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Abstract

Performance of automatic speaker verification (ASV) systems is very sensi-

tive to mismatch between training (source) and testing (target) domains. The

best way to address domain mismatch is to perform matched condition train-

ing – gather sufficient labeled samples from the target domain and use them in

training. However, in many cases this is too expensive or impractical. Usually,

gaining access to unlabeled target domain data, e.g., from open source online

media, and labeled data from other domains is more feasible. This work fo-

cuses on making ASV systems robust to uncontrolled (‘wild’) conditions, with

the help of some unlabeled data acquired from such conditions.

Given acoustic features from both domains, we propose learning a mapping

function – a deep convolutional neural network (CNN) with an encoder-decoder

architecture – between features of both the domains. We explore training the

network in two different scenarios: training on paired speech samples from

both domains and training on unpaired data. In the former case, where the

paired data is usually obtained via simulation, the CNN is treated as a non-

ii



ABSTRACT

linear regression function and is trained to minimize L2 loss between original

and predicted features from target domain. We provide empirical evidence that

this approach introduces distortions that affect verification performance. To

address this, we explore training the CNN using adversarial loss (along with

L2), which makes the predicted features indistinguishable from the original

ones, and thus, improve verification performance.

The above framework using simulated paired data, though effective, can-

not be used to train the network on unpaired data obtained by independently

sampling speech from both domains. In this case, we first train a CNN us-

ing adversarial loss to map features from target to source. We, then, map the

predicted features back to the target domain using an auxiliary network, and

minimize a cycle-consistency loss between the original and reconstructed target

features.

Our unsupervised adaptation approach complements its supervised coun-

terpart, where adaptation is done using labeled data from both domains. We

focus on three domain mismatch scenarios: (1) sampling frequency mismatch

between the domains, (2) channel mismatch, and (3) robustness to far-field and

noisy speech acquired from wild conditions.

Primary Reader and Advisor: Najim Dehak

Secondary Reader: Jesús Villalba
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Chapter 1

Introduction

The field of automatic speaker verification (ASV) has made huge strides in

the last decade. The invention of i-vector [1] was a break through in the field.

In this approach, factor analysis [2] is used as a feature extractor to model a

total variability space, which contains both channel and speaker variability.

With the success in speaker verification (SV), i-vectors soon found their way to

many speech applications – language identification [3, 4], speaker adaptation

in automatic speech recognition (ASR) [5], far-field robustness of ASR [6], and

age estimation [7] to name a few.

Over the same period, machine learning (ML) field has achieved great suc-

cess and has benefited many real-world applications. The re-emergence of arti-

ficial neural network (ANN) with a deeper architecture – termed as deep neu-

ral network (DNN) – powered by the advances in computational hardware,
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and the availability of large amounts of labeled data has pushed the limits of

many tasks. DNNs are now being found in many applications such as image

classification [8], acoustic modelling in ASR [9, 10], neural machine transla-

tion (NMT) [11, 12] and language models (LM) [13]. Recently, the field of ASV

has joined the above club with the introduction of x-vectors [14].

Supervised learning has contributed tremendously to the advances made

in almost all the fields dominated by DNNs, and SV using x-vectors is no ex-

ception. x-vector speaker embeddings are extracted from a feed-forward DNN

with a statistics pooling layer, that is trained discriminatively to classify speak-

ers given acoustic features as input. SV using x-vectors is now an established

technology giving better performance than i-vectors on many test conditions,

and hence, became the state-of-the-art (SOTA) [15] for SV.

Along with the success, the field is facing its own set of challenges. To de-

velop a robust system that caters for large number of domains, the system

needs to be trained on large amounts of annotated data acquired from all

the domains. Some of the conditions that test the limits of ASV system in-

clude channel variations, acoustic mismatch conditions, room reverberations

and language spoken1. Acquiring and annotating datasets for every domain is

extremely expensive and time-consuming processes. Hence, sufficient training

data may not always be available. When available, large amount of data also
1All the mentioned variations also affect the performance of ASR systems. In addition, ASR

should also be robust to variation in speaker characteristics.

2
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increases the training time, making it hard to scale up. In the absence of train-

ing data from a particular domain, the domain shift between the training and

testing data can affect the performance. Fortunately, large amounts of unla-

beled video/audio data is being uploaded to internet daily, a significant portion

of which can be used for adapting ASV models. Since the data is unlabeled,

adaptation approach has to be unsupervised.

Domain adaptation is a branch of ML, that makes use of some data acquired

from a target domain to adapt a system trained on a source domain to the target

domain. In the specific case of unsupervised domain adaptation (UDA), the

target domain data used for adaptation is unlabeled. Some popular approaches

to UDA include mapping feature representations from one domain to the other

[16], learning to extract features that are invariant to the domain from which

they are extracted [17–19] or learning two features spaces: one component

which is private to each domain and one which is shared across domains [20,

21]. In this work, we focus on the first approach – mapping features from one

domain to the other.

In speech applications, a conventional feature mapping approach is to train

a DNN to map acoustic features from one domain to the other using features

extracted from unlabeled paired speech samples from both the domains. Paired

audio samples refer to two audio samples (each sampled from individual do-

3



CHAPTER 1. INTRODUCTION

mains) that are recorded simultaneously2. Hence, they both have one-to-one

correspondence between them i.e. both the samples are of same duration,

spoken by same speaker and they have same linguistic content. An exam-

ple of paired audio samples is close-talk speech and far-field speech recorded

simultaneously. Speech recorded using a microphone (typically head-mounted)

placed very close to the talker is usually referred as close-talk speech. Far-field

speech is recorded using stationary microphones mounted at a distance from

the talker3. Once the paired samples are acquired from both the domains, the

training process of DNN is as follows: the DNN takes as input features from

one particular domain and outputs certain features. To ensure the output fea-

tures are identical to the features in the opposite domain, loss functions like

mean squared error (MSE) or L1 are used. MSE is measured between the out-

put features of the DNN and the features extracted from audio sample (paired

with the input sample) in the opposite domain.

Two speech applications that are developed using this approach are speech

bandwidth extension (BWE) [22] and speech enhancement [23]. In BWE ap-

plication, bandwidth of narrowband (NB) speech samples, usually sampled at

8kHz, is extended to match the sampling frequency of wideband (WB) speech

(sampling frequency 16kHz). In this application, DNN takes NB features as
2Since audio samples from both domains are recorded simultaneously, we also refer to

paired data as parallel data in this work. We use both the terms interchangeably.
3On the other hand, any two samples each drawn randomly from two different domains are

considered unpaired with each other – since, there does not exist any one-to-one correspon-
dence between them.

4



CHAPTER 1. INTRODUCTION

input and predicts WB features. On the other hand, speech enhancement ap-

plication can be broadly divided into two categories: far-field speech enhance-

ment (also termed as dereverberation) and noisy speech enhancement. In the

former case, far-field speech (also termed as reverberant speech) is mapped to

close-talk domain, whereas in the later case noisy speech is mapped to clean

domain.

The above mentioned non-linear regression approach to train a DNN using

paired data for both the applications suffers from several disadvantages:

1. Acquiring paired audio data is an expensive process, which limits the

amount of data that can be made available for training the adaptation

DNN. It also limits the amount of natural variations that can be ac-

quired in the speech, since, paired data is usually acquired in controlled

recording conditions. An alternate approach to acquire paired training

data is using simulation – for instance, far-field speech simulated from

close-talk speech [6], or simulated NB speech is obtained by downsam-

pling WB speech. Though effective, it imposes a restriction on using the

real data from the domain of interest for adaptation.

2. Noisy speech enhancement (or dereverberation) via regression mapping

is good at improving the perceptual quality of noisy (or far-field) speech

signal (measured by quantitative and qualitative evaluations) [23]. How-

ever, it has not proven to be very effective at improving the noise (or far-

5
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field) robustness of speech applications like ASR [24] or SV.

3. In limited number of cases where speech enhancement seemed to help

downstream applications like ASR [25] or SV [26,27], the testing was lim-

ited to simulated conditions. Simulated data, in nature, can be different

from the real data which is usually acquired from uncontrolled environ-

ments (considered wild in this work). Hence, the enhancement networks

trained and tested on simulated data may not generalize well to unseen

conditions usually encountered in real data.

The main focus of this thesis is to address the above mentioned limitations

of the non-linear regression approach using paired data. Firstly, we focus on

training the DNNs on unpaired speech samples acquired from both domains.

This framework enables us to use real data from both domains for training,

thus avoiding the need for simulation. Use of unpaired samples for training

prevents us from using MSE or L1 loss functions, since the linguistic content in

both the samples are different. Our training procedure is inspired from the cy-

cle consistent generative adversarial network (CycleGAN) framework proposed

for unpaired image-to-image translation. This framework uses a combination

of adversarial [28] and cycle-consistency [16] loss functions to train the adap-

tation DNN. Similar to the non-linear regression approach using paired data,

the unpaired approach using CycleGAN also does not require labels for speech

samples from both domains.
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Secondly, we address the other limitation of the non-linear regression ap-

proach using paired data – loss in performance on a downstream task like SV.

The loss in performance can be attributed to distortions introduced by the loss

functions used in the regression mapping approach [29]. To circumvent the dis-

tortion problem, we employ adversarial [28] loss to train the DNN along with

MSE.

Finally, unlike previous work, we demonstrate the effectiveness of our pro-

posed techniques on a wide range of simulated and real test sets sampled from

challenging wild (uncontrolled) conditions.

We experiment with three domain mismatch scenarios encountered by ASV

systems: channel mismatch [30, 31], acoustic mismatch between degraded vs

clean conditions [31–33], and sampling frequency mismatch scenarios [34,35].

We present results on several simulated and real data sets acquired from un-

controlled ‘wild’ conditions. We present evidence that our choice of loss func-

tions reduces the distortion introduced in the regression approach, and thus,

improve SV performance. Our work also addresses the over-fitting problem

experienced by feature mapping networks when trained on limited amounts

of data, and we present a simple technique to regularize training. Our UDA

approach complements SOTA SV systems trained using data augmentation –

a supervised adaptation approach. More importantly, since our approach does

not require labeled data from both domains, the adapted features can be used

7
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for any speech application like ASR.

The main contributions of this work are as follows:

1. Our work is the first to demonstrate the effectiveness of CycleGAN frame-

work on two domain mismatch scenarios commonly encountered by ASV

systems: channel mismatch [31,35], and acoustic mismatch between clean

and wild testing conditions [31–33].

2. Unlike previous speech enhancement works, which focus on either de-

noising or dereverberation, our framework demonstrates improvements

on both noisy and far-field conditions [32,33].

3. Our work is the first to address the over fitting scenario observed by the

feature mapping DNNs, when trained on limited amount of data. We

propose a simple strategy to regularise the training [31].

4. Unlike previous approaches which present results on simulated testing

conditions, we present results on both simulated and wild testing condi-

tions [32,33].

5. Unlike previous works which focus on either paired [23] or unpaired [25]

feature mapping approaches, in our work we provide a comparison of both

the approaches [33].

Rest of the thesis is organized as follows: in Chapter 2, we present the train-

ing details of current SOTA ASV system and give an overview of the several

8



CHAPTER 1. INTRODUCTION

mismatch scenarios considered in this work. In Chapter 3, we discuss the prob-

lem of sampling frequency mismatch and the adaptation approaches in detail.

In Chapter 4, we address the channel mismatch scenario where we train an

adaptation DNN on unpaired data acquired from telephone and microphone

domains. Finally, in Chapter 5, we present adaptation techniques to make the

ASV system more robust to far-field and noisy testing conditions.

9



Chapter 2

Background

2.1 Introduction

The field of automatic speaker recognition can be broadly divided into two

categories: speaker identification and speaker detection. The task of speaker

identification, as the name suggests, involves identifying a person from his/her

voice. This is closely aligned with the natural way humans approach the recog-

nition task. The task is well poised when trying to identify a speaker from a

known set of speakers, also known as ‘closed set identification’. To automate

this process would involve making hard design considerations like determin-

ing the number of test speakers and their distribution. The accuracy of the

task also depends on the number of speakers to be evaluated. More realistic

approach to the problem would be to identify an unknown speaker, an ‘open set
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identification’ task. Building and evaluating ‘open set’ tasks remain an active

area of research.

The limitations in the design of speaker identification task – determining

the number of test speakers, and their distribution – can be overcome by refor-

mulating the speaker recognition task as a detection problem. Formally, given

two speech recordings, each spoken by a single speaker, the task of speaker de-

tection system is to find out whether both the recordings were spoken by same

speaker or not. Speaker verification (SV) can be achieved from detection by

considering one recording as spoken by a test speaker, and the other as spoken

by an enrolled speaker.

The content spoken by the speakers being evaluated also determines the

form of recognition system. If the speech content is known to the evaluator

in advance, the process becomes text-dependent. If no restrictions are posed

on the content, the task is text-independent. In this work, we experiment

with automatic speaker recognition systems that are designed to perform text-

independent speaker verification task. We refer to such systems as automatic

speaker verification (ASV) systems. In the next section, we present the main

design components involved in a typical ASV pipeline.
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Figure 2.1: Speaker verification model pipeline

2.2 Speaker Verification Pipeline

The outline of a conventional ASV system is shown in Figure 2.1. It com-

prises of four major stages: (1) acoustic feature extraction, (2) feature normal-

ization and voice activity detection (VAD), (3) training an embedding extractor

model, and (4) speaker modelling and scoring.

2.2.1 Acoustic Feature Extraction

The process of transforming raw speech samples to spectral vector repre-

sentations is termed as feature extraction. Short-term spectral features are

extracted by dividing the raw speech signal into a window of 25 milli seconds

(msec). chunks with 10 msec. shift between successive windows, and perform-
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ing spectral analysis on each window.

Mel-frequency cepstral coefficients (MFCC), a form of short-term spectral

feature extraction, are the most widely used in ASV and ASR systems. MFCC

feature extraction pipeline is outlined in Figure 2.2. The time domain sig-

nal is first pre-emphasized to amplify high-frequencies. The intensity of high-

frequencies is lower than the low-frequencies, and this operation brings them

both to equilibrium. The signal is then divided into 25 msec. windows as ex-

plained above. To mitigate the effect of finite duration of the window on Fourier

transform [36], a windowing operation is performed. Most common choices of

window are Hamming or Povey [37]. Magnitude spectrum is computed with the

fast Fourier transform (FFT). To integrate the energy present in several bands,

triangular Mel filters are used, the output of which is compressed by perform-

ing a logarithm operation. A Discrete Cosine Transform (DCT) is applied to

decorrelate the features and the first 12-40 coefficients are retained.

From the MFCC extraction pipeline, two intermediate features can be ex-

tracted: (1) log power spectrogram (LPS) features, and (2) log Mel filter-banks.

The extraction of Mel filter-banks is motivated by the way human being’s au-

ditory system perceive sounds. The last two steps – log and DCT, are intro-

duced for algorithmic convenience. Decorrelating filter-bank coefficients using

DCT makes MFCC a very good choice of features for Gaussian mixture mod-

els (GMM) with diagonal covariance [38]. However, since decorrelation is not a
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Figure 2.2: MFCC feature extraction pipeline

requirement for DNNs, both the intermediate representations are used in sev-

eral applications. Several speech enhancement applications using DNNs use

LPS features [23], since a speech signal can be reconstructed (retrieved) back

from the power spectral features. Mel-filter banks are used for training DNNs

in ASV systems [14] and ASR applications [39].

2.2.2 Feature Normalization and Voice Activity

Detection

Following the acoustic feature extraction, features are normalized to reduce

the acoustic mismatch between training and evaluation features, which im-

proves robustness of the features and increases accuracy of the systems [40].

A simple form of feature normalization technique, termed as cepstral mean

normalization (CMN) [41], is widely used. Specifically, a mean vector is com-

puted from several frames of acoustic feature vectors. The mean vector is then

subtracted from each frame, which makes the long term average of the nor-

malized features zero. CMN makes the features robust to linear filtering on
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the cepstral features, which might be caused by different microphones, room

reverberation, and varying distance from mouth to microphone. All these op-

erations are convoluted in time domain which makes it additive in cepstral

domain, which explains the effectiveness of CMN in increasing the robustness.

VAD is then applied to remove the unvoiced frames from the features. Energy

based VAD implemented in Kaldi [37] is widely used.

2.2.3 Embedding Extractors

Different speech signals can have different durations, making it hard to

compare two speech signals to verify the speaker identity. To overcome this

disadvantage, the field of SV embraces the use of embedding extractors, which

convert acoustic features of variable duration to fixed dimensional vector repre-

sentations (termed as embeddings). Below we explain two most commonly used

frameworks for extracting speaker embeddings – i-vectors [1] and x-vectors

[14]. The former uses a factor-analysis [2] framework to extract the embed-

dings, whereas the later uses a deep learning [42] framework.

2.2.3.1 i-vector

A feature extraction approach based on factor analysis, was proposed to

extract speaker embeddings [1], termed as identity vectors (i-vectors). This

approach uses a total variability space that contains both speaker and channel
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variability. The GMM super-vector for a given utterance is defined as follows

M = m+Tϕ (2.1)

where m is the mean of universal background model (UBM), T is a low-

rank matrix defining the total variability space, and ϕ is a standard normal

distributed vector. ϕ is referred as total variability factors or identity vectors (i-

vectors), which are used as features (embeddings). In [1], linear discriminant

analysis (LDA) and within-class covariance normalization (WCCN) compen-

sate the channel distortion in the i-vectors. Then, scoring is produced by cosine

distance or support vector machines (SVM).

2.2.3.2 x-vector

Authors in [14] proposed a DNN architecture that was discriminately trained

to classify speakers given variable length acoustic frames as input. Input

acoustic features pass through a time-delay neural network (TDNN) [10], which

operate at the frame level. This is followed by a statistics pooling layer which

computes the mean and standard deviation, the concatenation of which gets

passed to two affine layers. The output of last affine layer is fed to a final

softmax layer, which is of the dimension of number of speakers present in the
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Figure 2.3: DNN embedding extractor architecture [15]

training corpora. The non-linearity used is rectified linear unit (ReLU). The

network is trained with cross entropy loss.

An overview of network architecture is shown in Figure 2.3. Once trained,

the output of the first affine layer that follows the statistics pooling layer is

used as speaker embedding (typically of 512 dimension). Speaker embedding

is shown as ‘Emb A’ in the Figure.
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2.2.4 Speaker Modelling and Scoring

Speaker embeddings are modelled by probabilistic linear discriminant anal-

ysis (PLDA) [43]. In this approach, an embedding ϕij from session j of speaker

i is represented as

ϕij = µ+Vyi +Uxij + ϵij (2.2)

where µ is a speaker independent term, V is a low-rank matrix of eigen-

voices, yi is the speaker factor vector, U is a low-rank matrix of eigen-channels,

xij is the channel factor vector and ϵij is an offset that accounts for rest of

channel variability. The prior distribution on ϵ is diagonal Gaussian. Simplified

PLDA (SPLDA) model puts aside the eigen-channels term and assumes a full

covariance Gaussian for the ϵ prior.

PLDA is scored by computing the ratio between the likelihood of the trial x-

vectors given the target hypothesis and the corresponding likelihood given the

non-target hypothesis. If the speaker in the enrollment and test embeddings is

the same M1, both embeddings share the same speaker factor y but have dif-

ferent channel offsets. On the other hand, if they belong to different speakers

M0 they have different speaker factors. The ratio is expressed as below
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LLR =
P (w1,w2/M1)

P (w1,w2/M0)
=

∫︁
P (w1,w2/y1)P (y1) dy1∫︁

P (w1/y1)P (y1) dy1

∫︁
P (w2/y2)P (y2) dy2

(2.3)

In the LLR computation, speaker identity variables are integrated out in-

stead of computing point estimates. To take into account the uncertainity about

the value of y and to compare the enrollment and test embeddings, the likeli-

hood is computed under the assumption that both are generated by the same y

regardless of its exact value.

The speaker verification decision is taken by comparing the score provided

by the classifier with a threshold. If the score is higher than the threshold the

target speaker is accepted, otherwise it is rejected. The choice of the optimum

threshold is troublesome in speaker verification due to the score variability

between trials. The score variability may be caused by different phenomena.

They include phonetic content of the utterances, length, channel type, noise,

emotion or any other type of inter-session variability. To reduce that variability,

score normalization [44] was applied. The last step before making a decision is

calibration [45]. Calibration refers to selecting the optimum decision threshold

for verification.
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2.2.5 Performance Evaluation

During evaluation, for each of a large set of speaker detection trials an ASV

system is required to make a binary decision – to accept or reject an enrolled

speaker. There are two types of trails : target trials, where the target speaker

is present in the input speech; and non-target trials, where the target speaker

is absent. The decisions are compared against a truth reference. Two types of

errors can occur in this scenario: a false reject (FR) (also termed as a miss) or

false accept (FA) (also called as false alarm). A FR occurs when a valid target

speaker is rejected. A FA happens when an impostor is accepted. Both types of

errors depend on the decision threshold. A low decision threshold will produce

low FR rate (PFR) and high FA rate (PFA). PFR is the FR count, normalized by

the number of target trials. PFA is the FA count, normalized by the number of

non-target trials. The pair (PFR, PFA) can be considered evaluation outcome,

and would be used to compute a single evaluation metric.

A popular evaluation metric used in verification application is equal error

rate (EER). It is defined as the error rate at the operating point where PFR =

PFA.

Another popular metric – a cost based one – is the detection cost function

(DCF) CDet, which is a weighted sum of PFR and PFA and is denoted as
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CDet = CFRPTPFR + CFA(1− PT )PFA (2.4)

where CFR and CFA are the costs of having a miss or a false alarm respec-

tively. PT is the probability of target prior. CFR, CFA and PT are application

dependent parameters. The optimum operating point of the verification sys-

tem is the pair (PFR, PFA) at which CDet is minimum.

A normalized version of DCF, termed as CNorm, is popularly used. It is

defined as

CNorm = CDet/min(CFRPT ,CFA(1− PT )) (2.5)

In this thesis, we refer to CNorm as DCF. Both CNorm and CDet depend on

the decision threshold. It is common in the literature to evaluate systems with

respect to their actual and minimum DCF. For actual DCF, the cost is com-

puted for a fixed threshold. If the scores are well-calibrated likelihood ratios,

the threshold is selected to minimize a Bayes risk [46]. However, if we select

the threshold that minimizes the cost on the test dataset, we obtain a mini-

mum DCF (minDCF), which allows comparison across the systems regardless

of the calibration. CNorm>1 indicates that the system is not appropriate for the
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intended application. DCF measures how well a detector actually performed

when designed for and tested on a specific application. On the other hand,

minDCF measures how well it could have performed if the score threshold had

been perfect. For more detailed discussion on the topic, refer to [46]

2.3 State-of-the-art Speaker Verification

System

During the time this thesis was written, SOTA ASV systems use x-vectors

as speaker embeddings [14, 15]. As explained earlier, x-vectors are extracted

from a DNN trained discriminatively to classify speakers on large amounts of

labeled speaker data. Since, acquiring labeled speaker data is an expensive op-

eration, authors in original x-vector work [14] proposed an approach based on

data simulation techniques to increase the amount of labeled training data –

method popularly known as data augmentation. Authors applied two types of

simulation – artificially adding noise to the speech, and simulation of far-field

speech. Noise files from Music, Speech and Noise (MUSAN) [47] corpus were

used for additive noise based simulation, and room impulse response (RIR)s

used in [48] (and made publicly available at http://www.openslr.org/26),

which consisted of both simulated and real RIRs, for far-field speech simu-

lation. MUSAN corpora consists of noise files from three different subcate-
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gories: music files from several genres (≈ 42 hours and 31 minutes), speech

from twelve languages (≈ 60 hours), and noise files consisting of wide assort-

ment of technical and non-technical noises (≈ 6 hours). The simulated RIRs

used to create far-field speech were divided into three sets based on the ranges

from which width and length of the room were sampled from: small, medium

and large. The width and length of small, medium and large rooms sets were

uniformly sampled from ranges 1-10m, 10-30m and 30-50m respectively. In all

the three sets, room height was sampled uniformly from 2-5m; and absorption

coefficient was sampled uniformly from [0.2; 0.8]. In each set, 200 rooms were

first sampled and 100 RIRs were sampled in each room based on speaker and

receiver position. The distance between the speaker and the receiver was not

greater than 5m.

Simulation strategy was as follows: the authors in [14] assumed availability

of a labeled training corpus. Three different noise subcategories from MUSAN

corpus were used to create three different copies of noisy training corpora, by

artificially adding noise to the original training data. An additional copy of

far-field speech was created by convolving the simulated RIRs with the origi-

nal speech from training corpus. A random subset of size typically 2 times the

original training data was chosen from the four copies of simulated data, which

was then used to augment the original training data. The data augmentation

strategy, thus, increases the size of the training data by two fold. This strategy
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was proven to be very effective in making x-vector networks a very significant

component in SOTA ASV systems. Data augmentation was also used to im-

prove the performance of ASR systems [24,48–50].

2.4 Domain Adaptation Overview

The main focus of this work is to address the sensitivity of x-vector network

to domain mismatch between train and test domains. We refer the distribu-

tions from which the corpora used to train and evaluate an ASV system are

sampled as source and target domains respectively. When the domains are

distinct enough, the system trained on source domain1 would suffer a loss in

performance when tested on the target domain. We treat such system as oper-

ating in a domain mismatch scenario. Procedure used to address the mismatch

scenario, and thus, improve the performance of systems operating under mis-

matched conditions is called ‘domain adaptation’. Depending on the data used

to train the adaptation mechanism, domain adaptation techniques can be clas-

sified into supervised or unsupervised.
1For brevity, we refer to ‘trained on data sampled from source distribution’ as ‘trained on

source domain’. Similarly, ‘evaluated on data sampled from target distribution’ as ‘evaluated
on target domain’
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2.4.1 Supervised vs Unsupervised Adaptation

In a supervised domain adaptation (SDA) setting, in order to improve the

performance of the system under the mismatch scenario, we gather some la-

beled data from target domain. This labeled target domain data, along with the

labeled source domain data, is used to learn (train) an adaptation mechanism.

The labeled target domain data used in training should be different from the

evaluation data used to test the system. Since acquiring labeled data is expen-

sive, it is further assumed that the labeled data from target domain is limited

to train the system solely on it, whereas the source domain data is abundantly

available.

Unsupervised domain adaptation (UDA), on the other hand, refers to the

setting where unlabeled data from target domain, along with the labeled source

domain data, is available to learn an adaptation mechanism. Similar to SDA,

we assume that the target domain used to learn the adaptation mechanism is

different from the evaluation data used in the testing stage. Unlike the SDA

setting, we assume that acquiring unlabeled data is not very expensive, and is

available in abundance for training. UDA opens up opportunities to leverage

large amounts of data made available for public on internet to build ML models.

Moreover, since this data is usually collected in wild conditions, using this data

for adaptation makes the ML models more robust to realistic testing conditions.
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2.4.2 Overview of Proposed Domain Adaptation

Approach

In this work, we consider several domain mismatch scenarios (discussed in

Section 2.5) and propose several adaptation approaches. All the approaches are

aimed at improving the verification performance on the target domain. As dis-

cussed in Section 2.2, ASV system comprises of three main stages – (1) acous-

tic feature extraction, (2) embedding extraction, and (3) speaker modelling and

scoring. Depending on the chosen technique, domain adaptation can be ap-

plied in any of these stages. In this work, we explored domain adaptation at

the acoustic feature level – the acoustic features of one domain gets mapped to

the opposite domain, and the mapped (adapted) features are used either in the

training stage or evaluation stage. In our approach, since adaptation is done at

the beginning of the ASV pipeline, it makes both the x-vector and PLDA robust

to domain mismatch between training and testing domains.

2.4.2.1 Adaptation During Training vs Adaptation During

Testing

When the acoustic features of source domain are mapped to target domain,

we train the embedding extractor DNN on the adapted features. During eval-

uation, the original target domain features (without any adaptation) are used
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to extract embeddings for the test data. Since, the network was trained on

adapted features, we consider this process as ‘adaptation during training’ (re-

ferred in Figure 2.4(a)). The adapted ASV system used in this process can

be treated as trained and tested on target domain (assuming an ideal feature

mapping mechanism).

We also explore ‘adaptation during testing’ (shown in Figure 2.4(b)). In

this scenario, the ASV system is trained on source domain features. During

evaluation, the target domain acoustic features are mapped to source domain.

These mapped features are used to extract x-vectors used for scoring. This

system can be treated as trained and tested on source domain. In this scheme,

the same ASV system trained on source domain can be used to evaluate on

multiple target domains, whereas, in the previous scheme a separate system

has to be trained on adapted features for each individual target domain.

2.4.3 Feature Mapping Overview

As discussed above, mapping acoustic features of one domain to the oppo-

site lies at the heart of all domain adaptation approaches in this work. In this

approach, feature mapping function, typically a DNN, is first trained on fea-

tures from both domains. Once trained, the DNN is used to map features to

the opposite domain.

Our experimental framework is as follows: we assume the availability of
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(a) Adaptation during training pipeline (b) Adaptation during testing pipeline

Figure 2.4: Adaptation during training vs adaptation during testing. In both
approaches, adaptation is achieved by mapping acoustic features of one do-
main to other. (a) In adaptation during training, mapping is done from source
to target domain and x-vector network is trained on mapped features, (b) in
adaptation during testing, mapping is done from target to source domain dur-
ing evaluation.

unlabeled data from both domains to train the feature mapping DNN. Since

we use unlabeled data from target domain, the adaptation procedure is unsu-

pervised. We consider two scenarios to train the DNN – (1) train with paired

audio data from both domains, and (2) train with unpaired data from both do-

mains.
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2.4.3.1 Feature Mapping with Paired Audio Data

Paired audio samples refer to two audio samples (each sampled from in-

dividual domains) that are recorded simultaneously2. Hence, they both have

one-to-one correspondence between them i.e. both the samples are of same

length, spoken by same speaker and they have same linguistic content.

An example of paired audio samples is close-talk speech and far-field speech

recorded simultaneously. Speech recorded using a microphone (typically head-

mounted) placed very close to the talker is usually referred as close-talk speech.

Far-field speech, on the other hand, is recorded using stationary microphones

mounted at a distance from the talker. Speech recorded using distant micro-

phones is affected by various acoustic conditions, like room reverberation and

background noises. Close-talk speech can be considered free from such distor-

tions. Hence, in this work we consider close-talk speech as clean speech. Far-

field speech is considered as degraded speech. In practice, acquiring paired

audio samples is not always feasible or economically viable. In this scenario,

paired audio data can be obtained via simulation.

For some domain mismatch scenarios, we experimented with using paired

data to train feature mapping DNN (details in Section 2.5). Given an au-

dio sample from one domain, we create its pair in the opposite domain using

simulation. For instance, in robustness to far-field speech scenario, far-field
2Since audio samples from both domains are recorded simultaneously, we also refer to

paired data as parallel data in this work. We use both the terms interchangeably.
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speech was simulated from close-talk speech by convolving with RIRs. Using

the paired data, we train a DNN to map features from one domain to the other.

2.4.3.2 Feature Mapping with Unpaired Data

Acquiring paired audio data is an expensive process, which limits the amount

of data that can be made available for training ML models. It also limits the

amount of natural variations that can be acquired in the speech, since, paired

data is usually acquired in controlled conditions or created via simulation. On

the other hand, acquiring samples from unconstrained ’wild’ conditions that

are usually made available from open-source media is relatively less expen-

sive. However, such data is usually made available without any ground truth

labels (speaker labels in this scenario).

In this work, for some domain mismatch scenarios, we experimented with

using unpaired data from both domains to train the feature mapping network.

Typical experimental setup is as follows: we sample unlabeled target data from

open-source media. For the source domain data, we use the same data that we

use to train the x-vector network. Since, training data from both the domains

are sampled separately from different sources, it is considered unpaired. We

train the adaptation DNN using this unpaired data (details in Section 2.5).

In the next section, we describe several domain mismatch scenarios we ad-

dressed and the corresponding adaptation approaches. We present an overview
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of the training procedure of feature mapping DNNs for each of this task.

2.5 Overview of Domain Mismatch Sce-

narios and Adaptation Approaches

We experimented with three different domain mismatch scenarios: (1) mis-

match in sampling frequency between source and target domains, (2) mismatch

in channel (used to record speech), and (3) mismatch in quality of speech (clean

vs degraded) between both the domains. In all the three cases, we assume

the ASV system was solely trained on data from source domain and tested on

target domain, except for the sampling frequency mismatch scenario where we

assume a limited amount of labeled data from target domain is available dur-

ing training. As explained earlier, in all the three scenarios, domain adaptation

was achieved with the help of a feature mapping DNN. The training procedure

of DNN (training data and loss functions used) differ between the scenarios. In

this section, we describe all three scenarios and present a high level overview

of corresponding domain adaptation approaches. We will also present previous

work on each of this topics.
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2.5.1 Sampling frequency mismatch

Different devices record speech at different sampling rates, and thus, create

a mismatch later on while training speech models. When these experiments

were performed, a considerable amount of speech data available to train ASV

systems was recorded at 8 kHz, mostly telephone conversations. We will refer

to these data as NB speech, in this context. On the other hand, a limited

amount of speech is recorded at 16 kHz, such as far field microphone speech.

We will refer to this as WB speech.

In this scenario, we consider the availability of large portion of NB data

and a limited amount of WB data, both labeled, for training the ASV system.

We also consider the system would be evaluated on WB data. Since, both the

datasets are sampled at different frequencies, the traditional approach to com-

bine both the datasets during training is to downsample the WB data to match

the sampling frequency of NB speech and train the ASV system on the com-

bined dataset. During evaluation, the WB speech from test set also gets down

sampled to match the training sampling frequency. However, downsampling

operation degrades performance of speech models as it throws away informa-

tion in the upperband (UB) of WB speech (8-16kHz) that could potentially be

meaningful later on. Therefore, bridging the gap between sampling mismatch

and information loss could increase the quality of training data and potentially

improve the performance of ASV system especially when tested on WB data.
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In this work, we experimented with two main approaches to address this is-

sue: (1) mixed bandwidth training [34], and (2) extending the bandwidth of NB

speech to match the sampling frequency of WB speech [35] – procedure termed

as band-width extension (BWE) in the literature. Both techniques upsample

the NB speech (to match the sampling frequency of WB speech). The WB train-

ing and evaluation data remain unaltered. Hence, no information loss occurs.

However, both the techniques differ in the way NB data gets upsampled. In

the first approach, the NB speech was upsampled using a basic upsampling

technique to match the sampling frequency of WB speech. Basic upsampling

would not predict any information in the upperband (UB). The BWE approach

overcomes this disadvantage. In this approach, a DNN is trained to map (up-

sample) the NB speech to WB domain. The network is trained to predict the

entire information in the WB band. It, thus, overcomes the disadvantage of ba-

sic upsampling. We train the DNN on acoustic features extracted from paired

NB-WB data. The paired data was obtained using simulation – by downsam-

pling the WB data. The training of BWE network does not require any speaker

labels. Hence, the domain adaption procedure via BWE is unsupervised. Since,

the ASV system was trained on adapted (upsampled) features and evaluation

data was kept unchanged, the procedure would fall under ’adaptation during

training’ category (details in Section 2.4.2). We discuss both the BWE approach

and basic upsampling approach in detail in Chapter 3.
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Both BWE and mixed band-width training, have been explored in the past

for training ASR systems. Early work showed that WB spectrum can be pre-

dicted from extending NB spectral envelope by a linear model and exciting it

with white noise [51]. The linear model poses the assumption that speech is

relatively smooth and linear in frequency domain. Most recent work focused

on exploiting the capability of DNN, given its success in several tasks in speech

processing and analysis, DNN-based speech BWE has demonstrated improve-

ment in ASR. A feed-forward DNN trained on log spectrogram features of NB

and WB data was incorporated in an ASR system [22]. The authors were able

to show that DNN is capable of extending band-width of a signal, and that

these features, when used to train a downstream task like ASR, would give

better performance compared to system trained only on NB data. Multi-task

learning and transfer learning were explored as a means of assisting multi-

lingual task and cross-lingual task in [52]. Their BWE network was trained on

bandlimited WB data and further retrained on NB data and achieves a subse-

quent 45% relative word error rate (WER) reduction. An alternative approach

to BWE is to modify the NB features by applying some transformation on them

to match some specific properties of WB data, and then train a neural network,

along with the available WB data. Authors in [39] trained a mixed band-width

ASR on log-mel filter banks. Authors use 22 and 29 dimensional filter banks

for NB and WB data respectively. The filters are designed such that the first 22
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filters of WB data are aligned with that of NB data. The NB features are zero

padded (transformed) to match the dimension of WB features. The neural con-

nections of the network are optimized to learn from the first 22 filter banks for

the NB data and the entire feature vector for the WB data. All the techniques

discussed so far are developed for ASR applications. In this work, we focus on

exploring mixed bandwidth (mixed BW) training and BWE for improving SV

performance (details in Chapter 3).

2.5.2 Channel Mismatch

In this scenario, we approach the channel mismatch between the telephone

and microphone speech3 perspective. We consider the scenario where an ASV

system is trained on speech acquired using telephone channel and evaluated

on microphone speech (similar to sampling frequency mismatch scenario). The

authors in [14] approached this problem by augmenting the telephone data

with microphone speech from the VoxCeleb dataset [53] and obtained a signif-

icant improvement on Speakers In The Wild (SITW) test set. However, this

is a supervised domain adaptation (SDA) approach which requires access to

labeled in domain data. Acquiring labeled data is a time consuming and an

expensive approach. On the other hand, getting access to unlabeled micro-

phone speech is relatively easy. To avoid mismatch in channels between both
3We assume each channel to have a specific transfer function, which would affect the speech

characteristics and its acoustic features
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domains, we train a feature mapping DNN on unlabeled data from both the

domains. During evaluation, we map the microphones features to telephone

domain and use those mapped features to extract embeddings using a x-vector

network trained on telephone speech [30,31]. Hence, this adaptation procedure

falls under ’adaptation during testing’ scenario (details in Section 2.4.2).

To train the feature mapping DNN, we assume the availability of unlabeled

microphone data (different from evaluation data) during training. Since, it is

unlabeled it cannot be used for training the ASV system. This microphone data

along with telephone data used to train the x-vector network is used to train

the feature mapping DNN. The training data from both domains is sampled

from different sources which makes the data unpaired. Hence, we cannot train

the DNN using the regression approach that we used in the BWE approach.

Inspired by the work in unpaired image translation [16], we train the network

using a combination of adversarial [28,54] and cycle-consistency losses [16] (de-

tails in Section 2.5.4). The training procedure does not require speaker labels

from any domain. Hence, the domain adaptation approach is unsupervised.

The advantage of training the network on unpaired data is that we could use

real data sampled from both distributions, thus, avoiding the need for using

simulated data. Similar to the BWE network, the DNN we used to map fea-

tures is a deep residual CNN with an encoder-decoder structure. Experiments

and training procedure are detailed in Chapter 4.
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2.5.3 Robustness to Far-field Speech

In this scenario, we experimented with checking the effectiveness of our

feature mapping approach in making ASV system robust to degraded speech.

We refer to degraded speech as far-field speech (also termed as reverberant

speech) with additional back ground noise acquired in uncontrolled (wild) en-

vironments. We experimented with two ASV systems: one trained solely on

clean speech and other trained on both clean and degraded speech, referred as

multi-condition data. We test both systems on several far-field and noisy data

sets created using simulation. Along with simulated test sets, we also test our

approach on real degraded speech obtained from wild conditions. Adaptation

was done during testing, where far-field speech was mapped to clean domain

using a feature mapping DNN. The mapped features were used to extract em-

beddings used for scoring. Since, the DNN maps acoustic features from far-field

to clean domain, the adaptation procedure can be termed as ‘feature enhance-

ment’ or ‘feature dereverberation’.

We experimented with training feature mapping DNNs on both paired and

unpaired training data. Paired training data was obtained by simulating far-

field speech from clean speech, whereas unpaired training data was sampled

from real wild life scenarios. We provide a comparison of both the approaches.

Previously, enhancement techniques have been proposed for improving the

noise robustness of ASR and ASV systems. Non-linear regression based ap-
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proach using a DNN has been proposed in [23] to improve the noise robust-

ness of ASR systems, with results on simulated datasets. Denoising approach

using CycleGAN was proposed by [25] to improve the performance of ASR with

results reported on several simulated test conditions. For SV, [27] and [55]

have reported improvements on simulated data. As opposed to previous work,

where results were only presented on simulated datasets, we demonstrate the

effectiveness of our approach on both simulated (far-field and noisy) datasets

and real speech sampled from wild conditions.

2.5.4 Related work

As explained earlier, adversarial loss and cycle-consistency loss are at the

heart of most feature mapping approaches in this work. Adversarial loss was

first proposed in [28], where authors proposed a new frame work for estimat-

ing generative models with the help of an adversarial process. The frame work

consists of two networks: a generator G and a discriminator D. Generative

model G captures a data distribution. Discriminator D is trained to be a bi-

nary classifier, that estimates the probability of a sample coming from a train-

ing distribution rather than G. The weights of G are updated to maximize

the probability of D making a mistake, termed as adversarial loss (procedure

detailed in Section 4.3.1.1).

Plethora of work used adversarial loss for various applications. It was used
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in super resolution to create photo realistic images [29], for domain adapta-

tion [56, 57], and for multi-domain image translation [16, 58]. The network

in [16], termed as CycleGAN, was proposed in computer vision to learn map-

ping functions of images between domains with non parallel data. The network

makes use of cycle-consistency and adversarial loss to learn the mapping func-

tions. The procedure is outlined here and discussed in detail in Section 4.3.1.1.

To learn a mapping from domain X to domain Y , a generator G was trained

using adversarial loss such that distribution of images from G(X) become in-

distinguishable from Y . In order to minimize loss of information during this

mapping, additional constraint is added to the training process with the help

of a network F such that F (G(X) ≈ Y , which is ensured by minimizing the

cycle-consistency loss. Qualitative and quantitative results demonstrate the

efficiency of CycleGAN in achieving cross domain image transfer learned with-

out any parallel data. CycleGAN soon found their way to speech research

where they were used for adapting automatic speech recognition (ASR) trained

on clean speech to noisy speech [25, 59], voice conversion [60–62], and gender

adaptation [63].

Authors in [64], proposed a speech enhancement network that operates on

the time domain waveform based on the generative adversarial networks (GAN)

framework. The network, termed speech enhancement generative adversarial

network (SEGAN), was trained in an end-to-end fashion on 28 speakers and 40
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different noises. The benefit of this approach is that a single network, whose

parameters are shared across all noise conditions, is capable of enhancing dif-

ferent noise conditions. Subjective and objective evaluations demonstrate the

effectiveness of this approach in improving the perceptual quality of the signal.

Unlike the above approach, which focussed on improving the perceptual

quality of speech signal, other enhancement techniques have been proposed for

improving the noise robustness of ASR and ASV systems. Denoising approach

using CycleGAN was proposed by [25] to improve the performance of ASR with

results reported on several simulated test conditions. For SV, [27] and [55]

have reported improvements on simulated data. For feature denoising in ASV,

deep feature loss (DFL) [65] in lieu of feature mapping loss is proposed in [66,

67].

Our feature enhancement method differs from the above in two main as-

pects: (1) we focus on far-field enhancement as opposed to the denoising task

that was addressed in the above discussed methods, (2) we present improve-

ments on both wild and simulated test conditions as opposed to the above

methods that present results only on simulated conditions. The test sets we

use in this work are much diverse and larger compared to the ones discussed

above.
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Mismatch Scenario Domains Adaptation during
Chapter Source Target training testing

Mismatch in sampling frequency
Chapter 3 narrowband wideband Y N

Channel mismatch
Chapter 4 telephone microphone N Y

Robustness to far-field and noisy speech

Chapter 5 clean degraded N Y
multi-condition degraded Y Y

Table 2.1: Summary of domain mismatch scenarios addressed in this work.
Source and target domains represent distributions from which training and
evaluation datasets are sampled from. For description of ‘adaptation during
training’ and ‘adaptation during testing’ refer to Section 2.4.2.1

2.6 Summary

We described three domain mismatch scenarios addressed in this work: (1)

mismatch in sampling frequency between source and target domains, (2) mis-

match in channel between both domains, and (3) mismatch in acoustic condi-

tions between domains. Table 2.1 summarizes the source and target domains

used for each of these scenarios. We also gave an over view of adaptation ap-

proaches we developed to tackle the mismatch scenarios.

In Chapter 3, we discuss the problem of sampling frequency mismatch and

the adaptation approaches in detail. In Chapter 4, we address the channel

mismatch scenario. In Chapter 5, we present adaptation techniques to make

the ASV system more robust to far-field and noisy testing conditions.
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Bandwidth Extension For

Improved Speaker Verification

3.1 Introduction

In this chapter, we consider the scenario of training ASV systems with data

gathered from two different domains – telephone and microphone speech. Tele-

phone and microphone speech are usually sampled at 8 kHz and 16 kHz re-

spectively. From now on, we will call 8 kHz data as narrowband (NB) and 16

kHz data as wideband (WB), and band between 4-8 kHz as upperband (UB).

The conventional way of combining datasets with different sampling rates is

to downsample all of them to the lowest sampling rate – 16 kHz to 8 kHz in

our case. This results in loss of information in the UB of the WB data. The
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downsampled microphone speech along with the telephone speech is then used

to train the ASV system. Since the sampling frequency of entire training data

is 8 kHz, we call this system as NB system. This method works fairly well

when the evaluation data set is also telephone speech. However, it is not opti-

mal when the evaluation data is WB since information in the UB is lost. This

information loss could hurt the potential performance of the ASV system. An-

other option is to train the system only on the available WB corpus avoiding

the need for downsampling. We call this system as WB system, since the sam-

pling frequency of training data is 16 kHz. But this approach would lead to

poor results when the available WB data is scarce. The experiments in this

section demonstrate this scenario.

The rest of the chaper is organized as follows: we first explain the telephone

and microphone datasets used in our experiments, and the NB and WB base-

line systems in Section 3.2. In Section 3.3, we explain the training procedure

of mixed BW system and present results. In Section 3.4, we discuss the neu-

ral BWE systems explored in this work. In Section 3.5, we summarize our

experiments.
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3.2 Baseline Systems

We first explain the datasets used in this work, and then explain the train-

ing procedure of NB and WB baseline systems.

3.2.1 Datasets Description

A small portion of WB dataset that we used in this chapter was collected

from Mixer6 and NIST SRE08 corpus. These data are comprised of micro-

phone recordings of telephone calls. The same speaker was recorded on several

microphones. Hence, there exists a lot of redundancy. There is also speaker

overlap between the telephone corpus and the microphone data. Major por-

tion of the WB corpus comes from VoxCeleb dataset [53] which contains speech

from celebrity speakers. WB data consist of 30974 utterances collected from

1871 speakers.

The NB data we used for this work comprises SwitchBoard 2 Phases 1, 2

and 3, SwitchBoard Cellular and NIST 2004 - 2010 including Mixer 6. For

NIST SRE08 and MX6 there exists some speaker overlap between the NB and

WB datasets. The NB dataset consists of 86594 utterances collected from 7001

speakers. As can be observed, the WB dataset is limited in size (1871 speakers)

compared to the NB dataset (7001 speakers).

Speakers In The Wild (SITW) [68] is used as the WB dataset for evaluating
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our models. SITW consists of variable length utterances from 6-240 seconds.

Speech from this corpus consists of audio from videos of native English speak-

ers, with naturally occurring noises, reverberation and device variability. The

sampling frequency of this dataset is 16 kHz. We tested our models on the Core

and Assist conditions of SITW (details in [68]).

3.2.2 Narrowband and Wideband Systems

We experimented with two x-vector systems: a NB system, and a WB sys-

tem. The NB system used 23 MFCC features based on 23 mel filter-bank. Fea-

tures were short-time mean normalized with 3 second sliding window and si-

lence frames were removed. The x-vector system was trained using Kaldi [37].

Full rank PLDA [69] was used for scoring. PLDA scores were normalized using

adaptive symmetric norm (S-Norm) [70]. NB system represents the conven-

tional way of training speaker recognition systems – WB data was downsam-

pled to match the sampling frequency of telephone data. Training data com-

prised of NB telephone data, and downsampled microphone (details above in

Section 3.2.1).

WB system used 23 MFCCs with 30 filters Mel filter-bank. WB system

was trained only on the available WB speech (details above in Section 3.2.1).

Thus, this system was trained on much less speakers than NB system (1871

compared to 7001 speakers).
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SITW Core SITW Assist-Multi
EER DCF(1E-2) DCF(1E-3) EER DCF(1E-2) DCF(1E-3)

NB system 6.01 0.5111 0.7105 8.88 0.5569 0.7351
WB system 8.02 0.5538 0.7505 8.54 0.5049 0.6880

Table 3.1: Comparison of narrowband (NB) and wideband (WB) systems. NB
system was trained on data acquired from original telephone speech and down-
sampled microphone speech (7001 speakers) whereas WB system was trained
only on original microphone speech (1871 speakers).

Among the NB and WB systems, we observed NB system performed better

than WB system, as shown in Table 3.1. This is mainly because of the limited

amount of WB data available to train the data hungry x-vector model compared

to NB system. The NB system, though performed better than WB system,

has the disadvantage that the information in the UB of the WB training and

evaluation data is lost. No information loss occurred in the WB system but the

training data was much smaller, since we have not used NB data.

To overcome these two disadvantages we proposed two approaches in this

work. We first experimented with a mixed BW system [34] where the audio

samples from NB telephone corpora were upsampled with a low-pass filter in-

terpolator and the WB microphone training and evaluation data were used

without any modification (details in Section 3.3). We then experiment with

several neural network architectures that upsamples (maps) NB features to

WB domain [35], details in Section 3.4.
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Figure 3.1: Training pipeline of mixed BW system [34]

3.3 Mixed Bandwidth System

The training procedure for mixed BW x-vector system is depicted in Fig-

ure 3.1. In this system, NB speech gets upsampled using a basic upsampler.

The upsampled speech and original WB speech are used to train the x-vector

network. Hence, this procedure falls under ‘adaptation during training’ strat-

egy (discussed in Section 2.4.2.1). We first explain the upsampling procedure

below, which will be followed by the training procedure.
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3.3.1 Upsampling with low-pass filter interpola-

tor

As shown in Figure 3.1, telephone speech gets upsampled using basic up-

sampler1 in mixed BW system. Basic upsampling is a traditional method used

in signal processing. In this technique, zeros are interpolated between each

wav sample. A low pass filter eliminates the aliases created in the higher band,

i.e., interpolates the unknown signal values. We used the implementation in

SoX2, which used a filter with 125 dB of attenuation for the rejected band.

Note that this upsampling approach does not to fill in any additional frequency

information in the upper half of the spectrum but preserves the information

present in the lower half.

3.3.2 Mixed BW system trained without data aug-

mentation

We first trained a mixed BW system without data augmentation. NB data

was upsampled using the technique described above in Section 3.3.1. This up-

sampled data was combined with original WB data. Similar to the WB system

(explained in Section 3.2.2), we extracted 23 dimensional MFCCs with 30 mel-
1We use the terms basic upsampler and linear upsampler interchageably in this work
2http://sox.sourceforge.net
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SITW Core SITW Assist-Multi
EER DCF(1E-2) DCF(1E-3) EER DCF(1E-2) DCF(1E-3)

Without data augmentation
NB 6.01 0.5111 0.7105 8.88 0.5569 0.7351
WB 8.02 0.5538 0.7505 8.54 0.5049 0.6880
Mixed BW 5.93 0.4711 0.6713 7.62 0.4890 0.6667

With data augmentation
NB 4.54 0.623 0.425 6.74 0.650 0.468
Mixed BW 4.40 0.570 0.376 6.57 0.612 0.435

Table 3.2: Results of mixed BW system on SITW with and without data aug-
mentation. For description of NB and WB baseline systems, refer to Sec-
tion 3.2.2. For description of mixed BW system, refer to Section 3.3

filterbanks on the training data. We then trained a mixed BW x-vector system

on these features. Since, we used both NB and WB corpora for training, the

mixed BW system was trained on the same amount of data as the NB system

(explained in Section 3.2.2). Since the mixed BW system was trained at 16 kHz

sampling frequency, no downsampling is required during evaluation.

The results of the mixed BW system trained without data augmentation

on SITW are presented in the upper half of Table 3.2. As observed from the

results, the mixed BW system performed better than the baseline systems on

both test conditions – SITW Core and SITW Assist-Multi. We observed relative

improvements of 7.82% and 12.2% (in terms of DCF) on SITW Core and Assist-

multi conditions compared to NB baseline systems.
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3.3.3 Mixed BW system trained with data aug-

mentation

In this section, we trained a mixed BW system with data augmentation.

Similar to the experiments in above section, we first upsampled the original NB

data using the technique described in Section 3.3.1. This upsampled data was

combined with original the WB data. We then upsampled the NB data used for

augmentation. NB data for augmentation was obtained by adding noise to the

original NB data. This additional data was augmented to the original training

data. The combined data was used for training. We used data augmentation on

the training data to increase the amount and diversity of the data. We extract

24 dimensional MFCCs with 30 mel-filterbanks on the original and augmented

data. We then train a mixed BW x-vector system on these features. To compare

the performance of mixed BW system with data augmentation, we also trained

the NB system with data augmentation. The NB baseline system was trained

on 23 dimensional MFCC features with 23 mel filter banks. Entire NB data

available was used for training the system along with downsampled WB data.

To test the NB baseline system, WB evaluation test set was downsampled to 8

kHz to match the sampling frequency of the training set. Similar to the mixed-

BW system, the protocol we followed to augment the data is similar to Section

3.3 in the original x-vector work [14]. Protocol used to augment both systems
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was mentioned in Section 2.3.

The results of mixed BW system on SITW trained with data augmentation

are presented in the lower half of Table 3.2. The mixed BW system performed

better for both evaluation conditions compared to the baseline. We observed

relative improvements of 8.5% and 5.8% (in terms of DCF) on SITW Core and

Assist-multi conditions compared to NB baseline systems. The improvement of

mixed BW system can be attributed to the fact that the x-vector model, being

a DNN, is able to optimize its neurons to respond to the lower half of the spec-

trum for NB data and to use the entire spectrum (all cepstral coefficients) for

the WB data. The main advantage of mixed BW system is that the information

in the upper half of WB training and evaluation data are retained as opposed

to the NB system.

3.4 Neural bandwidth extension (BWE)

Systems

Our experiments with mixed BW system in previous section demonstrated

the advantage of preserving information present in the upper half of the WB

spectrum during both training and evaluation. In mixed BW system, NB speech

was upsampled using a basic upsampler during training. However, the basic

upsampling approach do not estimate the spectrum in the upperband, which
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Figure 3.2: LPS feature of upsampled NB speech using basic upsampler (left)
and original WB speech (right) used to train the mixed BW system. U indicates
the combination of datasets.

is assumed to be null. The LPS features of the original WB speech and sox

upsampled NB speech used in training the mixed BW system are shown in

Figure 3.2. The lack of information in the upper half of the upsampled NB

speech is clearly seen from the figure.

In this section, we experimented with neural BWE systems to upsample the

NB speech. Instead of the linear upsampler used in mixed BW systems, we use

a neural network to upsample the NB speech. The motivation behind using

neural network is to predict information in the upper half (UB) of NB speech

– hence, the name bandwidth extension (BWE). Instead of predicting just the

UB from the NB and appending it to the NB features, we train the neural net-

work to predict the entire spectrum of WB as suggested in [22]. The pipeline for

training speaker recognition systems with neural BWE extension is as follows.

We first train a DNN (architecture and training details in Sections 3.4.2 and

3.4.3 respectively) that acts as an upsampler network in the LPS feature do-
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Figure 3.3: Training pipeline of x-vector network with neural BWE [34,35]

main – network that maps NB LPS features to WB LPS domain. Once trained,

the BWE network was used to upsample LPS features of telephone speech from

training data. The upsampled WB LPS features are converted to MFCCs [22].

Finally, these MFCCs are combined with MFCCs extracted from the original

WB data which forms the training data of the x-vector system. Pictorial repre-

sentation of the training pipeline is outlined in Figure 3.3.

The system is similar to the mixed BW system but the upsampling pro-

cess fills in the missing information in the UB of the upsampled telephone

data, which is missing in case of linear upsampler. The experiments in this
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section help us to investigate if filling in the missing information improves

speaker recognition performance or not. Both the systems use the same train-

ing datasets and same MFCC feature configurations. Note that BWE networks

were used only during the training (to upsample the NB training speech). Since

the x-vector system was trained on WB speech, during evaluation the original

WB evaluation corpus is used as it is.

We experimented with three different neural networks for BWE – (1) a fully

connected neural network, termed as DNN-BWE, (2) a convolutional neural

network [71], termed as CNN-BWE network and (3) a bi-directional long short

term memory network, termed as BLSTM-BWE. We present the architectures

of the BWE networks in Section 3.4.2. The training details of the networks are

presented in Section 3.4.3 followed by results in Section 3.4.4.

3.4.1 BWE Training Overview

All BWE networks were trained on paired NB-WB data (for definition of

paired data, refer to Section 2.4.3.1). Paired data was obtained from the WB

training data via simulation – WB speech was downsampled to 8 kHz. The

downsampled NB speech and the original WB speech formed the paired train-

ing data for all the BWE networks in this work. The LPS features extracted

from the former were used as input to the network and the features of the later

as the target output. The networks were trained to minimize MSE objective
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Figure 3.4: Neural BWE training pipeline

between predicted and original WB features. Figure 3.4 shows the pipeline to

train the BWE networks.

3.4.2 BWE Networks

3.4.2.1 DNN-BWE Network

We experimented with a feed-forward fully connected DNN for BWE, simi-

lar to the network in [22]. The network had 3 hidden layers with 2048 neurons

per layer each followed by ReLU nonlinearity. The last hidden layer is followed

by an affine layer which projects the output of last hidden layer to WB LPS

55



CHAPTER 3. BWE FOR IMPROVED VERIFICATION

features. A context of 5 past and 5 future frames was used at the input along

with the current frame to predict the WB LPS of the current frame. Hence the

input to the network is 1419 (11*129) dimensional and the output was of 257

dimensional.

3.4.2.2 CNN-BWE Network

The architecture of CNN-BWE network was similar to the full-convolutional

deep residual network used by [72] for image style transfer and single image

super resolution. The network consisted of two major building blocks: a down-

sampler (encoder) network and an upsampler (decoder) network, which makes

it an encoder-decoder network3. The encoder network consisted of three 2D

convolutional layers followed by several residual blocks [73]. The encoder maps

the original features to a low-dimensional manifold while preserving the prop-

erties of speech. To do it, the network reduces the feature map dimensions by

applying convolutions with stride = 2. For the details of kernel sizes, strides,

number of filters and padding dimension in each layer of the encoder network

and the residual network refer to Figures 3.5(a) and (b) respectively.

The decoder network consisted of two deconvolutional layers [74] followed

by a final convolution layer. The network decodes the low-dimensional repre-

sentation obtained from the encoder into the LPS feature of WB speech. The
3The terms encoder-downsampler and decoder-upsampler are used interchangeably in

CNN-BWE network description.
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deconvolutional layers increase the feature map dimension by a factor of 2 by

applying strides of 1/2 while decreasing the number of filters by a factor of 2.

For the details of kernel sizes, strides, number of filters and padding dimension

in each layer of the upsampler refer to Figure 3.5(c).

The entire network consists of only convolutional and deconvolutional lay-

ers. No pooling or fully connected layers were included. Hence the network is

termed as “deep residual fully-convolutional neural network”. The fact that it

is full convolutional allows the network to process variable length sequences

without increasing the number of parameters. The exact number of convolu-

tional layers (depth of the network) depends on the number of residual blocks

used in the network. We experimented with number of residual blocks varying

from 6 to 24 in this work (details in Section 3.4.3).

3.4.2.3 BLSTM-BWE Network

To compare both the feed forward architectures we described above, we also

experimented with a recurrent architecture – a bidirectional long short term

memory (BLSTM) network. The network has two 512 dimension hidden layers.

The non linear activation used was ReLU. The output of BLSTM was fed to an

affine layer, which made the network output dimension to match the required

WB LPS dimension (257).
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(a) Downsampler Network (b) Residual Network (c) Upsampler Network

Figure 3.5: CNN-BWE architecture details. (a) Downsampler (encoder) net-
work architecture, (b) architecture of residual network used in downsampler,
and (c) architecture of upsampler (decoder) network. Notation: k-kernel, s-
strides, c-filters, p-padding, N-number of residual networks

3.4.3 BWE Networks Experimental Details

3.4.3.1 Training Data

All the three BWE extension networks were trained using the same paired

NB-WB datasets. The WB training data (sampled from 1871 speakers) was

downsampled to obtain paired training data. Training and cross validation

utterances were selected randomly based on the number of speakers present in

the WB dataset (90%-10% split between the speakers with no-overlap between

the speakers). Once trained, the network was used to upsample original NB

speech corpus (sampled from 7001 speakers) used to train the x-vector system.

More detailed descriptions of the NB and WB training datasets can be found
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in Section 3.2.1.

3.4.3.2 Feature configurations

As mentioned earlier, the BWE networks were trained to predict the entire

WB. The input was 129 dimension NB LPS while the output was 257 dimen-

sion WB LPS, similar to [22]. NB and WB LPS were obtained with a window

size of 25ms with an overlap of 15ms. Povey window in Kaldi Speech Recogni-

tion toolkit [37] was used. Energy based VAD was applied on the training data.

Utterance level mean variance normalization was applied on each utterance.

WB LPS are then converted into 23 dimensional MFCCs. Finally, they were

combined with MFCCs of the original microphone speech – which formed the

training data of x-vector network.

3.4.3.3 Training procedure

BWE systems were implemented using PyTorch [75]. MSE objective was

minimized. All the networks were trained for a maximum of 50 epochs, where

an epoch is completed when we have observed a random sample from each

utterance in the training set. Early stopping was enforced when validation

error does not decrease for 5 successive epochs. Learning rate was decreased

by a factor of 2 when the validation error does not decrease for two successive

epochs. The networks were initialized with values drawn from normal distri-
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bution with mean 0 and standard deviation 0.02. Optimizer used for training

depends on individual systems (details below). Dropout [76] was used as regu-

larizer with 0.4 drop probability (except for CNN-BWE).

Input to the DNN-BWE network was arranged as three dimensional ten-

sors of size n × F × D, where n, F and D stands for mini batch size, sequence

length (number of frames) per mini-batch and feature dimension respectively.

An utterance was selected at random for each mini batch, and 64 consecutive

samples were drawn from that utterance. We add a context of 5 past and 5 fu-

ture frames to each frame which makes input dimension D = 11 × 129 = 1419.

Mini batch size was set to 1. Given a mini batch of input NB features of size

1 x 64 x 1419 dimensions, the network was trained to predict the output WB

features of size 1 x 64 x 257. Stochastic Gradient Descent (SGD) optimizer was

used to train the network with an initial learning rate of 0.01 and a momen-

tum of 0.9. Figure 3.6 shows the LPS output of the DNN-BWE network along

with the ground truth for a randomly picked utterance from the development

set (the network was not trained on this utterance). The figure demonstrates

the ability of the DNN-BWE to fill missing information in the top half of the

spectrum.

The training procedure of CNN-BWE network was as follows: since we used

2D convolutions in CNN-BWE network, input to the system was arranged as

four dimensional tensors of size n×C×F ×D, where n, C, F , D stands for mini
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Figure 3.6: Log power spectrogram (LPS) feature comparison of estimated WB
from DNN-BWE (upper) and original WB (lower)

batch size, channels size, sequence length and feature dimension respectively.

Mini batch dimension n and number of input channels C were set to 1.

We experimented with the number of residual blocks in the encoder net-

work. We observed that the number of residual blocks in the downsampler of

CNN-BWE system plays an important role in improving the prediction quality

of the network. The prediction quality was measured using the metric log-

spectral distortion (LSD) given in Equation 3.1 below.

LSD(X, X̂) =
1

L

L∑︂
l=1

⌜⃓⃓⎷ 1

K

K∑︂
k=1

(X(l, k)− X̂(l, k))2 (3.1)

X and X̂ in the equation stands for the reference and predicted LPS features.
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(a) LSD (b) LSD-UB

Figure 3.7: LSD and LSD-UB comparison of CNN-BWE and DNN-BWE Sys-
tems. We experimented with different number of residual blocks for CNN-
BWE.

LSD measures the reconstruction quality of individual frequencies in LPS do-

main.

Figure 3.7(a) compares LSDs of several CNN-BWE systems – each differ

in the number of residual blocks used in the encoder network. The figure also

includes a comparison of CNN-BWE with DNN-BWE. Since, our main goal is to

predict the missing information in the UB of the LPS, we also compute the LSD

for the top half of the predicted spectrum, denoted as LSD-UB. Figure 3.7(b)

presents comparison of LSD-UB. Both LSD and LSD-UB are measured on the

development set.

As observed from the figure, for six residual blocks, the performance of

DNN-BWE was better than the CNN-BWE. Increasing the number of resid-

ual blocks improved CNN-BWE. However, going beyond 21 blocks did not sig-

nificantly improve the CNN-BWE system. Increasing the number of residual

blocks increased the depth of the network which increased the receptive field
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(a) Reference WB spectrogram

(b) Predicted WB spectrogram by CNN-BWE

Figure 3.8: Comparison of reference and predicted LPS by CNN-BWE

of the network, which explains the improvements. For the rest of the experi-

ments, we used CNN-BWE systems with 21 residual blocks. In total, the net-

work had 46 convolutional layers and two deconvolutional layers. In spite of

the network depth, the number of parameters of CNN-BWE (∼ 6M for net-

work with 21 residual networks) are less than that of the DNN-BWE (∼ 16M ).

Figure 3.8 shows comparison of spectrograms of original WB utterance from

validation set and predicted WB utterances from a CNN-BWE system.

The training procedure of BLSTM-BWE was similar to the DNN-BWE ex-

cept that the sequence length F was set to 505. The motivation for experiment-

ing with BLSTM was as follows: the limitation of DNN-BWE was that it was
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(a) MSE (b) LSD-UB

Figure 3.9: Comparison of MSE and LSD-UB between CNN-BWE and
BLSTM-BWE systems when trained on different sequence lengths.

trained on limited amount of context (5 past and 5 future frames). Any increase

in the context would increase the number of parameters in the input layer.

CNN-BWE overcame this disadvantage. Since, we used a full-convolutional

network, we were able to train the network on longer sequences (129, 257 and

505), without increasing the number of parameters of the network. BLSTM

networks are known for training on longer sequences. Hence, we trained a

BLSTM network with sequence length F = 505, to compare the performance of

CNN with a network trained on longer sequence. Figure 3.9 shows that MSE

and LSD-UB decrease as we increase the sequence lengths. The BLSTM-BWE

network converged faster (only trained for 17 epochs) compared to CNN-BWE

in terms of number of epochs.

64



CHAPTER 3. BWE FOR IMPROVED VERIFICATION

3.4.4 BWE Speaker recognition systems

The output spectrograms and LSD metric observed in previous section demon-

strate the ability of all three networks in extending the bandwidth of NB

speech. In this section, we assess the goodness of these networks in improv-

ing the performance of ASV systems. Performance was measured on the SITW

evaluation set.

3.4.4.1 Baseline Systems

We experimented with three baseline x-vector systems: a NB baseline sys-

tem, a WB baseline system and a mixed BW baseline system. The baseline

systems are described in previous Section 3.1 and Section 3.3. No data aug-

mentation was used in this experiments.

3.4.4.2 BWE Speaker recognition Systems

The training pipeline of x-vector network with BWE features is shown in

Figure 3.3. The training procedure was similar to the mixed BW system except

that the NB speech was upsampled using BWE. The x-vector network was

trained on upsampled speech and original WB speech.

Table 3.3 summarizes the results of the baseline and BWE-speaker recog-

nition systems. The mixed BW baseline system performed the best among the

baselines. All the BWE systems improved over the baseline systems in terms
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SITW Core SITW Assist-Multi
EER DCF(1E-2) DCF(1E-3) EER DCF(1E-2) DCF(1E-3)

Baseline
NB 6.01 0.5111 0.7105 8.88 0.5569 0.7351
WB 8.02 0.5538 0.7505 8.54 0.5049 0.6880
mixed BW 5.93 0.4711 0.6713 7.62 0.4890 0.6667

BWE-speaker ID results
DNN-BWE 5.55 0.4705 0.6516 7.10 0.4812 0.6481
CNN-BWE (F-129) 5.74 0.4737 0.6630 7.08 0.4737 0.6671
CNN-BWE (F-257) 5.71 0.4560 0.6480 7.29 0.4680 0.6475
BLSTM-BWE (F-505) 5.74 0.4621 0.6523 7.35 0.4717 0.6510

Table 3.3: Results of speaker verification on SITW when trained on bandwidth
extended features (F - sequence length)

of both EER and DCF. CNN-BWE system trained on sequence of length 257

performed the best in terms of DCF. However, the relative difference between

the CNN-BWE and BLSTM-BWE system was not very significant. In terms

of relative improvement of DCF at prior 0.01, the CNN-BWE improved by

10.78% and 15.96% for SITW Core and Assist-multi speaker conditions respec-

tively over the NB baseline. Compared to the mixed BW system, the relative

improvements were 3.21% and 4.13% for Core and Assist-multi-speaker con-

ditions, which justifies our attempt to predict information in the UB for NB

speech and use it for speaker recognition.

3.5 Summary

The experimental setting in this chapter is as follows: we considered two

types of datasets for training – telephone speech sampled at narrowband (NB)
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8 kHz frequency, and microphone speech sampled at wideband (WB) 16 kHz

frequency. We assumed the evaluation dataset was WB. We further assumed

that WB speech available for training was limited in number of speakers (and

utterances) compared to NB speech. The conventional way of training systems

under this scenario is to downsample WB speech to match the frequency of

NB speech during training and evaluation. This procedure throws away in-

formation in the upperband (UB) of microphone speech. In this chapter, we

investigated several procedures to combine both the datasets during training

without downsampling the WB speech.

We first experimented with a basic upsampler that upsamples telephone

speech to match the sampling frequency of microphone speech without pre-

dicting any information in the UB. The upsampled telephone speech was

used to train the x-vector network. We termed this ASV system as mixed BW

sytem [34]. This upsampling technique, though simple and computationally

inexpensive, proved very effective, yielding impressive results (details in Sec-

tion 3.3). The main advantage of mixed BW system was that, we were able

to use original microphone speech during training and evaluation without any

downsampling as done in conventional way of training. We, thus, were able to

retain information in the UB of WB speech which helped improve the verifica-

tion performance.

We then continued our investigation by experimenting with several neu-
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ral network architectures to upsample NB speech before training x-vector net-

works. The motivation was to overcome the limitation of linear upsampler

in predicting the information present in the upper band of telephone speech.

We experimented with a feed forward fully connected DNN, a deep residual

full-convolutional network (CNN) and a BLSTM network for BWE [35]. In-

dividual x-vector based speaker recognition systems were trained on band-

width extended features obtained from each of these three systems. All the

BWE speaker recognition systems improved in performance compared to con-

ventional training and the mixed BW system. The best performer in terms of

DCF was the CNN-BWE system trained on sequence lengths of 257. In terms

of DCF, the CNN-BWE system showed relative improvement of 10.78% and

15.96% in the SITW eval Core and Assist-Multi condition respectively w.r.t. the

conventionally trained NB baseline; and improved by 3.21% and 4.13% w.r.t.

to the mixed BW baseline. In terms of number of parameters, the CNN-BWE

model with 21 resnets is the most light weight with ∼ 6M parameters com-

pared to DNN-BWE with ∼ 16M parameters and BLSTM-BWE with ∼ 18M

parameters (details in Section 3.4).
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Chapter 4

Unsupervised Domain

Adaptation using CycleGAN for

Channel Mismatch

4.1 Introduction

In this chapter, we address a channel mismatch scenario where the training

(source domain) and evaluation (target domain) data of the automatic speaker

verification (ASV) system are sampled from telephone and microphone corpora

respectively. In the previous chapter, we addressed the same scenario as a mis-

match in sampling frequencies of speech from both the domains. Telephone

speech and microphone speech were termed as narrowband (NB) and wide-
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band (WB) speech with sampling frequencies 8 kHz and 16 kHz respectively.

The LPS features of NB speech were upsampled to match the sampling fre-

quency of WB data using a bandwidth extension (BWE) network. BWE net-

work can be considered as a feature mapping function that maps NB features

to WB domain. The network was trained using paired NB-WB data (procedure

detailed in Section 3.4). The NB input data used in training was obtained by

downsampling the WB speech. The network, thus trained using paired NB-WB

data obtained from microphone speech, was used to upsample the features of

telephone data.

The above approach gave encouraging results. However, it limited us from

using real data from both domains to train the feature mapping function – e.g.

to upsample the telephone speech features using BWE network, we trained the

network on paired data extracted from microphone speech using simulation.

To address this limitation, in this chapter, we experimented with an unsuper-

vised domain adaptation (UDA) approach where a feature mapping function

was trained on unpaired and unlabelled data from both the domains (for de-

scriptions of unpaired data and UDA, refer to Section 2.4.3.2 and Section 2.4.1

respectively). Once trained, the network was used to map features from target

to source domain during evaluation. Hence, this procedure would fall under

‘adaptation during testing‘ scheme (discussed in Section 2.4.2.1). Instead of

approaching the problem as a mismatch in sampling frequencies, we approach
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the problem as a mismatch in channels used to acquire speech (details in Sec-

tion 2.5.2).

The nature of training data dictated the loss functions we used to train

feature mapping networks in this work. In previous chapter, since, BWE net-

work was trained on paired data, we used MSE objective between predicted

and ground truth features. Since, the training data is unpaired in the current

setting, MSE objective cannot be used. To achieve the required mapping from

source to target domain, we train the network using adversarial loss [28, 54] –

the network is trained such that its output fools a binary classifier, which was

trained to distinguish between original and mapped target domain features. In

addition to adversarial loss, we also use cycle-consistency loss that reconstructs

the original source domain features from the mapped features in target domain

with the help of a second network. This second constraint ensures no useful in-

formation is lost while transferring the features from source to target domain.

This framework is termed as CycleGAN in the literature [16]. We demonstrate

the effectiveness of this approach for channel adaptation task [30,31].

We also experimented with training the feature mapping function in a low-

resource scenario – when limited amount of data is available from target do-

main. This setting is of interest to us because this opens up the possibility

of maximally taking advantage of small development sets found in real data,

and not use simulated sets (as done commonly in practice). We observed that

71



CHAPTER 4. UNSUPERVISED CHANNEL ADAPTATION

CycleGAN framework tends to overfit when trained with limited amount of

data. We present a simple, but effective, regularization technique to overcome

this disadvantage [31].

The outline of this chapter is as follows: we first describe the unadapted

baseline system in Section 4.2. We describe the CycleGAN based adaptation

framework in Section 4.3 and present results of our adaptation system. In

Section 4.4, we present our low-resource experiments. We summarize our ob-

servations in Section 4.5.

4.2 Baseline System

The ASV system trained on source domain features and tested on original

target domain features is referred as the baseline system. Speaker embeddings

were extracted using an x-vector network with Extended TDNN (ETDNN) ar-

chitecture [15]. The x-vector system was trained for 3 epochs using Kaldi [37].

We used the same setup as in SRE16 Kaldi recipe1 but without any data

augmentation. The x-vector network was trained on telephone corpus and

tested on evaluation corpus from SITW, referred as SITW eval. Telephone data

used for training consisted of recordings from datasets SRE 04-10, Mixer6 and

Switchboard 1-Phase 1, 2, and 3. This gave us 90946 utterances from 6986

speakers. The system used 40-dimensional log Mel filter-bank (log mel-FB)
1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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with short-time centering (300 frames). Energy-based VAD was applied to re-

move the non-speech frames.

Once trained, x-vector network was used to extract speaker embeddings for

the training and evaluation corpora. The x-vectors were centered, projected

to 150 dimensions using linear discriminant analysis (LDA) and length nor-

malized. Full-rank PLDA [69] was used to get the scores. Finally, scores were

normalized using adaptive symmetric norm (S-Norm) [70]. In the baseline sys-

tem, both the x-vector network and PLDA backend were trained on telephone

speech and tested on microphone speech. Similar to Chapter 3, we evaluated

our baseline system on SITW. During evaluation, the microphone speech was

down-sampled to 8 kHz to match the sampling frequency of telephone speech.

We present the results for baseline system on SITW in next section (in Table

4.4) after discussing the adaptation system.

4.3 Channel Adaptation Using CycleGAN

Our adaptation approach is as follows. We first trained an x-vector net-

work [14] on training data sampled from telephone domain. The training

procedure was very similar to the baseline system described in Section 4.2.

During evaluation, we mapped the features of evaluation data sampled from

microphone domain to telephone domain. We used the mapped features to
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evaluate the ASV system trained on telephone domain. This was first accom-

plished by using the mapped features to extract speaker embeddings from the

x-vector network, and use those embeddings for PLDA scoring. Hence, the

overall speaker verification system can be considered as trained and evalu-

ated on source domain. The feature mapping of evaluation data to source do-

main was accomplished by using the CycleGAN framework. Below we describe

CycleGAN and its training procedure along with its objectives.

4.3.1 CycleGAN Description

As explained in Section 4.1, our adaptation procedure involved training

two feature mapping functions using unpaired unlabelled data sampled from

source and target domains. One mapping function maps features from target to

source domain, whereas the other mapping function maps features from source

to target domain. Both mapping functions are trained jointly. The training pro-

cedure was inspired from the unpaired image-to-image translation work done

in [16], popularly known as cycle-consistent generative adversarial networks

(CycleGAN). The mapping functions in CycleGAN are known as generators.

The generators, represented as GS→T and GT→S, map features from source-to-

target and target-to-source respectively. Once the generators are trained, we

use the generator GT→S as the feature mapping function that maps evalua-

tion features to source domain. Below we explain the training procedure of
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CycleGAN used in this work.

4.3.1.1 CycleGAN Training Procedure and Objectives

The unpaired corpora to train CycleGAN consisted of audio samples AS =

{aS,i}Ni=1 and AT = {aT,i}Mi=1 drawn from two different domains: source S and

target T with distributions aS,i ∼ qS(a) and aT,i ∼ qT(a) respectively. log mel-FB

features were extracted from audio samples of source and target domain dis-

tributions denoted as XS = {xS,i}Ni=1 and XT = {xT,i}Mi=1. The source and tar-

get domain distributions in feature space are represented as xS,i ∼ pS(x) and

xT,i ∼ pT(x) respectively. XS and XT are used as features from two different

distributions to train the feature mapping functions2.

The training procedure is as follows: two mini batches of features xS and xT

are sampled from the distributions XS and XT corresponding to the source and

target domain features respectively. The generator GT→S maps xT to source do-

main, producing features x̂S gen. A discriminator DS is trained to discriminate

between original (xS) and generated source domain features (x̂S gen), thus serv-

ing the task of a binary classifier. DS outputs 1 for the original (real) source

domain features and 0 for generated (fake) features as shown in Figure 4.1 and

represented in Equation 4.1.
2Since, CycleGAN is also used in far-field adaptation work (discussed in Chapter 5), we

explain the training procedure using generic terms source and target, instead of microphone
and telephone
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(a) Target cycle (target - source - target)

(b) Source cycle (source - target - source)

Figure 4.1: Overview of CycleGAN framework
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DS(xS) = 1

DS(x̂S gen) = DS(GT→S(xT)) = 0 (4.1)

To achieve this, the discriminator DS is trained to minimize a least square

loss [77] as given in Equation 4.2.

Ldisc(GT→S, DS,XT,XS) =Ex∼pT [DS(GT→S(x))
2] +

Ex∼pS [(DS(x)− 1)2] (4.2)

The generator GT→S is then trained to output features x̂S gen that appear

to be drawn from the source domain distribution XS. This is accomplished by

flipping the label of the fake features given to the discriminator, i.e. assigning

a label 1 to the fake features instead of 0. The procedure is detailed in [28,54].

The adversarial objective of the generator is given in Equation 4.3.

Ladv(GT→S, DS,XT) = Ex∼pT [(DS(GT→S(x))− 1)2] (4.3)

Equivalently, the other generator-discriminator (GS→T, DT) pair is trained
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in a similar fashion to transfer features from source domain to target domain.

A single generator-discriminator pair trained with combination of adversar-

ial and least square losses would suffice, in theory, to transfer features from

one domain to the opposite domain. However, this leads to an ill-posed prob-

lem with adversarial loss putting a weak constraint on the generators. Thus,

the generator could create many possible features which appear to be drawn

from the true distribution but may fail to preserve the information present in

the signal like the linguistic information, speaker and gender information. To

restrict the space of possible mappings from the generator, CycleGAN enforce

cycle-consistency constraint on the generators – reconstructing the original fea-

tures, e.g. xT, from the generated features in the opposite domain, e.g., x̂S gen by

passing them through the second generator GS→T. The reconstructed features,

represented as x̂T rec, should be identical xT. Mathematically, cycle-consistency

on the target and source domain features are explained in Equation 4.4.
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x̂T rec = GS→T(x̂S gen)

= GS→T(GT→S(xT))

≈ xT

Similarly x̂S rec = GT→S(x̂T gen)

= GT→S(GS→T(xS))

≈ xS (4.4)

Cycle-consistency of source features is achieved by minimizing the objective

in Equation 4.5 between xS and x̂S rec = GT→S(x̂T gen) where we used L1 dis-

tance as the metric. We refer to this loss as forward cycle-consistency loss.

Similarly, the loss computed between xT and x̂T rec is referred to as backward

cycle-consistency loss. The final cycle-consistency loss is the combination of both

these objectives and is given in Equation 4.6.

L1(GS→T, GT→S,XS) = Ex∼pS ||GT→S(GS→T(x))− x||1 (4.5)
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Lcyc(GS→T, GT→S,XS,XT′) = L1(GS→T, GT→S,XS)

+ L1(GT→S, GS→T,XT) (4.6)

Finally, both the generators of CycleGAN are trained using multi-task ob-

jective: by minimizing both the adversarial and cycle-consistency objectives as

shown in Equation 4.7. λcyc and λadv in Equation 4.7 denote the weights as-

signed to cycle-consistency loss and adversarial loss respectively.

The training objectives of both the source and target discriminators are

given in Equations 4.8 and 4.9 respectively.

Objective of generators

L(GT→S, GS→T, DT, DS,XS,XT)

= λadvLadv(GT→S, DS,XT)

+ λadvLadv(GS→T, DT,XS)

+ λcycLcyc(GS→T, GT→S,XS,XT) (4.7)
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Objective of source discriminator DS

θDS∗ =argmin
θDS

LGAN(GT→S, DS,XS,XT)

= Ex∼pS [(DS(x)− 1)2] +Ex∼pT [DS(GT→S(x))
2] (4.8)

Objective of target discriminator DT

θDT∗ =argmin
θDT

LGAN(GS→T, DT,XT,XS)

= Ex∼pT [(DT(x)− 1)2] +Ex∼pS [DT(GS→T(x))
2] (4.9)

4.3.1.2 Identity Loss

As explained in Equation 4.7, the generators are trained using a combi-

nation of adversarial and cycle-consistency losses. Along with this two con-

straints, we place an additional constraint on the generator – to make an iden-

tity mapping when features from the opposite domain are provided as input to

the generator. The identity mappings for both the generators are achieved by

training them with identity loss [16,78] given in Equation 4.10.
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Identity loss

Lidt(GS→T, GT→S) = (4.10)

Ex∼pT [||GS→T(x)− x||1]

+ Ex∼pS [||GT→S(x)− x||1]

Identity loss was used in the original CycleGAN work as a regularizer dur-

ing training. Besides acting as a regularizer, identity loss helps the generators

learn to preserve linguistic information. Since, the objective is similar to that

of an auto encoder – the generator is trained to reconstruct the input.

Combined objective for training generators with identity, cycle-consistency

and adversarial losses is given in Equation 4.11 below. λidt in the equation

stands for the weight assigned to identity loss.

Overall objective of generators trained with identity loss

L(GT→S, GS→T, DT, DS,XS,XT′)

= λadvLadv(GT→S, DS,XT′)

+ λadvLadv(GS→T, DT,XS)

+ λcycLcyc(GS→T, GT→S,XS,XT′)

+ λidtLidt(GS→T, GT→S) (4.11)
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4.3.1.3 Network Architectures used in CycleGAN

CycleGAN consists of two generators and two discriminators. In this sec-

tion, we give details of generator and discriminator architectures. The architec-

ture for generator3 is given in Table 4.1. Similar to BWE network in previous

chapter, the generator is a full-convolutional network [79] with an encoder-

decoder architecture. The encoder has three convolutional layers [71, 80] fol-

lowed by nine layers of residual network (ResNet) [73]. All the convolutional

layers are followed by an instance normalization layer [81] and ReLU [82] ac-

tivation except for the first convolutional layer which is followed by ReLU acti-

vation. Each ResNet is followed by ReLU activation.

The architecture of ResNet is given in Table 4.2. ResNet has two convo-

lutional layers. The first convolutional layer in the ResNet is followed by an

instance normalization layer and ReLU activation. The second layer is only

followed by instance normalization layer, the output of which is added to the

input of the ResNet via short-cut connection, which becomes the final output

of the ResNet. The output of last ResNet, followed by the ReLU activation,

becomes the input to the decoder network.

The decoder architecture has two transposed convolutional layers [74] each

followed by an instance normalization layer and ReLU activation. The trans-

posed convolutional layers are followed by a final convolutional layer. The gen-
3Both the generators have identical architectures. Hence, we explain the architecture of

only one generator.
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Layer Kernel size Output
(nf, k, s)

Shortcut - h x w x 1

Encoder
Convolutional, ReLU [3,3,1] h x w x 32
Convolutional, instance normalization, ReLU [3,3,2] h/2 x w/2 x 64
Convolutional, instance normalization, ReLU [3,3,2] h/4 x w/4 x 128
(ResNet, ReLU) x 9 - h/4 x w/4 x 128

Decoder
Deconvolutional, instance normalization, ReLU [3,3,2] h/2 x w/2 x 64
Deconvolutional, instance normalization, ReLU [3,3,2] h x w x 32
Convolutional [3,3,1] h x w x 1

Addition - h x w x 1

Table 4.1: Architecture of generators used in CycleGAN. nf, k and s represent
the number of filters, kernel size and stride respectively. (h,w) represent the
shape of the input to the generator. ResNet stands for residual network (details
in Table 4.2)

Layer Kernel size Output
(nf, k, s)

Shortcut - h/4 x w/4 x 128

Convolutional, instance normalization, ReLU [3,3,1] h/4 x w/4 x 128
Convolutional, instance normalization [3,3,1] h/4 x w/4 x 128

Addition - h/4 x w/4 x 128

Table 4.2: Architecture of residual network (ResNet) used in generators of
CycleGAN. nf, k and s represent the number of filters, kernel size and stride
respectively. (h,w) represent the shape of the input to the generator.
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Layer Kernel size Output
(nf, k, s)

Convolutional, LeReLU [4,4,2] h/2 x w/2 x 64
Convolutional, LeReLU [4,4,2] h/4 x w/4 x 128
Convolutional, LeReLU [4,4,2] h/8 x w/8 x 256
Convolutional, LeReLU [4,4,1] h/8 x w/8 x 512
Convolutional [4,4,1] h/8 x w/8 x 1

Table 4.3: Architecture of discriminators used in CycleGAN. nf, k and s repre-
sent the number of filters, kernel size and stride respectively. (h,w) represent
the shape of the input to the generator.

erator has a short-cut connection – the output of the last convolutional layer

of the decoder is added to the input to the generator (encoder) which becomes

the final output of the generator. For details of number of filters nf, kernel size

k and stride s used in each individual convolutional and transposed convolu-

tional layers, refer to Table 4.1.

The architecture used for discriminator4 is presented in Table 4.3. It has

five convolutional layers, the first four of which are followed by leaky rectified

linear unit (LeReLU) [83] non-linear activation. The slope of all LeReLU func-

tions are set to 0.2. Since, we train the discriminator with a least squares loss

there is no non linear activation after the last convolution layer in the discrim-

inator. For details of number of filters nf, kernel size k and stride s used in each

individual convolutional layer of the discriminator, refer to Table 4.3.
4Similar to the generators, both the discriminators have identical architectures. Hence, we

explain the architecture of only one discrminator.
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4.3.2 Adaptation System Training

In this section, we explain the training process of adaptation system. In

Section 4.2, we discussed baseline system. It was trained on telephone domain

data and tested on microphone domain data. For the adaptation system, the

x-vector network and PLDA were same as in the baseline. Feature adaptation

was done in the evaluation stage. First, the log mel-FB features of the eval-

uation corpus were mapped from microphone to telephone domain by forward

passing through the GT→S generator of CycleGAN network. Then, the mapped

features were used to extract the x-vectors for the evaluation data and used

for PLDA scoring. As explained above, CycleGAN is at the heart of adaptation

system. We first explain the datasets used for training CycleGAN and then we

give the training details.

4.3.2.1 Description of Source and Target Domain Datasets

Telephone domain data (source domain) used to train CycleGAN system was

the same as the data used to train x-vector system. It consisted of recordings

from datasets SRE04-10, Mixer6 and Switchboard 1-Phase 1, 2, and 3. This

comprised of 90946 utterances from 6986 speakers. Microphone data used

in CycleGAN training was sampled from two corpora: Development corpus of

SITW (referred to as SITW dev) and VoxCeleb1 [53]. Together they consist

of 24581 utterances. SITW dev contains 4439 utterances from 119 speakers.
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SITW evaluation corpus (referred as SITW eval) was used to evaluate the sys-

tem. No speaker overlap exists between SITW eval and dev corpora. Training

of CycleGAN does not require speaker labels from both the domains. The mi-

crophone speech was down-sampled to 8 kHz to match the sampling frequency

of telephone speech.

4.3.2.2 CycleGAN Training Procedure

Similar to x-vector system, CycleGAN system was trained on 40-dimensional

log mel-FB features with short time centering. Energy VAD was applied on

centered features to remove the non-speech frames. Two mini batches of fea-

tures were sampled randomly from source and target domain during each train-

ing step. Since no parallel data exists between both the domains, the batches

were drawn in a completely random fashion. The sizes of both mini batches

were set to 32. For the number of contiguous frames sampled from each ut-

terance (sequence length, denoted as F in Table 4.4), we experimented with

sequence lengths 11 and 127. Since we used 2D CNNs, all the mini batches

were arranged as four dimensional tensors of size (32, 1, F, 40). The model was

trained for 50 epochs. Each epoch was set to be complete when all the telephone

utterances have appeared once in that epoch. Adam Optimizer was used with

momentum β1 = 0.5 as suggested by [84]. The learning rates for the generators

and discriminators were set to 0.0003 and 0.0001 respectively. The learning
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rates were kept constant for the first 15 epochs and, then, linearly decreased

until they reach the minimum learning rate (1e-6). The cycle loss weight was

set to 2.5 and adversarial loss weight was set to 1.0. We used PyTorch [75, 85]

for the CycleGAN implementation.

4.3.3 Adaptation Results

Table 4.4 presents results of both baseline system and two adaptation sys-

tems used in this work. Both the adaptation systems differ in the way the

respective CycleGANs used in adaptation were trained.

As discussed in Section 4.3.1.1, CycleGAN was trained using a combination

of cycle-consistency and adversarial losses. The first adaptation system used

a CycleGAN trained with identity loss along with the above two losses men-

tioned(details in Section 4.3.1.2 and Equation 4.10). The system was termed

as ‘adaptation system using CycleGAN trained with identity loss’. The advan-

tage of using identity loss for training CycleGAN was two fold – it acted as a

regularizer and it helped the generators learn to preserve useful information

while trying to achieve domain transfer. However, it increased the training

time of CycleGAN since features from both domains were passed through each

generator. For instance, source domain features of training data were passed

through GS→T to minimize the adversarial and cycle consistency losses. Ad-

ditionally, the target domain features of training data were passed through
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SITW Core SITW Assist-Multi
EER DCF EER DCF

Baseline System 10.14 0.6842 12.72 0.6941

Adaption System using
CycleGAN trained

with identity loss (F-11) 9.74 0.6754 12.25 0.6816
with short-cut connection (F-11) 9.19 0.6649 11.51 0.6797
with short-cut connection (F-127) 8.87 0.6548 10.78 0.6643

Table 4.4: Comparison of CycleGAN domain adaptation on the SITW eval (F
stands for sequence length used to train CycleGAN).

the same generator to minimize identity loss. This adaptation system yielded

improvements over baseline system but slowed down the training process.

One other way to help the generators learn to preserve information was to

add a short cut connection from input to output. The input is added to the

output of last convolutional layer. Hence, the overall output of the generator is

given by x + conv(x), where x is the the input to the generator. The short-cut

connection was shown as a part of the generator in Table 4.1. For the CycleGAN

trained with identity loss, the generator architecture is similar to Table 4.1 but

without the short-cut connection. Since, the short-cut connection preserved the

information, identity loss was not used in the training. The objective used in

training was Equation 4.7. This adaptation system, was referred as ‘adaptation

system using CycleGAN trained with short-cut connection’. As observed from

the table, CycleGAN trained with short-cut connection yielded better results

than the one trained with identity loss. The former also was faster to train
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compared to the later. Both the CycleGANs discussed so far were trained with

11 frames as input (represented as F=11 in the table). We then experimented

with training the generator with a longer context (F=127) which yielded better

results than the one trained with 11 frames. For the rest of this chapter all the

CycleGANs were trained with a short-cut connection in the generator with the

objective Equation 4.7 and with 127 number of frames as input.

4.3.4 Adaptation During Testing vs. Adaptation

During Training

The experiments in previous section fall under the ‘adaptation during test-

ing’ scheme, since the evaluation data was mapped to source domain data be-

fore extracting the x-vectors. In this section, we compare it with ‘adaptation

during training’ - adapting the training corpora to target domain using GS→T.

The x-vector network was trained on the mapped features, which are now

in microphone domain. In this scenario, we use the original evaluation data

(no mapping required) and forward pass them through the x-vector network

trained on mapped features. The comparison of both the schemes is presented

in Table 4.5. The adaptation system used in the former scenario is equivalent

to train and test on telephone domain. Hence, termed as telephone system in

Table 4.5. In the later scenario, adaptation system is equivalent to train and
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Domain SITW Core SITW Assist-Multi
train test EER DCF EER DCF

Baseline tel mic 10.14 0.684 12.72 0.694

Telephone tel mic → tel 8.87 0.655 10.78 0.664

Microphone tel → mic mic 8.28 0.643 10.44 0.643

Table 4.5: Adaptation during testing vs. adaptation during training

test on microphone domain. Hence, it is termed as microphone system. The re-

sults suggest that ‘adaptation during training’ yielded better results compared

to its counterpart.

4.4 Low-Resource Domain Adaptation

Our unsupervised adaptation approach using CycleGAN yielded encourag-

ing results on SITW eval as shown in previous section. We used development

portion of SITW and the much larger VoxCeleb1 dataset [53] as target domain

data to train CycleGAN. In this section we experimented with a low-resource

scenario where we have limited amount of data5 from target domain to train

CycleGAN. This is a more practical scenario, since it is not always reasonable

to expect large amounts of data from target domain during the training stage.

To motivate our experiments, we trained a CycleGAN on only SITW dev and

compared it to the CycleGAN we presented in previous section – which was
5Limited amount of data, in this chapter, refers to having lower amount of data (in number

of hours) and also collected from limited number of speakers.
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SITW Core-Core SITW Assist-Multi
EER DCF EER DCF

Baseline system S 10.14 0.6842 12.72 0.6941

Adaptation system 8.87 0.6548 10.78 0.6643
Adaptation system low-resource 9.51 0.6608 11.43 0.6683

Baseline system S & T 7.90 0.6226 10.14 0.6418

Table 4.6: Results of low-resource channel adaptation system

trained on SITW dev and VoxCeleb1. SITW dev has only 191 number of speak-

ers. We refer to the adaptation system that uses CycleGAN trained on limited

amount of data as ‘adaptation system low-resource’. The experimental results

are presented in Table 4.6. In addition to the baseline system that was only

trained on source domain data, referred as ‘baseline system S’, we also com-

pare our adaptation systems with a baseline system that is trained on both

source and target domain. We refer to the later system as ‘baseline system S

& T’. Specifically, it is trained on all the source domain data, mentioned in the

previous section. In addition, we also use SITW dev, which was sampled from

the target domain, to train the ASV system. Since, we used the target domain

data along with its speaker labels we consider the second baseline system as

a supervised adapted system. Hence, the performance of this baseline system

serves as a upper limit for the unsupervised adaptation system.

The results in Table 4.6 demonstrate that CycleGAN trained with more

amount of data performs better than the CycleGAN trained with limited amount
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of data. We attribute the drop in performance to over-fitting phenomenon of

CycleGAN, when it was trained on limited amount of training data. However,

it is not always practical to assume the availability of large amounts of target

domain data during training. In the following section, we present a training

strategy that acts as a regularizer and improves the performance of CycleGAN

trained under low-resource scenario. The specific training strategy we are talk-

ing about is to add noise to the target domain data. Below, we explain the

training procedure of CycleGAN with noise addition.

4.4.1 Training Procedure with Noise Addition

Similar to previous section, we assume the availability of training corpora to

train CycleGAN. It consists of audio samples AS = {aS,i}Ni=1 and AT = {aT,i}Mi=1

drawn from two different domains: source S and target T with distributions

aS,i ∼ qS(a) and aT,i ∼ qT(a) respectively. In this section, we assume M << N .

Noise is then added to the target domain audio samples (procedure in Sec-

tion 4.4.3) which results in a transformed target domain distribution T ′. Audio

samples with noise added to them are represented as AT′ = {aT′,i}Mi=1. Audio

samples from AS and AT′ are considered as the source and target domain distri-

butions to traing the CycleGAN. The rest of the training procedure is identical

to the training procedure in previous section.

Similar to the training procedure in Section 4.3.1.1, speaker labels from
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either domain are not needed to train the feature mapping function. Noise

is added to the target domain audio only during training. During evaluation

original audio samples of the evaluation data sampled from the target domain

data are used to extract filter bank features which are then mapped to the

source domain. Similar to the previous section, the target domain data used to

train and evaluate the feature mapping system has no speaker overlap.

4.4.2 Modified CycleGAN Objectives

As explained in previous section, the target domain audio samples are sam-

pled from the transformed domain (obtained from noise addition) AT′ instead

of the original domain AT. Log mel-filter bank features are extracted from au-

dio samples of source and transformed target domain distributions denoted as

XS = {xS,i}Ni=1 and XT′ = {xT′,i}Mi=1. The distributions in filter bank space are

xS,i ∼ pS(x) and xT′,i ∼ pT′(x) respectively. XS and XT′ are used as features

from two different distributions to train the feature mapping functions.

The generator objective with noise addition to target domain is represented

as in Equation 4.12. Ladv and Lcyc are defined in Equation 4.6 and Equation 4.3

respectively.
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L(GT→S, GS→T, DT, DS,XS,XT′)

= λadvLadv(GT→S, DS,XT′)

+ λadvLadv(GS→T, DT,XS)

+ λcycLcyc(GS→T, GT→S,XS,XT′) (4.12)

4.4.3 Noise Addition Procedure

Noise addition procedure to the target domain audio samples is as follows.

To add noise we used 930 ”noise” samples from MUSAN [47] corpus. Noise was

added as foreground noise [48] at the interval of 1 second with the signal-to-

noise ratio (SNR)s ranging from 0 to 15 dB. The ”music” and ”babble” portions

of MUSAN corpus were not used in this work. Noise addition was done only on

target domain data during the training of CycleGAN system. The original tar-

get domain data (without noise) was not used during training. While forward

passing the SITW eval features through CycleGAN, noise was not added.

4.4.4 Results

In this section, we present results of low-resource adaptation system. The

intuition behind adding noise is that the addition of noise acts as a regularizer
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SITW Core-Core SITW Assist-Multi
EER DCF EER DCF

Baseline system S 10.14 0.6842 12.72 0.6941

Adaptation system low-resource
without noise 9.51 0.6608 11.43 0.6683

Adaptation system low-resource
with noise 8.91 0.6495 10.71 0.6608

Adaptation system 8.87 0.6548 10.78 0.6643

Baseline system S & T 7.90 0.6226 10.14 0.6418

Table 4.7: Results for low-resource channel adaptation trained with noise

during training and prevents over-fitting. Results are in Table 4.7.

Adaptation system LT trained with noise had much better performance com-

pared to Baseline system S and slightly better results compared to Adaptation

system, which was trained with larger target domain data. In next chapter, we

provide extensive empirical evidence that noise addition acts as a regularizer

and prevents over-fitting.

4.5 Summary

In this chapter, we experimented with a channel mismatch scenario where

the ASV system was trained on data acquired using telephone channel and

evaluated on microphone data. To address this we presented an unsupervised

channel adaptation technique via feature mapping. Our feature mapping net-

work is a ‘deep residual convolutional network’ trained on unpaired data ac-
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quired from both the domains using the CycleGAN framework. Our approach

yielded 10.1% and 4.5% relative improvements on EER and minDCF on SITW

core condition, when microphone features were mapped to telephone domain

during evaluation. We also experimented with mapping telephone features to

microphone domain, and use the mapped features for training. This approach

yielded slightly better results compared to the previous approach [30] (details

in Section 4.3).

We also experimented with training the feature mapping network in a low-

resource scenario, where limited target domain data was available for training.

We observed that the CNN tended to overfit in this scenario. To circumvent

this, we presented a simple regularization technique, using which the CNN

trained on limited data performed almost similar to the CNN trained on much

larger data [31] (details in Section 4.4).

The main advantage of our approach is to make use of unpaired real data

from both domains to learn a domain adaptation mechanism, thus, avoiding

the need for using simulation. In the next chapter, we extend this approach to

increase the robustness of SV systems to far-field testing scenarios.
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Far-field Feature Enhancement

5.1 Introduction

Speech signals get contaminated by various background noises, reverber-

ation and other unwanted variabilities present during their acquisition. An

ideal automatic speaker verification (ASV) system should be robust to any

background noises and reverberation effects present. During the time this the-

sis was written, developing robust ASV systems has been a very active research

area. Several challenges were organized such as NIST Speaker Recognition

Evaluation (SRE) 2019, VOiCES from a Distance Challenge [86], and VoxCeleb

Speaker Recognition Challenge 2019. One of the main research topics of 2019

sixth Frederick Jelinek memorial summer workshop was ‘Speaker detection in

adverse scenarios with a single microphone’ [87].
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An ASV system trained solely on clean speech may not perform well on noisy

test conditions. Similarly, a system trained on close talk speech may not per-

form well on far-field test conditions. One approach to improve the robustness

of verification system to degraded speech1 is to train it on noisy and reverber-

ant speech. However, acquiring speech data with speaker labels (also referred

as labelled speech) from such degraded conditions is not very practical, con-

sidering the expenses involved in data acquisition and manual data labelling.

An alternate way to obtain labelled degraded speech for training is to use a

simulation strategy [14, 48]. Noisy data can be created by artificially adding

noise files to the original training data – considered clean and close talk speech

in this chapter. Reverberant speech can be simulated by artificially convolving

room impulse responses (RIRs) with close talk speech [48, 88]. The simulated

degraded speech, along with the original clean training data, can be used to

train the verification system. This method, known as data augmentation, has

proven to be very effective in improving the performance of ASV systems, yield-

ing SOTA results on various tasks [14,15,89]. Data augmentation for x-vector

(and PLDA) training was originally proposed as an inexpensive approach to

gain access to large amounts of speaker labelled data. Training x-vector net-

work on large amounts of degraded speech reduces overfitting, thus improves

the generalization ability of the network. It also enables training larger (deeper
1In this chapter, we use the term degraded speech to refer to reverberant and/or noisy speech
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and wider) x-vector networks, which improves the expressive nature of the em-

bedding networks.

In this chapter, we study training ASV system using data augmentation

from a robustness perspective. Increasing the robustness of the system to far-

field speech by data augmentation can be seen as a supervised domain adap-

tation (SDA) approach (for definition of SDA, refer to Section 2.4.1). The sim-

ulated data, comprising of far-field and noisy speech, is treated as adaptation

data. Adaptation data along with the speaker labels is combined with the orig-

inal clean training data, which is used for training the system. However, such

simulation strategies do not take into account the amount and type of degrada-

tion the test utterances may have. In other words, if the test condition happens

to be different from the training condition, the performance of the system suf-

fers. A recent study on Speaker Diarization on children’s speech [90] demon-

strates various challenges that x-vector systems face in adverse scenarios.

In this work, we experimented with a ‘single channel wide-band far-field

feature enhancement’2 approach to improve (enhance) the quality of speech

features with the end goal of improving the performance of ASV systems. Our

approach was to train a DNN to enhance the features of evaluation data, con-

sidered as degraded. The network was trained on acoustic features extracted

from both degraded and clean data. Speaker labels were not required to train
2We used the term feature enhancement to refer to improving the quality of acoustic fea-

tures. Speech enhancement, on the other hand, refers to improving intelligibility and/or overall
perceptual quality of degraded speech signal. In this work we focus on feature enhancement.
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network. Once trained, the DNN mapped the features of evaluation data to

clean domain. The enhanced features of evaluation data were used to extract

speaker embeddings, which were then used for scoring. We experimented with

two enhancement networks in this work (details below in this section), both

were trained to enhance acoustic features extracted from single channel far-

field wide-band speech. Hence, we call our approach as ‘single channel wide-

band far-field feature enhancement‘. Since, the training of the enhancement

networks does not require access to unlabelled data, the enhancement ap-

proach can be treated as a special case of ‘unsupervised domain adaptation’

(UDA) approach.

We experimented with two types of ASV systems in this chapter: one trained

solely on clean training data, and other trained using data augmentation method

described above. The system trained only on clean data and tested on degraded

data can be seen as operating under mismatched conditions. Hence, the system

would suffer a loss in performance. The enhancement network, in this case,

helps improve the performance by mapping the degraded evaluation features

to clean domain. Hence, the ASV system trained on clean data and equipped

with an enhancement network, can be seen as trained and evaluated on clean

condition. This approach yielded encouraging results, as shown later in Sec-

tion 5.3 and Section 5.4. The approach also falls under ‘adaptation during

testing’ scenario (details in Section 2.4.2.1).
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The motivation for using enhancement to improve the performance of ASV

system remains clear in the above scenario where the system was trained us-

ing only data from clean domain. In the second scenario, where ASV system

was trained using data augmentation, we investigated if enhancing the test

features would further improve the performance. From a robustness perspec-

tive, training the system using data augmentation procedure described earlier

can be considered as multi-condition training (since, training data comprised

of clean, noisy and far-field speech). Enhancement, in this case, would be ben-

eficial if the test condition happens to be different from any of the conditions

seen during training. From domain adaptation perspective, as explained ear-

lier, training the ASV system using data augmentation can be considered as

a SDA approach to increase the robustness of the system to degraded testing

conditions. Since, the training of enhancement network required unlabelled

data, enhancement approach can be considered as an unsupervised domain

adaptation approach. Hence, in this scenario our approach was motivated to

investigate if an ASV system trained using multi-condition data (a SDA ap-

proach) would further benefit from enhancement (an UDA approach).

Training the enhancement networks required access to unlabelled data from

both degraded and clean speech. We experimented with both unsupervised and

supervised approaches3 for training the enhancement networks in this work.
3The usage of the terms supervised and unsupervised approaches to train the enhancement

networks should not be confused with supervised and unsupervised domain adaptation ap-
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Unsupervised and supervised enhancement approaches stand for the usage of

unpaired (non-parallel) and paired (parallel) degraded-clean speech to train

the enhancement network. For details on description of unpaired and paired

data, refer to Section 2.4.3. The enhancement networks trained with unsuper-

vised and supervised approaches were termed as unsupervised enhancement

network (UEN) and supervised enhancement network (SEN) respectively.

We first experimented with unsupervised enhancement approach (details

in Section 5.3). Motivation behind taking an unsupervised approach for train-

ing the Unsupervised Enhancement Network (UEN) was to incorporate the

knowledge of the target (adverse) domain in the enhancement training pro-

cedure with the help of some unlabeled training data (different from evalua-

tion) from that domain, thus avoiding the need for simulation. Encouraged by

the success of CycleGAN [16] for the unsupervised channel adaptation task in

previous chapter, we experimented with CycleGAN framework for the unsu-

pervised enhancement task (details in Section 5.3). UEN is the generator in

CycleGAN that maps features from degraded domain to clean domain. As ex-

plained in previous chapter, CycleGAN trained using unpaired data optimizes

a combination of cycle-consistency and adversarial losses [28]. Adversarial loss

helps the network learn it’s own loss function [29] to make the target domain

proaches. The supervised (or unsupervised) enhancement approach refers to usage of paired
(or unpaired) data for training the enhancement network. The supervised (or unsupervised)
domain adaptation approach refers to usage of labelled (or unlabelled) data to adapt the system
to some target domain.
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features match with the source domain features (clean in this case).

supervised enhancement network (SEN), on the other hand, was trained on

paired reverb-clean data. The paired training data was obtained by simulation

– reverberant speech was simulated from clean training speech, A conventional

approach to train enhancement network with paired data is to force the output

features of enhancement network to appear same as the clean features, usually

achieved by minimizing distance metrics like L1 or MSE. We provide training

details of SEN and a comparison of both approaches in Section 5.4.

Along with SEN and UEN, we also experimented with a domain adapta-

tion network (DAN) that maps the far-field features to some chosen domain

different from clean. domain adaptation network (DAN) was mainly targeted

at improving the performance of ASV system trained on multi-condition data.

The motivation behind mapping far-field features to some other domain but

clean using a DAN was as follows: if there existed a domain which improved

the performance of ASV system when trained on, compared to performance of

a system trained on clean domain, then, mapping the evaluation features to

that domain would improve the performance. Similar to UEN, DAN was also

trained using a CycleGAN on unpaired training data obtained from reverb do-

main and the chosen domain (details in Section 5.5).

SEN, UEN and DAN were all trained on log mel-FB features. Hence, the

enhancement was termed as feature enhancement. Since, all these networks
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were trained using unlabelled data, the overall adaptation procedure was un-

supervised.

Our experimental approach was as follows: we first trained SEN, UEN

and DAN with their respective training data and objectives. Once trained,

we used them individually to enhance/adapt the features of the test data (en-

rollment and evaluation data) before extracting x-vectors. In the case where

multi-condition data was available to train the system, we also used the net-

works described above to enhance/adapt the features of multi-condition data

and train the x-vector on enhanced features. In the later case adaptation was

done during both training and testing.

The rest of the chapter is organized as follows. In Section 5.2 we first de-

scribe both the baseline ASV systems used in this work. In Section 5.3, we

describe the training details of UEN and provide experimental results of us-

ing UEN to improve the performance of an ASV system trained solely on clean

data (without any data augmentation). In Section 5.4, we describe the train-

ing procedure of SEN and compare it with UEN. In Section 5.5, we describe

the training procedure of DAN and compare it’s performance with UEN. In

Section 5.6, we discuss the efficacy of using all three networks in improving

the performance of ASV system trained using multi-condition data. Finally in

Section 5.7, we summarize the experimental observations and we highlight the

main contributions of this chapter.
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5.2 Baseline Systems

In this chapter, we mainly consider two baseline ASV systems: one trained

solely on clean data (without any data augmentation) and other trained on

multi-condition data (comprised of clean, noisy and far-field corpora). The for-

mer baseline was referred as ‘baseline ASV clean’ in this chapter, while the

later was referred as ‘baseline ASV multi-condition’. We refer to both the base-

lines as systems trained on source domain data (with or without data aug-

mentation) and tested on target domain data without any enhancement. All

the baseline systems were trained on wide-band (WB) data. The dimension of

MFCC was 40. For the x-vector network in our baseline system, we experi-

mented with an ETDNN architecture [15]. ETDNN improves upon TDNN [14]

by interleaving dense layers in between the convolution layers. More details

on the ETDNN network and the pipeline can be found in [15,87].

5.2.1 Details of Training Data

The clean training data used for training ‘baseline ASV clean’ was obtained

from VoxCeleb1 [53] and VoxCeleb2 [91]. The files from the same YouTube

video of VoxCeleb1 and VoxCeleb2 were concatenated, denoted as VoxCele-

bCat, to obtain longer audio sequences. Since VoxCelebCat was collected in

wild conditions and contained unwanted background noise, we filtered the files
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based on their SNR, estimated by Waveform Amplitude Distribution Analy-

sis (WADASNR) algorithm [31, 32, 92, 93]. We retained the files with SNR

greater than 19 decibel (dB). The high SNR signals, thus obtained, termed

as VoxCelebCat clean, consisted of 1665 hours of speech from 7104 speakers.

Augmentation data used for training the ‘baseline ASV multi-condition’

was obtained by simulation. Simulation strategy we followed in this work

is similar to the work in [14]. We applied two types of simulation - addi-

tive noise based and simulation of far-field speech. We used noise files from

MUSAN [47] corpus for additive noise based simulation and RIRs available at

http://www.openslr.org/26, which consisted of both simulated and real

RIRs, for far-field speech simulation. MUSAN corpora consists of noise files

from three different subcategories: music files from several genres (≈ 42 hours

and 31 minutes), speech from twelve languages (≈ 60 hours) and noise files con-

sisting of wide assortment of technical and non-technical noises (≈ 6 hours).

The simulated RIRs used for far-field simulation were divided into three sets

based on the ranges from which width and length of the room were sampled

from: small, medium and large room sets. The width and length of small,

medium and large rooms sets were uniformly sampled from ranges 1-10m, 10-

30m and 30-50m respectively. In all the three sets, room height was sampled

uniformly from 2-5m; and absorption coefficient was sampled uniformly from

[0.2; 0.8]. In each set, 200 rooms were sampled and 100 RIRs were sampled in
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each room based on speaker and receiver position. The distance between the

speaker and the receiver was not greater than 5m.

The goal of our work in this chapter is to develop adaptation techniques to

make ASV system robust to far-field and noisy test conditions. Hence, for the

robustness study we tested our systems on both real speech acquired in wild

(uncontrolled) conditions and simulated test conditions. An ideal adaptation

system should generalize to unseen far-field and noisy conditions. To simulate

such conditions, we made sure there was no overlap between the noise files

and RIRs used for simulating the train and test conditions. To accomplish this,

the noise, speech and music portions of MUSAN corpus were split into two sets:

one for simulating the train speech and other for simulating the test conditions.

We followed a 90-10 split strategy: 90% of noise files were used for simulating

the training data and rest 10% were used for simulating the test corpora. In

addition to noise files from MUSAN, we also used noise files acquired from

Chime-3 [94] corpora for creating noisy test corpora, referred as chime3bg.

Simulated RIRs were first split into four different subsets based on their

Reverberation Time (RT)60 – the time taken for the sound pressure level to

decrease by 60 dB value. Sabine’s formula was used for computing RT60 from

RIRs and is given by
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RT60 ≈ 0.1611sm−1V/Sα (5.1)

• RT60 in Equation 5.1 stands for time taken for the sound pressure level

to decrease by 60 dB value, in seconds,

• V stands for the volume of the room, in cubic meters,

• S stands for the surface area of the room, in square meters, and

• α stands for the absorption coefficient value.

The RT60 ranges considered were 0.0-0.5, 0.5-1.0, 1.0-1.5 and 1.5-4.04. Within

each subset 90-10 strategy was used for splitting RIRs into train and test sets.

Similar splitting strategy was applied to real RIRs (315 in number) also. Figure

5.1 summarizes the noise and RIR files used for simulation in this work.

‘Baseline ASV clean’ was trained on VoxCelebCat clean described above. To

train ‘baseline ASV multi-condition’, VoxCelebCat clean was combined with a

random subset of VoxCelebCat noise, VoxCelebCat music, VoxCelebCat bab-

ble and VoxCelebCat reverb noise. VoxCelebCat noise, VoxCelebCat music and

VoxCelebCat babble, together referred as VoxCelebCat addtitive, were obtained
4RIR to RT60 mapping is available in the file https://github.com/

jsalt2019-diadet/jsalt2019-diadet/blob/master/src/kaldi_augmentation/
simrir2rt60.info
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Files used for simulation

Far-field simulation using
simulated (#60000) and real (#325) RIRs.

RT60 range

0.0-0.5
(20642)

Train
(18449)

Test
(2193)

0.5-1.0
(7962)

Train
(7335)

Test
(627)

1.0-1.5
(9825)

Train
(8936)

Test
(889)

1.5-4.0
(21571)

Train
(19280)

Test
(2291)

real
(325)

Train
(285)

Test
(40)

Additive noise simulation using files
from MUSAN [47] corpora & chime3bg.

Noise type

MUSAN noise
(930)

Train
(837)

Test
(93)

MUSAN speech
(426)

Train
(384)

Test
(42)

MUSAN music
(645)

Train
(581)

Test
(64)

chime3bg
(35)

Train
(30)

Test
(5)

Figure 5.1: Summary of additive noise files and RIRs used in simulation of
train and test data. Far-field simulation was done using simulated and real
RIRs. Simulated RIRs were further split into four different sets based on their
RT60 values. Additive noise simulation was done by using MUSAN corpora
and noise files from Chime3 (denoted as chime3bg). The files used for train
and test simulation were obtained by making a 90-10 split. Total number of
files in each category are shown in parenthesis.

by adding assorted noise, music and speech files from MUSAN corpus to Vox-

CelebCat clean. The SNR of the noisy files obtained were randomly chosen

from 15, 10, 5 and 0 dB. noise files from MUSAN were added as foreground

noise [48], music and speech were added as background noise. The multi-

condition data also consisted of far-field speech, termed as VoxCelebCat re-

verb noise, which was obtained by first convolving the simulated RIRs (de-

scribed above) with VoxCelebCat clean and then adding the noise files from

MUSAN corpus as foreground noise. Simulated RIRs whose RT60 were in

range 0.0-1.0 were used in simulation. The files used for simulation were sam-

pled only from the training portion, as described in Figure. 5.1. Finally, the

random subset was chosen to be twice the size of VoxCelebCat clean (in terms

of number of utterances). Table 5.1 summarizes the datasets used for training

the baseline systems.
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Train
Real Simulated
Clean Additive noise Far-field

VoxCelebCat VoxCelebCat VoxCelebCat VoxCelebCat VoxCelebCat
clean noise babble music reverb noise

Table 5.1: Summary of the datasets used in training the baseline ASV sys-
tems. We experimented with two baseline systems in this work: ‘baseline ASV
clean’ and ‘baseline ASV multi-condition’. ‘baseline ASV clean’ was trained
only on VoxCelebCat clean. ‘baseline ASV multi-condition’ was trained by com-
bining VoxCelebCat clean with a random subset of simulated datasets shown
in the Table. For more details on individual datasets refer to Section 5.2.1

5.2.2 Datasets Used For Testing

The main goal of the enhancement work in this chapter is to make ASV

system robust to far-field and noisy test conditions. To facilitate the study,

we first obtained far-field and noisy test conditions via simulation. Once we

demonstrate the effectiveness of our enhancement approach on simulated test

conditions, we also test our approach on real speech acquired in wild (uncon-

trolled) conditions. Below we explain datasets used for testing.

5.2.2.1 Real Datasets Used For Testing

For the real testing conditions, we used three different corpora [87] collected

in different scenarios:

• Meeting (AMI Meeting Corpus (AMI) [95]): with a setting of 3 different meeting

rooms with 4 individual headset Microphones, 8 Multiple Distant Microphones

forming a microphone array; 180 speakers x 3.5 sessions per speaker (sps). Since
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we are exploring enhancement with single microphone, we focused only on the

mix Headset.

• Indoor controlled (Stanford Research Institute (SRI) data [96]): with a setting

of 23 different microphones placed throughout 4 different rooms; controlled back-

grounds, 30 speakers x 2 sessions and 40 h, live speech along with background

noises (TV, radio).

• Wild (BabyTrain): with an uncontrolled setting, 450 recurrent speakers, up to

40 sps (longitudinal), 225hrs; suitable for diarization and detection.

The enrollments for speaker verification were generated by accumulating

non-overlapping speech (5, 15 and 30s duration) of every target speaker along

one or multiple utterances. For the test, we cut the audio into 60 second

chunks. We did a cartesian product between the enrollments and the test seg-

ments to generate all possible trials. Then, based on certain criteria, some tri-

als were filtered out. For example, same session and same microphones were

not allowed to produce a target-trial pair. For more details on the testing cor-

pora refer to [87].

5.2.2.2 Simulated Datasets Used For Testing

We treated SITW [68, 97] as clean test set in this chapter. We obtained all

simulated test conditions from SITW eval core-core conditions, simply referred
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as SITW. Similar to the training datasets (discussed in Section 5.2.1), we ex-

perimented with two types of simulations: far-field and additive noise. Simu-

lated reverberant test set was obtained from SITW, labelled as SITW reverb, by

convolving speech files from SITW with simulated and real RIRs (discussed in

Section 5.2.1 and Figure. 5.1). We split the simulated RIRs into four sets based

on their RT60 values: 0.0-0.5, 0.5-1.0, 1.0-1.5, 1.5-4.0. By using these four sets

of RIRs we obtained four different copies of simulated reverberant speech. We

also used real RIRs to obtain a copy of reverberant speech. All the five copies of

reverberant speech, obtained via simulation, is referred as SITW reverb in this

chapter. We test each system individually on these five different copies and we

take an average of all the results.

Though our enhancement networks were trained to perform dereverbera-

tion task, the networks should be able to enhance noisy test signals as well, to

make the overall setup work in wild conditions, where background noise also

exist in speech recordings. To make sure our enhancement setup also enhances

noisy signals, we prepared simulated noisy test conditions by adding noise to

SITW. We added music, speech and noise files from MUSAN corpus to SITW.

The resultant noisy test conditions were termed as SITW music, SITW babble

and SITW noise respectively. We also added noise files from chime3bg to SITW

to obtain a noisy test set termed as SITW chime3bg. The SNRs used for testing

were different from training. For testing we used SNRs 17, 12, 7, 2 and -5 dB
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whereas for training we randomly sampled SNR from 15, 10, 5 and 0 dB. We

finally average the results of all individual SNRs within each noisy condition.

Thus, our overall setup ensured we test on unseen conditions (music, babble

and chime3bg) and SNR levels.

We ensured noise files and RIRs used for training and testing simulations

were disjoint, as shown in Figure 5.1. Figure 5.2 shows a summary of all test

corpora used for evaluation in this work.

Test Data Summary

Real Data
(Details in 5.2.2.1)

SITW AMI SRI BabyTrain

Simulated Data
(Details in 5.2.2.2)

Far-field

SITW reverb

Simulated RIRs
(RT60 range)

0.0-0.5 0.5-1.0 1.0-1.5 1.5-4.0

Real RIRs

Additive Noise
(SNRs: 17,12,7,2 & -5 dB)

SITW noise SITW babble SITW music SITW chime3bg

Figure 5.2: Summary of test datasets used in far-field adaptation study

5.2.3 Results of Baseline Systems

In this section, we present results of the two baseline systems – clean and

multi-condition. Our experimental approach was as follows: we first used the

‘baseline ASV clean’ to tune and demonstrate the effectiveness of enhancement

networks – UEN and SEN – in improving the performance of speaker verifica-

tion. The testing was done on both simulated and real conditions. Once tuned,

we tested the effectiveness of the enhancement networks to improve the perfor-
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Test Condition RIR Type, RT60 range EER minDCF
SITW -,- 5.02 0.327

SITW reverb

Simulated, 0.0-0.5 5.84 0.405
Simulated, 0.5-1.0 6.95 0.504
Simulated, 1.0-1.5 6.34 0.459
Simulated, 1.5-4.0 6.03 0.415

Real, - 6.53 0.450
SITW reverb Average 6.34 0.447

Table 5.2: Results of ‘baseline ASV clean’ tested on SITW and SITW reverb.
For details on SITW reverb, refer to Section 5.2.2.2.

mance of ASV system trained on multi-condition data by testing on real data

acquired from wild conditions.

We first present results of ‘baseline ASV clean’, which was trained on Vox-

CelebCat clean (details in Section 5.2.1) and tested on simulated conditions (de-

tails in Section 5.2.2.2). Table 5.2 presents results on SITW and SITW reverb.

SITW reverb consisted of several test conditions, which were classified based

on the RIR type used (simulated or real) and the RT60 value of the RIR (details

in Section 5.2.2.2). The final result was presented by taking an average of all

the test conditions. It can be observed from the results that reverberation dete-

riorates verification performance compared to clean testing conditions: SITW

and SITW reverb yielded 0.327 and 0.447 respectively (in terms of minDCF).

Hence, the usage of enhancement of far-field speech to improve the verification

performance was justified.

Speech acquired in wild conditions can also have different types of back-

ground noises. To make the ASV system perform well in wild conditions,
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we should make it robust to noisy speech as well. In order to study this, we

tested ‘baseline ASV clean’ on four noisy conditions – SITW noise, SITW bab-

ble, SITW music and SITW chime3bg – obtained via simulation (details in Sec-

tion 5.2.2.2). Results are presented in Table 5.3. We tested each noise condition

at different SNR levels, different from SNRs used in training. Finally, we av-

erage the results across all SNRs within each noise condition. We represented

the original SITW condition (considered as clean) as having infinite (∞) SNR.

Some observations from the table:

• Compared to clean condition (∞ SNR), the verification performance dete-

riorated slightly at SNR condition (17 dB). For instance, SITW music at

17 dB obtained 0.345 minDCF compared to 0.327 of SITW. This observa-

tion remains consistent across all four test conditions.

• When the SNR dropped, the performance dropped significantly. At -5

dB (very low SNR condition), the performance deteriorated quite signifi-

cantly (0.864 on SITW music compared to 0.327 on SITW).

• Among all the conditions, babble condition was more challenging – ob-

tained very poor results compared to the other three conditions.

As explained earlier, we used ‘baseline ASV clean’ and simulated test condi-

tions to tune the enhancement networks and demonstrate the effectiveness of

enhancement in improving the speaker verification performance. Once tuned,

116



CHAPTER 5. FAR-FIELD FEATURE ENHANCEMENT

SNR SITW music SITW babble SITW noise SITW chime3bg
(dB) EER minDCF EER minDCF EER minDCF EER minDCF

Baseline ASV clean
∞ 5.02 0.327 5.02 0.327 5.02 0.327 5.02 0.327
17 5.14 0.345 5.36 0.349 5.14 0.351 5.10 0.341
12 5.55 0.368 5.96 0.386 5.54 0.381 5.44 0.380
7 6.36 0.424 7.6 0.497 6.35 0.440 6.48 0.473
2 8.65 0.563 12.94 0.764 8.00 0.544 9.81 0.693
-5 16.13 0.864 28.48 0.999 12.98 0.754 21.46 0.993

Avg. 8.37 0.513 12.07 0.599 7.60 0.494 9.66 0.576

Table 5.3: Results of ‘baseline ASV clean’ tested on four different noisy condi-
tions: SITW music, SITW babble, SITW noise and SITW chime3bg. For com-
parison, we presented the results of original SITW (represented with ∞ SNR).
For details on the testing conditions, refer to Section 5.2.2.2.

we used those enhancement networks to improve the verification performance

when tested on wild conditions. In the second scenario, we considered train-

ing ASV system on both clean data and multi-condition data, which is a more

practical scenario. We present baseline results on three different real datasets

– AMI, SRI and BabyTrain (details in Section 5.2.2.1) – in Table 5.4. As can

be observed from the table, all the three datasets posed significant challenge

to the verification performance (yielded very high EER and DCF). The SDA

approach to train ASV system on multi-condition data improved the results

compared to the system trained on clean.
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AMI SRI BabyTrain
EER minDCF EER minDCF EER minDCF

Baseline ASV system
clean 26.51 0.940 21.11 0.767 28.13 0.970
multi-condition 18.79 0.688 14.55 0.583 11.72 0.553

Table 5.4: Results of baseline ASV systems on real test conditions. For de-
tails on train and real test conditions, refer to Section 5.2.1 and Section 5.2.2.1
respectively.

5.3 Feature Enhancement with Unpaired

Data

The main aim of this chapter was to improve the robustness of ASV system

when tested on degraded speech (reverberant speech with background noise).

Our approach to achieve this was to enhance the features of the evaluation

data and use those enhanced features to extract x-vectors for scoring. We ex-

perimented with two enhancement networks: unsupervised enhancement net-

work (UEN) [32] and supervised enhancement network (SEN), trained using

unpaired (non-parallel) and paired (parallel) data, respectively. In this section,

we present the training details of UEN and its use in improving the perfor-

mance of ASV system trained on clean condition. Our experimental approach

was as follows: we first demonstrated the usage of UEN in enhancing the fea-

tures of degraded speech obtained via simulation. We used those enhanced

features to improve the performance of ASV system trained on clean condition.

We compared the result with ‘baseline ASV clean’ (discussed in Section 5.2).

118



CHAPTER 5. FAR-FIELD FEATURE ENHANCEMENT

We then used this UEN to improve the performance of system trained on multi-

condition data (discussed in Section 5.6.1).

UEN was trained using the CycleGAN framework [16]. Unpaired training

data was gathered from clean (source) and far-field (target) domains. CycleGAN

framework consist of two generators: one maps features from source to target

and the other maps features from target to source. The former generator is

termed as UEN. Details on CycleGAN framework (loss functions and architec-

tures used in training) are explained in Section 4.3.1.

The main advantage of training an enhancement network on unpaired data

is that real data from both domains can be used for training, thus, avoiding

the need for simulation. To validate this, we experimented with both simu-

lated and real training data, and compared their results. We used VoxCeleb-

Cat clean (details in Section 5.2.1) as source domain for all the experiments in

this chapter. For training the UEN with simulated data, we used VoxCelebCat

reverb noise (details in Section 5.2.1) as target domain data. We also experi-

mented with VoxCelebCat reverb, which was simulated similar to VoxCelebCat

reverb noise except that noise from MUSAN was not added after reveberant

speech was obtained. For experiments with using real data as target domain,

we considered the domains AMI, SRI and BabyTrain. We used training data

(different from evaluation data) from those individual domains to train the

UEN (for SRI, since training data does not exist, we used training data from
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Chime5 for training the UEN). For more details on training datasets, refer to

Section 5.2.1.

The UEN trained on simulated data was evaluated on both simulated and

real datasets. The UENs trained on real data from individual domains were

only evaluated on those domains (for example, UEN trained on AMI was eval-

uated only on AMI). For more details on real and simulated test corpora used

in chapter, refer to Section 5.2.2. Table 5.5 summarizes the training and test

datasets used for individual UEN networks.

Train Datasets Test Datasets
Source Target Simulated Real
Clean Far-field SITW noisy SITW reverb SITW AMI SRI BabyTrain

VoxCelebCat clean

VoxCelebCat reverb(sim) ✓ ✓ ✓ ✓ ✓ ✓
VoxCelebCat reverb noise(sim) ✓ ✓ ✓ ✓ ✓ ✓
AMI train(real) ✗ ✗ ✗ ✓ ✗ ✗

Chime5 train(real) ✗ ✗ ✗ ✗ ✓ ✗

BabyTrain train(real) ✗ ✗ ✗ ✗ ✗ ✓

Table 5.5: Overview of datasets used for training and testing unsupervised en-
hancement networks (UENs). We experimented with several unpaired training
datasets. The target domain data for training the UEN was obtained either via
simulation (denoted as sim in the table) or by sampling from target domain
(denoted as real in the table). The source (clean) domain data for all the UENs
remains the same. For description of training and testing datasets, refer to
Section 5.2.1 and Section 5.2.2 respectively.

The training procedure was as follows: CycleGAN framework was trained

on 40-dimensional log mel-FB features. Short-time mean centering and energy

based VAD was applied on the features. Two batches of features were sampled

from clean and degraded speech during each training step. Since, the training

process was unsupervised both the mini batches were drawn in a completely
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random fashion with no correspondence between the two batches. Batch size

and sequence length were set to 32 and 127 respectively. The model was trained

for 100 epochs. Each epoch was set to be complete when one random sample

from each of the utterances of clean training corpus has appeared once in that

epoch. Adam Optimizer was used with momentum β1 = 0.5. The learning rates

for the generators and discriminators were set to 0.0003 and 0.0001 respec-

tively. The learning rates were kept constant for the first 15 epochs and, then,

linearly decreased until they reach the minimum learning rate (1e-6). The cycle

and adversarial loss weights were set to 2.5 and 1.0 respectively. More details

on the objectives used for training CycleGAN can be found in Section 4.3.1 and

in our work on domain adaptation [30–32].

5.3.1 Unsupervised Feature Enhancement (UEN)

with Simulated Data

As explained earlier, our far-field enhancement procedure involved training

a CycleGAN with unpaired data and then use UEN – the generator that maps

features from far-field (target) domain to clean (source) domain – to enhance

the features of evaluation data. In this section, we experimented with using

simulated far-field data (obtained from clean data) for training the UEN. We

experimented with two UENs, each differ from the target domain data used for
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training. We train an UEN with VoxCelebCat reverb as target domain data and

a second UEN with VoxCelebCat reverb noise as target domain. The source

domain data, VoxCelebCat clean, was the same for both the networks. The

former was termed as UEN trained without noise whereas the later was termed

as UEN trained with noise. The ASV system equipped with UEN trained with

noise was termed as ‘UEN ASV with noise’. Similarly, the ASV system whose

test data was enhanced with UEN trained without noise was termed as ‘UEN

ASV w/o noise’.

Figure 5.3 shows comparison of speaker verification performance of ‘UEN

ASV with noise’ and ‘UEN ASV w/o noise’ when evaluated on SITW and SITW

reverb. We compared these systems with ‘baseline ASV clean’ - ASV system

trained on VoxCelebCat clean and evaluated on SITW and SITW reverb (with-

out enhancement). Figure 5.3a presents comparison of minDCF of both the

systems on SITW as a function of number of iterations used for training the

UEN. Figure 5.3b compares the results of both the UEN ASV systems on SITW

reverb. The plot presents results averaged across all the SITW reverb test con-

ditions created using the simulated and real RIRs. For details on SITW reverb

refer to Section 5.2.2.2. For baseline results on SITW and SITW reverb, refer

to Section 5.2.3.

Two main observations can be made from the plot:

1. Both the UEN ASV systems improve over ‘baseline ASV clean’ on both
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(a) SITW (b) SITW reverb

Figure 5.3: Results of unsupervised enhancement on SITW and SITW reverb.
The baseline system was trained on clean and evaluated without any enhance-
ment. Enhancement network trained with VoxCelebCat reverb tends to overfit.
Adding noise to target domain data helped prevent over-fitting.

test conditions. The enhancement approach, though intended to boost the

performance of SITW reverb, also improved the performance of original

SITW which was considered clean test corpora in our work [32].

2. The UEN trained without noise starts to overfit after iteration 10 (Fig-

ure 5.3a) but the UEN trained with noise continue to improve perfor-

mance up to iteration 50 (upon which the performance flattens). Adding

noise to the target domain data, thus, acts like a regularizer [31,32].

The performance of ‘UEN ASV noise’ and ‘baseline ASV clean’ at each in-

dividual RT60 ranges are presented in Table 5.6. The advantage of our en-

hancement approach is clearly evident from the results (yielding 26% relative

improvement in minDCF on average).

The results discussed so far in this section demonstrated excellent derever-

beration capabilities of UEN on simulated far-field test conditions. However, in
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Baseline ASV UEN ASV
clean noise

EER DCF EER DCF
Sim. RIRs
RT60 range

0.0-0.5 5.84 0.405 5.47 0.320
0.5-1.0 6.95 0.504 5.80 0.356
1.0-1.5 6.34 0.459 5.33 0.330
1.5-4.0 6.03 0.415 5.21 0.311

Real RIRs 6.53 0.450 5.66 0.335
Avg 6.34 0.447 5.49 0.330

Table 5.6: Results of unsupervised enhancement using UEN on SITW reverb.
The baseline system was trained on VoxCelebCat clean and evaluated on SITW
reverb. Similar to baseline, enhancement system was trained on clean condi-
tion but SITW reverb was enhanced using UEN during evaluation. UEN in
this table was trained on VoxCelebCat reverb noise and VoxCelebCat clean as
target and source domains respectively.

real world, speech often gets corrupted by several background noises. An ideal,

enhancement system should be able to deal with both far-field speech (derever-

beration task) and additive noise (denosing task). It should also generalize to

unseen conditions seen during the training of enhancement network. To test

the generalization ability of UEN, we evaluated the performance of both the

UEN ASV systems on SITW noisy. As discussed in Section 5.2.2.2, SITW noisy

consists of four different additive noise test conditions - SITW noise, SITW

music, SITW babble and SITW chime3bg. Out of the four different testing

conditions, only MUSAN noise was added to the training data of UEN. The re-

maining three conditions (MUSAN speech, MUSAN music and chime3bg) were

not used during the training of UEN. Hence, these three conditions are consid-
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SNR SITW music SITW babble SITW noise SITW chime3bg
(dB) EER DCF EER DCF EER DCF EER DCF

baseline ASV clean
17 5.14 0.345 5.36 0.349 5.14 0.351 5.1 0.341
12 5.55 0.368 5.96 0.386 5.54 0.381 5.44 0.380
7 6.36 0.424 7.6 0.497 6.35 0.440 6.48 0.473
2 8.65 0.563 12.94 0.764 8.00 0.544 9.81 0.693
-5 16.13 0.864 28.48 0.999 12.98 0.754 21.46 0.993

Avg. 8.37 0.513 12.07 0.599 7.60 0.494 9.66 0.576
UEN ASV noise

17 4.89 0.290 5.04 0.296 4.85 0.292 4.90 0.286
12 5.03 0.301 5.66 0.324 5.02 0.306 5.00 0.298
7 5.54 0.329 7.32 0.429 5.35 0.329 5.44 0.330
2 6.71 0.396 12.22 0.656 6.23 0.385 6.84 0.413
-5 11.60 0.623 27.74 0.994 9.07 0.508 12.90 0.645

Avg. 6.75 0.388 11.60 0.540 6.10 0.364 7.02 0.394

Table 5.7: Unsupervised enhancement results on simulated additive noise con-
ditions. For details on test conditions, refer to Section 5.2.2.2

ered as unseen conditions used to test the generalization ability of UEN. The

results at each individual SNR are presented in Table 5.7. ‘UEN ASV noise‘

yielded consistent improvements on all four noise conditions at all SNRs. More

pronounced improvements were observed at 0dB and -5dB SNRs. Figure 5.4

presents the comparison of both the UEN ASV systems as a function of number

of iterations used for training UEN. The minDCF reported in the figure was ob-

tained by averaging the minDCFs across the individual SNR conditions. Once

again the advantage of training UEN with noise (avoiding over fitting) can be

observed from the plots.

The results and the figures showed that the UEN we devised exhibited good
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(a) SITW noise (b) SITW chime3bg

(c) SITW music (d) SITW babble

Figure 5.4: Results on SITW noisy
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dereverberation and denoising capabilities, and also good generalization ability

to unseen noise conditions (SITW music, SITW speech and SITW chime3bg).

Since, UEN trained with noise outperformed the UEN trained without noise

on all testing conditions, we refer to ‘UEN ASV noise‘ as ‘UEN ASV’ for the

rest of the chapter and we report results only on UENs trained with noise.

5.3.1.1 Comparison with Weighted Prediction Error

In this section, we compare the performance of UEN in improving the per-

formance of ASV with Weighted Prediction Error (WPE) [98, 99], a commonly

used approach for speech dereverberation. We termed the ASV, whose eval-

uation data was enhanced with WPE as ‘WPE ASV’. Table 5.8 presents the

comparison results for ‘UEN ASV with noise’ and ‘WPE ASV’. The training

data for both the systems remains the same as ‘baseline ASV’. Enhancement

was only applied during evaluation. We obtained 21% and 22% relative im-

provements on minDCF of SITW reverb over ‘baseline ASV’ and ‘WPE ASV’.

SITW SITW reverb
EER minDCF EER minDCF

Baseline 5.23 0.340 6.78 0.460
WPE 5.69 0.370 6.48 0.466
UEN 5.68 0.323 6.09 0.363

Table 5.8: Comparison between UEN and WPE
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5.3.2 Enhancement in Low-resource Setting

UEN used in unsupervised enhancement experiments discussed in Sec-

tion 5.3.1 was trained on simulated far-field data obtained from VoxCelebCat

clean. The simulated far-field data used was comparable in size to that of the

clean data (1̃600 hours of speech from 7104 speakers). In this section, we tested

the ability of UEN’s performance when trained on limited amount of data. In

this work, limited target domain data referred to data obtained from limited

number of speakers. We trained an UEN on SITW dev reverb noise as far-field

data. Similar to VoxCelebCat reverb noise, SITW dev reverb noise was obtained

by convolving RIRs to SITW dev and then MUSAN noise was added on top of it.

For the low resource experiments in this section, we used real RIRs instead of

simulated RIRs (details in Section 5.2.1). SITW dev reverb noise and VoxCele-

bCat reverb noise has 191 and 7104 number of speakers respectively. Since,

the former data set has much less number of speakers compared to latter, we

considered this a low resource scenario. We used SITW eval and VOiCES cor-

pus [86, 100] for evaluation. Results are presented in Table 5.9. The low re-

source system was denoted as ‘UEN ASV low resource’ in the Table. From the

results, it can be observed that both the UEN ASV systems improved the re-

sults compared to baseline ASV clean and WPE ASV on both the evaluation

datasets: SITW and VOiCES eval. More importantly, the low resource system

performed very similar to UEN ASV.
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SITW reverb VOiCES eval
EER DCF EER DCF

Baseline ASV 7.24 0.560 11.12 0.787
WPE ASV 6.52 0.520 9.36 0.687

UEN ASV 6.34 0.492 8.95 0.678
UEN ASV low resource 6.12 0.497 9.08 0.673

Table 5.9: Unsupervised enhancement results [31] trained in a low-resource
setting. ‘UEN ASV low resource’ and ‘UEN ASV’ were trained using SITW dev
reverb noise and VoxCelebCat reverb noise as target domain data respectively.
The source domain data, VoxCelebCat clean, remains the same for both the
networks.

5.3.3 Unsupervised Feature Enhancement with

Real Data

UEN used in enhancement experiments discussed so far in Section 5.3.1

was trained on simulated far-field data obtained from VoxCelebCat clean. The

UEN, thus trained on simulated data, was used to enhance several simulated

test conditions. In this section, we used the UEN trained using simulated

data to enhance evaluation data obtained from domains such as AMI, SRI and

BabyTrain. In addition to training UEN on simulated data, we also exper-

imented with training the UEN on real data obtained from target domains.

Experiments in Section 5.3.2 demonstrated the ability of UEN trained on lim-

ited amount of data to improve the verification results compared to baseline

system. However, the low resource system in Section 5.3.2 was also trained

on simulated data (SITW dev reverb noise). In this section, we experimented
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with training the UEN on real degraded data obtained from target domain –

the domain on which the system would be tested on. The term unsupervised

in UEN refers to use of unpaired data to train the enhancement network. The

ability to train the enhancement network on unpaired data motivated us to ex-

periment with real data to train the UEN, thus avoiding the need for simulated

data. We considered real data as degraded data obtained from real domains.

The real data obtained from target domain used for training UEN was differ-

ent from evaluation data. We termed ASV system enhanced with UEN trained

on real data as ‘UEN ASV real’ whereas the system trained on simulated data

(VoxCelebCat reverb noise) was still termed as ‘UEN ASV’.

We experimented with two domains in this section: AMI and SRI. We

trained two UENs in this section: one for AMI and other for SRI. The tar-

get domain data for training the UEN for enhancing AMI evaluation data was

sampled from training set of AMI [95]. However, the UEN for SRI was trained

on Chime5 [94] as target domain data for lack of availability of training set for

SRI corpus. AMI was recorded in a setting of 3 different meeting rooms, 180

speakers × 3.5 sessions per speaker. Out of these 180 speakers, 135 speak-

ers were used for training the UEN and 45 for testing. Chime5 corpus was

recorded in an indoor uncontrolled setting of kitchen, dining, living room with

80 speakers. Similar to simulated setup, we added noise from MUSAN to the

recordings of AMI and Chime5. Addition of noise to reverberant speech fol-
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lowed from our experiments in Section 5.3.1 where we showed that noise ad-

dition improves the performance of UEN by avoiding over fitting. The source

domain data (VoxCelebCat clean) used for training remained the same for the

real and simulated networks. The real target domain has much less speakers

(135 from AMI) compared to simulated setup (7104). Enhancement experi-

ments performed using real data can be seen as a special case of low resource

experiments since the training data available from the target domain was lim-

ited in number of speakers.

Experimental results are presented in Table 5.10. As shown in results,

both the enhancement systems –‘UEN ASV’ and ‘UEN ASV real’– improved

in performance compared to the baseline for both the test domains. For AMI,

‘UEN ASV real’ performed better than ‘UEN ASV’ even though UEN real was

trained on smaller amount of target domain data (obtained from 135 speakers)

compared to the UEN trained on simulated data (7104 speakers). For SRI, un-

like AMI, ‘UEN ASV’ performed better than ‘UEN ASV real’. The difference

in domains between SRI (testset) and Chime5 (training set) used might have

resulted in slightly poor performance of the real system compared to its sim-

ulated counterpart. From these experiments we observed that when training

and evaluation conditions matched closely (like in AMI) use of real data over

simulated data offered advantage, which justifies our approach for training en-

hancement network on unpaired data.
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AMI SRI
EER minDCF EER minDCF

Baseline ASV 26.51 0.940 21.11 0.767
UEN ASV 20.22 0.766 18.63 0.714
UEN ASV real 19.66 0.726 19.92 0.732

Table 5.10: Comparison of UEN trained on real data vs UEN trained on sim-
ulated data on AMI and SRI

5.4 Feature Enhancement Using Paired

Data

UEN [31,32], discussed in Section 5.3, was trained on unpaired reverb-clean

data to minimize a multi-task objective – a combination of cycle-consistency

and adversarial losses. UEN transforms features from reverberant to clean

domain. As discussed in Section 5.3.1, UEN has shown good dereverberation

and denoising capabilities by improving performance on simulated reverber-

ant, simulated noisy, and real datasets collected in wild/uncontrolled environ-

ments. UEN also obtained better verification performance compared to the

widely used WPE based speech dereverberation approach [98, 99] (details in

Section 5.3.1.1). Additionally, since UEN does not require paired data for

training, it can be trained on real data from reverberant (target) and clean

(source) domains5, thus avoiding the need for using simulated data (details in

Section 5.3.3).
5We used the terms clean/source and reverberant/target interchangeably in this paper

132



CHAPTER 5. FAR-FIELD FEATURE ENHANCEMENT

In this section, we compare the performance of UEN with an enhancement

network trained using paired reverberant-clean corpora – termed as super-

vised enhancement network (SEN). One of the standard approaches for train-

ing enhancement networks with paired data is to learn a mapping function

from acoustic features of degraded speech to clean speech using a DNN [23].

This feature mapping approach solves a non-linear regression problem by min-

imizing distance metrics like L1 or L2 between the output and reference clean

features. This is a supervised approach, since the DNN is trained on paired

clean-degraded speech usually obtained by simulation. The L2 objective trains

a regression network that outputs the mean of all plausible outputs, which

is known to produce smooth and/or distorted features. [2, 29]. This issue is

well-noted in enhancement community [101] and also observed in image super

resolution task in computer vision [29]. In this work, we explored the usage

of adversarial loss [28] to overcome the distortions introduced by the feature

mapping approach.

5.4.1 Supervised Enhancement Network (SEN)

SEN was trained using paired reverberant-clean corpora to minimize a com-

bination of feature mapping objective and adversarial loss. We chose L1 metric

for the mapping objective, and is given in Equation 5.2.

133



CHAPTER 5. FAR-FIELD FEATURE ENHANCEMENT

L1(SEN,Xreverb,Xclean) = E(xreverb,xclean)∼(preverb,pclean)||SEN(xreverb)− xclean||1 (5.2)

L1 objective usually distorts the output by making it smooth [2,29,101]. The

additional adversarial loss [28] avoids this. This was accomplished by training

a discriminator – a binary classifier that discriminates between the enhanced

and original clean features. SEN was then trained to trick the discriminator in

believing that the output features were sampled from the original clean feature

distribution instead of the enhanced feature distribution. At the end of the

training, the enhanced and original clean features become indistinguishable by

the discriminator, making the enhanced features more realistic, thus avoiding

distortion. We used least-squares objective [77] to train the discriminator as

given in Equation 5.3,

LDisc(SEN, Dclean,Xreverb,Xclean) = Ex∼pclean [(Dclean(x)− 1)2]

+ Ex∼preverb [(Dclean(SEN(x)))
2] (5.3)

The adversarial objective for the SEN is
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Ladv(SEN, Dclean,Xreverb) = Ex∼preverb [(Dclean(SEN(x))− 1)2] (5.4)

The final multi-task objective for training the SEN is given by

L(SEN, Dclean) = λ1L1(SEN,Xreverb,Xclean)

+ λadvLadv(SEN, Dclean,Xreverb) , (5.5)

where λ1 and λadv represent the weights assigned to individual objectives.

5.4.2 Training Details of Supervised Enhance-

ment Network

The training of SEN required paired reverb-clean data which was obtained

by simulation. Similar to UEN, we used VoxCelebCat reverb noise and Vox-

CelebCat clean as reverb and clean data respectively. As explained in Sec-

tion 5.3, we obtained the former data set by convolving the later with sim-

ulated RIRs and then added noise files from MUSAN noise corpus. During

training, mini batches of paired reverb-clean data were drawn from training

corpora which was then used to minimize the objectives given in Equation 5.5.

We compared the performance of SEN with that of UEN. To make an ideal
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comparison between both the networks, similar to UEN, the learning rates

used for SEN and discriminator were set to 0.003 and 0.001 respectively. The

learning rates were kept constant for the first 15 epochs and, then, linearly

decreased until they reach the minimum learning rate (1e-6). Mini batch size

in SEN training was set to 32, similar to UEN. SEN was trained for 50 epochs.

Each epoch was set to be complete when one random sample from each of the

utterances of clean training corpus has appeared once in that epoch. Adam

Optimizer was used with momentum β1 = 0.5. The architectures for SEN and

discriminator used were exactly the same as that of UEN and discriminator

used in CycleGAN. Once the SEN was trained, we used it to enhance the fea-

tures of the evaluation data which were then used to compute the x-vectors

used for scoring the ASV system.

5.4.3 Paired vs Unpaired Enhancement Approaches

The SEN network was trained using a multi-task objective – a weighted

sum of L1 and adversarial loss (details in Section 5.4.1). To demonstrate the

effectiveness of adversarial loss for training the SEN, we first performed an

ablation study on the losses by training two SENs on individual losses. Results

on simulated test set SITW reverb are presented in Table 5.11.

Baseline system was trained solely on clean and tested without enhance-

ment. SEN trained solely with adversarial loss in Equation 5.4, learns its own
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ASV Loss Weights SITW SITW reverb
system λFM λadv EER minDCF EER minDCF

Baseline - - 5.02 0.327 6.34 0.448
UEN - - 4.77 0.297 5.63 0.345

SEN(L1) 1.0 0.0 6.39 0.462 8.87 0.626
SEN(Ladv) 0.0 1.0 8.28 0.442 9.91 0.535
SEN(both) 1.0 1.0 4.19 0.275 5.06 0.317
SEN(both) 1.0 0.1 4.01 0.260 4.63 0.299
SEN(both) 1.0 0.01 6.28 0.462 8.72 0.612

Table 5.11: Comparison of SEN vs UEN on ASV evaluated on SITW and SITW
reverb. x-vector network was trained on VoxCelebCat clean without data aug-
mentation and enhancement was applied during evaluation. UEN and SEN
stand for unsupervised (unpaired) and supervised (paired) enhancement net-
works respectively.

loss function to generate clean features that matches closely with the reference

clean features. The ASV system, whose evaluation data was enhanced using

SEN trained with L1 loss only, did not improve over baseline system. Similarly,

the ASV system whose evaluation data was enhanced using SEN trained with

adversarial loss alone also did not improve over the baseline. The above results

suggest that either of the loss functions alone are not enough to achieve en-

hancement task. Moreover, SEN with adversarial loss yielded better minDCF

(0.535) compared to SEN with L1 (0.626) on SITW reverb, which justified the

usage of adversarial loss. We then trained a SEN using a combination of both

the losses giving them equal weights (1.0). As shown in Table 5.11, use of

this SEN to enhance SITW reverb improved the performance compared to both

baseline and UEN ASV system. Moreover, to demonstrate the effectiveness

of adversarial loss in eliminating the distortion in output features, we used
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the following analysis. Since, SITW reverb was obtained via simulation from

SITW, a distortion free enhancement of SITW reverb should be able to retrieve

SITW. In other words, enhanced SITW reverb and original SITW, when tested

on same baseline should give identical performance. When the above happens,

it is safe to conclude that enhancement process is distortion free. The results

are consistent with the statement above. SITW reverb enhanced using SEN

(trained with both objectives with equal loss weights) yielded 5.06 and 0.317

in terms of EER and minDCF respectively. SITW yielded similar performance

on the baseline system (5.02 and 0.327 in terms of EER and minDCF respec-

tively). The results suggest that training enhancement network on adversarial

loss along with conventional feature mapping objective (like L1 loss) would be

able to eliminate any distortions present in enhancement.

We further experimented with tuning the adversarial loss weight λadv. We

experimented with 1.0, 0.1 and 0.01. Setting adversarial loss weight to 0.01

made it insignificant compared to L1 loss (SEN with λadv set to 0.01 had slight

improvements over SEN trained with L1 alone). We obtained better results

with the adversarial loss weight of 0.1, as shown in Table 5.11. SEN trained

with λadv set to 0.1 yielded 20.5% and 33.5% percent relative improvements in

terms of minDCF on SITW and SITW reverb compared to the baseline system.

For comparison, UEN ASV yielded 9.1% and 23% relative improvements. Sim-

ilar to UEN, SEN did not deteriorate performance of SITW (considered clean)
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but improved it. For the rest of this work, use of the term SEN refers to SEN

trained with 0.1 and 1.0 for λadv and λ1 respectively.

5.5 Comparison of Feature Enhancement

and Feature Adaptation

Both UEN and SEN, described above, transformed reverberant features to

clean domain. Hence, we call the transformation reverberant feature enhance-

ment or feature dereverberation. As shown in Section 5.3.1, the enhancement

networks trained for doing feature dereverberation also generalizes to unseen

noisy conditions. Thus, we use the term degraded features to denote both re-

verberant and/or noisy conditions. The ASV system experimented so far in

this chapter was trained on VocCelebCat clean, considered as clean condition,

and tested on degraded conditions. Both the enhancement networks, UEN and

SEN, were used to improve the performance of this system by enhancing the

features of the evaluation data. The enhanced system in this case can be con-

sidered as trained and tested on clean condition whereas the baseline system

can be considered as trained on clean and tested on degraded conditions. In

this setting, both the enhancement networks – UEN and SEN – yielded im-

pressive results across a wide range of simulated and real testing conditions,

as demonstrated in Section 5.3 and Section 5.4.
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SITW SITW reverb
EER DCF EER DCF

Baseline ASV system
trained on clean 5.02 0.327 6.29 0.446
trained on noise 4.07 0.273 4.98 0.347

Table 5.12: Comparison of baseline ASV systems trained on two differ-
ent conditions: VoxCelebCat clean and VoxCelebCat noise. No enhance-
ment/adaptation was done during evaluation

In this section, we experimented with mapping the degraded features to

some chosen domain other than clean via a domain adaptation network (DAN).

The choice of domain to which the degraded features would be mapped was

based on the following criteria: we train two ASV systems, one trained on

clean (as earlier) and the other trained on some domain we chose (details be-

low) other than clean. We observed that ASV trained on the chosen domain

yielded better results on unseen conditions compared to ASV trained on clean.

Table 5.12 presents results of two different baseline ASV systems – one trained

on VoxCelebCat clean and other trained on VoxCelebCat noise (chosen domain).

VoxCelebCat noise was obtained by artificially adding assorted noise files from

MUSAN noise corpora to VoxCelebCat clean. The noise addition was done as

foreground noise [48] at randomly chosen SNR levels from 15,10,5 and 0 dB.

For the experiments in Table 5.12, both the systems were tested on original

evaluation corpora (enhancement was not applied during evaluation).

Table 5.12 suggests that training x-vector system on noise yielded better re-

sults on both SITW and SITW reverb. The former test set can be considered as
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an unseen condition for both the baselines (far-field data is not seen in training

for both the systems). Training on VoxCelebCat noise improved performance

on SITW reverb (an unseen condition) compared to baseline trained on Vox-

CelebCat clean. Moreover, it also improved the performance on SITW, which

was considered clean testing condition. We observed that x-vector network of

ASV trained on noise has higher validation accuracy and a smaller difference

between train and validation accuracy (avoiding over fitting) compared to the

x-vector trained on clean. Training the ASV on noise, thus, acted as a reg-

ularizer in training and yielded better performance on both clean and reverb

(unseen) testing conditions. Since, training on noise yielded better performance

than training on clean we experimented with mapping the far-field evaluation

corpora to noise domain via a domain adaptation network (DAN).

5.5.1 Domain Adaptation Network (DAN)

As explained above, DAN maps the degraded features from reverberant to

noise domain. This mapping was attained by training a CycleGAN, similar

to the one trained for UEN, except that the source domain was VoxCelebCat

noise instead of VoxCelebCat clean. The target domain data used, VoxCelebCat

reverb noise, was same for both the networks. During evaluation, the reverber-

ant features were transferred to the source domain using the corresponding

generator in the CycleGAN, termed as DAN. Except for the difference in train-
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ing data used, the procedure for training the DAN was identical to UEN.

5.5.2 Results: UEN vs DAN

Table 5.13 presents comparison between UEN and DAN on two baseline

systems: one trained on clean and other trained on noise condition. UEN ASV

and DAN ASV refer to the systems where the evaluation features were mapped

using UEN and DAN respectively. For the ASV system trained on clean con-

dition, UEN yielded better results compared to DAN. On the other hand, for

the ASV system trained on noise condition, DAN yielded better results com-

pared to UEN. Results suggested that mapping features of the evaluation data

to the domain on which the x-vector was trained yielded better results. The

experiments demonstrated the ability of CycleGAN to map features to an ar-

bitrary domain (noise in this case). It can also be observed that enhancement

deteriorated performance of ASV system that was trained on noise. Hence,

DAN becomes a strong candidate to improve the performance of ASV trained

on multi-condition data (discussed in next section).
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ASV trained on ASV trained on
clean noise

SITW SITW reverb SITW SITW reverb
EER DCF EER DCF EER DCF EER DCF

Baseline ASV 5.02 0.327 6.29 0.446 4.07 0.273 4.98 0.347
UEN ASV 4.74 0.290 5.45 0.329 4.39 0.277 5.12 0.315
DAN ASV 4.76 0.308 5.73 0.376 4.39 0.264 4.81 0.309

Table 5.13: Comparison of UEN vs DAN. We present results on two different
ASV systems: one trained on clean and other trained on noise condition.

5.6 Enhancement Experiments on Sys-

tem Trained with Data Augmenta-

tion

Encouraged by the improvements obtained by enhancement networks on

an ASV system trained solely on clean condition, we experimented with a more

practical scenario - ASV trained on multi-condition data. As explained in Sec-

tion 5.1, multi-condition training data comprised of noisy and far-field condi-

tions along with the original clean condition. The noisy and far-field conditions

were obtained from clean via simulation. Using the multi-condition data for

training, a method popularly known as data augmentation, yielded SOTA re-

sults on various test scenarios [14,15]. As explained in Section 5.1, training the

ASV on multi-condition data can also be seen as a supervised domain adapta-

tion strategy to increase the robustness of the system to degraded conditions.
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With the following experiments in this section we investigated whether our

unsupervised domain approach, we discussed in previous sections, would com-

plement the supervised multi-condition approach.

5.6.1 Enhancement for x-vector vs. Enhancement

for PLDA

In this experiment, we first experimented with UEN to boost the perfor-

mance of multi-condition system. Results on two domains – AMI and SRI –

are presented in Table 5.14. The first row presents results of multi-condition

system. Second row presents the results when only test (eval and enrollment)

data was enhanced using UEN. On both AMI and SRI, enhancing only test

data deteriorated performance. We then trained the PLDA on xvectors ex-

tracted using enhanced multi-condition training data instead of original multi-

condition data (results in row 3). Similar to the baseline, x-vector network,

in this case, was still based on multi-condition data. On SRI, this improved

the results slightly compared to the baseline system (better EER and similar

minDCF). On AMI, this training strategy still deteriorated the performance

compared to baseline. We then trained a homogeneous system – where x-

vector and PLDA were trained on enhanced multi-condition data instead of

original multi-condition data. This system gave better performance in terms
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Details of data used AMI SRI
x-vector PLDA test EER minDCF EER minDCF

aug aug orig 18.79 0.688 14.55 0.583
aug aug enh 18.96 0.711 15.43 0.644
aug enh enh 19.41 0.690 14.26 0.583
enh enh enh 18.81 0.690 14.78 0.559

Table 5.14: UEN ASV results on AMI and SRI with x-vector and PLDA aug-
mentation. aug, enh and orig in the table stands for augmented data, enhanced
data and original data with no enhancement respectively

of minDCF (4.2% relative) on SRI compared to baseline while giving almost

similar performance as the baseline on AMI. The results indicated that ASV

system trained using data augmentation (multi-condition data) can take ad-

vantage of enhancement. To benefit from enhancement the system needed to

be trained in an homogeneous style – both x-vector and PLDA were trained on

enhanced multi-condition data and evaluation data was also enhanced [32].

The homogeneous system discussed above yielded slightly better perfor-

mance on SRI compared to the baseline. However, we observed a larger dif-

ference in training and validation accuracies of x-vector networks trained on

enhanced multi-condition data and original multi-condition data. This indi-

cated that the homogeneous system, though gave a slight improvement in per-

formance, exhibited a tendency to over-fit to the training data. In the following

experiments in Section 5.6.2, we explored several training strategies to over

come the over-fitting scenario to improve the performance further.

The analysis in Table 5.14 was done using UEN. In the following exper-

iments in Section 5.6.2, we also tested the efficacy of SEN and DAN, along
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with UEN, in improving the verification performance when multi-condition

data was used for training the ASV system.

5.6.2 Comparison of All Adaptation Approaches

Along with the homogeneous training strategy we discussed in previous sec-

tion, we experimented with two different training schemes – both differ in data

used for training x-vector and PLDA. In the homogeneous scheme, the entire

multi-condition training data was enhanced [32]. We termed the ASV sys-

tem trained in homogeneous fashion as ASV enh. In the second scheme, only

the far-field component (VoxCelebCat reverb noise) of multi-condition training

data was enhanced. VoxCelebCat clean and VoxCelebCat additive were kept

unchanged. The motivation for enhancing only the far-field training data was

two fold: (1) all the enhancement networks in this work were trained to do

dereverberation task. Hence, we used them to enhance only far-field portion of

training data, and (2) leaving the additive noise training data unchanged would

let us train the x-vector on noisy data, which could help prevent the over-fitting

scenario observed in homogeneous system. We termed the system trained us-

ing this training strategy as ASV ff-enh. In the third scheme, we trained the

x-vector on both original multi-condition training data and also its enhanced

version. We termed this system as ASV aug & enh. Since the x-vector network

in this case had double the training data compared to the first two scenarios,
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it was trained only for 1.5 epochs compared to 3 epochs in other cases, thus

making the systems comparable. In all schemes, the PLDA was trained on x-

vectors extracted from enhanced features only (making the PLDAs comparable

too). In all three cases, the evaluation data was enhanced. All the three train-

ing schemes were repeated for UEN, DAN and SEN separately. This resulted

in total 9 different systems for comparison – three different training schemes

repeated for all three enhancement networks. Results on three different real

testing conditions – AMI, SRI and BabyTrain – are presented in Table 5.15.

In Section 5.5, we observed that when experimented with two conditions

– clean and noise, matched condition training yielded better performance. In

other words, when ASV system was trained on clean condition, enhancement

yielded better results compared to DAN. On the other hand, when ASV sys-

tem was trained on noise condition, domain adaptation (using DAN) yielded

better results compared to enhancement. In this section, we trained the ASV

system on multi-condition data, as opposed to training on a single condition

in the previous sections. Hence, we devised the above experiments to deter-

mine whether mapping the features to clean domain (enhancement) or to noise

domain (adaptation) yields better performance in a multi-condition training

scenario. The goal to experiment with all the 9 systems and to test on several

domains was not to obtain best performance on individual domains, but to de-

termine a training strategy that consistently improves performance across all
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Enh. ASV AMI SRI BabyTrain
Type EER minDCF EER minDCF EER minDCF

Baseline multi-condition 18.79 0.688 14.55 0.583 11.72 0.551

UEN
ASV enh 18.84(↓) 0.688(↑) 15.29(↓) 0.580(↑) 9.88(↑) 0.391(↑)

ASV ff-enh 19.48(↓) 0.689(↓) 14.69(↓) 0.585(↓) 11.45(↑) 0.474(↑)
ASV aug & enh 18.98(↓) 0.682(↑) 14.02(↑) 0.559(↑) 13.14(↓) 0.441(↑)

SEN
ASV enh 19.97(↓) 0.697(↓) 15.16(↓) 0.563(↑) 9.61(↑) 0.428(↑)

ASV ff-enh 18.89(↓) 0.692(↓) 14.50(↑) 0.523(↑) 8.70(↑) 0.402(↑)
ASV aug & enh 20.03(↓) 0.706(↓) 13.13(↑) 0.533(↑) 10.09(↑) 0.405(↑)

DAN
ASV enh 18.78(↑) 0.713(↓) 15.18(↓) 0.584(↓) 12.32(↓) 0.488(↑)

ASV ff-enh 19.38(↓) 0.704(↓) 14.40(↑) 0.578(↑) 11.07(↑) 0.523(↑)
ASV aug & enh 18.54(↑) 0.673(↑) 14.10(↑) 0.550(↑) 8.71(↑) 0.377(↑)

Table 5.15: Results on ASV system trained on multi-condition data (↑ and ↓
indicate that the enhancement system’s performance improved or deteriorated
respectively compared to the multi-condition baseline. Results in bold indicate
system has improved performance across all test conditions. For description of
terms ASV enh, ASV ff-enh and ASV aug & enh refer to Section 5.6.2)

test conditions compared to the baseline system.

The results from Table 5.15 suggests that ‘DAN ASV aug & enh’ yielded

improvements on all three domains – AMI, SRI and BabyTrain – on both the

evaluation metrics (EER and minDCF). This system yielded relative improve-

ments on minDCF of 2.2%, 6% and 31.6% on AMI, SRI and BabyTrain re-

spectively compared to multi-condition baseline. On SRI and BabyTrain, both

‘SEN ASV ff-enh’ and ‘SEN ASV aug & enh’ yielded improvements compared

to baseline but deteriorate the performance on AMI. However, ‘DAN ASV aug

& enh’ yielded improvements on all three domains. Hence, we conclude that

adapting the features to noise domain and training the ASV on both multi-

condition data and enhanced data yields good improvements over the baseline

in multi-condition scenario.
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5.7 Summary

In this chapter, we experimented with single channel far-field feature adap-

tation for improving the performance of speaker verification systems when

tested on uncontrolled ’wild’ conditions. To enhance the quality of features

during evaluation, we experimented with two enhancement networks – unsu-

pervised enhancement network (UEN) and supervised enhancement network

(SEN). The former was trained on unpaired data from both training and evalu-

ation domains, while the later was trained on paired data, usually obtained by

simulation. In the initial phase of our experiments, we experimented with an

ASV system trained solely on clean speech. Since, in this stage enhancement is

only applied during evaluation, we used this system to tune the enhancement

networks and test their efficacy. Unpaired enhancement approach can be used

to train on real data from target domain, thus, the need for simulation can be

avoided. We experimented with paired enhancement approach to benchmark

the unpaired approach. We presented a simple regularization technique to pre-

vent the enhancement networks from over-fitting. We presented results of our

approach on several simulated and real degraded conditions [32] (details in

Section 5.3 and Section 5.4).

We also observed empirically that conventional non-linear regression based

enhancement approach using loss functions like L1 would not improve SV per-
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formance. We attribute this performance drop to the distortions in output

feature space. We found that adversarial loss circumvents this distortions

by aligning the enhanced features close to real clean features (details in Sec-

tion 5.4).

We also experimented with transferring the evaluation features to an ar-

bitrary domain (instead of clean). To achieve this, we trained a DNN to map

features from degraded domain to an assorted noise domain – network termed

as domain adaptation network (DAN). We observed that mapping evaluation

features to the domain on which the network was trained improves verification

performance (details in Section 5.5).

In the last stage of our experiments, we tested our feature mapping ap-

proach on improving the performance of ASV system trained on multi-condition

data, the approach used in SOTA SV systems. In this setting, we found that

enhancing the evaluation data alone would not suffice to improve the perfor-

mance. Training PLDA on embeddings extracted from enhanced features im-

proved the performance. Further gains are achieved by training the entire

pipeline on both enhanced and multi-condition features. In the multi-condition

scenario, enhancement during training and evaluation gave considerable im-

provements. However, adapting features to noise domain (using DAN) gave

consistent improvements on all the domains we experimented with (details in

Section 5.6).
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Summary and Future Work

In this chapter, we summarize the observations from our experiments and

discuss some potential approaches for extending our work.

6.1 Summary

6.1.1 Robustness to Mismatch in Sampling Fre-

quency

In Chapter 3, the experimental setting was as follows: we considered two

types of datasets for training – telephone speech sampled at narrowband (NB)

8 kHz frequency, and microphone speech sampled at wideband (WB) 16 kHz

frequency. We assumed the evaluation dataset was WB. We further assumed
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that WB speech available for training was limited in number of speakers (and

utterances) compared to NB speech. The conventional way of training systems

under this scenario is to downsample WB speech to match the frequency of

NB speech during training and evaluation. This procedure throws away in-

formation in the upperband (UB) of microphone speech. In this chapter, we

investigated several procedures to combine both the datasets during training

without downsampling the WB speech.

We first experimented with a linear upsampler that upsamples telephone

speech to match the sampling frequency of microphone speech without pre-

dicting any information in the UB. The upsampled telephone speech was

used to train the x-vector network. We termed this ASV system as mixed BW

sytem [34]. This upsampling technique, though simple and computationally

inexpensive, proved very effective, yielding impressive results (details in Sec-

tion 3.3). The main advantage of mixed BW system was that, we were able

to use original microphone speech during training and evaluation without any

downsampling as done in conventional way of training. We, thus, were able to

retain information in the UB of WB speech which helped improve the verifica-

tion performance.

We then continued our investigation by experimenting with several neu-

ral network architectures to upsample NB speech before training x-vector net-

works. The motivation was to overcome the limitation of basic upsampler in
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predicting the information present in the upper band of telephone speech. We

experimented with a feed forward fully connected DNN, a deep residual full-

convolutional network (CNN) and a BLSTM network for BWE [35]. Individ-

ual x-vector based speaker recognition systems were trained on bandwidth

extended features obtained from each of these three systems. All the BWE

speaker recognition systems improved in performance compared to conven-

tional training and the mixed BW system. The best performer in terms of

DCF was the CNN-BWE system trained on sequence lengths of 257. In terms

of DCF, the CNN-BWE system showed relative improvement of 10.78% and

15.96% in the SITW eval Core and Assist-Multi condition respectively w.r.t. the

conventionally trained NB baseline; and improved by 3.21% and 4.13% w.r.t.

to the mixed BW baseline. In terms of number of parameters, the CNN-BWE

model with 21 resnets is the most light weight with ∼ 6M parameters com-

pared to DNN-BWE with ∼ 16M parameters and BLSTM-BWE with ∼ 18M

parameters (details in Section 3.4).

6.1.1.1 Contributions

Our main contributions with this approach are two fold: 1) we designed an

experimental framework – termed mixed BW approach – to train a x-vector

embedding network on original WB speech and upsampled telephone speech.

This approach performed better than the conventional way of training ASV
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systems on both telephone and microphone data – by downsampling the WB

speech. 2) We also proposed a CNN with an encoder-decoder architecture to

extend the band-width of telephone speech. The CNN architecture performed

better in improving SV performance compared to a previously proposed fully

connected DNN [22].

6.1.2 Robustness to Channel Mismatch Scenario

In Chapter 4, we experimented with a channel mismatch scenario where the

ASV system was trained on data acquired using telephone channel and evalu-

ated on microphone data. To address this, we presented a feature mapping

based unsupervised channel adaptation technique, where we map the features

of microphone domain to telephone domain. Our feature mapping network is a

‘deep residual convolutional network’ trained on unpaired data acquired from

both the domains using the CycleGAN framework. Our approach yielded 10.1%

and 4.5% relative improvements on EER and minDCF on SITW core condition,

when microphone features were mapped to telephone domain during evalua-

tion. We also experimented with mapping telephone features to microphone do-

main, and use the mapped features for training. This approach yielded slightly

better results compared to the previous approach [30] (details in Section 4.3).

We also experimented with training the feature mapping network in a low-

resource scenario, where limited target domain data was available for training.
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We observed that the CNN tended to overfit in this scenario. To circumvent

this, we presented a simple regularization technique, using which the CNN

trained on limited data performed almost similar to the CNN trained on much

larger data [31] (details in Section 4.4).

The main advantage of our approach is to make use of unpaired real data

from both domains to learn a domain adaptation mechanism, thus, avoiding

the need for using simulation. In the next chapter, we extend this approach to

increase the robustness of SV systems to far-field testing scenarios.

6.1.2.1 Contributions

We proposed an experimental framework to train a CNN on unpaired data

acquired from two different domains – telephone and microphone. Our train-

ing procedure is inspired by the CycleGAN framework proposed for unpaired

image-to-image translation. Our work was the first to use this framework for

microphone-telephone channel adaptation of ASV systems. Our work also pro-

posed a regularization scheme to avoid over fitting of the CycleGAN framework

when trained on limited amount of data.

6.1.3 Robustness to Far-field and Noisy Data

In Chapter 5, we experimented with single channel far-field feature adap-

tation for improving the performance of speaker verification systems when
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tested on uncontrolled ’wild’ conditions. To enhance the quality of features

during evaluation, we experimented with two enhancement networks – unsu-

pervised enhancement network (UEN) and supervised enhancement network

(SEN). The former was trained on unpaired data from both training and evalu-

ation domains, while the later was trained on paired data, usually obtained by

simulation. In the initial phase of our experiments, we experimented with an

ASV system trained solely on clean speech. In this stage enhancement is only

applied during evaluation. We used this system to tune the enhancement net-

works and test their efficacy. Unpaired enhancement approach can be used to

train on real data from both source and target domains, thus, the need for sim-

ulation can be avoided. On the other hand, paired enhancement approach is

trained on simulated data, using a combination of MSE and adversarial losses

(details in Section 5.4). We presented a simple regularization technique to pre-

vent the enhancement networks from over-fitting. We presented results of our

approach on several simulated and real degraded conditions [32] (details in

Section 5.3 and Section 5.4).

We also experimented with transferring the evaluation features to an ar-

bitrary domain (instead of clean). To achieve this, we trained a DNN to map

features from degraded domain to an assorted noise domain – network termed

as domain adaptation network (DAN). We observed that mapping evaluation

features to the domain on which the network was trained improves verification
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performance (details in Section 5.5).

In the last stage of our experiments, we tested our feature mapping ap-

proach on improving the performance of ASV system trained on multi-condition

data, the approach used in SOTA SV systems. In this setting, we found that

enhancing the evaluation data alone would not suffice to improve the perfor-

mance. Training PLDA on embeddings extracted from enhanced features im-

proved the performance. Further gains are achieved by training the entire

pipeline on both enhanced and multi-condition features. In the multi-condition

scenario, enhancement during training and evaluation gave considerable im-

provements. However, adapting features to noise domain (using DAN) gave

consistent improvements on all the domains we experimented with (details in

Section 5.6).

6.1.3.1 Contributions

Our work was the first to show the effectiveness of the CycleGAN frame-

work for enhancement of far-field speech, and its application to SV. Unlike pre-

vious approaches [25–27], which showed the benefits of enhancement network

on simulated datasets, our work showed improvements on several simulated

(noisy and far-field) datasets and real datasets acquired from wild/uncontrolled

conditions.
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6.2 Future Work

As discussed above, our feature mapping approach demonstrated strong re-

sults on various domain mismatch scenarios. In this section, we discuss some

potential extensions for our approach.

6.2.1 Multi-Domain Adaptation

Feature mapping networks used in this work facilitate mapping from one

domain to a different domain. In order to adapt an ASV system to multi-

ple domains, our proposed framework requires us to train a feature mapping

DNN separately for each of this individual domains. This approach not only

increases the computational complexity of training, it also limits us from using

the shared knowledge between domains. An ideal setup would be to train a

single feature mapping DNN to map features between multiple domains. To

facilitate this, the DNN needs to be conditioned on some auxiliary information

of the domain to which features would be mapped.

For instance, one single DNN can be trained to adapt features from AMI,

BabyTrain and SRI domains (details in Section 5.3.3) to clean domain. The

network can be conditioned on one-hot vector for each individual domains. One

other instance would be speech denoising scenario, where babble, music and
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clean1 can be treated as individual noise types. In this case, the auxiliary

information could be noise type and SNR level. The noise type information can

be encoded in the form of one-hot vector. Conditional GAN [58, 102] facilitate

such conditioning. Hence, become a strong candidate for exploration.

6.2.2 Domain Specific Data Augmentation

As is evident from multiple discussions in this thesis, data augmentation

using simulation helped make x-vector embeddings more robust, and thus,

achieve SOTA results on various test sets (domains). In this work, we trained a

feature mapping DNN for an enhancement task – DNN maps features from de-

graded (target) domain to clean (source) domain and use them for evaluation.

We trained the DNN on unpaired data from both domains using adversarial

and cycle-consistency loss. The training procedure with cycle-consistency in-

volved using an auxiliary network that maps enhanced features back to the

domain of interest. This bi-directional feature mapping mechanism opens up

opportunities for one more application – domain specific data augmentation.

In this scenario, during training, we would map the original training fea-

tures from source domain to target domain (the domain on which model would

be evaluated), and use those features along with the simulated training data

during training. Using the domain specific features in training, along with the
1Clean signals can be considered as an additional noise type with infinite SNR
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simulated features, would increase the robustness of embeddings to the target

domain of interest. The procedure can be extended to multi-domain adaptation

using the techniques discussed in Section 6.2.1.

6.2.3 Domain Adaptation for ASR

The feature mapping DNNs in this work are trained using unlabeled data

from both domains using a combination of adversarial and cycle-consistency

loss functions. Since the loss functions employed are task-independent (speaker

verification in this work) and adaptation is done in the acoustic feature space,

the feature mapping approach can be used for other speech applications. One

interesting application of our work would be to test the efficacy of this approach

in making ASR systems robust to several domains.
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[46] D. A. Van Leeuwen and N. Brümmer, “An introduction to application-

independent evaluation of speaker recognition systems,” in Speaker clas-

sification I. Springer, 2007, pp. 330–353.

[47] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise

corpus,” arXiv preprint arXiv:1510.08484, 2015.

[48] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A study on

data augmentation of reverberant speech for robust speech recognition,”

in 2017 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2017, pp. 5220–5224.

[49] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for

speech recognition,” in Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

[50] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.

Le, “Specaugment: A simple data augmentation method for automatic

speech recognition,” arXiv preprint arXiv:1904.08779, 2019.

[51] C. Avendano, H. Hermansky, and E. A. Wan, “Beyond nyquist: Towards

the recovery of broad-bandwidth speech from narrow-bandwidth speech,”

169



BIBLIOGRAPHY

in Fourth European Conference on Speech Communication and Technol-

ogy, 1995.

[52] X. Zhuang, A. Ghoshal, A.-V. Rosti, M. Paulik, and D. Liu, “Improv-

ing DNN Bluetooth Narrowband Acoustic Models by Cross-bandwidth

and Cross-lingual Initialization,” Proc. Interspeech 2017, pp. 2148–2152,

2017.

[53] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale

speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

[54] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,”

arXiv preprint arXiv:1701.00160, 2016.

[55] D. Michelsanti and Z.-H. Tan, “Conditional generative adversarial net-

works for speech enhancement and noise-robust speaker verification,”

arXiv preprint arXiv:1709.01703, 2017.

[56] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and

T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation,” in

International conference on machine learning. PMLR, 2018, pp. 1989–

1998.

[57] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Un-

supervised pixel-level domain adaptation with generative adversarial

170



BIBLIOGRAPHY

networks,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 3722–3731.

[58] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan: Uni-

fied generative adversarial networks for multi-domain image-to-image

translation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 8789–8797.

[59] M. Mimura, S. Sakai, and T. Kawahara, “Cross-domain speech recog-

nition using nonparallel corpora with cycle-consistent adversarial net-

works,” in Automatic Speech Recognition and Understanding Workshop

(ASRU), 2017 IEEE. IEEE, 2017, pp. 134–140.

[60] T. Kaneko and H. Kameoka, “Parallel-data-free voice conversion using

cycle-consistent adversarial networks,” arXiv preprint arXiv:1711.11293,

2017.

[61] F. Fang, J. Yamagishi, I. Echizen, and J. Lorenzo-Trueba, “High-quality

nonparallel voice conversion based on cycle-consistent adversarial net-

work,” arXiv preprint arXiv:1804.00425, 2018.

[62] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Stargan-vc: Non-

parallel many-to-many voice conversion with star generative adversarial

networks,” arXiv preprint arXiv:1806.02169, 2018.

171



BIBLIOGRAPHY

[63] E. Hosseini-Asl, Y. Zhou, C. Xiong, and R. Socher, “A multi-discriminator

cyclegan for unsupervised non-parallel speech domain adaptation,” arXiv

preprint arXiv:1804.00522, 2018.

[64] S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech enhancement

generative adversarial network,” arXiv preprint arXiv:1703.09452, 2017.

[65] F. G. Germain, Q. Chen, and V. Koltun, “Speech denoising with deep

feature losses,” arXiv preprint arXiv:1806.10522, 2018.

[66] S. Kataria, P. S. Nidadavolu, J. Villalba, N. Chen, P. Garcia-Perera, and

N. Dehak, “Feature enhancement with deep feature losses for speaker

verification,” in ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.

7584–7588.

[67] S. Kataria, P. S. Nidadavolu, J. Villalba, and N. Dehak, “Analysis of deep

feature loss based enhancement for speaker verification,” arXiv preprint

arXiv:2002.00139, 2020.

[68] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speakers in the

wild (sitw) speaker recognition database.” in Interspeech, 2016, pp. 818–

822.

172



BIBLIOGRAPHY
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