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Abstract 
 
Modern computational chemistry techniques allow for the calculation of a wide set of material 

properties at the level of quantum physics, but such calculations require as input the atomic 

structure of the material in question. The first-principles prediction of a substance’s atomic 

structure from knowledge of its composition is a standing challenge in chemistry and materials 

science, and this thesis documents efforts to surmount this challenge for a model system of 

thiolated gold nanoclusters. We employ a pool-based genetic algorithm to efficiently search 

configuration space for global optima, learning the most likely structures for a given ligated cluster 

composition by iteratively selecting and recombining elements from the stablest-yet-discovered 

examples. In previous work, density functional theory calculations were used to determine the 

stability of each new structure discovered by the genetic algorithm, but this approach scales poorly 

for ligand-terminated systems, which have more atoms and more geometric and electronic degrees 

of freedom. To extend the capabilities of our genetic algorithm and bring ligated systems within 

reach, we accelerate energetic evaluation by implementing a class of machine-learned interatomic 

potentials known as moment tensor potentials. After being initialized on a small set of ab initio 

structure-energy data, these potentials can be used to calculate energies in good agreement with 

DFT and to directly optimize newly generated structures via gradient descent. We make use of an 

active learning approach to select optimal subsets of candidate structures for the training of 

moment tensor potentials, to quantify the reliability of energetic evaluations by these potentials, 

and to prevent unrealistic structures from being propagated in the course of the genetic algorithm. 

By tailoring the training set to emphasize low-energy candidates, we help our potentials to learn 

with high accuracy the evolving hull of lowest-energy structures observed so far. Applying these 

methods, we study the impact of ligand substitution on the ground state structure of Au18(SR)14 

and report new ground states for R = CH3. 
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Chapter 1. Introduction 

1.1 Nanoclusters 

 Nanoclusters are aggregates of atoms, typically metals, ranging in dimension from a few 

Angstroms to a few nanometers. It can be said that clusters in this size range bridge the bulk and 

quantum regimes: structure, properties, and stability have a strong dependence on size and 

composition and can all be starkly different from that observed on the macro-scale, with novel 

qualities resulting from electronic confinement and finite size effects [1]. Emergent from their 

unique electronic structure, nanoclusters exhibit many properties of scientific interest, including 

high surface reactivity, magnetic anisotropy, magnetoresistance, quantum confinement, variable 

metallicity, and plasmonic absorption [2].  

 With the advent of new techniques for atomically precise synthesis [3], these properties are 

made practically tunable through control of size and composition, leading to potential engineering 

applications in biomedical sensing and imaging [4], electrocatalysis [5], optoelectronics [6], light 

capture [7], and magnetic storage [8], among others [9]. Computational chemistry methods that 

treat electronic structure explicitly are capable of calculating many of the unique properties of 

nanoclusters, raising the possibility of using predictive computational techniques to guide the 

inverse design of clusters with desired features. 

 Before the properties of a cluster of a given size and composition can be computed, however, 

its structure must be determined: namely, we must identify the stablest possible configuration of 

the set of constituent atoms. This stablest configuration will, more rigorously, be the one that 

globally minimizes the free energy of the cluster with respect to the variation of its atomic 

coordinates. The so-called global minimum (GM) or ground state configuration is of interest 



 2 

because it is most likely to correspond to the experimentally observed structure, although 

metastable structures residing in low-energy local minima may be kinetically favored depending 

on the synthetic conditions, and a distribution of higher-energy conformations will be thermally 

accessible and statistically populated at nonzero temperatures [10]. 

 The formation of nanosized aggregates is a consequence of the stability of the bulk 

condensed phase, and the corresponding stability of small condensates against loss of atoms or 

fission [11]. Certainly, however, these small condensates are not stable against the addition of 

atoms; rather, they will spontaneously aggregate to form larger clusters, eventually growing to a 

bulk mass, unless low densities and temperatures are maintained. This means that pure elemental 

clusters are only stable under very narrow conditions, and so are primarily synthesized and studied 

in the gas phase [2].  

 For application in other conditions, nanoclusters must be protected from aggregation and 

reaction, and this is usually accomplished by surface termination with a ligating species. These 

ligands play a determining role in the ground state structure and properties of the cluster [12]. 

Figure 1.1 compares the minimum-energy structures of bare Au10 and of its methanethiolate-

protected form, Au10(SCH3)10; the structures are markedly different. Moreover, the particular 

ligand chemistry (i.e., the active site and R-group) chosen for stabilization can modulate the 

properties of clusters of a given core composition [13]. Experimental work on protected 

nanoclusters has demonstrated ligation-driven control of both properties and structure [14, 15]. 

 Among the best-studied ligated nanoclusters are those belonging to the gold-thiolate system. 

Over the past 25 years, dozens of varieties of thiolate-protected gold nanoclusters have been 

synthesized and characterized [16]. Currently, the smallest gold-thiolate nanocluster whose 

structure has been experimentally determined is Au18(SR)14, Figure 1.2, which was characterized 
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Figure 1.1: The minimum-energy structures of Au10 and Au10(SCH3)10. The bare Au10 cluster 

adopts a planar close-packed configuration, while thiolate-protected Au10(SCH3)10 is a catenane 

composed of two interlocking Au5(SCH3)5 rings. These structures have been identified [19, 20] 

with genetic algorithms using density functional theory calculations for energy comparison. 

 

by X-ray diffraction by both Jin [17] and Zhu [18] separately in 2015. Since the structure of this 

nanocluster is known, we take Au18(SR)14 as a model stoichiometry to test the capabilities of our 

group’s genetic algorithm for cluster structure discovery. 

 This thesis will proceed as follows. Chapter 2 provides an overview of our group’s genetic 

algorithm (GA) as implemented for bare clusters. Chapter 3 details the modifications made to the 

cluster genetic algorithm to accommodate ligated systems. Chapter 4 explains the importance of 

energy evaluation to the genetic algorithm and discusses the use of fast machine-learned 

interatomic potentials (MLIP), trained on high-quality ab initio structure-energy data, to replace 

the majority of first-principles calculations required by GA. Chapter 5 covers the active learning 

(AL) approach developed to stabilize GA against incorrect predictions made by the machine-

learned interatomic potentials, and to allow for the continual improvement of these potentials in 

operation. Chapter 6 presents results pertaining to the optimization of the GA+MLIP+AL system, 

and to its application to search for the ground state of Au18(SR)14. Chapter 7 concludes with a 

discussion of these results and possibilities to be explored in future work. 
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Figure 1.2: The ground state configuration of Au18(SR)14 and its component motifs.  

A: the ground state structure, taken from the experimental characterization of [17] and relaxed 

using spin-polarized density functional theory as implemented in the Vienna Ab initio Simulation 

Package (VASP). The ground state energy of this structure was calculated to be -396.977 eV. 

B: the ground state structure shown without ligand side chains for clarity. C: Au2(SR)3 bridge.  

D: Au9 hcp-stacked core [21]. E: Au4(SR)5 tetramer staple motif [22]. F-G: Au(SR)2 staple motifs 

surrounding the Au9 core. 

 

 

A. B. 

C. 

D. 

E. 

H. 

G. 

F. 
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Chapter 2. Genetic algorithms 

2.1 The problem of global structural optimization 

 The lowest-energy atomic structure for a given nanocluster inevitably represents a subtle 

balance between competing electronic effects, and cannot therefore be determined a priori. First-

principles quantum chemical methods are best suited to the task of determining the stability of a 

given configuration, and can be used for the local optimization of randomly sampled candidate 

structures to yield atomic configurations that locally minimize the potential energy. Naïvely, the 

absolute lowest-energy structure could be found by exhaustive generation and comparison of such 

locally optimized configurations. However, the number of minima in the potential energy 

landscape corresponding to locally optimal configurations grows exponentially with the number 

of atoms in the system, making this approach impracticable [23]. Efficient and intelligent methods 

for sampling configuration space are therefore needed to address the problem of global structural 

optimization. Different approaches to the problem of global optimization in systems exhibiting 

many local optima include simulated annealing [24], basin-hopping [25], particle swarm 

optimization [26], the artificial bee colony algorithm [27] and the focus of this work, genetic 

algorithms. 

 

2.2 Genetic algorithms for structure discovery 

 Genetic algorithms attempt to find global solutions to high-dimensional optimization 

problems by iteratively recombining the features of distinct local solutions in a process that is 

intended to emulate evolution and natural selection [28]. The hypothesis underlying this approach 

is that the globally optimal solution should be comprised of portions (by analogy, the “good 
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genes”) that are themselves optimal when considered independently, and that these optimal 

features will also manifest in some of the local minima. The extent to which this hypothesis applies 

will depend on the problem being considered. We would expect, for example, that a genetic 

algorithm will only be efficient in comparison to uniform sampling to the extent that the 

“goodness” of the solution being sought is reducible to the contributions of its parts. 

 Genetic algorithms are particularly applicable to the problem of identifying low-energy 

material structures because the stable arrangements of atoms in ordered materials are often 

divisible into recurring motifs. For instance, in the case of carbon nanostructures, pentagons and 

hexagons of sp2-conjugated carbon are prominent in fullerenes across the size range [29]. 

Similarly, it is known that many gold nanoclusters adopt configurations featuring one or more Au4 

tetrahedra, and the independent stability of these tetrahedra has been used heuristically to help 

propose plausible structures for nanoclusters in the absence of more exact means of structural 

determination [30]. Genetic algorithms have been successfully applied to efficiently identify low-

energy configurations of a wide range of nanoscale systems, including metallic [19] and nonmetal 

[31] clusters, amorphous materials [32], catalytic binding sites [33], biomolecules [34, 35], and 

metal-organic frameworks [36]. 

 

2.3 Overview of the pool-based genetic algorithm 

 In ongoing and as-yet unpublished work, our group has used a genetic algorithm to identify 

new structural candidates based on a running memory of the best configurations found so far. Our 

implementation is based on the pooled Birmingham cluster genetic algorithm (Pool-BCGA) [37], 

which improves upon generation-based genetic algorithms by allowing for the construction and 

evaluation of structural candidates to take place continuously and in parallel.  
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 The algorithm begins by generating a number of random arrangements of atoms of the 

desired composition (referred to as candidate structures); subsequently, each random structure is 

relaxed by varying its atomic coordinates to bring its energy to a local minimum, and the final 

energies of all of the relaxed structures are ranked. The lowest-energy (i.e., most stable) candidates 

are stored in a database, called the pool, and a parameter called the selectability is calculated for 

each structure. Importantly, the pool is structured so that it can be accessed and updated by multiple 

instantiations of the genetic algorithm simultaneously, providing good speedup and scaling with 

parallelization. 

 After this random initialization, new candidate structures are produced by recombining 

fragments of two or more previous candidates in a process termed "crossover," or by randomly 

modifying a single previous candidate in a process called "mutation." After each new candidate 

is generated and relaxed, the ranking of energies is updated, and only the stablest candidates—

specifically, those in the pool—are mutated or crossed over to produce new candidates. By this 

approach, the genetic algorithm is able to generate progressively better candidates until eventually, 

typically after some thousands of iterations, it may converge upon the global minimum structure.  

 This basic workflow is represented in Figure 2.1 and is covered in more detail in the sections 

that follow. 

 

2.4 Initialization 

 The first step in the genetic algorithm is to generate an initial population of candidate cluster 

structures. This can be done one of two ways: either by providing the algorithm with structure files 

to start with, or by using the algorithm’s internal routines to randomly generate  

clusters to comprise the initial population. Our group’s genetic algorithm has two distinct 
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Figure 2.1: Basic workflow of the pool-based genetic algorithm. 

 

methods for generating random clusters, described below. 

Random generation by scattering: A bare cluster of the required number of atoms is generated 

by randomly placing atoms in a cubic box of side length 𝐿 = 𝑟𝑖𝑗√𝑁
3

, where 𝑁 is the number of 

atoms and 𝑟𝑖𝑗 is the nearest-neighbor distance. If there are multiple atomic species, the larger 
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nearest-neighbor distance is used to set the box length. Overlap is avoided by rejection sampling: 

that is, as each atom is randomly placed, it is checked for overlap with any other atoms and if there 

is overlap, a new placement is randomly chosen.  

Random generation by concatenation: A single atom is placed at the origin, to which an atom is 

attached at the nearest-neighbor distance in a randomly chosen orientation. Atoms are placed in 

this manner, with every atom being attached to the one placed before it, until all atoms in the 

cluster have been placed. Overlap is avoided by rejection, as in the scattering method. This method 

has the advantage of ensuring that all atoms are in contact with at least two other atoms, whereas 

generation by scattering can lead to diffuse or disconnected clusters that require more ionic steps 

during relaxation to become close-packed. 

 

2.5 Selection and recombination of candidates 

 At each iteration of the genetic algorithm, a new candidate structure is produced from the 

low-energy clusters in the pool. This takes place through either a mutation operation, whereby a 

single cluster in the pool is modified to produce a new candidate, or via crossover, where two pool 

clusters are chosen as “parents” and recombined to produce a candidate “child” cluster. For a 

mutation operation, the cluster to be mutated is chosen randomly and uniformly from the pool. By 

contrast, for crossover operations, the parents are selected via a roulette algorithm that favors 

clusters with higher assigned selectability (see Section 2.7 for details of the selectability 

calculation). The roulette algorithm compares the selectability of a randomly chosen pool cluster 

to a randomly generated number between zero and one, and the cluster is selected if its selectability 

is larger than the random number. This process is repeated until two parent clusters have been 

selected. Although in our current implementation only two-parent crossover is supported, in 
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principle, this selection algorithm can be used as written to identify multiple parents for multi-way 

crossover operations. 

 

 

 

Figure 2.2: Cut-and-splice crossover operation. Two parent clusters are chosen, and a dividing 

plane is drawn through each structure (1) to produce complementary segments (2). These segments 

are merged to produce a new, unique child cluster (3).  

 

 

2.6 Genetic operations: crossover and mutation 

The primary determinant of a genetic algorithm’s success resides in its method for 

recombining previous solutions to produce new candidate solutions—that is, how the algorithm 

generates children from parents. In particular, the algorithm must ensure that significant properties 

of the parents are passed down to the children [38]. In the first demonstrations of GA for the 

discovery of low-energy cluster structures by Xiao and Williams [39] and Hartke [40], clusters 

were encoded as binary strings, and new clusters were generated by concatenating substrings of 

1. 2. 3. 
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low-energy parent clusters. Later, Deaven and Ho [38] proposed a more physically meaningful 

crossover method known as the cut-and-splice crossover operation, which we apply in this work. 

The cut-and-splice operation involves merging segments (often halves) of parent structures in real 

space to create a new structure, as illustrated for a pair of bare clusters in Figure 2.2. Cut-and-

splice crossover implementations may differ with respect to how the sections of each parent are 

chosen and merged, e.g. in the choice and consistency of the dividing plane, in whether the 

orientation of the parent segments is preserved through the operation, or in whether the parent 

segments are of equal size.  

Since crossover operations attempt to convey the structural properties of the parent 

structures to the child structure, they have only a limited ability to generate new structural features. 

This can result in a lack of diversity in the population of candidates, impeding the efficiency of the 

genetic algorithm. Accordingly, methods for introducing randomness into the structure generation 

process are often employed to improve the genetic algorithm’s efficiency [10]. Such methods are 

known as mutation operations. Mutation operations involve modifying a randomly selected subset 

of a cluster’s structure to produce a new candidate. Following Johnston [10], we use the term 

“static mutation” to refer to operations where the subset being modified is assigned a random value 

(i.e., randomized), and “dynamic mutation” for operations that change the subset to a value 

dependent on its initial state.  

 Two mutation methods are used in our genetic algorithm for bare clusters. The first, Rotate, 

is a dynamic mutation that rotates a portion of the cluster by a random angle from its initial 

position. The second, Move, is a static mutation that randomly selects atoms from the cluster and 

shifts each atom’s position by a random vector of a small magnitude (up to the nearest-neighbor 

distance).  
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2.7 Convergence 

 While genetic algorithms have been successfully applied to the problem of ground-state 

structure identification by our group and many others, we must mind the fact that identification of 

the global minimum is not mathematically guaranteed. Rather, genetic algorithms belong to a class 

of optimization strategies known as heuristics: methods that "steer towards" iteratively better 

solutions to a problem in a non-exhaustive, but expedient manner [41]. Accordingly, a genetic 

algorithm must be equipped with a reasonable criterion by which to gauge convergence and to call 

off the search. In the context of structural search, this criterion is sometimes that a number of 

iterations have gone by without the discovery of any new low-energy configurations [37], or 

simply that a pre-set number of candidates have been evaluated [36]. In our group's 

implementation, convergence is declared when all of the top-ranked structures have been 

extensively operated upon (i.e., crossed over or mutated) and no new top-ranking candidates have 

emerged. Mathematically, this condition is expressed as follows. For each candidate in the pool, 

we calculate a selectability 𝑆 which monotonically decreases with respect to both the candidate's 

energy 𝐸 and the number of times 𝑁𝐶 that it has previously been chosen for crossover: 

 

𝑆𝑖 = [
1 − tanh(2𝑅𝑖 − 1)

2
] [

1

1 + √𝑁𝐶,𝑖
] 

 

The term 𝑅𝑖 above expresses the normalized relative energy of configuration 𝑖 with respect to the 

rest of the pool, varying from 0 when 𝑖 has the lowest energy in the pool to 1 when it has the 

highest: 

𝑅𝑖 =
𝐸𝑖 − 𝐸𝑚𝑖𝑛,𝑝𝑜𝑜𝑙

𝐸𝑚𝑎𝑥,𝑝𝑜𝑜𝑙 − 𝐸𝑚𝑖𝑛,𝑝𝑜𝑜𝑙
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The first term in brackets in the equation for 𝑆𝑖 is called the fitness for candidate 𝑖, 𝐹𝑖, and the 

second bracketed term is known as the regulated frequency of selection, 𝜔𝑖. We aim to evolve 

stable structures, so candidates with lower energy are assigned higher fitness. Meanwhile, the 

frequency of selection is decreased (or “regulated down”) for candidates that have been selected 

many times in the past. In total, the selectability for each candidate in the pool is the product of 

the candidate’s fitness and its regulated frequency: 

 

𝑆𝑖 = 𝜔𝑖𝐹𝑖 

𝜔𝑖 =
1

1 + √𝑁𝐶,𝑖
 

𝐹𝑖 =
1 − tanh(2𝑅𝑖 − 1)

2
,   𝑅𝑖 =

𝐸𝑖 − 𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

 

 

 Iteration of the genetic algorithm continues until the maximum difference in selectability 

among any two candidates in the pool is less than a user-set threshold, 𝛿𝑆. If a candidate is very 

stable relative to the rest of the pool, yet also very frequently selected, then its selectability will be 

low. Conversely, if it is less stable but has rarely been selected, then its selectability is increased. 

This arrangement ensures that the possible permutations of the pool are widely explored: when the 

pool is initiated, all candidates are new, and so more stable candidates are recombined more 

frequently, but as the algorithm iterates, less-fit candidates in the pool will be chosen for 

reproduction with increasing frequency. When a new candidate enters a pool that has stayed stable 

for several hundred iterations, it will be chosen frequently regardless of its stability. A convergence 

profile of the variation of 𝛿𝑆 in a typical GA run is shown in Figure 2.3 below. 
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Figure 2.3: Convergence profile for a typical GA run. The difference in selectability across the 

pool candidates, 𝛿𝑆, is plotted as a function of the iteration. The value of 𝛿𝑆 declines while the 

pool is unchanged, spiking when new candidates enter the pool. 

 

2.8 Identifying similar candidate structures 

 As the genetic algorithm explores configuration space, it is possible that it will repeatedly 

visit the same local minima, discovering near-identical structures multiple times. In this 

circumstance, the pool could become populated with copies of the same cluster, thereby losing its 

structural diversity. To prevent this from happening, the genetic algorithm needs a method to 

recognize similar candidates. 

  Our approach is as follows. For each new candidate, a difference score is calculated against 

all previous candidates using the eigen-subspace representation of Li, Yang, and Zhao [42]. In 

overview, six basic steps are involved in the construction of this representation: 

1.   First, a distance matrix 𝑫 is constructed for each structure. In the diagonal elements of the 

matrix, we enter the atomic number (or another element-identifying value) of each atom in 

the structure. Off-diagonal elements correspond to Cartesian distances between the atoms. 

2.   The distance matrix is decomposed into its eigenvalues 𝜆𝑘 and eigenvectors 𝒖𝑘: 
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𝑫 =∑𝜆𝑘

𝑛

𝑘=1

𝒖𝑘𝒖𝑘
𝑇 

3.   Next, the complete set of eigenvectors for each eigenvalue, i.e. the eigen-subspace for each 

eigenvalue, is used to construct an eigen-subspace projection array (EPA) 𝒔𝑖 for each atom 

𝑖 in the structure. Each entry in this array, 𝑠𝑖
𝜆𝑘 , is the norm of orthogonal projection of atom 

𝑖 over the complete set of eigenvectors 𝑚 associated with the eigenvalue 𝜆𝑘. By using the 

complete set of eigenvectors for each eigenvalue, we ensure that we uniquely specify the 

atomic coordinates. 

𝑬𝑷𝑨(𝒊)  ≡ 𝒔𝑖 = { 𝑠𝑖
𝜆1 , 𝑠𝑖

𝜆2 , … , 𝑠𝑖
𝜆𝑛  } 

𝑠𝜆𝑘 = √∑(𝑟𝑚
𝜆𝑘)

2

𝑚

 

 

4.  These EPAs are rendered as eigen-subspace projection functions (EPFs) Λ𝑖, in which each 

atom is represented as a unit vector in the eigen-space 𝑆 ∈ [0, 1] and its components 

associated with each eigenvalue 𝜆𝑘 are grouped together piecewise, in order of increasing 

𝜆𝑘, as shown in Figure 2.4. 

5.   Next, the “EPF distance” between two atoms is calculated as the absolute difference 

between their EPFs integrated across the eigen-space: 

𝑑𝑖𝑗
𝐸𝑃𝐹 = ∫ |Λ𝑖 − Λ𝑗|𝑑𝑆

1

0

 

6.   Finally, the difference score between two structures is given as the sum of EPF distances 

between their atoms, minimized over possible one-to-one correspondences of atoms. This 

minimization between pairs of atoms can be thought of as a problem of optimal assignment 

and is carried out by the Hungarian algorithm [43].  
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If two structures have a difference score lower than a threshold value (internally set in our 

implementation to 0.5), they are deemed to be similar. If a newly generated candidate is similar to 

a candidate structure already in the pool, the energy of the new candidate is compared with the 

pool candidate. The new candidate takes the place of the candidate it resembles in the pool if it has 

a lower energy. 

 

          

 

Figure 2.4: Eigenvalue projection functions. Reproduced from [42], with the permission of 

AIP Publishing. This plot shows the eigenvalue projection functions for the carbon and hydrogen 

atoms in a standard methane molecule (a) and methane with one C-H bond lengthened by 0.05 

Å, (b). The eigenvalues of the distance matrix are at 8.36, 3.98 and -0.78 in (a) and 8.41, 3.99, -

0.78 and -0.84 in (b). Though new eigenvalues and eigenvectors emerge as a result of the 

stretched bond, this minute structural change is represented as a correspondingly small change in 

the EPF, demonstrating the utility of the EPF as a means of structure comparison.  
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Chapter 3. Adapting GA for ligated clusters  

3.1 Structural considerations 

As discussed in Chapter 1, for most practical applications, nanoclusters must be protected 

from aggregation by the attachment of surface ligands. These ligands do not simply passivate the 

cluster’s surface, but themselves actively influence the structure and properties of the ligated 

cluster. In order to make predictions for most nanocluster systems of practical interest, therefore, 

we are tasked with identifying the ground state structure of the core cluster together with all 

terminating ligands: the cluster and ligands cannot be considered separately. This is a more 

challenging problem than the bare cluster case for several reasons.  

First, the number of atoms that must be considered when calculating the energy and when 

performing local optimizations is substantially increased by the addition of ligands, which makes 

individual iterations of the genetic algorithm take longer for a given number of core cluster atoms. 

For energy evaluation, if density functional theory is used—representing the least expensive ab 

initio method of appropriate accuracy—the computing time scales with between the square and 

the cube of the number of symmetrically distinct electrons in the system [44]. 

Secondly, the geometry of ligated systems is more complex than the bare cluster case. Each 

ligand introduces multiple geometric degrees of freedom beyond the usual single positional degree 

of freedom of the core atoms. This adds another layer of difficulty to local structural optimizations, 

but more importantly, it means that the configurational space that the genetic algorithm can sample 

is much larger, and identification of the global minimum becomes a correspondingly more 

daunting exercise. 
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Finally, ligated clusters impose special constraints on the genetic algorithm’s structure 

generation methods. Genetic operations used for bare clusters are generally not applicable for 

ligated clusters without modification. Ligands must be treated as distinct entities from the core 

atoms to maintain stoichiometry and to avoid sampling unlikely configurations where, for 

example, side chains are separated from their binding moieties (see Figure 3.1). At the same time, 

we should seek to constrain the genetic operations as little as possible, since there is a risk of 

unintentionally biasing the genetic algorithm away from conformations that may be worth 

exploring. 

The sections in this chapter primarily deal with this last challenge. Herein, we describe the 

modifications made to our genetic algorithm’s structure-handling methods to enable the study of 

ligated clusters.  

 

 

Figure 3.1: Failure of cut-and-splice crossover for ligated clusters. The cut-and-splice method 

must be modified for ligated clusters, as randomly-chosen cutting planes will often pass through 

ligands, resulting in segments with cleaved molecular bonds. 
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3.2 Initialization 

 To start the genetic algorithm, an initial population of structural candidates is required. In 

our implementation, this initial population can be randomly generated or, alternatively, taken from 

files provided by the user. For the case of ligated clusters, we construct the initial population by 

attaching ligands to bare clusters, which can similarly either be randomly generated or user-

provided. If the user provides an initial population of bare clusters, these will subsequently be 

randomly ligated with the necessary number of ligands. If the initial pool is to be randomly 

generated, the same procedure applies: bare clusters are randomly generated (see Section 2.4) to 

which ligands are randomly attached.  

 Our process for ligand attachment is designed to assure that ligands are placed on the 

outside of the cluster without overlapping. This is accomplished by the following procedure, 

illustrated in Figure 3.2. Starting from a bare cluster that has been randomly generated or supplied 

by the user, we choose a random point on a sphere centered at the center of gravity of the bare 

cluster and position a ligand so that its center of gravity is on this chosen point. Next, we find the 

atom in the cluster that is closest to the positioned ligand’s center of gravity, and the atom in the 

positioned ligand that is closest to this nearest cluster atom. The ligand is moved towards the 

cluster along the vector between these two atoms until the ligand just contacts the cluster. This 

“orbiting-and-landing” approach is repeated until all requested ligands are placed, with two 

conditions checked at each iteration: first, if the cluster atom nearest the ligand’s original position 

already has a ligand attached to it, the next-nearest unoccupied cluster atom is chosen as the 

ligand’s destination; second, ligands are checked for overlap in their final position. The placement 

is rejected if overlap is detected and a new trial placement is begun. Optionally, we can require 
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that ligand placements are only valid if a particular atom in the ligand is in contact with the cluster; 

this allows for the orientation of ligands to be specified if the active site of the ligand is known. 

 

 

Figure 3.2: Random ligation of bare nanoclusters. Starting from a bare cluster structure, a 

random point on a sphere centered at the cluster’s center of mass is chosen as the location of a 

randomly-oriented ligand (1). The closest pair of ligand and cluster atoms is identified, and the 

clearance between the atoms calculated (2). The ligand is then moved into contact with surface of 

the cluster (3). Next (4), a new ligand is positioned as in (1), but only unoccupied cluster atoms 

are valid for placement. The clearance between the ligand and the nearest unoccupied cluster atom 

is determined (5), and the ligand is put into contact with this unoccupied atom. 

 

3.3 Crossover 

 For the cut-and-splice crossover of ligated clusters, two parent clusters are selected from 

the pool using the roulette method (Section 2.5) and a ratio is chosen for their mating. The ratio 

of parenthood depends on the mode of crossover; three modes are available to be activated by the 

user. Even crossover takes 50% of the core atoms and ligands from each parent cluster to produce 

the child cluster. Random crossover chooses the percentage of each parent randomly and 
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uniformly. Weighted crossover determines the number of atoms (and ligands) 𝑛𝑖 contributed by 

each parent cluster 𝑖 based on the ratio of fitnesses 𝐹𝑖 of the parents: 

𝑛1 = 𝑛𝑡𝑜𝑡𝑎𝑙 (
𝐹1

𝐹1 + 𝐹2
) , 𝑛2 = 𝑛𝑡𝑜𝑡𝑎𝑙 (

𝐹2
𝐹1 + 𝐹2

) 

Where 𝑛𝑡𝑜𝑡𝑎𝑙 is the number of core atoms and/or ligands specified by the stoichiometry of the 

system being studied. The equation for the fitness 𝐹𝑖 is given in Section 2.7. 

 Once two parent clusters are selected from the pool and the ratio of their parentage is 

established, each parent is subdivided into its ligands and its core atoms. The core atoms are then 

indexed by their ascending Cartesian 𝑧-coordinates (or, in the case of the ligands, the 𝑧-coordinates 

of their centers of mass) to provide a standard ordering. Next, core atoms are taken one by one in 

order of increasing index from the first parent, up to a total number of atoms 𝑛1, i.e. from index 0 

to index (𝑛1 − 1); the remaining 𝑛2 atoms are taken from the second parent from index 𝑛1 to index 

(𝑛1 − 1 + 𝑛2). The segments of the core atoms are merged, and overlapping atoms are moved 

away from each other until overlap is corrected. Concurrently, the same process is conducted for 

the ligands. This process is illustrated in Figure 3.3. Overlap between ligands and core atoms, as 

well as between ligands and other ligands, is corrected by moving overlapping ligands and atoms 

away from each other until overlap is no longer observed. Throughout the overlap correction 

process, ligands are moved as groups of atoms; care is taken to never alter the relative position of 

atoms within individual ligands. 

 

3.4 Mutation  

 The Rotate method described in Section 2.6 was found to be inapplicable to ligated  

clusters because a random rotation applied to a segment of the target cluster could often result in 
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Figure 3.3: Crossover of ligated clusters. Parent clusters are chosen, and their atoms and ligands 

are sorted along a single Cartesian direction. Atoms and ligands are chosen in order of this ranking 

to build up segments, which are then merged to form the child cluster.  

 

 

 

Figure 3.4: Mutation of ligated clusters. First, (1) a ligated cluster is chosen from the pool for 

mutation. A random axis passing through the cluster’s center of mass is chosen and the cluster is 

subdivided along this axis (2). The smaller segment of the cluster is rotated around the chosen axis 

by a random angle (3), and the segments are merged (4) to form the mutated cluster.  
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surface-attached ligands being rotated inwards into the body of the cluster. In response, a new 

Rotate method was developed for ligated clusters that preserves the outward orientation of ligands, 

illustrated in Figure 3.4. In this method, we choose a random axis passing through the center of 

gravity of the ligated cluster and rotate a segment of the cluster around this axis by a random angle. 

 

3.5 Similarity evaluation  

Due to the greater structural complexity of ligated systems, more iterations of the genetic 

algorithm are required to discover low-energy configurations than for bare clusters. Our similarity 

evaluation method, which calculates the similarity of each new candidate to every previous 

candidate, can become a considerable bottleneck in the algorithm when handling systems with 

many atoms over many iterations. To reduce the time spent on similarity evaluation, we pass a 

reduced representation of each candidate to the similarity calculator that only includes the core 

atoms and the active sites of the ligands, ignoring the ligand side chains. The speedup compared 

to similarity evaluations using the entire ligated structure is shown for Au18(SCH3)14 running on 

24 CPUs in Figure 3.5. At 500 iterations, the similarity evaluation of each new candidate takes 

nearly 100 seconds if the side chains are included, whereas the time per evaluation is below 2 

seconds at the same iteration when considering only the core atoms and active sites.  

In addition to affording an improvement in throughput, this way of evaluating similarity 

between ligated structures is arguably more appropriate in principle, since for a particular ligated 

cluster the ligand side chains may be able to take on many degenerate, energetically equivalent 

sets of conformations, especially in the case of small and/or flexible ligands. If identical clusters 

differing only in the position of the ligand side chains are recognized as different structures, the 

structural diversity in the pool could suffer as a result. 
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Figure 3.5: Time required for similarity evaluation of new candidates. 
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Chapter 4. Energy evaluation by machine learning 

4.1 The importance of energy evaluation in GA 

 Energy evaluation is the critical step in a structural search, whether the search is conducted 

by a genetic algorithm or an alternative global optimization method, and it is also generally the 

rate-limiting step. The primary task of searching for low-energy cluster structures comes down to 

the accurate comparison of the energy of different conformations. This task is doubly complicated 

in the case of ligated systems, as with the addition of ligands we must account for more atoms and 

element types that increase the computational cost, while the potential energy surface can be quite 

flat due to the flexibility of the ligands, requiring us to resolve small differences in energy between 

conformers. The energy of a cluster conformation can be most accurately evaluated with first 

principles quantum mechanical techniques, though we are limited to the simpler methods among 

these due to the large number of atoms being considered; density functional theory is applicable 

whereas, for example, wavefunction methods are not [11]. 

 

4.2 Density functional theory 

Density functional theory (DFT) is the name given to a family of computational methods 

that efficiently solve for the electronic ground state of a system of atoms from first principles. DFT 

is a formally exact means to solve the Schrödinger equation for the lowest-energy state of a system 

with n electrons by taking advantage of the one-to-one mapping of electron densities to ground 

states [45]. In a DFT calculation, the Hamiltonian of the system being evaluated is formulated in 

terms of the 3-dimensional average electron density rather than the 3n-dimensional many-body 
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wavefunction, which much simplifies computation. The ground state is discovered by minimizing 

the energy of the system with respect to the variation of the electron density. 

 

4.3 Machine-learned interatomic potentials 

 While first-principles quantum mechanical calculations provide both reliability and 

accuracy, their computational cost becomes prohibitive for applications that require large systems 

(>100s of atoms) to be evaluated many times (>1000s of iterations). If we are willing to sacrifice 

the general applicability afforded by methods derived from physical principles, comparable 

accuracy can be obtained with greatly reduced computational expense by fitting parameterizable 

interatomic potentials to quantum mechanical data [46]. This approach falls within the paradigm 

of supervised machine learning [47]: we aim to learn a good approximation to the energy-structure 

hypersurface from a training set of structures and their DFT-calculated energies, forces, and 

stresses. 

Once trained, the quality of a machine-learned potential can be judged in a variety of ways. 

Three figures of merit of particular relevance to GA are the root-mean-square error (RMSE) of 

the energy, the average of errors (or the bias), and the Spearman rank-order correlation. All of 

these values should be assessed as prediction errors, not as training errors; that is, the trained model 

should be tested with configurations it has never encountered before. The RMSE simply indicates 

how far on average the energy predicted by the trained potential will deviate from the DFT-

calculated energy. The average of errors is ideally zero, and its value reveals any tendency the 

trained potential might have to systematically over- or underestimate the energy compared to ab 

initio methods. Figure 4.1 shows parity plots of potentials exhibiting large magnitudes of RMSE 

and average error, respectively.  



 27 

 

Figure 4.1: Different kinds of prediction error for machine-learned potentials. Left: a 

representative parity plot for a potential exhibiting high root-mean-square energy error across a 

test set.  Right: a representative parity plot for a potential exhibiting a high average of errors on 

the test set, systematically overestimating the energy of low-energy configurations. In both plots, 

the orange line represents ideal agreement (perfect parity) between the model and direct quantum 

mechanical calculations. 

 

The Spearman rank-order correlation, Figure 4.2, compares the ordering of configurations 

according to their DFT energies with their ordering according to their energies as predicted by the 

machine-learned potential. This correlation is of interest because the performance of a potential 

model for GA hinges on its ability to place structures in the pool in agreement with DFT; its 

accuracy in energy prediction mainly matters as a proxy for its competence in this ranking task. 

The formula for the Spearman rank-order correlation is: 

𝑟𝑆 = 1 −
6∑ (𝑅𝑀𝐿,𝑖 − 𝑅𝐷𝐹𝑇,𝑖)

2𝑁
𝑖

𝑁(𝑁2 − 1)
 

Where 𝑁 is the number of configurations being ordered, 𝑅𝑀𝐿,𝑖 is the rank of the 𝑖′th configuration 

according to the learned model, and 𝑅𝐷𝐹𝑇,𝑖 is the rank of the 𝑖′th configuration according to DFT. 
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The value of 𝑟𝑆 ranges from +1 in the case of perfect ranking to -1 in the case of exactly inverse 

ranking. 

 

 

Figure 4.2: The Spearman rank correlation coefficient. Left: a potential that ranks a test set in 

good agreement with DFT, yielding a high positive rank-order correlation of 0.92. Center: a 

potential with greater variance cannot order the test set as accurately, resulting in a lower 

correlation of 0.49. Right: a potential that gets the trend in energy wrong, yielding a negative 

ranking correlation on the test set of -0.92, corresponding to a negative monotonic relationship 

between the predicted energy and the DFT energy. 

 

4.4 Moment tensor potentials 

 Moment tensor potentials are a class of machine-learned interatomic potentials introduced 

by the Shapeev group in 2016 [48]. The content of the following mathematical description is 

abridged from their recent paper on the MLIP package that implements these potentials [49].  

Moment tensor potentials learn to predict the energy associated with an atom 𝑖 and its local 

environment, or neighborhood, 𝑁𝑖, and give the energy of a configuration 𝑐𝑓𝑔 of multiple atoms 

as the sum of the energies of all neighborhoods: 

𝐸𝑀𝑇𝑃(𝑐𝑓𝑔) =  ∑𝑉(𝑁𝑖)

𝑛

𝑖=1
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The energetic contributions 𝑉 are defined by a linear combination of basis functions, 𝐵𝛼, weighted 

by learned parameters 𝜀𝛼: 

𝑉(𝑁𝑖) =∑𝜀𝛼𝐵𝛼(𝑁𝑖)

 

𝛼

 

The basis functions 𝐵𝛼 are a set of moment tensor descriptors (or moments) 𝑀𝜇,𝜐 and tensor 

contractions thereof (i.e. scalar products, vectorial dot products, and Frobenius matrix inner 

products between 𝑀𝜇,𝜐). These descriptors are comprised of a radial component, which is a linear 

combination of polynomials defined within a cutoff radius 𝑅𝑚𝑎𝑥, multiplied by an angular 

component, which is a repeated outer product between interatomic distances, summed over all 

atoms within the neighborhood 𝑁𝑖: 

𝑀𝜇,𝜐(𝑁𝑖) =∑[ ∑ 𝐶𝜇,𝑡𝑖,𝑡𝑗
𝛽

𝑄𝛽(|𝑟𝑖𝑗|)

𝑁𝑄

𝛽=1

]

𝑗

𝑟𝑖𝑗⊗…⊗ 𝑟𝑖𝑗⏟        
𝜐 times

 

Where 𝑄𝛽(|𝑟𝑖𝑗|) are the radial basis functions, which take the form of Chebyshev polynomials of 

order 𝛽 multiplied by a smoothing term so as to approach zero at the cutoff radius |𝑟𝑖𝑗| = 𝑅𝑚𝑎𝑥 . 

The radial weights 𝐶𝜇,𝑡𝑖,𝑡𝑗
𝛽

 are learned parameters of the model, analogous to 𝜀𝛼. The repeated outer 

product between interatomic distances, 𝑟𝑖𝑗⊗…⊗ 𝑟𝑖𝑗, is a tensor of rank 𝜐 introduced to encode 

angular information about the atomic neighborhood. Figure 4.3 depicts the transformation of local 

atomic environments to moment tensor descriptors. 

The size of the basis set 𝐵𝛼 is defined by the level of the potential. The level for a single 

moment tensor descriptor is defined as: 

level(𝑀𝜇,𝜐) = 2 + 4𝜇 + 𝜐 
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The constant coefficients 2, 4 and 1 were empirically tested and chosen as optimal by Shapeev et 

al. The level of a contraction of multiple moment tensor descriptors is defined as the sum of the 

moments being contracted, e.g.: 

level(𝑀1,0 ∙ 𝑀0,1) = level(𝑀1,0) + level(𝑀0,1) = 9 

level(𝑀2,3
4 ) = 4 ∗ level(𝑀2,3) = 52 

Each function 𝐵𝛼 in the basis set is a moment or a contraction of moments. The size of the basis 

set of the potential is set by specifying a maximum level, where the basis set will be comprised of 

all moments and contractions of moments with level(𝐵𝛼) < levelmax. We also specify 𝑁𝑄 to 

define the size of the radial polynomial basis set for each moment. These two values, 𝑁𝑄 and 

levelmax, define the functional form of a particular moment tensor potential, and also determine 

the number of coefficients 𝜀𝛼 and 𝐶𝛽 that must be set during training. 

 This apparently elaborate construction carries with it important advantages. The moment 

tensor descriptors are, by design, invariant to the permutation of atoms of the same species, as well 

as to transformations such as rotation and reflection. Each moment 𝑀𝜇,𝜐(𝑁𝑖) is a two-body 

descriptor, having the notable quality of encoding angular information for rank 𝜐 ≥ 1 without 

incorporating three-body descriptions of the environment. On the other hand, moment tensor 

potentials are capable of representing arbitrarily many-body interactions through contractions of 

moments; by increasing levelmax and thereby the varieties of moment contractions included in the 

basis set, progressively higher-order interactions can be captured. A moment tensor potential of a 

given level thus exists within a well-defined hierarchy of quality, where greater accuracy can be 

achieved at the tradeoff of slower computation and the requirement of larger amounts of training 

data. In this sense, moment tensor potentials are a systematically improvable class of models [48]. 
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Figure 4.3: Moment tensor representation of local atomic environments. Reproduced from 

[50]. Moment tensors are descriptors of the neighborhood 𝑁𝑖 of atom 𝑖, encoding information on 

the relative distances and angles between atom 𝑖 and all neighboring atoms within the cutoff radius, 

as well as the atomic types 𝑡𝑖.  
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 Despite these useful qualities, moment tensor potentials remain subject to some of the usual 

limitations of machine-learned models. Namely, their accuracy cannot exceed that of the method 

used to produce the training data; they typically struggle to represent systems unlike those that 

they were trained on; and they can be overfit to the training data, learning as signal what is actually 

noise. Also, although the polynomial basis chosen for the radial components helps ensure that the 

parameterized potential energy surface varies smoothly, it provides no guarantee on the model’s 

performance outside the parameterized region. In practice, this means that a moment tensor 

potential can produce qualitatively incorrect results when tasked with evaluating or relaxing a 

configuration that is, in some sense, “too far beyond” what it was trained on. Here it is useful to 

introduce the notion of interpolation and extrapolation: moment tensor potentials and other 

machine-learned local potential models tend to have acceptable accuracy only within the region of 

configuration space spanned by their training set (i.e., when interpolating), and are unreliable when 

asked to make predictions outside of (i.e., extrapolating from) this region, as illustrated in Figure 

4.4. This concept is formalized in MLIP, the package that implements moment tensor potentials, 

by way of the D-optimality criterion. 

 

4.5 The D-optimality criterion 

 The following summary is adapted from [50]. A trained potential function 𝑃 learns to 

approximate the energies, forces, stresses or other features 𝑦 from associated configuration data 𝑥. 

The predicted features 𝑦′ depend on the configurations 𝑥 as well as the variable learned parameters 

of the potential, 𝜃: 

𝑦′ = 𝑃(𝜃, 𝑥) 
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When training on a set of paired feature-configuration data {𝑦𝑗 , 𝑥𝑗}, we aim to minimize a loss 

functional 𝐿 by varying the parameters 𝜃: 

𝐿(𝜃) =∑(𝑦𝑗 − 𝑃(𝜃, 𝑥𝑗))
2

𝑛

𝑗=1

 

The minimization of this loss functional for a particular training set results in a set of trained 

parameters, 𝜃̅ = arg min 𝐿(𝜃).  

For ligated nanoclusters, we must employ multi-component moment tensor potentials. 

Multi-component moment tensor potentials have a nonlinear dependence on the parameters 𝜃. As 

long as the trained parameters of the potential are near their optimal values, however, we can 

approximate the potential as varying linearly with respect to its parameters 𝜃: 

𝑃(𝜃, 𝑥𝑗) ≈∑(𝜃𝑖 −

𝑖

𝜃̅𝑖)
𝜕𝑃(𝜃̅, 𝑥𝑗)

𝜕𝜃𝑖
 

Then, the terms within the summation of the loss functional are: 

𝑦𝑗 − 𝑃(𝜃, 𝑥𝑗) 

≈ 𝑦𝑗 −∑(𝜃𝑖 −

𝑖

𝜃̅𝑖)
𝜕𝑃(𝜃̅, 𝑥𝑗)

𝜕𝜃𝑖
 

Once linearized in this way, training of the potential can be expressed as the problem of finding 

error-minimizing solutions to an overdetermined set of 𝑛 linear equations, where 𝑛 is the number 

of configuration-energy pairs in the training set, with respect to the 𝑚 < 𝑛 parameters 𝜃𝑖. We can 

express this system of equations as a tall 𝑛 × 𝑚 matrix, 𝐵: 

𝑩 =

[
 
 
 
 
 
 
𝜕𝑃(𝜃̅, 𝑥1)

𝜕𝜃1
    …   

𝜕𝑃(𝜃̅, 𝑥1)

𝜕𝜃𝑚 
⋮             ⋱            ⋮

 
𝜕𝑃(𝜃̅, 𝑥𝑛)

𝜕𝜃1
    …   

𝜕𝑃(𝜃̅, 𝑥𝑛)

𝜕𝜃𝑚 ]
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From this matrix, we can select the 𝑚 most linearly independent configurations in the training set, 

representing the maximally diverse subset of 𝑚 configuration-energy pairs in the training set. Such 

a selection is called D-optimal, meaning that the information content of the data subset is 

maximized relative to the available data and the size of the subset. The process of choosing this 

D-optimal subset is known as active selection, and can be equivalently understood as finding the 

𝑚 ×𝑚 submatrix of 𝐵 with maximal volume. In other words, we aim to populate a square 

submatrix 𝐴 with row entries from 𝐵 so as to maximize the value of | det(𝐴) |. This is 

accomplished by use of the MaxVol algorithm [51].  

Finally, the extrapolation grade 𝛾 of a configuration 𝑥𝑖 is defined as the maximum factor 

by which the value of | det(𝐴) | could change by the addition of a row corresponding to 𝑥𝑖. If the 

extrapolation grade of 𝑥𝑖 is greater than 1, the volume of configuration-energy space spanned by 

the training set will be increased by the inclusion of 𝑥𝑖. Stated differently, if 𝛾(𝑥𝑖) > 1, then 𝑥𝑖 

resides outside the volume of configuration-energy space currently spanned by the training set. 

 The extrapolation grade can be used as an indicator of the likely error on a configuration 

by the following reasoning. We can think of the actively selected set of 𝑚 configurations as points 

in configuration space defining the boundaries of a region within which the energy predicted by 

the fitted potential should vary smoothly, due to the polynomial nature of the fit, from one 

boundary value to the other. In this sense, the energy error for a configuration in this region should 

be “limited.” Outside of this region, however, the polynomial fit is unbounded, so the errors can 

be extreme.  
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Figure 4.4: A simplified example of interpolation and extrapolation. Left: a 6th-order 

polynomial “potential” fitted to a set of “training data” with only one configurational dimension. 

Outside of the region of configuration space spanned by the training data, prediction errors can be 

large, as shown for the blue structure which lies in the extrapolating region. Right: the 

extrapolating structure is added to the training data and the polynomial is re-fit, avoiding the 

prediction error. 
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Chapter 5. Active learning 

5.1 The goals of active learning 

As described in the last chapter, moment tensor potentials can learn to approximate a 

potential energy surface by interpolating quantum-mechanical data, providing accurate energy 

evaluations at very low cost. We would like to be able to use moment tensor potentials for energy 

evaluation and structural relaxation in GA to accelerate the structural discovery of ligated clusters, 

which are relatively large and unwieldy to calculate with DFT. 

However, moment tensor potentials produce unreliable results when used for the relaxation 

or energy evaluation of configurations that extrapolate from the region of configuration space 

spanned by the data on which the potential was trained. Poor results from such evaluations can 

disrupt the operation of the genetic algorithm. In particular, experience has shown that the potential 

can falsely predict that certain extrapolating (and often unphysical) configurations are much lower 

in energy than any interpolating configurations, and the pool of the genetic algorithm can become 

“poisoned” as a result, with these misevaluated configurations being reproduced at the expense of 

all other pool candidates and coming to dominate the pool. Even if such pathological results do 

not arise from relaxations of extrapolating clusters, a genetic algorithm driven by moment tensor 

potentials is only capable of identifying locally optimal structures within the interpolating region, 

and then only those that are comprised of atomic environments represented in the training data, 

which may or may not be sufficient to represent the globally optimal structure. In short, when 

machine-learned interatomic potentials are used for energy evaluation, GA’s progress towards the 

global minimum is hampered by the limited data available to the potential at any given point. 
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Our group has developed an active learning approach to address this issue, robustly 

integrating moment tensor potentials for structure optimization with a genetic algorithm for global 

structural search. A trained moment tensor potential is used to relax and evaluate all GA-generated 

candidate clusters which are sufficiently similar to the data the potential was trained on, i.e. whose 

extrapolation grade is below a user-set threshold. Clusters with extrapolation grades above the 

threshold are deemed unviable for moment tensor potential calculation and are evaluated instead 

with DFT for a limited number of ionic steps. The data produced by these DFT calculations are 

used to retrain the potential, improving its accuracy on-the-fly throughout the operation of the 

genetic algorithm. DFT relaxations are also performed on the pool clusters at every retrain, and 

the data from these relaxations are added to the training set to specifically improve the ability of 

the moment tensor potential to describe the lowest-energy regions of the potential energy surface. 

 

5.2 Active learning workflow 

The workflow for active learning is shown in Figure 5.1, and involves three basic phases: 

selection, reevaluation, and retraining. The genetic algorithm is initialized with a trained moment 

tensor potential and a file containing its training set included in the calculation directory. For each 

new structure generated by GA, an extrapolation grade is calculated with respect to the potential 

and its training set using the MLIP package’s internal “calc-grade” routine. If the extrapolation 

grade for the initial structure is larger than the user-set value “BREAKTHRESHOLD,” the initial 

structure is copied to a database, the training pool, for later DFT evaluation, and a new structure 

is generated. Otherwise, the moment tensor potential is used to relax the initial structure.  
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Figure 5.1: Active learning workflow. Image author: Yunzhe Wang. 

 

Next, the extrapolation grade of the relaxed structure is calculated, and if this grade exceeds 

the user-set “SELECTTHRESHOLD”—indicating MTP was unable to relax the candidate to a region 

of configuration space acceptably near its training set—the candidate is selected for DFT 

evaluation. In this case, all interatomic distances are checked to establish whether the relaxed 

structure is physically realistic before passing the structure to DFT, since MTP can produce 

unphysical configurations when tasked with optimizing structures beyond its training region, and 

DFT may be unable to handle such configurations. In particular, if the relaxed structure has atoms 

that overlap or are detached from one another, we add the initial structure to the training pool 

instead. When the training pool is filled, i.e. when the number of selected candidates is greater 

than the user-set “SELECTPOOLSIZE”, we reevaluate all of the candidates in the training pool with 

DFT and retrain MTP with the new data from these ab initio evaluations incorporated into the 

training set. 
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To ensure correct ranking of the low-energy structures and to improve the moment tensor 

potential’s ability to describe the lowest-energy region of configuration space yet explored by the 

genetic algorithm, DFT calculations are also performed on the structures in the pool. After the pool 

calculations are evaluated by DFT, the pool is updated with the DFT energies and the candidates 

are reranked accordingly. Along with ensuring that the pool energies are accurate, ionic relaxation 

of the pool clusters by DFT can aid in the discovery of new lower-energy configurations. 

In addition to the values BREAKTHRESHOLD and SELECTTHRESHOLD, which establish 

how the conservative the active learning routine should be in checking MTP’s results by ab initio 

reevaluation, and SELECTPOOLSIZE, which establishes how frequently the reevaluation and 

retraining loops should occur, there are a number of user-settable parameters which affect the 

retraining process for MTP, especially by affecting the range of data added to the training set. First, 

a different number of ionic steps can be specified for DFT calculations depending on whether the 

cluster being evaluated is extrapolating or a member of the pool. For example, at each reevaluation, 

a full relaxation could be conducted for pool clusters, and only a single-point calculation made for 

extrapolating clusters. In this way, the potential may be supplied with more samples of the low-

energy region of interest for a given amount of computational expenditure. Alternatively, more 

ionic steps could be conducted for extrapolating clusters than for the pool clusters, allowing DFT 

relaxation to reveal new local minima in regions of configuration space to which the potential is 

relatively unexposed. 

Additionally, the values “HIGHENERGYTHRESHOLD” and “LOWENERGYTHRESHOLD” 

can be used to select the range of ionic steps from each DFT relaxation that should be included in 

the training set. Ionic steps with energies greater than HIGHENERGYTHRESHOLD (eV) above the 

energy of the final ionic step in a relaxation are excluded from the training set, whereas all ionic 
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steps with energies within LOWENERGYTHRESHOLD (eV) of the final ionic step will be included. 

Ionic steps with energies between these two thresholds will be added by default, but this can be 

further parameterized with the “INCLUDEINTERPOLATING” option, which when disabled will 

calculate the extrapolation grade of all ionic steps from each DFT optimization and select only 

those that are extrapolating to be added to the training set.  

 

5.3 The influence of the moment tensor potential 

 Since the extrapolation grade of each new candidate structure depends on the training state 

of the moment tensor potential and the configurations included in its training set, these conditions 

will substantially affect the behavior and efficacy of the active learning algorithm. A key point of 

the active learning approach is that we use the extrapolation grade, a measure of the proximity of 

a configuration to the training data, as a predictor for the reliability of a MTP calculation (i.e., of 

the error with respect to DFT). In fact, this relationship predicts well in only one direction: 

candidates that extrapolate can be expected to have high error, but interpolating candidates may or 

may not have low error. This is because the interpolating region is defined by a volume of 

configuration space but provides no condition on the resolution of features within this space; as a 

result, relevant energy-structure relationships may not be captured. The worst-case scenario is a 

potential that “doesn’t know what it doesn’t know,” rarely triggering DFT reevaluation, yet 

providing large errors on interpolating configurations of interest (particularly low-energy 

configurations). This can be the case with a training set that spans a large range of configuration 

space with insufficient detail, as when a moment tensor potential with too small of a basis for the 

system being studied is trained with an actively selected dataset. 
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5.4 Construction of the training set 

Our active learning scheme aims at the selection of salient training information to 

maximally improve the performance of MTP with the minimum computation of first-principles 

data, and at the preemptive bypassing of MTP calculations that are expected to be inaccurate. As 

a further measure to augment the performance of MTP for structural search, we can choose to 

weight the lowest-energy configurations in the training set. With the “SCALETOPCANDIDATES” 

option, after reevaluation of all extrapolating and pool candidates, MLIP’s “select-add” routine 

will be used to choose a maximally diverse subset of all DFT-evaluated configurations. To this 

actively selected subset, we add a user-settable number of copies (“TOPMULTIPLE”) of the lowest-

energy DFT-evaluated configurations (“TOPSELECTION”) to construct the training set. For 

example, the training set may comprise 10 copies each of the 200 lowest-energy-by-DFT 

configurations, plus an actively selected, optimally diverse subset of all configurations. This 

method helps ensure that MTP learns the atomic environments comprising low-energy 

configurations with good accuracy, because by adding multiple copies of these configurations to 

the training set, we proportionally multiply the loss assigned for error on these configurations 

during retraining. This approach was found to improve the ability of MTP to characterize and rank 

low-energy configurations compared to training with an unweighted dataset, as discussed in 

Section 6.1 and 6.2.  

It should be noted that when this method is used for retraining, a new training set is 

constructed at each retraining, and the size of this training set is fixed (since MLIP’s select-add 

feature selects a fixed number of configurations that depends on the number of functions in the 

potential’s basis set - see Section 4.5). This has the important advantage of limiting the time spent 

in retraining. However, it also means that some configurations are “forgotten” with each successive 
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retrain. In particular, these forgotten configurations will be those that do not maintain their position 

in the lowest-energy TOPSELECTION candidates, and that also do not belong to the optimally 

diverse subset of structures in the dataset.  
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Chapter 6. Results and discussion 

6.1 Training methods for moment tensor potentials for GA 

A moment tensor potential intended to substitute for first-principles calculations in a 

genetic algorithm must meet specialized requirements: 

1. Prediction accuracy on low-energy configurations matters much more than prediction 

accuracy on less stable configurations, since the genetic algorithm will use the low-

energy configurations predicted by MTP to produce new candidates. 

2. The potential needs to be able to rank low-energy configurations by their energy in 

good agreement with DFT, so as to be able to accurately construct the pool. 

Performance at ranking is more important than absolute energy error, as the pool will 

be reevaluated by DFT at every retraining cycle; it is acceptable if the energies 

assigned by MTP to the pool candidates change once checked by DFT, as long as the 

pool candidates are still the stablest structures known. Finally: 

3. Systematic overestimation or underestimation of energy should be avoided. A 

tendency to underestimate energy is more tolerable than a tendency to overestimate 

energy, as there is a practical risk in the latter case that, following DFT evaluation of 

the pool, the DFT-calculated energies will be lower than the values that MTP can 

possibly predict for any configurations, thereby preventing the pool from changing.  

MLIP’s integrated training procedure for moment tensor potentials will find a parameterization 

that minimizes the energy error across the training set, which should result in a potential that 

performs well at predicting energies of configurations that are similar to those in its training set. 

Therefore, our aim is to construct training sets that will produce a potential that complies with 
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requirements 1-3 above. To test different approaches to this problem, training data on the 

Au18(SCH3)14 system was generated in two stages.  

First, the genetic algorithm’s ligated cluster initialization routine (see Section 3.2) was used 

to randomly ligate Au18 structures sourced from our group’s Quantum Cluster Database. These 

randomly generated Au18(SCH3)14 structures were then relaxed using spin-polarized density 

functional theory as implemented in the Vienna Ab initio Simulation Package (VASP) using PAW-

PBE pseudopotentials, a plane-wave cutoff of 500 eV, a single gamma-centered k-point, an energy 

convergence criteria of 10-4 eV, and a force convergence criteria of 0.1 eV/Å. A total of 200 

structures were generated and relaxed, producing 4461 ionic steps that were used as training 

configurations. This dataset (Training Set 1) was used for the initial training of moment tensor 

potentials with basis sets of levelmax = 10, 12, and 14, all of which used radial basis sets of 𝑁𝑄 =

8, inner cutoff radii of 0.8 Å, and outer cutoff radii of 8.0 Å. 

Next, the aforementioned potential of levelmax = 10 was used for 10 independent genetic 

algorithm runs to produce and relax 200 candidates each, resulting in 4000 configurations total, 

corresponding to the initial and relaxed states of 10 sets of 200 candidates. Each of these 4000 

configurations was evaluated by a single-point DFT calculation using the same settings as above. 

This second dataset of 4000 DFT configurations was split into halves, with half reserved for 

validation and half used for the retraining of moment tensor potentials (Training Set 2) by a 

variety of different methods.  

The different training methods investigated are described in Figure 6.1. Here, the 

performance of each different training strategy is compared in terms of the RMSE, average error, 

and Spearman rank correlation coefficient against a test set of 100 conformers of Au18(SCH3)14 
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with DFT energies ranging from to -390.583 to -394.195 eV. This test set represents the 100 

lowest-energy structures of the 2000 reserved for validation. 

Figure 6.1 demonstrates that by numerically weighting low-energy configurations in the 

training set, the performance of MTP in the low-energy region can be improved. Every weighted 

training strategy investigated decreased the root-mean-square energy error and the magnitude of 

the average of errors on low-energy configurations relative to the unweighted control strategy.  

Interestingly, however, only the weighted strategies that actively selected from the total set 

of training configurations improved the ranking correlation on low energy structures. All of the 

weighted strategies that included all training configurations resulted in lower ranking correlation 

coefficients than the unweighted control strategy. In addition, most of the strategies which included 

all training configurations exhibited a negative average of errors, indicating a systematic 

overestimation of energy (or underestimation of stability) compared to DFT.  

These trends could simply arise because we apply a greater effective weight to the low-

energy clusters when we include only an actively-selected subset of the remainder of the training 

set. An equivalent weight could be achieved for the strategies that incorporate the entire set of 

training data by applying a larger multiple to the population of low-energy candidates, but the 

consequence would be much more time spent in training. 

The two best-performing strategies in terms of ranking correlation used potentials of 

levelmax = 14 and 𝑁𝑄 = 8 and actively-selected training sets augmented with 5 copies of the 100 

or 200 stablest candidates (“14g top 100/200 5x + active”). Nearly equivalent results were obtained 

with a potential of levelmax = 12 and 𝑁𝑄 = 8 and an actively-selected training set with 5 added 

copies of the 100 stablest candidates (“12g top 100 5x + active”). The strategy using a potential of 

levelmax = 10, 𝑁𝑄 = 8, with 20 copies of the 200 stablest candidates added to an  
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Strategy RMSE (eV) Bias (eV) Ranking correlation 
14g top 200 5x + active 0.49342 0.15352 0.77678 
14g top 100 5x + active 0.52165 0.18067 0.76580 
12g top 100 5x + active 0.51535 0.16036 0.76055 
10g top 200 20x + active 0.49245 0.07459 0.75920 
12g top 200 5x + active 0.51453 0.13467 0.74842 
10g top 200 5x + active 0.51304 0.05306 0.74267 
12g top 50 5x + active 0.53038 0.20566 0.74087 
10g top 50 5x + active 0.55227 0.20240 0.73535 
10g top 100 5x + active 0.55015 0.11356 0.73440 
10g top 100 20x + active 0.52458 0.10462 0.72996 
14g top 50 5x + active 0.53787 0.19555 0.72869 
10g all (control) 0.91401 -0.72324 0.71742 
10g top 200 20x + all 0.53490 -0.03179 0.71695 
10g top 50 20x + active 0.56097 0.21167 0.71106 
10g top 200 + active 0.55999 0.01421 0.70681 
10g top 50 5x + all 0.72165 -0.47484 0.70643 
10g top 100 5x + all 0.67272 -0.37390 0.69474 
10g top 100 20x + all 0.55084 -0.04820 0.69258 
10g top 50 20x + all 0.55955 -0.09768 0.68061 
10g top 200 5x + all 0.63969 -0.29478 0.66334 
10g top 100 + active 0.59218 0.00275 0.64516 
10g top 50 + active 0.56917 -0.04798 0.63670 

 

Figure 6.1: Different training strategies and their effects on MTP performance. Moment 

tensor potentials of three different basis sizes were prepared: levelmax = 10, 𝑁𝑄 = 8 (“10g”, blue 

rows); levelmax = 12, 𝑁𝑄 = 8 (“12g”, green rows); and levelmax = 14, 𝑁𝑄 = 8 (“14g”, orange rows). 

To construct the training set, training configurations were sorted by energy and the lowest-energy 

50, 100, and 200 candidates were extracted as subsets (“top 50,” “top 100,” “top 200”). These 

subsets were added in multiples (one copy, 5 copies, “5x”, or 20 copies, “20x”) to either the entire 

set of training configurations (“+ all”), or to an actively-selected subset of the training 

configurations obtained via MLIP’s “select-add” functionality (“+ active”). As a control, a 10g 

potential was trained on the entire set of training configurations without modifications. In all cases, 

training was limited to a maximum of 1000 iterations, and energy, force, and stress weights applied 

during training were 1, 0.01, and 0, respectively. Strategies are listed in descending order of their 

ranking correlation coefficients. 
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actively-selected training set (“10g top 200 20x + active”) also tested well, but the size of the 

training set in this case implies that retraining will be much slower than with the other competitive 

strategies.  

This comparison of training strategies does not aim to be exhaustive, but to give an 

indication of what might constitute a good approach for our purposes. Potentials of levelmax = 12 

and 14 tended to outperform potentials of levelmax = 10, and methods that actively selected from 

the training configurations were broadly better than those that used all training configurations. 

Scaling the lowest-energy configurations by a multiple of 20 did not give any consistent advantage 

over a multiple of 5, while scaling a larger selection of low-energy configurations—using the 

stablest 100 or 200 vs. the stablest 50 structures—tended to provide better ranking correlation on 

the validation set. 

 

6.2 Weighting of low-energy configurations during active learning 

 Beyond the initial training of potentials, the weighting methods evaluated in Section 6.1 

can be applied for the retraining of potentials during active learning, as a means to sustain the 

potential’s accuracy as the genetic algorithm explores progressively lower-energy regions of 

configuration space. This is the intended use of the SCALETOPCANDIDATES feature described in 

Section 5.4. The efficacy of this approach is demonstrated in Figure 6.2, which plots the energies 

of the clusters in the pool as calculated by DFT against their MTP-predicted energies at each active 

learning reevaluation stage. A genetic algorithm run on the Au18(SCH3)14 system was started with 

a moment tensor potential of levelmax = 12 and 𝑁𝑄 = 8 trained on Training Set 1. Active learning 

was enabled to retrain this potential on-the-fly, using a SELECTTHRESHOLD of 
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Figure 6.2: Progression of pool parity with successive weighted retrains. 

 

 

Figure 6.3:  Root-mean-square error on clusters in the pool with successive weighted retrains.
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Figure 6.4: Energy error and extrapolation of the global minimum with successive retrains. 

 

1.01, a BREAKTHRESHOLD of 10, and a SELECTPOOLSIZE of 10. For retraining, 

SCALETOPCANDIDATES was enabled with a TOPSELECTION of 100 and a TOPMULTIPLE of 5. 

During DFT reevaluation, static calculations were run for extrapolating clusters, whereas pool 

clusters were relaxed for a maximum of 5 ionic steps.  

Figure 6.2 demonstrates how the moment tensor potential’s accuracy on low-energy 

clusters is improved by on-the-fly active learning and weighted retraining in the context of an 

actual genetic algorithm run; MTP gets clearly better at predicting the energy of pool clusters with 

each weighted retrain, and the energy range of the pool steadily decreases as we would hope, 

indicating that the MTP-driven genetic algorithm is successfully discovering low-energy 

structures. The evolution of the RMSE on new clusters added to the pool with successive weighted 

retraining is shown in Figure 6.3. After 6 retrains, MTP is able to predict the energy of new clusters 

entering the pool with RMSE of approximately 2.5 meV/atom, or around 230 meV per cluster. 
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 These evident improvements in the prediction of pool clusters are tempered by the 

uncertain benefit of active learning and weighted retraining with respect to the global minimum 

structure, shown in Figure 6.4. MTP’s prediction error on the global minimum structure does 

decline with retrain, but only modestly, from an initial overestimation of 4.29 eV (i.e., a predicted 

cluster energy of -392.69 eV compared with the actual energy of -396.98 eV) to a final 

overestimation of 2.66 eV. Additionally, no improvement to this energy error is realized beyond 

the second retrain. The extrapolation grade of the global minimum structure fluctuates without a 

clear trend; however, for the last two retrains, the global minimum is just below the threshold of 

interpolation (extrapolation grade of <1), meaning that if the global minimum was discovered at 

this point by the genetic algorithm, it would be evaluated by MTP and judged to be ~2.6 eV higher 

in energy than it actually is. In this circumstance, the global minimum would likely not enter the 

pool. 

 Figure 6.3 and 6.4 may seem to tell different stories; in fact, they capture different angles 

of the challenge of using machine-learned potential models to identify novel low-energy structures. 

The potential’s performance can be excellent when used to evaluate configurations comprised of 

atomic environments similar to those it has been trained on, and relatively poor when evaluating 

configurations that are dissimilar. The genetic algorithm must play a complementary role by 

generating diverse candidates that sample configuration space widely, providing the moment 

tensor potential with novel training configurations that can expand its capacity. 

 

6.3 Benchmark of genetic operations for ligated clusters 

 The set of genetic operations employed by GA will impact its efficiency at discovering 

new low-energy candidates. To assess this effect, genetic algorithm runs on Au18(SCH3)14 were 
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conducted with varying sets of crossover and mutation operations. The “12g top 100 5x + active” 

potential described in Section 6.1 was used for energy evaluation and relaxation, with active 

learning used only to identify and pass over extrapolating candidates; retraining of the potential 

was not enabled. For each different set of genetic operations, the MTP energy of the stablest 

observed candidate was plotted as the algorithm proceeded for 1000 iterations; 10 runs were made 

for each set of operations and averaged. The results are shown in Figure 6.5. 

 All modes of operation improve over the baseline approach of random structure sampling, 

confirming the basic efficacy of the genetic algorithm. The simplest mode of operation, using only 

even crossover for structure generation (“Even”), was also the worst-performing, with the stablest 

structure evolved at 1000 iterations having an average energy of -395.2 ± 0.2 eV. The addition of 

mutation at a rate of 30% (“Even + Mutation”) was an improvement, bringing the average lowest 

energy at 1000 iterations down by 400 meV to -395.6 ± 0.2 eV. Compared to even crossover, 

fitness-weighted crossover (“Weighted”) and random crossover (“Random”) reduced the average 

minimum energy at 1000 iterations by 300 meV (-395.5 ± 0.2 eV) and 500 meV (-395.7 ± 0.2 

eV), respectively. An ensemble of all three crossover operations (“Even + Weighted + Random”) 

performed essentially identically to random-only crossover. Adding mutation to this ensemble 

(“Even + Weighted + Random + Mutation”) did not improve performance, and resulted in a 

statistically insignificant increase in the average lowest energy at 1000 iterations from -395.7 ± 

0.2 eV to -395.6 ± 0.1 eV. 

  Overall, these results indicate that random-ratio crossover without mutation provides the 

most efficient search of configuration space among the genetic operations considered. To gain an 

understanding of why random-ratio crossover performs better than the other methods, and why 

also it behaves nearly identically to the ensemble of even, weighted and random crossover 
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operations, we compare the distribution of parent ratios for random-ratio crossover, fitness-

weighted crossover, and the even/weighted/random ensemble of operations in Figure 6.6. This 

comparison of distributions suggests that the factor that contributes the efficiency of the random-

ratio and even/random/weighted crossover modes are their inclusion of high-ratio crossover 

operations, where one parent cluster contributes 90 percent or more to the child cluster. Such 

operations are also included in the even/weighted/random ensemble, which performed equally to 

random-ratio crossover in identifying lowest-energy candidates, but are absent from fitness-

weighted crossover, which was outperformed by random-ratio crossover by an average of 200 

meV at 1000 iterations. This comparison indicates the importance of small structural changes to 

the performance of the genetic algorithm. “Fine-tuning” of candidates thus appears to be a useful 

strategy for efficiently generating lower-energy configurations, and in future work new genetic 

operations could be developed to more specifically exploit this effect.  

 

 

Figure 6.5: Averaged minimum energy hulls with different sets of genetic operations, n=10.  
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Figure 6.6: Distribution of parent ratios in different crossover modes. Histograms plotted for 

6000 iterations in crossover modes “Random,” “Weighted,” and “Even + Weighted + Random.” 

For the “Even + Weighted + Random” mode ensemble, at each crossover operation, a mode was 

randomly chosen with equal probability, i.e. 1/3 each for Even, Weighted and Random modes. 



 54 

6.4 Search for the DFT ground state of Au4(SCH3)4  

 

                   

 

                         

Figure 6.7: Stablest configurations of Au4(SCH3)4 found by GA using DFT and MTP. On the 

left, the lowest-energy structure found by DFT-driven GA. The “12g top 100 5x + active” potential 

described in Section 6.1, trained only on Au18(SCH3)14 configurations, was used with GA to 

discover the structure on the right. 

 

 As a preliminary test of moment tensor potentials for energy evaluation in GA, we 

attempted to rediscover with GA/MTP the minimum energy configuration of Au4(SCH3)4 that had 

previously been identified using GA/DFT. We did not specially train a moment tensor potential 

on the Au4(SCH3)4 system, instead opting to use the potential “12g top 100 5x + active” trained 

on Au18(SCH3)14 configurations, described in Section 6.1. This choice was made on the hypothesis 

that the greater number of atoms and ligands in Au18(SCH3)14 would equate to a much larger 

number of atomic environments being described than a dataset of comparable size generated for 

Au4(SCH3)4, and that the physics captured in these atomic environments should largely be 

transferrable between the two systems, notwithstanding possible differences due to quantum finite 

size effects. 
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 The results of this test are shown in Figure 6.7 above. The lowest-energy configuration 

discovered by MTP-driven GA broadly agrees with the minimum discovered via DFT, being 

square in shape with ligand pairs across the square’s diagonals pointing in opposing directions. 

The most notable difference between the DFT and MTP structures is in the ligand orientation; the 

MTP-minimum configuration has the ligands rotated relative to the DFT-minimum configuration 

so that the diagonal ligand pairs are closer together. The DFT-minimum configuration is more 

stable than the MTP-minimum configuration by 78.5 meV; their energies are -109.98264 eV and 

-109.90407 eV, respectively, when evaluated using the same DFT parameters. However, when the 

MTP used for this GA run is employed to relax the DFT-minimum configuration, it relaxes it to 

the MTP-minimum configuration, suggesting that the MTP-minimum configuration discovered by 

GA is indeed the global minimum with respect to the potential’s parameterized representation of 

the energy landscape. Notably, the MTP-driven GA discovered this minimum-energy structure in 

11 minutes while running on 6 CPUs, which is roughly equivalent to the amount of time required 

for a single DFT relaxation of a given Au4(SCH3)4 configuration. 

 

6.5 Search for the experimentally verified ground state of Au18(SR)14 

 Encouraged by the performance of MTP-driven GA for small ligated systems, we 

attempted to rediscover the structure of Au18(SR)14, the smallest thiolated gold cluster whose 

structure has been experimentally determined [17, 18]. In this section, we describe the results of a 

genetic algorithm run on the Au18(SCH3)14 system employing active learning and weighted 

retraining, using a moment tensor potential of levelmax = 12 and 𝑁𝑄 = 8 initially trained on the 

“12g top 100 5x + active” protocol detailed in Section 6.1.  
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For this run, all three crossover modes (Even, Weighted and Random) were enabled, along 

with a mutation ratio of 10%. For retraining, SCALETOPCANDIDATES was enabled with a 

TOPSELECTION of 100 and a TOPMULTIPLE of 5. For active selection, we used a 

SELECTTHRESHOLD of 1.01 and SELECTPOOLSIZE of 10. Static DFT calculations were conducted 

for extrapolating clusters, while pool clusters were relaxed for up to 5 ionic steps. The initial 

population was taken from user-provided files of low-energy bare Au18 clusters from the Quantum 

Cluster Database, which were then randomly ligated (Section 3.2). The algorithm was allowed to 

run for 72 hours on 24 CPUs.  

With these settings, GA/MTP/AL discovered a configuration with an energy within 0.518 

eV of the experimentally derived structure. The energy hull for this run is shown in Figure 6.8. 

 

Figure 6.8: Minimum energy hull of a GA/MTP/AL run on Au18(SCH3)14. Structures 

representing major transitions in the minimum energy are shown, along with the literature-reported 

empirical structure for Au18(SR)14 inset at top right, rendered without ligand side chains for clarity. 

This run proceeded for 6452 iterations, but no lower energy structure was discovered after 

candidate 2231. 

experimental structure, -396.9857 eV 
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Figure 6.9: Comparison of stablest GA structure with experimental structure of Au18(SR)14. 

Top and bottom left: the experimentally derived structure of Au18(SR)14, shown without side 

chains for clarity, from two different angles. Top and bottom right: candidate 2231, the stablest 

structure discovered by GA/MTP/AL in the run described in this section. 

 

The lowest-energy structure discovered by GA/MTP/AL in this run, candidate 2231, is 

compared to the experimental structure in Figure 6.9. The calculated similarity of this structure to 

the empirical structure is 1.35694, indicating the structures do not meet our criterion for similarity. 

Nonetheless, candidate 2231 has evolved important features of the experimentally known 

structure, particularly the Au4(SR)5 staple motif [22] and a close-packed Au6 core of the same 

geometry as two layers of the three-layer Au9 core reported in the literature [21]. The arrangement 

of these features is consistent with their position in the experimentally determined structure, as 

well. 
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6.6 New minimum-energy structures for Au18(SCH3)14 

Following its discovery by GA/MTP/AL, candidate 2231 was refined by a more stringent 

ionic relaxation by DFT to within a tolerance of 10-6 eV. This relaxation yielded a structure with 

an energy of -396.9829 eV, only 28 meV (or 0.3 meV/atom) higher than the experimental 

structure’s energy of -396.9857 eV.  

With the aim of verifying the reproducibility of this result, we conducted 12 independent 

repetitions of the method used to discover this low-energy candidate (i.e., GA/MTP/AL with the 

settings listed above, followed by tight-tolerance DFT relaxation of the stablest evolved 

candidate). Remarkably, two of these 12 runs (Figure 6.10) yielded structures with lower energies 

than the proposed experimental structure for Au18(SR)14.  

These two structures, hereafter referred to as GA4 and GA11 and shown in Figure 6.11, 

were predicted by DFT to be more stable than the experimentally reported structure by 79.5 and 

71.6 meV per cluster, respectively. While this result demonstrates the efficacy of GA/MTP/AL for 

structure discovery, it was initially the cause of some concern, as our hope was to validate the 

approach by rediscovering structures in agreement with experiment. 

 As mentioned, all computational work documented in this thesis to this point has been 

done with the gold-methanethiolate system, since these ligands (SCH3) are the smallest thiolate 

and therefore the least computationally demanding to model. However, the experimental 

characterizations of the Jin [17] and Zhu [18] groups were both carried out on clusters ligated with 

cyclohexanethiolate, SC6H11, though the structure they commonly derived was reported as 

generally valid for Au18(SR)14. Therefore, we turn to investigate the impact of ligand substitution 

on the relative stability of the three lowest-energy Au18(SR)14 configurations known: the 

experimental structure, GA4, and GA11. 
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Figure 6.10: Energies of top-of-pool GA/MTP/AL candidates after fine DFT optimization. 

For 12 independent trials, GA/MTP/AL was used to optimize the structure of Au18(SCH3)14 for 72 

hours on 24 cores with the settings listed in Section 6.5. The lowest-energy structural candidate 

discovered at the end of each run was then ionically relaxed with DFT to within 10-6 eV per cluster. 

The energies are compared to the energy of the experimentally reported structure as relaxed with 

the same DFT settings. Runs 4 and 11 produced candidates that were stabler than the experimental 

structure. 

          

  

Figure 6.11: Two new minimum-energy structures for Au18(SCH3)14. At right, the 

experimentally derived structure of [17] and [18]. The ligated clusters at left and in the center, 

GA4 and GA11, exhibit lower energies than the experimental structure when the ligating species 

is SCH3. All clusters are shown without ligands for clarity. GA4 has an Au7 core surrounded by 

one Au4(SR)5 motif, one Au5(SR)6 motif, and one Au2(SR)3 motif. GA11 has an Au7 core 

surrounded by one Au8(SR)9 motif, one Au2(SR)3 motif, and one Au(SR)2 motif. 

Experimentally reported 
-396.9857 eV 

GA11 
-397.0576 eV 

GA4 
-397.0655 eV 
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6.7 The effect of ligand type on the ground state of Au18(SR)14 

 To this end, all of the -CH3 side chains on GA4, GA11, and the experimental structure were 

replaced with -C6H11 groups in random, nonoverlapping orientations. Since the cyclic SC6H11 

ligands are bulkier than the SCH3 ligands considered previously, DFT molecular dynamics 

calculations were used to preliminarily optimize the positions of the substituted side chains by 

annealing from 300K to 0K in 450 timesteps of 1.0 femtosecond each. In this procedure, the Au 

and S atoms were frozen in place, while the side chain atoms were unconstrained. Three separate 

anneals were conducted for each configuration in order to sample a range of possible low-energy 

ligand arrangements. After annealing, the side chain atoms were relaxed to within a tolerance of 

10-6 eV. This process yielded nine structures in total; their relative energies are compared in Figure 

6.12. At this stage, five of the nine structures—all three replicates of GA11, and two of the 

replicates of the experimental configuration—were substantially lower in energy than the others, 

and the energies of these five were all within 0.4 meV/atom of each other. As a final measure, 

these five clusters were more finely optimized by relaxing all atoms to within 10-6 eV. 

 By this process, the experimental structure was found to be the stablest configuration of 

Au18(SR)14 for R = C6H11, with a calculated energy of -1449.0005 eV per cluster. GA11 was less 

stable by 51.6 meV for R = C6H11, with an energy of -1448.9489 eV per cluster. GA4 was the least 

stable configuration of the three. It should be noted that this is a reversal of the order observed for 

the R = CH3 case, indicating ligand-driven control of structure for this cluster.  

These results should be interpreted with some caution. The energies of the SC6H11-ligated 

systems depend strongly on the positioning of the ligands, as shown in Figure 6.12 by the 

difference in energy among ligand anneals of the same structure. With only three anneals attempted 

for each, it is possible that lower-energy configurations of ligands could be found for any of the 
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structures, and that this could upset the order we have proposed here; indeed, the different anneals 

of the experimental Au18(SC6H11)14 structure were further apart in energy than the lowest-energy 

anneals of GA11 and the experimental structure were from each other. The difficulty in converging 

to globally optimal ligand arrangements when performing this ligand substitution is an example of 

the difficulty of global optimization in general, and in future work, the use of GA/MTP/AL to 

directly optimize systems with larger ligands may help to avoid these ambiguities.  

 

 

Figure 6.12: Stability of candidates with substituted SC6H11 ligands. Cyclohexanethiolate-

protected models of GA4, GA11, and the experimental structure for Au18(SR)14 were prepared by 

randomly attaching -C6H11 R-groups to the S active sites in nonoverlapping orientations. Three 

Au18(SC6H11)14 replicates were prepared by this random attachment method for each cluster 

structure, and the ligands were annealed with DFT-MD as described in the Section 6.7. The ligands 

were then relaxed with DFT to within 10-6 eV. The resultant energies are shown in blue. The five 

replicates with energy below -1448 eV/cluster at this stage (GA11 1-3, Experimental 1 & 2) were 

then further optimized by relaxing all ions to within 10-6 eV. The energies of these relaxed 

structures are shown in orange. After relaxation of all atoms, the energies of the GA11 replicates 

ranged from -1448.8349 eV to -1448.9489 eV, and the Experimental replicates ranged from  

-1448.9557 eV to -1449.0005 eV. 
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Chapter 7. Conclusions and future outlook 

7.1 Standing challenges 

 In this thesis, we have presented preliminary results on the development, testing, and 

application of a system that uses machine learning methods for the local and global structural 

optimization of ligated nanoclusters. At the time of writing, the best system presented here has 

been applied to discover a new global minimum for Au18(SCH3)14 and can reliably evolve near-

minimum structures for this chemistry in a few thousand iterations, starting from data from ab 

initio calculations on several hundred randomly generated structures. Our approach substantially 

reduces the number of first-principles calculations required compared to traditional genetic 

algorithms, so it has a strong advantage in the number of configurations that can be evaluated in 

a given time. Moving forward, more work will need to be done to improve the GA/MTP/AL 

system to the point where it can reliably discover the ground states of large, multi-component 

clusters. 

 With the issues of structure handling for ligated systems and robustness of the algorithm 

against extrapolation largely resolved, the greatest remaining challenge is to develop better ways 

of dynamically improving the performance of moment tensor potentials. A design goal of this 

system is to minimize the number of ab initio calculations required for operation of the genetic 

algorithm, but a consequence of this is that training data for the moment tensor potentials is few 

and far between. To the point, the GA/MTP/AL run discussed in Section 6.5 entered retraining 

twice, once at iteration 2387 and again at iteration 4412: at each retrain, 10 extrapolating structures 

and 10 pool structures were reevaluated by DFT. In other words, in a typical run, we ask MTP to 

make predictions on more than 2000 structures—which, when the genetic algorithm is functioning 
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properly, are becoming less and less like the relatively high energy structures represented in the 

training set—before providing it with 20 new structures to learn from. We must get the most out 

of the data that we gain from these rare reevaluations. 

 This is not a matter of optimal performance, but of function: if MTP doesn’t learn the 

configurations being produced by GA which are lower in energy than its training data suggests, 

the algorithm can lose its ability to place new low-energy candidates in the pool. The price paid 

for the substitution of DFT with a faster machine-learned model is the additional complexity 

required to render these separate modes of energy evaluation compatible. 

 Finally, in its current state, GA/MTP/AL’s ability to handle ligated systems for the 

thousands of necessary iterations hinges on the neglect of the ligand side chains in similarity 

evaluation. It is conceivable that this could become a problem for the optimization of ligated 

systems where the orientation of the ligand side chains themselves play a critical role in the 

stability of the ground state. Thus, faster methods of similarity evaluation may be worthwhile; for 

example, it may be a good tradeoff to evaluate the similarity of each new candidate with respect 

to only a limited number of the lowest-energy candidates. 

 

7.2 Avenues to explore 

 Active learning has been essential to allowing MTP to intelligently improve throughout the 

GA run, and multiplying the population of low-energy candidates in MTP’s dataset prior to 

retraining has helped to maintain agreement with DFT where MTP needs it the most. A logical 

next step may be to introduce a reinforcement learning framework, where (for example) the most 

weight in training is placed on structures for which MTP’s predictions are the farthest off from the 

DFT results.  
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Additionally, the experiments of Section 6.1 gave some indication that larger basis sets 

improve the performance of MTP for the gold thiolate system considered here. Further study is 

warranted to see if this bears out in practice, since potentials with larger basis sets will require 

more training data and take longer to relax and evaluate structures, which could doubly count 

against their efficiency for GA/MTP/AL. 

As a longer-term project, it may be worthwhile to use more than one moment tensor 

potential for the purpose of GA/MTP/AL, which could be arranged in a number of different ways. 

Interesting options include employing separate potentials for coarse and fine evaluation, parallel 

potentials that could evaluate candidates in ensemble to average out errors, and the use of multiple 

low-basis potentials trained on dissimilar subsets of candidates to “tile” the potential energy 

surface for a better balance of accuracy and parallelization than a single potential of larger basis. 

These options suggest themselves as natural extensions of the parallel pool-based genetic 

algorithm, though the conceivable improvements in performance must be balanced against the 

certainly greater complexity. 

Lastly, the basic hypothesis of GA—that good wholes are made of good parts—has a 

pleasing compatibility with MTP’s approach of evaluating energy by summing local 

environments. Conventionally, the “good parts” here are only implicit, since GA relies on energy 

evaluation methods that treat each configuration holistically. The process of training a moment 

tensor potential, however, relies exactly on the digestion of training configurations into local 

environments and the estimation of the average contributions they make to stability. By making 

use of this information, we might develop more informed and efficient ways of modifying and 

recombining candidates, going beyond the simple stochastic processes of crossover and mutation. 
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