End Phase (EP). By definition, after EP the 

enhancement starts to decreases, which is only possible if the contrast material is leaving 

the tissue, signaling venous outflow. Further, a start phase (SP) is defined as the point 

where contrast material starts entering the tissue, signified by the start of contrast 

enhancement. A short and fast contrast bolus is administered to make sure the no-venous 

outflow assumption is valid. 
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In a single supply organ the maximum slope of the TDC between the SP and EP is 

calculated and divided by the peak enhancement of the supplying artery, to obtain the 

blood flow per unit volume, as given by the following equation. 
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where F is the blood flow rate in the tissue, V is the tissue volume, SP is the start phase, 

EP is the end phase, SM is the time at which spleen attains maximum enhancement,      

and      are the concentration of contrast medium in the tissue and artery at a time 

instant t .  

With liver being a dual blood supply organ, fed by hepatic artery and portal vein, 

a different approach is used. The TDC can be, therefore, divided into two phases, the 

arterial phase, which is dominated by the arterial flow and the portal phase, which is 

dominated by the portal venous flow (Figure 5.5). These regions are separated at the 

point of maximum splenic enhancement (SM). The arterial and portal blood perfusion is 

given by the following equations:                           
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where (
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is the arterial blood flow rate per unit tissue volume, (
 

 
)
 
is the portal blood 

flow rate per unit tissue volume, SM is the time at which spleen attains maximum 
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enhancement, and      is the concentration of contrast medium in the portal vein at a 

time instant t .  

By placing circular regions of interest (ROIs) over the aorta, the main portal vein, 

the right and left lobes of the liver, as well as over each entire tumor at the level of each 

longest axial diameter, TDC were derived.  The size of each ROI was at least 1.0 cm
2
 or 

larger, except for that in the portal vein and the aorta, which were set to cover their 

shortest axis at the level of the hepatic hilum (and with a diameter of 1.0 mm
2
). 

Perfusion was calculated by using: a) the dedicated commercial software, on a 

pixel by pixel basis, that uses the dual-input maximum slope model (Body Perfusion; 

Toshiba Medical System, Tochigi, Japan), and b) MATLAB Code (Mathworks, Natick 

MA).  Flow measurements were expressed in mL per 100 mL per min. Arterial flow 

(AF), portal flow (PF) and perfusion index (PI) were calculated for tumor, left and right 

hepatic parenchyma.  

A MATLAB (Mathworks, Natick MA) code was developed to implement the 

maximum slope method and calculate the perfusion values. After background subtraction, 

as described earlier, curve fitting was done for all the TDCs using ‘smoothingspline’ 

function in MATLAB. The fitted TDCs were discretized using a time step of 0.1 s for 

calculating maximum value or slope. The time corresponding to the maximum 

enhancement point for left/right liver and tumor ROI was taken as the EP point. For 

choosing the SP, we choose that point where the enhancement reached 10 % of the 

maximum enhancement in the corresponding TDC. The hepatic arterial perfusion (HPA) 

and hepatic portal perfusion (HPP) values were calculated using equation (5.3) and (5.4) 

respectively. The perfusion value hence obtained has ‘1/s’ units, which is then changed to 
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‘ml/(min.100ml)’ by multiplying the perfusion value with 100*60 [ml. s/(min.100ml)]. 

The perfusion index was calculated using equation (5.5). The data was recorded and 

analyzed for 11 subjects. 

    
   

         
                                                (5.5)   

Imaging analysis algorithm: ROIs 

Images were processed in Toshiba CT scanner. The regions of interest (ROIs) 

were selected for the artery, portal vein, spleen, healthy liver (left/right) and tumor as 

shown in figure 5.6. The Toshiba software generated TDCs corresponding to these ROIs. 

CT scan comprised of 25 scans and therefore each of the six curves, corresponding to 

different ROIs, had 25 data which were recorded and used for the calculation of perfusion 

values. In order to remove the background noise the average of the first two points is 

subtracted from all the points. 

Arterial and portal flow for tumor, left and right liver were calculated with the use of 

the commercial software (Body Perfusion, Toshiba) (Figure 5.7), as well as by extracting 

HU values from the TDC curves to MATLAB software (MathWorks, Natick, 

Massachusetts)  and subsequently deriving perfusion values from the equation.  

5.2.2 RESULTS 

The maximum arterial and portal enhancement for 11 subjects is shown in Table 

5.3. It also shows the SP and time to peak points of artery, portal vein and spleen. The SP 

of artery denotes the entering of contrast material in the artery and therefore starts the 

entire process. SP time of artery for different subjects varies, which makes the  
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Figure 5.6. Regions of interest: (a) artery, (b) portal vein, (c) spleen, (d) left liver, (e) 

right liver and (f) tumor 

comparison between subjects difficult. In order to normalize and therefore facilitate intra 

subject comparison all the time points have been subtracted by the SP time of artery. The 

normalized values are given in the last two columns of Table 5.3. Figure 5.8 shows the 

time of maximum enhancement for artery, portal vein and spleen for different subjects. 

The average values of the time of maximum enhancement, along with standard deviation, 

are shown in an insert. 
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Figure 5.7. Color map for patient 33, with region of interest around a tumor, showing (a) 

Hepatic Arterial Perfusion (HAP), (b) Hepatic Portal Perfusion (HPP), (c) Hepatic 

Perfusion Index (HPI), and (d) raw/unprocessed image.  
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Table 5.3. The maximum enhancement of artery and portal vein. Start phase and time at 

maximum enhancement for artery, portal vein and spleen. 

   
  

   
Normalized 

Patient ROI 
 

Maximum  Start Maximum 
 

Start Maximum 

No. 
  

enhancement  Phase enhancement 
 

phase enhancement 

      Time   time 

   [H.U.]  [s] [s]  [s] [s] 

10 Artery 
 

1045.6  4.8 16.3 
 

0 11.5 

 
Portal Vein 

 
524  14.2 27.9 

 
9.4 23.1 

 
Spleen 

 
  6.7 20.3 

 
1.9 15.5 

11 Artery 
 

921.8  8.6 21.8 
 

0 13.2 

 
Portal Vein 

 
451.7  19.1 33.5 

 
10.5 24.9 

 
Spleen 

 
  15.5 30.6 

 
6.9 22 

12 Artery 
 

1121.2  5.2 16.5 
 

0 11.3 

 
Portal Vein 

 
483.2  15.4 33.5 

 
10.2 28.3 

 
Spleen 

 
  10 24.9 

 
4.8 19.7 

14 Artery 
 

903.4  5.3 17.9 
 

0 12.6 

 
Portal Vein 

 
407.4  16 31.2 

 
10.7 25.9 

 
Spleen 

 
  10.9 24.6 

 
5.6 19.3 

15 Artery 
 

968  4.9 15.1 
 

0 10.2 

 
Portal Vein 

 
369  15.8 27.4 

 
10.9 22.5 

 
Spleen 

 
  9.3 21.8 

 
4.4 16.9 

20 Artery 
 

961.9  2.1 11.6 
 

0 9.5 

 
Portal Vein 

 
529.7  9.1 21.1 

 
7 19 

 
Spleen 

 
  4.6 17.1 

 
2.5 15 

23 Artery 
 

1147  3 16 
 

0 13 

 
Portal Vein 

 
525.4  10.3 28.3 

 
7.3 25.3 

 
Spleen 

 
  7.8 24.2 

 
4.8 21.2 

24 Artery 
 

1358  5.6 17 
 

0 11.4 

 
Portal Vein 

 
514.8  15.7 26.3 

 
10.1 20.7 

 
Spleen 

 
  10.5 26.2 

 
4.9 20.6 

33 Artery 
 

2127  11.3 20.4 
 

0 9.1 

 
Portal Vein 

 
463.1  23.5 33.2 

 
12.2 21.9 

 
Spleen 

 
  19.7 30.4 

 
8.4 19.1 

40 Artery 
 

1210.5  4 13.8 
 

0 9.8 

 
Portal Vein 

 
352.1  12.5 24.6 

 
8.5 20.6 

 
Spleen 

 
  6.5 17.7 

 
2.5 13.7 

41 Artery 
 

1510.9  3.6 12.3 
 

0 8.7 

 
Portal Vein 

 
439.4  13.4 23.7 

 
9.8 20.1 

 
Spleen 

 
  5.8 20.6 

 
2.2 17 

 



120 
 

 

Figure 5.8. Time of maximum enhancement for artery, spleen and portal vein in 11 

subjects. Figure insert shows the average time of maximum enhancement for artery, 

spleen and portal vein in 11 subjects. X-error bar denotes the standard deviation in 

average values. Artery attains maximum enhancement the earliest followed by spleen and 

portal vein.  
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Table 5.4. Time of start phase (SP), arterial maximum slope, portal maximum slope and 

end phase (EP) for left/right liver and tumor. 

       
Normalized 

Patient ROI Start Arterial Portal End 
 

Start Arterial Portal End 

No. 
 

phase Slope slope Phase 
 

phase slope Slope phase 

  [s] [s] [s] [s]  [s] [s] [s] [s] 

           
10 Left Liver 12.6 20.3 30 40 7.8 15.5 25.2 35.2 12.6 

 
Right Liver 16.9 17.6 25.6 39.1 12.1 12.8 20.8 34.3 16.9 

 
Tumor 9.4 13.3 20.3 23.7 4.6 8.5 15.5 18.9 9.4 

11 Left Liver 22 30.6 34.7 46.8 13.4 22 26.1 38.2 22 

 
Right Liver 25.7 29.9 30.6 45 17.1 21.3 22 36.4 25.7 

 
Tumor 13.4 19.7 na 29.5 4.8 11.1 na 20.9 13.4 

12 Left Liver 14.8 24.9 31.9 39.6 9.6 19.7 26.7 34.4 14.8 

 
Right Liver 13.6 24.9 30.1 46 8.4 19.7 24.9 40.8 13.6 

 
Tumor 9.9 15.9 24.9 30.9 4.7 10.7 19.7 25.7 9.9 

14 Left Liver 15.5 24.6 33 41.8 10.2 19.3 27.7 36.5 15.5 

 
Right Liver 15.2 24.6 29.8 43.8 9.9 19.3 24.5 38.5 15.2 

 
Tumor 9.7 12.2 24.6 25.3 4.4 6.9 19.3 20 9.7 

15 Left Liver 17.8 21.8 30 39.4 12.9 16.9 25.1 34.5 17.8 

 
Right Liver 18.1 21.8 33 46.6 13.2 16.9 28.1 41.7 18.1 

 
Tumor 8.4 15.9 21.8 29.1 3.5 11 16.9 24.2 8.4 

20 Left Liver 11.5 17.1 22 32.3 9.4 15 19.9 30.2 11.5 

 
Right Liver 13.2 17.1 23.8 34.3 11.1 15 21.7 32.2 13.2 

 
Tumor 5.2 12.4 17.1 17.6 3.1 10.3 15 15.5 5.2 

23 Left Liver 17.5 24.2 26.3 40.6 14.5 21.2 23.3 37.6 17.5 

 
Right Liver 17.9 22.5 31.9 46.7 14.9 19.5 28.9 43.7 17.9 

 
Tumor 7.8 12.3 24.2 26.2 4.8 9.3 21.2 23.2 7.8 

24 Left Liver 19.4 26.2 28.3 44.5 13.8 20.6 22.7 38.9 19.4 

 
Right Liver 20.2 25.4 34.1 42.9 14.6 19.8 28.5 37.3 20.2 

 
Tumor 11.1 13.2 26.2 30 5.5 7.6 20.6 24.4 11.1 

33 Left Liver 26.3 30.4 35 48.1 15 19.1 23.7 36.8 26.3 

 
Right Liver 30.1 30.4 34.9 50.1 18.8 19.1 23.6 38.8 30.1 

 
Tumor 17.8 22.9 n.a. 30.3 6.5 11.6 na 19 17.8 

40 Left Liver 14.4 17.5 26.4 39.8 10.4 13.5 22.4 35.8 14.4 

 
Right Liver 12.8 17.7 36.1 41.1 8.8 13.7 32.1 37.1 12.8 

 
Tumor 7.3 14.5 17.7 21.5 3.3 10.5 13.7 17.5 7.3 

41 Left Liver 13.5 19.4 28.9 37 9.9 15.8 25.3 33.4 13.5 

 
Right Liver 13.8 20.6 24.1 37.9 10.2 17 20.5 34.3 13.8 

 
Tumor 7.7 11.1 na 19.8 4.1 7.5 na 16.2 7.7 
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Table 5.5. Perfusion value comparison: CT scanner vs. calculated values 

    
Calculated 

 
CT scanner 

        
similar ROI 

Patient 
 

ROI 
 

HAP HPP HPI 
 

HAP HPP HPI 

No. 
   

(ml/(min. 100ml)) (%) 
 

(ml/(min. 100ml)) (%) 

           
10 

 
Left Liver 

 
33.6 92.2 26.7 

 
50.7 128.6 28.2 

  
Right 
Liver 

 
34.9 162.7 17.6 

 
50.3 158.5 24 

  
Tumor 

 
57.2 68.6 45.5 

 
85.2 55 61.7 

11 
 

Left 
 

46.0 139.2 24.8 
 

52.7 141.7 26.9 

  
Right 

 
80.5 159.5 33.5 

 
62.7 168.9 27 

  
Tumor 

 
76.4 0.0 100.0 

 
78.5 31.3 71.5 

12 
 

Left 
 

36.2 100.4 26.5 
 

57.2 104.6 36.4 

  
Right 

 
41.4 109.7 27.4 

 
54.9 131.5 29.5 

  
Tumor 

 
84.3 27.9 75.1 

 
115.8 40 75.5 

14 
 

Left 
 

41.8 107.0 28.1 
 

50.6 137.2 26.9 

  
Right 

 
54.8 154.8 26.1 

 
46.1 125.6 26.8 

  
Tumor 

 
68.5 9.4 87.9 

 
98 27 79.3 

15 
 

Left 
 

40.0 126.8 24.0 
 

31.8 168.1 15.9 

  
Right 

 
29.5 112.1 20.8 

 
24.2 144.9 14.4 

  
Tumor 

 
47.9 23.8 66.8 

 
51.3 47.2 54.8 

20 
 

Left 
 

36.0 105.4 25.5 
 

26.8 176.4 13.5 

  
Right 

 
35.5 101.8 25.8 

 
38.3 158.4 19.4 

  
Tumor 

 
72.4 9.9 87.9 

 
132.4 28.5 80.2 

23 
 

Left 
 

57.2 143.7 28.5 
 

60.4 166.4 26.7 

  
Right 

 
47.6 94.4 33.5 

 
47 140.6 25 

  
Tumor 

 
57.0 21.0 73.1 

 
73.9 31.8 74.7 

24 
 

Left 
 

50.6 142.4 26.2 
 

65.2 197 24.9 

  
Right 

 
44.0 168.2 20.8 

 
51.3 196.8 20.6 

  
Tumor 

 
56.0 11.1 83.5 

 
81.6 47.2 68.8 

33 
 

Left 
 

19.2 127.6 13.1 
 

69.1 192.6 26.4 

  
Right 

 
17.1 135.8 11.2 

 
44.4 134.8 24.8 

  
Tumor 

 
21.1 0.0 100.0 

 
44.7 28.1 62.2 

40 
 

Left 
 

28.0 171.8 14.0 
 

32.8 165.9 16.5 

  
Right 

 
26.4 162.1 14.0 

 
30.3 144 18.2 

  
Tumor 

 
60.9 128.0 32.2 

 
87.2 91.5 54.7 

41 
 

Left 
 

30.3 103.8 22.6 
 

73.6 137.5 34.7 

  
Right 

 
17.9 113.1 13.7 

 
47.5 154.4 23.4 

  
Tumor 

 
49.0 0.0 100.0 

 
114.1 28 79.4 
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The key points in the TDCs curves are the start/end phase and the point where the 

maximum arterial/portal slope is obtained. These points of left/right liver and tumor ROI 

for different time subjects are given in Table 5.4. Table 5.5 gives the perfusion values for 

left/right liver and tumor ROIs calculated using equations 5.3-5. The corresponding 

values obtained from the CT perfusion software Aquilon is also give in the table.  

 

Figure 5.9. Time of start phase (SP), arterial maximum slope, portal maximum slope and 

end phase (EP) for healthy liver in 11 patients, along with the respective splenic 

maximum time. The portal phase has a larger duration than the arterial phase. The time of 

arterial maximum slope and splenic maximum is close.  
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Figure 5.10. Time of start phase (SP), arterial maximum slope, portal maximum slope 

and end phase (EP) for tumor in 11 patients, along with the respective splenic maximum 

time. Note that for patients 11, 33 and 41 end phase points were before splenic maximum 

and therefore portal slope could not be calculated and has been marked fictitiously at 

corresponding end phase values by red circle. The duration of portal phase is much 

smaller than the arterial phase. 
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Figure 5.11.  Average values of key time points for liver and tumor, along with standard 

deviation. Average time of maximum splenic enhancement is also shown. There is time 

difference between splenic maximum and EP/SP for healthy liver. For tumor, the EP 

region is overlapping the splenic maximum region, this might make it unfeasible to 

obtain portal phase if the EP point lies before the splenic maximum.  
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Figure 5.12. Arterial phase duration for healthy liver and tumor. Healthy liver have lower 

arterial phase duration than tumor. This result is expected as tumor has an early SP and is 

primarily fed by artery, in contrast with healthy liver which receives majority of its blood 

supply from the portal vein.  
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Figure 5.13. Portal phase duration for liver and tumor. Portal phase duration  for tumor is 

very small and is non-existent for 3 (11, 14 and 41) out of the 11 subjects investigated. It 

can also be seen that the duration for liver is much larger than that of tumor, this is due to 

the fact that healthy liver has a late EP and receives majority of the blood supply from 

portal vein, whereas tumor gets the major portion of the blood supply from the tumor.  

 The TDC curves relevant to the MS method lie between the start phase and the 

end phase, signifying the start of the venous outflow. The start phase and the end phase of 

healthy liver in all 11 subjects are shown in Figure 5.9. As mentioned, earlier this main 

portion of the TDC curve is divided into arterial and portal phase by the time it takes for 

the spleen to attain maximum enhancement. Subsequently, the maximum slopes in the 

arterial and portal phases are calculated. The time corresponding to maximum arterial and 
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portal slope and splenic maximum enhancement is also illustrated in the same figure. 

Figure 5.10 illustrates these points corresponding to the tumorous region in the subjects. 

The average of these key time points for healthy and tumorous liver is illustrated in 

Figure 5.11, x-error bars represents the standard deviation. It can be seen that tumor starts 

earlier and ends earlier than healthy liver. The splenic maximum region is closer to the 

start phase for the healthy liver and to the end phase for tumor. The TDC curve from SP 

to EP for healthy liver is around 30 s and for tumor is around 20 s. 

The arterial phase duration is greater for tumor as compared to a healthy liver as 

shown in Figure 5.12, on the other hand tumor has greater portal phase duration (Fig 

5.13). For healthy liver the duration of arterial phase is greater than portal phase, whereas 

for tumorous region this is reversed. These results are expected as healthy liver gets 

majority of its blood supply from portal vein and tumor’s blood supply is dominated by 

hepatic artery.   

Figure 5.13 also illustrates the problem in using the maximum slope method to 

calculate the portal perfusion for tumor. Out of eleven subjects, three (11, 33 and 41) 

have a negative portal phase duration, this is due to the fact that for these cases the 

splenic maximum enhancement occurs after the end phase of the liver. By definition, 

portal slope can only be calculated from that portion of TDC which lies after the splenic 

maximum and before venous outflow (EP). Therefore, this demonstrates that it is not 

possible to obtain the portal perfusion values, using the MS method, for all cases.   
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Figure 5.14. TDC for spleen, liver and tumor in subject 23. Time of maximum 

enhancement  for spleen and end phase for liver and tumor has been marked by vertical 

dashed line. Portal phases for liver and tumor have been shown.   



130 
 

 

Figure 5.15. Rate of change of enhancement (
     

  
), slope of the TDCs (    ), for liver 

and tumor in subject 23. The slope of a curve becomes zero as it reaches to its maximum. 

Therefore, the maximum for TDC can be clearly seen in this figure as the point where the 

rate of change of enhancement, slope of the TDC curve, crosses the zero line.  
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Figure 5.16. TDC for spleen, liver and tumor in subject 11. Tumor does not seem to have 

a portal phase as the spleen attains its maximum after the end phase of tumor. Spleen 

attains its maximum at 30.6 s and EP for tumor is 29.5 s.   
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Figure 5.17. Rate of change of enhancement (
     

  
), slope of TDCs (    ), for liver and 

tumor in subject 11. Under the no-venous outflow assumption rate of change of 

enhancement translates into the rate of intake of contrast medium inside the tissue. After 

the EP point of tumor at 29.6 s the rate drops below zero, indicating outflow of contrast 

medium from the tissue. As the splenic maximum occurs after the EP of tumor, there is 

no TDC left to calculate the portal slope without violating underlying assumption of the 

MS method. 
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Figure 5.18. TDCs for spleen, liver and tumor in subject 33. The maximum enhancement 

of tumor (EP = 44 s) occurs after a dip in the TDC curve. A decrease in enhancement 

value signifies venous outflow and selecting EP after that violates the underlying 

assumption of maximum slope method. Therefore any maximum occurring after a dip in 

the TDC should be rejected and only that maximum point should be selected which 

occurs after a steady rise in the TDC.  
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Figure 5.19. Rate of change of enhancement (
     

  
), slope of TDCs (    ), for liver and 

tumor in subject 33. According to Figure 5.18 the tumor TDC is reaching maximum at 44 

s. The rate of change of enhancement for tumor can be seen crossing the zero line at 44 s, 

but it also crosses the line before that at 30.3 s. The entry of this curve below the zero line 

is indicative of the start of venous outflow and hence it violates the underlying 

assumptions of the MS method.   
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       Figure 5.14 illustrates the TDCs for healthy liver, tumor and spleen in subject 23. 

The tumor curve attains its maximum at 26 s and as discussed in the materials and 

method section this is taken as the end phase (EP) for tumor. Similarly left and right liver 

have EP points at 40.5 s and 46.5 s. For this subject all the EPs are after 24.1 s, splenic 

maximum, and therefore it is possible to calculate the portal perfusion for this case. The 

slopes of the left/right liver and tumor TDCs are plotted in figure 5.15. The slope of a 

curve becomes zero at its maximum and therefore the slope curve crosses the zero line at 

the corresponding EP points.  

Table 5.3 and 5.4 shows the time of maximum enhancement for spleen and the 

end phase time for tumor. For the dual supply the maximum slope method to be 

applicable, the time of maximum splenic enhancement should be prior to the end phase of 

the tumor. This condition is satisfied for all but three subjects, 11, 33 and 41. There is 

another type of discrepancy which arises with subject 33. Although the end phase of the 

tumor in subject 33 is after the splenic maximum, the method of selection of end phase 

leads to violation of no-venous outflow assumption. The case of subject 11 and 33 has 

been analyzed in detail later in this section. 

The TDCs for healthy liver and tumor in subject 11 are plotted separately in 

figure 5.16. The end phase of left and right liver occurs at 46.7 s and 45 s which is more 

than 13 s after the peak time of the spleen 30.5 s. The time between the splenic maximum 

and end phase is when the portal flow dominates and the maximum slope of the TDC 

curve is recorded here. In the case of tumor the end phase is at 29.6 s which is before the 

peak time of spleen. So for tumor it seems that by the time the portal flow starts to 

dominate the tumor TDC has gone beyond the maximum, signaling the start of the 
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venous outflow and hence the maximum slope model cannot be applied to find the 

hepatic portal flow for the tumor. Similar discrepancy is observed for subject #41.            

             Another type of discrepancy was observed in subject 33. The TDCs for spleen, 

liver and tumor are shown in figures 5.18. The slope for the left/right liver and tumor is 

illustrated in figure 5.19 and the key time points of the TDCs are shown in Table 5.3 and 

5.4. 

         In this case although the end phase for the tumor occurs at 44 s, 13.5 s after the 

splenic maximum (30.5 s), the no-venous outflow assumption has been violated here. 

Figure 5.18 shows that soon after the splenic maximum, and therefore during the portal 

phase, a dip is observed in the enhancement values. The tumor TDC attains local 

maximum around 31 s and after that keeps on decreasing till 34 s. This becomes clearer 

in the Figure 5.19, where the slope of the curve goes below the zero line around 32 s. 

This shows that the contrast material has started to leave the tissue, making the no-venous 

outflow assumption invalid. The TDC for liver attains its global maximum at 44 s and the 

maximum portal slope is calculated at 39.25 s. The slope for portal slope was calculated 

where the no-venous outflow assumption was not valid. 

5.2.3  DISCUSSION 

As the healthy liver primarily gets its blood supply from the portal vein it has 

higher portal phase duration than tumor as seen in figure 5.12. On the other hand tumor is 

predominantly fed by hepatic artery and therefore it can be seen in figure 5.13 that tumors 

have higher arterial phase duration as compared to healthy liver. 
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 It was observed that in some of the cases maximum splenic enhancement occurred 

after the end phase of tumor. This is something which is not expected according to the 

maximum slope method. There should ideally be a portion of tissue concentration curve 

after splenic maximum and before tumor maximum, which can be used to calculate 

maximum slope and hence blood perfusion rate. Under these circumstances the only 

possible estimate is that the tissue is receiving all its blood supply from hepatic artery, 

which does not seem to be plausible. Another problem which was observed here is the 

presence of local maxima in the tumor TDC curves, which occurred very early in the 

curves. By assumption inherent in the maximum slope model only the first maxima can 

be used as an end point, this can lead to ambiguity in some cases. One of the reasons 

behind these discrepancies is also that this method will benefit from more rigorous 

validation.  There are also large variations present in blood perfusion values when 

evaluated using different methods. The solution to these discrepancies is to use other 

methods, tracer kinetic models, for evaluating blood perfusion values. 

5.2.4 CONCLUSION 

           Maximum slope method was investigated to examine two anomalies present in the 

calculation of perfusion values. In the MS method the location of splenic maximum 

enhancement is crucial as it divides the arterial and portal phase. In some of the cases 

discussed in present work the splenic enhancement was occurring after the end point of 

the liver, due to which maximum slope method was unable to give an accurate HPP. 

Secondly, local minima was observed in the liver concentration curves which makes it 

difficult to accurately define the end phase of liver, which is again crucial for the 

calculation of perfusion values. Considering these limitations it is advisable to use other 
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methods for perfusion calculation where data accuracy is critical, such as while analyzing 

the heat transfer within the tissue. For other application it might be only necessary to 

check if the perfusion values are above a set cut-off, in such cases further work needs to 

be done to examine the accuracy of maximum slope method. 
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CHAPTER 6 

OPTIMIZING TEMPORAL SAMPLINGS 

The complete authorship of this work should be read as Rajeev Hatwar, Prof. Eleni Liapi 

and Prof. Robert Ivkov. The experiments were performed by Prof. Eleni Liapi. 

Optimization of temporal protocol was performed by Rajeev Hatwar under the guidance 

of his advisor, Prof. Robert Ivkov. The work also benefited from comments of Prof. 

Charles Meneveau. 

 

6.1 INTRODUCTION  

X-ray computer tomography (CT) involves exposure to radiations which can have 

an adverse effect on the body. The risk of cancer death associated with an abdominal scan 

is 12.5/10,000, which is comparable to the risk from a year of smoking (12/10,000) (Gray 

1996). So there is a need to optimize the radiation dose, so as to get quality results 

without exposing subjects to more than necessary radiations.  

There are three approaches to reduce the radiation dose during scanning. It can be 

reduced by decreasing tube current and tube voltage (Othman et al. 2016). Radiation dose 

is more sensitive to the tube voltage as compared to tube current, as it is proportional to 

tube voltage by power greater than 2 and “linearly related” to tube current. In the case of 

tube current noise increases with decreasing current, so there is a trade-off between image 

quality and radiation dose. Lastly, radiation dose can be reduced by decreasing the 

number of scans, decreasing the temporal samples. 
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           Work has been done to optimize the number of samples needed to calculate 

various relevant parameters. To our knowledge all of them, have focused on analyzing 

equal time intervals (Ng et al. 2013, Kloska et al. 2010, Kamena et al. 2007, Goh et al. 

2008, Kambadakone et al. 2011, Wiesmann et al. 2008, Wintermark et al. 2004, Ng et al. 

2015, Bisdas et al. 2009) and they are retrospective studies. Table 6.1 gives the various 

methods which were used to calculate blood perfusion and the body tissue to which it 

was applied.  

Table 6.1 Protocol optimization studies undertaken along with the respective methods 

and body tissue 

 Method Body tissue 

Ng et al. 2013 Distributed Parameter model Lung 

Kloska et al. 2010 Maximum slope method Head 

Kamena et al. 2007 Deconvolution method Head 

Goh et al. 2008 Distributed parameter model Colon/rectum 

Kambadakone et al. 2011 Deconvolution method Abdomen/Pelvis 

Wiesmann et al. 2008 Deconvolution method Head 

Wintermark et al. 2004 Deconvolution method Head 

Ng et al. 2015 Distributed parameter model Liver 

Bisdas et al. 2009 Tracer kinetic model Head/neck 

 

Equal time intervals approach is justifiable for tracer kinetic models, like 

distributed parameter, which use the entire curve for the perfusion calculation. In case of 
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model-free approaches, like maximum slope method, the values are collected only at 

certain key points and not from the entire curve. Therefore some points on the curve are 

definitely more important than the other. Considering this, we have explored the 

possibility of using variable sample intervals in the present work. 

 Different methods have been employed to obtain an optimized protocol. The 

existing method of equal spaced time intervals is first analyzed. This is followed by a 

subject specific search for an optimized protocol for a fixed number of scans. All possible 

combinations of experimentally available temporal points are tried and tested against the 

full protocol by using a cost function, which comprises of different parameters related to 

perfusion. In order to obtain a common protocol, which can be applied to all the subjects, 

another set of calculations are performed in which all possible combinations are tried and 

the cost function comprises of all the subjects simultaneously. The results from these 

algorithms are tested against fixed interval case.  

6.2 MATERIALS AND METHODS 

Wide-array 320-slice clinical CT scanner, Aquilion ONE, from Toshiba Japan 

was used here. Twenty-eight adult male New Zealand white rabbits were used with VX2 

liver tumor. Iso-osmolar contrast iodixanola was injected intravenously through a 

marginal ear vein at 1ml/sec. Contrast agent was injected intravenously and 25 scans 

conducted of 0.5 seconds each. The experiments were conducted by E. Liapi and S. 

Mirpour. Wide-array CT scans were obtained every 2 sec for the first 25 seconds, and 

every 3 seconds thereafter and for an additional 42 seconds. 

  For the retrospective study 11 subjects were considered and the analysis was 

done using them to find the optimized temporal protocol. This was followed by a 
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prospective study where the optimized protocol was applied on a new set of 17 subjects 

and then the accuracy of the optimized protocol was tested. 

  Several different protocols were tested during optimization and are described 

later in this section. The cost function used for the optimization process calculates the 

percentage error in HAP, HPP and HPI for the healthy liver (equations 6.1-3) and takes 

average of all them (equation 6.4).  

          |
                             

                

|                                                            

          |
                             

                

|                                                            

          |
                             

                

|                                                              

                         
                

                                          ⁄  

The cost function used here had equal weightage for HPI, HAP and HPP. Since 

HPI includes HAP and HPP (Equation 5.5), this combination inherently gives more 

weightage to hepatic perfusion index, which is useful for interventional radiologist. 

 All the tissue density curves are standardized by fixing the starting point to the 

beginning of the appearance of contrast agent in the arterial curve. To calculate the 

starting point first the background noise is subtracted from the curves. For this the first 

two points are used to calculate average background noise which is subtracted from the 

respective curves. Then the starting of the arterial curve is decided using a cut-off of 100 
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H.U. The tissue density curve with all 25 experimental data points is used for generating 

a fitted curve. In the present work ‘smoothing spline’ function is used for curve fitting. 

These curves are shifted so that all of them begin at arterial start time.  

In the case of equally spaced time intervals, data points at an interval of 0.5 s are 

extracted from the fitted and standardized curve, starting at 0 s and ending at 40 s, and 

this is assumed to be the gold standard for calculating error. The end phase in the 

standardized curves were occurring within 40 s and therefore points after this were not 

included. For comparative analysis data points are extracted at an interval of 1 s, 2 s, 3 s, 

4 s, 5 s, 6 s, 8 s and 10 s. ‘Smoothing spline’ fitting is used for curve fitting with these 

points. These fitted curves are used for calculating the perfusion related parameters. 

For the case of variably spaced time interval, data at the following time points, 

which is based on existing protocol, are extracted from the fitted and standardized curves:  

0 s, 2 s, 4 s, 6 s, 8 s, 10 s, 12 s, 14 s, 16 s, 18 s, 20 s, 24 s, 28 s, 32 s, 36 s and 40 s. 

The data points hence obtained are used subsequently for all analysis related to variably 

spaced time intervals. The fitted curve based on these 16 points is used to calculate the 

gold standard values for all the relevant parameters. All possible combinations of 4 to 16 

time points are chosen out of these data points, followed by ‘smoothing spline’ curve 

fitting. The best possible combination for a given number of time points is selected which 

gives the lowest cost function. First this optimization is carried out individually for all the 

subjects, to get a protocol customized according to each subject. The protocol obtained 

through this process gives the smallest cost function for the corresponding subject. 

Subsequently, it is extended to obtain a protocol which gives the lowest average cost 
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function across all subjects, and is common to all the subjects. Once a common protocol 

is obtained using the retrospective analysis, it is applied to prospective data. 

In the retrospective study the temporal samples before 40 s are chosen. The 

maximum slope method does not use the points once the maximum of tissue has reached. 

In all the subjects studied this point was before 40 s. Different combinations of protocols 

are tested against a gold standard to check the variation in the cost function.  

6.3 RESULTS AND DISCUSSION 

Figure 6.1 shows the deviation of the hepatic arterial perfusion with increase in the 

time interval between different temporal samples. The x axis represents the actual values, 

obtained using the gold standard of 0.5 seconds interval. HAP for different time intervals 

is plotted on the y axis. A line corresponding to an exact match is plotted on each of the 

subplots. The further the points are from this line the poorer is the approximation. As the 

time interval is increasing the points are moving further away from the straight line. 

There is an over prediction as the sample interval increases. Similar trends are observed 

for other parameters: hepatic portal perfusion, hepatic perfusion index, maximum arterial 

contrast, maximum portal vein contrast, arterial maximum slope and the portal maximum 

slope.  

 Table 6.2 shows the percentage error for each subject for different lengths of time 

intervals ranging from 0.5 seconds (83 scans), gold standard, to 10 seconds (7 scans). 

Error has been calculated by averaging the errors (cost function) in HAP, HPP and HPI 

for healthy liver regions. The error gradually increased with the increase in the length of 

time intervals, though the increase in error varied for different patients. The error with 10 

seconds time interval varied from around 14 % to 46 % within different subjects. Figure 
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6.2 shows the pictorial representation of table 6.2. It can be seen that the errors decrease 

with increasing number of scans. The variability in the error among different subjects can 

be clearly seen in the figure. 

 

          

HPI gold standard 

HPI measured 

23 scans 16 scans 13 scans 

9 scans 8 scans 7 scans 

    = 2 s     = 3 s     = 4 s 

    = 6 s     = 8 s     = 10 s 

Figure 6.1: The effect of increasing time intervals, for equally spaced time interval, 

on the computation of HPI for different subjects has been shown here. Note that 

only the healthy liver tissue was considered here. The HPI for the gold standard 

case of 0.5 s time interval is given on the horizontal axis and other are plotted on 

the vertical axis. HPI estimation deteriorates with increasing time intervals and for 

most of the cases it is over predicting the value of HPI. 
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Table 6.2: Error for different subjects with equally spaced temporal samples for 

retrospective cases 

Time 

intervals  

10 8 6 5 4 3 2 1 0.5 

Number of 

          

samples 
 

5 6 7 9 11 14 21 41 81 

Total 

          

samples 
 

7 8 9 11 13 16 23 43 83 

           
Subject 

Tag 

          

           

10 

 

28.92 28.45 15.03 10.76 5.70 2.63 1.32 0.19 0 

11 

 

38.89 34.11 30.08 24.99 17.63 10.72 3.30 0.31 0 

12 
 

24.27 22.75 16.10 12.93 6.57 2.38 0.41 0.05 0 

14 

 

18.04 14.23 9.68 7.92 4.58 3.44 1.68 0.23 0 

15 
 

23.32 24.98 14.40 10.64 5.38 1.87 0.28 0.55 0 

20 

 

40.63 44.14 33.41 26.83 18.16 9.64 3.32 0.16 0 

23 

 

21.84 20.79 14.00 11.49 9.24 5.45 2.07 0.11 0 

24 

 

13.76 12.17 5.92 3.61 1.56 0.58 0.67 0.08 0 

33 

 

43.36 57.13 34.64 27.73 19.72 11.96 4.50 0.35 0 

40 
 

46.17 52.23 28.61 15.23 11.93 8.63 7.10 1.57 0 

41 

 

17.80 18.53 14.47 6.96 1.89 2.79 3.44 0.93 0 

           



147 
 

Average 

 

28.82 29.95 19.67 14.46 9.31 5.46 2.55 0.41 0 

 

 

The results from the subject specific study, where different combinations of 

temporal protocols were tried for individual subjects, are presented in table 6.3 and 

illustrated in figure 6.3. Errors obtained from the abbreviated protocol for individual 

subjects have been plotted against the number of scans in figure 6.3. The total number of 

Figure 6.2: Variation of error in calculation of perfusion values for different subjects 

as a function of number of scans. Here equal duration of time intervals was used. 

Error decreases as the number of scans increases. The error calculated here is based 

on the average error in HPA, HPP and HPI values for healthy liver.  

  



148 
 

scans was varied from 6 scans to 18 scans and the errors decreased as the number of 

scans increased. The errors for all the subjects and number of scans considered here were 

lower than 2.5 %. 

Table 6.3:  Error for different subjects with variable time intervals. Here the protocol was 

obtained separately for different subjects 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 

             

              

1 1.10 0.18 0.55 0.13 0.11 0.05 0.04 0.06 0.08 0.06 0.03 0.02 0 

2 0.66 2.01 1.47 1.35 1.64 1.60 0.91 0.56 0.21 0.02 0.06 0.13 0 

3 1.52 0.80 0.36 0.08 0.20 0.07 0.06 0.06 0.06 0.03 0.02 0.04 0 

4 0.47 0.31 0.19 0.36 0.36 0.24 0.25 0.29 0.16 0.02 0.03 0.05 0 

5 0.41 0.13 0.17 0.09 0.05 0.03 0.04 0.03 0.09 0.08 0.05 0.04 0 

6 0.92 0.73 0.43 0.37 0.14 0.23 0.07 0.09 0.03 0.02 0.04 0.05 0 

7 0.84 0.32 0.24 0.06 0.05 0.16 0.16 0.11 0.07 0.04 0.09 0.05 0 

8 0.70 0.11 0.11 0.05 0.03 0.26 0.15 0.02 0.02 0.01 0.01 0.03 0 

9 1.12 0.44 0.31 0.28 0.47 0.61 0.15 0.14 0.06 0.03 0.07 0.12 0 

10 2.18 0.75 0.74 0.14 0.09 0.06 0.07 0.04 0.03 0.01 0.07 0.06 0 

11 0.14 0.06 0.06 0.13 0.05 0.02 0.03 0.21 0.09 0.02 0.04 0.01 0 

              
average 0.91 0.53 0.42 0.28 0.29 0.30 0.18 0.15 0.08 0.03 0.05 0.05 0.00 
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Figure 6.3: Variation of error in calculation of perfusion values for different subjects 

as a function of number of scans. Here variable duration of time intervals was used. 

For a given number of scans all possible combinations of available temporal scans 

were tried for each of the subjects separately, and therefore the protocol obtained are 

different for all the subjects. Error decreases as the number of scans increases. The 

error calculated here is based on the average error in HPA, HPP and HPI values for 

healthy region. Note that the errors obtained here are lower than the one obtained from 

the previous case of fixed interval. 

  

  



150 
 

 Figure 6.4 is a pictorial representation of the best 50 combinations of temporal 

samples for a given number of free samples in the case of Subject 1 (10). The samples 

were arranged in the increasing order of cost function. On the y-axis different 

combinations are shown, with best combination at the top. The horizontal axis, x-axis, 

represents the time since the start of the arterial phase. The constituents temporal samples 

of a particular combination are marked in blue color and the samples which are left 

behind are kept as yellow. Some of the temporal samples were more frequently present in 

the best 50 cases than others. The most frequent temporal samples occurred at 12 s, 24 s 

and 28 s.  
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Free samples 4 Free samples 5 

Free samples 6 Free samples 7 

Free samples 8 Free samples 9 

Figure 6.4: Optimized best 50 cases of subject 10 for variable spaced intervals. All 

possible combinations of temporal samples were tried for a given number of temporal 

samples and the best 50 cases have been shown pictorially in these plots. Horizontal 

axis represents the temporal samples and the vertical axis shows the best 50 cases in 

with decreasing order of rank with the best 50 cases in with decreasing order of rank 

with the best case at the top.  
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 The tissue density curves of artery, portal vein, spleen and healthy liver for 

subject 1 (10) are shown in figure 6.5. Curves for artery, portal vein and spleen are 

plotted on the left y-axis. For clarity, liver curve is plotted on the right y-axis. Different 

temporal points along with their serial numbers are shown at the bottom of the figure. 

Further, time points corresponding to arterial and portal slope calculation and end points 

are marked by black circles. The significance of temporal samples at 12 s, 24 s and 28 s 

can be seen in this figure. It should be noted here that these time points are from the start 

of the arterial curve as described in the methods section. The maximum of the arterial 

curve occurs at around 12 s. The portal slope maximum and the maximum of the liver 

occurs around 24 s and 28 s. These instances are important in the calculation of perfusion 

values and hence are prominently occurring in the best cases. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 6.5: Tissue density curves of artery, portal vein, spleen and liver for subject # 

10.Arterial, portal vein and splenic curves are plotted on the left y-axis. A separate 

right y-axis is used for plotting liver curve. Different temporal time points can be seen 

in the figure.  
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The optimized protocol, which is common across all the subjects, is shown in 

figure 6.6 and table 6.4. It can be seen that in the optimized protocols 10 s, 12 s and 28 s 

are present in all the cases with different number of free samples. These are the times 

around which maximum in the artery and portal maximum slope is observed, and 

therefore these time points are so prominently occurring in the optimized protocol. As 

can be seen clearly in figure 6.6 the time points after 10 s are more important than the 

once occurring before it. In the optimized protocols only one of the time points before 10 

s are chosen till the number of free samples are less than or equal to 9. The selection of 

these time points, occurring before 10 s is scattered as compared to the occurrence of 

time points after 10 s. 

 

 

 

 

Figure 6.6: Optimized common temporal samples for a set number of free samples. 

Horizontal axis shows the time duration from the start of the arterial phase and the 

vertical axis shows the number of free sample being used. 
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Table 6.4:  Optimized common temporal protocols for a set number of free samples. This 

is based on retrospective data 

Free 

samples 
 Optimized temporal protocols 

                  

4 
 

4 10 12 28 
            

5 
 

6 10 12 20 28 
           

6 
 

6 10 12 20 24 28 
          

7 
 

0 10 12 14 20 24 28 
         

8 
 

4 10 12 14 16 20 24 28 
        

9 
 

4 10 12 14 16 18 20 24 28 
       

10 
 

2 8 10 12 14 16 18 20 24 28 
      

11 
 

4 8 10 12 14 16 18 20 24 28 36 
     

12 
 

4 8 10 12 14 16 18 20 24 28 32 36 
    

13 
 

4 6 8 10 12 14 16 18 20 24 28 32 36 
   

14 
 

0 4 6 8 10 12 14 16 18 20 24 28 32 36 
  

15 
 

0 2 4 6 8 10 12 14 16 18 20 24 28 32 40 
 

16 
 

0 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40 

 

Figure 6.7 shows the results for the cases when a common protocol was selected 

for all the subjects, for a given number of time points. These values have been tabulated 

in table 6.5. The errors reduce with increasing number of scans and are greater than the 

ones obtained using subject specific protocol. Errors are throughout below 20 % and for 

more than 10 scans they are below 10 %. 
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Figure 6.7: Variation of error in calculation of perfusion values for different subjects 

as a function of number of scans. Here, variable duration of time intervals were used. 

For a given number of scans all possible combinations of available temporal scans 

were tried for all the subjects simultaneously and therefore common protocol was used 

for all the subjects for a given number of scans. Error decreases as the number of 

scans increases. The error calculated here is based on the average error in HPA, HPP 

and HPI values for healthy region.   
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Table 6.5:  Error for different subjects with variable time intervals. Here the protocol was 

obtained simultaneously for all the subjects, and hence a common protocol was used for 

all the subjects. 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Free  

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

              
Subjects              

1 7.01 6.08 2.08 0.31 .53 .54 .53 .21 .20 .06 .08 .06 0 

2 13.7 12.1 6.45 3.67 1.8 2.2 2.8 1.6 .62 .02 .11 .13 0 

3 6.05 4.32 2.80 1.39 .67 0.31 0.30 .39 .13 .03 .02 .05 0 

4 8.28 5.17 5.51 2.94 .76 0.53 0.54 .63 .18 .02 .05 .13 0 

5 8.67 4.45 2.39 0.32 .93 1.08 1.15 .65 .28 .08 .10 .05 0 

6 16.79 19.3 14.6 10.2 4.7 0.49 0.34 .20 .19 .03 .06 .05 0 

7 10.26 4.58 3.32 2.90 1.80 1.11 0.99 .43 .47 .04 .41 .05 0 

8 6.29 2.77 2.16 2.16 1.81 1.44 1.39 .04 .11 .01 .01 .03 0 

9 9.90 6.99 4.73 1.83 1.23 1.45 1.23 1.5 1.0 .03 .07 .39 0 

10 13.10 6.85 3.92 3.73 1.80 0.27 0.26 .13 .45 .07 .07 .06 0 

11 8.58 6.95 2.12 0.27 0.14 0.62 0.68 .32 .20 .06 .04 .04 0 

              
average 9.87 7.24 4.56 2.70 1.47 0.91 0.92 .56 .35 .04 .09 .09 0 

    

The comparison between the equally spaced time intervals and variable spaced 

time interval is given in figure 6.9. The variable spaced time intervals case has both the 
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subject specific protocol and common protocol for all the subjects. The lowest error is 

observed for the variable spaced time intervals case with subject specific protocol, which 

is expected as here the protocols are tailored for individual subjects. The errors 

corresponding to the equal spaced interval case were the highest, as all the times were 

given equal weightage and the protocol was common for all the subjects. For the case of 

variable spaced time intervals with common protocol, for all the subjects, the errors were 

expectedly higher than the case with subject specific protocol but lower than the equally 

spaced time interval case. With a total of 7 scans the equally spaced time interval gave an 

error of almost 30%, which came down below 10 % when variable spaced time interval 

was used with subject specific protocol. The error further went down below 1 % for the 

variable interval case with subject specific protocol, although this cannot be used as 

subjects will have variations among themselves and a common protocol based on all the 

subjects will have to be used instead. There was a clear reduction in the error with the use 

of variable spaced intervals over the fixed interval case. 
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 The optimized protocol obtained using the retrospective data was applied to the 

prospective data. The errors hence obtained are given in table 6.6.  

Figure 6.8: Comparison of fixed time interval protocol and variable time interval 

protocol. Individual subjects with variable time intervals were optimized to give 

separate protocols and their average error are plotted against the fixed time interval 

case. Further a combined protocol is obtained using all the subjects with variable 

time intervals. It can be seen that the variable time interval protocol is better than 

the fixed interval case as it gives lower error. The least error is obtained by the 

subject specific case but for practical reasons, a combined protocol is required 

which also gives lower errors as compared to the equally spaced intervals.  
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             Table 6.7 and 6.8 gives the HPI for healthy and tumorous liver respectively, 

obtained from different number of scans. The gold standard being 18 scans was used to 

calculate the true value of HPI, which was in turn used to estimate diagnostic capabilities 

for the reduced number of scans. For comparison similar analysis was done for the 

prospective data using equally spaced intervals (Table 6.9 and 6.10). As the number of 

scans reduced the value of HPI deviated from the actual values. In order to estimate the 

diagnostic capability for the cases of reduced scans a cut-off off for HPI was needed. For 

the present case 37% cut-off was chosen based on the HPI index observed for healthy 

human livers. Based on this false positives and false negatives were calculated for equally 

and variably spaced time interval case and have been tabulated in Table 6.11. False 

positives decreased with an increase of number of scans. Equally spaced time interval 

case had high false positives as compared to variable spaced time interval cases. For the 

latter case false positives were observed only when the total number of scans were less 

than or equal to 8, and that for only one case each for 7 and 8 scans. False negatives were 

observed only when the number of scans was 6 for the case of variably spaced time 

interval case. Therefore it can be concluded that the variably spaced time interval case 

gives better outcome than the equally spaced time interval case. Further the number of 

scans was reduced from 25 to 9 which translate into radiation dose reduction from 165 

mGy to 59 mGy. 

Additional analysis 

 It can be seen from Table 6.7 that for some of the cases HPI is relatively high for 

a healthy liver. There is a potential of user related differences in perfusion calculation. To 

highlight this point and to achieve better results, a second reading was done for cases 8, 9 
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and 12. The results are shown in Table 6.12-14. It can be seen that HPI for these cases is 

much closer to expected values of healthy liver. The errors for these cases are also less as 

compared to errors in Table 6.13. The reason for the reduction of errors is that the 

optimized protocol was obtained for a healthy liver which has HPI values around 0.3 and 

therefore it is a better suited for cases which have HPI values close to 0.3. The analysis 

done earlier in Table 6.11 is repeated here with new set of data and is given in Table 

6.15. The results are similar to the once obtained earlier, for 9 or more scans there are no 

false negatives and only one false positive out of 15 subjects.  

6.4 CONCLUSION 

         Here the number of scans required in CT perfusion, were reduced to limit the 

radiation dose exposure. CT perfusion data was collected from scans performed on 11 

rabbits for the retrospective study. Different combinations of variable spaced time 

intervals were tested against equally spaced time intervals. Errors in the calculation of 

HPA, HPP and HPI were considerably reduced when variable spaced time intervals were 

used as compared to equal spaced time interval. These optimized protocols were applied 

to prospective data set of 15 rabbits. The number of scans were reduced to 9 scans, as 

against to 25 scans in the original protocol, with satisfactory diagnostic capabilities. Only 

one false negative was obtained when the number of scans was further reduced to 7. The 

optimized protocol hence developed has the potential to reduce the radiation dose from 

165 mGy to 59 mGy. 
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Table 6.6:  Error for different subjects, from prospective data set, with the common, 

optimized protocol obtained from the retrospective data. Here the protocol was obtained 

simultaneously for all the subjects, and hence a common protocol was used for all the 

subjects. 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Total 

samples 
6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 
             

              
1 14.5 6.92 6.69 5.86 3 0.7 0.1 0.4 0.4 0.1 0.1 .04 0 

2 29.9 12.4 13.4 20 11 6.1 1.4 2.7 2.9 3.2 2.7 0.1 0 

3 21.1 35.7 17.3 10.17 6.1 3.8 0.5 0.6 0.6 0.2 .05 .06 0 

4 7.28 6.38 3.60 3.11 2.1 1.7 1.7 .14 .15 .00 .03 .01 0 

5 10.8 9.14 5.24 8.56 5.7 2.3 1.1 1.1 0.9 0.3 .05 .47 0 

6 243. 51.2 51.1 39.25 41 42 37 37 56 62 61 36 0 

7 -- -- -- -- -- -- -- -- -- -- -- -- - 

8 39.7 8.02 8.19 3.71 1.65 0.70 0.7 .15 0.4 0.1 0.12 0.1 0 

9 76.4 5.48 6.38 3.57 0.81 1.26 .14 1.5 .92 .06 0.13 .45 0 

10 13.4 17.8 17.3 7.50 1.30 2.08 2.4 4.9 1.1 0.1 0.17 1.1 0 

11 16.1 2.81 3.35 4.55 1.71 0.97 .05 0.5 0.5 0.0 0.03 .03 0 

12 -- -- -- -- -- -- -- -- -- -- -- -- -- 

13 2.40 10.7 4.72 3.58 1.83 0.84 .74 .33 .05 .02 0.01 .02 0 

14 16.2 6.31 5.74 3.65 1.20 0.44 0.4 0.1 .16 .02 0.02 .06 0 

15 27.5 13.6 7.53 7.77 4.02 2.26 .47 .36 .71 .23 0.11 .10 0 

16 14.8 2.82 4.00 4.52 0.52 0.56 .47 .21 .20 .04 0.03 .40 0 

17 13.0 5.15 6.24 7.38 8.00 8.54 8.7 .49 .70 .13 0.22 .97 0 
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Table 6.7:  HPI of healthy liver for prospective data set. This is based on the optimized 

protocol with variable spaced time intervals. 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 
             

              
1 0.29 0.34 0.34 0.33 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

2 0.26 0.18 0.19 0.23 0.21 0.19 0.17 0.19 0.19 0.19 0.17 0.18 0.18 

3 0.34 0.50 0.40 0.43 0.40 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38 

4 0.32 0.37 0.37 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 

5 0.36 0.36 0.34 0.36 0.34 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 

6 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.83 0.82 0.82 1.00 0.92 

7 0.25 0.54 0.71 0.90 0.92 0.94 0.95 1.00 1.00 1.00 1.00 1.00 1.00 

8 0.32 0.49 0.46 0.49 0.50 0.51 0.51 0.51 0.50 0.51 0.51 0.51 0.51 

9 0.31 0.56 0.56 0.57 0.59 0.60 0.59 0.58 0.59 0.59 0.59 0.59 0.59 

10 0.24 0.27 0.21 0.24 0.25 0.25 0.25 0.27 0.25 0.26 0.26 0.26 0.26 

11 0.28 0.30 0.29 0.29 0.31 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

12 0.38 0.39 0.45 0.44 0.45 0.45 0.45 0.73 0.83 0.83 0.83 1.00 1.00 

13 0.35 0.38 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 

14 0.28 0.35 0.34 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

15 0.27 0.23 0.21 0.22 0.20 0.20 0.19 0.20 0.20 0.19 0.19 0.19 0.19 

16 0.28 0.33 0.32 0.32 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

17 0.20 0.21 0.21 0.20 0.20 0.20 0.20 0.22 0.23 0.23 0.23 0.23 0.23 
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Table 6.8:  HPI of tumor for prospective data set. 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Subject 
             

              
1 0.50 0.51 0.51 0.46 0.49 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

2 0.74 0.43 0.42 0.60 0.67 0.67 0.59 0.62 0.61 0.61 0.60 0.60 0.60 

3 0.34 0.42 0.43 0.44 0.49 0.50 0.55 0.50 0.51 0.51 0.62 0.61 0.62 

4 0.44 0.53 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

5 0.57 0.48 0.49 0.49 0.50 0.50 0.47 0.48 0.48 0.50 0.48 0.48 0.48 

6 1.00 0.97 0.90 0.94 0.93 0.93 0.91 0.93 0.74 0.74 0.73 0.98 0.79 

7 0.78 0.47 0.43 0.57 0.54 0.54 0.57 0.99 0.84 0.83 0.82 1.00 1.00 

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.68 0.72 0.69 0.68 0.69 

9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.94 0.94 0.94 0.90 0.86 

10 0.74 0.74 0.82 0.73 0.75 0.73 0.70 0.75 0.72 0.74 0.73 0.73 0.72 

11 0.67 0.69 0.74 0.63 0.66 0.55 0.58 0.59 0.59 0.61 0.59 0.59 0.59 

12 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

13 0.69 0.69 0.70 0.69 0.72 0.73 0.74 0.72 0.72 0.72 0.72 0.72 0.72 

14 0.68 0.74 0.75 0.71 0.71 0.69 0.70 0.70 0.72 0.70 0.71 0.70 0.43 

15 0.68 0.60 0.66 0.57 0.64 0.61 0.56 0.59 0.51 0.56 0.52 0.52 0.52 

16 0.38 0.43 0.39 0.40 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 

17 0.95 0.78 0.47 0.46 0.45 0.44 0.44 0.54 0.55 0.54 0.54 0.54 0.54 

 



164 
 

Table 6.9: HPI of healthy liver for prospective data set. This is based on the equally 

spaced time intervals. 

Time 

intervals  

10 8 6 5 4 3 2 1 0.5 

Total 

samples  

7 8 9 11 13 16 23 43 83 

Subject 
          

           
1 

 
0.40 0.37 0.35 0.34 0.33 0.32 0.30 0.29 0.29 

2 

 

0.32 0.30 0.30 0.25 0.23 0.19 0.17 0.17 0.17 

3 

 

0.57 0.49 0.42 0.43 0.40 0.38 0.37 0.37 0.36 

4 
 

0.47 0.47 0.42 0.40 0.37 0.35 0.34 0.34 0.34 

5 

 

0.44 0.43 0.39 0.38 0.36 0.33 0.31 0.29 0.29 

6 
 

1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.80 0.80 

7 

 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

8 

 

0.53 0.53 0.48 0.47 0.47 0.49 0.52 0.53 0.53 

9 
 

0.52 0.49 0.52 0.53 0.55 0.58 0.59 0.56 0.56 

10 

 

0.32 0.30 0.27 0.25 0.23 0.24 0.25 0.28 0.29 

11 
 

0.37 0.39 0.34 0.33 0.33 0.32 0.30 0.30 0.30 

12 

 

0.88 1.00 0.65 1.00 1.00 1.00 1.00 1.00 1.00 

13 

 

0.46 0.46 0.41 0.37 0.37 0.36 0.36 0.36 0.36 

14 

 

0.38 0.36 0.34 0.34 0.34 0.33 0.32 0.33 0.33 

15 

 

0.35 0.34 0.28 0.26 0.22 0.20 0.19 0.19 0.19 

16 
 

0.37 0.34 0.33 0.33 0.33 0.33 0.34 0.36 0.36 

17 

 

0.27 0.28 0.24 0.24 0.24 0.23 0.22 0.21 0.21 
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Table 6.10: HPI of tumor for prospective data set. This is based on the equally spaced 

time intervals. 

Time 

intervals  

10 8 6 5 4 3 2 1 0.5 

Total 

samples  

7 8 9 11 13 16 23 43 83 

Subject 
          

           
1 

 
0.55 0.51 0.49 0.48 0.48 0.48 0.49 0.50 0.51 

2 

 

0.61 0.66 0.58 0.56 0.56 0.58 0.62 0.60 0.58 

3 

 

0.54 0.65 0.62 0.64 0.63 0.61 0.59 0.59 0.59 

4 
 

0.60 0.60 0.56 0.55 0.54 0.53 0.52 0.52 0.52 

5 

 

0.57 0.54 0.49 0.50 0.48 0.49 0.48 0.48 0.48 

6 
 

1.00 1.00 0.84 0.92 0.89 0.85 0.75 0.69 0.68 

7 

 

1.00 1.00 0.78 1.00 1.00 1.00 1.00 1.00 1.00 

8 

 

0.90 0.93 1.00 1.00 0.84 0.71 0.62 0.60 0.60 

9 
 

1.00 1.00 1.00 0.89 0.88 0.87 0.88 0.82 0.82 

10 

 

0.66 0.73 0.85 0.82 0.77 0.73 0.69 0.69 0.70 

11 
 

0.62 0.71 0.77 0.72 0.76 0.66 0.56 0.52 0.51 

12 

 

1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.76 0.72 

13 

 

0.77 0.84 0.77 0.69 0.70 0.70 0.65 0.62 0.60 

14 

 

0.66 0.65 0.66 0.64 0.54 0.56 0.41 0.42 0.41 

15 

 

0.61 0.55 0.61 0.58 0.54 0.56 0.51 0.48 0.48 

16 
 

0.41 0.47 0.43 0.48 0.47 0.43 0.39 0.39 0.39 

17 

 

0.89 1.00 1.00 1.00 0.72 0.58 0.49 0.47 0.45 
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Table 6.11: False +ve/-ve for healthy and tumorous region using equal and variable 

spaced time interval for prospective analysis 

  

Equal spaced time interval Variably spaced time interval 

  
Healthy Tumor Healthy Tumor 

No. 

of 

Scans 
 

False  

+ve 

False      

-ve 

False  

+ve 

False      

-ve 

False  

+ve 

False      

-ve 

False  

+ve 

False     

 -ve 

6 
 

-- -- -- -- 0 4 0 0 

7 

 

8 0 0 0 1 0 0 0 

8 

 

6 0 0 0 1 0 0 0 

9 

 

4 0 0 0 0 0 0 0 

10 

 

-- -- -- -- 0 0 0 0 

11 
 

4 0 0 0 0 0 0 0 

12 

 

-- -- -- -- 0 0 0 0 

13 

 

1 0 0 0 0 0 0 0 

14 

 

-- -- -- -- 0 0 0 0 

15 

 

-- -- -- -- 0 0 0 0 

16 
 

1 0 0 0 0 0 0 0 

17 

 

-- -- -- -- 0 0 0 0 

18 

 

-- -- -- -- 0 0 0 0 

23 

 

0 0 0 0 -- -- -- -- 

43 

 

0 0 0 0 -- -- -- -- 
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Table 6.12:  Errors in healthy liver case, from prospective data set. Here new set of data 

points has been taken for subjects 8, 9 and 12. Cases 6 and 7 have been removed here. 

Free 

Samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Total samples 6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 

             

              
1 14.5 6.92 6.69 5.86 3.0 .69 .12 .38 .45 .07 .07 .04 0 

2 29.9 12.4 13.4 20.0 11 6.1 1.5 2.7 2.9 3.2 2.7 .13 0 

3 21.1 35.6 17.3 10.2 6.1 3.8 .48 .64 .65 .25 .05 .06 0 

4 7.28 6.38 3.60 3.1 2.1 1.7 1.7 .14 .15 .00 .03 .01 0 

5 10.8 9.14 5.24 8.6 5.7 2.3 1.1 1.1 .94 .30 .05 .47 0 

8 21.6 9.24 6.63 5.8 3.4 .59 .20 .57 .58 .11 .06 .04 0 

9 23.5 18.6 11.5 6.2 .51 2.9 1.4 .56 1.4 .02 .08 .09 0 

10 13.5 17.8 17.3 7.5 1.3 2.1 2.4 4.9 1.1 .09 .17 1.1 0 

11 16.1 2.81 3.35 4.6 1.7 .97 .05 .52 .48 .00 .03 .03 0 

12 4.77 8.78 11.7 7.7 2.3 2.1 1.7 .60 .69 .03 .14 .06 0 

13 2.40 10.7 4.7 3.6 1.8 .84 .74 .33 .05 .02 .01 .02 0 

14 16.2 6.31 5.7 3.7 1.2 .44 .41 .11 .16 .02 .02 .06 0 

15 27.5 13.6 7.5 7.8 4.0 2.3 .47 .36 .71 .23 .11 .10 0 

16 14.9 2.8 4.0 4.5 .52 .56 .47 .21 .20 .04 .03 .40 0 

17 13.0 5.2 6.2 7.4 8.0 8.5 8.7 0.49 0.70 0.13 0.22 0.97 0 
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Table 6.13:  HPI of healthy liver for prospective data set with variable spaced time 

intervals. Here new set of data points has been taken for subjects 8, 9 and 12. Cases 6 and 

7 have been removed here. 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Subject 
             

              
1 0.29 0.34 0.34 0.33 0.32 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

2 0.26 0.18 0.19 0.23 0.21 0.19 0.17 0.19 0.19 0.19 0.17 0.18 0.18 

3 0.34 0.50 0.40 0.43 0.40 0.39 0.38 0.38 0.38 0.38 0.38 0.38 0.38 

4 0.32 0.37 0.37 0.36 0.36 0.36 0.36 0.35 0.35 0.35 0.35 0.35 0.35 

5 0.36 0.36 0.34 0.36 0.34 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 

8 0.30 0.38 0.37 0.36 0.38 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 

9 0.32 0.46 0.43 0.42 0.44 0.45 0.44 0.43 0.43 0.43 0.43 0.43 0.43 

10 0.24 0.27 0.21 0.24 0.25 0.25 0.25 0.27 0.25 0.26 0.26 0.26 0.26 

11 0.28 0.30 0.29 0.29 0.31 0.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 

12 0.28 0.33 0.34 0.33 0.31 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30 

13 0.35 0.38 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 

14 0.28 0.35 0.34 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 

15 0.27 0.23 0.21 0.22 0.20 0.20 0.19 0.20 0.20 0.19 0.19 0.19 0.19 

16 0.28 0.33 0.32 0.32 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

17 0.20 0.21 0.21 0.20 0.20 0.20 0.20 0.22 0.23 0.23 0.23 0.23 0.23 
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Table 6.14:  HPI of tumor for prospective data set applying variable spaced time interval. 

Here new set of data points has been taken for subjects 8, 9 and 12. Cases 6 and 7 have 

been removed here. 

Total 

samples 

6 7 8 9 10 11 12 13 14 15 16 17 18 

Free 

samples 

4 5 6 7 8 9 10 11 12 13 14 15 16 

Subject 
             

              
1 0.50 0.51 0.51 0.46 0.49 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 

2 0.74 0.43 0.42 0.60 0.67 0.67 0.59 0.62 0.61 0.61 0.60 0.60 0.60 

3 0.34 0.42 0.43 0.44 0.49 0.50 0.55 0.50 0.51 0.51 0.62 0.61 0.62 

4 0.44 0.53 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

5 0.57 0.48 0.49 0.49 0.50 0.50 0.47 0.48 0.48 0.50 0.48 0.48 0.48 

8 1.00 1.00 0.99 0.94 0.92 0.86 0.85 0.86 0.87 0.87 0.86 0.86 0.86 

9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 0.83 0.82 0.91 0.89 

10 0.74 0.74 0.82 0.73 0.75 0.73 0.70 0.75 0.72 0.74 0.73 0.73 0.72 

11 0.67 0.69 0.74 0.63 0.66 0.55 0.58 0.59 0.59 0.61 0.59 0.59 0.59 

12 0.55 0.55 0.57 0.66 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 

13 0.69 0.69 0.70 0.69 0.72 0.73 0.74 0.72 0.72 0.72 0.72 0.72 0.72 

14 0.68 0.74 0.75 0.71 0.71 0.69 0.70 0.70 0.72 0.70 0.71 0.70 0.43 

15 0.68 0.60 0.66 0.57 0.64 0.61 0.56 0.59 0.51 0.56 0.52 0.52 0.52 

16 0.38 0.43 0.39 0.40 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 

17 0.95 0.78 0.47 0.46 0.45 0.44 0.44 0.54 0.55 0.54 0.54 0.54 0.54 



170 
 

Table 6.15: False +ve/-ve for healthy and tumorous region using variable spaced time 

interval for prospective analysis. Here new set of data points has been taken for subjects 

8, 9 and 12. Cases 6 and 7 have been removed here. 

  
Variably spaced time interval 

  

Healthy Tumor 

Number 

Of 

Scans 

 

False 

+ve 

False     

-ve 

False 

+ve 

False     

-ve 

6 

 

0 2 0 1 

7 

 

2 0 0 0 

8 

 

2 0 0 0 

9 

 

0 0 0 0 

10 
 

1 0 0 0 

11 

 

1 0 0 0 

12 

 

0 0 0 0 

13 

 

1 0 0 0 

14 

 

1 0 0 0 

15 
 

0 0 0 0 

16 

 

0 0 0 0 

17 

 

0 0 0 0 

18 

 

0 0 0 0 
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Chapter 7 

 

Effect of Discontinuities and Penetrations on 

the Shielding Efficacy of High Temperature 

Superconducting Magnetic Shields 

The complete authorship of this work should be read as Rajeev Hatwar, Dr. Jozef 

Kvitkovic, Prof. Cila Herman and Dr. Sastry Pamidi. Rajeev Hatwar performed the 

experiments and analysis in the guidance of Dr. Jozef Kvikovic and Dr. Sastry Pamidi. 

The experimental setup was developed by Dr. Jozef Kvitkovic and Dr. Sastry Pamidi. 

This work was published in IOP conference series: Materials science and engineering 

(Hatwar et al. 2015).  

 

7.1 INTRODUCTION 

 There are some materials in nature that experience zero electrical resistances 

below certain temperature. Such materials are called superconductors and the threshold 

temperature is known as critical temperature (Tc). They are classified based on their 

critical temperature as low and high temperature superconductors. When the critical 

temperature is below 134 K and above 20 K they are known as high temperature 
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superconductors and when the critical temperatures are below 20 K they are referred to as 

low temperature superconductors. Due to the zero electrical resistance of these materials 

they are capable of carrying much higher current then conventional cables (Figure 7.1). 

Some of the applications of superconductors are in powerful superconducting magnets 

(magnetic resonance imaging, nuclear magnetic resonance and maglev train), magnetic 

shielding, transmission/distribution of power and electric motors/generators. 

Sensitive electronic equipment such as superconducting quantum interface device 

(SQUIDS) in magneto-encephalography (Pizella et al. 2001) and other medical 

applications require high level of magnetic shielding to protect them from spurious 

magnetic fields. Further, devices that generate strong magnetic fields also need to be 

shielded in order to contain their magnetic fields and ensure proper functioning of other 

instruments in their vicinity. Although ferromagnetic materials are normally used for AC 

magnetic shielding applications, the magnetic shielding provided by them is limited to 

frequencies above 1 kHz (Pavese et al. 1998). High temperature superconducting (HTS) 

materials such as YBa2Cu3O7 (YBCO) have been demonstrated to be suitable for 

shielding both for DC and AC magnetic fields (Fagnard et al. 2009, Fagnard et al. 2012). 

Second generation (2G) HTS have been successfully developed on commercial level with 

excellent superconducting and mechanical properties. Long lengths of 2G HTS are being 

produced at various widths up to 45 mm (AMSC). Figure 7.2 shows how the effect of 

hole on the magnetic shield, encasing a sensitive equipment, and how a mask over the 

hole can mitigate the effect of the hole. 
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Various studies have been done in the past on magnetic shields made of 

superconducting bulk material and tapes. Kvitkovic et al. have studied the effect of the 

geometry, operating temperature, and interlayer separation on magnetic shielding 

efficacy of shields made of 2G HTS (Kvitkovic et al. 2009, Kvitkovic et al. 2015, 

Kvitkovic et al. 2011, Kvitkovic et al.2013). Fabrication of large practical shields require 

many sections of HTS and magnetic shields needed for large high power density 

machines will need to allow access to power feedthroughs and sensor wiring. Aging and 

mechanical stresses will also lead to spots of degraded superconducting properties (Kim 

et al. 2011, Yuan et al. 2011). So far the effects of discontinuities and penetrations in 

Figure 7.1. Conventional electrical cables and superconducting cables used in 

accelerators at CERN (Wikimedia 2017) 
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magnetic shields on their performance have not been studied. Therefore it is important to 

quantify the effect of discontinuities on shielding efficacy of HTS magnetic shields and 

potential solutions to mitigate the negative effects of the penetrations and discontinuities. 

The present work focuses on understanding the effect of a circular hole on the 

magnetic shielding efficacy of a 2G HTS shield. This chapter presents the results of the 

experimental studies of the shielding factor at variable amplitudes and frequencies of 

external magnetic field on the shields with and without an opening and a simple method 

to mitigate the negative effects of an opening.  

7.2 EXPERIMENTAL SETUP 

A helical copper magnet (Pamidi et al. 2012) (figure 7.3) was used to generate a 

transverse external AC magnetic field. Magnetic shields were kept in a uniform AC 

magnetic field, which was perpendicular to the surface of the shields. The external 

magnetic field, Bext, was calculated based on the current supplied to the magnet and the 

previously measured magnet constant. Internal magnetic field, Bint, was measured using a 

calibrated Hall Probe placed inside the magnetic shield, at mid distance between the two 

parallel rectangular sheets and at the centre of the rectangular plates as shown in Figure 

7.4. 
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Figure 7.2 (a) Effect of a hole in the superconducting layer on the magnetic field. (b) 

Use of masking layer to mitigate the effect of hole in the magnetic shield. 

 

(a) 

  

(b) 
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Figure 7.3. Double helix magnet used to generate external magnetic field.  
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The dimensions of the rectangular plates are 60 mm × 100 mm and the distance 

between the two parallel sheets is 38 mm. The support structure for the magnetic shield is 

made of G-10 plates. Three layers of YBCO tapes are attached onto the G-10 plates using 

cryogenic Kapton adhesive tape. Each layer consists of three pieces of 45 mm wide 2G 

HTS superconducting tape, manufactured by American Superconductor Corporation. The 

setup with parallel superconducting layers was mounted on a sample holder as shown in 

figure 7.5. The holes were drilled at the centre of the shield, at the same height as the Hall 

Figure 7.4. A schematic of the experimental setup and position of the hole. All 

dimensions are in mm. 
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probe Figure 7.4. The size of the hole was varied with diameter of 1 mm, 3 mm, 6 mm 

and 12 mm to study the effect of the size of discontinuities and penetrations on the 

shielding effect. A 45 mm × 45 mm section of the HTS tape is placed on top of the 12 

mm hole to mask the opening, with a G-10 fiberglass piece in between them. The 

distance between the mask and the shield was varied at 2 mm and 4 mm, for two different 

configurations as shown in Figure 7.2. 

 

Shielding factor, SF, is a measure of the effectiveness of the magnetic shield and it is 

expressed as: 

Figure 7.5 Sample holder, which has the parallel super conducting layers, is used to 

place these layers inside the helical magnet and liquid nitrogen.  

 



179 
 

           
         

    
                                                               

The frequency of magnetic field was varied from 20 Hz to 400 Hz. The experimental 

setup was maintained at 77 K by immersing in a liquid nitrogen bath (Figure 7.6 -7). All 

magnetic field magnitudes are expressed in rms values. The block diagram for the 

instrumentation is shown in figure 7.8. Details of the experimental setup are described 

elsewhere (Kvitkovic et al. 2013). 

 

Figure 7.6 Sample holder along with superconducting plates placed inside the helical 

magnet and immersed in liquid nitrogen filled dewar flask. 
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Figure 7.7. Dewar flask being filled with liquid nitrogen from a liquid nitrogen 

cylinder. Moisture in the surrounding air condenses and turns into ice on the top of 

the flask. 
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Figure 7.8. Block diagram of the instrumentation used in the magnetic shielding 

experiment  is shown here.  
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Figure 7.9 Variation of shielding factor with external magnetic field for 3 layer shield 

with no holes. 

 

Figure 7.10 Variation of shielding factor with external magnetic field at 20 Hz for 

different sizes of holes. 
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7.3 RESULTS AND DISCUSSION  

The variation of shielding factor of the shield without any opening with Bext for different 

frequencies is shown in Figure 7.9. It can be seen that for lower Bext, shielding factor 

increases with increasing frequency. The shielding factor decreases as the Bext increases. 

Shielding factor at 20 Hz goes down from 44 % to 1.5 % as the Bext increases from 2.5 

mT to 63 mT. Similar trend is observed for other frequencies. This can be explained by 

the fact that the critical current, Ic, decreases with increasing Bext which leads to a lower 

shielding factor. So for high Bext, the shielding factor for higher frequency is lower. The 

shielding factor at 31.5 mT for various frequencies is in the range of 4 to 7%. 

 

Figure 7.11 Variation of shielding factor with external magnetic field at 400 Hz for 

different sizes of holes. 
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Figure 7.12 Shielding factor vs frequency for 3 layer shield. Hole diameter is the 

parameter and external magnetic field magnitude of 3.2 mT and 21 mT. 

Figure 7.10 shows the variation in the shielding factor with Bext at 20 Hz for different 

sizes of holes. Similar to the case of a shield with no opening, the shielding factor for the 

shield with a hole decreases with increasing Bext. Further, it can be seen that the shielding 

factor decreases with increasing hole size. For Bext of 2.5 mT, the shielding factor is 44 % 

with no hole and 37.5 %, 25.5 % and 22 % for 1 mm, 6 mm and 12 mm hole size, 

respectively. The effect of hole size gradually diminishes as Bext increases. There is a 

decrease of shielding factor from 10.7 % to 4. 8 % as the hole size increases from no hole 

to 12 mm hole at 21 mT. At 63 mT this reduction in shielding factor is from 1.5 % to 

0.03 %. Similar trend is observed for 400 Hz as shown in Figure 7.11. The frequency 

dependence of the shielding factor at different applied magnetic field amplitudes for 
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different hole sizes is depicted in Figures 7.12 and 7.13. It can be seen that at lower Bext, 

the dependence of shielding factor on frequency is high and as Bext increases the effect of 

frequency diminishes to a small value. 

 

Figure 7.13. Shielding factor vs frequency. Hole diameter is the parameter and applied 

magnetic field magnitude is 10.5 mT. 

In order to assess ways to mitigate the effect of the hole, a piece of superconducting tape 

of smaller dimension (45 x 45 mm
2
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hole. When the mask was placed at 2 mm the shielding factor further increased to 35%. 

So the mask not only compensated for the effect of the hole, but also enhanced the 

shielding.  Similar behavior is observed at 400 Hz as shown in Figure 7.15. Figures 7.16 

and 7.17 show the effect of the mask layer, covering the 12 mm hole, on the shielding 

factor at different Bext for frequencies ranging from 20 to 400 Hz. It can be seen that at 

lower Bext (3.2 mT), although the shielding factor improves with the mask, it is unable to 

compensate fully. Whereas for Bext > 7 mT the shielding factors recover completely with 

the use of the mask and is above the curve representing a sheet without any hole.

 

Figure 7.14. Effect of the mask placed at a distance of 2 mm and 4 mm from the 12 mm 

hole at 20 Hz. 
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Figure 7.15. Effect of the mask placed at a distance of 2 mm and 4 mm from the 12 mm 

hole at 400 Hz. 
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Figure 7.16. Effect of the mask placed at a distance of 2 mm and 4 mm from the 12 mm 

hole for 3.2 mT and 21 mT of applied external magnetic fields. 
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Figure 7.17. Effect of the mask placed at a distance of 2 mm and 4 mm from the 12 mm 

hole for 10.5 mT of applied external magnetic field. 

7.4 CONCLUSION  

The effect of discontinuities, such as penetration necessary for pipes and cables, in 

superconducting magnetic shields fabricated from 2G HTS tapes on the shielding 

efficacy is studied with the goal finding ways to mitigate the negative effects. It was 

shown that the decrease in the shielding factor caused by a penetration can be mitigated 

using a superconducting mask to cover the hole at certain distance. 

The shielding factor showed a strong dependence on the magnitude and frequency of 
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shields caused by a hole leads to a drop in shielding factor and the extent of the drop 

increases with increasing hole size. A superconducting mask is shown to mitigate the 

negative effect and provides a simple method to manage the need for access to the 

magnetically shielded space for electrical and signal cables and other piping. Further 

work is needed to optimize the dimension and location of the mask layer to enable 

fabrication of practical superconducting shields for large volumes that require 

penetrations. 
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Chapter 8 

Summary 

8.1  INTRODUCTION 

 In the thesis the concepts of heat and mass transfer were applied to the biological 

tissue. The characterization of breast tumor was made possible by the application of the 

bio heat transfer equation to the breast tissue. The temperature distribution within the 

tissue was obtained using the bio heat transfer equation and the inverse problem of 

estimating tumor parameters was solved using an algorithm based on Levenberg-

Marquardt method. Further, concepts of mass transfer were used for the diagnosis of liver 

cancer in rabbit livers. CT perfusion allows us to obtain the variation of the concentration 

distribution of injected dye within the tissue of a subject. Maximum slope method is then 

employed to get an estimate of the blood flow within the body tissue based on the dye 

concentration.  Maximum slope method is one of the many methods available for 

calculating blood perfusion. In the present work the short comings of this method for 

some cases were discussed. An analysis was done to reduce the number of scans required 

in CT perfusion and thereby reduce the radiation dose involved. Finally, some 

experiments were performed to estimate the shielding efficacy of superconducting 

material. Superconducting materials needs to be maintained at very low temperatures and 

this makes these experiments critical from the heat transfer point of view.  
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8.2  BREAST CANCER ANALYSIS AND CHARACTERIZATION 

      A multilayered breast cancer model was developed in COMSOL, which uses bio heat 

transfer equation for computing temperature distribution. A steady state analysis was 

carried out using a two dimensional breast model by varying different tumor size, 

location, metabolic heat generation rate, blood perfusion rate for axisymmetric tumor. 

Maximum temperature rise and the half temperature difference length are the two 

important factors which can be used to associate the temperature profile with tumor size 

and location. The variation of surface temperature profile with metabolic heat generation 

rate is negligible as compared to blood perfusion rate. Off-axis tumors were analyzed for 

three dimensional model and it was observed that the polar location of the tumor can be 

estimated based on the surface temperature profile. Transient analysis was also conducted 

were the effect of cooling load and time on the recovery temperature was examined. It 

was observed that increase in cooling time and decrease in cooling temperature leads to 

an increase in temperature contrast between the normal and cancerous skin temperature. 

It was also observed that constant temperature cooling is more effective that convective 

cooling.  

      This analysis was extended to solve the inverse problem of characterizing tumor 

based on the surface temperature profile. COMSOL was used to develop a multi layered 

two dimensional breast model to calculate the temperature distribution for a given set of 

parameters. This model enabled us to calculate the surface temperature profile for a given 

set of tumor parameters. This model was then linked with MATLAB using LiveLink, 

which was used to write the code for the inverse algorithm which was based on 

Levenberg-Marquadt method. It was observed that steady state data alone is sufficient 
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only when the number of unknown variables are two, size and location when a third 

unknown parameter is added in the form of blood perfusion rate steady state data does 

not give unique solution. In order to solve this problem a transient data, in the form of 

recovery temperature, after the application of a cooling load, is added which allows the 

simultaneous estimation of three unknown parameters. The additional information related 

to blood perfusion is critical as it gives important insight into the nature of the tumor. In 

general, malignant tumors have substantially higher blood perfusion rate that benign 

tumors and hence it can be used to differentiate between these two. 

8.3  CT PERFUSION 

            CT perfusion was used to calculate blood perfusion rate within liver tumor of 

rabbits. Maximum slope method was used in the present work for this purpose. In this 

section we first highlighted the limitations of maximum slope method. The time at which 

the concentration of the contrast agent in the spleen peaks is crucial for this method. It 

divides the liver concentration curve into arterial and portal phase, the two sources of 

blood supply to the liver tissue. For certain cases the splenic maximum was occurring 

after the end point of the liver curve because of which it was not possible to get an 

accurate measure of the blood perfusion for those cases. Further there were cases for 

which local maxima was occurring in the liver curve, which made it difficult to get an 

exact location of the end point of the liver. The end point location is crucial for the blood 

perfusion estimation in maximum slope method. 

             In the sixth chapter we worked on the optimization of the temporal protocol to 

reduce the number of scans. Variable time interval approach was used in the present work 
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in contrast with prevalent fixed time interval case. There was a considerable amount of 

reduction in the errors with variable time interval case as compared to the fixed time 

interval cases. Further it was observed that the diagnostic capabilities of the scans were 

satisfactory even with 9 scans, which were obtained using the optimizing algorithm, as 

compared to the original protocol of 25 scans. Even when the number of scans was 

further reduced to 7 there were no false negative and only one false positive. This 

approach has the potential to reduce the number of scans to a third. 

8.4  SUPERCONDUCTING SHIELDS 

          Experiments were performed using superconducting tapes, YBCO, to calculate the 

effects of hole on the shielding efficacy. The shielding effect of the superconducting tape 

showed deterioration with an increase in the size of the hole. When a superconducting 

mask was used to cover the hole shielding efficacy of the superconducting tapes was 

restored. Typical power devices need penetrations for power and signal cabling and the 

penetrations create discontinuities in HTS shields. Hence it is important to assess the 

effect of the necessary discontinuities on the efficacy of the shields and the design 

modifications necessary to accommodate the penetrations. Further, the operation of 

superconducting devices requires very low temperature and the inherent high thermal 

gradients involved makes proper insulation extremely important. Therefore the working 

of superconducting materials is also important from the heat transfer point of view. 

8.5  FUTURE WORK 

         A number of improvements that can be made in the projects undertaken in the 

present work. A more realistic, 3D model of the breast can be developed which can 
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incorporate off-axis tumors. The Levenberg-Marquardt algorithm used here can be 

improved to construct more robust algorithm. A sensitivity analysis can be conducted to 

estimate the effect of variation in thermophysical properties. Here the tumors were 

considered to be homogeneous, they can be modeled instead with a necrotic core. Instead 

of relying only on dynamic cooling, different types of cooling/heating load can be applied 

here.  

              In the CT perfusion section the temporal optimization can be performed for 

methods other than maximum slope method. This will enable us to choose a method 

which needs the least number of scans for diagnostic purposes. The effect of reduction of 

number of scans on the deterioration of the quality of registration and thereby perfusion 

calculation, can be studied. 
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