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ABSTRACT  

 Cardiac arrest (CA) occurs in over 347,000 adult Americans annually and is a 

leading cause of morbidity and mortality. While targeted temperature management 

(TTM), a neuroprotective treatment, is often implemented following resuscitation, CA 

typically results in an ischemic brain injury that is detrimental to functional outcome. 

Prognosis shortly following CA is crucial as it may guide subsequent treatment. Although 

multiple prognostic tools exist, many have not been verified under TTM or have 

limitations in early prognostication. Thus, a reliable tool that predicts functional outcome 

during the early recovery period after CA is required. For this project, it was necessary to 

first review current literature detailing the existing prognostic tools and their limitations.  

 Many of the prognostic tools that have been employed have limitations including 

subjective results interpretation and the confounding effects of the sedatives required for 

TTM. However, somatosensory evoked potentials (SSEP) and electroencephalogram 

(EEG) have potential to track recovery. The bilateral absence of the human N20 SSEP 

peak is currently the most reliable predictor of poor outcome, however, the signal 

interpretation is subjective and limited by the dichotomous categorization. Thus, the next 

step in this work included quantitative analyses of SSEP signals to identify objective 

prognostic markers.   

 First, the peak amplitude and latency of SSEP signals were calculated. The 

amplitude of N10 peaks and latency of N7 and N10 peaks in rats were measured 

objectively and were distinct among temperature and outcome groups. A more complex 
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and novel calculation of the SSEP phase space area (qSSEP-PSA), which considers 

multiple SSEP characteristics, was then performed. Animals treated with hypothermia 

tended to have higher qSSEP-PSA values and better qSSEP-PSA recovery over the early 

recovery period. These analyses demonstrate that quantitative SSEPs can track brain 

recovery shortly after resuscitation.  

EEG is a common brain-monitoring tool. The information quantity (IQ), a 

quantitative measure of the EEG information content, was calculated in post-CA rats that 

underwent laser speckle contrast imaging (LSCI), which measures relative cerebral blood 

flow (rCBF). IQ was significantly and negatively correlated with rCBF during the early 

recovery, suggesting that electrical activity recovery can be maintained by lower rCBF 

shortly after CA.  

Thesis Committee: Dr. Xiaofeng Jia, Dr. Kevin Yarema, Dr. Zeng-Jin Yang 
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CHAPTER 1: TRACKING EARLY BRAIN RECOVERY 

FOLLOWING CARDIAC ARREST WITH TARGETED 

TEMPERATURE MANAGEMENT 

1.1   Cardiac Arrest 

1.1.1   Prevalence and Impact of Cardiac Arrest 

An estimated 320,200 adults suffer from out-of-hospital cardiac arrest (CA) in the United 

States annually [1]. Survival to discharge rate among adults is a mere 10.6% while the 

rate of good functional outcome is only 8.3% [1]. While the treatments to improve 

outcome after CA are progressing, it remains one of the leading causes of unexpected 

death and many patients remain comatose following resuscitation, die before discharge or 

have poor functional outcome after awakening. CA is one of the primary causes of 

morbidity and mortality [2]. In addition to the physical impacts of CA, there are 

significant economic impacts resulting in societal burdens, defined by the productive 

years of life lost, equal to or greater than other leading causes of death in the US [3]. 

Thus, the major societal impact of CA underlies the importance of improving 

prognostication and treatment of post-CA patients to increase survival rates and 

neurologic recovery.   
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1.1.2   Cerebral Ischemia  

During CA, cerebral ischemia occurs such that the brain fails to receive enough blood to 

maintain metabolic processes, causing a hypoxic-ischemic cerebral injury. While the 

injury due to the cardiac event may last for hours or days, it is believed that the primary 

damage occurs during the ischemic episode and reperfusion [4]. It is well documented 

and accepted that the neurotoxicity caused by cerebral ischemia is, at least in part, due to 

increases in extracellular glutamate during cerebral ischemia [5] and reperfusion [6, 7], 

leading to excitotoxicity [8-10]. The hyperexcitability seen in ischemic injury is likely a 

combination of both increased excitation and decrease in inhibition, as it is suggested that 

impairment to GABAergic neurons, associated with inhibitory functions, may play a role 

in overexcitation [11]. However, the neurotoxic biochemical cascade that occurs during 

and after cerebral ischemia is complex and may be initiated by a number of factors [12, 

13]. The detailed mechanisms are further explained in multiple reviews [14-17].   

 

In addition to the ischemic event itself, injury continues to occur during and after 

reperfusion. Thus, the cerebral blood flow following resuscitation is of great importance. 

There are a number of studies that examined reperfusion injuries, including the 

hypothesis that an increase in glutamatergic transmission during reperfusion, which is 

supported by in vitro work [18], may intensify the excitotoxic injury caused during 

ischemia [19]. Another widely suggested explanation of reperfusion injury involves 

oxygen radicals [20, 21], suggesting that the return of oxygen to the brain allows harmful 

enzymatic oxygenation reactions to occur [22].  
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Neurologic injury is a crucial contributor to the morbidity and mortality of post-CA 

patients [23], thus, it is important to understand the mechanisms underlying the 

ischemic/reperfusion injury and how to assess and monitor the level of injury following 

CA.   

 

1.1.3   Functional Outcome and Neurological Recovery Assessment  

The cerebral cortex is among the most vulnerable regions of global cerebral ischemia 

[24]. Extensive bilateral cortical or thalamocortical damage may result in problems with 

arousal and consciousness [25], which is likely why many post-CA patients remain 

comatose for some time. The brainstem is more tolerant to ischemic damage, resulting in 

the preservation of sensory motor reflexes in many patients, even in a comatose state [4]. 

It is important that physicians assess the injury level and neurological recovery of post-

CA patients in terms of functional outcome, however this is complicated when patients 

remain comatose.  

 

The Glasgow coma scale (GCS) is a clinical scale that was developed to evaluate the 

depth and duration of comatose patients or patients with impaired consciousness [26], 

however, it has also been used in the assessment of comatose post-CA patients [2, 27-33].  

The scale measures three behavioral features – motor responsiveness, verbal performance 

and eye opening. Each category is given a score from 1 to 5. Often the scores are 

summed to give a total score from 3 (worst) to 15 (best), however, the original creators of 
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the scale suggest that each category should be assessed on an individual basis for clinical 

use [33]. 

 

The cerebral performance category (CPC) scale was created [34] and modified [35] to 

uniformly evaluate cerebral performance. The scale has 5 levels, with CPC 1 representing 

the best performance and 5 representing the worst (Table 1.1). Many groups have used 

CPC to evaluate functional outcome after CA [27, 34, 36-39] where in most cases, but 

not all [40], CPC scores of 1 or 2 represent patients with good outcome and 3-5 are poor 

outcome [23, 41, 42].  

 

Table 1.1 Cerebral Performance Categories 

CPC Level Cerebral performance description  

CPC 1 Good cerebral performance  

CPC 2  Moderate cerebral disability 

CPC 3  Severe cerebral disability 

CPC 4 Persistent vegetative state  

CPC 5 Brain death or clinical death  
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The neurologic deficit scale (NDS) is used to assess functional recovery of post-CA rats, 

and was developed based on human neurological examination and animal functional 

outcome scales for global ischemia models [43-45]. The scale evaluates performance in a 

number of behavioral tests including gait coordination, righting reflex and pupillary light 

reflex (Table 1.2). The 72 hour NDS score is generally used to determine final functional 

outcome in asphyxia CA rat models. An NDS ≥ 60 is generally defined as good 

functional outcome and NDS < 60 is defined as poor functional outcome [46]. Animals 

with good functional outcome are mobile and have appropriate responses to stimuli 

whereas animals with poor functional outcome are immobile and have minimal stimuli 

reactions. This scale has been validated in post-CA rat models [47, 48].  

 

Table 1.2 Neurological Deficit Scale Scoring 

Arousal: 

Alerting: Normal (0)/ Stuporous (5) / Comatose (0) 

Eye Opening: Open spontaneously (3) /  Open to pain (1) / Absent (0) 

Spontaneous Respiration: Normal (6) /  Abnormal (3) / Absent (0) 

Total Score : 19 

Brainstem Function:  

Olfaction: Present (3) / Absent (0) 

Vision: Blinks to threat (3) / Absent (0) 

Pupillary Light Reflex: Present (3) / Absent (0) 

Corneal Reflex: Present (3) / Absent (0) 
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Startle Reflex: Present (3) / Absent (0) 

Whisker Stimulation: Present (3) / Absent (0) 

Swallowing: Present (3) / Absent (0) 

Total Score: 21 

Motor Assessment: 

Strength: Normal (3) / Weak movement (1) / No movement (0) 

(Each side tested and scored separately) 

Total Score: 6 

Sensory Assessment: 

Pain: Brisk withdrawal (3) / Weak withdrawal (1) / No movement (0) 

(Each side tested and scored separately) 

Total Score: 6 

Motor Behavior: 

Gait coordination: Normal (3) / Abnormal (1) / Absent (0) 

Balance Beam Walking: Normal (3) / Abnormal (1) / Absent (0) 

Total Score: 6 

Behavior: 

Righting Reflex:  Normal (3) / Abnormal (1) / Absent (0) 

Negative Geotaxis: Normal (3) / Abnormal (1) / Absent (0) 

Visual Placing: Normal (3) / Abnormal (1) / Absent (0) 

Turning Alley: Normal (3) / Abnormal (1) / Absent (0) 

Total Score: 12 
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Seizures: 

Seizures: No seizure (10) / Focal seizure (5) /  Generalized seizure (0) 

Total Score: 10 

 

 

1.2   Targeted Temperature Management  

1.2.1   Hypothermia  

Targeted temperature management (TTM), which involves cooling the body to a 

hypothermic state, has been regarded as an effective treatment following out-of-hospital 

CA to improve survival and functional outcome [49]. While the specific mechanisms 

underlying the neuroprotection benefits of TTM are not fully elucidated, it is believed 

that the cooling reduces the functional requirements of the cells, thereby protecting them. 

Normothermic cerebral neurons cannot last more than 5 mins in an ischemic anoxic state, 

thus, TTM is believed to improve neurological functional outcome likely by reducing the 

cerebral oxygen requirements, preventing free-radical injury and cell membrane damage, 

or inhibiting the release of damaging neurotransmitters [50].  

 

The ischemic brain has been shown to be highly sensitive to temperature fluctuations [51], 

which has a significant impact on treatment during the early recovery following 

resuscitation. The temperature sensitivity of brain injury is likely modulated by increased 
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levels of excitatory amino acids and free radicals, ischemic depolarization, increased ion 

flow, pathological events, and post-ischemic microvascular abnormalities [52-58]. Mild 

hypothermia, which decreases cerebral metabolic rate of oxygen (CMRO2) consumption 

[59], has been shown to improve survival and functional outcome following CA in 

human [23, 41, 60-67] and animal studies [68-73].  

 

Though it is well-established that mild hypothermia improves survival and functional 

outcome following CA, there is still controversy regarding the various induction factors, 

including start time, length of treatment, degree of treatment, and method of cooling. 

Various studies indicate that hypothermia should be initiated immediately after 

resuscitation, beginning in the field and that a delay of even 15 min could reduce or 

eliminate the neuroprotective effect [71], while others suggest that a delay before cooling 

may also be beneficial [74-78]. Additionally, there has been uncertainty regarding the 

degree of hypothermia and length of application that are most beneficial. The 

International Liaison Committee on Resuscitation recommended TTM of 32-34°C for 12-

24 hours [79]. However, one study has demonstrated that TTM of 36°C is no less 

beneficial than TTM of 33°C [80]. Thus, while the beneficial effects of TTM have been 

thoroughly demonstrated, the details of treatment are not unanimously agreed upon.  
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1.2.2   Hyperthermia and Pyrexia 

Hyperthermia has been shown to worsen brain damage in animals [54, 55, 57, 81] and 

humans [52, 56, 58, 82, 83] in post-CA recovery. Though hypothermia is now commonly 

used as a means of neuroprotection, it often results in rebound hyperthermia (body 

temperature > 38.5°C) within 24h following rewarming from TTM [83], with a reported 

prevalence ranging from 22-74% of patients treated with TTM [84, 85]. Studies have 

shown that in patients who experienced rebound hyperthermia, outcome was worsened 

[83] and a higher maximum temperature was associated with worse outcome [56]. 

Despite efforts to finely control temperature during recovery, pyrexia (≥ 37.6°C) is 

common in both TTM and non-TTM patients [86] and also tends to worsen outcome in 

non-TTM patients [58]. Thus, whether pyrexia occurs spontaneously from a 

normothermic condition during recovery or as a result of TTM rewarming, it is well 

documented that fever is harmful to recovery [49].  

 

1.3   Current Prognostic Tools 

1.3.1   Importance of Early Prognostication 

Early prognostication shortly after resuscitation from CA is essential as it can help guide 

treatment, reasonably distribute resources and counsel family regarding likely outcome. 

Current prognostic markers have been verified in normothermic patients however, their 

reliability in hypothermic patients has not been thoroughly studied and verified.   
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Overall, many CA patients remain comatose during early recovery, which makes 

prognostication of functional outcome and treatment planning difficult. It is crucial to 

properly identify those patients in a comatose state following CA that have a chance to 

recover versus those who will never awaken. Ideally, reliable prognostication would be 

possible immediately after resuscitation, while most patients are still comatose and under 

TTM. Currently, there is no tool that can reliably achieve this prediction under TTM. 

Early prognostication would be a major step towards optimizing treatment for each 

individual patient.   

 

1.3.2   Ideal Prognostic Marker Features  

The prognosis tools need to reliably predict outcome following CA during the early 

recovery period in an objective manner under TTM conditions. This primarily means that 

the tool cannot be largely confounded by sedatives or paralytics or by temperature. 

Additionally, the prognostic tool should robustly predict both good and poor outcome 

with high sensitivity and specificity. Further, the prognostic test must be objective, 

simple to implement in a wide range of medical centers (i.e. does not require highly 

specialized training or equipment), and time and cost effective. Ideally, the prognostic 

tool would generate a quantitative value for the patient, which could be compared to a 

numeric cutoff point to predict good or poor outcome.  

 



11 

1.3.3   Current Tools and Limitations 

Awakening from a coma is the best predictor of good outcome, however, a well verified 

early recovery prognostic indicator for good outcome that can be measured while the 

patient remains in a coma, has not yet been established. Conversely, there are a number 

of methodologies to predict poor outcome for normothermic comatose patients, with 

somatosensory evoked potentials (SSEP) being the most widely accepted.  

 

A number of prognostic tools have been developed to predict outcome following CA 

under normothermic conditions including bedside clinical assessment, 

electroencephalogram (EEG) monitoring, biomarkers and somatosensory evoked 

potentials (SSEP). However, many of these techniques have major limitations such as 

requiring highly subjective manual pattern recognition and impedance from the sedation 

that is necessary for TTM [87, 88]. Additionally, the prognostic value of these techniques 

has not been convincingly verified under TTM.   

 

Clinical Examination 

Clinical examination is one of the oldest prognostic tools for post-CA comatose patients. 

These exams are beneficial as they are universally available and relatively simple for 

physicians to perform. One common clinical examination is coma or cerebral 

performance scoring using scales such as GCS [2, 89-91]. Reflex tests such as brainstem 

reflexes that test various cranial nerves [92, 93] like the pupillary reflex (nerves II and 
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III), corneal reflex (nerves V and VII), and gag and cough reflex (nerves IX and X) are 

also common. Vestibular signs may also be tested using oculocephalic or oculovestibular 

reflex tests [94]. Finally, observance of seizures or myoclonus status (sudden muscular 

contractions) [31, 95-97] has been used in the assessment of patient prognosis.  

 

Based on 5 studies [29, 31, 91, 96, 98], the most useful clinical tests at 24 hours post-CA 

in predicting poor outcome are absent corneal reflexes, absent pupillary reflexes, absent 

motor response and absent withdrawal to pain [94].  

 

However, clinical examination has major downsides, particularly under TTM. One major 

drawback is that sedatives and paralytics must be temporarily stopped to successfully 

perform clinical examinations. Additionally, no clinical tests are able to predict good 

outcome of comatose patients or accurately predict outcome immediately after 

resuscitation [94].  

 

Electroencephalogram (EEG) 

EEG is one of the most widely used tools in post-CA patient monitoring [99, 100]. EEG 

represents the summation of neuronal electrical activity within a spatial region and has 

distinct frequency bands, which have been distinguished based on clinically relevant 

values: delta (< 4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (16-30 Hz), and gamma (> 30 
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Hz), each representing different cerebral responses and activities [101, 102]. EEG is 

useful in assessing ischemic damage post-CA due to the typical changes in EEG 

amplitude and frequency of these relevant bands [103].  

 

Amplitude integrated EEG (aEEG), a processed EEG that weighs the signal based on 

amplitude, has been shown to have prognostic value when applied during the 

normothermia state after rewarming from TTM, approximately 37h after CA [104]. In the 

first 4-8h after beginning the EEG recording, continuous aEEG was correlated with good 

outcome [104, 105], however, it is flat for most patients, which held no prognostic value 

[105] so the usefulness of this association is limited.  

 

Continuous EEG (cEEG) is another form of EEG measurement. cEEG has been shown to 

hold prognostic value during TTM (approximately 12 hours after CA), suggesting that 

background reactivity of cEEG is not impacted by sedation or temperature [106]. 

However the cEEG interpretation is still done manually and is therefore subjective and 

laborious. Another study of cEEG in post-CA TTM patients demonstrated that when 

cEEG was graded on a scale of 1-3 (1=benign, 3=severe), scores of 1 and 3 were 

associated with good and poor outcome, respectively, during hypothermia and 

normothermia [107]. However, there were major cost and labor requirements to employ 

this cEEG monitoring method.  

 



14 

Thus, there are various drawbacks to the aforementioned EEG prognostic methods, 

including the confounding effects of sedation, ineffectiveness during the early recovery 

period, and the subjective and laborious nature of the signal interpretation. Further, it has 

been suggested that EEG is most useful for prognostication at 24h+ after resuscitation 

[108, 109], which eliminates its value in tracking early recovery while under TTM. To 

circumvent these limitations, quantitative EEG measurements that do not require manual 

pattern recognition or interpretation have been developed.  

 

Based on the notion that cerebral recovery following CA is represented by the EEG 

information content, an objective, quantitative EEG marker, information quantity (IQ), 

was developed to track post-CA recovery [110]. The IQ measure is representative of the 

entropy of the EEG signal. However, since EEG contains multiple frequency bands that 

represent various brain functions, a modified IQ value was developed, sub-band IQ (SIQ), 

which represents the IQ value within each clinical sub-band (delta, theta, alpha, beta, and 

gamma) [111]. Both of these quantitative measures have been shown in numerous animal 

studies to reliably track neurological function in the early post-CA recovery period under 

TTM [46, 110-115]. 

 

Biomarkers 

Following CA, biomarkers such as the concentration of neuron-specific enolase (NSE) 

from serum or cerebral spinal fluid (CSF) change, and thus have been recognized as 
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possible predictors for functional outcome [116-123]. Increased levels of CSF NSE, 

which is primarily located in neurons and neuroectodermal cells, has been associated 

with poor neurologic outcome in patients with anoxic encephalopathy [117, 122, 124], 

however, serum NSE is predominantly used for CA patients, for convenience and safety 

reasons. Multiple studies have demonstrated that higher levels of serum NSE are 

associated with poor neurologic outcome following CA [116, 125, 126], however, at least 

one study was unable to reproduce this finding [124]. Additionally, the NSE cutoff level 

and ideal sample time have not been validated in larger studies [127, 128]. Thus, the 

serum NSE biomarker presents limitations in the prognosis of post-CA patients.  

 

Somatosensory Evoked Potentials (SSEP)  

SSEP following CA involves nerve stimulation and non-invasive measurement of the 

corresponding responses from the somatosensory cortex, which evaluates the 

somatosensory pathway and transmission within the central nervous system and 

brainstem [50]. The technique measures the initial cortical responses after repetitive and 

alternating stimulation of the median nerves of both wrists, though other stimulation and 

recording sites may also be used. The negative cortical response 20ms after stimulation, 

named the N20 peak, is commonly used in post-CA prognostication. The bilateral 

absence of the N20 peak robustly predicts poor functional outcome [42, 88, 129-136]. 

Further, the bilateral absence of N20 has been shown to predict nonawakening from coma 

following conditions other than cardiac arrest [137]. Thus, SSEP has been shown to hold 

great prognostic value for poor outcome cases following CA.  
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1.4   Somatosensory Evoked Potentials (SSEP)  

While a number of studies have been conducted to validate existing prognostic markers 

under TTM, there have been inconsistent results across studies. Further, progress in the 

development of a quantitative and objective prognostic method for post-CA recovery has 

been limited. While a quantitative SSEP (qSSEP) algorithm has been developed, it has 

not been validated under temperature management conditions.  

 

1.4.1   SSEP is one of the Best Predictors for Poor Outcome  

Following cardiac arrest, patients are often in a state of comatose, making previously 

standard clinical examinations difficult and unreliable. Electroencephalogram (EEG) has 

been a common technique to observe brain activity in comatose patients for a long time, 

however, more recently somatosensory evoked potentials (SSEPs) have been proven to 

be more reliable in predicting outcome [133, 134]. Further, with TTM becoming an 

increasingly standard treatment following out-of-hospital CA, EEG and clinical 

examination are becoming less reliable, as the sedation and muscle relaxants required for 

hypothermia confound the results of these methodologies. Thus, SSEP has come to the 

forefront as a better prognostic measurement, as it has a simple bedside setup, is 

relatively non invasive, and is not confounded by sedative drugs [88].  

 

SSEP has been suggested as one of the most reliable tools to predict functional outcome 

following CA in normothermic human patients [133, 134]. While there are numerous 
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features of SSEP that can be extracted, the bilateral absence of the short-latency N20 

peak (the negative cortical peak occurring approximately 20ms after stimulation) has 

been regarded as a reliable indicator for poor functional outcome following CA [133, 134, 

136] with TTM [42, 88, 129-132, 135]. However, its reliability has recently been 

challenged, as a few patients have been reported to have positive functional outcomes 

after having bilaterally absent N20 peaks [138, 139], though some experts have deemed 

these cases insufficient to counter the prognostic value of SSEP [140]. Further, while the 

bilateral absence of N20 peaks indicates poor outcome, the presence of N20 peaks does 

not suggest good outcome. Thus, it is important to develop a threshold for present SSEP 

peaks to predict good outcome. Additionally, SSEP is currently used for poor outcome 

assessment by the bilateral absence of N20 peaks, however, this evaluation is very 

subjective, even among highly trained experts [141, 142].  

 

Additionally, there are conflicting views among different groups regarding the ideal 

window of time in which SSEP measurements have the highest prognostic value. Some 

groups suggest that SSEPs should be measured after 24 hours post-CA [143, 144], while 

others suggest that 1 hour post-ROSC leads to the best predictive ability [145]. It has 

been argued that SSEP recordings before 24 hours are not useful because SSEPs may be 

confounded by impaired cerebral perfusion and reperfusion damage [145]. However, 

since excitotoxic-ischemic cascades begin shortly after injury, many treatment plans, 

namely TTM, are most effective when applied immediately after resuscitation, so early 

evaluation is crucial.  
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Yet, SSEP measurements still hold great benefits in prognosis following CA as these 

measurements are repeatable, non-invasive, unimpeded by sedation, and present multiple 

characteristics that can be quantified, such as latency, amplitude, and shape [88, 146]. 

 

1.4.2   Reliability of SSEP Under Targeted Temperature Management 

The validation of SSEP under TTM, an increasingly standard treatment, is necessary. 

Some studies have suggested that hypothermia decreases the prognostic value of the 

standard SSEP tests in the early stages of recovery after cardiac arrest [128, 139], while 

others have demonstrated that SSEP remains reliable for poor outcome prediction under 

hypothermia [88], though there is inconsistent and relatively limited data in these areas to 

be reliably conclusive.   

 

Most studies comparing SSEP in hypothermic patients to normothermic patients have 

found that bilaterally absent N20 remains reliable in predicting poor outcome. In one 

study comparing 14 hypothermic to 27 normothermic patients who received SSEP days 

1-3 after CA, bilaterally absent N20 was an invariable predictor of poor outcome [132]. 

In another study comparing 30 hypothermic and 27 normothermic patients, 3 

hypothermic and 8 normothermic patients had bilaterally absent N20, none of whom 

regained consciousness [135]. Further, a study of 46 hypothermic patients who received 

SSEP showed that 47.4% of the patients with poor outcome had bilaterally absent N20 

responses [129]. In another study with 75 patients undergoing hypothermia, all patients 
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had SSEPs recorded during hypothermia and again in 34 patients during normothermia 

after rewarming. During hypothermia, 13 patients had bilaterally absent N20, all of 

whom had poor outcome. This study also demonstrated that bilateral absence of N20 

during hypothermia is a good predictor for bilateral absence of N20 after rewarming 

[130], which is an important finding, as earlier testing can improve the titration of the 

hypothermia treatment. Finally, in another CA study, 30 patients had SSEPs recorded 

approximately 72hrs after being rewarmed from hypothermia. Fourteen of these patients 

had bilaterally absent N20 and all died without regaining consciousness [147].  

 

However, there are studies that have rare false positive cases that have caused concern 

regarding the method’s reliability under TTM. In a study comparing SSEP of 110 

hypothermic patients (33°C) to 94 normothermic patients (36°C), there was a false 

positive rate of 2.6% for bilaterally absent SSEP N20 [148]. Similarly, in a meta-analysis 

by Sandroni et al, there were no patients in the included studies that recovered when the 

N20 was bilaterally absent during TTM but in 538 patients that had SSEP recordings 

following rewarming, there was 1 false positive [149].  

 

Overall, while SSEP results have been shown to aid the prognostic process after 

resuscitation, the results have led experts to caution against relying on bilaterally absent 

N20 responses in making withdrawal of life support treatment decisions.   
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1.4.3   Prognostic Value of SSEP for Good Outcome Prediction 

While the bilateral absence of N20 SSEPs robustly predicts poor outcome in post-CA 

patients, the presence of unilateral or bilateral N20 peaks does not predict good outcome. 

Currently, there are no verified SSEP measures that predict good functional recovery of 

comatose patients. It would be useful to have a quantitative measure of SSEP with a 

defined cutoff point, which could robustly dichotomize both good and poor outcome.  

 

1.4.4   Quantitative SSEP is an Objective Prognostic Indicator  

As previously mentioned, an objective and reliable measurement of SSEP is necessary to 

eliminate the variability in data interpretation and to simplify the results. A quantitative 

measure of SSEP could achieve these requirements, if verified to predict final outcome 

under temperature management.  

 

Amplitudes and Latencies  

Perhaps the most obvious method of quantification of SSEP signals is the calculation of 

peak amplitude and latency. Multiple groups have studied the amplitude and latency of 

SSEP under temperature management in non-CA patients and animals [150-159] and 

under normothermic and hypothermic conditions in post-CA patients [135]. Overall, 

these studies demonstrate that hypothermia increases peak latency, however, there were 

inconsistent results regarding the effect of hypothermia on SSEP amplitude. The 
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mentioned studies observed increases, decreases or no change in amplitude, based on the 

recording site and condition of the subject. Additionally, one study found that under 

hyperthermic conditions, higher temperatures decrease peak latency and have no 

significant effect on peak amplitudes [154].   

 

In post-CA patients, SSEP amplitude and latency have been studied by a few groups, but 

their prognostic values have not been extensively examined. One group found that post-

CA patients treated with hypothermia had significantly prolonged cortical N20 peaks 

compared those treated with normothermia [135, 160]. Additionally, the same study 

found that N20 amplitudes were not significantly different between temperature groups 

and was not associated with functional outcome. However, this study lacked the 

statistical power to analyze the correlation of N20 latency or amplitude with outcome to 

determine their prognostic value. Another study found that normothermic patients with 

hypoxic-ischemic damage, defined by CPC > 2 at 1 year, had significantly prolonged 

N20 latency and lower N20 amplitude compared to those without hypoxic-ischemic 

damage [160]. Finally, a study of post-CA patients treated with TTM found a threshold 

amplitude, 0.62uV, at which lower amplitudes were associated with poor outcome [161]. 

Thus, SSEP amplitude and latency hold possible prognostic value, though they need to be 

more rigorously verified.  
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Phase Space Area 

A novel quantitative SSEP (qSSEP) technique has been developed and tested in rats 

[145]. This qSSEP metric is important, not only because it helps to eliminate the 

subjective nature of SSEP interpretation, but it has also been shown to predict good 

outcomes in post-CA rats, whereas standard manual interpretation of absent N20 

responses (N10 responses in rats) only predicts poor outcome.  

 

The quantitative analysis uses the phase space curve (PSC), a plot of the first derivative 

against magnitude, to compute the phase space area (PSA), which is indicative of signal 

power and quantified to obtain a single PSA value that represents the functionality of the 

somatosensory pathway [145]. The PSC differs from standard SSEP waveform analysis 

in that it incorporates multiple peak characteristics including peak amplitudes, slopes, and 

interpeak latency [145]. In the initial study by Madhock et al, PSA increased over the 

early recovery period (4 hours after ROSC) and while the animals with good and bad 

outcome (defined by NDS scores) were not differentiable by PSA in the first hour after 

ROSC, they did have significantly different PSA values in the following 3 hours of early 

recovery (85-190 min post-ROSC) with an outcome prediction accuracy of 80-93% 

(p<0.05) and 78% sensitivity to good outcomes with 83-100% specificity [145]. Further, 

the early recovery PSA (within the first 4 hours after ROSC) successfully predicted 72hr 

neurologic outcomes, which suggests that early recovery SSEP measurements hold 

significant prognostic value [145]. To compare this method to standard SSEP analysis, 
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N10-P15 peak-to-peak amplitude was shown to have similar trends as the PSA, but they 

were less separated between the outcome groups and had a higher variability.  

 

Thus, this qSSEP method provides a technique that doesn’t require sophisticated peak 

detection but can still track brain injury and is a useful predictor to differentiate between 

good and poor outcome [145]. One major limitation of the current information on this 

method is that this study was done using normothermic animals, and needs to be repeated 

with temperature management to validate the qSSEP method in under TTM. While 

qSSEP still needs to be validated in animals under hypothermia after CA, it shows 

promise as an objective early recovery prognostic indicator.  

 

1.4.5   Conclusion 

Prognosis of functional outcome while patients are comatose following resuscitation after 

CA remains an important area of clinical research. Due to the subjective nature of SSEP 

interpretation, current prognosis markers are inadequate in providing reliable information 

to dictate treatment options and medical decisions, particularly with TTM becoming a 

widely used treatment post-CA. While many groups have demonstrated that bilaterally 

absent N20 responses remain reliable in predicting poor outcome with TTM treatment, 

the results are not convincing to all experts. Further, development of a quantitative SSEP 

measurement has been initiated, however, its validation under temperature management 

is necessary. Overall, the prognostic value of SSEP can be greatly improved by the 
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validation of an objective and reliable method under TTM administration following 

resuscitation.   
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CHAPTER 2: QUANTITATIVE SOMATOSENSORY 

EVOKED POTENTIALS DURING EARLY RECOVERY 

ARE ASSOCIATED WITH FUNCTIONAL OUTCOME 

AFTER CARDIAC ARREST WITH TEMPERATURE 

CONTROL 

2.1   Introduction 

Despite advances in pre-hospital care including cardiopulmonary resuscitation (CPR) 

technique, out-of-hospital cardiac arrest (CA) continues to result in major public health 

implications [1]. Targeted temperature management (TTM) is currently recommended as 

a standard neuroprotection method for comatose patients following CA and has been 

shown to improve survival and functional outcome [49]. Fever is common during 

recovery [86] and tends to worsen outcome [49, 58]. Overall, many CA patients remain 

comatose during early recovery, which makes prognostication of functional outcome and 

treatment planning difficult. Thus, there is a great need for an objective prognostication 

method to predict functional outcome post-CA during the early recovery period. 

 

A number of prognostic tools have been developed to predict outcome following CA 

under normothermic conditions, however, many techniques are impeded by the sedation 
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that is necessary for TTM [87, 88]. The bilateral absence of the short-latency 

somatosensory evoked potential (SSEP), N20, has been regarded as a reliable indicator 

for poor functional outcome following CA [133, 134, 136] with TTM [42, 88, 129-132, 

135], though still with controversy [138-140]. Further, while the bilateral absence of N20 

peaks indicates poor outcome, the presence of N20 has low specificity for good outcome. 

Thus, it is important to develop a threshold for existing SSEP peaks to predict good 

outcome. SSEP hold great prognostic benefits following CA as these measurements are 

repeatable, non-invasive, unimpeded by sedation, and present multiple quantifiable 

characteristics such as latency, amplitude, and contour [88, 146]. 

 

The N7 and N10 rat SSEP peaks, which represent the negative cortical responses at 7 and 

10ms after stimulation, are analogous to the N18 and N20 peaks in humans [145]. The rat 

N7 peak has been shown to recover following CA though its prognostic value has not 

been identified [162].  Despite recent controversy regarding the value of various degrees 

of TTM [80, 163], the prognostic value of the presented SSEP markers under TTM of 

33°C is important, as TTM of 33°C remains a current standard treatment for post-CA 

patients, as recommended by international guidelines [49, 79] and has been extensively 

studied by many groups [23, 41, 51, 67, 164, 165], including our own [46, 112-114, 166].  

 

In this study, we used an established asphyxial-CA rat model to test the hypothesis that 

SSEP latency and amplitude can be quantified during early recovery from CA as 
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objective markers to predict functional outcome following resuscitation under TTM 

conditions.   

 

2.2   Materials and Methods  

2.2.1   Animals  

A total of 21 adult male Wistar rats (378±8g) were randomly assigned to one of three 

temperature groups (n=7 per group): hypothermia (33±1°C), normothermia (37±0.5°C), 

or hyperthermia (39±0.5°C). Each animal underwent 7 min asphyxial-CA followed by 

immediate temperature manipulation, according to their assigned group. An additional 14 

rats were assigned to a sham group, which underwent the same experimental procedures 

except for CA and resuscitation. All experiments were approved by the Institutional 

Animal Care and Use Committee at Johns Hopkins University.  

 

2.2.2   Electrode Implantation 

Approximately 1 week prior to the date of CA, 5 screw electrodes (Plastics One, Roanoke, 

VA) were cortically implanted in each rat’s brain to record the SSEPs [145, 162]. Four 

electrodes were placed over the somatosensory cortex in the regions that are 

topographically associated with the forelimbs and hindlimbs, and one ground electrode 

was placed near the parasagittal right frontal lobe. The electrodes were placed above the 

dura mater such that they did not penetrate the brain. The electrodes were held in place 
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with a plastic pedestal and dental cement and the skin was closed around the implant with 

sutures.  

 

2.2.3   Cardiac Arrest, SSEP and Early Recovery  

The rats underwent CA and resuscitation as previously described [46, 110, 113, 145]. 

Briefly, the rats were anesthetized with 1.5% vaporized isofluorane in 1:1 O2:N2 and 

then a tracheal intubation was performed. A mechanical ventilator (Harvard Apparatus 

Model 553438)	continued to administer the isofluorane mixture with the following 

ventilation parameters: 50 breaths/minute respiratory rate, 8ml/kg tidal volume, and 3cm 

H2O positive expiratory end pressure. The femoral artery and vein were then cannulated 

(Intramedic Non-Radiopaque Polyethylene Tubing PE-50 catheters, PE 50, Becton 

Dickinson) to monitor the mean arterial pressure (MAP) and obtain blood samples, and to 

deliver drugs, respectively. Baseline arterial blood gases (ABGs) were measured via the 

arterial cannulation. A baseline SSEP was recorded for 15 min followed by a 5 min 

isofluorane washout. The washout period consisted of 2 min of 100% oxygen followed 

by 3 min of room air, during which a bolus injection of vecuronium (2mg/kg) was given 

intravenously to induce muscle paralysis in the rats. The ventilator was then disconnected 

and the tubes of the breathing circuit were clamped to induce global asphyxia. CA was 

achieved when pulse pressure < 10mmHg. Immediately following 7 min of CA, 

cardiopulmonary resuscitation (CPR) was performed with resumption of ventilation 

(respiratory rate: 40 breaths/min, tidal volume: 8ml/kg, positive expiratory end pressure: 

0cm H2O), 100% oxygenation, sternal chest compressions (200 compressions/min), 
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intravenous epinephrine (0.005 mg/kg) and intravenous sodium bicarbonate (1mmol/kg) 

until the return of spontaneous circulation (ROSC), which was defined as pulse pressure 

> 60mmHg. Hyperventilation was induced for 10 min using the ventilation parameters 

(respiratory rate: 65 breaths/min, tidal volume: 8ml/kg, positive expiratory end pressure: 

0cm H2O), at which point the respiratory rate was switched to 55 breaths/min for 10 min 

and subsequently 50 breaths/min. ABGs were measured at 10, 20 and 40 mins after 

ROSC. Approximately 2 hours following ROSC, animals were extubated. All animals 

were closely monitored throughout the duration of the experiment for any signs of 

distress or pain. Stimulation and SSEP recordings were restarted at 30 minutes after 

ROSC and were maintained in 15 min intervals until 4 hrs after ROSC. During the 

recovery period, up to 0.5% isofluorane was used when SSEP recordings were restarted  

(30 min post-ROSC), dependent on the rat’s recovery, due to the potential discomfort of 

the nerve stimulation [145]. 

 

2.2.4   Temperature Management  

For the hypothermia group, cooling began immediately after ROSC and the target 

temperature was reached within 10 mins. Cooling was achieved using an alcohol/water 

mist and a small electric fan. The core temperature was maintained at 32-34°C for 4 hrs. 

Rewarming began after 4 hrs of hypothermia until normothermia was reached over a 

period of 2 hrs. For the hyperthermia animals, warming began immediately after ROSC 

until the target temperature was reached, within 15 minutes. Warming was done using a 

heating lamp and heating pad (Thermalet TH-5, model 6333, Physitemp Instruments, 
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Clifton NJ). Hyperthermia, 38.5-39.5°C, was maintained for 4 hrs after ROSC and 

passive cooling occurred over a period of 2 hrs until normothermia was reached. The core 

temperature of the normothermia rats was maintained at 36.5-37.5°C for 4 hrs after 

ROSC using a heating pad. A neonatal incubator was used for the following 24 hrs to 

prevent spontaneous hypothermia [114]. 

 

2.2.5   Neurologic Evaluation  

The neurological function of rats following CA was determined using the Neurologial 

Deficit Scale (NDS), which has been well verified in the evaluation of motor, sensory and 

brainstem function [46, 113, 114]. Animals were given an NDS score ranging from 0 

(worst) to 80 (best). The NDS was recorded by a trained and blinded researcher 2 hrs 

after temperature modulation, and at 24, 48 and 72 hrs following ROSC, where the 72 hr 

score represents the endpoint functional outcome [154, 162]. Based on previous 

publications, the animals were grouped into good and poor outcome groups based on 

final NDS score such that good outcome animals represented those with some mobility 

and quick response to stimuli [46, 113, 114, 145, 162]. Thus, the 72 hr NDS score was 

used to define the final functional outcome as either good (72 hr NDS ≥ 60) or poor (72 

hr NDS < 60) [46]. Animals that died before 72hrs were given a 72hr NDS score of 0. 
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2.2.6   SSEP Signal Sampling and Analysis  

The median nerves in the forelimbs of the rats were stimulated using subdermal needle 

electrodes and the SSEPs were recorded from the screw electrodes in the respective 

contralateral hemisphere. A pulse generator provided 200-usec 6mA pulses to the needle 

electrodes at a frequency of 0.5Hz. The SSEP signals were recording using the TDT 

System3 data acquisition system (Tucker-Davis Technologies, Alachua, FL). The SSEP 

data was sampled at a frequency of 6.1kHz and was passed through an amplifier before 

reaching the computer. SSEPs were recorded on the day of the experiment for 15 min 

before CA (baseline) and for 15 min intervals, beginning 30 min post-ROSC until 4 hrs 

post-ROSC. The SSEPs were also recorded for 15 minutes at 24, 48 and 72 hrs post-

ROSC, with 1.5% isofluorane.  

 

The SSEP signals were averaged over 450 sweeps during the peak detection process. An 

algorithm in MATLAB was used to calculate the peak amplitudes and latencies. 

Specifically, the N10 (N10-P15 peak-to-peak) amplitude and N7 and N10 latencies were 

determined. The N7 and N10 peaks represent the negative responses that occur 

approximately 7 and 10ms after stimulation, while the P15 peak represents the positive 

response 15ms after stimulation. The N7 and N10 latencies were measured as the time to 

the N7 or N10 peak, respectively, from the time of stimulation. The amplitudes and 

latencies were normalized by the baseline values recorded before CA. Animals with 

abnormal baseline SSEPs (bilaterally distorted N10 and P15 peaks) were excluded from 

the analysis. 
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2.2.7   Statistical Analysis  

All statistical analyses were done using the SPSS Statistics computer package (IBM 

SPSS Statistics v22, Armonk, NY). A nonparametric Kruskal-Wallis test was used to 

compare the 72 hr NDS between temperature groups, which are reported as (median (25th, 

75th percentiles)). The N7 and N10 amplitudes and latencies were compared among 

outcome groups using a general univariate analysis, while they were compared among 

temperature groups using repeated measures analysis of variance (ANOVA). Pearson 

correlation coefficients were determined using bivariate analyses to determine the 

relation between SSEP markers and 72 hr NDS. Receiver operating characteristic curves 

were generated to identify N10 amplitude cut-off points at 100% specificity and 

maximum sensitivity with an area under the ROC curve that is significantly different 

from the 0.5 reference line. Aggregate latency or amplitude considered all values at each 

time point over the entire 4 hr early recovery period for all animals within a particular 

group. A p < 0.05 was considered statistically significant. 

  

2.3   Results  

2.3.1   Temperature Management, ABG Monitoring and NDS 

The core temperature of all animals was well controlled throughout experiments 

(hypothermia: 33.8±0.1oC, normothermia: 36.9±0.1oC, hyperthermia: 38.5±0.05oC). The 

target temperature for each group was reached within 12 ± 2 mins and maintained for the 

4 hr early recovery period (Fig. 2.1). Baseline arterial blood gases (ABG) were not 
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significantly different among temperature groups (p>0.05) (Table 2.1). The baseline 

animal weight was not significantly different between temperature groups (p>0.05) 

(Table 2.1). The 72 hr NDS score was significantly higher in the hypothermia group [74 

(74,77)] than the normothermic group [68 (49,72)] (p<0.01), which was significantly 

higher than the hyperthermic group [0 (0, 58)] (p<0.01), in which less than half the 

animals survived to 72hrs post-ROSC. The 72hr survival rates for normothermia, 

hypothermia and hyperthermia animals were 100% (7/7), 100% (7/7), and 43% (3/7), 

respectively. 
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Figure 2.1. The animal temperature (mean±S.E.M.) was well maintained throughout the duration of the experiment. The 4 hr 

temperature management period is indicated between the dashed lines.  
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Table 2.1 Baseline ABG and Weight Data 

 Hypothermia Normothermia Hyperthermia 

pH 7.42±0.02 7.43±0.01 7.39±0.02 

pCO2 46.8±3.6 42.6±3.0 48.5±1.9 

HCO3- 29.7±0.9 28.1±1.6 29.6±1.0 

SO2 99.7±0.3 99.7±0.3 100±0.0 

Weight (g) 366±7 370±4 399±20 

 

 

The evolution of the SSEP pattern was similar in animals, such that the peaks recovered 

towards the original baseline shape over time during the early recovery period (Fig 2.2A-

C). The SSEP recordings showed similar shape but variable peak latencies and 

amplitudes under different temperature conditions (Fig. 2.2D).  
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Figure 2.2. Representative time evolution of SSEP recording throughout the experiment 

in (A) Normothermia (B) Hypothermia and (C) Hyperthermia CA animals. (D) 

Representative SSEP recordings at 210min post-ROSC for each CA temperature group. 

The lighter grey lines are the multiple sweeps during the 15 min interval. The 

superimposed black line is the average of all the sweeps for the time period.  

 

2.3.2   SSEP Marker Changes from Baseline in Sham and CA Animals  

The sham animals had significantly higher N10 amplitudes (79% increase, p<0.05) and 

significantly longer N7 and N10 latencies (35%, 27% increases, respectively, p<0.01 for 
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both) under hypothermia compared to normothermia. Additionally, the sham animals had 

significantly shorter N7 and N10 latencies (8%, 7% decreases, respectively, p<0.05 for 

both) and similar N10 amplitudes (14% decrease, p>0.05) under hyperthermia compared 

to normothermia. One sham animal was excluded from the statistical analysis due to 

abnormal baseline waveforms. 

 

The hypothermic CA animals had significant increases in N7 and N10 latency (13%, 21% 

increases, respectively, p<0.01 for both) from pre-CA baseline and a non-significant 

decrease in N10 amplitude (22% decrease, p>0.05). The hyperthermic CA animals had 

significant decreases in N7 latency and N10 amplitude (19%, 71% decreases, 

respectively, p<0.01) and no change in N10 latency (0% change) compared to pre-CA 

baselines. The normothermic CA animals similarly had significant decreases in N7 

latency and N10 amplitude (8%, 78% decreases, respectively, p<0.01 for both) and a 

non-significant increase in N10 latency (3% increase, p>0.05).  The hyperthermia sham 

animals had significant decreases in N7 and N10 latency compared to normothermia, 

however the hyperthermia CA animals had a larger decrease in N7 latency and no change 

in N10 latency compared to pre-CA baseline values.  
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2.3.3   N10 Amplitude was Higher and had Better Recovery Over Time in 

Hypothermic CA Animals 

The comparison of normalized aggregate N10 amplitudes between temperature groups 

showed that hypothermic animals had significantly higher peaks than normothermic and 

hyperthermic animals over the first 4 hrs of recovery (p<0.01 for both) (Fig. 2.3A). In the 

time evolution of the N10 amplitude during recovery, hypothermic animals had 

significantly higher amplitudes than normothermic animals at all time points (p<0.05 at 

all time points) and than hyperthermic animals at all time points (p<0.05 at all time 

points) (Fig. 2.3B). The N10 amplitudes (aggregate and time evolution) are shown in 

Table 2.2.  
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Figure 2.3 (A) Aggregate N10 amplitude was significantly higher in hypothermic CA animals than normothermic and hyperthermic 

CA animals. (B) Time evolution of N10 amplitude by CA temperature group. The amplitude was significantly greater in hypothermic 

CA animals than both normothermic and hyperthermic CA animals at all time points. * p<0.05, ** p<0.01
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Table 2.2 Normalized N10 Amplitude (mean±S.E.M.) for temperature groups 

 Aggregate 30min 60min 90min 120min 150min 180min 210min 

Normothermia 0.173±0.022 0.150±0.044 0.093±0.034 0.095±0.024 0.166±0.053 0.228±0.062 0.224±0.056 0.262±0.097

Hypothermia 0.824±0.090 0.604±0.165 0.651±0.158 0.626±0.076 0.732±0.110 1.021±0.312 1.112±0.366 1.076±0.342

Hyperthermia 0.233±0.040 0.104±0.052 0.212±0.123 0.294±0.159 0.290±0.128 0.233±0.105 0.201±0.069 0.270±0.078

Significance ** ‡‡ * ‡‡ ** ‡ ** ‡ ** ‡‡ ** ‡‡ ** ‡‡ * ‡ 

* p<0.05, ** p<0.01 between normothermia and hypothermia 

† p<0.05, †† p<0.01 between normothermia and hyperthermia 

‡ p<0.05, ‡‡ p<0.01 between hypothermia and hyperthermia 
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2.3.4   Animals with Good Outcome had Better Recovery of N10 Amplitude  

Following all CA experiments, animals were grouped based on their functional outcome, 

as defined by their 72hr NDS score. The animals with good outcome had a significantly 

higher aggregate N10 amplitude in the first 4 hrs post-ROSC compared to those with 

poor outcome (p<0.01) (Fig. 2.4A). While the time evolution of the N10 amplitude 

during recovery did not have significant differences between outcome groups, there is a 

clear trend showing that poor outcome animals mostly had decreasing N10 amplitude 

over time while the good outcome group had increasing N10 amplitude over time (Fig 

2.4B).  
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Figure 2.4 (A) Aggregate N10 amplitude was significantly higher in CA animals with good outcome compared to those with poor 

outcome. (B) CA animals with good outcome had increasing N10 amplitude over time while animals with poor outcome mostly had 

decreasing amplitude. * p<0.05, ** p<0.01 
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2.3.5   Predictive value of N10 amplitude  

Bivariate analyses were performed to determine the correlation between N10 amplitude 

and 72hr NDS score. The aggregate N10 amplitude correlated to the 72hr NDS (Pearson 

correlation coefficient: 0.231, p<0.01) (Table 2.3).  

 

The receiver operating characteristic (ROC) curve was used to determine the predictive 

value of good outcome of N10 amplitude. The predictive value was deemed good when 

the area under the ROC curve (AUC) was significantly different than the 0.5 reference 

curve, which indicates 50% accuracy. Since it is crucial in prognostication following CA 

to minimize incorrectly identifying a poor outcome patient as good, the cutoff point for 

these markers were determined at the point of 100% specificity for poor outcome and 

maximum sensitivity. In the prediction of good outcome, the N10 amplitude at 30min 

post-ROSC had a prediction accuracy of 79% (p<0.05) at which time point a normalized 

amplitude > 0.346 had 50% sensitivity and 100% specificity (Table 2.3).  
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Figure 2.5. ROC curve for the N10 amplitude at 30min after resuscitation has an 

accuracy of 79% (p<0.05) with 50% sensitivity and 100% specificity. 
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Table 2.3 Predictive value of N10 amplitude 

 Aggregate 30m 60m 90m 120m 150m 180m 210m 

 Pearson correlation coefficients between SSEP markers and 72 hr NDS 

N10 Amplitude 0.231** 0.399 0.206 -0.034 0.093 0.264 0.338 0.313 

 Normalized latency cut-off points for good outcome (sensitivity, accuracy) with 100% specificity 

N10 Amplitude 1.032 

(0.104, 

69%**) 

0.346 

(0.500, 

79%*) 

--a --a --a --a --a --a 

* p < 0.05, ** p < 0.01, a > 0.05 
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2.3.6   N7 Amplitude  

During the N7 amplitude analysis, the N7 peak was consistently concealed by the much 

larger N10 peak, particularly in the baseline measurements, before the N10 peak was 

suppressed due to the hypoxic injury. Thus, the N7 amplitude could not be reliably 

measured throughout the experiment. However, although the N7 amplitude could not be 

reliably measured, the location of the N7 peak was evident in most animals, thus, the N7 

latency could still be reliably measured (normothermia, n=4; hypothermia, n=5; 

hyperthermia, n=5).   

 

2.3.7   N7 and N10 Latency in Cardiac Arrest Animals  

Both N7 and N10 aggregate latencies were significantly longer in hypothermic animals 

than both normothermic and hyperthermic animals (p<0.01) (Fig. 2.6A-B). The aggregate 

N7 latency was also significantly different between normothermic and hyperthermic 

animals (p<0.01) such that latency increased with decreasing temperature (Fig. 2.6A). 

The time evolution of the N7 latency showed that the hypothermic animals had 

significantly longer values than both normothermic and hyperthermic animals at all time 

points (p<0.01) (Fig. 2.6C). The N7 latency was also significantly different between 

normothermic and hyperthermic animals at all time points after resuscitation except at 

60min (p<0.05) (Fig. 2.6C). The N10 latency was significantly longer in hypothermic 

animals than hyperthermic animals beginning at 60min after ROSC (p<0.05) (Fig. 2.6D) 

and than normothermic animals at all time points (p<0.01)(Fig. 2.6D). The aggregate and 

time evolution N7 and N10 latencies are shown in Tables 2.4 and 2.5, respectively.  
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Figure 2.6. (A) Aggregate N7 latency was significantly greater in hypothermic CA 

animals than normothermic CA animals, which was significantly greater than 

hyperthermic CA animals (B) Aggregate N10 latency was significantly greater in 

hypothermic CA animals than both normothermic animals and hyperthermic CA animals. 

(C) Normalized N7 latency was significantly higher in hypothermic CA animals than 

normothermic CA animals, which was significantly higher than hyperthermic CA animals 

at all time points except 60min. (D) Normalized N10 latency was significantly greater in 

hypothermic CA animals than normothermic CA animals at all time points and than 

hyperthermic CA animals from 60min until 4hr after ROSC. * p < 0.05, ** p < 0.01
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Table 2.4 Normalized N7 Latency (mean±S.E.M.) for temperature groups 

 Aggregate 30min 60min 90min 120min 150min 180min 210min 

Normothermia 0.937±0.012 0.917±0.026 0.929±0.037 0.932±0.040 0.943±0.034 0.947±0.046 0.932±0.034 0.962±0.017

Hypothermia 1.121±0.015 1.030±0.029 1.158±0.061 1.116±0.033 1.136±0.014 1.160±0.035 1.156±0.046 1.109±0.025

Hyperthermia 0.805±0.005 0.818±0.014 0.804±0.016 0.799±0.018 0.808±0.014 0.797±0.016 0.802±0.022 0.804±0.010

Significance ** †† ‡‡ ** ‡‡ ** † ‡‡ ** † ‡‡ ** † ‡‡ ** † ‡‡ ** † ‡‡ ** †† ‡‡ 

* p<0.05, ** p<0.01 between normothermia and hypothermia 

† p<0.05, †† p<0.01 between normothermia and hyperthermia 

‡ p<0.05, ‡‡ p<0.01 between hypothermia and hyperthermia 

 

 

 

 

 

 



49 

Table 2.5 Normalized N10 Latency (mean±S.E.M.) for temperature groups 

 Aggregate 30min 60min 90min 120min 150min 180min 210min 

Normothermia 0.978±0.022 0.884±0.141 1.035±0.024 1.006±0.021 0.938±0.073 1.004±0.017 0.986±0.014 0.991±0.016

Hypothermia 1.209±0.012 1.155±0.023 1.235±0.048 1.204±0.029 1.205±0.019 1.235±0.033 1.238±0.038 1.196±0.024

Hyperthermia 0.941±0.013 1.032±0.065 0.920±0.034 0.930±0.031 0.923±0.026 0.940±0.029 0.937±0.031 0.924±0.023

Significance ** ‡‡ * **‡‡ ** ‡‡ ** ‡‡ ** ‡‡ ** ‡‡ ** †‡‡ 

* p<0.05, ** p<0.01 between normothermia and hypothermia 

† p<0.05, †† p<0.01 between normothermia and hyperthermia 

‡ p<0.05, ‡‡ p<0.01 between hypothermia and hyperthermia 
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The aggregate N7 and N10 latencies were both significantly longer in animals with good 

outcome compared to those with poor outcome (p<0.01 for both) (Fig. 2.7A-B). Similarly, 

the time evolution of latencies showed that N7 latency was significantly greater in good 

outcome animals compared to poor outcome animals at all time points in the early 

recovery period (p<0.01 for all time points) (Fig 2.7C). The N10 latency was 

significantly greater in animals with good outcome compared to animals with poor 

outcome beginning at 60min until 4 hrs post-ROSC (p<0.01) (Fig 2.7D).  
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Figure 2.7. (A) Aggregate N7 latency was significantly greater in CA animals with good 

functional outcome than those with poor outcome. (B) Aggregate N10 latency was 

significantly greater in CA animals with good functional outcome than those with poor 

outcome. (C) Normalized N7 latency was significantly higher in good outcome CA 

animals than poor outcome CA animals at all time points. (D) Normalized N10 latency 

was significantly higher in good outcome CA animals than poor outcome CA animals 

beginning at 60min post-ROSC. * p < 0.05, ** p < 0.01. 
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2.4   Discussion 

In this study, we discovered that short-latency SSEP amplitude, specifically the N10 

amplitude, holds potential prognostic value following CA with TTM. The experiment 

demonstrated that normalized N10 amplitude during the early recovery is significantly 

greater in rats under hypothermia and in animals with good functional outcome following 

CA. Similarly, the peak analyses showed that larger N10 amplitudes are strongly 

associated with good functional outcome. Specifically, the aggregate N10 amplitude of 

the first 4 hours of recovery was significantly correlated with 72 hour NDS. We have 

shown for the first time that the N10 amplitude at 30min after ROSC, when all animals 

were still comatose, serves as an accurate predictor of good outcome at 72 hrs after 

ROSC. 

 

This study is among the first to demonstrate that SSEP signals recorded during the early 

recovery period under TTM can be quantified as objective measures to predict outcome 

following CA. This finding is significant as it not only validates the benefits of SSEP 

under TTM and during the early recovery period, but it also eliminates the subjective 

nature of current SSEP methods (determining whether N20 peaks are present or not), 

which has been shown to have only moderate interobserver reliability [141, 142]. 

 

The present study establishes the value of SSEP amplitudes in predicting good functional 

outcome during the early recovery after CA. The bilateral absence of N20 at 12-24 hrs 
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after resuscitation has been fairly well established as one of the most reliable predictors 

of poor outcome after CA in humans [133, 134, 136, 146]. However, the studies 

supporting this notion in most cases also emphasize that the presence of N20 does not 

predict that the patient will have good functional outcome. Thus, the present study is 

crucial as it identifies threshold values of existing peaks to identify subjects with good 

outcome. It is important to note that the N10 amplitude markers identified in this study 

are associated with predicting good outcome, whereas all established markers, namely the 

bilateral absence of the N20 peak, only reliably predict poor outcome. 

 

A recent prospective cohort study by Endisch et al. has demonstrated that SSEP 

amplitude holds prognostic value in post-CA patients treated with TTM [161]. The 

authors determined that bilaterally absent or very low amplitude (<0.62µV) short-latency 

cortical SSEPs had a sensitivity of 57% in the prediction of poor outcome while 

amplitudes above 2.5µV rule against severe hypoxic encephalopathy and have a 

sensitivity of 65% for good outcome. However, the recordings in this study all occurred 

after 24 hours post-ROSC, after TTM had been stopped, and therefore cannot be used to 

track recovery or for prognostication in the early recovery period. In the present study, 

we demonstrated that the rat N10 amplitude in the early recovery correlates with final 

outcome. We also found that normalized N10 values above 0.346 at 30min post-ROSC 

can predict good outcome with a sensitivity of 50% and with significant accuracy. This 

finding that higher amplitude is related to better outcome is consistent with a human 

study of normothermic post-CA patients, which found that patients with poor outcome 
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tended to have significantly lower N20 amplitudes compared to those with good outcome 

[160]. 

 

The N10 SSEP amplitude marker in the first 4 hours after CA was distinct among 

temperature and outcome groups and was associated with good functional recovery. 

Prognosis during the early recovery period following CA is crucial as it allows better 

titration of hypothermia and other treatments. Multiple groups have suggested waiting 24 

hrs before taking SSEP measurements in clinical settings, as some patients with absent 

SSEP peaks before 24 hrs eventually regained consciousness [144], or because SSEP 

signals tend to improve over the first 24 hrs [143]. However, in this rat study we have 

shown that the differences in early recovery are associated with good outcome, while 

temperature management is still in progress.  

 

All three temperature groups of CA animals had a decrease in N10 amplitude from their 

respective pre-CA baselines, which differs from the sham data, which showed that N10 

amplitude is increased by hypothermia and unchanged by hyperthermia, suggesting that 

CA leads to an additional decrease in N10 amplitude. This is a trend that was seen in 

multiple studies of SSEP during cardiac surgery with cardiopulmonary bypass, in which 

all studies saw a decrease in the cortical peak amplitude [156-159, 167, 168]. However, 

the effect of hypothermia on SSEP amplitude is not fully elucidated as various groups 

have observed increases, decreases, or no change in amplitude depending on the 

recording site and the condition of the subject [135, 151, 153, 154]. One study found that 
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hyperthermic temperatures have no significant effect on peak amplitudes in rats [154]. 

The cohort study by Endisch et al. found that temperature did not impact the relation 

between SSEP amplitude and outcome, when comparing SSEPs that were recorded above 

and below 35°C.  

 

Although SSEPs are less vulnerable to the effects of anesthetics than EEG, isofluorane 

has been shown to decrease the P40-N50 SSEP amplitude in humans [169]. In the present 

study, the isofluorane administered during the recovery period was minimal. Thus, we do 

not believe that this influenced the amplitude differences between groups. Moreover, in a 

clinical CA setting, anesthesia is generally not restarted during the very early recovery 

period. Further, the Endisch et al. study found that sedation did not largely impact the 

relationship between SSEP amplitude and functional outcome.  

 

The sham data compared to the CA data demonstrates the effect of CA on SSEP signals 

under temperature management. There were significant increases in both N7 and N10 

latencies with and without CA, however the percent increase in the latencies is smaller in 

the CA animals. The sham data corroborate previous studies that unanimously 

demonstrate that hypothermia increases SSEP latency [150-154, 156-159, 167, 168] and 

that hyperthermia decreases latency [154]. Thus, the SSEP peak latency appears to be 

confounded by temperature, which consequently impacts the prognostic value while the 

subject is under TTM. 
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Our study is limited in that it uses baseline SSEP measurements to normalize the post-CA 

recordings. It is unrealistic to expect baseline measurements for CA patients in a clinical 

setting, which is the application goal for these quantified SSEP markers. To address this, 

we expect that generalized baseline values could be generated from a standardized 

control group. Additionally, a larger study, perhaps with a more severe injury, is 

necessary to further elucidate the temperature effect on CA animals with SSEP. All 

hypothermia animals with moderate brain injury after 7min CA in the present study had 

good outcome, so the cutoff points generated may not account for the temperature effect 

of hypothermic animals with poor outcome after severe brain injury. Finally, while we 

were able to examine the relationship between SSEP characteristics and functional 

outcome, histological analyses were not performed in the present study to examine the 

relationship between SSEPs and cerebral injury level. However, a previous study used a 

rodent CA model to demonstrate that electrical stimulation of the median nerves during 

the early recovery period does not amplify the neurologic damage at 48 hrs post-ROSC 

[170]. The overall goal of this project is to develop quantitative markers that hold 

prognostic value during the early recovery period following CA that can be translated to 

clinical settings and to demonstrate feasibility.  

 

2.5   Conclusion  

The present study demonstrated that SSEP measurements are valid under TTM and may 

hold more prognostic value as quantitative markers than the dichotomous distinction of 
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present/absent peaks. Specifically, we were able to show that the rat N10 amplitude has a 

better recovery under hypothermia than normothermia or hyperthermia in the early 

recovery following CA and has prognostic value in the prediction of good outcome 

following CA with temperature management in a rat model. The ultimate goal of this 

study is to translate the quantitative markers to a clinical setting to improve 

prognostication during early recovery after CA, as SSEP is already a common tool in this 

application.  
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CHAPTER 3: EVOLUTION OF QUANTIFIED 

SOMATOSENSORY EVOKED POTENTIALS AFTER 

CARDIAC ARREST WITH TARGETED TEMPERATURE 

MANAGEMENT  

3.1   Introduction  

Although the resuscitation and treatment protocols for cardiac arrest (CA) victims are 

being continuously improved, the functional outcome of survivors is still often poor. 

Among those patients who survive the cardiac event, morbidity and mortality are 

primarily caused by poor neurological recovery [31, 34, 171]. Targeted temperature 

management (TTM), specifically induced hypothermia of 32-34°C for 12-24 hours, is a 

recommended treatment in the guidelines provided by the American Heart Association 

(AHA) [49], and has been shown to improve survival and functional outcome [23, 41]. 

Early prognostication, ideally in the first few hours following resuscitation while the 

patient is still under TTM, could crucially impact the subsequent treatment and resource 

allocation, which ultimately could help to improve final functional outcome of post-CA 

patients.   

 

The challenges in monitoring and predicting cerebral recovery shortly after resuscitation 

from CA have been well documented [99, 100, 132, 154, 172]. Somatosensory evoked 
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potentials (SSEP) are used in post-CA patients to assess the recovery of evoked neural 

activity. Thus, evaluation of SSEP, such as changes in waveform amplitude, latency, or 

shape, while the CA patient is comatose following resuscitation could help assess the 

cerebral damage and potential recovery.  

 

The prognostic value of SSEP, even under TTM, has been well verified, as the bilateral 

absence of the N20 SSEP peak is currently the best prognostic indicator of poor 

functional outcome [42, 88, 129-136]. However, not only is this method highly subjective, 

even among highly trained experts [141, 142], it is also temporally limited, as it is has 

been suggested to be most reliable at least 12-24 hours after resuscitation [42], at which 

point much of the ischemic damage by CA has already begun. The current SSEP signal 

interpretation requires highly experienced personnel and since CA survivors are often 

monitored by physicians and nurses with little experience in neurological examination, 

the implementation of this method is complicated. Further, the small changes in cerebral 

recovery that may have a more substantial impact on functional outcome may not be 

accounted for with the dichotomous categorization of SSEP peak presence. An early 

quantitative SSEP marker would simplify the analysis, remove the subjectivity of the 

interpretation, and account for varying levels of injury, which could allow for earlier 

prognostication and better assist treatment. Thus, a quantitative SSEP measurement 

would address the limitations of the current gold-standard method, allowing for earlier 

and objective prognostication.  
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Our recently developed quantitative SSEP (qSSEP) metric that objectively captures the 

morphologic information of the SSEP waveform, represented by a single numeric value 

termed the qSSEP phase space area (qSSEP-PSA), was previously shown to hold 

predictive value for functional outcome following CA during the early recovery period in 

rats [145]. Here, for the first time, we test the robustness of the qSSEP-PSA metric in 

tracking cerebral recovery following CA under three temperature conditions: 

hyperthermia, normothermia and hypothermia.  

 

3.2   Materials and Methods  

3.2.1   Animals  

In these experiments, we recorded the SSEPs in a rodent CA model with temperature 

management. Twenty-one animals underwent 7min asphyxia-CA and resuscitation 

followed by immediate temperature management of one of three temperatures: 

hypothermia, normothermia, or hyperthermia (n=7/group), which was randomly assigned 

prior to CA. An additional 14 sham operation rats underwent the same experimental 

procedures except for CA and resuscitation. All experiments were approved by the 

Institutional Animal Care and Use Committee at Johns Hopkins University.  
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3.2.2   Animal Preparation  

All animals had 5 screw electrodes (Plastics One, Roanoke, VA) implanted in the skull to 

record the SSEPs [145, 162] from the somatosensory cortex. Once implanted, the screws 

were secured with a plastic pedestal and dental cement. The animals were then returned 

to their home cage and allowed 1 week of recover before the CA experiment.  

 

3.2.3   Cardiac Arrest, Resuscitation and Temperature Management 

The CA and resuscitation procedures were performed as previously described [46, 110, 

113, 145]. On the day of CA, rats were mechanically ventilated and anesthetized with 

1.5% isofluorane in 1:1 O2:N2 following intubation. The femoral artery and vein were 

cannulated to measure arterial blood gases (ABG) and to administer drugs. A baseline 

SSEP measurement was recorded for 15 min followed by a 5 min anesthetic washout 

period, during which vecuronium (2mg/kg) was administered. Asphyxial CA was 

induced as previously described, lasting for 7min. Resuscitation was performed by 

administering cardiopulmonary resuscitation (CPR) along with epinephrine and sodium 

bicarbonate until the return of spontaneous circulation (ROSC).  

 

SSEP recordings resumed 30 min after ROSC and were continued in 15 min intervals 

until 4 hours after ROSC. Isofluorane was delivered as needed, not exceeding 0.5%, 

during SSEP recordings in the recovery period as the nerve stimulation may cause 

discomfort to the rats [154, 162]. 
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Temperature was measured rectally and was recorded every 10 min. Temperature 

management began immediately after ROSC was achieved. The hypothermia group was 

cooled to 32-34°C within 15 min, which was maintained for 4 hours followed by 

rewarming to normothermia (36.5-37.5°C) over a period of 2 hours. The hyperthermia 

animals were warmed to 38.5-39.5°C within 15 min, which was maintained for 4 hours 

followed by passive cooling to normothermia over a period of 2 hours. Normothermia 

animals were maintained at 36.5-37.5°C for 4 hours after ROSC using a heating pad. 

After temperature management, all animals were then placed in a neonatal incubator at 

28°C to maintain normothermia (36.5-37.5°C) until 24 hours after ROSC.  

  

3.2.4   Functional Outcome  

The neurologic recovery of the rats was determined using the Neurologic Deficit Scale 

(NDS). Animals were evaluated by a trained and blinded assistant at 6, 24, 48 and 72 hrs 

after ROSC. A 72hr NDS score greater than 60 was designated as good functional 

outcome, while less than 60 was determined to be poor outcome [46].  

	

3.2.5   SSEP Measurement  

SSEP signals were recorded from the cortical screw electrodes while stimulating 

(200µsec, 6mA 0.5Hz) the median nerve in each forelimb of the rat with subdermal 

needle electrodes. SSEPs were acquired by the TDT System3 data acquisition system 

(Tucker-Davis Technologies, Alachua, FL) at a frequency of 6.1kHz. SSEP 
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measurements were taken for 15min prior to CA (baseline) and beginning at 30min after 

ROSC, continuing in 15 min intervals until 4 hr post-ROSC.   

 

3.2.6   qSSEP-PSA Calculation   

The qSSEP-PSA metric calculation is explained in detail by the developing authors [145]. 

Briefly, the SSEP waveforms within each 15 min interval (450 sweeps) were averaged. 

Then, the phase space curve (PSC) was generated for each time interval by plotting the 

first derivative against the magnitude. The PSC represents the morphologic information 

of the waveforms. The area bound by the PSC was then calculated, which is referred to as 

the qSSEP phase space area (qSSEP-PSA) and represents the power of the SSEP signal. 

Specifically, the area of the PSC is determined by the Quickhull algorithm, which fits a 

convex hull to the PSC [173]. The convex hull is determined using the point-index based 

method, which identifies the PSC indices that lie along the boundary of the convex hull. 

The qSSEP-PSA is the area within this boundary. Thus, the algorithm captures extensive 

information of the waveform shape, providing a more encompassing representation of the 

SSEP than merely amplitude or latency. A custom MATLAB (MathWorks, Natick, MA) 

algorithm was used for all computations. 

 

Once the qSSEP-PSA was calculated for each 15 min interval, the values were 

normalized to the baseline qSSEP-PSA. The aggregate qSSEP-PSA considers the 
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normalized value of all 15 min time periods. Waveforms with abnormal baselines 

(bilaterally distorted N10 and P15 peaks) were excluded from the analysis [162].  

  

3.2.7   Statistics  

The commercial SPSS statistics computer package (IBM SPSS Statistics v22, Armonk, 

NY) was used for all statistical analyses. The 72 hour NDS score, reported as the [median 

(25th, 75th percentiles)] was compared between temperature groups using a nonparametric 

Kruskal-Wallis test. The qSSEP-PSA metric was compared between temperature groups 

using a repeated measures analysis of variance (ANOVA) and between outcome groups 

using a one tailed student’s t-test, assuming unequal variances. The correlation between 

qSSEP-PSA and 72 hr NDS was determined using a bivariate analysis to obtain the 

Pearson correlation coefficients. A p value less than 0.05 was considered statistically 

significant.  

 

3.3   Results  

3.3.1   Baseline Data, Temperature Monitoring, and NDS 

The core temperature of all animals was closely monitored and maintained at their 

designated temperature (normothermia: 36.9±0.10°C, hypothermia: 32.8±0.10°C, 

hyperthermia: 38.9±0.03°C). The target temperatures were reached within 15mins 

following ROSC (Fig. 3.1). The baseline weight and ABG data prior to CA were not 
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significantly different between temperature groups (p>0.05, data not shown). The 

hypothermia animals had the highest 72 hr NDS score [74 (74,77)] compared to the other 

temperature groups (p<0.01). The normothermia animals also had significantly higher 72 

hr NDS scores [68 (49,72)] compared to hyperthermia animals [0 (0, 58)] (p<0.01). 

Using a 72 hr NDS score of 60 as the cutoff, there were 9 animals with poor outcome 

[median (25th, 75th percentiles)] [45 (0, 51)] and 12 animals with good outcome [74 (71, 

74)].  
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Figure 3.1 Temperature was well monitored throughout the experiment. Temperature management occurred between the dashed lines, 

beginning at ROSC (time 0 min) and ending at 4 hours post-ROSC (time 240min).  
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3.3.2   Sham Animal Data  

For the sham animals, the percent change in qSSEP-PSA from a normothermia baseline 

was determined under hypothermia and hyperthermia (Table 3.1). The sham animals had 

a 37% increase (p>0.05) in qSSEP-PSA under hypothermia and a 32% decrease (p>0.05) 

under hyperthermia, compared to normothermia.  

 

3.3.3   Change in qSSEP-PSA from Baseline Following CA 

The CA animals of all three temperature groups had a decrease in qSSEP-PSA compared 

to the pre-CA baseline (Table 3.1). The normothermia CA animals had the largest percent 

decrease (89%, p<0.01), while the hypothermia CA animals had the smallest percent 

decrease (31%, p>0.05). Hyperthermia resulted in a decrease in qSSEP-PSA in sham 

animals (p>0.05), however, the decrease was even larger and significant in hyperthermia 

CA animals (p<0.05). Hypothermia resulted in a decrease in CA animals, though the 

change was not significantly different from baselines (p>0.05).  
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Table 3.1 Percent changes in qSSEP-PSA in sham and CA animals  

Temperature Intervention PSA 

Hypothermia Sham +37% 

CA -31%  

Hyperthermia Sham -32% 

CA -59% * 

Normothermia Sham -- 

CA -89% ** 

* p <0.05, ** p < 0.01 compared to pre-CA baseline 

 

3.3.4   Recovery of qSSEP-PSA Following Cardiac Arrest  

SSEP recordings were obtained for each animal and followed a general trend of 

decreased SSEP peak amplitude (qualitative) during the recovery period compared to 

baseline. In general, the hypothermia animals had the best recovery of SSEP peaks to 

baseline size and shape while hyperthermia animals tended to have the worst recovery, 

resulting in smaller size peaks with abnormal shape (Fig. 3.2A). The corresponding PSCs 

for the representative SSEP waveforms are displayed in Fig. 3.2B. 
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Figure 3.2 Representative SSEP waveforms for (A) normothermia, (B) hypothermia, and 

(C) hyperthermia animals throughout the experimental period. The lower panels display 

the corresponding phase space curves for (D) normothermia, (E) hypothermia, and (F) 

hyperthermia animals. 
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3.3.5   Aggregate qSSEP-PSA is Higher in Hypothermic Animals   

The aggregate qSSEP-PSA was calculated for each temperature group by considering all 

the normalized qSSEP-PSA values over the 4 hour early recovery period following 

ROSC. The aggregate qSSEP-PSA was significantly higher in the hypothermia group 

than both the hyperthermia group (p<0.05) and the normothermia group (p<0.01) (Fig 

5.3). The aggregate qSSEP-PSA was also significantly greater in the hyperthermia group 

compared to the normothermia group (p<0.05) (Fig. 5.3).   

 

 

Figure 3.3. Aggregate normalized qSSEP-PSA was significantly larger in hypothermia 

animals compared to both normothermia and hyperthermia animals. * p<0.05, ** 

p<0.01. 
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3.3.6   qSSEP-PSA Increases More in Hypothermic Animals During Early Recovery  

The comparison of the time evolution of the normalized qSSEP-PSA values between 

temperature groups showed that hypothermia values tended to increase throughout the 

early recovery period (Fig. 5.4). Normothermia qSSEP-PSA values tended to increase 

slightly but stayed relatively the same over time (Fig. 5.4). The hyperthermia animals 

showed a slight increase in qSSEP-PSA values during the early stages of recovery (30-

90min) followed by a decrease in values during the remainder of the early recovery 

period. The hyperthermia animals had a significantly higher qSSEP-PSA than 

normothermic animals at 60 and 90min post-ROSC (p<0.05) (Fig. 5.4). One animal in the 

hypothermic group had an SSEP peak that was much larger in the recovery period than at 

baseline, which is unusual for animals that have undergone ischemic injury due to CA, 

however, the baseline data for this animal was normal. This phenomenon caused a very 

large S.E.M. value in the hypothermic animals. The aggregate and time evolution qSSEP-

PSA values are shown in Table 3.2.   

 

 



72 

Figure 3.4. Time evolution of normalized qSSEP-PSA between temperature groups. 

qSSEP-PSA in hypothermia animals trended upwards over time while qSSEP-PSA in 

hyperthermia animals increased slightly then decreased further into the recovery period. 

* p < 0.05.
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Table 3.2 Normalized qSSEP-PSA (mean±S.E.M.) for temperature groups 

 Aggregate 30min 60min 90min 120min 150min 180min 210min 

Normothermia 0.109±0.015 0.088±0.021 0.073±0.025 0.068±0.023 0.112±0.039 0.142±0.047 0.130±0.046 0.148±0.071

Hypothermia 0.697±0.155 0.412±0.189 0.332±0.081 0.379±0.064 0.482±0.137 0.821±0.368 0.965±0.475 1.616±0.967

Hyperthermia 0.406±0.065 0.261±0.080 0.443±0.181 0.604±0.294 0.481±0.199 0.392±0.175 0.295±0.095 0.345±0.098

Significance ** † ‡  † †     

* p<0.05, ** p<0.01 between normothermia and hypothermia 

† p<0.05, †† p<0.01 between normothermia and hyperthermia 

‡ p<0.05, ‡‡ p<0.01 between hypothermia and hyperthermia 
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3.3.7   Animals with Good Functional Outcome Have Better Early qSSEP-PSA 

Recovery  

The aggregate qSSEP-PSA of the first 4 hrs post-ROSC for animals with good functional 

outcome (72hr NDS ≥ 60) was higher than that of animals with poor functional outcome 

(72hr NDS < 60) (Fig. 3.5A), though the difference was not significant with the current 

animal cohort (p>0.05). The time evolution of the qSSEP-PSA shows that animals with 

good functional outcome had increasing qSSEP-PSA over the first 4 hours post ROSC 

(Fig. 3.5B). Conversely, the animals with poor functional outcome had increasing 

qSSEP-PSA values from 30-90 min post-ROSC followed by decreasing values for the 

remainder of the early recovery period (Fig. 3.5B). Overall, there was better recovery of 

the qSSEP-PSA metric in animals with good functional outcome compared to those with 

poor functional outcome.  
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Figure 3.5. A) Animals with good functional outcome had higher aggregate qSSEP-PSA 

than animals with poor outcome. B) Animals with good functional outcome had better 

recovery of qSSEP-PSA over the early recovery period compared to animals with poor 

outcome.  
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3.3.8   Predictive and Tracking Values of qSSEP-PSA with Temperature 

Management  

The qSSEP-PSA was correlated with 72hr NDS at 60 and 90 min post-ROSC (Pearson 

correlation coefficients: -0.528, -0.543, respectively, p<0.05) (Table 3.3). Receiver 

operating characteristic (ROC) curves were generated for the prediction of good outcome 

using the qSSEP-PSA metric for both aggregate and time evolution values. The AUC was 

not significantly different from the 0.5 reference for the aggregate qSSEP-PSA and the 

qSSEP-PSA at each time point during the early recovery (p>0.05). The accuracy of the 

metric is deemed good when the area under the ROC curve (AUC) is significantly 

different (p<0.05) from the standard of 0.5, indicating that it is a good predictor of good 

functional outcome. 

 

Table 3.3 Pearson correlation coefficients for qSSEP-PSA and 72 hour NDS score 

 Aggregate 30m 60m 90m 120m 150m 180m 210m 

Pearson 

correlation 

coefficient 

 

-0.067 

 

-0.096 

 

-0.528* 

 

-0.543* 

 

-0.400 

 

-0.017 

 

0.125 

 

0.175 

* p < 0.05 
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3.4   Discussion  

In this study, we applied the recently developed qSSEP-PSA algorithm to SSEP signals 

of post-CA rats treated with TTM, and determined that the quantitative marker shows 

distinct trends among both temperature groups and functional outcome groups over the 

early recovery period. We have demonstrated that the qSSEP-PSA marker holds the 

potential to objectively track early recovery on a wide scale to account for multiple 

recovery statuses. More specifically, this marker provides a potential improvement on the 

current SSEP standard of present/absent dichotomous classification, as it provides a 

continuous scale of possible values that may represent various levels of recovery or 

injury, which is both objective and available during the early recovery period. We have 

shown that there are distinct trends of the qSSEP-PSA marker within the first 4 hours of 

recovery, importantly suggesting that early SSEP tracking and prognostication may be 

valid and beneficial. Furthermore, the qSSEP-PSA marker provides an objective 

measurement that does not require sophisticated training to interpret, in contrast to the 

current SSEP method of classification.  

 

Our results show that there are significant differences in aggregate qSSEP-PSA between 

all three temperature groups during the early recovery such that hypothermia animals had 

significantly larger qSSEP-PSAs than the other temperature groups. Although the 

hypothermia and hyperthermia groups had similar recovery in the first 120min after 

ROSC, the hypothermia animals had distinctly better improvement, particularly from 

150-240min after resuscitation. A similar observation was seen in the burst frequency in 
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post-CA rats, where both hypothermic and hyperthermic treated animals had increased 

bursting during the early recovery [166]. This observation supports the notion that the 

evolution of SSEP can track the improved recovery that is expected of hypothermia 

treated subjects. The sham data demonstrates that the distinct evolution among 

temperature groups is a result of the varying levels of injury, as hypothermia and 

hyperthermia caused nonsignificant increases and decreases from baseline, respectively, 

in sham animals.  

 

The recovery of qSSEP-PSA between functional outcome groups was similar to that 

among temperature groups for the first half of the recovery period (i.e. not much 

distinction between groups), however, from 150-240min post-ROSC, the animals with 

good functional outcome distinctly trended upwards while the poor outcome animals had 

decreasing qSSEP-PSA. This corroborates a previous study that demonstrated that SSEPs 

evolve at different rates depending on the injury level [162].  

 

Although the N20 absent/present assessment has been proven to be robust in predicting 

poor outcome, it is still limited by the dichotomous standard, as the method does not have 

the ability to guide treatment. While the method has repeatedly shown a specificity of 

100% for poor outcome, the sensitivity is often low, around 45% [94, 144]. The low 

sensitivity is most often due to a small proportion of patients that end up with poor 

outcome actually having bilaterally absent N20s [174]. Additionally, the presence of N20 

peaks does not indicate good outcome – almost half of patients with present N20s will 
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have poor outcome [175]. Therefore, it is important to consider the entire waveform 

morphology and create a continuous quantitative SSEP marker to track the recovery. As 

each of the SSEP peaks originate from varying brain structures, it is reasonable that a 

holistic quantification of the SSEP waveform may help maximize prognostic value. We 

have demonstrated here that the qSSEP-PSA marker achieves quantification of the entire 

SSEP waveform. Quantitative SSEP markers allow for prognostication during the early 

recovery period when peaks tend to have very low amplitudes but may have the potential 

to increase over time. These low amplitude peaks would likely be categorized as absent 

using the existing classification method, but a quantitative marker provides a continuous 

scale to assess the various levels of recovery. The qSSEP-PSA provides this continuous 

scale that eliminates the need for an abnormal observation (i.e. absent N20s) to be useful 

in prognostication.  

 

The current method of identifying absent N20 peaks is subjective and requires 

sophisticated training. One study examined the interobserver variability in the 

classification of N20 peaks and showed that the interobserver agreement between 5 

experts was only moderate [142]. Further, there is a possibility of misclassification when 

distinguishing between an absent peak and a highly attenuated peak, as is often the case 

during the early recovery period. The qSSEP-PSA marker presented here is an objective 

and quantitative representation of the SSEP signal, and therefore completely eliminates 

the subjective interpretation of SSEP waveforms, addressing a major limitation of the 

standard N20 absent/present method.  
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It has been suggested that SSEPs should not be measured before 24 hours, as they may be 

unreliable [137], and the American Academy of Neurology (AAN) recommendation 

states that the N20 bilateral absence on days 1-3 after CA should be used to assess poor 

prognosis [176]. However, it has also been documented that TTM has the greatest 

protective benefits when applied immediately after resuscitation [71]. This may be 

explained in part by the damaging molecular cascades that occur during hypoxia and 

reperfusion [4], resulting in the ischemic injury experienced in CA patients. Thus, early 

tracking and prognostication is important to help guide treatment and management during 

the period of secondary injury. Our study demonstrates that the qSSEP-PSA metric is 

valid during the early recovery, which is an important improvement on the dichotomous 

N20 classification that requires physicians to wait 24 hours before the method is useful. 

 

One limitation of our study is that it uses pre-CA baseline qSSEP-PSA values for 

normalization, which is not practical in clinical applications. This could be solved by 

generating standardized baseline values using typical representative waveforms. 

Additionally, the study is limited by the outcome distribution within temperature groups, 

specifically, the hypothermia group. In the present study, all hypothermia animals had 

good outcome, which is not representative of clinical outcomes. It may be necessary to 

induce a more severe injury so that the performance of the qSSEP-PSA marker can be 

further evaluated with temperature management.        
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3.5   Conclusion  

We have demonstrated that the qSSEP-PSA marker evolves differently among 

temperature and functional outcome groups in post-CA rats. Hypothermic animals and 

animals with good functional outcome had better qSSEP-PSA recovery during the early 

recovery period. This quantitative marker provides many benefits over the current 

standard of N20 absence/presence distinction. Specifically, we presented a marker that 

objectively quantifies SSEPs on a continuous scale, which may hold potential prognostic 

value. Ultimately, the goal of this study is to generate quantitative markers that can be 

easily translated to a clinical setting to improve the early prognostication of CA patients.  
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CHAPTER 4: QUANTITATIVE ANALYSES OF 

SOMATOSENSORY EVOKED POTENTIALS AFTER 

CARDIAC ARREST WITH GRADED HYPOTHERMIA  

4.1   Introduction  

Targeted temperature management (TTM), hypothermia of 32-34C, has been shown to 

improve survival and neurological outcome following CA [23, 41]. However, it has not 

been clearly demonstrated which level of hypothermia is most beneficial to outcome. 

Multiple grades of hypothermia have been studied in both humans and animals [23, 41, 

73, 80], but it is unclear which provides the best neuroprotection following CA.  

 

Reliable prognostication during the early recovery period following CA would positively 

impact the subsequent treatment. While multiple prognostic tools exist, their reliability 

under hypothermia has been questioned [42, 88, 132, 177, 178]. However, it has been 

suggested that somatosensory evoked potentials (SSEP) maintain prognostic value under 

TTM [50].  

 

Although SSEP have proven to be a useful prognostic tool for comatose patients in post-

CA recovery [133, 134], the major need for a reliable and objective prognostic tool to 
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track recovery has been established. In this preliminary study, we describe multiple 

quantitative analyses of SSEP – N10 amplitude and latency and quantitative SSEP phase 

space area (qSSEP-PSA) – with the potential to track early cerebral recovery following 

severe brain injury in a 9 min CA rat model with graded hypothermia. We tested the 

potential prognostic value of these markers under graded hypothermia and discovered 

that SSEPs hold prognostic value in the form of graded quantitative markers that extend 

beyond the dichotomous categorization of peaks. 

 

4.2   Materials and Methods  

4.2.1   Animals  

In this preliminary study, a total of 16 adult male Wistar rats (371±12 g) underwent 9 min 

asphyxial CA. The animals were randomly assigned to normothermia or one of three 

grades of hypothermia (n=4/group): N0 (36.5-37.5C), H1 (30-32C), H2 (32-34C), H3 

(34-36C). All procedures were approved by the University of Maryland Animal Care 

and Use Committee.  

 

4.2.2   Cardiac Arrest and Temperature Management  

The asphyxia-CA and resuscitation were performed as previously described [46, 110, 113, 

145, 166]. Rats were intubated and continuously anesthetized with 1.5% isofluorane in 

1:1 O2:N2, delivered by a mechanical ventilator. The femoral vein and artery were 
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cannulated and 15 min baseline SSEPs were recorded followed by a 5 min anesthetic 

washout period, during which Vecuronium (2 mg/kg) was administered. Following the 

washout, asphyxia was initiated. After 9 min of CA (MAP < 10 mmHg), 

cardiopulmonary resuscitation (CPR) was performed using sternal chest compressions, 

100% oxygen, epinephrine and sodium bicarbonate until return of spontaneous 

circulation (ROSC, MAP > 60 mmHg). SSEP recordings were taken in 15 min intervals 

from 30 min until 4 hrs after ROSC. Isofluorane was administered as needed (up to 0.5%) 

once SSEP recordings began during the recovery period due to the potential discomfort 

of the stimulations. 

 

Temperature management began immediately after ROSC was achieved. The 

hypothermic animals were immediately surface cooled and were maintained at their 

appropriate degree of hypothermia (H1 30-32C, H2 32-34C, H3 34-36C) for 6 hours 

after ROSC after which the animals underwent rewarming to normothermia (36.5-

37.5C) over 2 hours. The normothermia animals were maintained at 36.5-37.5C for 6 

hours after ROSC using a heating pad. A rectal probe was used to measure temperature, 

which was closely monitored and recorded every 5min. 

  

4.2.3   SSEP Acquisition and Analysis  

Approximately 3 days before the date of CA, rats had 4 screw electrodes (Plastics One, 

Roanoke, VA) cortically implanted over the somatosensory cortex with 1 ground 
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electrode over the parasaggital right frontal lobe. The screws were held in place with a 

plastic pedestal and dental cement [145, 162]. The SSEP signals were recorded from the 

skull electrodes following stimulation of the median nerves. Stimulation pulses (200usec, 

6mA) were delivered to subdermal electrodes at a frequency of 0.5Hz. The subsequent 

SSEPs were recorded with the TDT System3 data acquisition system (Tucker-Davis 

Technologies, Alachua, FL) at a frequency of 6.1kHz.  

 

The SSEPs were recorded for 15 min prior to CA (baseline) and beginning 30 min after 

ROSC, continuing in 15 min intervals until 4 hrs after ROSC. The sweeps within each 15 

min interval were averaged (450 sweeps) and the quantitative analyses were performed 

on the averaged waveform for each time period and then normalized to baseline values. 

The normalized values for each time period were then averaged to generate the aggregate 

value for each quantitative marker. Animals with abnormal baseline waveforms 

(bilaterally distorted N10 and P15) were excluded from the analysis. 

 

N10 amplitude and latency 

The rat N10 peak is equivalent to the N20 peak in humans. The N10 amplitude was 

measured as the peak-to-peak amplitude between the N10 and P15 peaks. The N10 

latency was measured as the time from stimulation to the N10 peak. The amplitude and 

latency were measured using a custom MATLAB (MathWorks, Natick MA) algorithm.   

 



86 

qSSEP-PSA 

The qSSEP-PSA marker was calculated as previously described [145]. Briefly, the phase 

space curve (PSC) of an SSEP waveform was generated by plotting the first derivative 

against the magnitude, thus capturing the morphologic information of the peak. The 

phase space area (PSA), a representation of the signal power, was calculated by 

determining the area bound by the PSC. The qSSEP-PSA was determined by fitting a 

convex hull to the PSC using the Quickhull algorithm [179]. The point-index based 

convex hull was calculated by identifying the indices of the PSC that exist along the 

boundary of the convex hull and the qSSEP-PSA is the area encompassed by this 

boundary. The algorithm selects points within the waveform, including transitional slopes 

and smaller peaks, as to capture the extent of the signal, therefore encompassing more 

information than merely an amplitude or latency. These analyses were performed using 

MATLAB [145]. 

  

4.2.4   Neurologic Recovery and Assessment  

The neurologic recovery of rats was assessed using the neurologic deficit scale (NDS) at 

6, 24, 28 and 72 hrs after ROSC. The 72 hr NDS was used to determine the final 

functional outcome such that good functional outcome was defined as 72 hr NDS ≥ 60 

and poor functional outcome as 72 hr NDS < 60 [46].  
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4.2.5   Statistics  

All statistical analyses were performed using a commercial computer package (IBM 

SPSS Statistics v22, Armonk, NY). The N10 amplitude and latency, and qSSEP-PSA 

(meanS.E.M.) were compared between temperature groups using a repeated measure of 

analysis of variance (ANOVA) and compared between outcome groups using a student’s 

t-test. Bivariate analyses were used to generate the pearson correlation coefficients 

between 72 hr NDS and quantitative markers. A p value < 0.05 was considered 

statistically significant.   

 

4.3   Results  

4.3.1   Temperature, NDS, Baseline Data  

The temperature was well monitored throughout the duration of the experiment. The 

groups were maintained at their respective temperature ranges: H1 (31.3±0.06C), H2 

(33.0±0.05C), H3 (34.7±0.04C), N0 (37.1±0.03C). Target temperatures were reached 

within 11±2min (H1: 18±3min; H2: 10±2min; H3: 5±0min). The 72 hr NDS (median 

(25th, 75th)) of each temperature group was as follows: H1 (58 (0, 68)), H2 (59 (14, 70)), 

H3 (39 (0, 77)), N0 (22 (0, 61)). Based on the 72 hr NDS, 7 animals had poor outcome (0 

(0,0)) and 9 animals had good outcome (66 (57,71)) (p<0.01). The baseline rat body 

weight was not significantly different among temperature groups (p>0.05, data not 

shown). 	
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4.3.2   N10 Amplitude   

The N10 amplitude of the early recovery period (first 4 hours after ROSC) showed a 

decreasing trend among increasing temperature groups (Fig. 4.1A). All three hypothermia 

groups (H1, H2 and H3) had significantly larger N10 amplitudes than the normothermia 

(N0) group (all p<0.05). The H1 group also had significantly larger N10 amplitudes than 

the H3 group (p<0.01). Animals with good outcome also had better N10 amplitude 

recovery compared to those with poor outcome, though the difference is not significant 

with the current animal cohort (p>0.05) (Fig. 4.1B).    

 

Figure 4.1 A) Normalized aggregate N10 amplitude among four temperature groups. All 

three hypothermia groups (H1, H2, H3) had significantly larger N10 amplitudes than N0. 

H1 also had significantly larger amplitude than H3. B) Normalized aggregate N10 

amplitude was higher in animals with good functional outcome. * p < 0.05, ** p < 0.01 

compared to N0. †† p < 0.01 compared to H3. 
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4.3.3   N10 Latency  

The early recovery N10 latency showed a decreasing trend among increasing temperature 

groups (Fig. 4.2A). All hypothermia groups (H1, H2, and H3) had significantly longer 

N10 latencies than the normothermia group (N0) (all p<0.01). The H1 and H2 groups also 

had significantly longer latencies than the H3 group (p<0.01) and the H1 group had 

significantly longer latencies than the H2 group (p<0.01). The N10 latency was very 

similar between animals with good outcome and those with poor outcome (p>0.05) (Fig 

4.2B).     

 

 

 

 



90 

 

Figure 4.2 A) Normalized aggregate N10 latency among four temperature groups. All 

three hypothermia groups (H1, H2, H3) had significantly longer N10 latencies than N0. 

H1 also had significantly longer latency than H2 and H3 while H2 had significantly 

longer latency than H3. B) Normalized N10 latency similar between the outcome groups. 

** p < 0.01 compared to N0. †† p < 0.01 compared to H3. ‡‡ p < 0.01 compared to H2.  

 

4.3.4   qSSEP-PSA  

The qSSEP-PSA during the early recovery was significantly larger in the H1 and H2 

groups than the N0 group (p<0.01) (Fig. 4.3A). The H3 qSSEP-PSA was also lower than 

the H1 and H2 groups and larger than N0, though the differences were not significant 

(p>0.05). qSSEP-PSA was also higher in animals with good outcome compared to those 

with poor outcome, although the difference was not significant (p>0.05) (Fig. 4.3B).  
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Figure 4.3 A) Normalized aggregate qSSEP-PSA among four temperature groups. Both 

H1 and H2 had significantly larger qSSEP-PSA values than N0. B) qSSEP-PSA was 

higher in animals with good outcome. ** p < 0.01 compared to N0.  

 

4.3.5   Correlation Between Quantitative Markers  

Among the quantitative markers, the N10 amplitude was significantly correlated with both 

N10 latency (pearson correlation coefficient: 0.400, p<0.01) (Fig. 4.4A) and qSSEP-PSA 

(pearson correlation coefficient: 0.904, p<0.01) (Fig. 4.4B).   
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Figure 4.4 N10 amplitude was significantly correlated to a) N10 latency and B) qSEEP-

PSA.  

 

4.4   Discussion  

In this study, the integrity of the somatosensory pathway following severe brain injury by 

asphyxial-CA was examined using multiple quantitative markers under graded 

hypothermic conditions, for the first time. We discovered that quantified SSEPs hold 

great potential to track recovery following CA with TTM by providing continuous 

quantitative criteria, thereby accounting for multiple conditions as opposed to 

dichotomous categorization. All three markers, N10 amplitude and latency, and qSSEP-

PSA, demonstrated clear trends among both temperature and functional outcome groups. 

This experiment demonstrates the potential prognostic value of these objective and novel 

quantitative markers for the early recovery after severe CA with graded TTM.  
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The majority of studies evaluating the prognostic value of SSEP following CA are focused 

on the bilateral absence of N20 [42, 88, 129-136] rather than the relationship between 

quantitative SSEP measures and outcomes. Only one human study has examined the 

relationship between SSEP amplitude and outcome, suggesting a threshold amplitude 

voltage to distinguish bad outcomes [161]. However, the study does not use specific 

response peaks in the evaluation of amplitude. Here we provide three quantitative, 

objective and repeatable SSEP markers that hold potential prognostic value following CA 

with temperature management.  

  

Our previous work developed the qSSEP-PSA marker and demonstrated the potential 

prognostic value of both qSSEP-PSA and N10 amplitude in normothermic animals with 

moderate and severe brain injuries following CA [145]. This study showed that animals 

with moderate injury had better PSA recovery than those with severe injury. Here we 

demonstrated that qSSEP-PSA had better recovery with deeper hypothermia (H1 and H2) 

compared to normothermia and in animals with good outcome compared to poor outcome. 

The qSSEP-PSA marker also mirrored the median 72 hr NDS among temperature groups 

(H2 > H1 > H3 > N0). The PSA marker is a strong measure of SSEP waveforms as it 

considerers multiple features of the entire signal rather than a single response peak 

characteristic.  

  

The N10 amplitude and latency have been previously studied in both moderate and severe 

brain injury (7 and 9 min CA, respectively) under normothermic conditions [162]. This 
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study demonstrated that amplitude recovery is better after moderate injury rather than 

severe injury and that latency decreases towards baseline over the early recovery period at 

both injury severity levels. The present study demonstrated better recovery of N10 

amplitude in animals treated with lower temperature grades and with good functional 

outcome and that N10 latency was overall longer than baseline in animals with deeper 

hypothermia. Although it has been demonstrated that hypothermia increases N10 

amplitude and N10 latency compared to normothermic groups in an uninjured rat model 

[154], it has been suggested that the effect of mild hypothermia (33C) does not have a 

significant effect on the relationship between SSEP amplitude and outcome in a human 

study [161].  

  

SSEP amplitude has been shown to be related to functional outcome [161]. Here we 

demonstrate that N10 amplitude is correlated with both N10 latency and PSA during the 

early recovery from severe brain injury with graded hypothermia. Thus, the prognostic 

potential of these quantitative SSEP markers, N10 amplitude, N10 latency, and qSSEP-

PSA, is further demonstrated.   

 

Although clear trends of the quantitative SSEP markers were demonstrated in this study, 

the results must be interpreted with caution, as this is a preliminary study with small 

animal numbers. The use of 72 hr NDS among temperature groups to evaluate the effect 

of graded hypothermia was not our focus in the present study due to the low power of the 
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small animal number, though the trend generally followed that of the quantitative markers 

(higher in the H1 and H2 groups and lowest in N0).  

 

Thus, the data we present here corroborates previous studies of N10 amplitude and 

qSSEP-PSA under normothermic conditions and it is necessary to extend the present study 

with larger animal numbers, including a sham group. The quantitative SSEP markers 

presented here demonstrated prognostic potential following severe CA with graded 

hypothermia. 
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CHAPTER 5: ASSOCIATION OF CEREBRAL BLOOD 

FLOW AND QUANTIFIED EEG AFTER CARDIAC 

ARREST  

5.1   Introduction  

Cardiac arrest (CA) frequently causes cerebral ischemic injury by reducing or completely 

halting blood flow to the brain. This lack of cerebral perfusion is critical in the poor 

outcomes that result from CA. In addition to the damage done by the anoxic ischemic 

state, it has been suggested that reperfusion injury occurs following resuscitation [180] by 

free radicals [181, 182] or diapedesis of red blood cells [183]. Additionally, it has been 

suggested that autoregulation of CBF is absent or right-shifted in the early recovery 

period following CA [184]. Thus, it is important to understand the dynamics of CBF 

following CA.  

 

Cortical electrical activity has been widely studied in anoxic ischemic injury cases and 

specifically in regards to CA applications. Continuous electroencephalogram (EEG) has 

become an extremely common tool to measure cortical electrical activity in comatose 

patients [185, 186], including those recovering from CA. Certain EEG characteristics 

have been associated with unfavorable outcomes such as burst suppression, low voltage 

activity and epileptiform pattern [42]. Many studies have classified EEG wave patterns 
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into groups corresponding to different levels of activity for prognostic purposes or to 

elucidate the EEG pattern recovery following CA in human studies [29, 42, 97, 99, 104-

107, 132, 147, 187-193]. Thus, the cortical electrical activity holds significant prognostic 

value in the recovery following CA.  

 

Our group previously developed novel methods to quantify EEG signals and measure 

rCBF with high spatial and temporal precision. In order to reduce the laborious and 

subjective interpretation of EEG signals, here we use a quantitative measure of the 

entropy within EEG signals, information quantity (IQ) [110]. Previous studies have 

shown that the IQ metric successfully tracks brain recovery and predicts functional 

outcome after CA in rats [46, 110]. To measure rCBF in CA rats, our group developed a 

laser speckle contrast imaging (LSCI) system to continuously track the rCBF changes 

during and after CA with high temporal and spatial resolution. LSCI is an emerging 

imaging tool primarily used for blood flow imaging, which quantifies the resulting 

pattern of coherent light interference, termed the speckle pattern, due to blood flow [194].  

 

Both rCBF and cortical electrical activity play an important role in recovery in the early 

stages following CA. Hypothermia is known to decrease rCBF in uninjured brains [195, 

196], however, it is not well understood how rCBF correlates with the electrical activity 

under hypothermic conditions following CA. In this study, LSCI and IQ analyses were 

applied to CA rats to characterize the relationship between the average rCBF of the 
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arteries, veins and capillaries of the primary motor cortex and cortical electrical activity 

during the early recovery after CA with targeted temperature management (TTM).  

 

5.2   Materials and Methods  

5.2.1   Animals  

A total of 28 adult Wistar rats (322±8g) were used for these experiments. Each animal 

was randomly assigned to one of four groups (n=7 per group): 7min CA or 9min CA 

under normothermia (36.5°C-37.5°C, group name 7N or 9N, respectively), or 7min or 

9min CA under hypothermia (32°C-34°C, 7H or 9H, respectively). All animals 

underwent asphyxia-CA and immediate temperature management following resuscitation 

according to their assigned group. The rats were housed in a controlled temperature 

environment with a standard dark/light cycle with food and water ad libitum. All 

experimental protocols were approved by the University of Maryland Institutional 

Animal Care and Use Committee.  

  

5.2.2   Experiment Preparation  

All rats underwent an implantation procedure under sterile conditions one day prior to 

CA. A heating pad was used to control animals’ rectal temperature (36.5-37.5°C) 

throughout the procedure. The animals were placed in a stereotactic frame (David Kopf 

instruments, Tujunga, CA) with continuous 1.5% isofluorane anesthetization. An incision 
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was made in the skin over the scalp and a left hemisphere cranial window was prepared 

(7mm x 5mm, centered at AP -1, ML -2.5) [197]. A cylinder base (height: 4.2mm, radius: 

5.5mm, thickness: 0.5mm) was fixed by dental cement encircling the cranial window and 

connected to the imaging system during acquisition. Three screw electrodes (Plastics One, 

Roanoke, VA) were cortically implanted in the right hemisphere to record the EEG [114].  

 

5.2.3   Cardiac Arrest, Resuscitation and Temperature Management  

CA and immediate temperature control during the early recovery period with EEG 

monitoring were performed as previously described in detail [46, 110, 113, 145]. Briefly, 

the rats were intubated, mechanically ventilated, and anesthetized with 1.5% isofluroane 

in 1:1 O2:N2. Arterial blood gases (ABG) and blood pressure were monitored, and drugs 

were delivered via the cannulated femoral artery and vein, respectively. A 5 min baseline 

EEG measurement was recorded, followed by a 5 minute anesthesia washout period, 

during the final three minutes of which the ventilation was switched to room air and 

vecuronium (2mg/kg) was administered. Asphyxial CA was induced until pulse pressure 

< 10 mmHg. After 7 or 9 mins of asphyxia depending on the rats’ group, mechanical 

ventilation was resumed and cardiopulmonary resuscitation (CPR) was performed using 

sternal chest compressions and epinephrine until the return of spontaneous circulation 

(ROSC) was achieved. Sodium bicarbonate was administered with the epinephrine during 

CPR to prevent acidosis.    
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The rats’ rectal temperature was monitored using a rectal probe and recorded every 5 min. 

Normothermia animals were maintained at 36.5-37.5°C using a heating pad for 8 hrs after 

ROSC. Hypothermia animals were cooled beginning immediately after ROSC using a 

misted water and alcohol solution and fan to reach a target temperature of 33°C ± 1°C 

within 15 min. Hypothermia was maintained for 6 hours, after which the rats were 

rewarmed to normothermia (36.5-37.5°C) using a heating pad and thermal heating lamp 

(Thermalet TH-5, model 6333, Physiotemp, NJ, USA) over a period of 2 hours. To 

maintain normothermic body temperature, all animals were kept in a neonatal incubator at 

28°C for the first 24 hours after ROSC.  

 

5.2.4   Laser Speckle Contrast Imaging  

The CBF was recorded for each rat using the LSCI system. An 8-bit COMS camera 

(DCC1240C, Thorlabs) was connected to the cylinder base previously implanted and was 

used to capture the images. A laser diode (780nm; 10mW; L780P010, Thorlabs), 

powered by a driver module (LDC220C, Thorlabs) was the coherent light source 

illuminating the region of interest (ROI). Each trial acquired 320 consecutive frames of 

speckle pattern images (640x640 pixels) at 50 frames/sec and 5ms exposure time. LSCI 

data were obtained beginning at the 5min anesthetic washout and ending at 90min after 

ROSC. LSCI analysis was performed to calculate rCBF. The individual cortical artery 

and vein rCBFs were calculated in the ROI and normalized to the washout period 

baseline. By selecting a 1mm x 1mm ROI centered at the primary motor cortex (M1, AP -

1.5; ML -0.5), the capillary rCBF was obtained by eliminating cortical arteries and veins 
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from the images [197]. The overall rCBF used in the results of this chapter was calculated 

by averaging the vein, artery and capillary rCBFs.  

 

5.2.5   EEG Acquisition and Analysis  

Following the baseline measurement prior to washout, continuous EEG was recorded 

during the anesthetic washout, CA and for 6 hours post-ROSC. Noise was removed in the 

frequency domain using custom MATLAB algorithms (Mathworks, Natick, MA) and 

artificial signals were manually eliminated prior to the final analysis. The EEG signals 

were then quantified using an entropy-based value, IQ [110]. Briefly, the EEG signals 

were divided into equal lengths using a sliding temporal window technique (window 

length ω=8s, sliding step Δ=8s, number of magnitude levels M=20). Then a discrete 

wavelet transform (decomposition scale r=5) was applied to each temporal window to 

generate decomposition coefficients, c , where k=1,2…r+1,m which represents the kth 

frequency subband. Since the Shannon entropy is probability-based, the distribution of 

wavelet coefficients was determined in each time window by finding the probability, 

p m , of each coefficient. We used M bins, I , to determine the occurrence frequency 

of each coefficient in each bin (Eq. 1).  

    	 c , c , … , c ⋃ I            (1) 

Finally, the IQ of the EEG samples was calculated using the entropy formula (Eq. 2).  

   	IQ n 	 ∑ p m ∙ log p m            (2) 
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The IQ was calculated at 10, 20, 30, 60, and 90 min post-ROSC and normalized to the 

baseline value.  

 

5.2.6   Neurological Evaluation   

The neurological function of each animal was assessed at 6, 24, 28 and 72 hrs after CA 

using the neurological deficit scale (NDS). The 72hr NDS was used to define functional 

outcome as either good (72hr NDS ≥ 60) or poor (72hr NDS < 60) [46].   

 

5.2.7   Statistics  

All statistical analyses were performed using a commercial statistical computer package 

(IBM SPSS Statistics, version 22, Armonk, NY). Baseline data, IQ, and rCBF were 

compared between groups using an analysis of variance with repeated measures 

(ANOVA). The NDS was compared between the four animal groups using a Kruskall-

Wallis test and between temperature and CA groups using a Mann-Whitney U test. The 

correlation between rCBF and IQ was determined using the Pearson correlation 

coefficient test. A p value < 0.05 was considered significant.  
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5.3   Results 

5.3.1   Baseline Data and Temperature Maintenance  

The baseline animal body weight, rectal temperature and anesthetic exposure during 

preparation were not significantly different among groups (Table 5.1). The temperature 

was well monitored throughout the duration of the experiment for all animals. The 

normothermic groups were maintained at 36.81±0.02°C for 7minCA and 36.85±0.02°C 

for 9min CA while hypothermic groups were maintained at 33.85±0.03°C for 7min CA 

and 33.41±0.04°C for 9min CA during the periods of temperature management (Fig. 5.1).  

 

 

 

 

 

 



104 

 

Figure 5.1 Body temperature of each animal group was maintained at their respective value throughout the temperature management 

period.   
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Table 5.1 Baseline data for each animal group 

 7N 7H 9N 9H P value 

Body weight 
(g) 

340±10 341±8 293±17 315±20 0.09 

Body 
temperature 
(°C) 

37.0±0.0 36.8±0.1 36.8±0.1 36.7±0.1 0.1 

Anesthetic 
exposure 
(min) 

79±2 82±3 73±2 74±3 0.07 

 
 

 

5.3.2   NDS Scores   

The 72 hour NDS was not significantly different between the four animal groups or 

between temperature or CA time groups (p>0.05). However, the combination of NDS 

scores at all time point for each animal were significantly different between temperature 

groups (p<0.01) and CA time groups (p<0.01) such that hypothermia animals had higher 

median NDS (66 (49, 74)) compared to normothermia animals (47 (35, 70)) and 7min CA 

animals had higher median NDS (70 (47, 77)) compared to 9min CA animals (47 (35, 

66)).  

 

5.3.3   Changes in Relative Cerebral Blood Flow 

The normalized rCBF was greatly decreased during the final 4 min of CA, and then 

increased back to or above baseline levels at 10 min after ROSC, representing the 
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hyperemia phase (Fig. 5.2). The rCBF then decreased below baseline from 20-90 min 

after ROSC, representing the prolonged hypoperfusion phase. This trend was generally 

observed in all four animal groups (Fig. 5.2). The rCBF values for each group within 

each time period are shown in Table 5.3.  

 

 

Fig 5.2. Time evolution of the normalized rCBF of all vessels throughout the experiment. 

The rCBF decreased greatly during the final 4 min of CA, then increased back to or 

above baseline at 10min after ROSC, then overall gradually decreased at 90min after 

ROSC.  
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5.3.4   Changes in Quantitative EEG 

The IQ of each of the four animals groups increased over the early recovery period from 

10-90min after ROSC (Fig 5.3). The 7H animals showed better recovery of IQ by 90min 

post-ROSC while the 9N showed the worst recovery (Fig 5.3). The IQ values for each 

group within each time period are shown in Table 5.3.  

 

 

Fig 5.3. Time evolution of the EEG information quantity (IQ) throughout the experiment. 

The IQ generally increased over time for each animal group, with the 7H group showing 

the best recovery.   
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5.3.5   Correlation Between rCBF and IQ 

As shown in Figure 5.4, the rCBF and IQ of all four animal groups had a significant 

negative correlation during the first 90min after ROSC (Pearson correlation coefficient: -

0.680, p<0.01). The negative correlation was also significant at 20min (Pearson 

correlation coefficient: -.550, p<0.01) and 90min (Pearson correlation coefficient: -0.473, 

p<0.05) after ROSC (Table 5.4).  
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Fig 5.4. rCBF and IQ of all animal groups during the first 90min after ROSC are 

significantly correlated.   
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Table 5.2 Pearson correlation coefficients for rCBF and IQ   

 Aggregate 10min 20min 30min 60min 90min 

Pearson 

Correlation 

Coefficient 

 

-0.680** 

 

0.062 

 

-0.550** 

 

-0.246 

 

-0.360 

 

-0.473* 

* p < 0.05, ** p < 0.01 
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Table 5.3. rCBF and IQ (mean±S.E.M.) Early Recovery Period Data  

Group Variable Aggregate 10min 20min 30min 60min 90min 

7N IQ 0.522±0.038 0.220±0.074 0.407±0.064 0.563±0.031 0.678±0.027 0.740±0.031 

rCBF 0.858±0.026 1.054±0.057 0.874±0.038 0.736±0.034 0.808±0.033 0.833±0.046 

7H IQ 0.590±0.067 0.137±0.032 0.249±0.041 0.719±0.082 0.906±0.059 0.941±0.070 

rCBF 0.858±0.029 1.001±0.026 1.050±0.031 0.821±0.053 0.719±0.043 0.745±0.041 

9N IQ 0.366±0.034 0.170±0.039 0.175±0.040 0.421±0.044 0.508±0.041 0.575±0.041 

rCBF 0.929±0.021 1.065±0.033 1.013±0.017 0.783±0.016 0.862±0.026 0.923±0.040 

9H IQ 0.415±0.049 0.147±0.020 0.136±0.019 0.420±0.051 0.667±0.041 0.741±0.049 

rCBF 0.866±0.024 0.976±0.021 1.030±0.018 0.812±0.038 0.729±0.039 0.783±0.035 
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5.4   Discussion  

We have importantly demonstrated, for the first time, that the rCBF is negatively 

correlated with IQ during the early recovery period (first 90min post-ROSC) following 

CA, and more specifically, at 20min and 90min post-ROSC. The IQ metric is 

representative of the cortical electrical activity. The EEG electrical activity, visibly 

shown as a bursting pattern, is indicative of the recovery of various cortical and 

subcortical regions following CA [103, 198] and is predictive of final outcome [104-107]. 

The cortical CBF and cerebral metabolic rate of oxygen (CMRO2) both decrease in the 

early period following CA due to increases in cerebral vascular resistance [199, 200], 

thereby impacting the neurological recovery [201]. Additionally, it has been shown that 

there is a linear relationship between electrical activity and CMRO2 [202]. Under 

standard physiological conditions, increases in electrical activity result in adjusted 

increases in CBF, generally within seconds [203-208]. However, as shown in the present 

study, under pathological conditions following CA, electrical activity, represented by IQ, 

tends to increase over the recovery period while rCBF tends to decrease, after a brief 

hyperemia phase, indicating an uncoupling of the EEG and rCBF relation, which is 

supported by previous studies [209]. Therefore, the negative correlation between IQ and 

rCBF suggests that a lower rCBF can still support increasing electrical during the 

recovery period. The correlation also importantly indicates that rCBF may hold 

prognostic value for post-CA patients.  
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Further, the relationship between rCBF and electrical activity may help uncover the 

mechanisms of the influence that rCBF has on post-CA recovery. One study found that 

patients who regained consciousness following resuscitation all had normal CBF values 

while those who died before regaining consciousness had increased CBF within 24 hours 

after resuscitation [210]. This generally supports the observation in the present study that 

the positive relation between electrical activity and rCBF is disrupted by CA, resulting in 

a negative correlation. Further, one study determined the relationship between electrical 

activity, as measured by somatosensory evoked potential (SSEP) amplitude, and CBF 

during and after acute middle cerebral artery occlusion, and identified two relationships: 

time-dependent and steady state [201]. Ultimately, due to the steepness of the steady state 

relationship, the authors explain that a small increase in CBF may result in the electrical 

recovery that is seen after the occlusion, which may be similar to the observations in the 

present study.  

 

5.5   Conclusion  

This study demonstrated that the increasing relation between electrical activity, measured 

here by IQ, and rCBF under physiological conditions is disrupted following CA, resulting 

in a negatively correlated relation. Specifically, we verified that a rCBF lower than 

baseline is able to support electrical recovery and subsequent functional recovery in the 

early post-CA period. Additionally, this relation suggests that rCBF, as obtained by our 

novel LSCI system, may hold potential prognostic value in CA applications, though this 
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was not directly addressed in the present study. Ultimately, the relationship between IQ 

and rCBF may help uncover the mechanisms and dynamics of post-CA recovery.  
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CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS  

6.1   Summary  

The work in this thesis was primarily focused on the evaluation of novel quantitative 

markers in the prognostication of post-CA subjects, using a rodent model. We determined 

that SSEP signals hold prognostic value in the form of continuous, quantitative markers, 

and may provide more benefits than the current binary present/absent standard. 

Specifically, we found that N10 amplitude and N7 and N10 latencies of rat SSEPs under 

TTM following CA have different evolution patterns over the early recovery period, 

dependent on final functional outcome with both moderate and severe injury. Further, we 

demonstrated that the qSSEP-PSA marker is distinct among temperature and outcome 

groups in the early recovery following CA. We examined the relation between rCBF and 

EEG electrical activity, and found a negative correlation during the early recovery period. 

Ultimately, we have demonstrated that a multimodal approach using numerous 

quantitative measures such as SSEP peak amplitudes and latencies, qSSEP-PSA, IQ and 

rCBF, may optimize prognostication during the early recovery period following CA.   

To summarize, in this work we:  

 Reviewed the benefits and limitations of existing prognostic tools that are used in 

post-CA patients in a clinical setting. 

 Acknowledged the benefits of SSEP in prognostication and reviewed the benefits 

and limitations of the standard SSEP analysis, which involves the dichotomous 
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classification of N20 peaks as either present or absent, where bilaterally absent 

N20 peaks predict poor outcome with 100% specificity.  

 Evaluated the prognostic value of N10 amplitude and N7 and N10 latency of post-

CA rat SSEPs during the first 4 hours of recovery under targeted temperature 

management. We found that the N10 amplitude has a better recovery in 

hypothermia animals compared to other temperature groups and predicts good 

outcome following CA.  

 Assessed the evolution of the qSSEP-PSA marker in post-CA rats with 

temperature management. We discovered that the qSSEP-PSA marker evolves 

differently depending on temperature and outcome groups, such that hypothermic 

animals and animals with good functional had upward trending qSSEP-PSA 

values towards the end of the early recovery period, while the other groups tended 

to trend down or stabilize at lower values.  

 Performed a multimodal analysis of SSEPs following severe brain injury by CA 

under graded hypothermia in a pilot study. We discovered that N10 amplitude and 

latency and qSSEP-PSA all demonstrated distinct trends among both temperature 

and functional groups during the early recovery period under graded hypothermia. 

We also demonstrated that N10 amplitude is correlated with both N10 latency and 

qSSEP-PSA during the recovery period. Importantly, we established that these 

markers hold the potential to track recovery following severe cerebral injury. 

 Examined the relation between cerebral electrical activity, measured by IQ, and 

rCBF during CA and throughout the subsequent early recovery period. We 

discovered that the increasing relation that exists between IQ and rCBF under 
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physiological conditions is disrupted following CA, and ultimately results in a 

negative correlation between markers. We showed that lower than baseline rCBFs 

can support electrical recovery following CA.  

 

6.2   Future Directions  

The work presented in this thesis provided the foundation for future work to further 

develop quantitative markers to improve prognostication during the early recovery period 

from CA. Possible future work includes:  

 Larger animal studies with severe cerebral injury (by 9min asphyxia-CA) to better 

evaluate the performance of N10 amplitude, N7 and N10 latency, and qSSEP-

PSA in tracking recovery under temperature management.  

 Validation and optimization of cut-off points of the quantitative markers 

presented, to predict functional outcome.  

 Development of a multimodal approach including short-latency SSEP amplitude 

and latencies, qSSEP-PSA, IQ and rCBF. 

 Further examination of rCBF using LSCI, in terms of distinct vessel rCBF and the 

respective relations with electrical activity during CA and the early recovery 

period following resuscitation. This work may contribute to uncovering the 

mechanisms behind therapeutic hypothermia.  
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